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ABSTRACT

Structural models accounting for exact kinematics are well-suited for the description of critical
loads and post-critical behaviour. For thin-walled open-section members, the associated rod
formulations must take cross-sectional non-uniform warping into account, since it becomes a relevant
load-carrying mechanism due to the very small torsion stiffness of such members. For this work,
advances on kinematically exact rod models for thin-walled open section members, taking into
account both primary and secondary cross-sectional warpings and advanced constitutive equations,
are proposed. For thin-walled open-section members with linear elastic constitutive equation, the
warping effects are fully characterized by the well-known torsion inertia from the Saint-Venant’s
uniform torsion theory and the warping constant from the Vlasov's theory. The former has a well-
known analytic expression, whilst the latter is obtained only considering the so-called primary
warping, which is the warping in the direction of the cross-section’s walls lengths. The walls
thickness warping, or secondary warping, is typically neglected. However, for more advanced
constitutive equations, such as the ones of interest here, explicit knowledge of the warping and its
directional derivatives are of utmost importance for the stress resultants integrations, justifying the
need of a warping function that accounts for both primary and secondary cross-sectional components.
This work incorporates two exact constitutive equations (i.e. retaining all the strain terms), in order to
enable full bending, compression and torsional strain couplings in the finite strain regime: one based
on the Saint-Venant’s material, which is generally unsuited to truly finite strains, and another based
on the polyconvex neo-Hookean Simo-Ciarlet’s material. The model was implemented in PEFSYS,
which is an in-house nonlinear finite element program. Validation is performed using existing results
from the literature as well as solutions obtained with shell models in ANSYS commercial software.

Keywords: Kinematically exact rod model, thin-walled open-section members, secondary warping,
elastic stability, finite element method.



RESUMO

Modelos estruturais cinematicamente exatos séo adequados para a descri¢éo de cargas criticas e
comportamento pds-critico. Para barras de secéo aberta de paredes delgadas, a formulacédo de barras
associada deve levar em consideracédo o empenamento ndo uniforme da se¢éo transversal, que se torna um
importante mecanismo de transferéncia de esforcos, devido a baixa inércia a torcdo desses perfis. Neste
trabalho, foram propostos avancos em modelos cinematicamente exatos para perfis de secéo aberta e
paredes delgadas, levando em consideragéo tanto empenamento primario quanto secundario, e equaces
constitutivas exatas. Para barras de secdo aberta e paredes delgadas com equacao constitutiva elastica
linear, os efeitos do empenamento sdo completamente caracterizados pelas propriedades usuais de inércia
a torcéo uniforme de Saint-Venant e pela constante de empenamento, proveniente da teoria de Vlasov. A
primeira dessas propriedades é obtida através de expressdes analiticas triviais, enquanto a outra é obtida
considerando apenas 0 empenamento primario, que é o empenamento na direcdo do comprimento das
paredes. O empenamento secundario, na dire¢do da espessura das paredes, é desprezado nessa analise.
Entretanto, para equagGes constitutivas mais avancadas, como as que s&o aqui usadas, informacéo
explicita da funcdo empenamento e suas derivadas sdo de extrema importancia para a integracéo das
resultantes de tenséo, justificando a necessidade de uma fungcdo empenamento que considere tanto
empenamento primario quanto secundario. Este trabalho incorpora duas equaces constitutivas exatas
(i.e., que retém todos os termos de deformacéo), de modo a permitir acoplamento total entre deformacdes
de flexao, compresséo e tor¢do em regime de deformacdes finitas: uma baseada no material de Saint-
Venant (inadequado para deformagcdes finitas), e outra baseada no material policonvexo neo-Hookeano de
Simo-Ciarlet. O modelo foi implementado no PEFSYS, um programa para analise ndo linear de estruturas
baseado no método dos elementos finitos desenvolvido na instituicdo deste trabalho. A validacgéo é feita
através de resultados da literatura e de simulagdes feitas com modelos de casca do programa comercial
ANSYS.

Palavras-chave: teoria de barra cinematicamente exata, barra de se¢do aberta e paredes delgada,
empenamento secundario, estabilidade elastica, método dos elementos finitos.
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1. INTRODUCTION

Unidimensional rod models were the first attempt in science and engineering to mathematically
represent real life structures. Hierarchically, linear Bernoulli-Euler’s beam theory is the simplest
approach, followed by less kinematically restrictive beam models, such as the Timoshenko’s and
Vlasov's models, and then by geometrically exact formulations. Moving up in the hierarchy, there are
bidimensional models (plane stress, plane strain, axisymmetric, shells, etc) and fully three-dimensional
models, which require considerably more effort and invariably more advanced computational
resources to calculate desired outputs — the number of degrees of freedom sharply increases when
compared to equivalent rod models.

Simpler rod theories, although useful and very convenient, tend to incorrectly estimate the
structure’s stiffness, due to the several constrains imposed on the rod’s deformation. In addition, if
linear, they are intrinsically unsuited for structures undergoing large displacements and rotations, as
well as for those that are prone to instabilities. In those cases, geometrical effects become relevant and
can no longer be neglected. Thus, non-linear theories are required — and even more so if one is
interested in evaluating highly flexible structures or post-critical behaviour.

A wide array of successful non-linear rod models has been developed in the literature in the last
four decades or so. Still, when it comes to thin-walled open-section members, they often struggle to
simultaneously predict critical loads and post critical behaviour, to which torsion and warping become
relevant to the load-carrying mechanism and related buckling modes. Most of these models typically
introduce the simplifying small strains assumption, implying that only low order strain terms are
retained at the constitutive equation. As consequence, the cross-sectional stress resultants may be
computed through analytical integration, ending up dependent solely on trivial geometrical properties,
which are usually well-known. For the torsion and torsion-bending-related stress resultants, for

example, the torsion inertia (I7) and warping constant (I,) suffice. Those can be achieved by classical

expressions for open thin-walled sections, I = Zths (¢t is the thickness and b is the length of each wall
segment) and [, = fAz,bsz (y is the warping function), the latter of which being calculated typically

through the Vlasov’s sectorial area. This latter, however, is only an approximation to the warping
function, representing only the so-called primary warping (or warping in the direction of the walls
lengths), neglecting the secondary warping, or warping in the direction of the walls” thickness.
Despite their applicability on various scenarios, it has been verified by some authors (see e.g.
Campello [1], Campello and Lago [2], and Pimenta and Campello [3], motivated by the discoveries
from Pimenta [4]) that there are simple, although pathological, situations in which the critical loads
and the full bifurcation path far away from the trivial solution cannot be adequately predicted by such
models. The use of linearized (or at most partially quadratic) constitutive equations, which do not

enable full axial, bending and torsion strain coupling and besides are unsuited for finite strains,
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combined with the lack of consistent considerations for the secondary warping, may explain the
difficulties of these models in the pursuit of certain critical and post-critical solutions.

In order to incorporate more advanced (nonlinear, large-strain) constitutive equations, with higher
order strain terms retained for proper strain coupling, the complete warping function (i.e., including
both primary and secondary warpings) is required. In this case, computation of the stress resultants is
better performed through numerical rather than analytical integration, since the latter, when possible,
becomes very cumbersome, leading to numerous higher order cross-sectional geometrical properties
that are far from trivial to be computed. The warping function, thus, must be explicitly (and a priori)
defined at every point of the cross-section, as to enable the integration.

This research aims to propose contributions to an existent kinematically exact 7-DOF rod model for
thin-walled open-section members, by proposing a consistent warping function with both primary and
secondary warpings, and by developing an advanced elastic (neo-Hookean, polyconvex) constitutive
equation for finite strains with all higher order strain terms for full strain coupling. Its effectiveness
and reliability to predict critical loads and post-critical behaviour for rod structures consisted of such
members shall be benchmarked. The study is being conducted using PEFSYS, an in-house nonlinear
finite element method (FEM) program for structural analysis.

The structure of this document is as follows:

e Chapter 2: a compilation of useful concepts and a brief discussion on the evolution of rod
models, evidencing the kinematical assumptions that characterizes each one of them; a generic
way to present the kinematical assumptions for rod models is introduced,;

e Chapter 3: the formulation of the 7-DOF kinematically exact rod model used in this work is
described, and the weak form of the equilibrium (and its linearization) is stated. There, the
proposed advances on the considerations of the warping function are presented:;

o Chapter 4: the exact hyperelastic constitutive equations for Saint-Venant’s and Simo-Ciarlet’s
materials are developed. The concept of polyconvexity is introduced,;

e Chapter 5: a brief explanation of Finite Element Method for rods;

o Chapter 6: illustrative examples and benchmark of the proposed advances on the rod model;

e Chapter 7: conclusion;

o Appendix: several basic concepts and demonstrations are shown there.
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2. THEORETICAL BACKGROUND AND BIBLIOGRAPHICAL REVIEW

2.1. Notation

In order to be consistent with some of the established literature in the field, the following notation
is adopted here:
e Lowercase Latin or Greek letters (a, b, ..., a, 8, ....) denote scalar quantities;
e Bold lowercase Latin or Greek letters (a, b, ..., &, B, ....) denote vectors;
e Bold capital Latin or Greek letters (4, B, ...) denote second-order tensors;
Implicit summation convention is used throughout. When indices are Greek letters, they range from
1 to 2 and when they are Latin letters, from 1 to 3. Scalar, cross and dyadic products are represented
by “”, “x” and “®”, respectively. Symbol § (o) denotes a virtual quantity (or, equivalently, a
variation), whereas (°)"denotes either a quantity in the reference configuration, or a back-rotated

guantity.
2.2. Solids mechanics concepts

Many concepts that are shown here have its origins on the classical continuum mechanics. In the
current context, some of them might be particularized to solids mechanics, under static elasticity. It is
suggested that the reader refers to Appendix A and Appendix B, for the most basic definitions, as

some of them are used throughout the text.
2.2.1.  Expressing finite rotations

Here, the noun finite means “arbitrarily large”, and is the antonym of infinitesimal, which is the
first order approximation (linearization).

In order to develop exact rod models, it is pivotal to exactly describe finite rotations, as it is an
important source of non-linear behaviour. Formulations proposed by Argyris [5], [6] were crucial to
understand this phenomenon, and allowed the first rod models to be consistently formulated.

In this chapter, an overview of the expressions that are of interest in section 3 are presented.

If a given tensor Q respects

detQ = 1and QTQ =1, (2.1)
then the transformation given by
v=Qv, (2.2)
expresses a rotation from the original vector v" to v . Note that, despite its vectorial-like expression,
rotations do not obey commutativity. Thus, one cannot compose successive rotations by simple
addition. Consider two successive pure rotational rigid body displacements, given by Q, and Q.. The
final position of a vector v is
v =(Q1°Q)v" =Q,Q,7", (2.3)

where the symbol “o” denotes the composition of two transformations.
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As shown in [7], any rotation tensor can be parametrized as
Q=1+h,(6)0 + h,(6)6? (2.4)
In the current work, the option was to calculate the rotation tensor through the Euler-Rodrigues
formula, expressed in terms of Euler rotation vector 8 (8 = ||8]] is the rotation angle magnitude, and

6/0 is the axis of rotation), where

hy(0) = sin @ d hy(0) = 1 (sin 9/2)2 _ 1—cost (2.5)
W= e B =5Tg2 ) T 62 '
and @ = Skew(0) is a skew-symmetric tensor whose axial vector is 6.
Using Taylor’s expansion, hy and h, can be expressed as
send 1 1
h.(6) 7 69 +1209 0(6°);
1/sinf/2\* 1 1 1 26)
= —____p24__ _p4_ 6
h(6) 2( 6/2 ) 2 22?7200 0(0%).

Note that equation (2.4) and (2.5) present singularities in n2m, where n is an integer. It is shown
([1], [7]) that the singularity in 0 is removable (see equation (2.6)), although the ones in n2m # 0 are
not.

Therefore, rotation magnitude in a total description must be limited to

0<16|<2m. (2.7

Were more intense rotations to be computed, appropriate description could only be reached through
incremental description, or by characterizing rotations with more than 3 parameters. This will not be
explored in the current work.

In the context of finite rotations, several results concerning its derivatives are of interest. First,
consider the derivative of Q with respect of any scalar.

Taking the scalar time, for example, there is a second order tensor skew-symmetric tensor £2 that

satisfies
0 =Q0Q7, axial(?) = w. (2.8)
The vector w is the spin, and the explicit expression for Q and w is

2 =hy(0) O +h,(0)(00 — 600) + h3(6)0, (2.9)
w="To, (2.10)

with
r=1+h,(0)0 + h;(8)672, (2.11)

with
h3(6) = # (2.12)

The derivative of I' with respect to scalars are also of interest. Again, taking time as this scalar
I'=h,(0)0+ h;(0)(0-0)(00 + OO) + h,(0)(O-6)O

2.13
+ hs(0)(6-0)06? (213)
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with
h.(0) — 2h,(6)
hy(8) = =3, (214)
h,(0) — 3h3(6)
hs (8) = ———7——— (2.15)
Similarly, for the scalar ¢ that represents a cross-section position along the rod axis
K = Q'Q7, axial(K) = k. (2.16)
Note that, in equation (2.16), (o)’ = a% (°). Thus,
K = h,(0)0" + h,(0)(00' — 0'0) + h3(6)0, (2.17)
k=T6' (2.18)
I' =h,(0)0" + h3(0)(OO'+0'0) + h,(6)(0-0')0 + hs(0)(O - (2.19)
0)62. '
Other definitions that are useful for the current work are, for a given constant vector ¢,
V(0,t) = h,(0)T + h3(0)(TO — 20T) — h,(0)(Ot R 0) (2.20)

+ hs(0)(0%t ® 0)
in which T = skew(t) and
V'(0,t) = h(6)(0-0)T + h3(6)(TO' — 20'T)
+ hs(6)(0-6")(TO — 20T)
—h,(8)(O'tR O+ 0tR 0" —h(6)(0-6)(OtR 6) (2.21)
+ hs(0)((O'0+00NtR O+ 0%tR )
+h,(0)(0-0") (0%t ® 6)
with
he(8) = o5 [h3(8) — hy(8) — 4, ()], (2.22)
hy(8) = 53 [ha(6) = Shs (). (2.23)
The deductions of the equations (2.8) to (2.23) can be found in Appendix F. The tensors V and V'
does not have any physical meaning — they are auxiliary expressions for the calculation of the

geometric stiffness matrix (see section 3.3).

2.2.2.  Equations of motion

It is recommended that readers that are not used to this topic consults Appendix A and Appendix B
for the basic definitions of non-linear elasticity, especially for acknowledging the relations among the
Cauchy, first and second Piola-Kirchoff stress tensors and the Nanson’s rule.

In continuum mechanics, it is of interest to characterize the so-called movement equations. By
applying the concepts of Linear and Angular momentum, it is possible to express the differential

equations that relate forces to accelerations, and then, by integration, the velocities and displacements
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of the continuum. In order to exist a unique solution, it is necessary that boundary conditions are
applied. Let V be the whole system volume, with boundary S, in an arbitrary configuration. Then, this
boundary can be divided in two partitions S,, and S;. The region S,, is where kinematic boundary
conditions are applied (prescribed displacements) and S, is where the static boundary conditions are
applied (prescribed surface loading). It must be noted that S,, U S; = S and S, N S; = @. Of course, it
is implied that that there are no mixed boundary conditions (i.e. kinematical and statical boundary
conditions at the same point). See Figure 1 for details.

Figure 1 — Description of a body domain and boundary conditions

Having introduced the regions of the continuum, it is now possible to enunciate the motion

equations. One can see the following deductions in more details in the book [8], from Wriggers.
2.2.2.1. Linear Momentum

Linear Momentum is defined as
L= fV,prudVr = fV pudV. (2.24)
where pT, p is the density of the dominium in the initial and current configurations, respectively.

The principle of linear momentum is

L= f t'dsT + f brav’ = f tds + fde. (2.25)
sT vr S v
Using the divergence theorem in (2.25), one obtains
divT + b = pii, (2.26)
in which T is the Cauchy stress tensor. Using the reference configuration, equation (2.26) becomes
divP + b" = p"it. (2.27)

in which, P is the first Piola-Kirchoff stress tensor.
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The expressions (2.26) and (2.27) are the differential equations of motion.
2.2.2.2. Angular momentum

Angular momentum is defined as

J= fx X pudV = f x x prudV. (2.28)
14 vr
The principle of angular momentum states that
J=[,xxbav + [ xx tdS. (2.29)
Thus,
J,xxbdV + [ xxtdS = [, xx pidV. (2.30)

By using the Gauss theorem in the surface integral from equation (2.30), one gets that

fxxfd5=fxxTndS=fx><(ti®ef)ndS
s s s
= f(x Xt) ® elndS = f div((x x t;) @ e} )dV (2.31)
s v

= j X Xt;+xX ti'l’dV = f Zdual(T) + x X divTdV,
14 14

with dual(T) = axial(skew(T)).
Using (2.26) in (2.31), the conclusion is that dual(T) = o, thus the Cauchy stress tensor must be
symmetric
T=T1T. (2.32)

2.2.3.  Work and Power of internal and external forces

The power associated to a force applied to a point is the scalar defined as
P=f-u (2.33)
The power associated to volume and surface forces are given by
P,=| b"-udV" ; P, = f t"-uds’, (2.34)
vr sT
where b" and t" are body and surface forces, respectively.
External forces power is defined as
Pyt = P,+P;. (2.35)
The first Piola-Kirchoff P was already introduced in section 2.2.2. Let us now present the second
Piola-Kirchoff S. Its definition and physical meaning can be found in Appendix B. They will be useful
in the next definition.
Internal forces power is defined as
Ppe = [, P:FdV" = [ . S:EdV". (2.36)
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Due to this definition, the pairs (E,S) and (F, P) are called energetically conjugated. The tensors F
and E are, respectively the deformation gradient and the Green-Lagrange strain tensors, as defined in
Appendix A.

Work is simply the time integration of the power during an interval [t,, t].

t
Were = | Pexe e
to (2.37)
Wine = J; Pine dt .
In dynamics, kinetic energy (using the reference configuration for integration) is
T =2, p it-udV", (2.38)
and its time derivative is
T=[, p i idV". (2.39)
From (2.34), using (B.5) and the divergence theorem
P, = [,(Pn") - udS" = [, (divP - i+ P:divi)dV" =

(2.40)
J,(divP - )dV" + Pip .
Using equation (2.27)
Py =T —Py+ Pt = Poyy = Pie + T (2.41)
This is the Power Theorem. Integrating (2.41) w.r.t time,
Wext = Wine + AT, (2.42)
where AT =T, — Ty, .
Considering a quasi-static process, T and AT can be neglected. Then
Pext = Pint ; Wexe = Wine. (2.43)

2.2.4.  Equilibrium weak form: Virtual Work

Let 5u € HL1(V™) be an arbitrary vectorial field, called virtual displacement. Let us define the

scalars virtual external work (6W,,.), virtual internal work (6W;,;) and virtual kinetic energy (6T)

Wexe = [, b" - SudV” + [ " SudS”, (2.44)
Wine = [, P: 6FAVT, (2.45)
8T = [, pTit- Sudv’. (2.46)

Note that equations (2.44) to (2.46) are merely definitions, based on the expressions of P.,¢, Pint
and 7. Sometimes, authors affirm that the Virtual Works Theorem reflects the minimization of a
potential energy functional. This claim is partially correct: for conservative static problems, there is a

potential energy functional U, and the Virtual Work theorem is indeed the condition for extremal

lSue HY =sue H,|su=0ins,.
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points for functionals U = 0. This is, however, a particular case of the weak form, which is valid for
general continuum dynamics. In fact, for dynamics, 8T (eq. (2.46)) is not even a variation of T (eq.
(2.38)), but a convenient definition that arises from the demonstration of the Virtual Works Theorem.
Consequently, the most appropriate manner to approach the virtual quantities du is to interpret it only
as the trial function of the weak form, instead of a variation.
Since u = 0 in S, and already imposing the natural boundary condition t” = t™ in SJ, equation
(2.44) becomes
Wyt = J,»b" - SudV” + fs{ t" - SudS’. (2.47)
Using a similar approach as done in (2.40),
Jr(Pn") - 6udS™ = [, (divP - Su + P - divsw)dV" = [ ,(divP - Su)dV” +
SWine.
Using the definitions (2.45), (2.46), (2.47)
Wext = SWine + 8T + [,,(divP + b" — p"it) - SudV" + fs[(t_r — Pn") - fudS". (2.49)

(2.48)

Thus, using the fundamental variational calculus lemma, one gets the Principle of Virtual Works
divP+b" —p"uit=0inV"

— 0

Wy = Wi, + 6T, ¥6u € HO(VT) @{ At (2.50)

For quasi-static processes, 6T = 0, thus

divP+b" —p"it=0inV"

— 0

S W,y = S Wiy, VU € HOI(VT) @{ o (2.51)
hence,

Woyr = Wi, Véu € HY(VT) (2.52)

is a necessary and sufficient condition to achieve equilibrium. Notice that, besides the differential
equilibrium expression, natural boundary conditions are also obtained. Essential conditions can be
directly imposed through solution

u=uins,. (2.53)

and reactive forces in S,, are usually found after the solution of u.

2.3. Rod models: a historical approach
2.3.1.  Kinematically linear models

Initial approaches of beam theories required analytical solutions to be manually found. Therefore,
simplifying assumptions were invariably necessary. Typically, displacements, rotations and strains
were treated as first order approximations, ultimately leading to linear equilibrium differential
equations. This is equivalent to assuming small (infinitesimal) displacements, rotations and strains, so
that the beam’s equilibrium can be evaluated at the undeformed configuration. Being linear, solutions
could also be superimposed, and the behaviour of complex structures could be addressed as a simple

summation of elementary solutions. The most relevant linear rod models kinematical hypotheses will
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be briefly discussed next. Some of the classical examples can be found in Timoshenko’s books [9],
[10], or in [11], from Bucalem and Bathe.

Bernoulli-Euler is the most elementary rod model. The kinematical assumption is that cross-
sections remain plane and orthogonal to the beam’s axis. Timoshenko’s rod model is less restrictive,
as the orthogonality condition is removed, allowing for first order shear deformation. As both of them
consider cross-sections as rigid planes, torsion is not adequately represented, since the warping
deformation is missed.

Only when warping is enabled is that torsional response can be effectively evaluated. This
motivated the Saint-Venant’s uniform torsion theory, in which a cross-sectional shape function
(usually represented by the Greek letter 1), given from the solution to a certain boundary value
problem, is incorporated. After obtaining the section”s warping shape, the section torsional inertia can
be calculated. Such solution can be superimposed to other linear models, in order to more accurately
predict torsion behaviour. The main drawback of this theory is that its solution is only exact if the
torsion is uniform (i.e., constant along the rod’s axis) and both rod’s ends are free to warp. If these
requirements are not fulfilled, the solution is only an approximation. Even in the absence of external
torsion moments, coupling effects among bending, axial and torsion strains can severely affect the
equilibrium and stability behaviour of thin-walled open-section rods if non-uniform torsion is not
considered.

Despite its wide application for rods with open thin-walled cross-sections, the torsion phenomena
are not satisfactorily explained by Saint-Venant’s theory. Given the low torsional inertia of such
sections, secondary twisting (or non-uniform torsion, or bi-shear) and warping moment (or bi-
moment) play a major role as important load-carrying mechanisms on the rod’s equilibrium, and
consequently, on the design of those elements. As an alternative, in the mid 1900°s Vlasov’s theory
[12] arises. An equivalent model was also proposed later by Timoshenko [9]), and soon became the
theoretical foundation of many technical standards around the world for the design of rod structures
consisted of thin-walled open-section members, such as steel structures in civil engineering (for
example, but definitely not only, the Brazilian NBR8800:2008 [13]). Vlasov’s theory relies on the
combination of a uniform torsion with a non-uniform torsion solution. The first one resorts to the
Saint-Venant’s torsion theory, whereas the latter is based on a quantity named sectorial area (usually
represented by w(s), in which s stands for the walls” length coordinate), which arises from the
assumption that the warping may be non-uniform. It can be calculated along the walls length from the
line integral of twice the area comprehended in a particularly built triangular sector, which has as
vertices the so-called sectorial pole, the point at which w is being computed, and an infinitesimal base
ds, tangent to the wall at that point. The integration begins at an arbitrary point, which is called
sectorial origin. For a proper origin and using the same pole, it can be shown that the Vlasov’s

sectorial area corresponds to the Saint-Venant’s warping function along the thin-walls midline.
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2.3.2.  Kinematically exact models

As structural design became more audacious, in both civil and mechanical engineering, theories
that consider large displacements and rotations urged to be developed. The small displacements and
infinitesimal rotations assumptions had to be dropped, introducing considerable non-linearities to the
model’s differential equations. It was not until the 1980°s that the first consistent exact theories were
developed and successfully employed. Hardware improvements in processing capabilities and memory
storage, as well as the emergence of advanced numerical methods were pivotal to such progress, as
analytical solutions to non-linear systems are usually not available.

Unidimensional exact theories for plane (2D) frames have a peculiarity that allowed a hastier
theoretical development: in plane motions (2D frames/plates), rotations can be treated as a part of a
vectorial space, wherein the basic property of commutativity is properly satisfied. Reissner [14] is
credited as the pioneer of 2D kinematically exact beam theories. A direct major drawback of 2D
theories lies on the fact that it is restricted to plane problems, as it becomes impossible to capture out-
of-plane deformations such as those arising from coupling effects between bending,
tension/compression and torsion strains.

The first three-dimensional kinematically exact rod model was presented by Simo [15], [16], where
a Timoshenko-like assumption (for the cross-sectional shearing w.r.t. the rod axis) was developed. The
rotational degrees-of-freedom were exactly treated through the Euler-Rodrigues formula, and this was
a major breakthrough at the time. Simo and Vu-Quoc [17] and Gruttmann et al. [18] also advanced
towards considering a warping function, especially useful for torsion-dominated problems. Later on,
several other authors derived their own formulations, many of them having as theoretical basis Simo’s
pioneering models. A brief list of unique formulations is described next.

Crisfield [19] and Chen and Blandford [20] derived their own kinematically exact models, with co-
rotational description, the former being a 6 DOF model, and the latter being based on Vlasov’s theory
for thin-walled frames, with an additional warping DOF. Still in the co-rotational framework, Genoese
et al. [21] derived a 7 DOF (with Saint-Venant’s warping) model.

Research group from the Polytechnic School of the University of S&o Paulo (lead by P. Pimenta
and followed by E. M. B. Campello, with the collaboration of other authors such as Yojo,
Dasambiago, Fernandes, Lago and da Costa e Silva [1]-[3], [22]-[27]) proposed a wide array of rod
models, beginning with a Timoshenko-like 6 DOF model and then progressing towards more complex
assumptions, ranging from 7-DOFs thin-walled open cross-section models (warping enabled) to more
generic formulations, with an arbitrary amount of DOFs and general in-plane and out-of-plane cross-
sectional distortions.

Coda [28], in collaboration with Paccola [29] and Maciel [30] progressed from 2D to 3D static and

dynamic models, using a distinct solid-like formulation, wherein the rotational degrees-of-freedom
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were avoided by directly mapping cross-sectional position vectors instead, leading to the so-called
“unconstrained vectors” formulation. This approach allows to naturally incorporate in- and out-of-
plane distortions, having as trade-off an increase on the number of degrees of freedom. Comparatively,
in this author’s works, each node had 12 DOFs, whereas in [1], [2] and [18], 7 nodal DOFs were used
for modelling 3D rods with finite rotations and warping.

Kumar and Mukherjee [31] proposed a rod model with in-plane distortions for cylindrical rods,
pursuing to hierarchically link cylindrical shell and rod models. The authors affirm that the model has
applications in biotechnology (e.g., can be used “for capturing cross-sectional deformation in DNA,
nanotubes, collagen, arteries, etc”).

Simo [15] was also the pioneer to consistently deduce the dynamic problem for 3D rods, presenting
both material and spatial description for Timoshenko-like rods. Later on, Campello, Pimenta and
Wriggers [32] faced the problem of non-conservativeness of usual time-integration schemes,
proposing an algorithm that guaranteed exact conservation for dynamic rod problems. Liu et al. [33]
used a mixed Eulerian-Lagrangian description to implement a dynamic Timoshenko-like rod model,
that is able to represent a beam running through a tube, including the contact forces, during this
operation.

Le Corvec’s [34] model had a different approach, by abandoning warping shape functions and
discretizing the cross-section. Solution was then obtained by placing additional DOFs throughout the
cross-section, interpolating values with Lagrangian polynomials and numerically integrating the
forces, moments, bi-shear and bi-moment.

Gongalves [35] and Li and Ma [36] also proposed 7 DOF thin-walled rod models, in which shell-
like assumptions are used to characterize the secondary warping, whilst the primary warping is given
by the Vlasov’s sectorial area.

It is also worth mentioning works developed under the concept of the so-called Generalized Beam
Theory (GBT), which, despite usually not following kinematically exact approaches, provide
interesting insights into determining cross-sectional warping and in-plane distortion shape functions.
This approach was inaugurated by the seminal works of Schardt [37]-[39], from which several others
followed, with special mention to the contributions from D. Camotim’s research group, such as [40]—
[43]). The GBT approach might be an important source to enrich the vectorial space of admissible
displacements of the cross-section, potentially permitting to study local (i.e., cross-sectional) buckling
behaviour also in the non-linear context. In this framework, Gongalves et al. [42], and Li and Ma [44]
proposed thin-walled rod models in which, by using GBTSs techniques, in- and out-of-plane distortion
modes were obtained, and then linearly combined, in order to determine displacement modes for the
walls midlines. As in the models of the last paragraph, for points along the thickness, Kirchhoff’s plate

assumption is enforced, thus determining their displacement.
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2.3.3.  Aflexible description for intricate kinematic assumptions

Current configuration
(not wrapped representation)

Reference configuration - (o)"

Figure 2 — Schematic representation and basic kinematical quantities used to describe the rod deformation.

Using a purely Lagrangian description, it is possible to map the cross-section allowed motion as a
composition of a rigid body motion and a generic in-plane and out-of-plane deformation. Pimenta and
Campello, in [23], presented a very robust way to describe such motion, with regards to the
kinematical assumptions. This approach, which is the theoretical basis of the model that is
incremented in this research, is briefly described in what follows.

Assuming a straight rod reference configuration, with a local orthonormal system {e7, e}, e%}, with
e, coinciding with the rod’s axis (see Fig. 1), the position of every material point in the reference

configuration can be described by

§=¢+a’, (2.54)
where
{=7¢e;, {€nN=]0,L] (2.55)
The cross-sectional director of a point in the reference configuration is defined by
a” =¢,eq, (2.56)

where &, (in-plane components of &) describes cross-sectional plane of the initial configuration.
Defining now {e1 ,e, ,es } as a local orthonormal system on the current configuration, with

e, being vectors that define the cross-section’s plane before warping, this rotated base is given by a

rotation tensor Q = Q({), such that e; = Qe!. Notice that there is no constraint that imposes

agreement between e; and the rod axis in the current configuration. Thus, first-order shear
deformations are implicitly considered. In the current configuration, the position of every material

point is given by the vector field
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x=z+Yy, (2.57)
where z = 2({) represents the position of axis points in the current configuration, and y represents the
position of points of the cross-section relatively to the rod’s translated axis (see Figure 2).

The translation of the axis can be represented by

u=z-4, (2.58)
and for a generic point, the displacement is
§=x-¢. (2.59)
Vector y may be decomposed into three components:
y=a+v+w. (2.60)

The components (a, v, w) represent the position of cross-sectional points (w.r.t. the rod’s axis) due
to rigid body rotation (a), and their displacements due to in-plane distortion (v) and out-of-plane
warping (w). By definition,

a=Qa", (2.61)
wherein Q is the rotation tensor, calculated as in section 2.2.1, expression (2.4). Cross-sectional in-
plane displacements and out-of-plane warping are respectively given by

v =1vgeg, W =wes. (2.62)

Kinematical assumptions regarding v and w must then be introduced. A great array of assumptions
can be made in order to capture cross-sectional behaviour.

In [23], it is assumed that both warping and in-plane displacements may be given as a linear
relation between cross-sectional shape functions and the vectors that collect the respective magnitudes.
The structure of those shape functions will be discussed later. Accordingly, v and w can be written as

v =(ep®@Ps)r =vpep; w=(e;QY)p = wes, (2.63)
with the directional components
=P T, Ww=Y-p. (2.64)

In those equations, @5 = @7;(51,62) and Y = P (&, &,) represent the cross-sectional shape
functions for in-plane displacements and out-of-plane warping, respectively, while r = #({) and p =
p({) are vectors that collect the corresponding degrees of freedom, with n,, DOFs for in-plane
displacements and n,, DOF’s for out-of-plane warping. Consequently, along with u and @ (rigid body
motions), a model is represented by 6 + n,, + n,, DOFs. This approach provides great flexibility to the
model description, allowing different kinematics to be enforced and generic shape functions to be
adopted. Note that, despite the linear relation, these functions are completely generic so far.

In the next subsections, particular kinematical assumptions will be introduced, recovering some
well-established models from the literature as particular cases of [23]. This will help to highlight
difficulties and advances that have been performed over the last few decades in the area. As seen in all
cited works, despite [2], it is usual that, although finite displacements and rotations are allowed,

constitutive equations are truncated as they do not retain (some or all) higher order strain terms. This
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simplification allows for the obtention of stress resultants as function of trivial geometrical properties,
although limits the application to small strain cases. Were all strain terms to be obtained, two
approaches are possible a) numerical integration of stress resultant and tangent matrixes; b) for the
particular cases that have analytical solution (usually polynomial on the strain measure stress
components) appropriate analytical integration is possible, by determining generalized (non-
conventional) geometric properties, which are pre-integrated and used as constant values upon

solution.

2.3.3.1. Model with fully rigid cross-section (6 DOFs)

The basic assumption here is that each cross-section moves solely as a rigid body, and thereby
remains plane and undistorted after the deformation, without any warping nor in-plane deformations.
This implies v = w = 0, and is precisely what Simo proposed in [15] and [16] (the latter with the
collaboration of Vu-Quoc), and Pimenta and Yojo in [22]. It is important to mention that Simo’s
formulation presented a non-symmetric geometric stiffness matrix, whereas, in the works from
Pimenta, it is symmetric. Fernandes [26] identified that this is due to the fact that the weak form from
Simo used a non-conjugated (energetically speaking) virtual quantity in the moment contribution,
leading to a Petrov-Galerkin interpolation in the Finite Element Method. Other authors with relevant
contributions to these first 3D, 6-DOF beam models can be cited, e.g. Argyris [5], [6], [45] and
Ibrahimbegovic [46], [47]. Those works provided valuable knowledge on finite rotations (and their
derivatives), one of the greatest challenges for exact beam formulations at the time.

The model ends up with 6 DOFs and is a generalization of Timoshenko’s beam theory for finite
displacements and rotations. As a consequence, if further assumptions are not taken, the polar moment
of inertia (Iy) should characterize the torsional stiffness. As to avoid an artificially stiff cross section,
one typically replaces I, by expressions containing the Saint-Venant’s torsion inertia (I7) at the
constitutive equation. It should be noted, however, that this apparently ad-hoc modification can be
formally justified by adequately constraining the kinematically exact 7-DOF model, as done in

Gruttmann et al. [48] (see also Appendix J).

2.3.3.2. Model with in-plane rigid and out-of-plane deformable cross-section (7 DOFs)

Simo and Vu-Quoc, in [17], proposed the use of the Saint-Venant’s warping function, in order to
more accurately represent torsion phenomena for compact (massive) sections. Later, Pimenta and
Campello revisited this topic in in [1], [3], in the context of open thin-walled sections. There, the

geometrical properties of torsion inertia (/;) and warping constant (I,) can be analytically calculated,

3
through the Saint-Venant expression for thin-walled sections (I; = Z%) and Vlasov’s sectorial area

(w), respectively.
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Besides the 6 DOFs required to represent the rigid body displacements, 1 new DOF (p) was used
for the warping magnitude. Therein, such distortion was represented by the product of a cross-
sectional shape function (y) and its (unknown) magnitude (p). In-plane distortions were not
considered. By introducing an independent DOF for warping, such models allow for out-of-plane non-
uniform warping, especially important to more accurately represent the deformation of thin-walled
members. Therefore, in this model equation (2.62) simplifies to

w=1ype;; v=0. (2.65)

Constitutive equations with the linear elastic, the classical Saint-Venant’s hyperelastic, as well as
an advanced neo-Hookean material, therein called Simo-Ciarlet’s material?, were available upon
implementation. For the sake of simplicity, however, in [1], only second-order strain terms related to
the specific rotations and displacements were retained in the constitutive equations, along with only
first-order terms on the warping strains. In 2001, Pimenta and Campello presented in ECCM [3] an
evolution of this model, incorporating second-order warping strains. Even with those new features,
post-critical behaviour was still unsatisfactorily represented in a few pathological cases, as reported
then.

2.3.3.3. Model with in-plane rigid and out-of-plane deformable cross-section with secondary warping
for open thin-walled members (7 DOFs)

Lago and Campello [2] presented a kinematically exact rod model that incorporates some kind of
secondary warping with “exact” (i.e., with all higher order strain terms retained) hyperelastic (St.-
Venant’s) constitutive equation. The warping shape function 1 was admitted to be a composition of
Vlasov’s (for primary) and a local Saint-Venant's (which includes secondary) warping functions for
thin-walled sections. For the Saint-Venant’s contribution, the cross-section was treated as a
composition of thin rectangular segments (see Figure 3). Accordingly, the warping function read

Y(§1,$2) = w(s) + Yr(X, ). (2.66)

In this context, w(s) represents the sectorial area, derived from Vlasov’s theory, and ¥z (X, ) is an

approximated solution for uniform torsion on rectangular cross-sections, obtained by Silva [49], with

respect to local (wall’s) coordinates X and y, with the form

35 _3 .
(a®+19a*b?-19a%b*-b®)xy Eazbz(—4x3y4'4x373) (2 67)
a®+14a*b?2+14a2b*+b6 a®+14a*b2+14a2b*+b6’

l/’R(f')_’) =

20r simply Simo’s material.
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Figure 3 — Cross section composition. Source: Campello and Lago [2]

As a result, the kinematical assumptions became, as in section 2.3.3.2,
w=1ype;; v=0, (2.68)
but with a different warping function, as presented above.

Lago and Campello [2] also evaluated the importance of having all higher order strain terms on the
constitutive equation, by employing the so-called “exact” Saint-Venant’s material instead of linear
elastic or incomplete quadratic ones. These new aspects required a slightly different approach to
calculate cross-sectional force and moment (as well as bi-shear and bi-moment) stress resultants.
Whereas in all other previous models the cross-sectional resultants were computed analytically by
adding products of cross-sections geometrical properties (calculated a priori) and generalized strains,
this work resorted to numerical integration for both stress resultants and material stiffness. Yet, despite
the promising results, it was developed only for rectangular, I-shaped (bi-symmetric) and cruciform
sections. See section 3.4.2 for a broader discussion about this warping function. Moreover, the effect
of the proposed secondary warping was not assessed, as the authors were mainly concerned with the
constitutive equation then.

Some authors (see for example Gongalves [35] or Li and Ma [36]) have proposed a local plate
approach, in which the primary warping was given by the Vlasov’s sectorial area, and then a
secondary warping is obtained by imposing Kirchhoff’s plate assumptions, considering that the related
strains are small. Using this same argument, high order strain terms are discarded, rendering linear or,
at most, incomplete quadratic constitutive relation. It should be noted that, in those works, the primary
warping is exclusively a function of the warping degree of freedom, whereas the beforementioned
plate assumptions render a secondary warping that is a function of both warping intensity and local
curvature strains. Thus, such approach cannot be directly represented as in equation (2.62), as it allows

only for linear combinations of independent warping intensity parameters and warping modes.
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2.3.3.4. Model with in-plane and out-of-plane deformable cross-section

This model theory was first presented by Pimenta and Campello in 2003 [23] and can be
interpreted as a generalization of the previous approaches allowing for generic v and w.
Implementation presented by Dasambiago, Pimenta and Campello in [24], [25] (therein called “Multi-
Parameter Beam Element” - MPBE) considered both in- and out-of-plane deformations, employing the
shape functions approach described above (equation (2.62)). Therein, the authors chose to represent
in-plane distortions through quadratic functions that required 3 additional DOFs (grouped into vector
). However, the formulation is generic and can be adapted to any shape functions with any amounts
of DOFs. Despite the consideration of in-plane distortions, the authors restricted the implementation to
rods with rectangular cross-sections only, where the warping deformation could be satisfactorily
represented by a linearized Saint-Venant’s warping function. The kinematical assumptions for this

model are
w = p; vg =g, (2.69)
51 62 T'l
Y=%& ¢1= 1/2 e2l, ¢y =| 512 and r= [7"2 . (2.70)
$1¢2 1/2 522 "3

More recently, the already mentioned authors (Gongalves et al. [42] and Li and Ma [44]) worked
towards the implementation of rod models with in-plane distortional modes for thin-walled rods. Both
of them employ GBT techniques to determine distortional modes for the walls mid-lines, which are
linearly combined. Afterwards, a secondary warping is calculated so that Kirchhoff’s assumption for
plates holds, assuming small strains. There are differences between how those two models generate
those modes: the first one treats in- and out-of-plane modes altogether, whereas the second one
generates in-plane distortion mode from GBT and then the warping function is obtained either from
Vlasov’s sectorial area or from an independent Hermitian interpolation. Both these works induce plate
behaviour for each wall, which might present incompatibilities between the local behaviour and global
effects, which are treated in an ad-hoc fashion, separating membrane and bending deformations, and
assuming different constitutive equations for each one of those contributions. Indeed, as mentioned by
Gongalves: “A plane stress state is assumed in all beam walls (...), thus generating a mild
inconsistency with the plane strain of (36) and (37).” [42], and by Li and Ma: “Considering that the
extension deformation in mid-line direction has not been included in the cross-section deformation
modes, unreasonable transverse normal stress is probably introduced if the traditional constitutive
relation is used. Therefore, different constitutive relations are employed for membrane deformation
and bending deformation, respectively.” [44].

In the context of rods, the models mentioned in the current section seem to be the most advanced in
the literature, at least for thin-walled sections, despite the use of simple constitutive equation, with

excellent results in benchmarks.
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3. ADOPTED MODEL AND PROPOSED WARPING FUNCTION

The model to be advanced in this work is the 7-DOF, Vlasov-like kinematically exact rod model of
section 2.2.3.3 (and 2.2.3.2). It is Vlasov-like in the sense that non-uniform warping is considered,
allowing for normal stresses that arise from this warping, which generate the so-called bi-moments
and bi-shears. A total Lagrangian description is adopted, and rotations are parametrized trough the
Euler-Rodrigues rotation vector (this is the reason why the sub-index (o) is sometimes used, as in
[1]). As seen in the previous chapter, the formulation is a particularization for 7 DOFs of the generic
model for any amount of DOFs, from Campello and Pimenta [23]. A wide array of works from the
same research group also uses this approach (see, for example [2], [24]).

This master’s degree research aims to take the next logical step towards a more robust thin-walled
rod model of such type: to develop a consistent warping function with both primary and secondary
warping contributions for arbitrary thin-walled open sections, and derive an “exact”, large-strain (neo-
Hookean, Simo-Ciarlet’s polyconvex) constitutive equation (this latter will be the object of Chapter 4).
The “exact” Saint-Venant’s constitutive equation must also be implemented, for the sake of
comparison.

The model’s kinematics, weak form and corresponding tangent bilinear form will be detailed next.
Then, the warping function will be introduced. A crucial point in this research is to explicitly report
the kinematical assumptions and material laws that were explored. Here, they are:

Kinematical assumptions: the allowed motions are cross-sectional rigid body rotations and

translations, along with a warping function that accounts for both primary and secondary warping
modes. Arbitrary shapes for thin-walled open cross-sections are admitted. Two warping functions are
considered and compared: the one from Lago and Campello [2] (equation (2.66)) and an improvement
of this equation, shown in section 3.4. As will be illustrated in the next topic, the latter has proven to
be more broadly applicable than the former.

Constitutive equation: the final product of this work will consider the neo-Hookean (polyconvex)

material law of Simo-Ciarlet. Its corresponding “exact” constitutive equation for rods (i.e., including
all strain terms) will be derived and implemented. This will require numerical integration over the
cross-section for computation of the cross-sectional stress resultants. The exact form of the non-
polyconvex Saint-Venant’s material was implemented (as in Campello and Lago [2]), as its detailed
expressions were already available and it will be needed in the future for comparison.

A brief description of the model is presented below. For more information, an extensive literature
is at disposal. It is suggested, for example, the reading of Simo’s and Vu-Quoc’s [17] and Campello

and Pimenta [3] for more details about 7 DOFs rod models.
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3.1. Kinematic description

As already mentioned, this model has 6 rigid-body-related DOFs and an additional one that
represents the warping intensity (see Figure 2). Formally, the displacements field is represented by
equation (2.60), constrained to v = 0 and w = pye;. Therefore,

x={+u+Qa" +pyes. (3.1)

As already mentioned, the rotations are parametrized by the Euler-Rodrigues formula
(equation(2.4)). It is important to remark that u = #(¢), Q = Q(8()) and p = p({).

As in Pimenta and Campello [3], the deformation gradient must be calculated, rendering

ax r ! T
F:a—f=x1a®ea+x R e;
3.2
= (Qe} + plaes) ® €] (32
+(ez+u' +Q'a” +p'Pe; +pye;) @ e;
Introducing the definitions n = u’ + e} — e3, one gets
F=Q(el, +pyqe})Rel +
( a ,a 3) a (3.3)

+(m+ Qe3 + Q'Q"a+p'YQes + pYQ'QTe3) ® el

As shown in Pimenta and Yojo [22], the derivatives of Q can be found with the aid of the auxiliar
tensor I'. From equations (2.16)-(2.18), and using the above relation, one gets,

F=Q+ pyo0Qe; @ el + (n+K(a+ppe;) +p'es) ® e} =

(3.4)
= QI + pYqe3 ® ex + Q" (n + x X (a+ pyes) +p'pes) @ ex].
Defining the back-rotated vectors
Y ' =QTy =n" + k" x (a” + pye}) + p'yes, (3.5)
N =Q"m=Q"z - €}, (3.6)
kK"=Q"k=r1"76, (3.7)
the final form of the deformation gradient arises as
ax T A r T T
F= % QF =Q(I+ py.eiQel +v Qef), (3.8)
It is useful to define the generalized displacement (dy) and the generalized strain (&) vectors,
‘s
u n
dg =0 and € = » : (3.9)
p 7x1 1
7V p (8x1)

Note that dg groups the degrees of freedom that are calculated at the nodes of the FEM analysis.
Now, it is necessary to find the derivative of F with respect to a scalar variable, for example time,
in order to compute the Fréchet derivative, that will be needed in the next section. Thus
F = QF + QF". (3.10)

Defining the skew-symmetric 2 = QQ7, and w = axial(2) = I', one gets
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F=0F+Q(py.es Qe +7" ® ef), (3.11)
and it is necessary to find y", and, consequently, " and k.

First, let us deduce 7i". Directly from its definition,

0= % (Q"z' —e}) =Q"z' + Q"2 = —Q"0z' + Q"
— QT -02)= Q"W —wxz)=Q (W -rgxz) 12
=Q"(w —2're),
where Z' = skew(z").
Then, let us deduce k™. Using the definitions above, using the properties of skew-symmetry of Q

and Q, one gets,

K =Q0"k+Q"k=-Q"02xk+Q"k = QT (k — w X K). (3.13)
Some auxiliary algebra is needed. First, let us make
{Q, =20 :{Q =20+99 @ (3.14)
Q' =KQ (Q =KQ+KQ (b)
and imposing (a) = (b), and multiplying by QT, one gets
0 =K+ K2 - QK. (3.15)

With the aid of the intermediate result that, for vectors a|axial(a) = A and b|axial(b) = B,
skew(a x b) = AB — BA, itis possible to find

w=K+KkXw>w =k—wXK. (3.16)
Therefore,
K" =QTw =Q7(I'6 +r8"). (3.17)
Now, y" is easily calculated as
V' =1+ & x (@ + ppel) + k" x (pel) + p'pe, (3.18)
and
F=0F +Qpyqes Qe +7 Qel), (3.19)

The tensor £2 is the angular velocity, that arises from the derivation of Q with respect to time, and is
documented in Pimenta and Yojo [22].
The time derivative of dg and £ can be compactly related in the following matrix notation,

QT + QTZ'Té

_ A
g =wad,=|Q T0+QT6| (3.20)
p
pl
with the auxiliary operators
Q" 0 o o|[I ZT 0 o o
0 Q" o o|]|0 I T o o
Y= and 21
of of 1 olloe™ o o 1 0 (3.21)
of of 0 1dle™ of o 0 1
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r, 0

Ia—Z 0 1]
0 | 0
d
A=]0 Ia_f (]
ofT o 1
T T 0
0 o az

3.2. Statics: Equilibrium weak form

Consider a rod element. Its volume in the reference configuration is V", with a cross-sectional area
A" and the axial coordinate ¢ € 2 = [0, L], in which L represents the length of such element.

The equilibrium can be imposed by the weak form. Let 8dg = [u 60 Jp]T be the virtual
displacements field. The notation #; denotes a Sobolev space. Thus, the condition §dg(¢) € HL (V")
means that a) ddg is locally integrable and b) the appropriate components from 8dg are taken as 0 for
the prescribed generalized displacements at the extremities with applied kinematic boundary
conditions. For rods, one gets

SW = Wiy — W,y =0, V6dg({) € HL(VT). (3.22)

Using the energetically conjugated pair (F, P), wherein P is the first Piola-Kirchhoff stress tensor,
and having in mind that the scalar derivatives (equation (3.19)) are useful for calculating the virtual
guantities, for the internal power, one gets

Pint = [, P:FAV" = [ [, P:FdA"d{. (3.23)

Let us focus on the internal product P: F.Using equation (3.11), this product is

P:F = P:OF + P: Q{{p ,pe} ® el + ¥" @ e}}. (3.24)

Knowing that the internal product of a skew-symmetric and a symmetric tensor is zero, and
remembering that, by consequence of (B.4) and (2.32), PFT is symmetric, it can be concluded that the
first term is null. Defining the back-rotated first Piola-Kirchoff tensor as P" = QTP =t} ® e} (thus,
T are the column-vectors PT), it is possible to rearrange the last equation, leading to

P:F= 1 Qel:{Y,pes @eh+y" Qe (3.25)

Note that the real stress ;, represented on the current base e; (components (z; - e;)) are
component-wise equivalent to the back-rotated stress 7, represented on the reference base e}
(components (] - e})). This can be easily shown by writing (z; - e;)e; and T} = (t] - e])e] — T} =
Q't; = (7 -el)el = (r;-€,)QTe; = (1] - e]) = (z; - e;). Therefore, it is important to remark that
the vector 5 = 13, e}, + 153e5 does not represent the real stress, despite being numerically
equivalent.

In terms of " and ", this product is
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P:F =Ty opel + 75 [77 + &7 x (a7 + pyel) + k7 x (pyel) + p'pel]

5 n"
B (a” + pye}) x 15 wr (3.26)
|YaTe e+ Y (k" xeD)| | p |
Y15 - e} p’

Substituting (3.26) in (3.23), and performing the area integration, the internal power for rods is

obtained
Pine = [y 0" £°d{ = [ 0" - WAdydy, (3.27)
where
T3 n’
r . ;
= fA [lp,ara(fle;f:ﬁfi : (X.fx en | =" (3.28)
l Y15 e B

is the generalized stress resultants vector. As in the case of the nominal stresses, in equation (3.28), n”
and m" are NOT the true force resultants (normal and shear forces) and moment resultants (bending
moments and torsion moment), but are again component-wise equivalent to those resultants n = Qn”
and m = Qm’, if n,m are in the base e; and n", m" are in the base e]. The bi-shear (Q) and is the bi-
moment (B), are scalars, thus, do not depend on any base.
The virtual internal work can be directly derived from the internal power. Thus, it is
Wipe = f P:SFdV" = fLar-5er( =
vr 0 (3.29)
[y 6" - WASdydl , Vdg(0) € HL (),
where 6" = [6n" k" Sp &p']" is the generalized virtual strain vector, with
on" = QTsu' + QTZ'Ts6 and Sk = QT(I'86 + I'56"). (3.30)
The external power is
Poxe = [[[.+E-6dCT + [, b - 8dAT] dg, (3.31)
where £ represents the surface forces per reference area unit and b represents the volume forces per
reference area or volume unit, both acting in the current configuration. C™ and A™ are the contour and
the area of the cross-section in the reference configuration. The speed & is
S=kx=z+a+w=1u+Qa" +yYpQe; +Ppe;
=u+ 02Q(a" + yYpes) + Ypes = (3.32)
=u+ w X (a+Ype3) + Ppes.
Substituting (3.32) in (3.31), and remembering that it, @ = I'@, p and p are functions only in ¢, one
gets
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L
Pext:f {il'
0

f tdCc” + fEdAT] +7rIé
cr A

. U (a+ yYpesz) X tdC™ + f (a +Ype3) x EdAr] (3.33)
cr At

+p[ l/)fe3dCr+ l/)EegdAr]} d(
AT

cTr

Introducing the generalized external resultant forces vectorg = [n u B]7,

Poe = [y G- dgdy, (3.34)

U de’"+f EdAT]
cr AT

= FT< (a+Ypez) X tdC™ + f (a + Ype3) x EdAT> . (3.35)
cr AT

where

lpf'egdcr‘l' l/)E'e3dAr
cr AT

In equation (3.35), 7 represents the external forces, m = I''im is defined as the external pseudo-
moment and B is the external bi-moment. Note that, in this formulation, the pseudo-moment is the
energetically conjugated of the rotations, not the moment itself. Discussions about this fact have been
broadly carried in many references, such as in Pimenta and Yojo [22], Campello [1], and Fernandes
[26].

With the aid of the external power expressions, the virtual external work is directly obtained, and is

given by
L
Wiy = f G- 8ded, V8dy(() € HO(@) (3.36)
0

Were concentrated loadings to be included, a certain formalism must be introduced. Let &;-
represent the Dirac delta function®, ¢* are the points with applied concentrated loads and g* the
concentrated loads®. Thus, rewriting equation (3.36), one gets

L - *
Wexe = [, (@ + 85+q") - 5dgdl, Vdg(() € HL (). (3.37)

Thus

+0o,{ =a€R

3 This is not a function in the usual sense, but has as properties §, = { 0 otherwise

f_J:’ f(0)6,dl = f(Q). Therefore, it is useful to the integration of pulses in the trial functions.
* 1f the solution is obtained from the differential equation, it must include the loads from the
connection with adjacent rods, since, element-wise, they are external. When the weak form is used,

this is not needed, since the integral is performed throughout the whole domain, and this kind of

interaction is accounted for in the global virtual internal work.
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Wexe = [ G- 6dgdl +q* - 5dyl° . (3.38)

Inserting (3.37) in (3.22), the weak form of equilibrium for this model is achieved
L
oW = f (6" - 8" —q-56dy)d] —q* - 6d9|5 =0, 5dy(Q) € HY(Q) (3.39)
0

By the structure of equation (3.39), it is evident that the virtual work must be integrable, but with
the first derivatives piece-wise continuous (i.e, discontinuous at a finite number of points). Therefore,
the solution belongs to the Sobolev space (), from where the trial functions are also taken.

Integrating by parts, and using the definitions of the virtual quantities, one gets

6W:fL—(n’+r_L)-5u—(m’+z’><n+171)-(1"60)—(B’—Q+1§)d(
0 (3.40)
+(n—n")-6ul’ + (r"m—r"m*)-660° + (B —B*)-6p|° = 0.

By performing integration by parts in equation (3.39), the strong form of the equilibrium is

achieved. It is strong in the sense that now, dg € C2(0, L), besides the boundary conditions. By the

fundamental lemma of variational calculus, equation (3.59) is only satisfied for V&dg () € HL () if

n+n=o
Local equilibrium {m’ +zZ' Xn+m=o;
B'—Q+B=0
¢ (3.41)
n=n’
Natural boundary conditions{I''m = r'"'m* in{".
B = B*

Equation (3.41) is the differential form of equilibrium, and the natural boundary conditions were
consistently derived from the Virtual Work Theorem, with a fairly intuitive result: it is expected that
the stress resultants at the edges are equal to the prescribed ones. Essential boundary conditions are
directly imposed upon solution, by prescribing the displacements dy = djp in {*.

There are some observations concerning the bi-shear:

a) although the bi-shear has a major role on the differential equation, it does not possess an

associated natural boundary condition;

b) depending on how the formulation is built, the bi-shear and the bi-moment might end up with

swapped signals. Here, the bi-shear has a negative (-) sign in the differential equation (B’ —
Q = 0, in the absence of B), which is NOT consistent with the definition from Vlasov’s
classical theory, for which Q = —¢'"'El,, = —B’, where ¢ is the torsion rotation. Thus, for
comparison with the classical theory, the bi-shear obtained from PEFSYS must be multiplied
by -1. It should be noted, though, that as long as the differential equation that relates B and Q
is consistently deduced, there should be no problems;

c) the bi-shear and bi-moment require an additional equation, since there is no kinematical

constraint between torsional rotation and warping, differently from what is seen in the linear

Saint-Venant’s or Vlasov’s rod theory.
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3.3. Tangent bilinear form

In order to solve the weak form through numerical methods, in the current case, the Finite Element
Method (FEM), a tangent operator is needed. After discretizing the weak form, such operator leads to
the stiffness matrix for each step, and, in the non-linear case, it is never constant. In the context of
structural theories, such as rods and shells, the exact consideration of finite rotations is one of the main
sources of non-linearity, and as will be shown in this section, many derivatives of 8 are present. This
tangent operator is obtained through the consistent linearization of the weak form (equation (3.39)).

Using again a derivative with respect to a scalar, the Fréchet derivative is obtained.
L
52w = j [((D¥PASdy) - (WASdy) + (GyAddy) - (A8dy) — (Leddy) - 5dgldl, (3.42)
0

where D, G, and Ly are, respectively, the material, geometric and external loading contributions to the
tangent operator. For the specific case of this 7-DOF rod model, those contributions are (see Appendix
G)

ron” on” dn” 9n"q
o okt ap op'

om” om"™ om" om”
_9¢" _|onyT oxt op ap'
=% =|o0 o0 og o0l (3.43)
ot ak™  dp  ap’
9B 9B 0B 0B
L on”  Ok” op ap’
0 Gy 0O o0 o
65’0 Geg GG’H’ o O
Go=| 0 Gypy O o of (3.44)
o’ oT of 0 0
o’ of 0 0
m om0
a6 F)
Lo a(rTm) a(r'm) a([‘fm)
Ly = Loy ee 5 5 (3.45)
I
Lou o8 08
a0 p

The first deduction of the tangent operator §2W is often credited to Simo [15], despite the
important contribution from Pimenta and Yojo [22], who consistently wrote the weak form using the
conjugated pair (66, p) for the first time, rendering a symmetric expression for Gg4. Simo, instead,
used (68, m), which is not an energetically conjugated pair, obtaining a non-symmetric G,. Formally,
Simo’s approach is not incorrect, but unintentionally lead to a Petrov-Galerkin type of projection, in
which the trial function comes from a different space than the field being approximated, which

naturally renders the mentioned asymmetry.
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The sub-matrices from (3.44) are highly non-linear terms, that use the definitions from previous
works, such as Simo and Vu-Quoc [15] and Pimenta and Yojo [22], and the skew-symmetric tensors
N,M and Z' (from n,m and z', respectively). They are

G,g=—-NTI and G,y =T'N
Gog =TI'TZ'NIr-V(0,z xn) +V'(6,m) —I''MI (3.46)
Gorgr =V(0,m) and Gpiy = VT (6,m),
where, for a certain vector ¢, there is an operator V (6, t) that arises from the derivations present on
the geometric contribution of the tangent operator, and is described in [1], for example.

As shown in the aforementioned works from Simo, Pimenta and Campello, the geometric

contribution is also symmetric.

For the material contribution to the tangent operator, one has the following symmetric matrix
D D D D, .

m e Unp np
r D D D !
p=2 = S | (3.47)
oe" Dyp Dy
lSym. Dp,p,J

Using the chain rule, the stress resultants definitions, and some auxiliary expressions (presented in
[3]), the submatrices of D can be calculated:
on” [ 0t5 0y

D = =
nm anr y ayr anr

dA = fC33dA
A

on” ath dy” .
Dy === AayrakrdA f C33(A™ + pYES)dA

p =M _[9%,,_ f dA
W ap B 4 0p Ac
on” ot}

D, =— = A= | dda
W =5 a,d fdd

Do = = [ Sl + pyES)TS da (3.48)

f (A7 + PYEL)Cy5 (AT + pYES)dA

- fA 55 L7 + pE)T dA

- f [WESTS + (A7 + pYES)cldA
A

om” 0
Dy =57 = [ Gl + pyED T da = [ (A + pyEp)dlas
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D _9%e_ i[zp T - el + yY1h - (k7 x e})] dA
PPop Jgopt e

= f [bap o + (K" % €}) - c|dA
A

D, = 0Q =fi[¢ tr'e§+ll)T§'(KrXe§)]dA
pp ap/ Aapl ,ara

= f [dop o + (" x €5)y - d]dA
A

0B d
DPIP’ = ap/ = Lapl [(T3 ' 63)1»[)] dA = L[¢(e3 ' d)]dA,

with A" = skew(a") and E% = skew(e}). For different elastic models, equations (3.47) and (3.48)

. oy- .. otk otk otk
hold, although not the expressions related to the auxiliary quantities €55 = a—;i, c= ai;, d= a—:j, b, =
9(ri-es) _ 9k oty _ 0ty dy" 073 _ 973 9y"

—— are only valid if

e3) :
andd, = “apr Note that the chain rule for Tl = 3y I

dp
n” and k™ are arguments exclusively of y”. In section 4.3, their expressions will be derived for Saint-
Venant’s and Simo-Ciarlet’s material.

As Gg and D are symmetric, the symmetry of Ly is the only remaining condition to make §2W to
also have this property. In general, the contribution from the external loads Ly is not null, except for
some specific cases (e.g., constant external force). Many works contain a broader discussion about this
subject (see [1] ,[22], [26], for instance). For now, it is only said that conservative loadings (which are

the type of loadings to be considered in this work) render symmetric, but not null, L.

3.4. The warping shape function

This section is, the most important of the whole work: here, the pertinent modifications on the
warping function from Campello and Lago’s [2] are shown, with the respective justification

The Saint-Venant’s warping function is a popular choice for most kinematically exact rod models,
but, when simplified material laws are used, only well-known geometric moments of inertia of
different orders are needed (for example, Saint-Venant’s torsion inertia (I7), sectorial moment of
inertia (I,,), etc), which, for thin-walled members, do not require the full expression of the warping
function for computation. However, when explicit integration for the stress resultants (and tangent
stiffness matrix) is needed, the warping function i must be exactly determined a priori in the whole
cross-section. This has motivated Campello and Lago [2] to propose a method to generate a warping
function that contemplates primary and secondary warping modes, but without the need of neither
solving any kind of boundary value problem, nor any eigenproblem. In their article, they have shown
that this approach provides excellent results for I-shaped, cruciform and rectangular sections.
However, it was not clear whether it could be used for more arbitrary geometries, and, during the

development of the current work, the author verified that certain modifications were indeed necessary.



Marcos Pires Kassab 51

Advances on a kinematically exact rod model for thin-walled open section members: consistent warping function and nonlinear constitutive equation

Both Campello and Lago’s [2] and the current approach make use of local walls solutions. It is
assumed that the cross-section is open and consisted of thin rectangular sub-sections, as depicted in
Fig. 3. It is important to define the section global (¢4, ¢,) and walls local (i;, y;) systems (sub-index i
is used to refer to wall i), attached to the global (0) and local (0;) references. The local system’s
component y; is always aligned with the respective wall length. It is also useful to define non-rotated

local systems, given by (&£, &b).
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Figure 4 — a) Global, local and auxiliary systems b) detail of a generic wall i.

(b)

First, let us have a closer look on the classical Vlasov’s sectorial area, which represent the warping
function along the walls midline. Then let us analyse Campello and Lago’s [2] warping function.

Lastly, the proposed function will be introduced.
3.4.1.  Viasov's warping function — sectorial area

The primary warping definition is found in Vlasov’s book [12]. The sectorial area function (w)
consists on a line integral of twice the area comprehended among a fixed point (sectorial pole, point
A), a fixed starting point (sectorial origin, point B) and the current evaluation point (M) (henceforth,
the notation w8 (s),) is employed).

In the original description, the area increment was positive if spinning clockwise, relatively to A.
See Figure 5 for details.
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(b)

Figure 5 — Defining sectorial area for a generic cross-section. a) Increment; b) Function w?2.

From Figure 5, it is conspicuous that the sectorial area increment is given by
dw = —1,ds, (3.49)
and, consequently, in a given point M,
w48 (sy) = §p —Tnds. (3.50)

Some examples of the sectorial area for usual geometries (I-section, C-section, top hat, Z-section,
V-section) can be found in section 3.4.5.

Fruchtengarten, in [50], shows that the Saint-Venant’s solution along the wall midline for open
thin-walled cross-section is exactly the result of equation (3.50). Therefore, the Vlasov’s theory itself
can be interpreted as an extension of the pure torsion warping function: the constrain p = 65 (warping
intensity equal to the specific torsion rotation) remains, but p is not constant anymore. As
consequence, axial normal stresses arise, together with additional self-balanced shear stresses, which
originate the bi-moment and bi-shear. The torsion becomes non-uniform (varies along the rod’s axis)
and both the bi-shear and bi-moment depends on the warping intensity and torsional specific rotation.

Therefore, with the aid of equation (3.50), one can interpret that the sectorial area represents an
average warping value on each wall. In fact, by imposing this assumption, Vlasov has obtained the
normal stresses that are constant along the wall thickness and equal to the value at the midline. Thus,
with the thin-walled assumption, together with the respective tangential stress assumption needed to
respect local equilibrium, the bi-shear and bi-moment contributions to the resisting mechanism are
obtained.

Whenever torsion is of interest, the concept of shear centre (synonyms: torsion centre — when
Poisson’s effects are neglected — and principal pole) is important in order to uncouple first order
torsion, bending and axial effects. To find the shear centre coordinates (s;, s,) and the principal

origin, it is usual to impose three orthogonality conditions:

SoP =15y =150 =0, (3.51)

with
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S, = f WdA; Ly, = f §LwdA; Iy, = f &,wdA, (3.52)
A A A

where (&5, &,) is the cross-section coordinates with respect to the given arbitrary orthonormal basis
(e1,€2), S, is the sectorial static moment and /., I,x, are the sectorial products of inertia with
respect to the reference axis. The superscripts C, D mean that those quantities are referred to the shear
centre and principal origin.

The static moment condition is the easiest to be met: after calculating a generic w2, a simple
constant translation, given by

GAB
WwAB" = AB _ Z . (3.53)

generates a new function with zero sectorial static moment, having as sectorial origin the point B*,

indirectly determined by finding where w#8" = 05 . In fact, this is implicitly done by Timoshenko in

[9], when defining the relation between normal stress and warping function. In Vlasov’s and

. . .. SAB.
Timoshenko’s works (and many of their successors’), the quantity % is referred to as the average

sectorial area (w#®), and is equal to the sectorial area calculated between the old and the new
sectorial origins (w*? (sg+))

In [50], it is shown that the sectorial area function is affected by the change of sectorial pole by the
relation

WP =0t 4 (8 - &) (G &) + (5 - &) (& - ¢), (3.54)
where &2 and &4 are the coordinates of the poles A and A*.
Using definitions from (3.52) and (3.54), one gets

155 = | 0%FgdA
1 Lw &1
= [ (0™ + (e - )6 - )
A
+ (8 - ) (& — &) uda;
158 = 0" B gda = [, (oM + (68 — 8 ) (6 — &) +

(&~ &) (& — &) fada

By performing the multiplications, and using the moment definitions, it can be directly found that

(3.55)

% Note that it is not possible yet to assert that the point B*obtained from equation (3.53) is the
principal origin D, since only when the three orthogonality conditions from equation (3.51) are

simultaneously met that C and D are determined. The same is valid for A*in equation (3.54).
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155 =158 + (4 — &)L + (4 — &)eR'S, + (& — &),
— (& - &)EE'sy;

* * * * * * (3'56)
lot, =1lox, — (88 =& o + (88 — &8 )P s — (& — ¢ )h
+ (& — &1")88 su,
with the definitions of the elementary static moments and moments of inertia
S]_ = f{sz, SZ = _ffldA,
A A
(3.57)

=ff%dA: I =ff%dA; 112=—f5152dA.
a A A

After calculating w8 for an arbitrary pole (4) and origin (B), the pair (C, D) that meets (3.51) can
be obtained.
The most direct way to determine C, D is by imposing an auxiliary coordinate system on the gravity
centre, and then going through the following the steps:
Step L: With a first trial w*, apply equations (3.56), imposing I5,% = 14,5 = 0. This will

result in the system

&8s, - L, &&s,—L|[e# & wx1
i ol (3.58)
—&PSi+ 1L &S+ 1, fz - & waz

that allows to find the coordinate of a new sectorial pole, as the auxiliary system was placed on the

gravity centre, such that S; = S, = 0. Solving for A& = [51 i ] yields

AB ,
_Ilzlwxl + IZwaz]

1 [
LI - 1122 Illwx1 Ilzlwxz

With A& the new pole (A*) coordinates are directly found.

AEg = (3.59)

Step 2: Calculate the new sectorial area function (w4 );

Step 3: Apply equation (3.53), generating a sectorial area function that satisfies Sﬁ*'B "=0.A
new sectorial origin B* is indirectly obtained, as mentioned above;
Step 4: Verify if the imposition of a new sectorial origin interferes with the sectorial products
of inertia with respect of the axis.
W B = 0B + 0B (sp). (3.60)
Substituting on the sectorial moments of inertia definitions, one gets
1wy = [P + 0B (s5)) §1dA = 157 — 0" (55)Sy;

(3.61)
A f (AP + 08B (5,9) £dA = IAF + A (s,)S,.
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Since the adopted axis are on the gravity centre, I;" = I4/° = 0and 125 = I14:% = 0. In fact,
equation (3.61) shows that, if the axes pass through the gravity centre, the sectorial products of inertia
with respect to the axes do not depend on the sectorial origin.
Therefore,
SAE =185 =185 =0, (3.62)
so, the determined points A*, B* are indeed the principal pole (C) and the principal origin (D),

respectively. Note that this procedure is only direct if the auxiliar system is placed on the gravity

centre. For any other system, step 4 renders I/}

xf = Iﬁ;'f* # 0, due to equation (3.61).
It is important to observe, however, that the translation of the coordinate system does not change

the position of neither C nor D. In fact, if a new system < ef, eJ > is used, so that

G=¢ +k
; o (3.63)
62 = 62 + kfzf
then
Igv, = f wCPE dA = f wPEIdA + f WPk dA = 10% + ke SGP. (3.64)
A A A 1

Due to the orthogonality conditions, which were already satisfied, Si, = 0, and then I5y, =

1P, = 0. The conclusion is analogous for I _g = 0. It is worth mentioning that w is always
O)X1 wxz

independent from the system choice, and so is S,,. Therefore, the sectorial area function can be

directly obtained with the described procedure, regardless of any translation of the reference axis.

3.4.2.  Campello and Lago warping function

This warping function was presented by Campello and Lago, in [2]. As mentioned throughout the
text, it contemplates primary and secondary warping contributions. In this case, the primary warping is
given by the Vlasov’s sectorial area, whereas the secondary warping is given by adding a local Saint-
Venant’s torsion solution for rectangular cross-sections for each wall of the section (equation (3.65)
and (3.66)). Following the notation introduced in Fig. 3 (note that a; and b; are the wall semi-length

and semi-thickness, respectively), for each rectangular sub-section the warping function is reproduced

bellow:
V(§1,$2) = w(s) +Yr(%, 1), (3.65)
35 —3— —
(50 = — G0+ 19atbE — 19ab — bR 13 0P (455, + 4%.3°) (3.66)

al + 14a}b? + 14a2bf + b af + 14a}b? + 14a?bff + by
Note that 1 is a polynomial approximation to the Saint-Venant’s warping function for rectangular
sections and centre on the gravity centre (see Figure 6). It was obtained by Silva [49], using the

Galerkin method. It should be noted that this function is an odd function.
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Figure 6 — Function iy for a rectangular section with dimensions 5x20 (arbitrary unit).

The discussion from section 3.4.1 was focusing solely on the function w. However, the same
conclusions and procedures are valid for the Campello’s and Lago’s warping function (equation
(2.66)), for the corresponding quantities Sy, Iy, and I, (equivalent to the definitions (3.52), but
using ¥ instead of w). See the demonstration below.

The sectorial static moment is still zero when the secondary warping is added. By definition, one
gets

Sy = fAl/J(fpfz) dA = fA w(s) + Yr(xX,y)dA = S, + Sy, = Se» (3.67)
since Sy, = Y70y walls fAi YrdA; = 0, for 1 being odd on each wall.

For the sectorial products of inertia, auxiliary axes are defined (Figure 4b), and they are related to
the original axes through the relation (see Figure 4)
o [gd kt
g = 51_] - [51] ~155] (3.68)
fé 62 kfz
The local axes (x;, y,) from equation (2.67) are related to the new auxiliary axes (&, for each wall

i) through the rotation equation
. _ [cosB; —sinf;][%;
£ =[angs cospy | i) (3.69)

Using the definition for I; , one gets
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Lo, = [ 184 = [, (@ + ¥p)§1dA = 150, + [, ¥abidA. (3.70)
0

Using the auxiliary axes (&7, 5) and then rotating them, it is obtained
I, = ke, S + [, wréldA = [, YréldA. (371)

Then, by rotating the axis, the result is given by

no. walls
15;?1: Z fl/)R(cos,Bif—sinﬁiy)dAi
=1 A
no. walls (3'72)
= ) lcoshi | wxda; —sing; | wydad=o,
i=1 A A

since the functions Yz x and Yy are antisymmetric w.r.t. one of the axis and symmetric w.r.t to the
other one. The same result is obtained for I .

Therefore, the position of the pair (C, D) that is determined by the analysis of w is not affected by
the addition of 5.

Two important measures of the section stiffness are the torsional inertia — or Saint-Venant’s torsion

inertia — (/) and the warping constant (or warping inertia) (I,,). The torsional inertia is given by
Iy = 164 — €ap f (fa - f&l)lp,ﬁdA, (3.73)
A

where I is the polar moment of inertia w.r.t the adopted pole A, €qp = _01 (1)].The warping

constant is
Iy = L P2dA. (3.74)

The uniform torsion resisting mechanism stiffness is measured by I, whilst I, shall be used to

evaluate the cross-sectional non-uniform torsion stiffness for a generic warping function. The relation
k= /% (E is the Young’s modulus and G is the shear modulus) may be used to measure which one
T

of the mentioned torsion-carrying mechanisms is preponderant.
In the Vlasov’s linear theory, equation (3.74) becomes the sectorial moment of inertia
I, = fA w?dA. (3.75)
After some examination (see the examples from section 3.4.5), it was evident that this approach
always generates a warping function with a coherent I, measure. However, this was not true for /.
Indeed, the only cross-sections for which I rendered representative are the ones studied in [2]: bi-
symmetric I-shaped, rectangular and cruciform. Thus, some modification or correction is of utmost

necessity, in order to obtain a truly robust 7 DOF model. Such improvement is shown below.
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3.4.3. Proposed warping function

It was detected during numeric evaluations that the previous approach was not robust enough for
arbitrary cross-sections. It seemed to work well only for the geometries that were tested in [2]. This
was evidenced here when I was evaluated for other cross-sections, such as C-channels and Z-
sections. Yet, it was noted that I,;, rendered always coherent, irrespective of the section’s geometry. As
the evaluation of I, for open thin-walled sections is dominated by the primary warping, the author
intuited that the pathological point to I was on how the secondary warping was built. In order to track
down to the root of the issue, let us go back to the elementary boundary value problem from the Saint-
Venant’s torsion theory. For a given cross-section A, with boundary S and shear centre position
(s1,S), the warping function ¢ w.r.t the shear centre is solution of

€y =0, inA, (3.76)

with the Dirichlet boundary condition

VYl v =195, = —eq5(6q — 54 )vp iNS, (3.77)
where v is the normal to the contour S. The dependency on the shear centre coordinates is only used to
build the principal warping function, i.e. to uncouple the warping from bending and axial first order
effects. Still, it is not unique up to a constant. In order to eliminate this source of non-uniqueness, it is
usual to impose that [ ,¥dA = 0. By doing so, this last imposition, together with the shear centre
dependency, the already mentioned orthogonality conditions are fulfilled.

Note that the shear centre position is unknow. A possible technique to determine it is to solve the

problem for an auxiliary function 1§, which satisfies

Viae =0, inA and Vd v =1§,v, = —eupéevp inS. (3.78)
Comparing the boundary condition from equations (3.77) and (3.78), it is possible to conclude that
Y€ =Yg — eqpspéa +C, (3.79)

where c is a constant. It is important to remark that, if a point different from the shear centre is used as
reference to build the warping function, the function value will differ from a plane function, as
suggested by equation (3.79).

It is not a coincidence that that the relationship between ¢ and ¥} has a similar structure to the
one between w® and w# (see equation (3.54)), since, as can be found in Fruchtengarten [50], the
primary warping is exactly correspondent to what is expected for the Saint-Venant’s warping along the
walls midlines. In fact, the auxiliary solution 4 is nothing but the warping function with its pole in
(0,0).

Those equations allow for an auxiliary function 1§ to be used to generate the principal warping
function, which satisfies the orthogonality conditions. However, at first glance, nothing is said about

building the auxiliary solution itself. It is proposed below a procedure that allows one to generate an
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approximation to the Saint-Venant’s warping function for thin-walled open sections, for any desired
pole or centre, using only the equation (3.79), and local walls solutions.

Consider a generic cross section, composed by n thin walls, as in Figure 4. Let us assume that, at
the intersections, the boundary conditions along the thickness might be neglected at the walls
intersection points, as the walls are thin. Therefore, if the warping function for rectangular sections
(yr) is known, the complete cross-sectional warping can be determined as a composition of local
solutions, which must be adjusted using equation (3.79) so that each local solution is built w.r.t the
cross-section current pole (here, adopted as the shear centre). Accordingly, for each wall or sub-
section one gets

Y(&1,62) = (61, 62) + Yr(Eu 7)), (3.80)
with
Yu(61,65) = —(s52 — kg )(§1 — k) + (51— k) (62 — k) + ¢ (3.81)

The coefficients (s, — kéz) and (s; — kél) in (3.81) are different for each wall (justifying the index
i), and given as function of the distance between € and 0;. The constant term c;, in turn, is settled so
that there is continuity of iy along the intersecting walls midlines (for the first wall 1, one can impose
initially c; = 0, in order to obtain 1p4. Later, this is adjusted to comply with the orthogonality
conditions).

Function v, is a linear function that can be interpreted as the result of the pole shift from the local
system of where the local Saint-Venant’s warping function (1) is conceived to the shear centre. By
applying equations (3.80) and (3.81) to every wall, the proposed warping function is obtained, and is
exactly the warping function that is obtained when the thin-wall approximation is introduced in the
classical Saint-Venant’s theory. As in the warping function from Campello and Lago [2], function ¥
is taken here as the one from [49], which is a polynomial approximation to the exact solution of the
Saint-Venant’s warping function for rectangular cross-sections.

Remarkably, it can be proven that values of i, calculated on the wall midline are precisely the
same as those given by w(s). Moreover, the only difference between equations (3.65) and (3.80) is a
linear term in the secondary warping of each wall, i.e., along each wall thickness. Such term can be
made explicit by expressing (3.81) in the walls local system. Note that the linear variation of the out-
of-plane displacements along the thickness is a common assumption for shell models, and has even
been used for similar rod models (see Gongalves [35], where only the linear terms are present in the
warping function, even though the secondary warping is defined as to enforce Kirchhoff’s plate
assumption).

Using the same algorithm as in the last section, the shear centre (principal pole) is obtained. Note,
however, that it cannot be guaranteed that the warping functions generated with (3.65) and (3.80)
share the exact same coordinates for C, although they were nearly identical at the performed

evaluations.
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3.4.4. Implementation

Based on what was shown in the last sections, an algorithm was developed for arbitrary open thin-
walled cross sections, constituted of rectangular walls or sub-sections. It was considered that inputs
always respect those attributes, and no checking is made as to verify whether there are any loops
(leading to a closed section) in the section description. Sections with loose segments should not be
treated with this algorithm (for example, disconnected double C-channels). The rod axis is always at
(0,0).

Step 1: Determine the sequence for building the warping function (generates a list Ord, in which
the first element is ALWAYS the first wall of the list), and determine which wall is the predecessor of
a given segment (generates a list Pred). The following arbitrary cross section will be taken as an

illustrative example:

~
wana

Wall 1
@ Wall 2

Wall 4

Figure 7 — Example of cross-section for sorting algorithm.

With the pseudo-code below, one gets the sequence of integration Ord = [1,3,4,2] and the list of
predecessors is Pred = [0,4,1,1] (for example, wall 2 is the last one to be calculated, and uses as

reference the results from wall 1).

Pseudo-code for Step 1:

I For a given list of straight segments that define the thin walls, return a list with the sequence
for building the warping function and the respective precedents of each wall. Wall 1 is always
the initial wall.

Start subroutine
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Initiate a vector (here, called Ord), with the number of the walls in crescent order Ord =
[1,2,3,..]
Initiate a zero vector (here, called Pred), with the number of the precedented wall (wall
from which the construction of the warping function will resume) Pred = [0,0,0,...]
pos = 2
For i=1 to “number of walls”
For j=i+1 to “number of walls”
if (Wall j intersects Wall i then)
swap values in Ord(pos) and Ord(j)
Pred(j) = Ord(i)
pos = pos+1
end if
end for
end for

end subroutine

Step 2: Using the sequence from Pred, calculate y4# (according to either section 3.4.2 or 3.4.3,
depending on the assumption that is under evaluation). A is initially on (0,0) and B is on the initial
point of Wall 1. Note that this choice is arbitrary.

Step 3: Using the procedure from section 3.4.2, update the sectorial pole and origin, so that they
become the principal pole and principal origin.

Step 4: Naturally, when the pole is updated, step 2 must be recalculated, in order to obtain ¢,

This procedure was implemented in PEFSYS, as a pre-processing interface that generates the
desired warping function and its directional derivatives. To validate the approach and its
implementation, the torsion-related geometrical properties (i.e., shear centre, sectorial moments,
sectorial products of inertia, torsion inertia and warping constant) of some common sections were
computed through numerical integration, via the composed Simpson’s method (see figure Figure 8),
and the results compared to analytical ones from the literature. This same integration scheme is
employed to evaluate other cross-sectional integrals of the rod model, such as the stress resultants and

tangent stiffness matrix from equation (3.28) and (3.43),
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3 Y -
oH1-—F -5,

|

!

i Rectangular segment
i (“wall i”)

Figure 8 — Wall “i” discretization for Simpson’s method integration. The weights are represented at the nodes, where
the integrands are calculated

3.4.5. Validation

The proposed algorithm was tested for some usual cross-sections, presented below. Note that the

analytical result for the warping constant Iy, is typically calculated only with the primary (Vlasov’s)

warping.

3.4.5.1. I-section (mono-symmetric)

1.
bt e

srTE

by & L v

a)

b)

Figure 9 — a) Cross-section geometry. b) Sectorial area for principal pole and origin (w®P).

The analytical geometrical properties™ expressions were deduced in [50], and the results are
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ht
_ h(bsts +75) (3.82)
Vg = -1
A = ht,, + b;t; + bt (3.83)
t;b? tb3
Iyi = 121 ;Iys - 2 (384)
t;b?  t.b3
L =1+, = 1—2‘ " (3.85)
h?I,;1
0 =—> (3.86)
Iy
I ht.b3
Vs sUs
ye=h2L="2F% (3.87)
L, 12

A benchmark was made for some bi-symmetric commercial profiles (CVS, VS ,W ,HP), and for a

fictitious mono-symmetric profile (Table 1).
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3.4.5.2. Top hat (b; > 0) and C-section (with (b; < 0) or without (b; = 0) stiffener)

m‘ hh -
) TP e By
— —_ :\ i _-CTS+ESh ——
ycbs bsh ( bs)h*
@ 3 Ry
(b)
Figure 10 — a) Cross-section geometry. b) Sectorial area for principal pole and origin (w®P).
The analytical geometrical properties expressions were deduced, and can be found in the
Appendix A.
| = (h%t,, + 2ht;|b;])
Yol = A (3.88)
A = 2ht,, + 2|b;|t; + bt (3.89)
b¢h’t,, 4 bih|bi|t; _ 2|b}|ht;
__ 4 2 3 (3.90)
Yc = I
y
b3tsAE2 b2
o = 51—22 + Zstw(h3 — 3h2y, + 3hy?2)
(3.91)

2|b;
+ % (3k? — 3kb;h* + b?h*?)t;

with k =2 (b — y.) and h* = h + ..
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3.4.5.3. Z-section

b, t
L hb (4f —
S L-1) [ —— )|

2\ 4
o htsb?
24

h tw
=
+

&GC

i

b.t,

(@) (b)

Figure 11 — a) Cross-section geometry. b) Sectorial area for principal pole and origin (w®P).

The analytic geometric properties expressions were deduced in [50]. They are

Xg =x.=0; (3.92)
2 3
I, = hl';f: (trb + 2hty,); (3.93)

A benchmark was made for two commercial profiles (Table 5).
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3.4.5.4. V-section (with or without stiffener)

—by. +h"(§; = b)

(@) (b)

Figure 12 — a) Cross-section geometry. b) Sectorial area for principal pole and origin (w®P).

The analytic geometric properties expressions were deduced, and can be found in Appendix D.

They are
Rt l+2t¢bsh
y, = Mutt2trbih, (3.94)
A= 2ltw + betf,
(3.95)
=Zp2it,, +2 [ (b+22)" bty (3.96)
2
i
_ 2“f( ) (3.97)
Ye = T’
2 2 * * 2
lo = 2102y2t,, +2 by (36292 = 3bych'by + (b)) ¢y, %)

with { = Vb2 + h? and h* = h — y,. A few examples are presented below (Table 7).
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Note that, for the non-stiffened V sections, a non-zero warping inertia was obtained numerically due to

the secondary warping, rendering the 100% relative error. The same happens for the shear centre

position when the proposed warping function is used.
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3.4.6.  Validation conclusion — choosing the warping function

As stated on the beginning of this section, the proposed function is more general than the one
proposed by Campello and Lago [2] for arbitrary thin-walled open sections. For a few specific cases,
both methods generate exactly the same functions, and, for this reason, in the mentioned reference, the
simulations were coherent. Having said that, to achieve more robustness, this work advances with the
proposed warping function. With the proposed equation (3.80), for all the tested geometries, the
numerical results are practically identical to the analytical ones, supporting that the proposed equation,
the algorithm for generating the warping function and its implementation are correct. Possible sources
of slight differences are the numerical integration and the neglect of the secondary warping in the
analytical expressions. Here, it was assumed that the orthogonality conditions are adopted, without
further explanation. In Appendix E, the reader finds a detailed (and important) discussion about this
decision. The reading of such extract is strongly recommended.



72 Marcos Pires Kassab

Advances on a kinematically exact rod model for thin-walled open section members: consistent warping function and nonlinear constitutive equation



Marcos Pires Kassab 73

Advances on a kinematically exact rod model for thin-walled open section members: consistent warping function and nonlinear constitutive equation

4. CONSTITUTIVE EQUATION AND PROPOSED CONTRIBUTION

In continuum mechanics, a constitutive equation characterizes a material behaviour, mapping the
stress tensors as functions of kinematic fields (strains, velocity, etc). In this work, only isotropic
hyperelastic materials are of interest.

A material is elastic if the stress field is formally a function of only its strain field, and therefore,
for a given strain tensor E, there is only one corresponding stress state S.

A material is classified as hyperelastic if a specific strain energy function (¥, (E)) exists such that

s=2 (4.1)
Thus, hyperelastic materials are, necessarily, elastic.
A material is isotropic if its properties (particularly, mechanical ones) are strictly the same in every
direction. For isotropic materials, its potential function can be written as function of the three

invariants of the right Cauchy-Green strain tensor (C)
I, =I:C, I,=3I:C% andl; = detF. (4.2)
It should be noted that detC = detF?, justifying the usage of F in I.

For this work, the stress tensor P" is needed, rather than S. Using the identities P" = QT P, (B.7),
(3.8) and (4.2), one gets

— pro¥n
PT=F—2, (4.3)
With equations (A.7), (4.3) and applying the chain rule
oY, dC
P’ =F" ﬂ_ (4.9)

aCc OE

It is easy to show that Z—g = 21, thus (4.5) becomes

0Py
P’ =2F" ——, 4.5
3C (4.5)
Let us calculate the derivative of the right-hand side of the above equation. First, let us rewrite
0%n _ 0%n 9l
ac ~ a1 ac’ (4.6)
The terms % will only depend on the specific adopted material, whilst the terms % can be readily
obtained. The derivatives of I, I, and I are
oL _
c =L 4.7
ar,
5= C- (4.8)

In order to find the derivatives of I3, some auxiliar results are needed (see Appendix H). The result

ol _J

=1 pr—T
ac‘z(F ) (49)
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With (4.8) and (4.9), it is possible to rewrite (4.6) as

oYp v 0Py 0Py
TS S (4.10)

Note that, using the fact that (a @ b)(c ® d) = (b-c)(a ® d), C and F"C can be expressed by

the column-vectors of F"
C=F"F = Qf)f;®e)=(fIf)(e] @e]) (4.11)
Fre=(fl - f)(er ® fi(el ®ef) = (fi - fj)(ef - el)(fk ® €])
=1 U @)

Also, knowing that detF" = detF = ], and using that the inverse matrix can be calculated as

P’ =

(4.12)

Fr—l_ld- r_]‘ ™T
—7a j(F") —jcof(F) , (4.13)

where the operator adj(-) represents the adjoint matrix, and cof (-) represents the cofactors matrix,

one gets that

JF'™T = cof (F"). (4.14)
Defining
cof (F) = g; ® e;, (4.15)
with, for 3x3 matrixes,
=f2Xf3.92=f3Xf1.95=f1X[3 (4.16)
or, more concisely,
9i = %fijkﬁ X [k (4.17)

in which €, represents the permutation symbol for three dimensions, it is now possible to substitute

(4.11), (4.12) and (4.15) in (4.10), rendering

Pet@d =2 g @ +2 2" 1@
a] al,
(4.18)
(fr T ®éf).
Thus, using the fact that (7 - £7)(fT) = (f; ® f;)f{, the column-vectors ; are
0 0
o =g+ 220+ 25 () @ T (419)

o 9
Note that (4.19) is valid for any isotropic hyperelastic material. This presentation of P", in terms of

the columns of F" was taken from Dasambiagio [25].
It is also possible to define the fourth order tensor of the tangent elastic modulus, D = g—z, but since

it will not be employed directly in the rod model, no further discussion about it will be done here.
Some variables that will be used in the constitutive equations must now be defined. Let 4, u be the

(generalized) Lamé elastic moduli. From elasticity theory, the following expressions are valid
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_ _ EQ-v)
u=G and A+42u= Ay (4.20)

wherein E is the longitudinal elastic modulus, G is the transverse elastic modulus and v is the
Poisson’s coeficient. Were Poisson effects to be neglected, equation (4.20). could be modified to
emulate the implied uniaxial state. This renders A + 2u =~ E, and should help to avoid volumetric
locking.

Three isotropic hyperelastic material laws are commonly of interest in the context of kinematically
exact rod models: the linear elastic, the Saint-Venant's® and the Simo-Ciarlet’s material. The last two
are 2-parameter hyperelastic constitutive equations that apply to 3D deformations and relate more
general (objective) stress and strain tensors.

Here, the exact form of the constitutive equations are employed (i.e., retaining all higher order
strains in the stress resultants expressions), differently from what was done in [1], [3] (and in almost
every other work, except [2]), where only some of the higher order terms were retained. As a
downside, in the current approach, stress resultants and the tangent stiffness matrix must be
numerically integrated, increasing the total time for building the correspondent vectors and matrices.
Even though some operations might even be possible to analytically integrate beforehand, the structure
of the constitutive equations requires a lot of algebraic effort that would still be dependent on a large
amount of high-order geometrical properties, which are not trivial. That said, the option was to
evaluate the stress resultants and their derivatives through numerical integration of their analytical
expressions, for both Saint-Venant’s and Simo-Ciarlet’s materials (see Appendix | for another

approach).
4.1. Particularizing elastic constitutive equations for rods

In rod models, the concept of cross-sectional stress resultants, which implies integration of stresses
over the cross-sectional area, allows one to write the constitutive equation in the following general

form

do”

T — T (el 7%
o =0"(g"), D Py

(4.22)
where o is a vector that collects the cross-sectional resultants (forces, moments and, occasionally, bi-
shear and bi-moment), £” is a vector that contains generalized strain measures and D = D(¢) is a
tangent elastic matrix that relates those quantities (being a function of the material parameters and the
cross-sectional geometrical properties, such as area, moments of inertia, etc). As shown in [23], [24],
when stresses are analytically integrated over the cross-section, as to allow for the cross-sectional
force and moment resultants, an explicit expression for D is obtained, which depends on the cross-
section’s geometry and the adopted material law for the model at hand. This is also shown in detail in

section 3.2 and 3.3.

6 Sometimes, this material is also referred to as the Kirchhoff-Saint-Venant’s material.
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Using the formulation for isotropic hyperelastic materials, it is possible to integrate ¢” and D.
Whilst ¢” is obtained directly from the integration of 7] (see equation (3.28)), for the calculation of D
(equation (3.43)), the auxiliar expressions Cs3, ¢, d, d,, b, are needed. Constraining the formulation

for the 7 DOF rod model, one gets from equation (3.8), the particular cases

fa=ex+pPges fz=es+y, (4.22)
and, fora = 8
go=ep— (" -ep)el + (v - ebel + Y pp[(v - ebdep — (v - ep)er], 4.23)
gg = eg - plp,aegu
The following auxiliary results will be necessary (where needed, v is a constant vector)
ofa _ o 93 _
ayr - OJ ayr - Il (424)
ofy, a Y
f = Y€l ﬁ = % = K" X el (4.25)
fe _ . Of5 _
o = 9 = Yer, (4.26)
3 _3g%fs _ g5 S5 _ T af3 rT
ay" - ay" - ayT =93 g3 =93 . (427)
ﬂ ag% T r B_f}: — of1 T afz T r_% —
=2 fi+g5 ap)—<(ap X fy+fix L) 1+ g >—
ofr 4.28
(07 2L) = gh - + g5 6 x el = [0 el + (4.28)
PP (K X €5) - er],
a] _ agLfh a
D=L g L= gyl =y, (4.29)
agh ay”
%- e} = — (%- eg) = (—K" x e} - el) = —eqpP(ep - k), (4.30)
Z—‘Zi =fi xf7 =0, (4.31)
_9
6p fl X f2 + fl X -0 = eaﬁlp,aeg X (BE + l/)”gpeg) = —ll’,aeﬁy (4-32)
agh fpxf% afs
a!:;/ = 6a33% = Eaﬁ3fz X aipi = 6aﬁ3eE X el = Pey, (4.33)

995 _

3 0, (4.34)
trC=tr(FF) = tr (e @ f)(F; ®e])) = tr ((fT - F}) (e} ® €])) w3s)
ourcyw _  Ofifj _ _ afifE _ o afhfiofs _ 7T _ oy grT _

o Vo Ve Ve oy o VIS I=20f5 =2v ® (4.36)

f3
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otrC _Of5-fy Off fy _ofy . .o0f7  _Off
o op Tl .
= 2[(Puel) - (€f + ppaet) + o xel) - (5 +y)] 7
= 2[pl/),alp,a + (KT X l/)eg) ) (yr)]
, otrC ofj . .,
e 2 apj' fi=29pA+vy" - e}) (4.38)
®f o -vf o(f v of;
oy" v= oy" - ay" (f] ) ay"
(v Tf;) of;
=1 U5y (4.39)
d
= fiv" (f . )a? FiTL+ (f% - )
=ff®v+(ff-v)1
ofy®f; of; of;
BRI A
= (Pa€5 ) ® (FL) + (6™ X pel) ® (FF) + (f) (4.40)
® (Vaes) + (F5) ® (" X pey)
fr Qf"
%— f’®f,+f, f’—w I (D + (F5) ® yeh (4.41)

4.2. Linear and second order elasticity

The linear elastic constitutive equation is also known as the generalised Hooke’s law. For small
strains, it relates Cauchy’s stress tensor with the infinitesimal strain tensor E; through the well-known
equation

T = QI+ 2ul)E,. (4.42)

In the linear regime (small strains), T = § = P, and the expression (4.42) can be used to integrate

the cross-sectional resultants, rendering

=D,€, (4.43)
in which D; emerges with the classical expression from the strength of materials. Only trivial cross-
sectional geometrical properties are required. For 7 DOF models, for example, they totalize 10
quantities: area (A), 5 moments of inertia (11, I, I12, Ly, I7), centroid’s coordinates (x;,x,) and shear
centre coordinates (s;, S3). Such matrix was presented in [1], admitting that the warping function was

generated w.r.t the shear centre, and is given by
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GA 0 0 0 0 —GAg, GA(g, — s3) 0 1
GA 0 0 0 GAg, —GA(g1 — s1) 0
EA EAg, -EAg, 0 0 0
El, El, 0 0 0

D, = £l 0 0 ol (4.44)

Gly G(y—1Iy+Agese) O
Sym. G5 — 1) 0

El]

andwithe” =" k" p p']7, the stress resultants 6" can be calculated.

Despite clear practical advantages, small strains are implicitly assumed, and this ultimately
(although unintentionally) may lead to the loss of important coupling effects, notably the ones related
to torsion/warping and axial strains.

Attempting to mitigate this issue, Pimenta and Campello, using more advanced material laws
(Saint-Venant’s and Simo-Ciarlet’s material) gradually incorporated higher order strains terms in the
constitutive equation. In [1], second-order axial and curvature strains, as well as first order-warping
strains, were considered. Four additional third-order geometrical moments of inertia were necessary
for calculation. In [3], second-order terms on all strains were retained, and the number of geometrical
properties amounted to 42. Even though, albeit some improvements, a few inconsistent results and
convergence issues persisted.

When second-order terms are retained, the stress vector ¢” is calculated with the aid of cross-
sectional geometrical properties (although several of which are nontrivial), and the result may be
conveniently written as’

0" = (D, +1Dy)e", (4.45)
where D, has terms up to the first order in £”.

It must be highlighted that, when only first-order strain terms are retained, both Saint-Venant's and
Simo-Ciarlet’s materials collapse to the linear elastic form.

Lago and Campello proposed in [2] a different approach: while restricting their analysis to the
Saint-Venant’s material, but considering both primary and secondary warpings (as described in section
2.3.3.3), the authors used the exact expression (i.e., with all strain terms retained), and then
numerically integrated ¢” and D. Despite the promising results obtained, where some of the
pathological cases reported previously were overcome, two major drawbacks can be cited: 1) the
adopted material (Saint-Venant’s) is not polyconvex, and 2) the developments were carried out for
only a few (and simple) types of cross-sections, namely, by-symmetric I-shaped, rectangular,
cruciform and T (although for this latter there was an apparent inconsistent result).

Therefore, in order to address those issues, it is proposed here the deduction and implementation of

both the Saint-Venant’s and Simo-Ciarlet’s material, so that comparison becomes possible.

"With D/, as the same as in (4.5). See the mentioned references for details on D,,.
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4.3. Exact constitutive equation for Saint-Venant’s material

The exact form of the constitutive equation that follows from this material for application in rod
models was first presented in [2]. It was re-implemented in this work for comparison purposes, but
now considering the improved warping function developed in Chapter 3. Here, it is represented using
the approach from equation (4.19). In Appendix H, the same material law is represented, but the
expressions are represented as in [2] (despite some rectifications). It should be noted that difference
between the expressions that are in this section and in said appendix is merely the notation.

The potential function for this material is

Yn(E) = S AWTEY? + utr(E) (4.46)
In order to rewrite (4.46) as function of C, let us remember that
E=2(C-1), (4.47)
thus
trE = ~tr(C — 1) =§trC—§=§11 —g, (4.48)
trE? = tr G - 1)2) =2(trc?—2trC+3) =2 -2 42 (4.49)
Substituting (4.48) and (4.49) in (4.46), one gets
Ya(Q) =212 —2GBA+ 2L + 41+ 2, (4.50)
Calculating Z—V;i", one gets
%:%11—2(3,1%#), %:%and %:0. (4.51)
Using (4.51) in (4.19), the P"stress column-vectors are obtained,
= Enr+u(f; ® £7) -5 3+ 21 £ (4.52)

The operators C33, ¢, d, b, and d, for the Saint-Venant’s material are defined as (using the
auxiliary results (4.23)-(4.41))

A r r\ 1
att OGS I+u(fi®f; )—>BA+2wI A
Coz=57= e (’ay’r) : ]f5+[5111+u(f§®f;)_
1 afy A
~(3A+ 2| # = A5 @ [+ u(fs @ f+ 5 31 + [0 + (4.53)

u(f; ® £5) -3 3A+ 21,

ort  o[nt+u(fi®f])-2Ga+2mi]

c=—2= f§+[%111+#(f§®f§)_

op ap

~(34+ 2| 2,—’;3 = {ApYave + " xped) - ¥ ] + u[(Yael ) ®
(FL) + (7 x eb) ® (f5) + (F2) ® (el ) + (F5) ® (1" x
weD IS + [Sh +u(fy ® £}) =3 (3 + 21| (k" x eb),

(4.54)
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_owp_ Osnt+u(fief))-1Ga+2wl]
= = =

G+ 201 B = (L +y7 - eI+ el @ F+ fE @ pedfs+  (459)

5+ [l +u(f; ® ) -

+ LI+ (] @ f7) =5 G+ 21| ek,

p — ded _ of5ur+u(fi®f;)-3@a+2wl| fr
« e ap

[ LI+

u(f; ® f7) =3 B+ 21| L - e = A g 1 + (17 x pel) -

(4.56)
Y Wap+ i (L) en + Bar+u(r @ 1)) -3+
21| (e€}) - €5,
dg = (a[Elllw(ﬁ@;g})_g(mzml] fr> +[uI+u(F & f]) -
(4.57)

e+ 20| L er = a1 +y - eDap +u (L ) e,

4.4, Exact constitutive equation for Simo-Ciarlet’s material

In the work from Dasambiagio [25], there is a deduction for the Simo-Ciarlet’s material for rods
that leaves the results as functions of the columns of F", but no further detailing is done, nor numerical
implementation is performed, as he allows for very generic displacement fields. A similar deduction
was developed in the current work, but the terms were particularized for the current 7-DOF rod model
and expanded, allowing for best visualization of the coupling interactions. The goal is the same as in
Campello and Lago’s [2]: to express all the terms from ¢” and D without neglecting any strain terms.

The Simo-Ciarlet’s material is characterized by the potential function

Arl
UnU h) =5 5(]2 -1) - ln]] +g(11 — 3 —2In)). (4.58)
Calculatlng , one gets
0Yp _u 0 11
a_ll—z, a—IZ—Oan 013 2[ ] . (459)
Thus
[ ( ——) - ]]gl +ufi. (4.60)

The operators C53, ¢, d, b, and d,, for the Simo-Ciarlet’s material are defined as (using the auxiliary
results (4.23)-(4.41))
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4.5. Notions on polyconvexity

The Saint-Venant’s material law is a kind of constitutive model that can lead to a loss of ellipticity
in the equilibrium equations at moderate to large strains, and making the problem numerically ill-
conditioned. One way to avoid this issue is by adopting a polyconvex constitutive model.
Polyconvexity is a special condition on the strain energy function that defines the material, as first
noted by Ball [51].

In this section, the author intends to proportionate to the reader a contextualization about what is
the first and one of the only theorems that guarantees the existence of the solution for solids with
hyperelastic materials. The explanation has, by any means, the intention to exhaust the discussion
about this subject. In fact, Ball [51] has a book dedicated to such topic, and Ciarlet [52], in his book
about mathematical elasticity, supported by the aforementioned work, provides a robust framework of
theorems about the existence of solution for elasticity problems.

In this section, the discussion is centred around theorems that are sufficient for the existence of
minimizers for the bodies total energy; therefore, they are only valid for conservative problems.
Therefore, as by definition, hyperelastic materials have an associated potential function, it must be
assumed that the loading is conservative in order to the polyconvexity condition be sufficient for the

existence of solution.
45.1.  Convexity

As defined in Ciarlet [52], a given subset U of a normed vector space V is said convex whenever,
for every two pair of points u, v from such subset, the closed segment linking those points [u, v] is
contained in U.

The convexity of functions can be defined over convex or non-convex sets (in the latter case, a
convex extension of the original set must be performed). Let U be a convex subset of a vector space V
Consider a function W:U — R. Then, the function W is considered convex if

WAu+ (1 -Dv) < W)+ (1 - )W), vu,v € U, 1 € [0,1] (4.66)

Note that the definition above remains correct if the domain is extended so that {40} is included.

This is an important case, which in the context of elasticity, will represent the stored potential energy

in extreme strain situations.

45.2.  Polyconvexity

First, based on the physical experience for solids, an important property for the internal strain
potential energy W is of interest: for the extreme defomation cases, with detF — 0 or detF — oo,
then W — oo. It can be proven that the aforementioned statement is incompatible with the convexity

condition (the demonstration can be seen in Ciarlet [52], for example).
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However, a weaker statement, proposed and proven by Ball [51] is of utmost importance:
polyconvexity is a sufficient condition for quasiconvexity, which, in turn, at least for the class of
problems of interest, implies the Legendre-Hadamard ellipticity condition, which is pivotal for
material stability. Also, as pointed by Ciarlet [52], “polyconvexity does not conflict with any physical
requirement and indeed, it is satisfied by realistic models”. Therefore, having a polyconvex
constitutive equation is crucial to avoid undesirable material instability upon solution.

Let us define polyconvexity for the three-dimensional case: consider a scalar function W =
W (A, H, 5), with the arguments A, H € M3*3 (M3*3 denotes 3x3 matrices) and § € R*. If W is
convex, then the potential energy function Wy = W (F, cof F, detF) is polyconvex (cofF is the matrix
of the cofactors of F). In summary, if one can write the potential energy as a convex function having
as explicit arguments the minors of F (F itself, cof F and detF), then such function is polyconvex.

This is the case of the Simo-Ciarlet’s hyperelastic material (for 4 and u > 0), since by analysing its
associated potential energy, it is clear that it is constituted by a sum of convex functions in F and in
detF. The Saint-Venant’s material, however, is not polyconvex (see demonstration by Raoult [53]
which proves by a counter-example that the function W (A4, H, §) of the St. Venant’s material is not
convex).

References such Ciarlet [52], Lahuerta [54] et al. ,and Campello and Lago [2], are also worth
reading for discussions about this subject.

Note that the polyconvexity condition, although desirable, is not mandatory for the existence of
solution for particular cases: it is known, for example, that the Saint-Venant’s material is broadly
appliable in a wide array of practical situations, mainly in low-strain configurations. For this reason. it

is often regarded as a finitedeformation/low and moderate-strain material.
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5. ROD MODEL SOLUTION THROUGH THE FINITE ELEMENT METHOD (FEM)

The FEM method is a robust numerical procedure for solving partial differential equations,
allowing for generic geometries, materials, boundary conditions and solution refinement, in the
structural mechanical context. In fact, one of the first application of this method was to solve a
mechanical problem intimately related to the current research: the Saint-Venant warping function for
pure torsion (see [55], in which an incipient form of the FEM was introduced). Later, the method was
formalized, and as research advanced, it was discovered that it could be used to solve a wide array of
problems governed by differential equations, originated from different contexts. We refer to Appendix
K for an introduction of the method and how integration is performed in the framework of
isoparametric elements.

The model that is currently being studied was implemented in PEFSY'S, which is an already
existent in-house FEM program for nonlinear static and dynamic analysis of structures. The main
contribution of this work for the said software were the implementation of an interface for inputting
open-section thin-walled geometries (which automatically generates the warping function from
equation (3.80)), the implementation of constitutive equations derived from the Saint-Venant’s and
Simo-Ciarlet’s material laws, and a brand-new subroutine for outputting results for ParaView®.

Therefore, the model’s FEM solution that is described in this chapter is not particularly new, but is

presented for completeness.
5.1. Element FEM formulation

First, let us take the weak form of the equilibrium (equation (3.39)) as the desired projection
problem (see Appendix K), and apply on both the displacements and virtual displacements the same
interpolation function

dg = Np, 6dgy = Nép, (5.1)
where p is a vector that contains sub-vectors p; (6p is its virtual counterpart). Each of those sub-

vectors contains the degrees of freedom (7 in this case) of a node i,

[ 41
p= pz and p; =
Pn

N = N(Z) is an operator that holds the Lagrange interpolation functions I for n nodes, which can be
built with

u
9] , (5.2)
Pl

N=[N; N; .. Ny, (5.3)
where
N, =131, (5.4)
with
Na — lg_l _ (Z2-72)(Z2-25)..(Z-Z4-1)(Z-Zq41) - (Z-Zy) (55)

T (Za—21)(Za=22) - (Za=Za-1)Za—Za+1) - (Za—Zn)’



86 Marcos Pires Kassab

Advances on a kinematically exact rod model for thin-walled open section members: consistent warping function and nonlinear constitutive equation

and I, is the identity matrix with dimension consistent with the vector p (7, in this case).

Analysing (5.5), it is easy to perceive that, for a given node a, the Lagrangian interpolation has as
main characteristic to be zero for every other node k # a. In the current work, elements with 2 and 3
nodes are of interest. Thus, the interpolation can be linear or quadratic, respectively (see Table 13 in
Appendix K).

For one element with integration domain L., this renders,

SW = [, (6" WANSp — - Nép)d — q" - (N5p)|F =
(5.6)
(J,(@N)®76™ — NTg)dg) - 8p — (N"q")[C - 8p = 0,
where ¢{ denotes the nodes with prescribed concentrated loads and with 6™ calculated based on the
interpolated displacements and strains. Defining the quantity in parenthesis as the elemental residual
force vector P, (this vector is exceptionally represented by a capital letter), one writes, in order to
respect the equilibrium

P.-5p = (N"q")|" - 8p,¥ép = P = (N"q)[* (5.7)
Using the fact that an interpolation function N, = 0 in other interpolated points, and by considering

that only the extremities (coordinates 0 and ) have concentrated loads, one gets

L T
P, = f AN)™¥ "6 — NTG)d = (N"q)[* = NLq* (1) + N1q* (0). (5.8)
0

Let us define the tangent stiffness matrix for one element

aP,
op’

k, = (5.9)

The result of this operation is known, since it is possible to make an analogy with the obtention of
the tangent bilinear form of the equilibrium, the only difference lying on the fact that, in equation
(5.8), the discretization and interpolation process were already performed. Therefore

k., =k;+k;—k;

— TywT d T d
fLe (AN)T®TDWAN {+fLe (AN)TG4(AN)dS (5.10)

— | (NTLgN)d¢.
Le

Note that the operators D,Gg and Ly were already defined in section 3.2.
5.2. Global assembly of residual force vector and tangent stiffness matrix

The residual force vector (equation (5.8)) and tangent stiffness matrix (equation (5.10)) are valid
for one isolated element. Now, the global residual vector and tangent matrix must be assembled. This
operation consists of the arrangement of those equations in the correspondent blocks, complying with

the numbering of the DOFs. Formally, consider that an element e, with associated nodal DOFs p,.. Let
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A, be the connectivity matrix, that associates the numbering of the DOFs from p,, to the global
numbering of the structure, so that

Pe = A,r, (5.11)
where r is the global vector of generalized nodal displacements.

The structure of 4, is simple: it is a matrix with np g, lines and np g, columns, where npqr, and
npor, are the number of degrees of freedom on an element and on the whole structure, respectively,
containing “ones” on the appropriate positions that relate the local to the global numbering and
“zeros” elsewhere. Note that the AZ performs the opposite role, by taking local contributions and
adequately allocating on the global matrix

The global residual force vector R (this vector is exceptionally represented by a capital letter) is

then given by
N,
R= Z ATP, (5.12)
=1

Now, global equilibrium is achieved by imposing
R=R(r)=0. (5.13)
Equation (5.13) is highly nonlinear, mainly due to the inherent nonlinearities from the exact
kinematical description and the constitutive equation. Therefore, for a given set of external loadings,
Newton’s method must be used to solve these equations. Applying said method for (5.13), with an

initial prediction 7, one gets
or

Fitl i (6R_(ri))_1 R@). (5.14)

Note that the inversion does not have to be directly applied. It is possible, for example, to solve the
linear system
K;Art = —R(1Y), (5.15)

with Art = (r'*1 —r') and K = (aRa—(:l)>, and then update r. Calculating K, one gets

Ne Ne

OR(r") r r oP, A NL

K== =% ZAP =4 Zar =4 1 Ope OF
e=

e=1

. (5.16)

= Z AgkeAe

e=1
It should be noted that, A, is a compact way to formally represent the connectivity, albeit never
being used in the programming practice. Usually, a tracker list is used to appropriately allocate the
information.
It is also worth mentioning that the solution can be carried out entirely using the global reference
system, without any base transformation. Usually, the components of " are outputted w.r.t the local

reference system for analysis purposes.
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5.3. PEFSYS general aspects

The described model was implemented in PEFSY'S, which is written in Fortran. PEFSYS is a finite
element program for advanced structural analysis, capable of static and dynamic non-linear analysis of
solids and structures, specializing on thin members (rods, shells and membranes). Under development
since the late 1990’s at the Department of Structural and Geotechnical Engineering of the Polytechnic
School of the University of Sdo Paulo, by a FAPESP thematic project coordinated by Prof. Paulo M.
Pimenta, it has been serving as a programming platform for students and researchers of this master’s
advisor’s group, for state-of-the-art research on rods, shells and membranes. It is coded in FORTRAN
90/95/2003, setting up a modern programming environment based on the OOP (Object-Oriented
Programming) paradigm, with full usage of encapsulation, polymorphism, inheritance and operator
overloading. It contains advanced methods for the solution of large systems of non-linear equations as
well as for time integration of the equations of motion, with exact kinematics (finite displacements,
rotations and strains) and inelastic behaviour.

In PEFSYS, the solver is direct, solving each step of the Newton’s method by Crout’s LDU
decomposition, taking advantage of the symmetry of the system when applicable. The solver uses the
incremental method to achieve the final load states and lacks yet the arc-length method.

The program has a graphical interface for pre- and post-processing built on the auxiliary program
GiD®, and a brand-new Paraview® outputting interface version has been developed here. In
comparison with GiD, ParaView provides a wide array of native Python routines (personalized ones
can also be implemented) that allows for better results manipulation but lacks pre-processing

capabilities. It also has a significantly higher graphic quality and optimizes output files memory-wise.
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6. NUMERICAL EXAMPLES AND DISCUSSION

In order to benchmark the developments carried out in this work, some already existent models

(available in PEFSYS, ANSYS or the literature) were chosen. They can be sorted according to the

following hierarchical order:

Analytic Vlasov’s theory (linear)

Kin. exact 6-DOF rod;
Linear elastic material;

From Pimenta and Yojo, in PEFSYS.

Kin. exact 7-DOF rod;
Linear elastic material;
From Campello, in PEFSYS.

Kin. exact 7-DOF rod;

Exact Saint-Venant’s material;
Incorrect warping function;

From Campello and Lago], in PEFSYS

|9A3] [221Yy2.eIa1Y Suisealou|

* Exact 7-DOF rod;
* Exact Saint-Venant’s material;
* Corrected warping function;

(Current work)

* Exact 7-DOF rod;
* Exact Simo-Ciarlet’'s m

* Corrected warping function;

(Current work)

Kin. Exact Shell
Linear elastic material

From Ansys Shell 281 and literature

aterial;

[2A3] [B21Yy2.RI31Y Suisealou|

Figure 13— Benchmark framework. Used models from [2], [12], [22] and [3].

In the current work, kinematically exact shell models (Ansys Shell 281 element — large

displacement: on — simulated by the author, or other shell models from the literature) are used as the

hierarchically highest order reference solution.

For the sake of conciseness, the following standard is used to denote the geometry of the analysed

cross sections:

Table 9 — Cross-sectional geometrical description

Type

Geometry

Rectangular

e

To be continued
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Continued

Cruciform section

NS o>

T-section

Bisymmetric I-section

Symmetric C-channel

Axisymmetric Z-section
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6.1. Validation on examples without buckling

The examples 6.1.1 to 6.1.4 were taken from [50] — the analytical Vlasov’s solution is taken from
there. For all rod examples, the mesh was made of 10 same-sized elements with linear interpolation (2
nodes), except in example 6.1.3, in which 30 elements were used. For the shell models, also a regular
mesh was used. It was refined until a sufficiently fine mesh (>90000 nodes) was obtained, which is
almost the limit of the software’s academic version (100000 nodes).

It should be noted that, in some models, the total torsion moment stress resultant (T") includes both
the bi-shear (@) and uniform torsion (M,,) contributions. In these cases, the uniform torsion can be
found by doing M,, = T — Q, since the models typically output Q and T. Also, as mentioned in section

3.2, the values of Q were multiplied by —1, to be coincident with the linear Vlasov theory.
6.1.1.  I-cantilever with external torsional moment

For this example, two cross-sections are evaluated: | 254x52,1 and CS 250x52 (see Figure 14). The
material parameters are E = 205 GPa and G = 80 GPa. In this example, the clamped end constrains
all degrees of freedom: there are no displacements, rotations nor warping.

As already shown in section 3.4, the warping functions obtained from equations (2.66) and (3.80),
are rigorously the same for bi-symmetric I-sections, and therefore there is no point in simulating the
example with both of them. In Figure 15, the warping functions used for the current model are

depicted.
| 254x52,1
X by =12.56 cm t; = 1.25¢cm
’ h = 25.4cm ty =1.51cm
/: Sog— CS 250x52
p bs = 25 cm tr =0.95cm
h=25cm ty = 0.8cm

/AN
\‘504_4/0;??

Figure 14—Description of the example 6.1.1.
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a) b)

Figure 15 — Warping function for a) 1 254x52,1; b) CS 250x52. Dimensions in cm.

By investigating the stiffness properties of each cross-section, it is possible to infer whether it

prioritizes the uniform torsion or the non-uniform torsion. Such preference can be quantified through
the parameter k = f% For the | 254x52,1, k = 0.0175 cm ™1 and for the CS 250x52, k =

0.00452 cm™1. This implies that, necessarily, for the former, uniform torsion is more intense in the
load-carrying mechanism, and therefore the bi-shear is expected to be lower, whereas, in the latter, the
opposite is expected. Indeed, this behaviour can be seen in Figure 16a) and Figure 17a). For the same
reason, when compared with 6 DOF rod models (in which only the uniform torsion effect is accounted
for), the results of the | 254x52,1 is significantly closer than the ones of the CS 250x52. Nevertheless,
it is evident that the bi-shear is an important torsion-resisting mechanism, leading to smaller torsion
rotations when such effect is considered. Note that, in both cases, every torsion-related quantity is in
perfect agreement with the Vlasov’s theory®, and are almost coincident with shell models. The only
noticeable difference is a slightly lower warping and bi-shear for the second example for the Simo-

Ciarlet material. For the other curves, the St.-Venant’s and Simo-Ciarlet’s materials are coincident.

8 the warping intensity in the analytic Vlasov’s model is the second derivative of the torsion
rotation.
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Figure 16 — Beam diagrams for example 6.1.1, | 254x52,1: a) torsional rotation; b) warping intensity; c) torsional

moment and bi-shear; d) bi-moment.
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Figure 17 — Beam diagrams for example 6.1.1, CS 250x52: a) torsional rotation; b) warping intensity; c) torsional
moment and bi-shear; d) bi-moment.
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6.1.2.  Simply supported beam with distributed load

In this example, two similar situations are studied: a) an I-section beam, loaded with a uniformly
distributed vertical load f, = 0.215 kN/cm and a uniformly distributed torsional moment m, =
0.688 kNcm/cm and length L = 500 cm is studied. This loading emulates a brick wall with
unbalanced mortar coating (see Figure 18); b) a C-section beam, loaded with a uniformly distributed
vertical load f,, = 3 kN /cm at the web plane (off the shear centre, thus torsion shall occur) and length
L = 400 cm. Those are relatively low torsional moment of a realistic design situation, but still capable
of mobilizing relevant non-uniform torsion effects. The profile is a CS 250x52 (see Figure 14). The

material parameters are E = 205 GPa and G = 80 GPa.

= —fyl»- - —,ymz_ =

A
Fixed torsion rotation >~
—_— Free warping  «~

|
a) )
¥ (em?)
. . 150
E—— I A—
10 100
5 50
0 9 0
5 I, =183 cm* =0
ly= 357970 cm®
-100
10
—_— /! |
" " . " -~ 150
2 5 C -10 5 "] 5 10

c)

Figure 18- Description of the example 6.1.2a): a) Design situation: wall with mortar coating, from [50]; b) problem
schematics; c) cross-section description; d) warping function (units in cm).
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Figure 19— Description of the example 6.1.2b): a) Problem schematics; b) cross-section description; c) present
warping function; d) incorrect warping function from [2] (dimensions in cm).

The strains from this example are small. Therefore, for torsion, there should be good adherence
among linear Vlasov’s model and the kinematically exact 7-DOF rod models. The warping function
generated by both equation (3.80) and from [2] for I-sections are the same and can be seen in Figure
15b). Thus, this case is good for assessing the implementation of the Saint-Venant’s and Simo-
Ciarlet’s material laws.

Firstly, it can be seen in Figure 20a) and d) that the consideration of non-uniform torsion is of
utmost importance. Without this important load carrying mechanism, as in the 6 DOF rod model, the
torsion rotation is severely overestimated in both cases. When the warping degree of freedom is
introduced, the obtained torsion rotation is the same as the one provided by both the shell model and
the linear theory.

For the I-section, one can see in Figure 20 that all constitutive equations presented nearly the same
behaviour for both vertical displacement due to bending (see Figure 20 (b)) and torsion rotation (see

Figure 20 (a) and (c)). They are also in good agreement with the shell’s results.
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For the C-channel, by examining Figure 21, it becomes evident that the model with the warping
function from [2] yields inconsistent results — torsional response is extremely stiff. Apart from this
one, the other rod models (i.e, with linear elastic, Saint-Venant’s and Simo-Ciarlet’s materials) are in
accordance with the Vlasov’s theory. Vertical displacements are virtually the same for all cases,
except for the case with incorrect warping function, in which the torsional contribution is severely
underestimated. Results from 7-DOF rod models are also nearly coincident with the ones from the

shell model, for both displacements and torsional rotation, which supports the proposed warping

function.
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0.00 + + + + 2 (cm)
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-0.05 T —— 6 DOF Linear elastic material
——Kin. Exact 7-DOF Linear Elastic material
-0.10 +
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material w/ corrected warping function
Kin. Exact 7-DOF exact Simo's material
-0.15 T . .
wj corrected warping function
=)
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5
020 X ¥
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0,00 4 t t t : B!y (e 00004 g~
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Figure 20 — Beam diagrams for example Simply supported beam with distributed load 6.1.2a): a) torsional rotation; b)
vertical displacement; c) warping intensity; d) torsional moment and bi-shear; €) bi-moment.
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Figure 21 — Beam diagrams for example 6.1.2b): a) torsional rotation; b) vertical displacement; c) warping intensity;
d) torsional moment and bi-shear; e) bi-moment.

6.1.3.  Transversely loaded C-channel cantilever

In this example, a C-channel cantilever (length I = 900 cm) is loaded with a concentrated load P
at the free tip, at the web/top chord intersection. The load is incremented up to 20 kN. At the clamped
end, the deformation is completely restricted. For the rod models the axis is positioned at the web/top
chord intersection, thus the load is exactly at the axis. A graphical description of this example can be
seen in Figure 22. As the load is off the shear-centre, torsion is expected to occur. It is assumed E =
210 GPa and G = 80 GPa. For the rod models, uniform mesh with 30 2-noded elements is used, in
order to maintain consistency with the original benchmark from Gruttmann [18], [48]. This simulation
can also be found in Gongalves [35], with their 7-DOF rod.
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For this example, a profile (here denominated C 300x100x10x16) is evaluated (see Figure 22). This
is not the same cross-section used in reference [50], but the expression for the analytical solution,
taken from that reference, is the same.

Pl 10cm

—
*.... Reference

axis

Reference

bcm

Figure 22 — Description of the example 6.1.3.

For C-sections, it was already discussed how important it is to adopt the corrected warping function
(see Figure 23). It will be shown in a complete example the impact of adopting either equation (3.65)
or (3.80).
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Figure 23 — Warping function of section C 300x100x10x16 using a) old equation (2.66); b) proposed equation (3.80).
Dimensions in cm. ¢) solving Saint-Venant’s warping function in Mathematica software, pole in shear centre.

A qualitative perspective of the simulations can be found in Figure 24.
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Linear elastic
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'\\
Saint-Venant’s/Simo-Ciarlet’s
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00co 1,000 2,000(m)
L Lo

Figure 24 — Simulation result, deformation in original scale (P = 20kN) a) PEFSYS rod model
with Linear elastic and Saint-Venant’s/Simo-Ciarlet’s materials (superimposed, units in cm); b) Ansys, shell
elements (in m);

a)

Figure 25 — Superimposed view of rod with Saint-Venant’s/Simo-Ciarlet’s material (blue
line) and Ansys’s shell (black line) a) View from the cantilever support; b) detail near the
clamped end, with respective torsion rotation (rad).

In Figure 26, the equilibrium path for a point at the loaded extremity, at mid-height of the web, is
represented.
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Figure 26 — Results from example 6.1.3. a) Vertical displacement; b) Lateral displacement; c) Torsional rotation.
Gruttmann reference is [18].

As it can be seen in Figure 26, up to P = 8 kN, all models (even the linear Vlasov’s model) are
almost in complete agreement. However, after this load level, results from the 7-DOFs models
calculated with PEFSYS (linear elastic, exact Saint-Venant’s and Simo-Ciarlet’s material with
corrected warping function) presented a rather stiffer solution than the corresponding ones from
Gruttmann [18]. Theoretically, Gruttmann’s model should be equivalent to the 7-DOF model with
linear elastic material implemented in PEFSYS — documented in [1]. Only two noticeable differences
are present:

e Gruttmann interpolates the base vectors e; instead of the Euler-Rodrigues parameters
which generates a non-orthogonal base at the Gauss points (the base is only orthogonal at
the nodes). This might have an effect similar to the imposition of a shear correction factor,
as some in-plane distortion is allowed due to the loss of the orthogonal base.;

e for Gruttmann, the pole of the warping function is always coincident with the rod axis,
instead of the principal pole, as done here. It must be mentioned that tests performed by the
authors indicated that taking the axis as the pole leaded to worse results (said outputs were

omitted for conciseness). It is worth mentioning that when the principal pole is not
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coincident with the centroid, a choice must be made to either a) take the pole at the axis,
which renders first-order coupling between axial force, bending moments and bi-moment;
or b) take the pole at the shear centre, which uncouples the normal stress-dependent
resultants, but creates an additional shear tension contribution for the shear forces, torsional
moment and bi-shear. See Appendix E for a discussion about orthogonality conditions.

In Figure 25, one can see that, despite the differences due to different flexural torsion behaviour,
the cross-section near the support undergoes rather intense in-plane distortion, a behaviour that cannot
be described by the current 7-DOF models. Were in-plane distortional modes explicitly considered in
the kinematical assumptions, such response could have been detected. It must also be highlighted that,
comparing linear elastic rod and shell models, the most important torsional discrepancy is near the
clamped end (for z < 400 cm), where local web/flange distortions are more intense. The authors
intend to address this issue in a future work, by enriching the rod’s kinematics. It should be also
remarked that the torsional response is severely impacted by the usage of the advanced constitutive
equations, when compared to the linear elastic material Figure 27, suggesting that torsional/bending
strain coupling does occur at the level of the constitutive equation, and cannot be neglected for a
proper beam’s response.

By analysing Figure 26a), the reader might also be surprised that the vertical displacement
calculated with the PEFSYS model with 6 DOFs and linear elastic material (documented in [22])
seems to be in better agreement with Gruttmann’s and shells™ results than the higher level models; this
is, however a coincidence. As the bi-shear and bi-moment are not present in this model, the torsional
stiffness of the system near to the clamped end is severely underestimated, leading to an exaggerated
torsion rotation (see Figure 27b), which penalises the whole system stiffness due to the amplification
of the higher order contribution of the lateral sway of the rod, leading to a greater vertical

displacement overall (see Figure 27a).

0.00E420

——Kin. Exact 7-DOF linear elastic

material w/ corrected warping
. 5.00F+01

function

——Kin. Exact 6-DOF linear elastic
material w/ corrected warping 100E+02
function

——Kin. Exact 7-DOF exact Saint-
Venant's material w/ corrected
warping function
Kin. Exact 7-DOF exact Simo-
Ciarlet's material w/ corrected
warping functicn

Ansys's shell 281

-130EH02

-2.00E402

-L30E2

B.00E D2

uy (em)

350602 a)



Marcos Pires Kassab 103

Advances on a kinematically exact rod model for thin-walled open section members: consistent warping function and nonlinear constitutive equation

500 600 700 800

z {c:;r)

rz (rad)

a0 b)

Figure 27- Results from example 6.1.3. a) Vertical displacement and b) torsional rotation for P = 20kN.

It should be noted again that the results of the Saint-Venant’s and Simo-Ciarlet’s material are in

perfect agreement.
6.1.4.  Z-section cable with axial tension

This example features a Z-section rod (lenght L = 300 c¢m) that acts as a cable: it is loaded with
concentrated axial tensile force N on both ends, inducing a bi-moment B = N (O is the point of the
concentrated load application). Formally, this is achieved by using the definition of bi-moment and the
Dirac delta function. Note that this is, in general, a peculiar boundary condition, since B = B(N).
Despite that, in this case, the reaction at the support is known beforehand, due to how the problem is
constrained. Warping is allowed at both extremities.

Therefore, torsional rotation occurs, even without any external torsional moment In order to
prevent rigid body motion, axial displacement (u,) and torsion rotation (6,) is restricted at one of the
ends, as well as transverse displacements at both ends (u,, u,). A graphical description of this
example can be seen in Figure 28. It isassumed E = 205 GPa and G = 80 GPa. For the rod
models, uniform mesh with 10 linear elements is used.

For this example, the profile Z 100x50x3,0 is evaluated (see Figure 28). For this section, the
function that are generated using equations (2.66) and (3.80) can be seen in Figure 29.
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Figure 28 — Description of the example 6.1.4.

The diagrams of the relevant resultants and displacements are shown in Figure 30, while
displacements result from the Ansys’ shell model is shown in Figure 31.
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Figure 29 — Warping function of section Z 100x50x3,0 using a) old equation (2.66); b) proposed equation (3.80).
Dimensions in cm.

Thus, let us first analyse the torsional behaviour (Figure 30 (a), (c)-(e)): when the 7-DOF model
with linear elastic material is used, the analytic Vlasov’s solution for torsion is recovered, as expected.
However, despite the fact that this is a small strains example when the 7-DOF model considers the
exact Saint-Venant’s and Simo-Ciarlet’s materials and the proposed warping function (i.e., corrected
and with secondary warping included) or shell elements are used, there is an apparent torsion/tension
coupling effect that somewhat stiffens the torsion rotation. We draw the attention to the fact that the
St.-Venant’s and Simo-Ciarlet’s materials are virtually coincident, and both much closer to the shell’s
solution than the linear elastic material. Regarding axial displacement (u,, Figure 30(b)), all the rod
models estimated somewhat lower u, when compared to the shell model. By analysing Figure 31(b),
at both ends of the shell curve, it becomes evident that such output is due to a local deformation at the
region where the concentrated load is introduced, which is much captured in the shell model. This can

be clearly seen in (see Figure 31c). Despite this difference, analysing sections not so close to the
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extremities, the deformation rates are fairly coincident — the curves of u,(z) are parallel —, suggesting
that such discrepancy are primarily due to the aforementioned reason. It is also worth mentioning that,
in this example, the warping term py? has an important contribution to the total axial displacement.
For this reason, the model with the incorrect warping function also presents a discrepant axial
displacement value. It is again stated that the use of the corrected warping function is mandatory to
accurately model torsion phenomena.

Also, as expected, the 6-DOF model is unable to identify any torsion whatsoever, since it does not
contemplate bi-moment and bi-shear capabilities. As consequence, there is no warping contribution for

the axial displacement.

= Analytic Vlasov 0.05 T

Kin. Exact 6-DOF Linear elastic material z(cm)

Kin. Exact 7-DOF Linear Elastic material

Kin. Exact 7-DOF exact St. Venant's
material w/ corrected warping function

Kin. Exact 7-DOF exact St. Venant's
material w/ incorrect warping function

Kin. Exact 7-DOF exact Simo's material w/
corrected warping function

——shell 281
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Figure 30 — Beam diagrams for example 6.1.4: a) torsional rotation; b) axial displacement; c) warping intensity; d)
torsional moment and bi-shear; €) bi-moment.
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Figure 31 — results from Ansys shell 281 model. a) isometric global view —
axial displacements and b) cross-sectional view, magnitude of total displacements (original
scale); c) detail of an extremity, axial displacements. Units in m

6.2. Validation on examples with buckling
6.2.1.  Buckling of a compressed I-cantilever

In this example, a I-section cantilever (lenght I = 240 cm) is studied. At the clamped end, the
displacements are fully restricted. The evaluated profile is an I-section, (see Figure 32). The material
parameters are E = 200 GPa and G = 80 GPa. The compressive loading (P) is incrementally
increased, until 100 kN. A transverse lateral load perturbation (0.1% of the main load) is added in
order to transpose the bifurcation at the load application point. The axis coincides with the line of
centroids. At the free end, forces are applied at the centroid.
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Figure 32 — Description of the example 6.2.1.

The used warping function, as developed in this work, can be seen in Figure 33.

P (em?)
10

i el §

Figure 33 — Warping function for example 6.2.1. Dimensions in cm.

This is a classic case of buckling of a compressed column that, after reaching the critical load,

2
deflects sideways and bends. The theoretical Euler critical load is P = "47’;7 = 12.89kN. For rod

models without the Poisson effect, (such as the ones presented in this work), the motion is completely
bidimensional, and there is no torsion nor warping, and therefore, the only possible coupling is
between compression and bending strains. As can be seen in Figure 34, linear elastic models presented
similar results as those from the exact Saint-Venant’s and Simo-Ciarlet’s material. Thus, it can be
deduced that such coupling had little effect on the solution. Also, the 6 DOF rod model was perfectly
suitable for this simulation, as there is no torsion. As it can be seen, both the critical load and post-
critical equilibrium path from the kinematically exact rod models are in agreement with the Ansys
shell model. At about 20 kN, the Ansys solver was not able to proceed incrementing the load, which
probably indicates the existence of a second critical load associated to local instability, which was
naturally not detected by the in-plane rigid rod models. Had rod models incorporated in-plane
distortional DOFs, they might had stood a chance to capture such local behaviour, as done in
Gongalves et al. [42].
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Figure 34—Critical load and equilibrium path for the example 6.2.1, with respect to the lateral displacement.

6.2.2.  Lateral buckling of a transversely loaded I-cantilever (load on centroid)

This example shares the same configuration of the previous example, but with transversal loading
(Figure 35). The transversal loading (P) is incrementally increased, until 40 kN. A transverse
perturbation (0.1% of the main load) is added at the load application point in order to transpose the
bifurcation. The used warping function is in Figure 33. Again, for I-sections, the warping function
generated by the (incorrect) equation (2.66) coincides with the one from equation (3.80), and

therefore, there is no point in simulating both cases.

|-section
bf =53cm h=10cm

tw = tf =0.6cm

Figure 35 — Description of the example 6.2.2.

The beam presents a lateral torsional buckling (see Figure 37). The critical loads are depicted in
Figure 36. Relevant non-uniform torsion occurs, and therefore the behaviour predicted by the 6-DOF
rod model is not in agreement with higher level models, as shown in Figure 36. This is expected, since
6-DOF rod models are less suited for thin-walled members with non-uniform torsion. When 7-DOF
models are used, the critical load predicted by rod models with all materials are in excellent agreement
with the one predicted by the Ansys Shell 281 model.

However, while the 7-DOF model with linear elastic constitutive equation provides virtually the
same result as the shell model with linear elastic constitutive equation, even for well-developed post-

critical states, the models with both hyperelastic exact constitutive equations present significant (and
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similar between each other) coupling effects. This evidences a relevant coupling at a constitutive level,
highlighting the importance of the completeness of the material law. Mainly in Figure 36(a), it is clear
that the solution differs rather markedly from the models with linear elastic material (including shell)
after approximately 10 kN (corresponds to a 35 cm lateral displacement, see Figure 36a)).

In the shell model, as in the previous example, a local buckling apparently occurs at ~20 kN, and,
for the same reason as in the previous example, the tested rod models were unable to detect such

instability. The deformed configurations for rod and shell models can be seen in Figure 37.

40 x Pcrit:

6-DOF, linear elastic: 4.26 kN
7-DOF, linear elastic: 5.38kN
7-DOF, exact St.Venant: 5.34 kN
7-DOF, exact Simo-Ciarlet: 5.34 kN

Shell 181:5.35 kN

P (kN)

30 T

shell crashed

20 +

—&—Kin. Exact 6-DOF Linear elastic material
/ =&—Kin. Exact 7-DOF Linear Elastic material

==¢=={in. Exact 7-DOF exact St. Venant's
material w/ corrected warping function
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1 ux (cm) corrected warping function
0@ »> —8—5hell 281
0 10 20 30 40 50
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o
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Figure 36 — Critical load and equilibrium path for the example 6.2.2, for the point at the mid-web of the free
extremity, with respect to a) the lateral displacement; b) vertical displacement; c) torsional rotations.
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b)

Figure 37 — Simulation result, deformation in original scale (P = 25 kN) a) PEFSYS, exact Saint-Venant’s and
Simo-Ciarlet’s material (superimposed) (in cm); b) Ansys (shell) (in m). Notice the rather stiffer solution from the shell
model at the post-critical stage.

6.2.3.  Buckling of compressed cruciform and T-section cantilever

This example features two clamped columns. Two cross-sections are evaluated: a) cruciform
(lenght I = 50 ¢m) and b) T-shaped sections (lenght I = 24 cm). In both cases, a compressive load
acts at the section centroid at the free end. A graphical description of this example can be seen in

Figure 38. In both cases, torsional buckling under compression is expected to occur (the theoretical

critical load, according to Vlasov's theory, is P.,.;; = GA j—g) due to the low torsional inertia of the

profiles and to the shortness of the columns. It is assumed E = 200 GPa and G = 80 GPa. For the
rod models, uniform mesh with 10 linear elements is used. A torsional moment perturbation of T =
0.01P cm is used to transpose the bifurcation point. The compressive loading, which is applied at the
centroid, is incrementally increased until 1500 kN and 2000 kN, for the former and the latter section,

respectively.

Cruciform
X h=b=12cm +
tW:thO.SCm [l=50cm
l’“\\_\ T-section
. h=b=10cm T
\"\\,\\,3 t,=t,=06cm [=24cm

Figure 38 — Description of the example 6.2.3.
Let us compare the warping function that is generated from both equation (3.65) and (3.80): for the

cruciform section, they generate the same function; however, this is not the case for the T-section

(especially at the web). Those functions can be seen in Figure 39.
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Figure 39 — Warping function for example 6.2.3. a) Cruciform section b) T-section with equation (2.66) c) T-section
with equation (3.80). Dimensions in cm.

This set of examples is one of the main motivations of this research: short columns with low
torsional inertia, undergoing torsion buckling (see Figure 40). This behaviour is not captured by linear
elastic rod models. Only when the Saint-Venant’s and Simo-Ciarlet’s material with higher order strain
terms are used that the coupling between compression and torsion strains allows for the identification
of the critical load. It should be noted that, for the T-section, if the incorrect warping expression is
employed, the torsion inertia is so overestimated that the first buckling mode is the Euler’s (bending)
mode, which has a rather higher critical load when compared to the torsional mode.

As can be seen in Figure 40(b) (T-section), the corrected warping function proved crucial to
accurately predict the critical load — the previous function (from [2]) estimates a 25% higher critical
load than the shell model. It is also worth mentioning that incomplete versions of Saint-Venant’s and
Simo-Ciarlet’s materials failed completely or partially at the task of finding critical load and post-
critical equilibrium paths (as reported in [1]-[3]), but the advances herein proposed solved this issue.
Interestingly, Vlasov’s analytical expressions somewhat overestimates the critical load for this
example.

However, in the post-critical regime, the torsion rotation is severely underestimated by the current
rod models as compared to the shell model (see Figure 40). By analysing the deformed configuration

from the Ansys Shell 281 model, it is possible to observe that cross-sectional in-plane distortions take
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place, which obviously are not captured by the rod models (see Figure 41 and Figure 42). It should
also be noted that this shell model uses linear elastic material. Therefore, it might be possible that rod
models with more complex kinematical assumptions, such as in-plane distortion modes, could also
predict this sort of deformation, with a better prevision for the large displacement post-buckling

regime, possibly even with the simpler linear elastic material.
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Figure 40 — Critical load and equilibrium path for the example 6.2.3, in the centroid of the free extremity, with respect
to the torsional rotation for a) cruciform section; b) T-section.
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Figure 41 — Simulation result, deformation in original scale (P=1500 kN) a) PEFSYS, Saint-Venant’s and Simo-
Ciarlet’s material (in cm); b) Ansys (in m).

b)

Figure 42 — Simulation result, deformation in original scale (P=1350 kN) a) PEFSYS, Saint-Venant’s and Simo-
Ciarlet’s material (in cm); b) Ansys (in m).
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6.2.4.  Flexural torsional buckling of a simple truss system

This example features a study of a symmetric truss, which is conceived to have constant normal
load at the top chord so that comparation with Vlasov’s analytical is possible. All the profiles are U
150x70x2 (see Figure 43b)). Transversal displacements and torsional rotation at both extremities are
fixed. Axial displacement is restricted at one end and free at the other. Warping is free at both
supports. A vertical load is imposed at the midpoint of the top chord. See Figure 43 for details. Only
rod models are studied. The material parameters are E = 200 GPa and G = 80 GPa.

v/Fixed Uy, Uy, Uy, O, Jp Fixed uy, u, 19Z~\v

— Obs:

* In-plane hinged connections
between diagonalsand
flanges

* The connection of the
diagonalsat the support
restricts rotationalong g, in
order to guarantee initial
stability

15¢cm

Axis at the
centroid

b)

Figure 43— Schematics of studied truss a) General attributes; b) Cross-section and relevant constrain observations

It must be remarked that, by equilibrium, the compressive load at the top chord is N = g in the

linear context.
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6.2.4.1. Simplified isolated rod model

First, let us produce a reduced order model: only the top chord is simulated. The vertical
displacement at the midpoint is fixed, in order to emulate the vertical constraints imposed by the
diagonals. A compressive load is imposed at centroid of extremity in which axial displacement is free.
See Figure 44 for a schematic representation of the simplified model.

[Fixed Uy, Uy, Uy, O, X Y Fixed uy, u,, 6,
S [ T

A A A

Figure 44 — Schematics of simplified top chord model

Critical load from Vlasov’s second order theory for axially loaded mono-symmetric beams is the

minimum absolute solution in N of

(N — Ny )[r2(N — Np)(N — Ny) — N2sZ] = 0 (6.1)
in which
71'2
5 5 S ElLy+GIr
Nie u IEZIM, Nye = — ;52122, Ny = _3 2 (62)
1 2 o

where [y, [, I, are the buckling lengths associated to flexural bending buckling around the local e}

G
and e} axis (coincident to the x and y global axis) and torsional buckling, respectively, r¢ = % +

s? + s2 and s, and s, are the coordinates of the shear centre with respect to the centroid (in this case).
For this example, I; = 100 cm, I, = 200 cm, Ly, = 100 cm, I;1 = 214 cm*, I, = 29 cm* , Iy =
0.077 cm*, I, = 1151 cm® and r§ = 60.1 cm?. Calculating the critical load for this case one gets
Ny = —1055 kN, N, = =576 kN, Ny, = —105 kN and N,,;; = —102 kN. This example is a case
of flexural-torsional buckling, from the coupling the modes that arises from Ny,, and N,.. Note that
the critical load is much closer to Ny, than to N,

With PEFSYS, this simplified model is simulated with linear elastic, Saint-Venant’s and Simo-
Ciarlet’s materials. Results from those simulations are in Figure 45. A uniform mesh with 20 rod
elements with linear interpolation is employed.

As in the example 6.2.3, the linear elastic material was unable to find a torsion/compression
coupled-buckling mode and the simulation was not able to proceed even before the Euler critical load
(576 kN, much greater than the actual 101 kN critical load) was reached.

Only when the advanced material laws were employed that the correct critical load was found,
which was consistent with the Vlasov’s analytical value. The simulation proceeded up to 412 kN, and
then PEFSYS could not find balanced configurations with greater load factor. If the arc-length method

was implemented, it might have been possible to find a viable and more developed equilibrium path. It
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should be remarked that both Saint-Venant’s and Simo-Ciarlet’s materials yielded virtually the same

results.
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Figure 45 — Equilibrium path for lateral displacement of the top chord midpoint when modelled as an isolated
member
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Figure 46 — Flexural-torsional buckling of U-channel subjected to compressive load, when modeled as an isolated
member. Configuration at N = 430 kN. Image generated with ParaView.

6.2.4.2. Complete truss model

In order to model the truss, some modelling techniques shall be employed to represent the hinged
connections, since PEFSYS does not have explicit kinematical constraints for this situation. It must be
highlighted that the imposition of hinges in the context of finite rotations is not trivial and nonlinear
since the rotation axis varies as the structures deforms. Thus, transition elements with penalized inertia
are employed. Apart from those special elements, each rod is discretized in 10 elements. A sensibility
study is performed to evaluate the modelling of the special transition elements, and results are shown
in Figure 47.
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Figure 47 — Rod model with representation of special elements for hinge representation

In that study, Simo-Ciarlet’s material is employed in all elements, with exception of the transition
ones, in which the linear elastic material is used. The warping constant in all the special elements is
null. The torsional inertia is only null at one end of each diagonal, so that the initial configuration is
not unstable. The main dilemma, however, is that elements with a) zero flexural inertia provides initial
unstable configuration although b) elements with slightly higher inertia stiffens considerably the
system, leading to sensitively higher critical loads. Thus, a set of small (although non-zero) set of
inertias must be meticulously chosen. Following the nomenclature from Figure 43b) the moment of
inertia relative to the local axis e} is I;; = a, and the one relative to e}, is I,, = . In Figure 48 it can
be seen that the critical load is sensitive the choice of a and . Supported by the results depicted in
Figure 45, the model with @ = 1 cm* and 8 = 0.1 cm* was chosen as the representative one, so that

the critical load is consistent with the one from the simplified isolated rod model.
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Figure 48 — Equilibrium path for the lateral displacement of the top chord midpoint with respect to the normal force
resultant N = g.
Let us now compare the simplified isolated rod model to the complete truss. Both models share the
important characteristics of presenting flexural-torsional buckling mode that is NOT detected by

models with linear elastic material, only by the ones with Saint-Venant’s or Simo-Ciarlet’s material
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(see Figure 50). This supports the importance of the inclusion of higher order strain terms in the
constitutive equation. Both models also fail to converge at higher loading levels, indicating the need of
arc-length method for further calculation. The main difference is that the post-critical behaviour is
fairly different, which was indeed expected, as after buckling, the truss itself does not provide a
vertical support at the midpoint of the top chord anymore (remember that the simplified model has

such vertical support).
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Figure 49 — Equilibrium path for the top chord midpoint (normal force) with respect to the a) lateral and b) vertical
displacements and c) torsion rotation in the isolated member model (dashed lines) and complete truss model (full line).
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Figure 50 — Post-critical configuration of the complete truss model with Saint-Venant’s/Simo-Ciarlet’s material.
Applied vertical load P = 510 kN, and normal resultant N = 170 kN. The change of curvature of the rod at the
special transition elements represents the hinge effect. Image generated with a) ParaView and b)GiD.
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7. CONCLUSION

The advancement of a 7-DOF, kinematically exact rod model with secondary-warping with the
option of either exact (i.e. retaining all strain terms) Saint-Venant’s or exact Simo-Ciarlet’s
constitutive equations was achieved. The model was validated in pre-critical loading situations,
buckling load determination and in the post-critical regime — including some cases that were not
correctly described by simpler rod models: the coupling effects between torsion strains and other
degrees of freedom proved crucial at the constitutive equation for proper torsional bucking
representation.

While the Simo-Ciarlet’s material has the advantage of being polyconvex, and therefore,
theoretically more suitable for finite displacements and large strain, the Saint-Venant’s material can be
implemented in a more efficient way, dispensing the numerical integration of stress resultants and
material tangent matrix along the cross-section (see Appendix I). For practical applications with the
discussed rod model, both seemed virtually identical in the proposed examples.

The warping function from Campello and Lago [2] was corrected by incorporation of a missing
(linear through-the-thickness) term. As soon as the author began to deal with more complex cross-
sections, he realized that a modification was mandatory, originating expression (3.80). Later, it was
discovered that the proposed approach renders a very good approximation to the Saint-Venant’s
warping function for thin-walled open sections, composed by rectangular segments, with no need to
solve any differential equation. As a subproduct of this process, a simple, yet general, algorithm for
generating thin-walled sections” warping functions was implemented in PEFSYS. Also, an initial
version for an interface with ParaView was implemented, for post-processing.

It should be noted that the expression (3.80) can be used to generate the warping function w.r.t any
centre, the author decided to always use the shear centre, in order to uncouple warping and
axial/bending effects. There are some works (Gruttmann [18], Gongalves [35], for example) in which
the orthogonality conditions for the warping mode are not enforced, leading to a different expression
for the material stiffness contribution. Some examples in Appendix E suggest that the origin must
indeed be the shear centre, to allow for a more coherent kinematical assumption.

For the tested cases in which the rod models diverged from the shell to completely describe the
displacement field, it was clear that the bottleneck of the current formulation is the lack of richer
kinematical assumptions for the displacement field, which can be achieved by incorporating in- and
out-of-plane distortional degrees of freedom.

That said, the next logical step toward robust rod formulation is to study techniques to generate
such distortional contributions, such as the Generalized Beam Theory (GBT), and posteriorly
implement them in PEFSYS.
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APPENDIX
APPENDIX A. BASIC CONCEPTS: KINEMATIC CHARACTERIZATION

Let the domain of a continuum in the reference configuration, denoted by V", with the contour S™
undergo a transformation that results in the current configuration, denoted by V, with the contour S, as
in. Figure 51. For the sake of simplicity, it will be assumed that the reference configuration is the same
as the initial configuration, although this is not necessary in general.

Figure 51 — Transformation of a continuum, from a reference configuration to the current configuration.

Let & be the reference position of a given point of a solid and x be its current position, after a
generic deformation. The displacement, for each point is given by
u=x-¢§. (A1)

Then, the deformation gradient (F) is the second order tensor given by

F—ax—V +1 A2
=% u+l (A.2)

The transformation F relates a solid infinitesimal fibre ds™ on the reference configuration to its
state on the current configuration (ds)
ds = Fds". (A.3)
An important quantity is the Jacobian (J) associated to F. It expresses the volume variation of an
infinitesimal region of the studied continuum, with the expression

v < Fds" ,Fds’ ,Fds" >
dvr —  <ds*,ds’,ds" >

=detF =], (A4

where < a, b,c >= (a X b) - c is the triple product of a linear independent triplet a, b, c.
Similarly, it is possible to study area variations. This can be achieved through Nanson’s rule
dSfi = JF"'n"dS"” = dS = J||[F~"n"||dS". (A.5)

The Cauchy-Green (C) and Green-Lagrange (E) tensors are calculated as
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C=FTF, (A.6)

E= %(C -1). (A7)
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APPENDIX B. BASIC CONCEPTS: STRESS CHARACTERIZATION

In the context of solids and fluids dynamics, it is important to introduce Cauchy’s principle: it
states that, for a hypothetical sectioned continuum, the actions and respective reactions of one part
over the another are a) distributed forces over the sections area and b) only present on each section
surface. Consequently, the vectorial stress field (p) must be a function of a) the coordinate of the

considered point (x) and b) the local normal direction to the adopted section (n). Therefore, p =

p(x,n)

Reference configuration

Current configuration

Figure 52 — Relevant stress vector representation for the Cauchy (black arrow), 1% (yellow arrow) and 2" Piola-
Kirchoff (red arrow) tensors.

Cauchy stress tensor (T)
This tensor interpretation is direct. Each of its column contain one stress vector with respect to a
determined face, normal to one vector of the three-dimensional base.
The real (true) stress p in a surface can be determined by T, w.r.t the normal unitary vector n
(Figure 52),
p=Tn. (B.1)

1% Piola-Kirchoff tensor (P)
This tensor represents the nominal stress state of a body. Whereas T had as reference area the
current configuration, P uses the reference configuration area (see Figure 52). Thus, if

pdS” = pds, (B.2)
then, admitting that p™ can be calculated by a linear transformation of the unitary vector n",
Pn"dS" = TndsS. (B.3)

Using (A.5), one obtains
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P=TJFT. (B.4)
This tensor is not generically symmetric neither objective (i.e, it is affected by rigid body motion).

Nominal stress in a plane 11" can be calculated by
p" =Pn". (B.5)

2" Piola-Kirchoff tensor (S)

This tensor is obtained by applying the inverse transformation F~1 on the nominal stress
components, as if those vectors performed the same transformation as the continuum fibres (see Figure
52), yielding

pr=F1lp" =F'Pn" = Sn", (B.6)
thus,
S =F1p. (B.7)

This tensor is always symmetric and objective, so is adequate to formulate constitutive equations.
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APPENDIX C.SECTORIAL AREA, PRINCIPAL POLE AND ORIGIN FOR TOP HAT AND
STIFFNED C-SECTIONS

=
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Figure 53 — Geometric attributes; b) Sectorial area for an arbitrary 4, B (w?5).

This cross-section area is
A = thw + Zbl’tl’ + bStS' (Cl)

The position of the centroid can be calculated, by definition, as
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h2t,,+2ht;b;
[yg| = 2ty (C.2)

The moment of inertia I, with respect to the centroid is
2

b3t bit;  (bs+ b\’ b
19 ==2+2|-— (S ‘)b-t- 2(—S)t
2=z * [12 2 i F2(7) tw
bits bit;  (bs+by)? b¢
= bit; +—t
1z 776 T 2 il + 5 tw

The sectorial moments of inertia I;g'flcan be readily obtained, with the aid of symmetry as

(C.3)

(C.4)

bs
=) htidfl] .
Using the substitutions u = y, — &, » du = —dé and v = §; — % - dv=d&

If,fl = Z[Ib o twu(—du) +fb‘ [bs (v+%) —vh(v+%)] tl-dv] =

2 [bghztw n bihbit; b} hti] _ b2h?t,, n bihbit; 2b2ht;
4 3 4 2 3

(C.5)

With equation (3.59), and with the aid of symmetry (I;, = 0), the position of the shear centre is

given by
AB

wa1
=¢5—¢& = 19 (C.6)
2

Using the symmetry again, it is possible to infer that B coincides with the principal origin.

Therefore, the principal sectorial area function is readily obtained (see Figure 54).

+ _ Veb1
) | ~ ,
+ 1 Es Y
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. b, b '
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2 f73

Figure 54 — Principal sectorial area (w®?). The expressions of the anti-symmetric part of the diagram were not
shown.
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Now, it is possible to obtain the principal sectorial moment of inertia, with

by
2
169 =2 f (—yef)?tsdt,
0

2
Yg bs bs
+ fyg_h <—yc >+ 09— fz)) twdé, C.7)
b

2*bi h h by z
+L (G- (a-75)n-v) naa

Using the substitutions u =y, — &, - du = —d& and v = & — % - dv = dé&;, one gets

b3tyy2 (%7 yecbs bg \2
C,D __ stsyc _JcPs s _
I _2[ — +fh( ) +2u) tyy (—du)

) (C.8)

b; bs
+ f (— (h—ye) — vh*) tydv
. 2

’

withh* =h+yc.and k = %(h —y.). Performing other substitutions p = u — A, and w = k — vh™,
and then integrating the polynomials, it is obtained

bity?  bit,

ti|b;l
24 4

5" =2 3

(h=y)® = ) - ((k = bih")* - k3)]

_ bitsy? + b_s2
12 6

2|b;
3

Note that, sometimes, |b;| is taken is absolute value. This is due to the fact that b; might be positive

t,,(h® — 3h2y, + 3hy?) (C.9)

+ = (3k? — 3kb;h* + bZh"?)t;.

(top hat section), negative (stiffened C-section) or zero (standard C-section). Therefore, this

adjustment is necessary.
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APPENDIX D. SECTORIAL AREA, PRINCIPAL POLE AND ORIGIN FOR STIFFENED V-
SECTION

hby o
h(§, +b)

(@) (b)

Figure 55 — Geometric attributes; b) Sectorial area for an arbitrary 4, B (w?5).

First, let us define

1 =vVhZ + b2. (D.1)
This cross-section area is

The position of the centroid can be calculated, by definition, as

Yo = htwl+jtfbfh. (D.3)
The moment of inertia I, with respect to the centroid is
b b3t b\’
19 = zfo £2./1+ h2/b2dE, + 2 ’{—2f+ <b + 7f> bftf]
(D.4)

2 bit b\
= §bzltW +fo +2 <b +?f> bst.

The sectorial moments of inertia Iﬁ',fl can be readily obtained, with the aid of symmetry as

158, =2 h(& - b)&itydéy] . (D5)

Using the substitutions u = x — &, —» du = —dé&;, one gets

AB _ b _ b_; b%_b
I3y, = 2hty [ u(u + b)du = 2ht; —+) (D.6)

With equation (3.59), and with the aid of symmetry (I,, = 0), the position of the shear centre is
given by
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AB

1
ye=& — & = ‘;’;‘1 (D.7)
2

Using the symmetry again, it is possible to infer that B coincides with the principal origin (D).

Therefore, the principal sectorial area function is readily obtained (see Figure 56).

Figure 56 — Principal sectorial area (w®?). The expressions of the anti-symmetric part of the diagram were not
shown.

Now, it is possible to obtain the principal sectorial moment of inertia, with
b
157 =2 U (=§17c)? tw/ 1+ h?/b2d§,
0
b+by 5 (D-8)
+ f (=byc +h* (&L — b)) tfdfl].
b
with h* = h — y,.
Developing the expression, one gets

157 = 2y2b1t,, +2by [3b%92 - 3bych*by + (h*by) | 1. (D.9)
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APPENDIX E. EVALUATING THE POSITION OF THE AXIS AND POLE FOR WARPING
FUNCTION GENERATION

The first step for every rod model is to determine the axis that will represent the reference for the
solid geometry. In the linear analysis, little discussion is made about this topic: the problem is
separated in axial/shearing forces and bending moment, taking as reference the centroid, while for the
torsion, the axis is taken at the torsion centre (in this context, equivalent to the shear centre and the
principal pole). Sometimes, when only the Saint-Venant (uniform) torsion is considered, this
discussion is not even approached, since a) it is known that I is invariant to the choice of the rod axis;
b) for a fixed centre, considering uniform specific rotation, the stress field is not dependent on such
choice.

In the kinematically exact context, it is known that the rigid body motion is not affected by the
choice of the rod axis, as such transformation can be written in terms of any reference. The only
requirement is that normal and shear stresses and its resultants are consistently derived, rendering
equivalent models, regardless of the axis choices (at least, if the boundary conditions remain
unchanged), as mentioned in Pimenta [22] or Campello [1].

The other problem to be faced is the choice of the pole for the generation of the warping function,
which is a more sensitive subject. In the uniform torsion, changing the pole leads to a difference of
“only” a rigid body motion along the whole axis, whereas the stress field and the torsional rotation
(which is the kinematical quantity of interest) are correctly calculated, and, as consequence, no further
discussion is usually carried in this framework.

However, in complex cases with non-uniform torsion (specially kinematically exact 3D rod
theories), this subject becomes more sensitive, mainly when the bending/torsion rotations coexist and
independent degrees of freedom are added to the model. Usually, one of the two alternatives is chosen:

a) the so-called orthogonality conditions are applied: the pole is taken at the shear centre

(principal pole). The idea is to uncouple first order torsion strains from axial and bending
strains;

b) the pole is the rod axis itself — no further treatment is done.

This topic is rather underestimated, and sometimes the same author adopts one or another approach
in different works without further explanations. However, it will be shown here that this choice is
important and is much more than just an option to uncouple or not certain strain components.

Here, it will be shown that the change of the warping pole changes the space of admissible
solutions for the model, and therefore it must be treated as a modelling decision that impacts the
solution.

Proposition: Consider a generic cross section. Let us consider two warping functions y, and i,

generated with different poles A and B. Using equation (3.79), the following relation is valid
Yy =Yg +ady +bs; +c (E.1)
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Let us prove that the possible deformation fields generated with ¢, and y,, are different.

Proof: Without any loss of generality, let us impose that v, obeys the orthogonality conditions, so
that rigid body motions are filtered. Now, let us consider a generic cross-sectional deformation
characterized by d,, = [u,, 8,4, p.], that will act with the shape function y,. Now, it is possible to
build another set d;, = [u,;, 8, pp] SO that the rigid motion that is embedded in ,, (the terms aé; +
bé&, + c) is compensated. Formally, it is searched d, d;, such that

u, + Qqa’ lu, + Qpa” +pp(aé; +bé, +c)es, va', (E.2)
where the symbol || stands for “parallel to”.

Thus, since (a&; + b&,)e’ represents an additional rotation, necessarily 8, # 6,,. As consequence,
it is impossible for the “pure” warping contribution from p;, (1, — a&; — b&, — c)el = pp,e5 to be
equivalent to the one from p,y,e$, because, in general if 8, # 8, = e% # e3, and therefore it is
impossible to exactly convert the solution with pole B into the one with pole A. This means that,
physically, if a pole that is not principal is used, one might end up with a warping that is not really
orthogonal to the cross-section, since it will be orthogonal to the plane that contains the vectors Q,a",

instead of Q,a” . This is better illustrated in Figure 57.

g ll)b Area NOT
Area preserve
preserved after
Area preserved " after rotation Q, Plﬁ adding the plane
after rotation Q, a \b‘ﬂa
(4

X3

e r
: § /

Current configuration
el using the shear centre

_--» rotated cross-
section

Yy
Not Parallel to the “really”
rotated cross-section

Current configuration
using generic pole

Reference configuration d,

Figure 57 — On the differences of using or not the orthogonality conditions for the shear centre.

Moreover, in the attempt to compensate the rigid body motion, the cross-sectional area before
warping is NOT preserved, since, in case b), as the area of the projection is the original cross-section
itself, when p,, (a&; + b&, + c)e’ is added, the final “rotated” area must be greater than the one from
the reference configuration.

Thus, the conclusion is that the choice of the pole directly affects the space of admissible solutions,

and therefore the model is NOT invariant to its choice, differently from the choice of the rods axism.



Marcos Pires Kassab 139

Advances on a kinematically exact rod model for thin-walled open section members: consistent warping function and nonlinear constitutive equation

A question that also arises is how the use of a pole that is different from the axis impacts the stress
field. Let us study a linear problem and compare to some results from the kinematically exact theory:

Consider a rod with a generic cross-section, with a torsion rotation 85 (¢3) and warping intensity
p(&3). The geometric characterization of three different cases can be found in Figure 58. In case a),
the rotation is around the shear centre, and the principal warping function vy, is used. In case b) a
generic point is used as rotation centre, and the corresponding warping function i, is used. In case c),

the rotation is around the same point as in case b), but v, is used.

Warping ¢, Warping i,

) * -~ e
—_ .~ Case a) deformation ‘ . i ) D
Ref. Config:

Ref. Config: 51
b)

Warping i,

Case a) deformation ‘ N .7 D
" o -
Ref. Config:

S1

c)

Figure 58 — Three kinematical descriptions for different axial reference and pole. Dash-dot line: reference
configuration. Full line: current configuration. a) Axis and pole in the shear centre; b) Axis and pole in generic point; c)
Axis in the same point as b) and pole in shear centre.

It is possible to represent the axial reference translation by

$a =%a— Sa (E.3)
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Let us compare the relevant displacements, strains and stress fields, assuming small displacements

and linear elastic materials (Table 10, where u; is the displacement in direction i, &; = g—::_" is the axial

. .. . . ou; ou;
linear strain in direction i, y;; = — + —
Vi = o8 T o

is the shear strain in the i plane at the j direction,z;; is the

stress in the i plane at the j direction, taken from the Cauchy’s stress tensor).

Table 10 — Displacement, strain and stress field for cases a), b) and c)

Case a) Case b) Case ¢)
U = —63&, u = —03§, u = —635;
Displacement u, = 63§ U, = 65&; U, = 658

Uz = Pll)a(f_pf_z)

uz = pYp(§1,¢2)

uz = pyPa(§1,$2)

& =6 =Y12=0

&§ =& =Y12=0

&§ =6 =Y12=0

Strain & =D & =p'EYy & =p'EY,
Yas = €pab3ép + Paa Yaz = €a038p + DY Ya3 = €pa03$p + P

Tiy =T =Ty =0 Ty =T =Ty =0 Tz = GYa3

Stress T33 = Ep'Yq T33 = Ep'ihy T33 = Ep'yy

Tos = G(eﬁae?’,f_ﬂ + plpa,(x)

Taz = G(ega05&p + PPpa)

Tos = G(eﬁagéfﬁ + plpa,a)

In order to obtain the Saint-Venant’s warping function, for the cases a) and b), one can impose the

uniform torsion basic assumptions: 8; = 03¢5, with 65 = cte, p = 05 and traction-free lateral

boundary. Therefore, from the traditional Saint-Venant’s theory, one gets, for case a)

and for case b),

{¢a,ana =

lpa,aa =0

_eaﬁ(ga)nﬁ = _eaﬁ(fzx - Sa)nﬁ,

lpb,aa =0

(E.4)

(E.5)

{wb,ana = _eaﬁ(fo_’)nﬁ,
wheren = [n; n, 0]7 is the unitary normal to the boundary external vector and e = [_01 (1)]

As already mentioned throughout the text, for Saint-Venant’s warping functions generated from

different poles, the following relation is valid

(wa,a - eﬁasﬁ)na = wb,ana = wa,ana = (lpb,a + eﬁasﬁ)na =

(E.6)
Yo =p — 5281 + 51852+ ¢
Rewriting the tangential strain field from case c¢) in terms of ¥, one gets
Yaz = eﬁagéfﬁ + p(l/)b,a + eﬁasﬁ) (E.7)
Therefore, the tangential stress field become
Toz = G(eﬁaeégﬁ + plpb,a) + Gpeﬁasﬁ (E.8)

Let us now calculate the stress resultants for those cases, for generic p, 6,,0, (Table 11). Using the
definitions from the linear theory, N = [, T33dA, V, = [, Ta3dA, My = eqp [, T33¢pdA, T =
) L €apéalpzdA, One gets, (some results concerning the integration of products of the type

) A VadA, ) L W.a$pdA, etc are used, see Campello [1] or Gruttmann [18], [48] for details)
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Table 11 — Stress resultants for the proposed problem

Case a) Case b) Case c)
N =p'ESy, =0 N =p'ESy, N =p'ESy =0
Vi = (p - 63)GAg, Vi = (p — 63)GAg; Vi = =G63Ag, — pGA(sz — g2)
V, = =(p - 03)GAg, V, = —(p - 03)GAg, V, = GO3Ag1 + pGA(s1 — g1)
My =p'Elyz=0 My = p'Ely,, My =p'Ely, =0
M, =—p'Ely1=0 My = —p'Ely,, My =—p'Ely, =0
T = GO5I, + Gply T = G031y + Gply T =G5l + Gp(Iy — Iy + AgaSa)

In Table 11, g, denotes the position of the centroid and the other symbols are used as defined
during the text.

Of course, if p = 65, and 65 = 65&5, case a) and case b) recover the uniform torsion problem, with
N=V,=V,=M; =M, =0and T = GO5I;.

Comparing equations (E.4) and (E.5) with Table 10 for the case b), it is clear that the traction-free
boundary condition is not met in case c), even if the torsion was uniform, since there is a discrepancy
between the pole and the axis. The practical consequence of this statement for the rod model is that, by
integrating the stresses, the shear resultant forces would only be zero in uniform torsion situations if a
shear deformation strain were added (proportional to k), in order to counterbalance the term Gpeg, sz
— this would generate a sideways deflection, i.e. the deformed axis would not remain parallel to the
original configuration. This is expected, since, comparing the displacements field from cases a) to c),
despite the warping being the same, rigid body lateral and vertical displacements are added. On the
other hand, the orthogonality conditions from the warping function eliminates any kind of axial and
bending resultants. Only when the shear centre is taken as the rod axis that the traction-free boundary
condition is respected and both axial and bending resultants remains null.

All those statements are in perfect agreement with the formulation of kinematically exact theories.
In Simo [17] (equation (63)), Campello [1] (equation (4.22)), the orthogonality conditions are imposed
and the shear resultants V; = pGA(g, — s,) and V, = pGA(s; — g,) are present (the same happens,
implicitly, in 6 DOF models from Pimenta and Yojo [22] (equation (128)) and Gruttmann [48]
(equation (45)) and also the bi-shear is modified (becomes function of s,). In Gruttmann [18](equation
(53)), where the pole is fixed as the same as the axis, no shear resultant is present, but the warping
contributes to the bending resultants M, = p'El,,;, M; = —p'El,, and bi-moment. If bi-moment
(depends on the normal stresses, therefore, on Ey) and bi-shears (depends on the shear stresses,
therefore, on G ,)were also calculated, similar conclusions would hold.

NOTE: merely by inspecting how the bending and torsional moments are defined, one can see that
they are axis-dependent, in order to generate a mechanically equivalent system. Analogously, if bi-
moment and bi-shear are calculated on various poles, they shall differ among them.

Neither of the approaches for the pole position is wrong a priori, but one must acknowledge that

they might impact the solution. Therefore, some practical situations were studied, in order to
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investigate such influence. Three examples were simulated, and for each one of them, five models are
created:
a) Analytic Vlasov’s linear model,
b) kinematically exact 7 DOF with linear elastic material — axis and pole at the load point
application;
c) kinematically exact 7 DOF with linear elastic material — axis and pole at the shear centre;
d) kinematically exact 7 DOF with linear elastic material — axis at the load point application
and pole at the shear centre;
e) Ansys shell 281 model (with large deformation).
The models b), ¢) and d) were simulated using PEFSYS, based on the formulation from Pimenta
and Yojo [22], and Campello [1].

For cases all the rod models, a homogeneous mesh with 30 linear elements is adopted.

Example C1) I-cantilever, vertically loaded at the top flange

This example is completely equivalent to the one from section 6.2.2. It has as material properties
E =200 GPa and G = 80 GPa and the vertical load is incremented up to 40 kN. A small lateral
perturbation is imposed in order to transpose the bifurcation. One can see in Figure 59 and Figure 60
the geometric characterization of the problem and the adopted warping function, respectively.

I-section
bf=5.30m h=10cm

tw =1t =0.6cm

Rigid link*’

b)
a)
Figure 59 — Geometric description of the example and warping function C1. a) Axis on right-top flange; b) Axis on
shear centre.
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Figure 60 — Warping function for pole in a) shear centre; b) rod axis (top flange/web intersection).

In Figure 61, the equilibrium path for vertical and horizontal displacements, torsional rotation and
warping intensity were displayed. It was stated that adopting a pole which is not principal has
completely changed the solution, when compared to rod models that uses the shear centre as pole.
Those differences become more noticeable at higher loadings (after 5.4 kN).

We refer the reader to the 6.2.2 for a broader discussion about this example, since this appendix is

only dedicated to the choice of the pole for the warping function.
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P I(‘cm”‘-Z)

-0,00020 -0,00016 -0,00012 -0,00008 -0,00004 0,00000 0,00004

d)

Figure 61 — Equilibrium paths for example E1, at the web mid-height. a) Lateral displacement; b) Vertical
displacement; c) Torsional rotation; d) warping intensity.

Example C2) C-channel cantilever, vertically loaded at the top flange/web intersection (same
as example 6.1.3)

This example is completely equivalent to the one from section 6.1.3. It has as material parameters
E =210 GPa and G = 80 GPa. The load is incremented up to P = 20 kN. One can see in

C 300x100x10x16
bf =10cm tr =1.6cm
X h=30cem t, = 1.0 cm
Reference
Z-H axis

0&,'??-
C=0x-
Reference B .
(—3.615,—14.2) cm 5 Rigid linke
a) b)

Figure 62 — Geometric description of the example and warping function E.2. a) Axis on the point of load application;
b) Axis on shear centre.
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Figure 63 — Warping function for pole in a) shear centre; b) rod axis (top flange/web intersection).

In Figure 64, the equilibrium path for vertical and horizontal displacements, torsional rotation and
warping intensity were displayed. It was stated that adopting a pole which is not principal has
artificially stiffened the system as a whole, leading to significantly smaller displacements, when
compared to rod models that uses the shear centre as pole. Those differences become more noticeable
at higher loadings (after 7.7 kN).

We refer the reader to the 6.1.3 for a broader discussion about this example, since this appendix is

only dedicated to the choice of the pole for the warping function.
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Figure 64 — Equilibrium paths for example E3, at the web mid-height. a) Lateral displacement; b) Vertical
displacement; c) Torsional rotation; d) warping intensity.
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Example C3) C-channel cantilever, vertically loaded at the top flange/web intersection

This example has the same geometry as the one from section 6.1.3, but the load is now horizontal.
It has as material parameters E = 210 GPa and G = 80 GPa. The load is incremented up to P =
80 kN. One can see in Figure 65 the geometric characterization of the problem. The adopted warping

functions are the same as in the previous example.

C 300x100x10x16
bf =10cm tr = 1.6 cm
xh=30€m tw =1.0cm
Reference

90 00}72
C =

Reference

(—3.615,—-14.2) cm axs " Rigid linke .
a)
Figure 65 — Geometric description of the example and warping function E.4. a) Axis on the point of load application;
b) Axis on shear centre.

In Figure 66, the equilibrium path for vertical and horizontal displacements, torsional rotation and
warping intensity are displayed. As in the previous example, it was stated that adopting a pole which is
not principal has a major impact on the warping intensity field, whereas the other kinematic quantities
are almost not impacted in this example. Those differences become more evident at higher loadings,
notably after 20 kN. It must be highlighted the invariance of the displacement field with the change of
the axis. Comparing to the shell model, at higher loads the displacements are underestimated, probably

due to the lack of in-plane distortion modes, such as web local bending.
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Figure 66 — Equilibrium paths for example E4, at the web mid-height. a) Lateral displacement; b) Vertical
displacement; c) Torsional rotation; d) warping intensity.

MODELLING NOTE: the rigid link was imposed through a very stiff rod element. It must be
remarked that such element cannot influence the warping field, therefore, one of the following

precautions must be adopted: a) link with null warping constant; b) unlink the warping intensity field
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of the rigid element from the rest of the structure; c¢) use other method to impose the link (Lagrange’s

multiplicator, implementation that allows a buffer on the applied load, etc).

CONCLUSION OF THE APPENDIX

Having in mind the theoretical aspects that were presented in this topic, altogether with the
numerical results, the author has chosen to adopt the orthogonality conditions for warping function
generation, even if that means that the pole is different from the rod axis. The simulated examples
suggests that, by not doing so, a locking effect might be sensed. Also, as already stated in many
references, it was seen that the position of the axis does not alter the solutions, and therefore, the
modeller is free to choose the one that she/he considers more suitable. Therefore, in all the examples
from section 4.5, the rod models were simulated using the shear centre as pole.

The beforementioned posture seems also to be prudent for more advanced formulations that
employ a wide array of warping mode: if each one of them carries embedded additional rigid body
motion, the “real” rotation of the cross-section is either lost or only recoverable through specific post-
processing, which is cumbersome. That said, there is still the risk of artificial stiffening, which is
undesirable. It should be noted that in linear Generalized Beam Theory, the warping/distortion modes
are always orthogonal to each other, thus it would not be an absurd extrapolation to conceive that
equivalent non-linear models should also respect orthogonality conditions.

NOTE: 6 DOF models can be derived from 7 DOF models by imposing p = k5 and ignoring the
work that comes from the bi-moment. By doing so, the constitutive equation is no longer function of
p’ (and usually the “new” warping intensity derivative k3" is not calculated), forcing one to adopt as

pole the shear centre, in order to not lose information about the bending moment contribution p’El,q,

which becomes forcingly zero.
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APPENDIX F. ROTATION DERIVATIVES
Some important derivatives are deducted here, for didactic purposes. They have already been

documented in many classic works, such as [15], [22], [46], and were also deduced in other modern
works, such as [25], [26].
Let us consider the time derivative-related tensor 2 = QQT. First, let us verificate that £ is skew-

symmetric:
QQ" =15 0Q" +QQ" =0 0Q" = -QQ" = —(0Q") s n=-0"u (F-9)
By definition, and using the fact that Q is skew-symmetric

2= (h0+ h 0+ hy0% + h,(00 + 00))(1 — h,0 + h,0?), (F.10)
where h; was used instead of h;(8) to alleviate the notation.
It is appropriate to introduce some properties of the skew-symmetric operators. For generic skew-

symmetric B, C, T, with axial vectors b, c, t, and a generic vector w

b xXw = Bw (F.11)
T=BC=cQ®b— (b-0), (F.12)
t=bxceT=BC-CB, (F.13)
T3 = t°T, T* = —t?T?, T® = +t*T, T® = +t*T?. (F.14)
A consequence of (F.12) and (F.13) is that, for t = b X c,
T = skew(t) =skew(bxXc)=BC—-—CB=cQ®b—-bQc (F.15)

The definition of the dyadic product is also useful. Let a, b, x be generic vectors, and T a generic

second-order tensor. Thus

(a@b)x=(b-x)a. (F.16)
As a consequence of this definition,
(a®b)Tx=(b-Tx)a= (T"b-x)a= (a @ (T"h))x. (F.17)
Thus
(a® b)T = (a® (TTh)) (F.18)
Consider now that
. . 12(0-6 0-0
9=\/ﬂ=>9=55m)= 7 (F.19)
Then
B = % j— %%J (F.20)
and evaluating the derivatives of h, and h,, one gets
% __Bcosf —senf cosf —hl_
> ;
d:zg_ Osen6 fZ + 2cos6 hf — 2h, (F.21)
deo 63 6

Applying (F.20) and (F.21) on (F.10), one gets
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2 =h,0 +h,00 + (hy — h? — 02h3)00 + (hy + hih,0% — h,h,02)0 (F.22
+ (hy — hyhy — hyh,0%)0% — h, h,000 + h3060067.
Using the property from equation (F.12),
(06)0 = (6 ®0)0 —(6-0)0, (F.23)
and with equation (F.17),
(06)6 = (6 ® 676) — (0-8)0 = -((;@w)—(o-a)@

~0 (F.24)
= —(6-6)o.
Applying (F.24) in (F.22)
2 = 1,0 + 7,00 + (hy — h — 62h3)00 + (hy + hyh,0% —
hyh162 + hyhy(6 - 8)) @ + (hy — hyhy — hyhy60% — h3(6 - 6)) €2, (2)
Evaluating the scalar terms, and substituting the derivatives from (F.25),

sen?0 | 6%  (sen6) _
o7 T 7 T e e

oo (3 s (9 500 (9) = =20 = s

hy—2h,
0

h, — h? — 2h2 = h, —
(F.26)

cosf-hq 1

6 @ 0—

hy + hyhy0% — hyhy 62 +h1h2(9-9) = ( + hy

cos @
6

cos@  hy

hy

+ h? — 2h h, — hycos6 +
or o2 (F.27)

hihy + hihy ) (8-0) = (-2 +2) (0-8) = (52) (6-6) =
hs(6-8),
h, — hyhy — hyh,6% — (6 0)
_ (h1—2hy1 cosf —hy 1 h, — 2h,
_(Té_l 6 6 * 6
—hg)(e-é)

hy 2h, hycosf h? .
=<92 P 02 +ﬁ—h1h2+h% (99)
senf 2(1—cosf) senBcosd sen?O
= 93 94 - 93 + 04
senB(1 — cosf) (1 — 2cosH + cos? ) ,
- 3 + o3 (6-6)=o.

=210 + hyhy ) (8- 6) = (

0

(F.28)

Therefore
2 =h,0+h,(06 - 60) + h;(6-6)6. (F.29)
Using the properties from equation (F.13), the axial vector is
w=h0+h,(0x0)+hs(0-6)0 (F.30)
Using the result (F.16) and (F.12)
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w = (hI + h,0 + h3(00 + 621))86.
Further manipulating,
w = ((hy + 62h3)I + h,0 + h302)0,
but
hy+60%h; =h;+(1—hy) =1.
Thus
o = (I+h,0+ h;0%)0 =Tr6.
Note that, in equation (F.34) the operator
r=(+h,0+ h;0?)
is defined and is present throughout the whole work.
The derivative of this tensor with respect to a scalar is also relevant. Let us calculate
I'=h,0 + h,0 + h;0% + h;3(06 + 60).

Since
dhs _ 2 (B3cos6-36%senf) _ (—3+3hy 1-cosf\ _ h,—3h;3
FEE ( 96 )_( 63 ) (93 )_ 9
then, defining
_dh; 1 BOsen — 2+ 2cos@  hy —2h,
*Tdo 6 64 T gz
hy — 3hs
hs= T

one gets
I'=h,0+ h3(06 +00) + h,(6-0)0 + hs(6-0)62.

The operator I' has some properties, which will not be demonstrated here:

(F.31)

(F.32)

(F.33)

(F.34)

(F.35)

(F.36)

(F.37)

(F.38)

(F.39)

a) I and Q are commutative, as they share the same eigenvectors. Ibrahimbegovic shows this in

[56];

b) Q'r =rT & " = rQT’. The left-hand side of this demonstration can be done by simply

substituting (2.4), (2.5) and (F.35), and using the property @ = —@T and manipulating the

expression in terms of h;. The right-hand side comes from the fact that QQ'r =TI = QI'" =

r’'=rqQr.

The same expressions can be used to derivate the rotation tensor with respect to any scalar. For

example, for the coordinate ¢, that indicates the position along a rod axis becomes
K = Q'Q7, and k = axial(K),
2=h,0"+h,(00'—0'0)+hy(6-6)0
k=T60'
I' =h,0' +h;(00" 4+ 0'0) + hy(0-6")0 + hs(6 - 0')62

and those identities are also present throughout the text.

(F.40)
(F.41)
(F.42)
(F.43)
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From now on, let us assume ¢ as a constant vector. Then, using the skew-symmetry of @, the
product I'Tt is
It =(—h,0+ h3(06 + 60) — hy(0-0)0 + hs(0 - 0)0?)t. (F.44)
Transforming term @t in a cross product, and manipulating it
Ot=0xt=—-tx0=-To. (F.45)

With equations (F.13) and (F.45), the product
(06 + 60)t = 6 x (0t) — OTH = —skew(0 x t)6 — OTH

) ) (F.46)
=—-20T0—-ToO0,
and with the definition of dyadic product from equation (F.16)
(6-6)ot = (0t ® 0)6
. . (F.47)
(6-0)0%t = (0%t ® 0)0
the equation (F.44) becomes
It=v(o,1)6, (F.48)
by defining
V(0,t) = h,T + h3(TO — 20T) — h, (Ot ® 0) + hs(O*t R 0) (F.49)
An important property used to demonstrate that the geometric tangent operator is symmetric is that
v(o,t) —vT(,t) =I"Tr (F.50)
since
VT(0,t) = —h,T + h3(OT — 2TO) — h, (8 ® Ot) + hs(6 @ O21), (F.51)

and, consequently
v, t)-v'(o,t
=2h,T— h, (Ot ® 6 — 6 @ O°) (F.52)
+ hs (0%t ® 0 — 0 Q O%t) + 3h;(TO — OT).
Using the identities (F.14) and (F.15),

0t ® 0 — 0 R 02t = skew(0 x O%t) = skew(03t) = —02skew(Ot). (F.53)
Also, with equation (F.15)
OtR® 0O —0 R Ot = skew(0 x Ot) = skew(0?t), (F.54)

thus
V(O,t) —VT(0,t) = 2h,T — (3h; + 8%hs)skew(Ot) — hyskew(0?t). (F.55)
However, using (F.27) and (F.38), 3h; + 8%hs = h,, and, therefore
V(O,t) —VT(0,t) = 2h,T — hyskew(Ot) — hyskew(O?t), (F.56)

which can be rewrite as
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1 h
V(6,t) — VT(6,t) = 2h, [skew(t) — 5 skew(98) - ﬁskew(@zt)]
2

(F.57)
= 2h,sk (1 Lo _tu @Z)t
= 2S eW[ E z—hz ]
Using the results of the determinant and inverse of I' (from Ibrahimbegovic [56])
__ 2(1-cos6) -1 _gy_ 1o hy o2
detl =———andT" =1--6 ™ 0°, (F.58)
one gets

V(o,t) —VT(0,t) = detI'skew(I'"1t). (F.59)

Deducing the Nanson’s rule from the Euler’s relation for a tensor K, with linear independent

vectors a, b, ¢

deth%@detK(axb)-c= (Ka x Kb) - Tc =
KT(Ka x Kb) - ¢ = K" (Ka x Kb) = detK(a X b) < skew(Ka)Kb = (F.60)

detK(K"TA)b & skew(Ka)K = detK(K™TA),
and taking I'"! as K and t as A, and remembering that detI'"! = (detI’)™1, equation (F.60) becomes
skew(r ')t = detr ' *((r\y='r) = detr'skew(r-t) = r’rTr, (F.61)
and finally substituting (F.61) in (F.59),
vV(o,t) —vi(O,t)=TI"Tr m. (F.62)
Now, it is of interest to find the derivative of (F.49) along the rod axis
(F"t) =v(6,6)'0 +V(6,6)0’, (F.63)
with
V'(6,t) = hyT + h3(TO — 20T) + h3(TO' — 20'T) — h, (6t Q )
—h(O'tR®O+60tR0O)+h(0*tQ 06) (F.64)
+hs((BH)'tRO+0°tR ),
and, using the definitions of h, and hg from (F.38), and further defining another two quantities

_dh1 1 (G- 29262 - 26(h, — 20,)
s " (F.65)
B %[%] = %[}% — hy — 4hy],
_dhs1 1 (%_ %) 0% — 26 (h; — 3hy)
S " (F.66)
_ %[hl —~ 7}:922— 15h3] _ %[m o

one gets
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V'(0,t) = hy(6-0)T + hs(TO' —20'T) + h(6 - 8')(TO — 20T)
—h,(0'tQRO+0tR0O)—hy(0-0)(0OtR 0)

(F.67)
+hs((@'0+00NtR O+ 0°tR O
+h,(0-0)(0%tR )
Equation (F.67) can be rewritten as
V'(0,t) = h3(TO' —20'T) —h, (Ot R O+ 0t RO
+hs((0'60+00Nt®O+6°tR0)
(F.68)

+ (0 0)[haT + hs(TO — 20T) — he(0t @ 6)
+h;(0%t @ 6)]

The relation of V'(0,t) and V' (8, t) directly comes from (F.50)
vTeo=v@et-r’rr-rrrr (F.69)
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APPENDIX G. DEDUCTION OF THE TANGENT OPERATOR
The tangent operator can be consistently deduced by taking the variation of the equilibrium weak

form (linearization), represented by the virtual work theorem for rod (equation (3.39)). Therefore, this
operator is the second variation of the work, and can be found with the aid of the derivative of (3.39)
with respect to a scalar. For the sake of simplicity, the virtual work from concentrated loads will be
neglected, but by using the Dirac delta, its insertion is trivial. Let us perform the derivative with

respect to the scalar time:

d d((*
7 OW) = %U (66" —q- Sde)di>,5de(€) € HP(Q) (G1)
0
Using the product rule,
d L .
E(SW) = j (6" - 8" +a" - 68" —(q) - ddy)d] (G.2)
0
Using the chain rule in the first term
. do" : :
o’ -8 = & 8" =D& - 6" =WASdy - DPAdy (G.3)
ae”

The composition of D was discussed throughout the text, and here, this representation is sufficient.
However, the second term must be more carefully treated here. Using the definition d&" =
[6n" 6k" 6p &p'17,

o QTsu' + % Q72’150
o 5" = 0" - WASdy = "(‘; |5 @TTs6 +- (@56’ | (G.4)
B 0
0

Each one of the components are now expanded. The first one of them is, using the fact that 2 =
QQ" = skew(I'0)
n"-QTsu' = Qn” - 5u’ = skew(ré)Qn”-su' =ro xn-su’

. (G.5)

= —NI60-6u'.

The second one is
n .%(QTzfr)(so =n"-(Q"Z'T+Q"2'r+Q"2'r)se, (G.6)
with aid of the equation (F.34), and the definition of £,
n-QTZ'Irs0 = n" - (skew(ro)Q) 2'ré6 = n- skew(ré) z'rso

=n-(-Iréx2z'rs0) =-2'rs0-(nxre) (G.7)

=TrTZ'Nré-se,
n"-QTZ'ré0 =n-i' xré@ =r'Nu' - 60 = —(NNN™i' - 56 (G.8)
n"-QTZ'r50 = —I'"Z'n-50 = —V(0,z' xn) - 56, (G.9)

rendering

n’- % (Q"Z'T)86 = [ITZ'Nro—(NI)™w' — V(8,2' x n)| - 66. (G.10)
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The third term is, with the aid of equations (F.34),(F.48), the definition of £, and using the property
of permutation for triple products,

m” - (Q"1)80 =m" - (Q"I' + Q"[")66 = m- (—Ié x I'5) +

. . . (G.11)
'm-86 = (—r'mreé)-56 + (v'(6,m)6 + v(e,m)é') - 56.
The last term is
m”-£(Q')80' =m - (Q"T + Q"F)86' = m - skew(r9) I56' +
% (G.12)

mm-56 = (—r"mMré +v(e,m0)-s6'.
Using the result from equations (F.34),(F.48), the definition of £2, and using the property of
permutation for triple products, one gets
0" -WASdy = —NI'0 - 6u'—(NITw' - 60 + [ITZ'NTI' - V(0,2 xn))0
-850+ (V'(6,m) —I''MI)0 - 50 + V(0,m)0' - 56
+ (—rTMr +V(e, m)) 050" =

_ (G.13)
=—NIe-su'+(-ND)"i' - 60

+[ITZ'Nr —v(6,z' xn)]0-60 + (V'(8,m) —I''MI')6
-850 +V(0,m)0’ -50 + V' (0,m)6 - 56’
Rewriting this expression in a compactly

SU1[ 0 Guy O
‘ 60 | |Goy Goo G

o WASdy =|60'|-| 0 Gy, O
ép o’ o’ oT

Sp'l Lol of  oT

GAd,,

~

<

Q

9’| = ASdy -
; (G.14)

SO © © ©
S O © O
—————————
e
S e - B~ .Y

with
Gyg=Giiyg=—NT,
Goo' = Gprg =V (0,m) (G.15)
Goo =TTZ'NIr —-V(0,z xn) +V'(6,m) —I'Mr
Let us now prove that G4 is symmetric, by analysing skew(Ggg) = %(699 — Gjg). Using equations

(F.50), (F.69) and (G.15), and remembering that skew(z' xn) = Z'N — NZ',

1
skew(Ggg) = 2 [FTZ'Nr —v (6,2’ xn)+V'(8,m) —I'MI’

—(I"NZ'T-V"(8,2' xn) + V' (0,m) + I'MI"")]
(G.16)

1
=2 [(VT(B, Z xn)+IT(Z'N - NZ')[ - V(6,2 xn))

+V'(0,m)— (V' (6,m) + I'MTI + I‘TMI"’T)] —0.

Having proven that Ggg is symmetric, it is now evident that G also is.
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Now, it is only left the external loading contribution. Using the chain rule

. aq . .
—(q) - (Sdg = —(Sdg —a; dg = —8d9 * Lgdg. (Gl7)
6

The structure of Lg is as follows

Luu Lu6’ Lup

Ly = Ly, Lgg Lp9 ) (618)
Lpu LP9 Lmo
with
on on on
Luuza Lue=% LupZ%
L - or'm L= or'm L= or'm .19
ou= "3 00 = 39 v =5, (G.19)
0B 0B 0B
Lpu:% Lp@z% Lpp:%

Note that the Lgis not necessarily symmetric. There is a broad discussion about specific cases for
which it might be symmetric, for example, when the load is conservative. It is suggested that the
reader sees [22], [1]or [26] for more information.

With the results from equations (G.3), (G.14) and (G.18) it is possible to write the Fréchet
derivative of the virtual work in the bilinear form,

52W = fOL(lPASdg *DPASdy + Addg - GASdy — Sdg - LeSdg)d(. (G.20)

Due to how each of these contributions is built, the tensors D, G, Ly are named, respectively the

material, geometric and external loading tangent contributions for the tangent operator.
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APPENDIX H. DEDUCTION OF DERIVATIVES OF THE STRAIN INVARIANTS
The derivatives of the first and second invariants w.r.t to C is easy

o, 0:C) _3(trC) _ d(Cip)

7]
ol _ 10(I: c?) _ la(trcz) _ la((cz)kk) e’ ® el = 10(Cralux) e’ ® el
ac 2 ac 2 0C 2 6Cij : 72 6Cl-j ! 1
1(0(Cr) d(Cue)
= _ C.i———= e’ r
2( ac, CiktluTe ") ®e (H2)
1
= E(C]lef ® e]T + C]lef ® e]r) = C]lef ® e; = CT
= C (C is symmetric)
In order to find the derivatives of I3, some auxiliar results are needed.
First, let us remember that
] = Fvy FoyxFvs (H.3)

V1V XV3 !
Deriving w.r.t a scalar (time, for example). Using the Nanson’s rule, for a linear independent

constant triplet v,, v,, v3

aJ _j __ Fv;-Fv,xFv; + Fvq-Fv,xFvg n Fvy-Fv,xFv;
ot~ 7 V1V XV3 V1V, XV3 V1V XV3 - (H 4)
Fv - JF T (wyxv3)+Fvy JF~T (v xvy) +Fvg JFT (v, xv,)

V1V, XV3 '

Taking v; = e}
= j=j(ke]-FTel) = JF kel - e]) = Jtr(FF) = s
J(I.F7YF) = J(F7":F).
Now, let us evaluate the following expression
C=F"F+FTF. (H.6)
Using this result,

€L C =2 (FTH) ™M FTF + (FTF) ™ FTF) =S (F'F . FTF +

_ . (H.7)
FT:F)=FTF.
Comparing (H.5) with (H.7), one gets
j=(ce). (H.8)
Revaluating (H.5) using the chain rule, and comparing with (H.8)
j —9].9C_ (]pr-1.¢ 9 _J -
]_%'at_(zc 1'C)z>ac_zc 4 (H.9)
thus
o _ ] “1pp-T
e =5(F T F). (H.10)
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APPENDIX I. EXACT CONSTITUTIVE EQUATION FOR SAINT-VENANT’S MATERIAL:
DEDUCTION FROM [2]

This approach is the one that is actually implemented in PEFSYS, despite being less compact to
write in reports.

Let us consider the basic potential expression
Yn(E) = JAI7 + 2ul, (1Y
where [; are the Green-Lagrange tensor invariants

I, =trE = (LE); I, = %tr(EZ); Iy = tr(E%). (1.2)
Using the definition (4.1),
S = DE = A(I: E)I + 2yE, (1.3)
where E is Green-Lagrange strain tensor.

Using the definitions of the first (P) and second (S) Piola-Kirchoff stress tensor

P=FsS (1.4)
and calculating the back-rotated stresses P", one gets
P" =Q"FS =F"S = F'{A(I: E)I + 2uE}. (1.5)

The Green-Lagrange strain tensor (E) is computed with the aid of the right Cauchy-Green strain
tensor (C = FTF), as
E=-(C-D=5c,Qe,+5c;Q ¢}, (1.6)
where the vectors c; are defined in such a way that
C=FTF = (QFr)T(QFr) — FrTQTQFr = FTFr
=I+c, Qe +c3Q er.

(1.7)

Let us compute C in terms of the generalised strain measures from equation (3.5). Performing the

multiplications
C=(+pyeer@es+es @y )1+ phpei @es +v Qef) =
=1+ pYpgei Qeg+v ®es+ pYqe; ® el +p°YayPpe; ®ep+ (1.8)
P (¥ ez)ep @es+e3 @y +pY (Y -er)esQep + (¥ -y )es ® es.
Rewriting y™ = (¥ - eg)ep + (¥" - e3)es, then grouping the terms

C=1+(ppoes+ (v -ep)es+pY (¥ -eb)es +p*P P pep) @

(1.9)
et (Y + 0 -eDel+ (v vl + pyael +pP (v - eher) @ el
It is now possible to put in evidence the quantities
Cq = plp,aeg + (yr ' ez)eg + plp,a(yr ' eg)eg + lell,al/{ﬁe;r; (| 10)

3=y + " ex)ez+ (v rves +pYgen +pYP (¥ - ez)en.
Introducing (3.70) and (3.74) in (3.68)
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P" =A(I:E)I+ pc, Qe +ucz; Qe + (I E)y" Q e} +
peq - e3)y" ® eg + p(es - e3)y” @ es + A(I: E)py s Q eg + (1.12)
upy p(cq - ep)es @ el + upy o (c3 - el)es @ ek

Grouping the terms in columns

P" = MI:E)e] @ e} + [ucy + ulcy - )y" + A(I: E)py 55 +
upy p(cq - ep)es]| @ el + [ucs + AU E)y™ + u(cs - e5)y” + (1.12)
upq(cs - ep)es] ® e,
yielding
7o = MI: E)eg + pcq + p(cy - €3)y" + A(I: E)py o €%
+ upp g(cq - ep)el (1.13)
T3 = A(I:E)ej + ucz + AL E)y" + u(c3 - €5)y" + up o (c3 - ep)es.

The expressions in equation (1.13) are precisely the ones that are employed for obtaining the stress
resultants (equation (3.28)) and the constitutive contribution to the tangent stiffness matrix (equation
(3.48) ) of the rod model. Despite being compactly written, they are in fact enormous expressions with
many high order strain terms (of third order), with a wide array of products, not only with the axial,
bending, torsion and warping strains, but also with the warping function and its derivatives. Therefore,
when those stress vectors are in the integrand of any expression, usually numeric integration is more
convenient.

The internal product I: E is

LE=tr(E) =;(c; €)= (7€) + 50 ¥") + 3075 (1.14)

In [2], the stress vectors were further dissected, being then represented by more elemental scalar
values that constitute the generalized strain quantities, in order to emphasize the highly non-linear
behaviour of this equation. Many of the so-called “Wagner terms” were put into evidence, highlighting
the important coupling effects among different strain measures. This will not be done here, since it just
represents equation (1.14) (and, consequently, (1.13)) in a less compact manner.

The operators Cs3, ¢, d, b, and d,, for the Saint-Venant’s material are defined as

r
Jty

€2 =5 =

265 (e +y) +u(l+et Qe +2e5 @y +

pY el ® e5) +Aly" @ (5 +y") + LE)) + uly” @ (2€5 +2y™) +
(c3- eDI]+ upq (el ® e} +py el ® el),
(1.15)
=25 = Ay o x e5) + puilel + ulr” x e + 20y
(k" x eb))es + o (1+y" - ehel] + A[(y" - (WK™ x eb) + pY2)y" +

(I:E)Yi’ x e5] + u[ (27" - (Yr" x eD))y" + (c3- D) (" x e})] +

c
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uhales - ep)es + pi (e (Pr" x el +2y" - (K" x eh)el + P qep +
Vo (V" eb)er)es )],
d= "”3 = A + Py - ep)e] + u[2vel + 2p(yT - eh)el +
Py aber] + /1[(11) +yy" - eb)y" + (I E)pel] + ul(2y + 2y - eb)y” +
(c3 - eX)pes] + up*Pipes,

ba M [lpa + ea (l/JlC X 83) + l/) (}’ 93)]

ulh e + (" x 35) e+ Y.y ed)|(r" - es) + Aly" - (YK x eb) +
plp?/}]l’d{a + AI: E)lp,a + ,lM/J“g [(Ca ’ 6’5) + szlp,ﬁlp,a],

do = 2022 = o ] + HlpY b (7 - €5) + (cq - €] +

MA@+ 9y - e5ppa].

Note that, since 7] are also polynomials in €", the expressions from (1.15) can also be represented
as polynomials in €, having as coefficients products of the material properties and geometric
properties (powers of aq, a,, P, 1,1 ). Thus, generically speaking, for the Saint-Venant’s material,
each entry of ¢” can be represented by

o] = 2;11 ¢j(m;E + n;G) *
[ F (ar®ar P2y @i POry 800 g o7 (1.16)

(nI(W1)jn12”(Wz)jn§(Wz)jK{(Wz;)jKg(Ws)jkg(We)jp(w7)jpr(ws)j)_

with m;,nj, ¢; € Rand (p;)j, (w;); € N. Note that [, F (a7 a?yPsy *y55)dA" can be interpreted
as a generalized geometric property, which can be calculated only once beforehand. Due to this
structure, equation (1.16) is easy to procedurally differentiate, for obtention of the integrands of D
(differentiation directly w.r.tn, ki, p or p’). By arranging those terms conveniently, the integration of
o” and D can be sped up, since several repeated terms arise. In Table 12, the values for

m;, n;, (p;) j, (w;) ; are shown, for each of the stress resultants.

Table 12 — Coefficients of equation (1.16) for the Saint-Venant’s material

P1 P2 P3 P4 Ps |W1 Wy W3 W, Wg Wg Wy Ws‘ORDER‘mj 1 Cj
Monomials for nj
1 0O 0 0O 0OO0Of1 0O 0O O OO0 0O 1 0 1 1
2 01 0 0 0Oj]O O O O O 1 0 O 1 0 1 -1
3 0O 0 012 00 0O O O O O 1 O 1 0 1 1
4 0O 0 0O 0OO0Of1 01 0 0 0 0 O 2 1 0
To be continued
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APPENDIX J. RECOVERING THE 6-DOF KINEMATICALLY EXACT ROD MODEL
FROM THE 7-DOF MODEL

The 6-DOF rod model can be obtained from the 7-DOF model by imposing p = k% (thus, also
dp = &k%) and by neglecting the bi-moment contribution for the virtual work (both internal and

external). Hence, one gets,

§Wine = [, P:6FAV™ = [Fa” - 8&7dl = [ 0" - WASded{ ,V5dy(() €

(J.2)
HP (),
with
n’ on"
T — Y —
o =} QeE]’ 0" = [gur) (-2)
and
L__
Wexe = [, @ 8dgdl, V&dg({) € HP (1), (1.3
with
_ _[n _ [ou
a=n] oo =[] (0.4)
Using linear elastic materials, one gets
o' =D,¢, (J.5)
with
GA 0 0 0 0 —GAs,
GA 0 0 0 GAs,
3 EA EAg, -EAg, 0
D, = El,  Ely, 0 ' (:6)
Sym. El, 0
GUr+Agysy)

which is precisely what is found in [22].

Note that the sixth input of 6™ is m} + Q. As discussed on section 3.2, the sign of Q used in the
current development is the opposite as the one defined in the Vlasov’s theory. Having that in mind,
one can interpret T,, = m} + Q as the uniform torsion contribution from the total torsion experienced
by the rod. Thus, in the equilibrium equation, the external torsional moment (im3) is only balanced by

T,, explaining why the 6-DOF rod model is usually less stiff than the 7-DOF counterpart.
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APPENDIX K. BASIC CONCEPTS FOR FINITE ELEMENTS METHOD (FEM)

Introducing the method
For a specially constructed vectorial space of approximation (), the real solution s, that is in a
higher order vectorial space (V), is projected into V, obtaining the approximated solution 3. Let s € V

be an arbitrary vector, herein called trial function. In the rod contexts (one-dimensional, in ), let the
scalar product be the trivial < a, b > = fOL a - bd{. Using the fact that § is a projection, with the aid of

the residual functionr({) =s —§,
L

<r,§>=fr-§d(=0 (K.1)
0

Let us compare equation (3.22) with (K.2). It becomes evident that, if the virtual displacement §dg
is interpreted as the trial function, and the stress resultants calculated based on some approximation as
the residue, this form of the Virtual Work Theorem represents a projection problem for kinematically
exact rods. Therefore, the residual function is minimized.

The FEM is based on the Bubnov-Galerkin’s method, in which the trial function (virtual
displacements) is built exactly as the approximation function. This method itself is a “Weighted
Residue Method”, such as the colocation method, the least squares method, and others. This
denomination is due to the form of the interpolation function

§ =1, ®a;, (K.2)
with &; representing the interpolation shape functions and a; being the weights that minimizes the
residues. In the mechanical context, these weights represent generalized displacements quantities on
each node.

In the FEM, the interpolation functions are taken in a manner that only the nodes that belongs to a
given elements influence on the interpolation of this sub-domain, rendering sparse matrixes for the

system solution.

Interpolation functions — isoparametric rod element

In order to efficiently parametrize any rod element, a standard approach is to perform a change of
variables from the reference configuration 0 < ¢ < L to natural coordinates —1 < Z < 1. A direct
implication of this transformation is that a Jacobian J; will be needed to perform the integrations.

Consider the definitions of p, 8p, dg, 6dg, N from chapter 5 (equations (5.1) to (5.5))

With the proposed interpolation, it is also possible to map the position of the element points in the
reference configuration using the isoparametric transformation

{(Z) = N;(2)¢;. (K.3)
Consider the integration of a generic function f(¢) in the domain of a given element. Then, let us

use the isoparametric transformation
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1=, f@Qd¢ = [, f(D)]dZ.

The Jacobian J¢, for functions that are R — R is simply

_dg_ dN(2)
Jz = 7 az S

(K.4)

(K.5)

Consider now the derivatives of the shape form. In the formulation, the derivative with respect to

the reference configuration (¢) is needed, although the parametrization is on (Z). This can be

circumvented with the aid of the chain rule, hence

ON, 0N, 0Z
¢ 07 9

(K.6)

For this work, elements with 2 and 3 nodes are of interest. They represent, respectively, linear and

quadratic interpolations. See the table below (Table 13) for details about their interpolation.
Table 13- Finite element interpolation for 2 and 3 nodes rod elements

2 nodes 3 nodes
L
L
. N N
description ¢ =10 ¢ =2L . N10 (Nz . (NBL
= = =
. (1=0;{,=L
coordinates O<a<l
Isoparametric
) Zl=_1,22=1 Zl=_1,Z2=O,ZS=1
coordinates
1
Ny(2) = (2) = ;2(Z ~ 1)

Interpolation

N(Z) =1(2) =51 -1)

N,(Z) = 13(Z) =5 (1 +2)

Ny(Z) =13(2) = -7%+1
N;(2) = 13(2) = 5 2(1 + 7).

functions
¢ ! 1-72)«0+ ! 1+72)
P - — F3 —

Natural ) 2 g = %Z(Z — 1) %0+ (=Z2 + Dal +
coordinates * L . N
interpolation 1 R L1+ D)L= [Zz (_a + E) 224 a] L

P =-(1+7Z)+L
2
1
le__l Nl,Z:E(ZZ_]‘)
Npz =+ N =1
' 1z =51 +27)
1 1 L J2(Z) = 5(1=22) % 0 + (—2Z) * al +
Jacobian J(Z) ==%0+4+=*L == . )
2 2 2 la+2m L =[2(-2a+ 1) +3]L




