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ABSTRACT 

Structural models accounting for exact kinematics are well-suited for the description of critical 

loads and post-critical behaviour. For thin-walled open-section members, the associated rod 

formulations must take cross-sectional non-uniform warping into account, since it becomes a relevant 

load-carrying mechanism due to the very small torsion stiffness of such members. For this work, 

advances on kinematically exact rod models for thin-walled open section members, taking into 

account both primary and secondary cross-sectional warpings and advanced constitutive equations, 

are proposed. For thin-walled open-section members with linear elastic constitutive equation, the 

warping effects are fully characterized by the well-known torsion inertia from the Saint-Venant’s 

uniform torsion theory and the warping constant from the Vlasov’s theory. The former has a well-

known analytic expression, whilst the latter is obtained only considering the so-called primary 

warping, which is the warping in the direction of the cross-section´s walls lengths. The walls´ 

thickness warping, or secondary warping, is typically neglected. However, for more advanced 

constitutive equations, such as the ones of interest here, explicit knowledge of the warping and its 

directional derivatives are of utmost importance for the stress resultants integrations, justifying the 

need of a warping function that accounts for both primary and secondary cross-sectional components. 

This work incorporates two exact constitutive equations (i.e. retaining all the strain terms), in order to 

enable full bending, compression and torsional strain couplings in the finite strain regime: one based 

on the Saint-Venant’s material, which is generally unsuited to truly finite strains, and another based 

on the polyconvex neo-Hookean Simo-Ciarlet’s material. The model was implemented in PEFSYS, 

which is an in-house nonlinear finite element program. Validation is performed using existing results 

from the literature as well as solutions obtained with shell models in ANSYS commercial software. 

 

Keywords: Kinematically exact rod model, thin-walled open-section members, secondary warping, 

elastic stability, finite element method. 

 



RESUMO 

Modelos estruturais cinematicamente exatos são adequados para a descrição de cargas críticas e 

comportamento pós-crítico. Para barras de seção aberta de paredes delgadas, a formulação de barras 

associada deve levar em consideração o empenamento não uniforme da seção transversal, que se torna um 

importante mecanismo de transferência de esforços, devido à baixa inércia à torção desses perfis. Neste 

trabalho, foram propostos avanços em modelos cinematicamente exatos para perfis de seção aberta e 

paredes delgadas, levando em consideração tanto empenamento primário quanto secundário, e equações 

constitutivas exatas. Para barras de seção aberta e paredes delgadas com equação constitutiva elástica 

linear, os efeitos do empenamento são completamente caracterizados pelas propriedades usuais de inércia 

à torção uniforme de Saint-Venant e pela constante de empenamento, proveniente da teoria de Vlasov. A 

primeira dessas propriedades é obtida através de expressões analíticas triviais, enquanto a outra é obtida 

considerando apenas o empenamento primário, que é o empenamento na direção do comprimento das 

paredes. O empenamento secundário, na direção da espessura das paredes, é desprezado nessa análise. 

Entretanto, para equações constitutivas mais avançadas, como as que são aqui usadas, informação 

explícita da função empenamento e suas derivadas são de extrema importância para a integração das 

resultantes de tensão, justificando a necessidade de uma função empenamento que considere tanto 

empenamento primário quanto secundário. Este trabalho incorpora duas equações constitutivas exatas 

(i.e., que retêm todos os termos de deformação), de modo a permitir acoplamento total entre deformações 

de flexão, compressão e torção em regime de deformações finitas: uma baseada no material de Saint-

Venant (inadequado para deformações finitas), e outra baseada no material policonvexo neo-Hookeano de 

Simo-Ciarlet. O modelo foi implementado no PEFSYS, um programa para análise não linear de estruturas 

baseado no método dos elementos finitos desenvolvido na instituição deste trabalho. A validação é feita 

através de resultados da literatura e de simulações feitas com modelos de casca do programa comercial 

ANSYS. 

 

Palavras-chave: teoria de barra cinematicamente exata, barra de seção aberta e paredes delgada, 

empenamento secundário, estabilidade elástica, método dos elementos finitos. 
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𝜹 Total displacement of a generic point 

𝑛𝑣 , 𝑛𝑤 Amount of in-and out- of plane distortion functions 

𝝓𝛼,𝝍 
Vector of in- and out-of plane cross-sectional distortion shape 

functions 

𝒓, 𝒑 Vector of in- and out-of plane cross-sectional distortion intensity 

𝜓, 𝑝 
Warping shape function and intensity for the specific case of 𝑛𝑣 = 0 

and 𝑛𝑤 = 1 

𝜓𝑅 Saint-Venant torsion warping function for a rectangular cross-section 

𝜓𝐿 Correction of the warping function for a pole shift 

𝜔𝐴,𝐵  Vlasov’s sectorial area function w.r.t a pole 𝐴 and origin 𝐵 

𝜼, 𝜼𝑟  Generalized axial strain vector, usual and back-rotated, respectively 

𝜿, 𝜿𝑟 
Generalized curvature strain vector, usual and back-rotated, 

respectively 

𝜸, 𝜸𝑟  Vector with the third column of 𝑭 and 𝑭𝑟 

𝒅𝜽 Generalized displacement vector 

𝜺𝑟 Generalized strain vector 

𝜳,𝜟  Auxiliary tensors 

𝛿𝒅𝜽 Virtual generalized displacement vector 

𝛿𝜺𝑟 Virtual generalized strain vector 

𝝈𝑟 Generalized stress resultants vector 

𝒏𝑟,𝒎𝑟 Forces and moment resultants vector 

𝑄,𝐵 Bi-shear and bi-moment 

𝑫,𝑮𝜃, 𝑳𝜃 
Material, geometric and external loading contributions to the tangent 

operator 

𝑮𝑢′𝜃, 𝑮𝜃𝜃, 𝑮𝜃′𝜃′ Sub-matrices of 𝑮𝜃 

𝑽(𝜽,𝒎) Auxiliar expression for obtention of 𝑮𝜃 

𝑫𝜂𝜂,𝑫𝜂𝜅 , 𝑫𝜂𝑝, 𝑫𝜂𝑝′ , 

𝑫𝜅𝜅 , 𝑫𝜅𝑝, 𝑫𝜅𝑝′ , 

𝑫𝑝𝑝, 𝑫𝑝𝑝′, 𝑫𝑝′𝑝′ 

Sub-matrices of 𝑫 

𝑪33 Auxiliary tensor for obtention of 𝑫 

𝒄, 𝒅 Auxiliary vector for obtention of 𝑫 

𝑏𝛼 , 𝑑𝛼 Auxiliary scalar for obtention of 𝑫 

𝐼𝑖 Invariants of the Cauchy-Green strain tensor 

𝜓ℎ Potential function of an hyperelastic material law 

𝜇, 𝜆 Lamé constants 

𝐸,𝐺 Elastic and shear moduli 

𝜈 Poisson’s coefficient 



𝑵 Tensor with FEM polynomial interpolation functions 

𝑷𝑒 Elemental residual force vector 

𝒌𝑒 Tangent stiffness matrix for one element 

𝑹 Global residual force vector 

𝑲𝑇 Global tangent stiffness matrix 

𝑏, 𝑏𝑖, 𝑏𝑓 Flange lengths 

𝑡, 𝑡𝑖 , 𝑡𝑓, 𝑡𝑣 , 𝑡ℎ Flange thicknesses 

ℎ Web lenght 
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1. INTRODUCTION  

Unidimensional rod models were the first attempt in science and engineering to mathematically 

represent real life structures. Hierarchically, linear Bernoulli-Euler’s beam theory is the simplest 

approach, followed by less kinematically restrictive beam models, such as the Timoshenko’s and 

Vlasov´s models, and then by geometrically exact formulations. Moving up in the hierarchy, there are 

bidimensional models (plane stress, plane strain, axisymmetric, shells, etc) and fully three-dimensional 

models, which require considerably more effort and invariably more advanced computational 

resources to calculate desired outputs – the number of degrees of freedom sharply increases when 

compared to equivalent rod models. 

Simpler rod theories, although useful and very convenient, tend to incorrectly estimate the 

structure´s stiffness, due to the several constrains imposed on the rod´s deformation. In addition, if 

linear, they are intrinsically unsuited for structures undergoing large displacements and rotations, as 

well as for those that are prone to instabilities. In those cases, geometrical effects become relevant and 

can no longer be neglected. Thus, non-linear theories are required – and even more so if one is 

interested in evaluating highly flexible structures or post-critical behaviour.  

A wide array of successful non-linear rod models has been developed in the literature in the last 

four decades or so. Still, when it comes to thin-walled open-section members, they often struggle to 

simultaneously predict critical loads and post critical behaviour, to which torsion and warping become 

relevant to the load-carrying mechanism and related buckling modes. Most of these models typically 

introduce the simplifying small strains assumption, implying that only low order strain terms are 

retained at the constitutive equation. As consequence, the cross-sectional stress resultants may be 

computed through analytical integration, ending up dependent solely on trivial geometrical properties, 

which are usually well-known. For the torsion and torsion-bending-related stress resultants, for 

example, the torsion inertia (𝐼𝑇) and warping constant (𝐼𝜓) suffice. Those can be achieved by classical 

expressions for open thin-walled sections, 𝐼𝑇 =
∑𝑏𝑡3

3
 (𝑡 is the thickness and 𝑏 is the length of each wall 

segment) and 𝐼𝜓 = ∫ 𝜓
2𝑑𝐴

𝐴
 (𝜓 is the warping function), the latter of which being calculated typically 

through the Vlasov’s sectorial area. This latter, however, is only an approximation to the warping 

function, representing only the so-called primary warping (or warping in the direction of the walls´ 

lengths), neglecting the secondary warping, or warping in the direction of the walls´ thickness. 

Despite their applicability on various scenarios, it has been verified by some authors (see e.g. 

Campello [1], Campello and Lago [2], and Pimenta and Campello [3], motivated by the discoveries 

from Pimenta [4]) that there are simple, although pathological, situations in which the critical loads 

and the full bifurcation path far away from the trivial solution cannot be adequately predicted by such 

models. The use of linearized (or at most partially quadratic) constitutive equations, which do not 

enable full axial, bending and torsion strain coupling and besides are unsuited for finite strains, 
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combined with the lack of consistent considerations for the secondary warping, may explain the 

difficulties of these models in the pursuit of certain critical and post-critical solutions.  

In order to incorporate more advanced (nonlinear, large-strain) constitutive equations, with higher 

order strain terms retained for proper strain coupling, the complete warping function (i.e., including 

both primary and secondary warpings) is required. In this case, computation of the stress resultants is 

better performed through numerical rather than analytical integration, since the latter, when possible, 

becomes very cumbersome, leading to numerous higher order cross-sectional geometrical properties 

that are far from trivial to be computed. The warping function, thus, must be explicitly (and a priori) 

defined at every point of the cross-section, as to enable the integration.  

This research aims to propose contributions to an existent kinematically exact 7-DOF rod model for 

thin-walled open-section members, by proposing a consistent warping function with both primary and 

secondary warpings, and by developing an advanced elastic (neo-Hookean, polyconvex) constitutive 

equation for finite strains with all higher order strain terms for full strain coupling. Its effectiveness 

and reliability to predict critical loads and post-critical behaviour for rod structures consisted of such 

members shall be benchmarked. The study is being conducted using PEFSYS, an in-house nonlinear 

finite element method (FEM) program for structural analysis. 

The structure of this document is as follows: 

• Chapter 2: a compilation of useful concepts and a brief discussion on the evolution of rod 

models, evidencing the kinematical assumptions that characterizes each one of them; a generic 

way to present the kinematical assumptions for rod models is introduced; 

• Chapter 3: the formulation of the 7-DOF kinematically exact rod model used in this work is 

described, and the weak form of the equilibrium (and its linearization) is stated. There, the 

proposed advances on the considerations of the warping function are presented; 

• Chapter 4: the exact hyperelastic constitutive equations for Saint-Venant’s and Simo-Ciarlet’s 

materials are developed. The concept of polyconvexity is introduced;  

• Chapter 5: a brief explanation of Finite Element Method for rods; 

• Chapter 6: illustrative examples and benchmark of the proposed advances on the rod model; 

• Chapter 7: conclusion; 

• Appendix: several basic concepts and demonstrations are shown there. 
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2. THEORETICAL BACKGROUND AND BIBLIOGRAPHICAL REVIEW  

2.1. Notation 

In order to be consistent with some of the established literature in the field, the following notation 

is adopted here: 

• Lowercase Latin or Greek letters (𝑎, 𝑏, … , 𝛼, 𝛽, … . ) denote scalar quantities; 

• Bold lowercase Latin or Greek letters (𝒂, 𝒃,… , 𝜶,𝜷, … . ) denote vectors; 

• Bold capital Latin or Greek letters (𝑨,𝑩,… ) denote second-order tensors; 

Implicit summation convention is used throughout. When indices are Greek letters, they range from 

1 to 2 and when they are Latin letters, from 1 to 3. Scalar, cross and dyadic products are represented 

by “∙”, “×” and “⊗”, respectively. Symbol 𝛿(∘) denotes a virtual quantity (or, equivalently, a 

variation), whereas (∘)𝑟denotes either a quantity in the reference configuration, or a back-rotated 

quantity.  

2.2. Solids mechanics concepts 

Many concepts that are shown here have its origins on the classical continuum mechanics. In the 

current context, some of them might be particularized to solids mechanics, under static elasticity. It is 

suggested that the reader refers to Appendix A and Appendix B, for the most basic definitions, as 

some of them are used throughout the text. 

2.2.1. Expressing finite rotations 

Here, the noun finite means “arbitrarily large”, and is the antonym of infinitesimal, which is the 

first order approximation (linearization). 

In order to develop exact rod models, it is pivotal to exactly describe finite rotations, as it is an 

important source of non-linear behaviour. Formulations proposed by Argyris [5], [6] were crucial to 

understand this phenomenon, and allowed the first rod models to be consistently formulated.  

In this chapter, an overview of the expressions that are of interest in section 3 are presented. 

If a given tensor 𝑸 respects 

 𝑑𝑒𝑡𝑸 = 1 𝑎𝑛𝑑 𝑸𝑇𝑸 = 𝑰, (2.1) 

then the transformation given by  

 𝒗 = 𝑸𝒗𝑟, (2.2) 

expresses a rotation from the original vector 𝒗𝒓 to 𝒗 . Note that, despite its vectorial-like expression, 

rotations do not obey commutativity. Thus, one cannot compose successive rotations by simple 

addition. Consider two successive pure rotational rigid body displacements, given by 𝑸1 and 𝑸2. The 

final position of a vector 𝒗 is 

 𝒗 = (𝑸1 ∘ 𝑸2)𝒗
𝑟 = 𝑸2𝑸1𝒗

𝑟, (2.3) 

where the symbol “∘” denotes the composition of two transformations. 
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As shown in [7], any rotation tensor can be parametrized as 

 𝑸 = 𝑰 + ℎ1(휃)𝜣 + ℎ2(휃)𝜣
2 (2.4) 

In the current work, the option was to calculate the rotation tensor through the Euler-Rodrigues 

formula, expressed in terms of Euler rotation vector 𝜽 (휃 = ||𝜽|| is the rotation angle magnitude, and 

𝜽/휃 is the axis of rotation), where 

 
ℎ1(휃) =

𝑠𝑖𝑛 휃

휃
 𝑎𝑛𝑑  ℎ2(휃) =

1

2
(
𝑠𝑖𝑛 휃/2

휃/2
)
2

=
1 − 𝑐𝑜𝑠휃

휃2
, (2.5) 

and 𝜣 = 𝑆𝑘𝑒𝑤(𝜽) is a skew-symmetric tensor whose axial vector is 𝜽. 

Using Taylor’s expansion, ℎ1 and ℎ2 can be expressed as 

 

ℎ1(휃) =
𝑠𝑒𝑛휃

휃
= 1 −

1

6
휃2 +

1

120
휃4 − 𝑂(휃6); 

ℎ2(휃) =
1

2
(
𝑠𝑖𝑛 휃/2

휃/2
)
𝟐

=
1

2
−
1

24
휃2 +

1

720
휃4 − 𝑂(휃6). 

(2.6) 

Note that equation (2.4)  and (2.5) present singularities in 𝑛2𝜋, where 𝑛 is an integer. It is shown 

([1], [7]) that the singularity in 0 is removable (see equation (2.6)), although the ones in 𝑛2𝜋 ≠ 0 are 

not.  

Therefore, rotation magnitude in a total description must be limited to 

 0 ≤ |휃| < 2𝜋. (2.7) 

Were more intense rotations to be computed, appropriate description could only be reached through 

incremental description, or by characterizing rotations with more than 3 parameters. This will not be 

explored in the current work. 

In the context of finite rotations, several results concerning its derivatives are of interest. First, 

consider the derivative of 𝑸 with respect of any scalar.  

Taking the scalar time, for example, there is a second order tensor skew-symmetric tensor 𝜴 that 

satisfies  

 𝜴 = �̇�𝑸𝑇, 𝑎𝑥𝑖𝑎𝑙(𝜴) = 𝝎. (2.8) 

The vector 𝝎 is the spin, and the explicit expression for 𝛀 and 𝝎 is 

 𝜴 = ℎ1(휃) �̇� + ℎ2(휃)(𝜣�̇� − �̇�𝜣) + ℎ3(휃)𝜣, (2.9) 

 𝝎 = 𝜞�̇�, (2.10) 

with 

 𝜞 = 𝑰 + ℎ2(휃)𝜣 + ℎ3(휃)𝜣
2, (2.11) 

with 

 ℎ3(휃) =
1 − ℎ1(휃)

휃2
 (2.12) 

The derivative of 𝜞 with respect to scalars are also of interest. Again, taking time as this scalar 

 
�̇� = ℎ2(휃)�̇� + ℎ3(휃)(𝜽 ∙ �̇�)(𝜣�̇� + �̇�𝜣) + ℎ4(휃)(𝜽 ∙ �̇�)𝜣

+ ℎ5(휃)(𝜽 ∙ �̇�)𝜣
2 

(2.13) 
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with 

 ℎ4(휃) =
ℎ1(휃) − 2ℎ2(휃)

휃2
, (2.14) 

 ℎ5(휃) =
ℎ2(휃) − 3ℎ3(휃)

휃2
. (2.15) 

Similarly, for the scalar 휁 that represents a cross-section position along the rod axis 

 𝜥 = 𝑸′𝑸𝑇, 𝑎𝑥𝑖𝑎𝑙(𝜥) = 𝜿. (2.16) 

Note that, in equation (2.16), (∘)′ =
𝜕

𝜕𝜁
(∘). Thus, 

 𝜥 = ℎ1(휃)𝜣′ + ℎ2(휃)(𝜣𝜣′ − 𝜣′𝜣) + ℎ3(휃)𝜣, (2.17) 

 𝜿 = 𝜞𝜽′ (2.18) 

 
𝜞′ = ℎ2(휃)𝜣

′ + ℎ3(휃)(𝜣𝜣
′ +𝜣′𝜣) + ℎ4(휃)(𝜽 ∙ 𝜽

′)𝜣 + ℎ5(휃)(𝜽 ∙

𝜽′)𝜣2. 
(2.19) 

Other definitions that are useful for the current work are, for a given constant vector 𝒕, 

 
𝑽(𝜽, 𝒕) = ℎ2(휃)𝑻 + ℎ3(휃)(𝑻𝜣 − 𝟐𝜣𝑻) − ℎ4(휃)(𝜣𝒕⊗ 𝜽)

+ ℎ5(휃)(𝜣
2𝒕⊗ 𝜽) 

(2.20) 

in which 𝑻 = 𝒔𝒌𝒆𝒘(𝒕) and 

 

𝑽′(𝜽, 𝒕) = ℎ4(휃)(𝜽 ∙ 𝜽
′)𝑻 + ℎ3(휃)(𝑻𝜣

′ − 𝟐𝜣′𝑻)

+ ℎ5(휃)(𝜽 ∙ 𝜽
′)(𝑻𝜣 − 𝟐𝜣𝑻)

− ℎ4(휃)(𝜣
′𝒕⊗ 𝜽 + 𝜣𝒕⊗ 𝜽′) − ℎ6(휃)(𝜽 ∙ 𝜽

′)(𝜣𝒕⊗ 𝜽)

+ ℎ5(휃)((𝜣
′𝜣+𝜣𝜣′)𝒕⊗ 𝜽 + 𝜣2𝒕⊗ 𝜽′)

+ ℎ7(휃)(𝜽 ∙ 𝜽
′)(𝜣2𝒕 ⊗ 𝜽) 

(2.21) 

with 

 ℎ6(휃) =
1

𝜃2
[ℎ3(휃) − ℎ2(휃) − 4ℎ4(휃)], (2.22) 

 ℎ7(휃) =
1

𝜃2
[ℎ4(휃) − 5ℎ5(휃)]. (2.23) 

The deductions of the equations (2.8) to (2.23) can be found in Appendix F. The tensors 𝑽 and 𝑽′ 

does not have any physical meaning – they are auxiliary expressions for the calculation of the 

geometric stiffness matrix (see section 3.3). 

 

2.2.2. Equations of motion 

It is recommended that readers that are not used to this topic consults Appendix A and Appendix B 

for the basic definitions of non-linear elasticity, especially for acknowledging the relations among the 

Cauchy, first and second Piola-Kirchoff stress tensors and the Nanson’s rule.  

In continuum mechanics, it is of interest to characterize the so-called movement equations. By 

applying the concepts of Linear and Angular momentum, it is possible to express the differential 

equations that relate forces to accelerations, and then, by integration, the velocities and displacements 
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of the continuum. In order to exist a unique solution, it is necessary that boundary conditions are 

applied. Let 𝑉 be the whole system volume, with boundary 𝑆, in an arbitrary configuration. Then, this 

boundary can be divided in two partitions 𝑆𝑢 and 𝑆𝑡. The region 𝑆𝑢 is where kinematic boundary 

conditions are applied (prescribed displacements) and 𝑆𝑡 is where the static boundary conditions are 

applied (prescribed surface loading). It must be noted that 𝑆𝑢 ∪ 𝑆𝑡 = 𝑆 and 𝑆𝑢 ∩ 𝑆𝑡 = ∅. Of course, it 

is implied that that there are no mixed boundary conditions (i.e. kinematical and statical boundary 

conditions at the same point). See Figure 1 for details. 

 

 

Figure 1 – Description of a body domain and boundary conditions 

 

Having introduced the regions of the continuum, it is now possible to enunciate the motion 

equations. One can see the following deductions in more details in the book [8], from Wriggers. 

2.2.2.1. Linear Momentum  

Linear Momentum is defined as 

 𝑳 = ∫ 𝜌𝑟�̇�𝑑𝑉𝑟
𝑉𝑟

= ∫ 𝜌�̇�𝑑𝑉𝑉
. (2.24) 

where 𝜌𝑟, 𝜌 is the density of the dominium in the initial and current configurations, respectively. 

The principle of linear momentum is 

 �̇� = ∫ 𝒕𝒓𝑑𝑆𝑟 +∫ 𝒃𝒓𝑑𝑉𝑟

𝑉𝑟𝑆𝑟
= ∫ 𝒕𝑑𝑆 + ∫𝒃𝑑𝑉

𝑉𝑆

 . (2.25) 

Using the divergence theorem in (2.25), one obtains 

 𝑑𝑖𝑣𝑻 + 𝒃 = 𝜌�̈�, (2.26) 

in which 𝑻 is the Cauchy stress tensor. Using the reference configuration, equation (2.26) becomes 

 𝑑𝑖𝑣𝑷 + 𝒃𝑟 = 𝜌𝑟�̈�. (2.27) 

in which, 𝑷 is the first Piola-Kirchoff stress tensor. 
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The expressions (2.26) and (2.27) are the differential equations of motion. 

2.2.2.2. Angular momentum 

Angular momentum is defined as 

 𝑱 = ∫𝒙
𝑉

× 𝜌�̇�𝑑𝑉 = ∫ 𝒙
𝑉𝑟

× 𝜌𝑟�̇�𝑑𝑉. (2.28) 

The principle of angular momentum states that 

 �̇� = ∫ 𝒙 × �̅�𝑉
𝑑𝑉 + ∫ 𝒙 × �̅�𝑑𝑆𝑆

. (2.29) 

Thus, 

 ∫ 𝒙 × �̅�𝑉
𝑑𝑉 + ∫ 𝒙 × �̅�𝑑𝑆𝑆

= ∫ 𝒙𝑉 × 𝜌�̈�𝑑𝑉. (2.30) 

By using the Gauss theorem in the surface integral from equation (2.30), one gets that 

 

∫𝒙 × �̅�𝑑𝑆
𝑆

= ∫𝒙 × 𝑻𝒏𝑑𝑆
𝑆

= ∫𝒙 × (𝒕𝑖⊗𝒆𝑖
𝑟)𝒏𝑑𝑆

𝑆

= ∫(𝒙 × 𝒕𝑖) ⊗ 𝒆𝑖
𝑟𝒏𝑑𝑆 =

𝑆

∫𝑑𝑖𝑣((𝒙 × 𝒕𝑖) ⊗ 𝒆𝑖
𝑟)𝑑𝑉

𝑉

=∫𝒙,𝑖 × 𝒕𝑖 + 𝒙 × 𝒕𝑖,𝑖𝑑𝑉 =
𝑉

∫2𝑑𝑢𝑎𝑙(𝑻) + 𝒙 × 𝑑𝑖𝑣𝑻𝑑𝑉
𝑉

, 

(2.31) 

with 𝑑𝑢𝑎𝑙(𝑻) = 𝑎𝑥𝑖𝑎𝑙(𝑠𝑘𝑒𝑤(𝑻)). 

Using (2.26) in (2.31), the conclusion is that 𝑑𝑢𝑎𝑙(𝑻) = 𝒐, thus the Cauchy stress tensor must be 

symmetric 

 𝑻 = 𝑻𝑇. (2.32) 

2.2.3. Work and Power of internal and external forces 

The power associated to a force applied to a point is the scalar defined as 

 𝑃 = 𝒇 ∙ �̇�. (2.33) 

The power associated to volume and surface forces are given by 

 𝑃𝑣 = ∫ 𝒃𝑟 ∙ �̇�𝑑𝑉𝑟

𝑉𝑟
 ;  𝑃𝑠 = ∫ 𝒕𝑟 ∙ �̇�𝑑𝑆𝑟

𝑆𝑟
, (2.34) 

where 𝒃𝒓 and 𝒕𝒓 are body and surface forces, respectively. 

External forces power is defined as 

 𝑃𝑒𝑥𝑡 = 𝑃𝑣+𝑃𝑠. (2.35) 

The first Piola-Kirchoff 𝑷 was already introduced in section 2.2.2. Let us now present the second 

Piola-Kirchoff 𝐒. Its definition and physical meaning can be found in Appendix B. They will be useful 

in the next definition.  

Internal forces power is defined as 

 𝑃𝑖𝑛𝑡 = ∫ 𝑷: �̇�𝑑𝑉𝑟 =
𝑉𝑟 ∫ 𝑺: �̇�𝑑𝑉𝑟

𝑉𝑟
. (2.36) 
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Due to this definition, the pairs (𝑬, 𝑺) and (𝑭, 𝑷) are called energetically conjugated. The tensors 𝑭 

and 𝑬 are, respectively the deformation gradient and the Green-Lagrange strain tensors, as defined in 

Appendix A. 

Work is simply the time integration of the power during an interval [𝑡0, 𝑡]. 

 

𝑊𝑒𝑥𝑡 = ∫ 𝑃𝑒𝑥𝑡

𝑡

𝑡0

𝑑𝑡 ; 

 𝑊𝑖𝑛𝑡 = ∫ 𝑃𝑖𝑛𝑡
𝑡

𝑡0
𝑑𝑡  . 

(2.37) 

In dynamics, kinetic energy (using the reference configuration for integration) is  

 𝑇 =
1

2
∫ 𝜌𝑟
𝑉𝑟

�̇� ∙ �̇�𝑑𝑉𝑟, (2.38) 

and its time derivative is 

 �̇� = ∫ 𝜌𝑟
𝑉𝑟

�̇� ∙ �̈�𝑑𝑉𝑟. (2.39) 

From (2.34), using (B.5) and the divergence theorem  

 
𝑃𝑠 = ∫ (𝑷𝒏𝒓) ∙ �̇�𝑑𝑆𝑟

𝑆𝑟
= ∫ (𝑑𝑖𝑣𝑷 ∙ �̇� + 𝑷: 𝑑𝑖𝑣�̇�)𝑑𝑉𝑟 =

𝑉𝑟

∫ (𝑑𝑖𝑣𝑷 ∙ �̇�)𝒅𝑽𝒓 + 𝑃𝑖𝑛𝑡𝑉𝑟
 . 

(2.40) 

Using equation (2.27)  

 𝑃𝑠 = �̇� − 𝑃𝑉 + 𝑃𝑖𝑛𝑡 ⇒𝑃𝑒𝑥𝑡 = 𝑃𝑖𝑛𝑡 + �̇� (2.41) 

This is the Power Theorem. Integrating (2.41) w.r.t time, 

 𝑊𝑒𝑥𝑡 = 𝑊𝑖𝑛𝑡 + Δ𝑇, (2.42) 

where Δ𝑇 = 𝑇𝑡 − 𝑇𝑡0 .  

Considering a quasi-static process, �̇� and Δ𝑇 can be neglected. Then 

 𝑃𝑒𝑥𝑡 = 𝑃𝑖𝑛𝑡  ;𝑊𝑒𝑥𝑡 = 𝑊𝑖𝑛𝑡. (2.43) 

2.2.4. Equilibrium weak form: Virtual Work 

Let 𝛿𝒖 ∈ ℋ1
01(𝑉𝑟) be an arbitrary vectorial field, called virtual displacement. Let us define the 

scalars virtual external work (𝛿𝑊𝑒𝑥𝑡), virtual internal work (𝛿𝑊𝑖𝑛𝑡) and virtual kinetic energy (𝛿𝑇) 

 𝛿𝑊𝑒𝑥𝑡 = ∫ 𝒃𝑟 ∙ 𝛿𝒖𝑑𝑉𝑟
𝑉𝑟

+ ∫ 𝒕𝒓 ∙ 𝛿𝒖𝑑𝑆𝑟
𝑆𝑟

, (2.44) 

 𝛿𝑊𝑖𝑛𝑡 = ∫ 𝑷: 𝛿𝑭𝑑𝑉𝑟
𝑉𝑟

, (2.45) 

 𝛿𝑇 = ∫ 𝜌𝑟�̈� ∙ 𝛿𝒖𝑑𝑉𝑟
𝑉𝑟

. (2.46) 

Note that equations (2.44) to (2.46) are merely definitions, based on the expressions of 𝑃𝑒𝑥𝑡 , 𝑃𝑖𝑛𝑡 

and �̇�. Sometimes, authors affirm that the Virtual Works Theorem reflects the minimization of a 

potential energy functional. This claim is partially correct: for conservative static problems, there is a 

potential energy functional 𝑈, and the Virtual Work theorem is indeed the condition for extremal 

 

1 𝛿𝒖 ∈ ℋ1
0 = 𝛿𝒖 ∈ 𝓗1|𝛿𝒖 = 𝟎 𝑖𝑛 𝑆𝑢. 
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points for functionals 𝛿𝑈 = 0. This is, however, a particular case of the weak form, which is valid for 

general continuum dynamics. In fact, for dynamics, 𝛿𝑇 (eq. (2.46)) is not even a variation of 𝑇 (eq. 

(2.38)), but a convenient definition that arises from the demonstration of the Virtual Works Theorem. 

Consequently, the most appropriate manner to approach the virtual quantities 𝛿𝒖 is to interpret it only 

as the trial function of the weak form, instead of a variation. 

Since 𝛿𝒖 = 𝟎 in 𝑆𝑢
𝑟, and already imposing the natural boundary condition 𝒕𝑟 = 𝒕�̅� 𝑖𝑛 𝑆𝑡

𝑟, equation 

(2.44) becomes 

 𝛿𝑊𝑒𝑥𝑡 = ∫ 𝒃𝑟 ∙ 𝛿𝒖𝑑𝑉𝑟
𝑉𝑟

+ ∫ 𝒕�̅� ∙ 𝛿𝒖𝑑𝑆𝑟
𝑆𝑡
𝑟 . (2.47) 

Using a similar approach as done in (2.40), 

 
∫ (𝑷𝒏𝑟) ∙ 𝛿𝒖𝑑𝑆𝑟
𝑆𝑟

= ∫ (𝑑𝑖𝑣𝑷 ∙ 𝛿𝒖 + 𝑷 ∙ 𝑑𝑖𝑣𝛿𝒖)𝑑𝑉𝑟
𝑉𝑟

= ∫ (𝑑𝑖𝑣𝑷 ∙ 𝛿𝒖)𝑑𝑉𝑟
𝑉𝑟

+

𝛿𝑊𝑖𝑛𝑡. 
(2.48) 

Using the definitions (2.45), (2.46), (2.47) 

 𝛿𝑊𝑒𝑥𝑡 = 𝛿𝑊𝑖𝑛𝑡 + 𝛿𝑇 + ∫ (𝑑𝑖𝑣𝑷 + 𝒃𝑟 − 𝜌𝑟�̈�
𝑉𝑟

) ∙ 𝛿𝒖𝑑𝑉𝑟 + ∫ (𝒕�̅� − 𝑷𝒏𝒓) ∙ 𝛿𝒖𝑑𝑆𝑟
𝑆𝑡
𝑟 . (2.49) 

Thus, using the fundamental variational calculus lemma, one gets the Principle of Virtual Works 

 𝛿𝑊𝑒𝑥𝑡 = 𝛿𝑊𝑖𝑛𝑡 + 𝛿𝑇, ∀𝛿𝒖 ∈ ℋ1
0(𝑉𝑟)⇔ {

𝑑𝑖𝑣𝑷 + 𝒃𝑟 − 𝜌𝑟�̈� = 𝟎 𝑖𝑛 𝑉𝑟

𝒕�̅� = 𝑷𝒏𝑟 𝑖𝑛 𝑆𝑟
. (2.50) 

For quasi-static processes, 𝛿𝑇 = 0, thus 

 𝛿𝑊𝑒𝑥𝑡 = 𝛿𝑊𝑖𝑛𝑡, ∀𝛿𝒖 ∈ ℋ1
0(𝑉𝑟)⇔ {

𝑑𝑖𝑣𝑷 + 𝒃𝑟 − 𝜌𝑟�̈� = 𝟎 𝑖𝑛 𝑉𝑟

𝒕�̅� = 𝑷𝒏𝑟 𝑖𝑛 𝑆𝑟
, (2.51) 

hence,  

 𝛿𝑊𝑒𝑥𝑡 = 𝛿𝑊𝑖𝑛𝑡, ∀𝛿𝒖 ∈ ℋ1
0(𝑉𝑟) (2.52) 

is a necessary and sufficient condition to achieve equilibrium. Notice that, besides the differential 

equilibrium expression, natural boundary conditions are also obtained. Essential conditions can be 

directly imposed through solution 

 𝒖 = �̅� 𝑖𝑛 𝑆𝑢. (2.53) 

and reactive forces in 𝑆𝑢 are usually found after the solution of 𝒖. 

 

2.3. Rod models: a historical approach 

2.3.1. Kinematically linear models  

Initial approaches of beam theories required analytical solutions to be manually found. Therefore, 

simplifying assumptions were invariably necessary. Typically, displacements, rotations and strains 

were treated as first order approximations, ultimately leading to linear equilibrium differential 

equations. This is equivalent to assuming small (infinitesimal) displacements, rotations and strains, so 

that the beam´s equilibrium can be evaluated at the undeformed configuration. Being linear, solutions 

could also be superimposed, and the behaviour of complex structures could be addressed as a simple 

summation of elementary solutions. The most relevant linear rod models kinematical hypotheses will 
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be briefly discussed next. Some of the classical examples can be found in Timoshenko’s books [9], 

[10], or in [11], from Bucalem and Bathe. 

Bernoulli-Euler is the most elementary rod model. The kinematical assumption is that cross-

sections remain plane and orthogonal to the beam´s axis. Timoshenko’s rod model is less restrictive, 

as the orthogonality condition is removed, allowing for first order shear deformation. As both of them 

consider cross-sections as rigid planes, torsion is not adequately represented, since the warping 

deformation is missed.  

Only when warping is enabled is that torsional response can be effectively evaluated. This 

motivated the Saint-Venant’s uniform torsion theory, in which a cross-sectional shape function 

(usually represented by the Greek letter 𝜓), given from the solution to a certain boundary value 

problem, is incorporated. After obtaining the section´s warping shape, the section torsional inertia can 

be calculated. Such solution can be superimposed to other linear models, in order to more accurately 

predict torsion behaviour. The main drawback of this theory is that its solution is only exact if the 

torsion is uniform (i.e., constant along the rod´s axis) and both rod´s ends are free to warp. If these 

requirements are not fulfilled, the solution is only an approximation. Even in the absence of external 

torsion moments, coupling effects among bending, axial and torsion strains can severely affect the 

equilibrium and stability behaviour of thin-walled open-section rods if non-uniform torsion is not 

considered. 

Despite its wide application for rods with open thin-walled cross-sections, the torsion phenomena 

are not satisfactorily explained by Saint-Venant’s theory. Given the low torsional inertia of such 

sections, secondary twisting (or non-uniform torsion, or bi-shear) and warping moment (or bi-

moment) play a major role as important load-carrying mechanisms on the rod´s equilibrium, and 

consequently, on the design of those elements. As an alternative, in the mid 1900´s Vlasov’s theory 

[12] arises. An equivalent model was also proposed later by Timoshenko [9]), and soon became the 

theoretical foundation of many technical standards around the world for the design of rod structures 

consisted of thin-walled open-section members, such as steel structures in civil engineering (for 

example, but definitely not only, the Brazilian  NBR8800:2008 [13]). Vlasov´s theory relies on the 

combination of a uniform torsion with a non-uniform torsion solution. The first one resorts to the 

Saint-Venant’s torsion theory, whereas the latter is based on a quantity named sectorial area (usually 

represented by 𝜔(𝑠), in which 𝑠 stands for the walls´ length coordinate), which arises from the 

assumption that the warping may be non-uniform. It can be calculated along the walls length from the 

line integral of twice the area comprehended in a particularly built triangular sector, which has as 

vertices the so-called sectorial pole, the point at which 𝜔 is being computed, and an infinitesimal base 

𝑑𝑠, tangent to the wall at that point. The integration begins at an arbitrary point, which is called 

sectorial origin. For a proper origin and using the same pole, it can be shown that the Vlasov’s 

sectorial area corresponds to the Saint-Venant’s warping function along the thin-walls midline.  
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2.3.2. Kinematically exact models 

As structural design became more audacious, in both civil and mechanical engineering, theories 

that consider large displacements and rotations urged to be developed. The small displacements and 

infinitesimal rotations assumptions had to be dropped, introducing considerable non-linearities to the 

model´s differential equations. It was not until the 1980’s that the first consistent exact theories were 

developed and successfully employed. Hardware improvements in processing capabilities and memory 

storage, as well as the emergence of advanced numerical methods were pivotal to such progress, as 

analytical solutions to non-linear systems are usually not available.  

Unidimensional exact theories for plane (2D) frames have a peculiarity that allowed a hastier 

theoretical development: in plane motions (2D frames/plates), rotations can be treated as a part of a 

vectorial space, wherein the basic property of commutativity is properly satisfied. Reissner [14] is 

credited as the pioneer of 2D kinematically exact beam theories. A direct major drawback of 2D 

theories lies on the fact that it is restricted to plane problems, as it becomes impossible to capture out-

of-plane deformations such as those arising from coupling effects between bending, 

tension/compression and torsion strains. 

The first three-dimensional kinematically exact rod model was presented by Simo [15], [16], where 

a Timoshenko-like assumption (for the cross-sectional shearing w.r.t. the rod axis) was developed. The 

rotational degrees-of-freedom were exactly treated through the Euler-Rodrigues formula, and this was 

a major breakthrough at the time. Simo and Vu-Quoc [17] and Gruttmann et al. [18] also advanced 

towards considering a warping function, especially useful for torsion-dominated problems. Later on, 

several other authors derived their own formulations, many of them having as theoretical basis Simo’s 

pioneering models. A brief list of unique formulations is described next. 

Crisfield [19] and Chen and Blandford [20] derived their own kinematically exact models, with co-

rotational description, the former being a 6 DOF model, and the latter being based on Vlasov’s theory 

for thin-walled frames, with an additional warping DOF. Still in the co-rotational framework, Genoese 

et al. [21] derived a 7 DOF (with Saint-Venant´s warping) model. 

 Research group from the Polytechnic School of the University of São Paulo (lead by P. Pimenta 

and followed by E. M. B. Campello, with the collaboration of other authors such as Yojo, 

Dasambiago, Fernandes, Lago and da Costa e Silva [1]–[3], [22]–[27]) proposed a wide array of rod 

models, beginning with a Timoshenko-like 6 DOF model and then progressing towards more complex 

assumptions, ranging from 7-DOFs thin-walled open cross-section models (warping enabled) to more 

generic formulations, with an arbitrary amount of DOFs and general in-plane and out-of-plane cross-

sectional distortions.  

Coda [28], in collaboration with Paccola [29] and Maciel [30] progressed from 2D to 3D static and 

dynamic models, using a distinct solid-like formulation, wherein the rotational degrees-of-freedom 
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were avoided by directly mapping cross-sectional position vectors instead, leading to the so-called 

“unconstrained vectors” formulation. This approach allows to naturally incorporate in- and out-of-

plane distortions, having as trade-off an increase on the number of degrees of freedom. Comparatively, 

in this author’s works, each node had 12 DOFs, whereas in [1], [2] and [18], 7 nodal DOFs were used 

for modelling 3D rods with finite rotations and warping. 

Kumar and Mukherjee [31] proposed a rod model with in-plane distortions for cylindrical rods, 

pursuing to hierarchically link cylindrical shell and rod models. The authors affirm that the model has 

applications in biotechnology (e.g., can be used “for capturing cross-sectional deformation in DNA, 

nanotubes, collagen, arteries, etc”). 

Simo [15] was also the pioneer to consistently deduce the dynamic problem for 3D rods, presenting 

both material and spatial description for Timoshenko-like rods. Later on, Campello, Pimenta and 

Wriggers [32] faced the problem of non-conservativeness of usual time-integration schemes, 

proposing an algorithm that guaranteed exact conservation for dynamic rod problems. Liu et al. [33] 

used a mixed Eulerian-Lagrangian description to implement a dynamic Timoshenko-like rod model, 

that is able to represent a beam running through a tube, including the contact forces, during this 

operation. 

Le Corvec´s [34] model had a different approach, by abandoning warping shape functions and 

discretizing the cross-section. Solution was then obtained by placing additional DOFs throughout the 

cross-section, interpolating values with Lagrangian polynomials and numerically integrating the 

forces, moments, bi-shear and bi-moment. 

Gonçalves [35] and Li and Ma [36] also proposed 7 DOF thin-walled rod models, in which shell-

like assumptions are used to characterize the secondary warping, whilst the primary warping is given 

by the Vlasov’s sectorial area. 

It is also worth mentioning works developed under the concept of the so-called Generalized Beam 

Theory (GBT), which, despite usually not following kinematically exact approaches, provide 

interesting insights into determining cross-sectional warping and in-plane distortion shape functions. 

This approach was inaugurated by the seminal works of Schardt [37]–[39], from which several others 

followed, with special mention to the contributions from D. Camotim’s research group, such as [40]–

[43]). The GBT approach might be an important source to enrich the vectorial space of admissible 

displacements of the cross-section, potentially permitting to study local (i.e., cross-sectional) buckling 

behaviour also in the non-linear context. In this framework, Gonçalves et al. [42], and Li and Ma [44] 

proposed thin-walled rod models in which, by using GBTs techniques, in- and out-of-plane distortion 

modes were obtained, and then linearly combined, in order to determine displacement modes for the 

walls midlines. As in the models of the last paragraph, for points along the thickness, Kirchhoff’s plate 

assumption is enforced, thus determining their displacement.  
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2.3.3. A flexible description for intricate kinematic assumptions 

 

 

Figure 2 – Schematic representation and basic kinematical quantities used to describe the rod deformation. 

 

Using a purely Lagrangian description, it is possible to map the cross-section allowed motion as a 

composition of a rigid body motion and a generic in-plane and out-of-plane deformation. Pimenta and 

Campello, in [23], presented a very robust way to describe such motion, with regards to the 

kinematical assumptions. This approach, which is the theoretical basis of the model that is 

incremented in this research, is briefly described in what follows.  

Assuming a straight rod reference configuration, with a local orthonormal system {𝒆1
𝑟, 𝒆2

𝑟 , 𝒆3
𝑟}, with 

𝒆3
𝑟 coinciding with the rod´s axis (see Fig. 1), the position of every material point in the reference 

configuration can be described by 

 𝝃 = 𝜻 + 𝒂𝑟, (2.54) 

where 

 𝜻 = 휁𝒆3
𝑟,  휁 ∈ 𝛺 = [0, 𝐿]. (2.55) 

The cross-sectional director of a point in the reference configuration is defined by 

 𝒂𝑟 = 𝜉𝛼𝒆𝛼
𝑟 , (2.56) 

where 𝜉𝛼 (in-plane components of 𝝃) describes cross-sectional plane of the initial configuration.  

Defining now {𝒆1 , 𝒆2 , 𝒆3 } as a local orthonormal system on the current configuration, with 

𝒆𝛼  being vectors that define the cross-section´s plane before warping, this rotated base is given by a 

rotation tensor 𝑸 = �̂�(휁), such that 𝒆𝑖 = 𝑸𝒆𝑖
𝑟. Notice that there is no constraint that imposes 

agreement between 𝒆3  and the rod axis in the current configuration. Thus, first-order shear 

deformations are implicitly considered. In the current configuration, the position of every material 

point is given by the vector field 
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 𝒙 = 𝒛 + 𝒚, (2.57) 

where 𝒛 = �̂�(휁) represents the position of axis points in the current configuration, and 𝒚 represents the 

position of points of the cross-section relatively to the rod´s translated axis (see Figure 2).  

The translation of the axis can be represented by 

 𝒖 = 𝒛 − 𝜻, (2.58) 

and for a generic point, the displacement is  

 𝜹 = 𝒙 − 𝝃. (2.59) 

Vector 𝒚 may be decomposed into three components: 

 𝒚 = 𝒂 + 𝒗 +𝒘. (2.60) 

The components (𝒂, 𝒗,𝒘) represent the position of cross-sectional points (w.r.t. the rod´s axis) due 

to rigid body rotation (𝒂), and their displacements due to in-plane distortion (𝒗) and out-of-plane 

warping (𝒘). By definition,  

 𝒂 = 𝑸𝒂𝑟, (2.61) 

wherein 𝑸 is the rotation tensor, calculated as in section 2.2.1, expression (2.4). Cross-sectional in-

plane displacements and out-of-plane warping are respectively given by 

 𝒗 = 𝑣𝛽𝒆𝛽;      𝒘 = 𝑤𝒆3. (2.62) 

Kinematical assumptions regarding 𝒗 and 𝒘 must then be introduced. A great array of assumptions 

can be made in order to capture cross-sectional behaviour.  

In [23], it is assumed that both warping and in-plane displacements may be given as a linear 

relation between cross-sectional shape functions and the vectors that collect the respective magnitudes. 

The structure of those shape functions will be discussed later. Accordingly, 𝒗 and 𝒘 can be written as 

 𝒗 = (𝒆𝛽⨂𝜱𝛽)𝒓 = 𝑣𝛽𝒆𝛽;      𝒘 = (𝒆3⨂𝝍)𝒑 = 𝑤𝒆𝟑, (2.63) 

with the directional components 

In those equations, 𝜱𝛽 = 𝜱�̂�(𝜉1, 𝜉2) and 𝝍 = �̂�(𝜉1, 𝜉2) represent the cross-sectional shape 

functions for in-plane displacements and out-of-plane warping, respectively, while 𝒓 = �̂�(휁) and 𝒑 =

 �̂�(휁)  are vectors that collect the corresponding degrees of freedom, with 𝑛𝑣 DOFs for in-plane 

displacements and 𝑛𝑤 DOF’s for out-of-plane warping. Consequently, along with 𝒖 and 𝜽 (rigid body 

motions), a model is represented by 6 + 𝑛𝑣 + 𝑛𝑤 DOFs. This approach provides great flexibility to the 

model description, allowing different kinematics to be enforced and generic shape functions to be 

adopted. Note that, despite the linear relation, these functions are completely generic so far.  

In the next subsections, particular kinematical assumptions will be introduced, recovering some 

well-established models from the literature as particular cases of [23]. This will help to highlight 

difficulties and advances that have been performed over the last few decades in the area. As seen in all 

cited works, despite [2], it is usual that, although finite displacements and rotations are allowed, 

constitutive equations are truncated as they do not retain (some or all) higher order strain terms. This 

 𝑣𝛽 = 𝜱𝛽 ∙ 𝒓;      𝑤 = 𝝍 ∙ 𝒑 . (2.64) 
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simplification allows for the obtention of stress resultants as function of trivial geometrical properties, 

although limits the application to small strain cases. Were all strain terms to be obtained, two 

approaches are possible a) numerical integration of stress resultant and tangent matrixes; b) for the 

particular cases that have analytical solution (usually polynomial on the strain measure stress 

components) appropriate analytical integration is possible, by determining generalized (non-

conventional) geometric properties, which are pre-integrated and used as constant values upon 

solution.  

 

2.3.3.1. Model with fully rigid cross-section (6 DOFs)  

The basic assumption here is that each cross-section moves solely as a rigid body, and thereby 

remains plane and undistorted after the deformation, without any warping nor in-plane deformations. 

This implies 𝒗 = 𝒘 = 𝟎, and is precisely what Simo proposed in [15] and [16] (the latter with the 

collaboration of Vu-Quoc), and Pimenta and Yojo in [22]. It is important to mention that Simo’s 

formulation presented a non-symmetric geometric stiffness matrix, whereas, in the works from 

Pimenta, it is symmetric. Fernandes [26] identified that this is due to the fact that the weak form from 

Simo used a non-conjugated (energetically speaking) virtual quantity in the moment contribution, 

leading to a Petrov-Galerkin interpolation in the Finite Element Method. Other authors with relevant 

contributions to these first 3D, 6-DOF beam models can be cited, e.g. Argyris [5], [6], [45] and 

Ibrahimbegovic [46], [47]. Those works provided valuable knowledge on finite rotations (and their 

derivatives), one of the greatest challenges for exact beam formulations at the time. 

The model ends up with 6 DOFs and is a generalization of Timoshenko’s beam theory for finite 

displacements and rotations. As a consequence, if further assumptions are not taken, the polar moment 

of inertia (𝐼0) should characterize the torsional stiffness. As to avoid an artificially stiff cross section, 

one typically replaces 𝐼0 by expressions containing the Saint-Venant´s torsion inertia (𝐼𝑇) at the 

constitutive equation. It should be noted, however, that this apparently ad-hoc modification can be 

formally justified by adequately constraining the kinematically exact 7-DOF model, as done in 

Gruttmann et al. [48] (see also Appendix J). 

 

2.3.3.2. Model with in-plane rigid and out-of-plane deformable cross-section (7 DOFs)  

Simo and Vu-Quoc, in [17], proposed the use of the Saint-Venant´s warping function, in order to 

more accurately represent torsion phenomena for compact (massive) sections. Later, Pimenta and 

Campello revisited this topic in in [1], [3], in the context of open thin-walled sections. There, the 

geometrical properties of torsion inertia (𝐼𝑇) and warping constant (𝐼𝜓) can be analytically calculated, 

through the Saint-Venant expression for thin-walled sections (𝐼𝑇 =
∑𝑏𝑡3

3
) and Vlasov´s sectorial area 

(𝜔), respectively.  
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Besides the 6 DOFs required to represent the rigid body displacements, 1 new DOF (𝑝) was used 

for the warping magnitude. Therein, such distortion was represented by the product of a cross-

sectional shape function (𝜓) and its (unknown) magnitude (𝑝). In-plane distortions were not 

considered. By introducing an independent DOF for warping, such models allow for out-of-plane non-

uniform warping, especially important to more accurately represent the deformation of thin-walled 

members. Therefore, in this model equation (2.62) simplifies to 

 𝒘 = 𝜓𝑝𝒆𝟑;      𝒗 = 𝟎. (2.65) 

Constitutive equations with the linear elastic, the classical Saint-Venant´s hyperelastic, as well as 

an advanced neo-Hookean material, therein called Simo-Ciarlet´s material2, were available upon 

implementation. For the sake of simplicity, however, in [1], only second-order strain terms related to 

the specific rotations and displacements were retained in the constitutive equations, along with only 

first-order terms on the warping strains. In 2001, Pimenta and Campello presented in ECCM [3] an 

evolution of this model, incorporating second-order warping strains. Even with those new features, 

post-critical behaviour was still unsatisfactorily represented in a few pathological cases, as reported 

then. 

 

 

2.3.3.3. Model with in-plane rigid and out-of-plane deformable cross-section with secondary warping 

for open thin-walled members (7 DOFs)  

Lago and Campello [2]  presented a kinematically exact rod model that incorporates some kind of 

secondary warping with “exact” (i.e., with all higher order strain terms retained) hyperelastic (St.-

Venant´s) constitutive equation. The warping shape function 𝜓 was admitted to be a composition of 

Vlasov´s (for primary) and a local Saint-Venant´s (which includes secondary) warping functions for 

thin-walled sections. For the Saint-Venant’s contribution, the cross-section was treated as a 

composition of thin rectangular segments (see Figure 3). Accordingly, the warping function read 

 𝜓(𝜉1, 𝜉2) = 𝜔(𝑠) + 𝜓𝑅(�̅�, �̅�). (2.66) 

In this context, 𝜔(𝑠) represents the sectorial area, derived from Vlasov’s theory, and 𝜓𝑅(�̅�, �̅�) is an 

approximated solution for uniform torsion on rectangular cross-sections, obtained by Silva [49], with 

respect to local (wall´s) coordinates �̅� and �̅�, with the form 

 𝜓𝑅(�̅�, �̅�) = −
(𝑎6+19𝑎4𝑏2−19𝑎2𝑏4−𝑏6)𝑥𝑦̅̅ ̅̅

𝑎6+14𝑎4𝑏2+14𝑎2𝑏4+𝑏6
−

35

12
𝑎2𝑏2(−4�̅�3�̅�+4�̅��̅�3)

𝑎6+14𝑎4𝑏2+14𝑎2𝑏4+𝑏6
. (2.67) 

 

2 Or simply Simo’s material. 
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Figure 3 – Cross section composition. Source: Campello and Lago [2] 

 

As a result, the kinematical assumptions became, as in section 2.3.3.2, 

 𝒘 = 𝜓𝑝𝒆𝟑;      𝒗 = 𝟎, (2.68) 

but with a different warping function, as presented above.  

Lago and Campello [2]  also evaluated the importance of having all higher order strain terms on the 

constitutive equation, by employing the so-called “exact” Saint-Venant´s material instead of linear 

elastic or incomplete quadratic ones. These new aspects required a slightly different approach to 

calculate cross-sectional force and moment (as well as bi-shear and bi-moment) stress resultants. 

Whereas in all other previous models the cross-sectional resultants were computed analytically by 

adding products of cross-sections geometrical properties (calculated a priori) and generalized strains, 

this work resorted to numerical integration for both stress resultants and material stiffness. Yet, despite 

the promising results, it was developed only for rectangular, I-shaped (bi-symmetric) and cruciform 

sections. See section 3.4.2 for a broader discussion about this warping function. Moreover, the effect 

of the proposed secondary warping was not assessed, as the authors were mainly concerned with the 

constitutive equation then.  

Some authors (see for example Gonçalves [35] or Li and Ma [36]) have proposed a local plate 

approach, in which the primary warping was given by the Vlasov’s sectorial area, and then a 

secondary warping is obtained by imposing Kirchhoff´s plate assumptions, considering that the related 

strains are small. Using this same argument, high order strain terms are discarded, rendering linear or, 

at most, incomplete quadratic constitutive relation. It should be noted that, in those works, the primary 

warping is exclusively a function of the warping degree of freedom, whereas the beforementioned 

plate assumptions render a secondary warping that is a function of both warping intensity and local 

curvature strains. Thus, such approach cannot be directly represented as in equation (2.62), as it allows 

only for linear combinations of independent warping intensity parameters and warping modes.  
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2.3.3.4. Model with in-plane and out-of-plane deformable cross-section 

This model theory was first presented by Pimenta and Campello in 2003 [23] and can be 

interpreted as a generalization of the previous approaches allowing for generic 𝒗 and  𝒘. 

Implementation presented by Dasambiago, Pimenta and Campello in [24], [25] (therein called “Multi-

Parameter Beam Element” - MPBE) considered both in- and out-of-plane deformations, employing the 

shape functions approach described above (equation (2.62)). Therein, the authors chose to represent 

in-plane distortions through quadratic functions that required 3 additional DOFs (grouped into vector 

𝒓). However, the formulation is generic and can be adapted to any shape functions with any amounts 

of DOFs. Despite the consideration of in-plane distortions, the authors restricted the implementation to 

rods with rectangular cross-sections only, where the warping deformation could be satisfactorily 

represented by a linearized Saint-Venant’s warping function. The kinematical assumptions for this 

model are 

 𝑤 = 𝜓𝑝;          𝑣𝛽 = 𝝓𝜷 ∙ 𝒓; (2.69) 

 𝜓 = 𝜉1𝜉2;       𝝓𝟏 = [

𝜉1
1
2⁄ 𝜉1

2

𝜉1𝜉2

] , 𝝓𝟏 = [

𝜉2
𝜉1𝜉2
1
2⁄ 𝜉2

2
]      and     𝒓 = [

𝑟1
𝑟2
𝑟3
].  (2.70) 

More recently, the already mentioned authors (Gonçalves et al. [42] and Li and Ma [44]) worked 

towards the implementation of rod models with in-plane distortional modes for thin-walled rods. Both 

of them employ GBT techniques to determine distortional modes for the walls mid-lines, which are 

linearly combined. Afterwards, a secondary warping is calculated so that Kirchhoff´s assumption for 

plates holds, assuming small strains. There are differences between how those two models generate 

those modes: the first one treats in- and out-of-plane modes altogether, whereas the second one 

generates in-plane distortion mode from GBT and then the warping function is obtained either from 

Vlasov’s sectorial area or from an independent Hermitian interpolation. Both these works induce plate 

behaviour for each wall, which might present incompatibilities between the local behaviour and global 

effects, which are treated in an ad-hoc fashion, separating membrane and bending deformations, and 

assuming different constitutive equations for each one of those contributions. Indeed, as mentioned by 

Gonçalves: “A plane stress state is assumed in all beam walls (…), thus generating a mild 

inconsistency with the plane strain of (36) and (37).” [42], and by Li and Ma: “Considering that the 

extension deformation in mid-line direction has not been included in the cross-section deformation 

modes, unreasonable transverse normal stress is probably introduced if the traditional constitutive 

relation is used. Therefore, different constitutive relations are employed for membrane deformation 

and bending deformation, respectively.” [44]. 

In the context of rods, the models mentioned in the current section seem to be the most advanced in 

the literature, at least for thin-walled sections, despite the use of simple constitutive equation, with 

excellent results in benchmarks. 
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3. ADOPTED MODEL AND PROPOSED WARPING FUNCTION 

The model to be advanced in this work is the 7-DOF, Vlasov-like kinematically exact rod model of 

section 2.2.3.3 (and 2.2.3.2). It is Vlasov-like in the sense that non-uniform warping is considered, 

allowing for normal stresses that arise from this warping, which generate the so-called bi-moments 

and bi-shears. A total Lagrangian description is adopted, and rotations are parametrized trough the 

Euler-Rodrigues rotation vector (this is the reason why the sub-index (∘)𝜃 is sometimes used, as in 

[1]). As seen in the previous chapter, the formulation is a particularization for 7 DOFs of the generic 

model for any amount of DOFs, from Campello and Pimenta [23]. A wide array of works from the 

same research group also uses this approach (see, for example [2], [24]).  

This master´s degree research aims to take the next logical step towards a more robust thin-walled 

rod model of such type: to develop a consistent warping function with both primary and secondary 

warping contributions for arbitrary thin-walled open sections, and derive an “exact”, large-strain (neo-

Hookean, Simo-Ciarlet’s polyconvex) constitutive equation (this latter will be the object of Chapter 4). 

The “exact” Saint-Venant’s constitutive equation must also be implemented, for the sake of 

comparison.  

The model´s kinematics, weak form and corresponding tangent bilinear form will be detailed next. 

Then, the warping function will be introduced. A crucial point in this research is to explicitly report 

the kinematical assumptions and material laws that were explored. Here, they are: 

Kinematical assumptions: the allowed motions are cross-sectional rigid body rotations and 

translations, along with a warping function that accounts for both primary and secondary warping 

modes. Arbitrary shapes for thin-walled open cross-sections are admitted. Two warping functions are 

considered and compared: the one from Lago and Campello [2] (equation (2.66)) and an improvement 

of this equation, shown in section 3.4. As will be illustrated in the next topic, the latter has proven to 

be more broadly applicable than the former. 

Constitutive equation: the final product of this work will consider the neo-Hookean (polyconvex) 

material law of Simo-Ciarlet. Its corresponding “exact” constitutive equation for rods (i.e., including 

all strain terms) will be derived and implemented. This will require numerical integration over the 

cross-section for computation of the cross-sectional stress resultants. The exact form of the non-

polyconvex Saint-Venant’s material was implemented (as in Campello and Lago [2]), as its detailed 

expressions were already available and it will be needed in the future for comparison. 

A brief description of the model is presented below. For more information, an extensive literature 

is at disposal. It is suggested, for example, the reading of Simo’s and Vu-Quoc’s [17] and Campello 

and Pimenta [3] for more details about 7 DOFs rod models. 
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3.1. Kinematic description 

As already mentioned, this model has 6 rigid-body-related DOFs and an additional one that 

represents the warping intensity (see Figure 2). Formally, the displacements field is represented by 

equation (2.60), constrained to 𝒗 = 𝟎 and 𝑤 = 𝑝𝜓𝒆3. Therefore, 

 𝒙 = 𝜻 + 𝒖 + 𝑸𝒂𝑟 + 𝑝𝜓𝒆𝟑. (3.1) 

As already mentioned, the rotations are parametrized by the Euler-Rodrigues formula 

(equation(2.4)). It is important to remark that 𝒖 = �̂�(휁), 𝑸 = �̂�(�̂�(휁)) and 𝑝 = �̂�(휁 ). 

As in Pimenta and Campello [3], the deformation gradient must be calculated, rendering 

 

𝑭 =
𝜕𝒙

𝜕𝝃
= 𝒙,𝜶⊗𝒆𝜶

𝒓 + 𝒙′⊗𝒆𝟑
𝑟

= (𝑸𝒆𝜶
𝑟 + 𝑝𝜓,𝛼𝒆𝟑)⊗ 𝒆𝜶

𝑟

+ (𝒆𝟑
𝑟 + 𝒖′ +𝑸′𝜶𝑟 + 𝑝′𝜓𝒆𝟑 + 𝑝𝜓𝒆𝟑

′ )⊗ 𝒆𝟑
𝑟  

(3.2) 

Introducing the definitions 𝜼 = 𝒖′ + 𝒆𝟑
𝒓 − 𝒆𝟑, one gets 

 
𝑭 = 𝑸(𝒆𝜶

𝒓 + 𝑝𝜓,𝛼𝒆𝟑
𝑟)⊗ 𝒆𝜶

𝑟 + 

+(𝜼 + 𝑸𝒆𝟑
𝑟 +𝑸′𝑸𝑇𝒂 + 𝑝′𝜓𝑸𝒆𝟑

𝑟 + 𝑝𝜓𝑸′𝑸𝑇𝒆𝟑)⊗ 𝒆𝟑
𝒓. 

(3.3) 

As shown in Pimenta and Yojo [22], the derivatives of 𝑸 can be found with the aid of the auxiliar 

tensor 𝜞. From equations (2.16)-(2.18), and using the above relation, one gets, 

 
𝑭 = 𝑸 +  𝑝𝜓,𝛼𝑸𝒆𝟑

𝒓⊗𝒆𝜶
𝒓 + (𝜼 + 𝜥(𝒂 + 𝑝𝜓𝒆𝟑) + 𝑝

′𝜓𝒆𝟑)⊗ 𝒆𝟑
𝒓 = 

= 𝑸[𝑰 +  𝑝𝜓,𝛼𝒆𝟑
𝒓⊗𝒆𝜶

𝒓 +𝑸𝑇(𝜼 + 𝜿 × (𝒂 + 𝑝𝜓𝒆𝟑) + 𝑝
′𝜓𝒆𝟑) ⊗ 𝒆𝟑

𝒓]. 
(3.4) 

Defining the back-rotated vectors 

 𝜸𝒓 = 𝑸𝑇𝜸 = 𝜼𝑟 + 𝜿𝑟 × (𝒂𝑟 + 𝑝𝜓𝒆3
𝑟) + 𝑝′𝜓𝒆3

𝑟 , (3.5) 

 𝜼𝑟 = 𝑸𝑇𝜼 = 𝑸𝑇𝒛′ − 𝒆3
𝑟, (3.6) 

 𝜿𝑟 = 𝑸𝑇𝜿 = 𝜞𝑇𝜽′, (3.7) 

the final form of the deformation gradient arises as 

 𝑭 =
𝜕𝒙

𝜕𝝃
= 𝑸𝑭𝑟 = 𝑸(𝑰 +  𝑝𝜓,𝛼𝒆3

𝑟⊗𝒆𝛼
𝑟 + 𝜸𝑟⊗𝒆3

𝑟), (3.8) 

It is useful to define the generalized displacement (𝒅𝜃) and the generalized strain (𝜺𝑟) vectors,  

 𝒅𝜽 = [

𝒖
𝜽
𝑝
]

(7𝑥1)

𝑎𝑛𝑑 𝜺𝑟 = [

𝜼𝑟

𝜿𝑟

𝑝

𝑝′

]

(8𝑥1)

. (3.9) 

Note that 𝒅𝜃 groups the degrees of freedom that are calculated at the nodes of the FEM analysis. 

Now, it is necessary to find the derivative of 𝑭 with respect to a scalar variable, for example time, 

in order to compute the Fréchet derivative, that will be needed in the next section. Thus 

 �̇� = �̇�𝑭𝑟 +𝑸�̇�𝑟. (3.10) 

Defining the skew-symmetric  𝜴 = �̇�𝑸𝑇, and 𝝎 = 𝑎𝑥𝑖𝑎𝑙(𝜴) = 𝜞�̇�, one gets 
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 �̇� = 𝜴𝑭 + 𝑸(�̇�𝜓,𝛼𝒆𝟑
𝒓⊗𝒆𝜶

𝒓 + �̇�𝑟⊗𝒆𝟑
𝒓), (3.11) 

and it is necessary to find �̇�𝑟, and, consequently, �̇�𝒓 and �̇�𝒓. 

First, let us deduce �̇�𝑟. Directly from its definition, 

 

�̇�𝑟 =
𝒅

𝒅𝒕
(𝑸𝑻𝒛′ − 𝒆𝟑

𝒓) = �̇�𝑇𝒛′ +𝑸𝑇�̇�′ = −𝑸𝑇𝜴𝒛′ +𝑸𝑇�̇�′

= 𝑸𝑇(�̇�′ −𝜴𝒛′) = 𝑸𝑇(�̇�′ −𝝎× 𝒛′) = 𝑸𝑇(�̇�′ − 𝜞�̇� × 𝒛′)

= 𝑸𝑇(�̇�′ − 𝒁′𝜞�̇�), 

(3.12) 

where 𝒁′ = 𝑠𝑘𝑒𝑤(𝒛′). 

Then, let us deduce 𝜿𝒓. Using the definitions above, using the properties of skew-symmetry of 𝑸 

and 𝛀, one gets,  

 �̇�𝑟 = �̇�𝑇𝜿 + 𝑸𝑇�̇� = −𝑸𝑇𝜴𝜿+ 𝑸𝑇�̇� = 𝑸𝑇(�̇� − 𝝎 × 𝜿). (3.13) 

Some auxiliary algebra is needed. First, let us make 

 {
�̇� = 𝜴𝑸

𝑸′ = 𝜥𝑸
⇒{

𝑸′̇ = 𝜴′𝑸 + 𝜴𝑸′                (𝑎)

𝑸′̇ = �̇�𝑸 + 𝜥�̇�                   (𝑏)
, (3.14) 

and imposing (𝑎) = (𝑏), and multiplying by 𝑸𝑇, one gets 

 𝜴′ = �̇� + 𝜥𝜴− 𝜴𝜥. (3.15) 

With the aid of the intermediate result that, for vectors 𝒂|𝑎𝑥𝑖𝑎𝑙(𝒂) = 𝑨 and 𝒃|𝑎𝑥𝑖𝑎𝑙(𝒃) = 𝑩,  

𝑠𝑘𝑒𝑤(𝒂 × 𝒃) = 𝑨𝑩− 𝑩𝑨, it is possible to find 

 𝝎′ = �̇� + 𝜿 × 𝝎⇒𝝎′ = �̇� − 𝝎 × 𝜿. (3.16) 

Therefore, 

 �̇�𝑟 = 𝑸𝑇𝝎′ = 𝑸𝑇(𝜞′𝜽 + 𝜞𝜽′). (3.17) 

Now, 𝜸�̇� is easily calculated as 

 �̇�𝑟 = �̇�𝑟 + �̇�𝑟 × (𝒂𝑟 + 𝑝𝜓𝒆𝟑
𝑟) + 𝜿𝑟 × (�̇�𝜓𝒆𝟑

𝑟) + 𝑝′̇ 𝜓𝒆𝟑
𝑟 , (3.18) 

and 

 �̇� = 𝜴𝑭 + 𝑸(�̇�𝜓,𝛼𝒆3
𝑟⊗𝒆𝜶

𝑟 + �̇�𝑟⊗𝒆3
𝑟), (3.19) 

The tensor 𝜴 is the angular velocity, that arises from the derivation of 𝑸 with respect to time, and is 

documented in Pimenta and Yojo [22]. 

The time derivative of 𝒅𝜃 and 𝜺𝑟 can be compactly related in the following matrix notation, 

 �̇�𝑟 = 𝜳𝜟�̇�𝛉 =

[
 
 
 
𝑸𝑇�̇�′ + 𝑸𝑇𝒁′𝜞�̇�

𝑸𝑻𝜞′�̇� + 𝑸𝑻𝜞�̇�′
�̇�

�̇�′ ]
 
 
 

, (3.20) 

with the auxiliary operators 

 𝜳 = [

𝑸𝑇 𝟎 𝒐 𝒐

𝟎 𝑸𝑇 𝒐 𝒐

𝒐𝑇 𝒐𝑇 1 0
𝒐𝑇 𝒐𝑇 0 1

] [

𝑰 𝒁′𝜞 𝟎 𝒐 𝒐
𝟎 𝜞′ 𝜞 𝒐 𝒐
𝒐𝑇 𝒐𝑇 𝒐𝑇 1 0
𝒐𝑇 𝒐𝑇 𝒐𝑇 0 1

]  and   (3.21) 
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𝜟 =

[
 
 
 
 
 
 𝑰

𝜕

𝜕𝜁
𝟎 𝒐

𝟎 𝑰 𝒐

𝟎 𝑰
𝜕

𝜕𝜁
𝒐

𝒐𝑇 𝒐𝑇 1

𝒐𝑇 𝒐𝑇
𝜕

𝜕𝜁]
 
 
 
 
 
 

  

3.2. Statics: Equilibrium weak form 

Consider a rod element. Its volume in the reference configuration is 𝑉𝑟, with a cross-sectional area 

𝐴𝑟 and the axial coordinate 휁 ∈ 𝛺 = [0, 𝐿], in which 𝐿 represents the length of such element. 

The equilibrium can be imposed by the weak form. Let δ𝒅𝜃 = [𝛿𝒖 𝛿𝜽 𝛿𝑝]𝑇 be the virtual 

displacements field. The notation ℋ1 denotes a Sobolev space. Thus, the condition 𝛿𝒅𝜽(휁) ∈ ℋ1
0(𝑉𝑟) 

means that a) 𝛿𝒅𝜽 is locally integrable and b) the appropriate components from 𝛿𝒅𝜽 are taken as 0 for 

the prescribed generalized displacements at the extremities with applied kinematic boundary 

conditions. For rods, one gets  

 𝛿𝑊 = 𝛿𝑊𝑖𝑛𝑡 − 𝛿𝑊𝑒𝑥𝑡 = 0 ,   ∀𝛿𝒅𝜽(휁) ∈ ℋ1
0(𝑉𝑟). (3.22) 

Using the energetically conjugated pair (𝑭, 𝑷), wherein 𝑷 is the first Piola-Kirchhoff stress tensor, 

and having in mind that the scalar derivatives (equation (3.19)) are useful for calculating the virtual 

quantities, for the internal power, one gets 

 𝑃𝑖𝑛𝑡 = ∫ 𝑷: �̇�𝑑𝑉𝑟 =
𝑉𝑟 ∫ ∫ 𝑷: �̇�𝑑𝐴𝑟𝑑휁

𝐴𝑟
𝐿

0
. (3.23) 

Let us focus on the internal product 𝑷: �̇�.Using equation (3.11), this product is  

 𝑷: �̇� = 𝑷:𝜴𝑭 + 𝑷: 𝑸{𝜓,𝛼�̇�𝒆𝟑
𝒓⊗𝒆𝜶

𝒓 + 𝜸�̇�⊗𝒆𝟑
𝒓}. (3.24) 

Knowing that the internal product of a skew-symmetric and a symmetric tensor is zero, and 

remembering that, by consequence of (B.4) and (2.32), 𝑷𝑭𝑇 is symmetric, it can be concluded that the 

first term is null. Defining the back-rotated first Piola-Kirchoff tensor as 𝑷𝑟 = 𝑸𝑇𝑷 = 𝝉𝑖
𝑟⊗𝒆𝑖

𝑟 (thus, 

𝝉𝑖
𝑟 are the column-vectors 𝑷𝑟), it is possible to rearrange the last equation, leading to 

 𝑷: �̇� =  𝝉𝑖
𝑟⊗𝒆𝑖

𝑟: {𝜓,𝛼�̇�𝒆𝟑
𝒓⊗𝒆𝜶

𝒓 + 𝜸�̇�⊗𝒆𝟑
𝒓}. (3.25) 

Note that the real stress 𝝉𝑖, represented on the current base 𝒆𝑖 (components (𝝉𝑖 ∙ 𝒆𝑖)) are 

component-wise equivalent to the back-rotated stress 𝝉𝑖
𝑟, represented on the reference base 𝒆𝑖

𝑟 

(components (𝝉𝑖
𝑟 ∙ 𝒆𝑖

𝑟)). This can be easily shown by writing (𝝉𝑖 ∙ 𝒆𝑖)𝒆𝑖 and  𝝉𝑖
𝑟 = (𝝉𝑖

𝑟 ∙ 𝒆𝑖
𝑟)𝒆𝑖

𝑟 → 𝝉𝑖
𝑟 =

𝑸𝑇𝝉𝑖 ⇒ (𝝉𝑖
𝑟 ∙ 𝒆𝑖

𝑟)𝒆𝑖
𝑟 = (𝝉𝑖 ∙ 𝒆𝑖)𝑸

𝑇𝒆𝑖 ⇒ (𝝉𝑖
𝑟 ∙ 𝒆𝑖

𝑟) = (𝝉𝑖 ∙ 𝒆𝑖). Therefore, it is important to remark that 

the vector 𝝉3
𝑟 = 𝜏3𝛼

𝑟 𝒆𝜶
𝒓 + 𝜏33

𝑟 𝒆𝟑
𝒓 does not represent the real stress, despite being numerically 

equivalent. 

In terms of 𝜼𝑟 and 𝜿𝑟, this product is 
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𝑷: �̇� = 𝝉𝛼
𝑟 ∙ 𝜓,𝛼�̇�𝒆3

𝑟 + 𝝉3
𝑟 ∙ [�̇�𝑟 + �̇�𝑟 × (𝒂𝑟 + 𝑝𝜓𝒆3

𝑟) + 𝜿𝒓 × (�̇�𝜓𝒆3
𝑟) + 𝑝′̇ 𝜓𝒆3

𝑟]

=

[
 
 
 

𝝉3
𝑟

(𝒂𝑟 + 𝑝𝜓𝒆3
𝑟) × 𝝉3

𝑟

𝜓,𝛼𝝉𝛼
𝑟 ∙ 𝒆3

𝑟 + 𝜓𝝉𝟑
𝑟 ∙ (𝜿𝒓 × 𝒆3

𝑟)

𝜓𝝉3
𝑟 ∙ 𝒆3

𝑟 ]
 
 
 

∙

[
 
 
 
 
𝜼�̇�

𝜿�̇�

�̇�

𝑝′̇ ]
 
 
 
 

. 
(3.26) 

Substituting (3.26) in (3.23), and performing the area integration, the internal power for rods is 

obtained 

 𝑃𝑖𝑛𝑡 = ∫ 𝝈𝑟 ∙ �̇�𝑟𝑑휁
𝐿

0
= ∫ 𝝈𝑟 ∙ 𝜳𝜟�̇�𝜃𝑑휁

𝐿

0
, (3.27) 

where 

𝝈𝑟 = ∫

[
 
 
 

𝝉3
𝑟

(𝒂𝑟 + 𝑝𝜓𝒆3
𝑟) × 𝝉3

𝑟

𝜓,𝛼𝝉𝛼
𝑟 ∙ 𝒆3

𝑟 + 𝜓𝝉3
𝑟 ∙ (𝜿𝑟 × 𝒆3

𝑟)

𝜓𝝉3
𝑟 ∙ 𝒆3

𝑟 ]
 
 
 

𝑑𝐴𝑟

𝐴𝑟
= [

𝒏𝑟

𝒎𝑟

𝑄
𝐵

] (3.28) 

is the generalized stress resultants vector. As in the case of the nominal stresses, in equation (3.28), 𝒏𝑟 

and 𝒎𝑟 are NOT the true force resultants (normal and shear forces) and moment resultants (bending 

moments and torsion moment), but are again component-wise equivalent to those resultants 𝒏 = 𝑸𝒏𝑟 

and 𝒎 = 𝑸𝒎𝑟, if 𝒏,𝒎 are in the base 𝒆𝑖 and 𝒏𝑟,𝒎𝒓 are in the base 𝒆𝑖
𝑟. The bi-shear (𝑄) and is the bi-

moment (𝐵), are scalars, thus, do not depend on any base. 

The virtual internal work can be directly derived from the internal power. Thus, it is  

 
𝛿𝑊𝑖𝑛𝑡 = ∫ 𝑷: 𝛿𝑭𝑑𝑉𝑟 = ∫ 𝝈𝑟 ∙ 𝛿𝜺𝑟𝑑휁

𝐿

0

=
𝑉𝑟

 

∫ 𝝈𝑟 ∙ 𝜳𝜟δ𝒅θ𝑑휁
𝐿

0
, ∀𝛿𝒅𝜃(휁) ∈ ℋ1

0(𝛺), 

(3.29) 

where 𝜹𝜺𝑟 = [𝛿𝜼𝑟 𝛿𝜿𝑟 𝛿𝑝 𝛿𝑝′]𝑇 is the generalized virtual strain vector, with  

 𝛿𝜼𝑟 = 𝑸𝑇𝛿𝒖′ +𝑸𝑇𝒁′𝜞𝛿𝜽   and   𝛿𝜿𝒓 = 𝑸𝑇(𝜞′𝛿𝜽 + 𝜞𝛿𝜽′). (3.30) 

The external power is 

 𝑃𝑒𝑥𝑡 = ∫ [∫ �̅� ∙ �̇�𝑑𝐶𝑟
𝐶𝑟

+ ∫ �̅� ∙ �̇�𝑑𝐴𝑟
𝐴𝑟

]
𝐿

0
𝑑휁, (3.31) 

where �̅� represents the surface forces per reference area unit and �̅� represents the volume forces per 

reference area or volume unit, both acting in the current configuration. 𝐶𝑟 and 𝐴𝑟 are the contour and 

the area of the cross-section in the reference configuration. The speed �̇� is 

 

�̇� = �̇� = �̇� + �̇� + �̇� = �̇� + �̇�𝒂𝒓 + 𝜓𝑝�̇�𝒆𝟑 +𝜓�̇�𝒆𝟑

= �̇� + 𝜴𝑸(𝒂𝒓 + 𝜓𝑝𝒆𝟑
𝒓) + 𝜓�̇�𝒆𝟑 =

= �̇� + 𝝎 × (𝒂 + 𝜓𝑝𝒆𝟑) + 𝜓�̇�𝒆𝟑. 

(3.32) 

Substituting (3.32) in (3.31), and remembering that �̇�, 𝝎 = 𝜞�̇�, 𝑝 and �̇� are functions only in 휁, one 

gets 
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𝑃𝑒𝑥𝑡 = ∫ {�̇� ∙ [∫ �̅�𝑑𝐶𝑟

𝐶𝑟
+∫�̅�𝑑𝐴𝑟

𝐴

] + 𝜞�̇�
𝐿

0

∙ [∫ (𝒂 + 𝜓𝑝𝒆𝟑) × �̅�𝑑𝐶
𝑟

𝐶𝑟
+∫ (𝒂 + 𝜓𝑝𝒆𝟑) × �̅�𝑑𝐴

𝑟

𝐴𝑟
]

+ �̇� [∫ 𝜓�̅� ∙ 𝒆𝟑𝑑𝐶
𝑟

𝐶𝑟
+∫ 𝜓�̅� ∙ 𝒆𝟑𝑑𝐴

𝑟

𝐴𝑟
]} 𝑑휁. 

(3.33) 

Introducing the generalized external resultant forces vector �̅� = [�̅� �̅� �̅�]𝑇, 

 𝑃𝑒𝑥𝑡 = ∫ �̅� ∙ 𝒅�̇�𝑑휁
𝐿

0
, (3.34) 

 where  

 �̅� = [
�̅�
�̅�

�̅�

] =

[
 
 
 
 
 
 

𝜞T

[∫ �̅�𝑑𝐶𝑟

𝐶𝑟
+∫ �̅�𝑑𝐴𝑟

𝐴𝑟
]

(∫ (𝒂 + 𝜓𝑝𝒆𝟑) × �̅�𝑑𝐶
𝑟

𝐶𝑟
+∫ (𝒂 + 𝜓𝑝𝒆𝟑) × �̅�𝑑𝐴

𝑟

𝐴𝑟
)

∫ 𝜓�̅� ∙ 𝒆𝟑𝑑𝐶
𝑟

𝐶𝑟
+∫ 𝜓�̅� ∙ 𝒆𝟑𝑑𝐴

𝑟

𝐴𝑟 ]
 
 
 
 
 
 

. (3.35) 

In equation (3.35), �̅� represents the external forces, �̅� = 𝜞T�̅� is defined as the external pseudo-

moment and �̅� is the external bi-moment. Note that, in this formulation, the pseudo-moment is the 

energetically conjugated of the rotations, not the moment itself. Discussions about this fact have been 

broadly carried in many references, such as in Pimenta and Yojo [22], Campello [1], and Fernandes 

[26]. 

With the aid of the external power expressions, the virtual external work is directly obtained, and is 

given by 

 𝛿𝑊𝑒𝑥𝑡 = ∫ �̅� ∙ 𝛿𝒅𝜃𝑑휁
𝐿

0

,   ∀𝛿𝒅𝜃(휁) ∈ ℋ1
0(𝛺) (3.36) 

Were concentrated loadings to be included, a certain formalism must be introduced. Let 𝛿𝜁∗  

represent the Dirac delta function3, 휁∗ are the points with applied concentrated loads and 𝒒∗ the 

concentrated loads4. Thus, rewriting equation (3.36), one gets 

 𝛿𝑊𝑒𝑥𝑡 = ∫ (�̅� + 𝛿𝜁∗𝒒
∗) ∙ 𝛿𝒅𝜃𝑑휁

𝐿

0
,   ∀𝛿𝒅𝜃(휁) ∈ ℋ1

0(Ω). (3.37) 

Thus 

 

3 This is not a function in the usual sense, but has as properties 𝛿𝑎 = {
+∞, 휁 = 𝑎 ∈ ℝ 
0, otherwise

 and 

∫ 𝑓(휁)𝛿𝑎𝑑휁
+∞

−∞
= 𝑓(휁). Therefore, it is useful to the integration of pulses in the trial functions.  

4 If the solution is obtained from the differential equation, it must include the loads from the 

connection with adjacent rods, since, element-wise, they are external. When the weak form is used, 

this is not needed, since the integral is performed throughout the whole domain, and this kind of 

interaction is accounted for in the global virtual internal work. 
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 𝛿𝑊𝑒𝑥𝑡 = ∫ �̅� ∙ 𝛿𝒅𝜃𝑑휁
𝐿

0
+ 𝒒∗ ∙ 𝛿𝒅𝜃|

𝜁∗
 . (3.38) 

Inserting (3.37) in (3.22), the weak form of equilibrium for this model is achieved 

 𝛿𝑊 = ∫ (𝝈𝑟 ∙ 𝛿𝜺𝑟 − �̅� ∙ 𝛿𝒅𝜃)𝑑휁
𝐿

0

− 𝒒∗ ∙ 𝛿𝒅𝜃|
𝜁∗
= 0, 𝛿𝒅𝜃(휁) ∈ ℋ1

0(Ω) (3.39) 

By the structure of equation (3.39), it is evident that the virtual work must be integrable, but with 

the first derivatives piece-wise continuous (i.e, discontinuous at a finite number of points). Therefore, 

the solution belongs to the Sobolev space (ℋ1
0), from where the trial functions are also taken. 

Integrating by parts, and using the definitions of the virtual quantities, one gets 

 
𝛿𝑊 = ∫ −(𝒏′ + �̅�) ∙ 𝛿𝒖 − (𝒎′ + 𝒛′ × 𝒏 + �̅�) ∙ (𝜞𝛿𝜽) − (𝐵′ − 𝑄 + �̅�)𝑑휁

𝐿

0

 

+(𝑛 − 𝑛∗) ∙ 𝛿𝒖|
𝜁∗
+ (𝜞T𝒎−𝜞T𝒎∗) ∙ 𝛿𝜽|

𝜁∗
+ (𝐵 − 𝐵∗) ∙ 𝛿𝑝|

𝜁∗
= 0. 

(3.40) 

By performing integration by parts in equation (3.39), the strong form of the equilibrium is 

achieved. It is strong in the sense that now, 𝒅𝜃 ∈ 𝒞
2(0, 𝐿), besides the boundary conditions. By the 

fundamental lemma of variational calculus, equation (3.59) is only satisfied for ∀𝛿𝒅𝜃(휁) ∈ ℋ1
0(𝛺) if 

 

Local equilibrium{
𝒏′ + �̅� = 𝒐

𝒎′ + 𝒛′ × 𝒏+ �̅� = 𝒐
𝐵′ − 𝑄 + �̅� = 0

; 

Natural boundary conditions {
𝒏 = 𝒏∗

𝜞T𝒎 = 𝜞T𝒎∗

𝐵 = 𝐵∗
 in 휁𝑟. 

(3.41) 

Equation (3.41) is the differential form of equilibrium, and the natural boundary conditions were 

consistently derived from the Virtual Work Theorem, with a fairly intuitive result: it is expected that 

the stress resultants at the edges are equal to the prescribed ones. Essential boundary conditions are 

directly imposed upon solution, by prescribing the displacements 𝒅𝜃 = 𝒅𝜃
∗  in 휁𝑢. 

There are some observations concerning the bi-shear: 

a) although the bi-shear has a major role on the differential equation, it does not possess an 

associated natural boundary condition; 

b) depending on how the formulation is built, the bi-shear and the bi-moment might end up with 

swapped signals. Here, the bi-shear has a negative (-) sign in the differential equation (𝐵′ −

𝑄 = 0, in the absence of �̅�), which is NOT consistent with the definition from Vlasov’s 

classical theory, for which 𝑄 = −𝜙′′′𝐸𝐼𝜔 = −𝐵′, where 𝜙 is the torsion rotation. Thus, for 

comparison with the classical theory, the bi-shear obtained from PEFSYS must be multiplied 

by -1. It should be noted, though, that as long as the differential equation that relates 𝐵 and 𝑄 

is consistently deduced, there should be no problems; 

c) the bi-shear and bi-moment require an additional equation, since there is no kinematical 

constraint between torsional rotation and warping, differently from what is seen in the linear 

Saint-Venant’s or Vlasov’s rod theory. 
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3.3. Tangent bilinear form 

In order to solve the weak form through numerical methods, in the current case, the Finite Element 

Method (FEM), a tangent operator is needed. After discretizing the weak form, such operator leads to 

the stiffness matrix for each step, and, in the non-linear case, it is never constant. In the context of 

structural theories, such as rods and shells, the exact consideration of finite rotations is one of the main 

sources of non-linearity, and as will be shown in this section, many derivatives of 𝜽  are present. This 

tangent operator is obtained through the consistent linearization of the weak form (equation (3.39)). 

Using again a derivative with respect to a scalar, the Fréchet derivative is obtained.  

 𝛿2𝑊 = ∫ [(𝑫𝜳𝜟𝛿𝒅𝜃) ∙ (𝜳𝜟𝛿𝒅𝜃) + (𝑮𝜃𝜟𝛿𝒅𝜃) ∙ (𝜟𝛿𝒅𝜃) − (𝑳𝜃𝛿𝒅𝜃) ∙ 𝛿𝒅𝜃]𝑑휁,
𝐿

0

 (3.42) 

where 𝑫, 𝑮𝜃 and 𝑳𝜃 are, respectively, the material, geometric and external loading contributions to the 

tangent operator. For the specific case of this 7-DOF rod model, those contributions are (see Appendix 

G) 

 𝑫 =
𝜕𝝈𝒓

𝜕𝜺𝒓
=

[
 
 
 
 
 
 
𝜕𝒏𝑟

 𝜕𝜼𝑟
𝜕𝒏𝑟

 𝜕𝜿𝑟
𝜕𝒏𝑟

 𝜕𝑝

𝜕𝒏𝑟

 𝜕𝑝′

𝜕𝒎𝑟

 𝜕𝜼𝑟
𝜕𝒎𝑟

 𝜕𝜿𝑟
𝜕𝒎𝑟

 𝜕𝑝

𝜕𝒎𝑟

 𝜕𝑝′

𝜕𝑄

 𝜕𝜼𝑟
𝜕𝑄

 𝜕𝜿𝑟
𝜕𝑄

 𝜕𝑝

𝜕𝑄

 𝜕𝑝′

𝜕𝐵

 𝜕𝜼𝑟
𝜕𝐵

 𝜕𝜿𝑟
𝜕𝐵

 𝜕𝑝

𝜕𝐵

 𝜕𝑝′]
 
 
 
 
 
 

, (3.43) 

 𝑮𝜃 =

[
 
 
 
 
 
𝑶 𝑮𝒖′𝜽 𝑶 𝒐 𝒐

𝑮𝒖′𝜽
𝑇 𝑮𝜽𝜽 𝑮𝜽′𝜽′ 𝒐 𝒐

𝑶 𝑮𝜽′𝜽′
𝑇 𝑶 𝒐 𝒐

𝒐𝑇 𝒐𝑇 𝒐𝑇 0 0
𝒐𝑇 𝒐𝑇 𝒐𝑇 0 0]

 
 
 
 
 

, (3.44) 

 𝑳𝜃 = [

𝑳𝑢𝑢 𝑳𝑢𝜃 𝑳𝑢𝑝
𝑳𝜃𝑢 𝑳𝜃𝜃 𝑳𝑝𝜃
𝑳𝑝𝑢 𝑳𝑝𝜃 𝑳𝑝𝑝

] =

[
 
 
 
 

𝜕�̅�

 𝜕𝒖

𝜕�̅�

 𝜕𝜽

𝜕�̅�

 𝜕𝑝

𝜕(𝜞𝑇�̅�)

 𝜕𝒖

𝜕(𝜞𝑇�̅�)

 𝜕𝜽

𝜕(𝜞𝑇�̅�)

 𝜕𝑝

𝜕�̅�

 𝜕𝒖

𝜕�̅�

 𝜕𝜽

𝜕�̅�

 𝜕𝑝 ]
 
 
 
 

. (3.45) 

The first deduction of the tangent operator 𝛿2𝑊 is often credited to Simo [15], despite the 

important contribution from Pimenta and Yojo [22], who consistently wrote the weak form using the 

conjugated pair (𝛿𝜽, 𝝁) for the first time, rendering a symmetric expression for 𝑮𝜃. Simo, instead, 

used (𝛿𝜽,𝒎), which is not an energetically conjugated pair, obtaining a non-symmetric 𝑮𝜃. Formally, 

Simo’s approach is not incorrect, but unintentionally lead to a Petrov-Galerkin type of projection, in 

which the trial function comes from a different space than the field being approximated, which 

naturally renders the mentioned asymmetry. 
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The sub-matrices from (3.44) are highly non-linear terms, that use the definitions from previous 

works, such as Simo and Vu-Quoc [15] and Pimenta and Yojo [22], and the skew-symmetric tensors 

𝑵,𝑴 and 𝒁′ (from 𝒏,𝒎 and 𝒛′, respectively). They are 

 

𝑮𝑢′𝜃 = −𝑵𝜞  and  𝑮𝑢′𝜃
𝑇 = 𝜞𝑇𝑵 

𝑮𝜃𝜃 = 𝜞
𝑻𝒁′𝑵𝜞− 𝑽(𝜽, 𝒛′ × 𝒏) + 𝑽′(𝜽,𝒎) − 𝜞′𝑴𝜞 

𝑮𝜃′𝜃′ = 𝑽(𝜽,𝒎)  and  𝑮𝜃′𝜃′
𝑇 = 𝑽𝑇(𝜽,𝒎), 

(3.46) 

where, for a certain vector 𝒕, there is an operator  𝑽(𝜽, 𝒕) that arises from the derivations present on 

the geometric contribution of the tangent operator, and is described in [1], for example. 

As shown in the aforementioned works from Simo, Pimenta and Campello, the geometric 

contribution is also symmetric. 

For the material contribution to the tangent operator, one has the following symmetric matrix 

 𝑫 =
𝜕𝝈𝑟

𝜕𝜺𝑟
=

[
 
 
 
 
𝑫𝜂𝜂 𝑫𝜂𝜅 𝑫𝜂𝑝 𝑫𝜂𝑝′

𝑫𝜅𝜅 𝑫𝜅𝑝 𝑫𝜅𝑝′

𝑫𝑝𝑝 𝑫𝑝′𝑝′

𝑆𝑦𝑚. 𝑫𝑝′𝑝′]
 
 
 
 

. (3.47) 

Using the chain rule, the stress resultants definitions, and some auxiliary expressions (presented in 

[3]), the submatrices of 𝑫 can be calculated:  

 

𝑫𝜂𝜂 =
𝜕𝒏𝒓

 𝜕𝜼𝒓
= ∫

𝜕𝝉3
𝑟

𝜕𝜸𝑟
𝜕𝜸𝒓 

𝜕𝜼𝑟𝐴

𝑑𝐴 = ∫𝑪33𝑑𝐴
𝐴

 

𝑫𝜂𝜅 =
𝜕𝒏𝑟

 𝜕𝜿𝑟
= ∫

𝜕𝝉3
𝑟

𝜕𝜸𝑟
𝜕𝜸𝒓

𝜕𝜿𝑟𝐴

𝑑𝐴 = ∫−𝑪33(𝑨
𝑟 + 𝑝𝜓𝑬3

𝑟)𝑑𝐴
𝐴

 

𝑫𝜂𝑝 =
𝜕𝒏𝑟

 𝜕𝑝
= ∫

𝜕𝝉3
𝑟

𝜕𝑝𝐴

𝑑𝐴 = ∫𝒄𝑑𝐴
𝐴

 

𝑫𝜂𝑝′ =
𝜕𝒏𝑟

 𝜕𝑝′
= ∫

𝜕𝝉3
𝑟

𝜕𝑝′𝐴

𝑑𝐴 = ∫𝒅𝑑𝐴
𝐴

 

𝑫𝜅𝜅 =
𝜕𝒎𝑟

 𝜕𝜿𝑟
= ∫

𝜕

𝜕𝜿𝑟
[(𝑨𝑟 + 𝑝𝜓𝑬3

𝑟)𝝉3
𝑟]

𝐴

𝑑𝐴

= ∫−(𝑨𝑟 + 𝑝𝜓𝑬3
𝑟)𝑪33(𝑨

𝑟 + 𝑝𝜓𝑬3
𝑟)𝑑𝐴

𝐴

 

𝑫𝜅𝑝 =
𝜕𝒎𝒓

 𝜕𝑝
= ∫

𝜕

𝜕𝑝
[(𝑨𝑟 + 𝑝𝜓𝑬3

𝑟)𝝉3
𝑟]

𝐴

𝑑𝐴

= ∫[𝜓𝑬3
𝑟𝝉3
𝑟 + (𝑨𝑟 + 𝑝𝜓𝑬3

𝑟)𝒄]𝑑𝐴
𝐴

 

𝑫𝜅𝑝′ =
𝜕𝒎𝑟

 𝜕𝑝′
= ∫

𝜕

𝜕𝑝′
[(𝑨𝑟 + 𝑝𝜓𝑬3

𝑟)𝝉3
𝑟]

𝐴

𝑑𝐴 = ∫[(𝑨𝑟 + 𝑝𝜓𝑬3
𝑟)𝒅]𝑑𝐴

𝐴

 

(3.48) 
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𝑫𝑝𝑝 =
𝜕𝑄

 𝜕𝑝
= ∫

𝜕

𝜕𝑝
[𝜓,𝛼𝝉𝛼

𝑟 ∙ 𝒆3
𝑟 + 𝜓𝝉3

𝑟 ∙ (𝜿𝑟 × 𝒆3
𝑟)]

𝐴

𝑑𝐴

= ∫[𝒃𝛼𝜓,𝛼 + 𝜓(𝜿
𝑟 × 𝒆3

𝑟) ∙ 𝒄]𝑑𝐴
𝐴

 

𝑫𝑝𝑝′ =
𝜕𝑄

 𝜕𝑝′
= ∫

𝜕

𝜕𝑝′
[𝜓,𝛼𝝉𝛼

𝑟 ∙ 𝒆3
𝑟 + 𝜓𝝉3

𝑟 ∙ (𝜿𝑟 × 𝒆3
𝑟)]

𝐴

𝑑𝐴

= ∫[𝑑𝛼𝜓,𝛼 + (𝜿
𝑟 × 𝒆3

𝑟)𝜓 ∙ 𝒅]𝑑𝐴
𝐴

 

𝑫𝑝′𝑝′ =
𝜕𝐵

 𝜕𝑝′
= ∫

𝜕

𝜕𝑝′
[(𝝉3

𝑟 ∙ 𝒆3
𝑟)𝜓]

𝐴

𝑑𝐴 = ∫[𝜓(𝒆3
𝑟 ∙ 𝒅)]𝑑𝐴

𝐴

, 

with 𝑨𝑟 = 𝑠𝑘𝑒𝑤(𝒂𝑟) and 𝑬3
𝑟 = 𝑠𝑘𝑒𝑤(𝒆3

𝑟).  For different elastic models, equations (3.47) and (3.48) 

hold, although not the expressions related to the auxiliary quantities 𝑪33 =
𝜕𝝉3
𝑟

𝜕𝜸𝑟
, 𝒄 =

𝜕𝝉3
𝑟

𝜕𝑝
, 𝒅 =

𝜕𝝉3
𝑟

𝜕𝑝′
, 𝑏𝛼 =

𝜕(𝝉𝜶
𝒓 ∙𝒆𝟑

𝒓)

𝜕𝑝
 and 𝑑𝛼 =

𝜕(𝝉𝛼
𝑟 ∙𝒆3

𝑟)

𝜕𝑝′
. Note that the chain rule for 

𝜕𝝉3
𝑟

𝜕𝜼𝑟
=
𝜕𝝉3
𝑟

𝜕𝜸𝑟
𝜕𝜸𝒓

𝜕𝜼𝑟
 and 

𝜕𝝉3
𝑟

𝜕𝜿𝑟
=
𝜕𝝉3
𝑟

𝜕𝜸𝑟
𝜕𝜸𝒓

𝜕𝜿𝑟
 are only valid if 

𝜼𝑟 and 𝜿𝑟 are arguments exclusively of 𝜸𝑟. In section 4.3, their expressions will be derived for Saint-

Venant’s and Simo-Ciarlet’s material.  

As 𝑮𝜃 and 𝑫 are symmetric, the symmetry of 𝑳𝜃 is the only remaining condition to make 𝛿2𝑊 to 

also have this property. In general, the contribution from the external loads 𝑳𝜃 is not null, except for 

some specific cases (e.g., constant external force). Many works contain a broader discussion about this 

subject (see [1] ,[22], [26], for instance). For now, it is only said that conservative loadings (which are 

the type of loadings to be considered in this work) render symmetric, but not null, 𝑳𝜃.  

 

3.4. The warping shape function 

This section is, the most important of the whole work: here, the pertinent modifications on the 

warping function from Campello and Lago’s [2] are shown, with the respective justification 

The Saint-Venant’s warping function is a popular choice for most kinematically exact rod models, 

but, when simplified material laws are used, only well-known geometric moments of inertia of 

different orders are needed (for example, Saint-Venant’s torsion inertia (𝐼𝑇), sectorial moment of 

inertia (𝐼𝜔), etc), which, for thin-walled members, do not require the full expression of the warping 

function for computation. However, when explicit integration for the stress resultants (and tangent 

stiffness matrix) is needed, the warping function 𝜓 must be exactly determined a priori in the whole 

cross-section. This has motivated Campello and Lago [2] to propose a method to generate a warping 

function that contemplates primary and secondary warping modes, but without the need of neither 

solving any kind of boundary value problem, nor any eigenproblem. In their article, they have shown 

that this approach provides excellent results for I-shaped, cruciform and rectangular sections. 

However, it was not clear whether it could be used for more arbitrary geometries, and, during the 

development of the current work, the author verified that certain modifications were indeed necessary. 
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Both Campello and Lago’s [2] and the current approach make use of local walls solutions. It is 

assumed that the cross-section is open and consisted of thin rectangular sub-sections, as depicted in 

Fig. 3. It is important to define the section global (𝜉1, 𝜉2) and walls local  (�̅�𝑖, �̅�𝑖) systems (sub-index 𝑖 

is used to refer to wall 𝑖), attached to the global (𝑂) and local (𝑂𝑖) references. The local system´s 

component �̅�𝑖 is always aligned with the respective wall length. It is also useful to define non-rotated 

local systems, given by (𝜉1
𝑖 , 𝜉2

𝑖 ).  

 

(a)  (b) 

Figure 4 – a) Global, local and auxiliary systems b) detail of a generic wall 𝒊. 

 

First, let us have a closer look on the classical Vlasov’s sectorial area, which represent the warping 

function along the walls midline. Then let us analyse Campello and Lago’s [2] warping function. 

Lastly, the proposed function will be introduced. 

3.4.1. Vlasov’s warping function – sectorial area 

The primary warping definition is found in Vlasov’s book [12]. The sectorial area function (𝜔) 

consists on a line integral of twice the area comprehended among a fixed point (sectorial pole, point 

𝐴), a fixed starting point (sectorial origin, point 𝐵) and the current evaluation point (𝑀) (henceforth, 

the notation 𝜔𝐴,𝐵(𝑠𝑀) is employed). 

In the original description, the area increment was positive if spinning clockwise, relatively to 𝐴. 

See Figure 5 for details. 
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(a) 
(b) 

Figure 5 – Defining sectorial area for a generic cross-section. a) Increment; b) Function 𝝎𝑨,𝑩. 

 

From Figure 5, it is conspicuous that the sectorial area increment is given by 

 𝑑𝜔 = −𝑟𝑛𝑑𝑠, (3.49) 

and, consequently, in a given point 𝑀, 

 𝜔𝐴,𝐵(𝑠𝑀) = ∮ −𝑟𝑛𝑑𝑠
𝑀

𝐵
. (3.50) 

Some examples of the sectorial area for usual geometries (I-section, C-section, top hat, Z-section, 

V-section) can be found in section 3.4.5. 

Fruchtengarten, in [50], shows that the Saint-Venant’s solution along the wall midline for open 

thin-walled cross-section is exactly the result of equation (3.50). Therefore, the Vlasov’s theory itself 

can be interpreted as an extension of the pure torsion warping function: the constrain 𝑝 = 휃3
′  (warping 

intensity equal to the specific torsion rotation) remains, but 𝑝 is not constant anymore. As 

consequence, axial normal stresses arise, together with additional self-balanced shear stresses, which 

originate the bi-moment and bi-shear. The torsion becomes non-uniform (varies along the rod´s axis) 

and both the bi-shear and bi-moment depends on the warping intensity and torsional specific rotation. 

Therefore, with the aid of equation (3.50), one can interpret that the sectorial area represents an 

average warping value on each wall. In fact, by imposing this assumption, Vlasov has obtained the 

normal stresses that are constant along the wall thickness and equal to the value at the midline. Thus, 

with the thin-walled assumption, together with the respective tangential stress assumption needed to 

respect local equilibrium, the bi-shear and bi-moment contributions to the resisting mechanism are 

obtained. 

Whenever torsion is of interest, the concept of shear centre (synonyms: torsion centre – when 

Poisson’s effects are neglected – and principal pole) is important in order to uncouple first order 

torsion, bending and axial effects. To find the shear centre coordinates (𝑠1, 𝑠2) and the principal 

origin, it is usual to impose three orthogonality conditions: 

with  

 𝑆𝜔
𝐶,𝐷 = 𝐼𝜔𝑥1

𝐶,𝐷 = 𝐼𝜔𝑥2
𝐶,𝐷 = 0, (3.51) 
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where (𝜉1, 𝜉2) is the cross-section coordinates with respect to the given arbitrary orthonormal basis 

(𝑒1, 𝑒2), 𝑆𝜔 is the sectorial static moment and 𝐼𝜔𝑥1 , 𝐼𝜔𝑥2 are the sectorial products of inertia with 

respect to the reference axis. The superscripts 𝐶, 𝐷 mean that those quantities are referred to the shear 

centre and principal origin. 

The static moment condition is the easiest to be met: after calculating a generic 𝜔𝐴,𝐵, a simple 

constant translation, given by  

 𝜔𝐴,𝐵
∗
= 𝜔𝐴,𝐵 −

𝑆𝜔
𝐴,𝐵

𝐴
, (3.53) 

generates a new function with zero sectorial static moment, having as sectorial origin the point 𝐵∗, 

indirectly determined by finding where 𝜔𝐴,𝐵
∗
= 05 . In fact, this is implicitly done by Timoshenko in 

[9], when defining the relation between normal stress and warping function. In Vlasov’s and 

Timoshenko’s works (and many of their successors’), the quantity 
𝑆𝜔
𝐴,𝐵

𝐴
 is referred to as the average 

sectorial area (�̅�𝐴,𝐵), and is equal to the sectorial area calculated between the old and the new 

sectorial origins (𝜔𝐴,𝐵(𝑠𝐵∗)) 

In [50], it is shown that the sectorial area function is affected by the change of sectorial pole by the 

relation 

 𝜔𝐴
∗,𝐵∗ = 𝜔𝐴,𝐵

∗
+ (𝜉2

𝐴 − 𝜉2
𝐴∗)(𝜉1 − 𝜉1

𝐵∗) + (𝜉1
𝐴 − 𝜉1

𝐴∗)(𝜉2 − 𝜉2
𝐵∗), (3.54) 

where 𝜉𝛼
𝐴 and 𝜉𝛼

𝐴∗ are the coordinates of the poles 𝐴 and 𝐴∗. 

Using definitions from (3.52) and (3.54), one gets 

 

𝐼𝜔𝑥1
𝐴∗,𝐵∗ = ∫𝜔𝐶,𝐵

∗
𝜉1𝑑𝐴

𝐴

= ∫ (𝜔𝐴,𝐵
∗
+ (𝜉2

𝐴 − 𝜉2
𝐴∗)(𝜉1 − 𝜉1

𝐵∗)
𝐴

+ (𝜉1
𝐴 − 𝜉1

𝐴∗)(𝜉2 − 𝜉2
𝐵∗)) 𝜉1𝑑𝐴 ; 

𝐼𝜔𝑥2
𝐴∗,𝐵∗ = ∫ 𝜔𝐴

∗,𝐵∗𝜉2𝑑𝐴𝐴
= ∫ (𝜔𝐴,𝐵

∗
+ (𝜉2

𝐴 − 𝜉2
𝐴∗)(𝜉1 − 𝜉1

𝐵∗) +
𝐴

(𝜉1
𝐴 − 𝜉1

𝐴∗)(𝜉2 − 𝜉2
𝐵∗)) 𝜉2𝑑𝐴. 

(3.55) 

By performing the multiplications, and using the moment definitions, it can be directly found that 

 

5 Note that it is not possible yet to assert that the point 𝐵∗obtained from equation (3.53) is the 

principal origin 𝐷, since only when the three orthogonality conditions from equation (3.51) are 

simultaneously met that 𝐶 and 𝐷 are determined. The same is valid for 𝐴∗in equation (3.54). 

 𝑆𝜔 = ∫𝜔𝑑𝐴
𝐴

;      𝐼𝜔𝑥1 = ∫𝜉1𝜔𝑑𝐴
𝐴

;      𝐼𝜔𝑥2 = ∫𝜉2𝜔𝑑𝐴
𝐴

, (3.52) 
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𝐼𝜔𝑥1
𝐴∗,𝐵∗ = 𝐼𝜔𝑥1

𝐴,𝐵∗ + (𝜉2
𝐴 − 𝜉2

𝐴∗)𝐼2 + (𝜉2
𝐴 − 𝜉2

𝐴∗)𝜉1
𝐵∗𝑆2 + (𝜉1

𝐴 − 𝜉1
𝐴∗)𝐼12

− (𝜉1
𝐴 − 𝜉1

𝐴∗)𝜉2
𝐵∗𝑆2; 

𝐼𝜔𝑥2
𝐴∗,𝐵∗ = 𝐼𝜔𝑥2

𝐴,𝐵∗ − (𝜉2
𝐴 − 𝜉2

𝐴∗)𝐼12 + (𝜉2
𝐴 − 𝜉2

𝐴∗)𝜉1
𝐵∗𝑆1 − (𝜉1

𝐴 − 𝜉1
𝐴∗)𝐼1

+ (𝜉1
𝐴 − 𝜉1

𝐴∗)𝜉2
𝐵∗𝑆1, 

(3.56) 

with the definitions of the elementary static moments and moments of inertia 

 

𝑆1 = ∫𝜉2𝑑𝐴;
𝐴

  𝑆2 = −∫𝜉1𝑑𝐴;
𝐴

 

𝐼1 = ∫𝜉2
2𝑑𝐴;

𝑎

  𝐼2 = ∫𝜉1
2𝑑𝐴

𝐴

;   𝐼12 = −∫𝜉1𝜉2𝑑𝐴
𝐴

. 

(3.57) 

After calculating 𝜔𝐴,𝐵 for an arbitrary pole (𝐴) and origin (𝐵), the pair (𝐶, 𝐷) that meets (3.51) can 

be obtained. 

The most direct way to determine 𝐶, 𝐷 is by imposing an auxiliary coordinate system on the gravity 

centre, and then going through the following the steps: 

 Step 1: With a first trial 𝜔𝐴,𝐵, apply equations (3.56), imposing 𝐼𝜔𝑥1
𝐴∗,𝐵 = 𝐼𝜔𝑥2

𝐴∗,𝐵 = 0. This will 

result in the system 

 [
𝜉2
𝐵𝑆2 − 𝐼12 𝜉1

𝐵𝑆2 − 𝐼2
−𝜉2

𝐵𝑆1 + 𝐼1 𝜉1
𝐵𝑆1 + 𝐼12

] [
𝜉1
𝐴∗ − 𝜉1

𝐴

𝜉2
𝐴∗ − 𝜉2

𝐴
] = [

𝐼𝜔𝑥1
𝐴,𝐵

𝐼𝜔𝑥2
𝐴,𝐵 ], (3.58) 

that allows to find the coordinate of a new sectorial pole, as the auxiliary system was placed on the 

gravity centre, such that  𝑆1 = 𝑆2 = 0. Solving for Δ𝝃𝑠 = [
𝜉1
𝐴∗ − 𝜉1

𝐴

𝜉2
𝐴∗ − 𝜉2

𝐴
] yields 

 Δ𝝃𝑆 =
1

𝐼1𝐼2 − 𝐼12
2 [
−𝐼12𝐼𝜔𝑥1

𝐴,𝐵 + 𝐼2𝐼𝜔𝑥2
𝐴,𝐵

−𝐼1𝐼𝜔𝑥1
𝐴,𝐵 − 𝐼12𝐼𝜔𝑥2

𝐴,𝐵 ]. (3.59) 

With Δ𝝃𝑆¸the new pole (𝐴∗) coordinates are directly found. 

Step 2: Calculate the new sectorial area function (𝜔𝐴
∗,𝐵); 

Step 3: Apply equation (3.53), generating a sectorial area function that satisfies 𝑆𝜔
𝐴∗,𝐵∗ = 0. A 

new sectorial origin 𝐵∗ is indirectly obtained, as mentioned above; 

Step 4: Verify if the imposition of a new sectorial origin interferes with the sectorial products 

of inertia with respect of the axis.  

 𝜔𝐴
∗,𝐵∗ = 𝜔𝐴

∗,𝐵 +𝜔𝐴
∗,𝐵∗(𝑠𝐵). (3.60) 

Substituting on the sectorial moments of inertia definitions, one gets 

 

𝐼𝜔𝑥1
𝐴∗,𝐵∗ = ∫ (𝜔𝐴

∗,𝐵 +𝜔𝐴
∗,𝐵∗(𝑠𝐵))𝐴

𝜉1𝑑𝐴 = 𝐼𝜔𝑥1
𝐴∗,𝐵 −𝜔𝐴

∗,𝐵∗(𝑠𝐵)𝑆2; 

𝐼𝜔𝑥2
𝐴∗,𝐵∗ = ∫(𝜔𝐴

∗,𝐵 +𝜔𝐴
∗,𝐵∗(𝑠𝐵))

𝐴

𝜉2𝑑𝐴 = 𝐼𝜔𝑥2
𝐴∗,𝐵 +𝜔𝐴

∗,𝐵∗(𝑠𝐵)𝑆1. 
(3.61) 
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Since the adopted axis are on the gravity centre, 𝐼𝜔𝑥1
𝐴∗,𝐵∗ = 𝐼𝜔𝑥1

𝐴∗,𝐵 = 0 and 𝐼𝜔𝑥2
𝐴∗,𝐵∗ = 𝐼𝜔𝑥2

𝐴∗,𝐵 = 0. In fact, 

equation (3.61) shows that, if the axes pass through the gravity centre, the sectorial products of inertia 

with respect to the axes do not depend on the sectorial origin. 

Therefore,  

 𝑆𝜔
𝐴∗,𝐵∗ = 𝐼𝜔𝑥1

𝐴∗,𝐵∗ = 𝐼𝜔𝑥2
𝐴∗,𝐵∗ = 0, (3.62) 

so, the determined points 𝐴∗, 𝐵∗ are indeed the principal pole (𝐶) and the principal origin (𝐷), 

respectively. Note that this procedure is only direct if the auxiliar system is placed on the gravity 

centre. For any other system, step 4 renders 𝐼𝜔𝑥1
𝐴∗,𝐵∗ = 𝐼𝜔𝑥2

𝐴∗,𝐵∗ ≠ 0, due to equation (3.61).  

It is important to observe, however, that the translation of the coordinate system does not change 

the position of neither 𝐶 nor 𝐷. In fact, if a new system < 𝒆𝟏
𝒈
, 𝒆𝟐
𝒈
> is used, so that 

 
𝜉1 = 𝜉1

𝑔
+ 𝑘𝜉1 

𝜉2 = 𝜉2
𝑔
+ 𝑘𝜉2 , 

(3.63) 

then  

 𝐼𝜔𝑥1
𝐶,𝐷 = ∫𝜔𝐶,𝐷𝜉1𝑑𝐴

𝐴

= ∫𝜔𝐶,𝐷𝜉1
𝑔
𝑑𝐴 +

𝐴

∫𝜔𝐶,𝐷𝑘𝜉1𝑑𝐴
𝐴

= 𝐼
𝜔𝑥1

𝑔
𝐶,𝐷 + 𝑘𝜉1𝑆𝜔

𝐶,𝐷 . (3.64) 

Due to the orthogonality conditions, which were already satisfied, 𝑆𝜔
𝐶,𝐷 = 0, and then 𝐼𝜔𝑥1

𝐶,𝐷 =

𝐼
𝜔𝑥1

𝑔
𝐶,𝐷 = 0. The conclusion is analogous for 𝐼𝜔𝑥2

𝑔 = 0. It is worth mentioning that 𝜔 is always 

independent from the system choice, and so is 𝑆𝜔. Therefore, the sectorial area function can be 

directly obtained with the described procedure, regardless of any translation of the reference axis. 

 

3.4.2. Campello and Lago warping function 

This warping function was presented by Campello and Lago, in [2]. As mentioned throughout the 

text, it contemplates primary and secondary warping contributions. In this case, the primary warping is 

given by the Vlasov’s sectorial area, whereas the secondary warping is given by adding a local Saint-

Venant’s torsion solution for rectangular cross-sections for each wall of the section (equation (3.65) 

and (3.66)). Following the notation introduced in Fig. 3 (note that 𝑎𝑖 and 𝑏𝑖 are the wall semi-length 

and semi-thickness, respectively), for each rectangular sub-section the warping function is reproduced 

bellow: 

 𝜓(𝜉1, 𝜉2) = 𝜔(𝑠) + 𝜓𝑅(𝑥�̅�, 𝑦�̅�), (3.65) 

 𝜓𝑅(�̅�𝑖 , 𝑦�̅�) = −
(𝑎𝑖
6 + 19𝑎𝑖

4𝑏𝑖
2 − 19𝑎𝑖

2𝑏𝑖
4 − 𝑏𝑖

6)𝑥𝑖𝑦𝑖̅̅ ̅̅ ̅

𝑎𝑖
6 + 14𝑎𝑖

4𝑏𝑖
2 + 14𝑎𝑖

2𝑏𝑖
4 + 𝑏6

−

35
12
𝑎𝑖
2𝑏𝑖

2(−4𝑥�̅�
3𝑦�̅� + 4𝑥�̅�𝑦�̅�

3)

𝑎𝑖
6 + 14𝑎𝑖

4𝑏𝑖
2 + 14𝑎𝑖

2𝑏𝑖
4 + 𝑏𝑖

6. 
(3.66) 

Note that 𝜓𝑅 is a polynomial approximation to the Saint-Venant’s warping function for rectangular 

sections and centre on the gravity centre (see Figure 6). It was obtained by Silva [49], using the 

Galerkin method. It should be noted that this function is an odd function. 

 



56 Marcos Pires Kassab 

Advances on a kinematically exact rod model for thin-walled open section members: consistent warping function and nonlinear constitutive equation 

 

Figure 6 – Function 𝝍𝑹 for a rectangular section with dimensions 5x20 (arbitrary unit). 

 

The discussion from section 3.4.1 was focusing solely on the function 𝜔. However, the same 

conclusions and procedures are valid for the Campello’s and Lago’s warping function (equation 

(2.66)), for the corresponding quantities 𝑆𝜓, 𝐼𝜓𝑥1 and 𝐼𝜓𝑥2  (equivalent to the definitions (3.52), but 

using 𝜓 instead of 𝜔). See the demonstration below. 

The sectorial static moment is still zero when the secondary warping is added. By definition, one 

gets 

 𝑆𝜓 = ∫ 𝜓(𝜉1, 𝜉2)𝐴
𝑑𝐴 = ∫ 𝜔(𝑠) + 𝜓𝑅(�̅�, �̅�)𝑑𝐴 = 𝑆𝜔 + 𝑆𝜓𝑅𝐴

= 𝑆𝜔, (3.67) 

since 𝑆𝜓𝑅 = ∑ ∫ 𝜓𝑅𝑑𝐴𝑖𝐴𝑖

𝑛𝑜.  𝑤𝑎𝑙𝑙𝑠
𝑖=1 = 0, for 𝜓𝑅 being odd on each wall. 

For the sectorial products of inertia, auxiliary axes are defined (Figure 4b), and they are related to 

the original axes through the relation (see Figure 4) 

 𝝃𝒊 = [
𝜉1
𝑖

𝜉2
𝑖
]  = [

𝜉1
𝜉2
] − [

𝑘𝜉1
𝑖

𝑘𝜉2
𝑖 ]. (3.68) 

The local axes (𝑥�̅�, 𝑦�̅�) from equation (2.67) are related to the new auxiliary axes (𝝃𝑖, for each wall 

𝑖) through the rotation equation 

 𝝃∗ = [
𝑐𝑜𝑠𝛽𝑖 −𝑠𝑖𝑛𝛽𝑖 
𝑠𝑖𝑛𝛽𝑖 𝑐𝑜𝑠𝛽𝑖

] [
�̅�𝑖
�̅�𝑖
]. (3.69) 

Using the definition for 𝐼𝜓𝑥1
𝐶,𝐷

, one gets 
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𝐼𝜓𝑥1
𝐶,𝐷 = ∫ 𝜓𝜉1𝑑𝐴𝐴

= ∫ (𝜔 + 𝜓𝑅)𝜉1𝑑𝐴𝐴
= 𝐼𝜔𝑥1

𝐶,𝐷
⏟
0

+ ∫ 𝜓𝑅𝜉1𝑑𝐴𝐴
. 

(3.70) 

Using the auxiliary axes (𝜉1
∗, 𝜉2

∗) and then rotating them, it is obtained 

 𝐼𝜓𝑥1
𝐶,𝐷 = 𝑘𝜉1𝑆𝜓𝑅 + ∫ 𝜓𝑅𝜉1

𝑖𝑑𝐴
𝐴

= ∫ 𝜓𝑅𝜉1
𝑖𝑑𝐴

𝐴
. (3.71) 

Then, by rotating the axis, the result is given by 

 

𝐼𝜓𝑥1
𝐶,𝐷 = ∑ ∫ 𝜓𝑅(𝑐𝑜𝑠𝛽𝑖�̅� − 𝑠𝑖𝑛𝛽𝑖�̅�)𝑑𝐴𝑖

𝐴𝑖

𝑛𝑜.  𝑤𝑎𝑙𝑙𝑠

𝑖=1

= ∑ [𝑐𝑜𝑠𝛽𝑖∫ 𝜓𝑅�̅�𝑑𝐴𝑖
𝐴𝑖

− 𝑠𝑖𝑛𝛽𝑖

𝑛𝑜.  𝑤𝑎𝑙𝑙𝑠

𝑖=1

∫ 𝜓𝑅�̅�𝑑𝐴𝑖
𝐴𝑖

] = 0,  

(3.72) 

since the functions 𝜓𝑅�̅� and 𝜓𝑅�̅� are antisymmetric w.r.t. one of the axis and symmetric w.r.t to the 

other one. The same result is obtained for 𝐼𝜓𝑥2
𝐶,𝐷

. 

Therefore, the position of the pair (𝐶, 𝐷) that is determined by the analysis of 𝜔 is not affected by 

the addition of 𝜓𝑅. 

Two important measures of the section stiffness are the torsional inertia – or Saint-Venant’s torsion 

inertia – (𝐼𝑇) and the warping constant (or warping inertia) (𝐼𝜓). The torsional inertia is given by 

 𝐼𝑇 = 𝐼0
𝐴 − 𝑒𝛼𝛽∫(𝜉𝛼 − 𝜉𝛼

𝐴)𝜓,𝛽𝑑𝐴
𝐴

, (3.73) 

where 𝐼0
𝐴 is the polar moment of inertia w.r.t the adopted pole 𝐴, 𝑒𝛼𝛽 = [

0 1
−1 0

].The warping 

constant is 

 𝐼𝜓 = ∫𝜓
2𝑑𝐴.

𝐴

 (3.74) 

The uniform torsion resisting mechanism stiffness is measured by 𝐼𝑇, whilst 𝐼𝜓 shall be used to 

evaluate the cross-sectional non-uniform torsion stiffness for a generic warping function. The relation 

𝑘 = √
𝐸𝐼𝜓

𝐺𝐼𝑇
 (𝐸 is the Young’s modulus and 𝐺 is the shear modulus) may be used to measure which one 

of the mentioned torsion-carrying mechanisms is preponderant. 

In the Vlasov’s linear theory, equation (3.74) becomes the sectorial moment of inertia 

 𝐼𝜔 = ∫ 𝜔
2𝑑𝐴

𝐴
. (3.75) 

After some examination (see the examples from section 3.4.5), it was evident that this approach 

always generates a warping function with a coherent 𝐼𝜓 measure. However, this was not true for 𝐼𝑇. 

Indeed, the only cross-sections for which 𝐼𝑇 rendered representative are the ones studied in [2]: bi-

symmetric I-shaped, rectangular and cruciform. Thus, some modification or correction is of utmost 

necessity, in order to obtain a truly robust 7 DOF model. Such improvement is shown below. 
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3.4.3.  Proposed warping function 

It was detected during numeric evaluations that the previous approach was not robust enough for 

arbitrary cross-sections. It seemed to work well only for the geometries that were tested in [2]. This 

was evidenced here when 𝐼𝑇 was evaluated for other cross-sections, such as C-channels and Z-

sections. Yet, it was noted that 𝐼𝜓 rendered always coherent, irrespective of the section´s geometry. As 

the evaluation of 𝐼𝜓 for open thin-walled sections is dominated by the primary warping, the author 

intuited that the pathological point to 𝐼𝑇 was on how the secondary warping was built. In order to track 

down to the root of the issue, let us go back to the elementary boundary value problem from the Saint-

Venant’s torsion theory. For a given cross-section 𝐴, with boundary 𝑆 and shear centre position 

(𝑠1, 𝑠2), the warping function 𝜓𝐶 w.r.t the shear centre is solution of 

 𝜓,𝛼𝛼
𝐶 = 0,     in 𝐴, (3.76) 

with the Dirichlet boundary condition 

 ∇𝜓𝐶 ∙ 𝝂 = 𝜓,𝛼
𝐶 𝜈𝛼 = −𝑒𝛼𝛽(𝜉𝛼 − 𝑠𝛼  )𝜈𝛽     in 𝑆, (3.77) 

where 𝝂 is the normal to the contour 𝑆. The dependency on the shear centre coordinates is only used to 

build the principal warping function, i.e. to uncouple the warping from bending and axial first order 

effects. Still, it is not unique up to a constant. In order to eliminate this source of non-uniqueness, it is 

usual to impose that ∫ 𝜓𝑑𝐴𝐴
= 0. By doing so, this last imposition, together with the shear centre 

dependency, the already mentioned orthogonality conditions are fulfilled. 

Note that the shear centre position is unknow. A possible technique to determine it is to solve the 

problem for an auxiliary function 𝜓0
𝐴, which satisfies 

 𝜓0,𝛼𝛼
𝐴 = 0,     in 𝐴,  and  ∇𝜓0

𝐴 ∙ 𝝂 = 𝜓0,𝛼
𝐴 𝜈𝛼 = −𝑒𝛼𝛽𝜉𝛼𝜈𝛽     in 𝑆. (3.78) 

Comparing the boundary condition from equations (3.77) and (3.78), it is possible to conclude that 

 𝜓𝐶 = 𝜓0
𝐴 − 𝑒𝛼𝛽𝑠𝛽𝜉𝛼 + 𝑐,  (3.79) 

where 𝑐 is a constant. It is important to remark that, if a point different from the shear centre is used as 

reference to build the warping function, the function value will differ from a plane function, as 

suggested by equation (3.79). 

It is not a coincidence that that the relationship between 𝜓𝐶 and 𝜓0
𝐴 has a similar structure to the 

one between 𝜔𝐶 and 𝜔𝐴 (see equation (3.54)), since, as can be found in Fruchtengarten [50], the 

primary warping is exactly correspondent to what is expected for the Saint-Venant’s warping along the 

walls midlines. In fact, the auxiliary solution 𝜓0
𝐴 is nothing but the warping function with its pole in 

(0,0). 

Those equations allow for an auxiliary function 𝜓0
𝐴 to be used to generate the principal warping 

function, which satisfies the orthogonality conditions. However, at first glance, nothing is said about 

building the auxiliary solution itself. It is proposed below a procedure that allows one to generate an 
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approximation to the Saint-Venant’s warping function for thin-walled open sections, for any desired 

pole or centre, using only the equation (3.79), and local walls solutions. 

Consider a generic cross section, composed by 𝑛 thin walls, as in Figure 4. Let us assume that, at 

the intersections, the boundary conditions along the thickness might be neglected at the walls 

intersection points, as the walls are thin. Therefore, if the warping function for rectangular sections 

(𝜓𝑅) is known, the complete cross-sectional warping can be determined as a composition of local 

solutions, which must be adjusted using equation (3.79) so that each local solution is built w.r.t the 

cross-section current pole (here, adopted as the shear centre). Accordingly, for each wall or sub-

section one gets 

 𝜓(𝜉1, 𝜉2) = 𝜓𝐿(𝜉1, 𝜉2) + 𝜓𝑅(�̅�𝑖, 𝑦�̅�), (3.80) 

with 

 𝜓𝐿(𝜉1, 𝜉2) = −(𝑠2 − 𝑘𝜉2
𝑖 )(𝜉1  − 𝑘𝜉1

𝑖 ) + (𝑠1 − 𝑘𝜉1
𝑖 ) (𝜉2 − 𝑘𝜉2

𝑖 ) + 𝑐𝑖. (3.81) 

The coefficients (𝑠2 − 𝑘𝜉2
𝑖 ) and (𝑠1 − 𝑘𝜉1

𝑖 ) in (3.81) are different for each wall (justifying the index 

𝑖), and given as function of the distance between 𝐶 and 𝑂𝑖. The constant term 𝑐𝑖, in turn, is settled so 

that there is continuity of 𝜓 along the intersecting walls midlines (for the first wall 1, one can impose 

initially 𝑐1 = 0, in order to obtain 𝜓𝐴. Later, this is adjusted to comply with the orthogonality 

conditions). 

Function 𝜓𝐿 is a linear function that can be interpreted as the result of the pole shift from the local 

system of where the local Saint-Venant’s warping function (𝜓𝑅) is conceived to the shear centre. By 

applying equations (3.80) and (3.81) to every wall, the proposed warping function is obtained, and is 

exactly the warping function that is obtained when the thin-wall approximation is introduced in the 

classical Saint-Venant’s theory. As in the warping function from Campello and Lago [2], function 𝜓𝑅 

is taken here as the one from [49], which is a polynomial approximation to the exact solution of the 

Saint-Venant’s warping function for rectangular cross-sections. 

Remarkably, it can be proven that values of 𝜓𝐿 calculated on the wall midline are precisely the 

same as those given by 𝜔(𝑠). Moreover, the only difference between equations (3.65) and (3.80) is a 

linear term in the secondary warping of each wall, i.e., along each wall thickness. Such term can be 

made explicit by expressing (3.81) in the walls local system. Note that the linear variation of the out-

of-plane displacements along the thickness is a common assumption for shell models, and has even 

been used for similar rod models (see Gonçalves [35], where only the linear terms are present in the 

warping function, even though the secondary warping is defined as to enforce Kirchhoff’s plate 

assumption).  

Using the same algorithm as in the last section, the shear centre (principal pole) is obtained. Note, 

however, that it cannot be guaranteed that the warping functions generated with (3.65) and (3.80) 

share the exact same coordinates for 𝐶, although they were nearly identical at the performed 

evaluations. 



60 Marcos Pires Kassab 

Advances on a kinematically exact rod model for thin-walled open section members: consistent warping function and nonlinear constitutive equation 

3.4.4. Implementation 

Based on what was shown in the last sections, an algorithm was developed for arbitrary open thin-

walled cross sections, constituted of rectangular walls or sub-sections. It was considered that inputs 

always respect those attributes, and no checking is made as to verify whether there are any loops 

(leading to a closed section) in the section description. Sections with loose segments should not be 

treated with this algorithm (for example, disconnected double C-channels). The rod axis is always at 

(0,0). 

 

Step 1: Determine the sequence for building the warping function (generates a list 𝑶𝒓𝒅, in which 

the first element is ALWAYS the first wall of the list), and determine which wall is the predecessor of 

a given segment (generates a list 𝑷𝒓𝒆𝒅). The following arbitrary cross section will be taken as an 

illustrative example: 

 

 

Figure 7 – Example of cross-section for sorting algorithm. 

 

With the pseudo-code below, one gets the sequence of integration 𝑶𝒓𝒅 = [1,3,4,2] and the list of 

predecessors is 𝑷𝒓𝒆𝒅 = [0,4,1,1] (for example, wall 2 is the last one to be calculated, and uses as 

reference the results from wall 1).  

 

 

 Pseudo-code for Step 1: 

! For a given list of straight segments that define the thin walls, return a list with the sequence 

for building the warping function and the respective precedents of each wall. Wall 1 is always 

the initial wall. 

Start subroutine 
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Initiate a vector (here, called 𝑶𝒓𝒅), with the number of the walls in crescent order 𝑶𝒓𝒅 =

[1,2,3,… ] 

Initiate a zero vector (here, called 𝑷𝒓𝒆𝒅), with the number of the precedented wall (wall 

from which the construction of the warping function will resume) 𝑷𝒓𝒆𝒅 = [0,0,0, . . . ] 

pos = 2 

For i=1 to “number of walls”  

For j=i+1 to “number of walls” 

if (Wall j intersects Wall i then)  

swap values in 𝑂𝑟𝑑(𝑝𝑜𝑠) and 𝑂𝑟𝑑(𝑗)  

𝑃𝑟𝑒𝑑(𝑗) =  𝑂𝑟𝑑(𝑖)  

pos = pos+1 

end if 

 end for 

end for  

end subroutine 

Step 2: Using the sequence from 𝑷𝒓𝒆𝒅, calculate 𝜓𝐴,𝐵 (according to either section 3.4.2 or 3.4.3, 

depending on the assumption that is under evaluation). 𝐴 is initially on (0,0) and 𝐵 is on the initial 

point of Wall 1. Note that this choice is arbitrary. 

Step 3: Using the procedure from section 3.4.2, update the sectorial pole and origin, so that they 

become the principal pole and principal origin.  

Step 4: Naturally, when the pole is updated, step 2 must be recalculated, in order to obtain 𝜓𝐶,𝐷.  

 

This procedure was implemented in PEFSYS, as a pre-processing interface that generates the 

desired warping function and its directional derivatives. To validate the approach and its 

implementation, the torsion-related geometrical properties (i.e., shear centre, sectorial moments, 

sectorial products of inertia, torsion inertia and warping constant) of some common sections were 

computed through numerical integration, via the composed Simpson’s method (see figure Figure 8), 

and the results compared to analytical ones from the literature. This same integration scheme is 

employed to evaluate other cross-sectional integrals of the rod model, such as the stress resultants and 

tangent stiffness matrix from equation (3.28) and (3.43), 
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Figure 8 – Wall “i” discretization for Simpson´s method integration. The weights are represented at the nodes, where 

the integrands are calculated 

 

3.4.5. Validation 

The proposed algorithm was tested for some usual cross-sections, presented below. Note that the 

analytical result for the warping constant 𝐼𝜓 is typically calculated only with the primary (Vlasov’s) 

warping. 

 

3.4.5.1. I-section (mono-symmetric) 

 

a) 
 

b) 

Figure 9 – a) Cross-section geometry. b) Sectorial area for principal pole and origin (𝝎𝑪,𝑫). 

 

The analytical geometrical properties´ expressions were deduced in [50], and the results are 
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𝑦𝑔 =

ℎ (𝑏𝑠𝑡𝑠 +
ℎ𝑡𝑤
2 )

𝐴
 

(3.82) 

 𝐴 = ℎ𝑡𝑤 + 𝑏𝑖𝑡𝑖 + 𝑏𝑠𝑡𝑠 (3.83) 

 𝐼𝑦𝑖 =
𝑡𝑖𝑏𝑖

3

12
; 𝐼𝑦𝑠 =

𝑡𝑠𝑏𝑠
3

12
 (3.84) 

 𝐼𝑦 = 𝐼𝑦𝑖 + 𝐼𝑦𝑠 =
𝑡𝑖𝑏𝑖

3

12
+
𝑡𝑠𝑏𝑠

3

12
 (3.85) 

 𝐼𝜔 =
ℎ2𝐼𝑦𝑖𝐼𝑦𝑠

𝐼𝑦
 (3.86) 

 𝑦𝐶 = ℎ
𝐼𝑦𝑠

𝐼𝑦
=
ℎ𝑡𝑠𝑏𝑠

3

12
 (3.87) 

A benchmark was made for some bi-symmetric commercial profiles (CVS, VS ,W ,HP), and for a 

fictitious mono-symmetric profile (Table 1). 
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3.4.5.2. Top hat (𝑏𝑖 > 0) and C-section (with (𝑏𝑖 < 0) or without (𝑏𝑖 = 0) stiffener) 

 

 

(a)  

(b) 

Figure 10 – a) Cross-section geometry. b) Sectorial area for principal pole and origin (𝝎𝑪,𝑫). 

 

The analytical geometrical properties expressions were deduced, and can be found in the 

Appendix A. 

 
|𝑦𝑔| =

(ℎ2𝑡𝑤 + 2ℎ𝑡𝑖|𝑏𝑖|)

𝐴
 

 

(3.88) 

 𝐴 = 2ℎ𝑡𝑤 + 2|𝑏𝑖|𝑡𝑖 + 𝑏𝑠𝑡𝑠 (3.89) 

 𝑦𝐶 =

𝑏𝑠
2ℎ2𝑡𝑤
4

+
𝑏𝑠
2ℎ|𝑏𝑖|𝑡𝑖
2

−
2|𝑏𝑖

3|ℎ𝑡𝑖
3

𝐼𝑦
 (3.90) 

 

𝐼𝜔 =
𝑏𝑠
3𝑡𝑆Δ𝜉2

2

12
+
𝑏𝑠
2

6
𝑡𝑤(ℎ

3 − 3ℎ2𝑦𝑐 + 3ℎ𝑦𝑐
2)

+
2|𝑏𝑖|

3
(3𝑘2 − 3𝑘𝑏𝑖ℎ

∗ + 𝑏𝑖
2ℎ∗2)𝑡𝑖 

(3.91) 

with 𝑘 =
𝑏𝑠

2
(ℎ − 𝑦𝑐) and ℎ∗ = ℎ + 𝑦𝑐.
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3.4.5.3. Z-section 

 

(a) 

 

(b) 

Figure 11 – a) Cross-section geometry. b) Sectorial area for principal pole and origin (𝝎𝑪,𝑫).  

The analytic geometric properties expressions were deduced in [50]. They are 

 𝑥𝑔 = 𝑥𝑐 = 0; (3.92) 

 𝐼𝜔 =
ℎ2𝑡𝑓𝑏

3

12𝐴
(𝑡𝑓𝑏 + 2ℎ𝑡𝑤); (3.93) 

A benchmark was made for two commercial profiles (Table 5). 
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3.4.5.4. V-section (with or without stiffener) 

 

(a) 
 

(b) 

Figure 12 – a) Cross-section geometry. b) Sectorial area for principal pole and origin (𝝎𝑪,𝑫).  

The analytic geometric properties expressions were deduced, and can be found in Appendix D. 

They are 

 𝑦𝑔 =
ℎ𝑡𝑤𝑙+2𝑡𝑓𝑏𝑓ℎ 

𝐴
; (3.94) 

 
𝐴 = 2𝑙𝑡𝑤 + 2𝑏𝑓𝑡𝑓; 

 
(3.95) 

 𝐼𝑦 =
2

3
𝑏2𝑙𝑡𝑤 + 2 [

𝑏𝑓
3𝑡𝑓

12
+ (𝑏 +

𝑏𝑓

2
)
2

𝑏𝑓𝑡𝑓]; (3.96) 

 𝑦𝑐 =
2ℎ𝑡𝑓(

𝑏𝑓
3

3
+
𝑏𝑓
2𝑏

2
)

𝐼𝑦
; 

(3.97) 

 
𝐼𝜔 =

2

3
𝑙𝑏2𝑦𝑐

2𝑡𝑤 +
2

3
𝑏𝑓 (3𝑏

2𝑦𝑐
2 − 3𝑏𝑦𝑐ℎ

∗𝑏𝑓 + (ℎ
∗𝑏𝑓)

2
) 𝑡𝑓, 

 

(3.98) 

with 𝑙 = √𝑏2 + ℎ2 and ℎ∗ = ℎ − 𝑦𝑐. A few examples are presented below (Table 7). 
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Note that, for the non-stiffened V sections, a non-zero warping inertia was obtained numerically due to 

the secondary warping, rendering the 100% relative error. The same happens for the shear centre 

position when the proposed warping function is used. 
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3.4.6. Validation conclusion – choosing the warping function 

As stated on the beginning of this section, the proposed function is more general than the one 

proposed by Campello and Lago [2] for arbitrary  thin-walled open sections. For a few specific cases, 

both methods generate exactly the same functions, and, for this reason, in the mentioned reference, the 

simulations were coherent. Having said that, to achieve more robustness, this work advances with the 

proposed warping function. With the proposed equation (3.80), for all the tested geometries, the 

numerical results are practically identical to the analytical ones, supporting that the proposed equation, 

the algorithm for generating the warping function and its implementation are correct. Possible sources 

of slight differences are the numerical integration and the neglect of the secondary warping in the 

analytical expressions. Here, it was assumed that the orthogonality conditions are adopted, without 

further explanation. In Appendix E, the reader finds a detailed (and important) discussion about this 

decision. The reading of such extract is strongly recommended. 
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4. CONSTITUTIVE EQUATION AND PROPOSED CONTRIBUTION 

In continuum mechanics, a constitutive equation characterizes a material behaviour, mapping the 

stress tensors as functions of kinematic fields (strains, velocity, etc). In this work, only isotropic 

hyperelastic materials are of interest. 

A material is elastic if the stress field is formally a function of only its strain field, and therefore, 

for a given strain tensor 𝑬, there is only one corresponding stress state 𝑺. 

A material is classified as hyperelastic if a specific strain energy function (𝜓ℎ(𝑬)) exists such that 

 𝑺 =
𝜕𝜓ℎ

𝜕𝑬
.  (4.1) 

Thus, hyperelastic materials are, necessarily, elastic. 

A material is isotropic if its properties (particularly, mechanical ones) are strictly the same in every 

direction.  For isotropic materials, its potential function can be written as function of the three 

invariants of the right Cauchy-Green strain tensor (𝑪) 

 𝐼1 = 𝑰: 𝑪,    𝐼2 =
1

2
𝑰: 𝑪𝟐,       and 𝐼3 = 𝑑𝑒𝑡𝑭.  (4.2) 

It should be noted that 𝑑𝑒𝑡𝑪 = 𝑑𝑒𝑡𝑭2, justifying the usage of 𝑭 in 𝐼3.  

For this work, the stress tensor 𝑷𝑟 is needed, rather than 𝑺. Using the identities 𝑷𝑟 = 𝑸𝑇𝑷, (B.7), 

(3.8) and (4.2), one gets  

 𝑷𝑟 = 𝑭𝑟
𝜕𝜓ℎ

𝜕𝑬
, (4.3) 

With equations (A.7), (4.3) and applying the chain rule 

 𝑷𝑟 = 𝑭𝑟
𝜕𝜓ℎ
𝜕𝑪

𝜕𝑪

𝜕𝑬
. (4.4) 

It is easy to show that 
𝜕𝑪

𝜕𝑬
= 2𝑰, thus (4.5) becomes  

 𝑷𝑟 = 2𝑭𝑟
𝜕𝜓ℎ
𝜕𝑪

. (4.5) 

Let us calculate the derivative of the right-hand side of the above equation. First, let us rewrite 

 
𝜕𝜓ℎ

𝜕𝑪
=
𝜕𝜓ℎ

𝜕𝐼𝑖

𝜕𝐼𝑖

𝜕𝑪
 . (4.6) 

The terms 
𝜕𝜓ℎ

𝜕𝐼𝑖
 will only depend on the specific adopted material, whilst the terms 

𝜕𝐼𝑖

𝜕𝑪
 can be readily 

obtained. The derivatives of 𝐼1, 𝐼2 and 𝐼3 are 

 
𝜕𝐼1

𝜕𝑪
= 𝑰, (4.7) 

 
𝜕𝐼2

𝜕𝑪
= 𝑪 . (4.8) 

In order to find the derivatives of 𝐼3, some auxiliar results are needed (see Appendix H). The result 

is  

 
𝜕𝐼3
𝜕𝑪

=
𝐽

2
(𝑭𝑟

−1𝑭𝑟−𝑇). (4.9) 
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With (4.8) and (4.9), it is possible to rewrite (4.6) as 

 𝑷𝑟 =
𝜕𝜓ℎ
𝜕𝐽

𝐽𝑭𝑟
−𝑇
+ 2

𝜕𝜓ℎ
𝜕𝐼1

𝑭𝑟 + 2
𝜕𝜓ℎ
𝜕𝐼2

𝑭𝑟𝑪 . (4.10) 

Note that, using the fact that (𝒂⊗ 𝒃)(𝒄⊗ 𝒅) = (𝒃 ∙ 𝒄)(𝒂⊗ 𝒅), 𝑪 and 𝑭𝑟𝑪 can be expressed by 

the column-vectors of 𝑭𝑟 

 𝑪 = 𝑭𝑟
𝑇
𝑭𝑟 = (𝒆𝑖

𝑟⊗𝒇𝑖
𝑟)(𝒇𝑗

𝑟⊗𝒆𝑗
𝑟) = (𝒇𝑖

𝑟 ∙ 𝒇𝑗
𝑟)(𝒆𝑖

𝑟⊗𝒆𝑗
𝑟) (4.11) 

 
𝑭𝑟𝑪 = (𝒇𝑖

𝑟 ∙ 𝒇𝑗
𝑟)(𝒆𝑘

𝑟 ⊗𝒇𝑘
𝑟 )(𝒆𝑖

𝑟⊗𝒆𝑗
𝑟) = (𝒇𝑖

𝑟 ∙ 𝒇𝑗
𝑟)(𝒆𝑖

𝑟 ∙ 𝒆𝑘
𝑟 )(𝒇𝑘

𝑟 ⊗𝒆𝑗
𝑟)

= (𝒇𝑖
𝑟 ∙ 𝒇𝑗

𝑟)(𝒇𝑖
𝑟⊗𝒆𝑗

𝑟) 
(4.12) 

Also, knowing that 𝑑𝑒𝑡𝑭𝑟 = 𝑑𝑒𝑡𝑭 = 𝐽, and using that the inverse matrix can be calculated as 

 𝑭𝑟
−1
=
1

𝐽
𝑎𝑑𝑗(𝑭𝑟) =

1

𝐽
𝑐𝑜𝑓(𝑭𝑟)𝑇 ,   (4.13) 

where the operator 𝑎𝑑𝑗(∙) represents the adjoint matrix, and 𝑐𝑜𝑓(∙) represents the cofactors matrix, 

one gets that 

 𝐽𝑭𝑟−𝑇  = 𝑐𝑜𝑓(𝑭𝑟). (4.14) 

Defining  

 𝑐𝑜𝑓(𝑭𝑟) = 𝒈𝑖
𝑟⊗𝒆𝑖

𝑟,  (4.15) 

with, for 3x3 matrixes, 

 𝒈1
𝑟 = 𝒇2

𝑟 × 𝒇3
𝑟, 𝒈2

𝑟 = 𝒇3
𝑟 × 𝒇1

𝑟, 𝒈3
𝑟 = 𝒇1

𝑟 × 𝒇𝟐
𝑟 , (4.16) 

or, more concisely, 

 𝒈𝑖
𝑟 =

1

2
𝜖𝑖𝑗𝑘𝒇𝑗

𝑟 × 𝒇𝑘
𝑟 , (4.17) 

in which 𝜖𝑖𝑗𝑘 represents the permutation symbol for three dimensions, it is now possible to substitute 

(4.11), (4.12) and (4.15) in (4.10), rendering 

 

𝑷𝑟 = 𝝉𝑖
𝑟⊗𝒆𝑖

𝑟  =
𝜕𝜓ℎ
𝜕𝐽

𝒈𝑖⊗𝒆𝑖
𝑟 + 2

𝜕𝜓ℎ
𝜕𝐼1

𝒇𝑖
𝑟⊗𝒆𝑖

𝑟

+ 2
𝜕𝜓ℎ
𝜕𝐼2

(𝒇𝑖
𝑟 ∙ 𝒇𝑗

𝑟)(𝒇𝑖
𝑟⊗𝒆𝑗

𝑟).  

(4.18) 

Thus, using the fact that (𝒇𝑖
𝑟 ∙ 𝒇𝑗

𝑟)(𝒇𝑖
𝑟) = (𝒇𝑗

𝑟⊗𝒇𝑗
𝑟)𝒇𝑖

𝑟, the column-vectors 𝝉𝑖
𝑟 are 

 𝝉𝑖
𝑟  =

𝜕𝜓ℎ
𝜕𝐽

𝒈𝑖
𝑟 + 2

𝜕𝜓ℎ
𝜕𝐼1

𝒇𝑖
𝑟 + 2

𝜕𝜓ℎ
𝜕𝐼2

(𝒇𝑗
𝑟⊗𝒇𝑗

𝑟)𝒇𝑖
𝑟.  (4.19) 

Note that (4.19) is valid for any isotropic hyperelastic material. This presentation of 𝑷𝑟, in terms of 

the columns of 𝑭𝑟 was taken from Dasambiagio [25]. 

It is also possible to define the fourth order tensor of the tangent elastic modulus, 𝔻 =
𝜕𝑺

𝜕𝑬
, but since 

it will not be employed directly in the rod model, no further discussion about it will be done here. 

Some variables that will be used in the constitutive equations must now be defined. Let 𝜆, 𝜇 be the 

(generalized) Lamé elastic moduli. From elasticity theory, the following expressions are valid 
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 𝜇 = 𝐺    and    𝜆 + 2𝜇 =
𝐸(1−𝜈)

(1+𝜈)(1−2𝜈)
, (4.20) 

wherein 𝐸 is the longitudinal elastic modulus, 𝐺 is the transverse elastic modulus and 𝜈 is the 

Poisson’s coeficient. Were Poisson effects to be neglected, equation (4.20)2 could be modified to 

emulate the implied uniaxial state. This renders 𝜆 + 2𝜇 ≈ 𝐸, and should help to avoid volumetric 

locking. 

Three isotropic hyperelastic material laws are commonly of interest in the context of kinematically 

exact rod models: the linear elastic, the Saint-Venant´s6 and the Simo-Ciarlet´s material. The last two 

are 2-parameter hyperelastic constitutive equations that apply to 3D deformations and relate more 

general (objective) stress and strain tensors.  

Here, the exact form of the constitutive equations are employed (i.e., retaining all higher order 

strains in the stress resultants expressions), differently from what was done in [1], [3] (and in almost 

every other work, except [2]), where only some of the higher order terms were retained. As a 

downside, in the current approach, stress resultants and the tangent stiffness matrix must be 

numerically integrated, increasing the total time for building the correspondent vectors and matrices. 

Even though some operations might even be possible to analytically integrate beforehand, the structure 

of the constitutive equations requires a lot of algebraic effort that would still be dependent on a large 

amount of high-order geometrical properties, which are not trivial. That said, the option was to 

evaluate the stress resultants and their derivatives through numerical integration of their analytical 

expressions, for both Saint-Venant’s and Simo-Ciarlet’s materials (see Appendix I for another 

approach). 

4.1. Particularizing elastic constitutive equations for rods 

In rod models, the concept of cross-sectional stress resultants, which implies integration of stresses 

over the cross-sectional area, allows one to write the constitutive equation in the following general 

form 

 𝝈𝑟 = 𝝈�̂�(𝜺𝑟),   𝑫 =
𝜕𝝈𝑟

𝜕𝜺𝒓
, (4.21) 

where 𝝈𝑟 is a vector that collects the cross-sectional resultants (forces, moments and, occasionally, bi-

shear and bi-moment), 𝜺𝑟 is a vector that contains generalized strain measures and 𝑫 = �̂�(𝜺) is a 

tangent elastic matrix that relates those quantities (being a function of the material parameters and the 

cross-sectional geometrical properties, such as area, moments of inertia, etc). As shown in [23], [24], 

when stresses are analytically integrated over the cross-section, as to allow for the cross-sectional 

force and moment resultants, an explicit expression for 𝑫 is obtained, which depends on the cross-

section´s geometry and the adopted material law for the model at hand. This is also shown in detail in 

section 3.2 and 3.3. 

 

6 Sometimes, this material is also referred to as the Kirchhoff-Saint-Venant’s material. 
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Using the formulation for isotropic hyperelastic materials, it is possible to integrate 𝝈𝑟 and 𝑫. 

Whilst 𝝈𝑟 is obtained directly from the integration of 𝝉𝑖
𝑟 (see equation (3.28)), for the calculation of 𝑫 

(equation (3.43)), the auxiliar expressions 𝑪33, 𝒄, 𝒅, 𝒅𝛼, 𝒃𝛼 are needed. Constraining the formulation 

for the 7 DOF rod model, one gets from equation (3.8), the particular cases  

 𝒇𝛼
𝑟 = 𝒆𝛼

𝑟 + 𝑝𝜓,𝛼𝒆3
𝑟 ,   𝒇3

𝑟 = 𝒆3
𝑟 + 𝜸𝑟, (4.22) 

and, for 𝛼 ≠ 𝛽 

 
𝒈𝛼
𝑟 = 𝒆𝛼

𝑟 − (𝜸𝑟 ∙ 𝒆𝛼
𝑟 )𝒆3

𝑟 + (𝜸𝑟 ∙ 𝒆3
𝑟)𝒆𝛼

𝑟 + 𝜓,𝛽𝑝[(𝜸
𝑟 ∙ 𝒆𝛼

𝑟 )𝒆𝛽
𝑟 − (𝜸𝑟 ∙ 𝒆𝛽

𝑟)𝒆𝛼
𝑟 ], 

𝒈3
𝑟 = 𝒆3

𝑟 − 𝑝𝜓,𝛼𝒆𝛼
𝑟 , 

(4.23) 

The following auxiliary results will be necessary (where needed, 𝒗 is a constant vector) 

 
𝜕𝒇𝛼

𝑟

𝜕𝜸𝑟
= 𝟎,

𝜕𝒇3
𝑟

𝜕𝜸𝑟
= 𝑰, (4.24) 

 
𝜕𝒇𝛼

𝑟

𝜕𝑝
= 𝜓𝛼𝒆3

𝑟 ,
𝜕𝒇3

𝑟

𝜕𝑝
=
𝜕𝜸𝑟

𝜕𝑝
= 𝜿𝑟 × 𝜓𝒆3

𝑟, (4.25) 

 
𝜕𝒇𝛼

𝑟

𝜕𝑝′
= 𝒐,

𝜕𝒇3
𝑟

𝜕𝑝′
= 𝜓𝒆3

𝑟, (4.26) 

 
𝜕𝐽

𝜕𝜸𝑟
=
𝜕𝒈3

𝑟∙𝒇3
𝑟

𝜕𝜸𝑟
= 

𝜕𝒈3
𝑟𝑇𝒇3

𝑟

𝜕𝜸𝑟
= 𝒈3

𝑟𝑇 𝜕𝒇3
𝑟

𝜕𝜸𝑟
= 𝒈3

𝑟𝑇𝑰 = 𝒈3
𝑟𝑇, (4.27) 

 

𝜕𝐽

𝜕𝑝
= (

𝜕𝒈3
𝑟

𝜕𝑝
∙ 𝒇3
𝑟 + 𝒈3

𝑟 ∙
𝜕𝒇3

𝑟

𝜕𝑝
) = ((

𝜕𝒇1
𝑟

𝜕𝑝
× 𝒇2

𝑟 + 𝒇1
𝑟 ×

𝜕𝒇2
𝑟

𝜕𝑝
) ∙ 𝒇3

𝑟 + 𝒈3
𝑟 ∙

𝜕𝒇3
𝑟

𝜕𝑝
) =

(𝒈𝑖
𝑟 ∙

𝜕𝒇𝑖
𝑟

𝜕𝑝
) = 𝒈𝛼

𝑟 ∙ 𝜓,𝛼𝒆3
𝑟 + 𝒈3

𝑟 ∙ 𝜿𝑟 × 𝜓𝒆3
𝑟 = −[(𝜸𝑟 ∙ 𝒆𝛼

𝑟 )𝜓,𝛼 +

𝑝𝜓𝜓,𝛼(𝜿
𝑟 × 𝒆3

𝑟) ∙ 𝒆𝛼
𝑟 ], 

(4.28) 

 
𝜕𝐽

𝜕𝑝′
=
𝜕𝒈3

𝑟∙𝒇3
𝑟

𝜕𝑝′
= 𝒈3

𝑟𝑇 𝜕𝒇3
𝑟

𝜕𝑝′
= 𝒈3

𝑟 ∙ 𝜓𝒆3
𝑟 = 𝜓, (4.29) 

 
𝜕𝒈𝛼

𝑟

𝜕𝑝
∙ 𝒆3
𝑟 = −(

𝜕𝜸𝑟

𝜕𝑝
∙ 𝒆𝛼
𝑟 ) = (−𝜿𝑟 × 𝜓𝒆3

𝑟 ∙ 𝒆𝛼
𝑟 ) = −𝜖𝛼𝛽𝜓(𝒆𝛽

𝑟 ∙ 𝜿𝑟), (4.30) 

 
𝜕𝒈3

𝑟

𝜕𝜸𝑟
= 𝑓1

𝑟 × 𝑓2
𝑟 = 𝑶, (4.31) 

 
𝜕𝒈3

𝑟

𝜕𝑝
=
𝜕𝒇1

𝑟

𝜕𝑝
× 𝒇2

𝑟 + 𝒇1
𝑟 ×

𝜕𝒇2
𝑟

𝜕𝑝
= 𝜖𝛼𝛽𝜓,𝛼𝒆3

𝑟 × (𝒆𝛽
𝑟 + 𝜓,𝛽𝑝𝒆3

𝑟) = −𝜓,𝛼𝒆𝛼
𝑟 , (4.32) 

 
𝜕𝒈𝛼

𝑟

𝜕𝑝′
= 𝜖𝛼𝛽3

𝜕𝒇𝛽
𝑟×𝒇3

𝑟

𝜕𝑝′
= 𝜖𝛼𝛽3𝒇𝛽

𝑟 ×
𝜕𝒇3

𝑟

𝜕𝑝′
= 𝜖𝛼𝛽3𝒆𝛽

𝑟 × 𝜓𝒆3
𝑟 = 𝜓𝒆𝛼

𝑟 , (4.33) 

 
𝜕𝒈3

𝑟

𝜕𝑝′
= 𝟎, (4.34) 

 
𝑡𝑟𝑪 = 𝑡𝑟(𝑭𝑟

𝑇𝑭𝑟) = 𝑡𝑟 ((𝒆𝑖
𝑟⊗𝒇𝑖

𝑟)(𝒇𝑗
𝑟⊗𝒆𝑖

𝑟)) = 𝑡𝑟 ((𝒇𝑖
𝑟 ∙ 𝒇𝑗

𝑟)(𝒆𝑖
𝑟⊗𝒆𝑗

𝑟))

= 𝒇𝑗
𝑟 ∙ 𝒇𝑗

𝑟 
(4.35) 

 

𝜕(𝑡𝑟𝑪)𝒗

𝜕𝜸𝑟
= 𝒗

𝜕𝒇𝑗
𝑟∙𝒇𝑗

𝑟

𝜕𝜸𝑟
= 𝒗

𝜕𝒇3
𝑟∙𝒇3

𝑟

𝜕𝜸𝑟
= 𝒗

𝜕𝒇3
𝑟∙𝒇3

𝑟

𝜕𝒇3
𝑟

𝜕𝒇3
𝑟

𝜕𝜸𝑟
= 2𝒗𝑰𝒇3

𝑟𝑇𝑰 = 2𝒗𝒇3
𝑟𝑇 = 2𝒗⊗

𝒇3
𝑟   

(4.36) 
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𝜕𝑡𝑟𝑪

𝜕𝑝
=
𝜕𝒇𝑗

𝑟 ∙ 𝒇𝑗
𝑟

𝜕𝑝
=
𝜕𝒇𝑗

𝑟𝑇𝒇𝑗
𝑟

𝜕𝑝
=
𝜕𝒇𝑗

𝑟𝑇

𝜕𝑝
𝒇𝑗
𝑟 + 𝒇𝑗

𝑟𝑇
𝜕𝒇𝑗

𝑟

𝜕𝑝
= 2

𝜕𝒇𝑗
𝑟

𝜕𝑝
∙ 𝒇𝑗
𝑟

= 2[(𝜓,𝛼𝒆3
𝑟) ∙ (𝒆𝛼

𝑟 + 𝑝𝜓,𝛼𝒆3
𝑟) + (𝜿𝑟 × 𝜓𝒆3

𝑟) ∙ (𝒆3
𝑟 + 𝜸𝑟)]

= 2[𝑝𝜓,𝛼𝜓,𝛼 + (𝜿
𝑟 × 𝜓𝒆3

𝑟) ∙ (𝜸𝑟)]  

(4.37) 

′ 
𝜕𝑡𝑟𝑪

𝜕𝑝′
= 2

𝜕𝒇𝑗
𝑟

𝜕𝑝′
∙ 𝒇𝑗
𝑟 = 2𝜓(1 + 𝜸𝑟 ∙ 𝒆3

𝑟) (4.38) 

 

𝜕𝒇𝑗
𝑟⊗𝒇𝑗

𝑟

𝜕𝜸𝑟
𝒗 =

𝜕(𝒇𝑗
𝑟 ∙ 𝒗)𝒇𝑗

𝑟

𝜕𝜸𝑟
=
𝜕(𝒇𝑗

𝑟 ∙ 𝒗)

𝜕𝜸𝑟
𝒇𝑗
𝑟 + (𝒇𝑗

𝑟 ∙ 𝒗)
𝜕𝒇𝑗

𝑟

𝜕𝜸𝑟

= 𝒇𝑗
𝑟
𝜕(𝒗𝑇𝒇𝑗

𝑟)

𝜕𝜸𝑟
+ (𝒇𝑗

𝑟 ∙ 𝒗)
𝜕𝒇𝑗

𝑟

𝜕𝜸𝑟

= 𝒇𝑗
𝑟𝒗𝑇

𝜕(𝒇𝑗
𝑟)

𝜕𝜸𝑟
+ (𝒇𝑗

𝑟 ∙ 𝒗)
𝜕𝒇𝑗

𝑟

𝜕𝜸𝑟
= 𝒇3

𝑟𝒗𝑇𝑰 + (𝒇3
𝑟 ∙ 𝒗)𝑰

= 𝒇3
𝑟⊗𝒗+ (𝒇3

𝑟 ∙ 𝒗)𝑰 

(4.39) 

 

𝜕𝒇𝑗
𝑟⊗𝒇𝑗

𝑟

𝜕𝑝
=
𝜕𝒇𝑗

𝑟

𝜕𝑝
⊗ 𝒇𝑗

𝑟 + 𝒇𝑗
𝑟⊗

𝜕𝒇𝑗
𝑟

𝜕𝑝

= (𝜓,𝛼𝒆3
𝑟  ) ⊗ (𝒇𝛼

𝑟 ) + (𝜿𝑟 ×𝜓𝒆3
𝑟)⊗ (𝒇3

𝑟) + (𝒇𝛼
𝑟 )

⊗ (𝜓,𝛼𝒆3
𝑟  ) + (𝒇3

𝑟)⊗ (𝜿𝑟 × 𝜓𝒆3
𝑟) 

(4.40) 

 
𝜕𝒇𝑗

𝑟⊗𝒇𝑗
𝑟

𝜕𝑝′
=
𝜕𝒇𝑗

𝑟

𝜕𝑝′
⊗𝒇𝑗

𝑟 + 𝒇𝑗
𝑟⊗

𝜕𝒇𝑗
𝑟

𝜕𝑝′
= 𝜓𝒆3

𝑟⊗ (𝒇3
𝑟) + (𝒇3

𝑟) ⊗ 𝜓𝒆3
𝑟  (4.41) 

 

4.2. Linear and second order elasticity  

The linear elastic constitutive equation is also known as the generalised Hooke’s law. For small 

strains, it relates Cauchy’s stress tensor with the infinitesimal strain tensor 𝑬𝒍 through the well-known 

equation  

 𝑻 = (𝜆𝑰⊗ 𝑰 + 2𝜇𝕀𝑆)𝑬𝒍. (4.42) 

In the linear regime (small strains), 𝑻 ≈ 𝑺 ≈ 𝑷, and the expression (4.42) can be used to integrate 

the cross-sectional resultants, rendering 

 𝝈𝑟 = 𝑫𝐿𝜺
𝑟, (4.43) 

in which 𝑫𝐿 emerges with the classical expression from the strength of materials. Only trivial cross-

sectional geometrical properties are required. For 7 DOF models, for example, they totalize 10 

quantities: area (𝐴), 5 moments of inertia (𝐼1, 𝐼2, 𝐼12, 𝐼𝜓, 𝐼𝑇), centroid´s coordinates (𝑥1, 𝑥2) and shear 

centre coordinates (𝑠1, 𝑠2). Such matrix was presented in [1], admitting that the warping function was 

generated w.r.t the shear centre, and is given by 
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 𝑫𝐿 =

[
 
 
 
 
 
 
 
 
𝐺𝐴 0 0 0 0 −𝐺𝐴𝑔2 𝐺𝐴(𝑔2 − 𝑠2) 0

𝐺𝐴 0 0 0 𝐺𝐴𝑔1 −𝐺𝐴(𝑔1 − 𝑠1) 0

𝐸𝐴 𝐸𝐴𝑔2 −𝐸𝐴𝑔1 0 0 0

𝐸𝐼1 𝐸𝐼12 0 0 0

𝐸𝐼2 0 0 0

𝐺𝐼0 𝐺(𝐼𝑇 − 𝐼0 + 𝐴𝑔𝛼𝑠𝛼) 0

𝑆𝑦𝑚. 𝐺(𝐼0
𝑆 − 𝐼𝑇) 0

𝐸𝐼𝜓]
 
 
 
 
 
 
 
 

, (4.44) 

and with 𝜺𝑟 = [𝜼𝑟 𝜿𝑟 𝑝 𝑝′]𝑇, the stress resultants 𝝈𝑟 can be calculated. 

Despite clear practical advantages, small strains are implicitly assumed, and this ultimately 

(although unintentionally) may lead to the loss of important coupling effects, notably the ones related 

to torsion/warping and axial strains.  

Attempting to mitigate this issue, Pimenta and Campello, using more advanced material laws 

(Saint-Venant’s and Simo-Ciarlet’s material) gradually incorporated higher order strains terms in the 

constitutive equation. In [1], second-order axial and curvature strains, as well as first order-warping 

strains, were considered. Four additional third-order geometrical moments of inertia were necessary 

for calculation. In [3], second-order terms on all strains were retained, and the number of geometrical 

properties amounted to 42. Even though, albeit some improvements, a few inconsistent results and 

convergence issues persisted. 

When second-order terms are retained, the stress vector 𝝈𝑟 is calculated with the aid of cross-

sectional geometrical properties (although several of which are nontrivial), and the result may be 

conveniently written as7  

 𝝈𝑟 = (𝑫𝐿 +
𝟏

𝟐
𝑫𝑄)𝜺

𝑟, (4.45) 

where 𝑫𝑄 has terms up to the first order in 𝜺𝑟. 

It must be highlighted that, when only first-order strain terms are retained, both Saint-Venant´s and 

Simo-Ciarlet´s materials collapse to the linear elastic form. 

Lago and Campello proposed in [2] a different approach: while restricting their analysis to the 

Saint-Venant’s material, but considering both primary and secondary warpings (as described in section 

2.3.3.3), the authors used the exact expression (i.e., with all strain terms retained), and then 

numerically integrated 𝝈𝑟 and 𝑫. Despite the promising results obtained, where some of the 

pathological cases reported previously were overcome, two major drawbacks can be cited: 1) the 

adopted material (Saint-Venant’s) is not polyconvex, and 2) the developments were carried out for 

only a few (and simple) types of cross-sections, namely, by-symmetric I-shaped, rectangular, 

cruciform and T (although for this latter there was an apparent inconsistent result).  

Therefore, in order to address those issues, it is proposed here the deduction and implementation of 

both the Saint-Venant’s and Simo-Ciarlet’s material, so that comparison becomes possible. 

 

7 With 𝑫𝐿 as the same as in (4.5). See the mentioned references for details on 𝑫𝑄. 



 Marcos Pires Kassab 79 

Advances on a kinematically exact rod model for thin-walled open section members: consistent warping function and nonlinear constitutive equation 

4.3. Exact constitutive equation for Saint-Venant’s material  

The exact form of the constitutive equation that follows from this material for application in rod 

models was first presented in [2]. It was re-implemented in this work for comparison purposes, but 

now considering the improved warping function developed in Chapter 3. Here, it is represented using 

the approach from equation (4.19). In Appendix H, the same material law is represented, but the 

expressions are represented as in [2] (despite some rectifications). It should be noted that difference 

between the expressions that are in this section and in said appendix is merely the notation. 

The potential function for this material is 

 𝜓ℎ(𝑬) =
1

2
𝜆(𝑡𝑟𝑬)2 + 𝜇𝑡𝑟(𝑬2) (4.46) 

In order to rewrite (4.46) as function of 𝑪, let us remember that 

 𝑬 =
1

2
(𝑪 − 𝑰), (4.47) 

thus 

 𝑡𝑟𝑬 =
1

2
𝑡𝑟(𝑪 − 𝑰) =

1

2
𝑡𝑟𝑪 −

3

2
=
1

2
𝐼1 −

3

2
, (4.48) 

 𝑡𝑟𝑬2 = 𝑡𝑟 (
1

4
(𝑪 − 𝑰)2) =

1

4
(𝑡𝑟𝐶2 − 2𝑡𝑟𝐶 + 3) =

𝐼2

2
−
𝐼1

2
+
3

4
. (4.49) 

Substituting (4.48) and (4.49) in (4.46), one gets 

 𝜓ℎ(𝑪) =
𝜆

8
𝐼1
2 −

1

4
(3𝜆 + 2𝜇)𝐼1 +

𝜇

2
𝐼2 +

15

8
. (4.50) 

Calculating 
𝜕𝜓ℎ

𝜕𝐼𝑖
, one gets 

 
𝜕𝜓ℎ
𝜕𝐼1

=
𝜆

4
𝐼1 −

1

4
(3𝜆 + 2𝜇),

𝜕𝜓ℎ
𝜕𝐼2

=
𝜇

2
 and       

𝜕𝜓ℎ
𝜕𝐼3

= 0. (4.51) 

Using (4.51) in (4.19), the 𝑷𝑟stress column-vectors are obtained, 

 𝝉𝑖
𝑟 = [

𝜆

2
𝐼1𝑰 + 𝜇(𝒇𝑗

𝑟⊗𝒇𝑗
𝑟) −

1

2
(3𝜆 + 2𝜇)𝑰] 𝒇𝑖

𝑟. (4.52) 

The operators 𝑪33, 𝒄, 𝒅, 𝑏𝛼 and 𝑑𝛼 for the Saint-Venant’s material are defined as (using the 

auxiliary results (4.23)-(4.41)) 

 

𝑪33 =
𝜕𝝉3
𝑟

𝜕𝜸𝑟
=
𝜕[
𝜆

2
𝐼1𝑰+𝜇(𝒇𝑗

𝑟⊗𝒇𝑗
𝑟)−

1

2
(3𝜆+2𝜇)𝑰]

𝜕𝜸𝑟
𝒇3
𝑟 + [

𝜆

2
𝐼1𝑰 + 𝜇(𝒇𝑗

𝑟⊗𝒇𝑗
𝑟) −

1

2
(3𝜆 + 2𝜇)𝑰]

𝜕𝒇3
𝑟

𝜕𝜸𝑟
= 𝜆𝒇3

𝑟 ⊗𝒇3
𝑟 + 𝜇(𝒇3

𝑟 ⊗𝒇3
𝑟 + 𝒇3

𝑟 ∙ 𝒇3
𝑟𝑰) + [

𝜆

2
𝐼1𝑰 +

𝜇(𝒇𝑗
𝑟⊗𝒇𝑗

𝑟) −
1

2
(3𝜆 + 2𝜇)𝑰], 

(4.53) 

 

𝒄 =
𝜕𝝉3
𝑟

𝜕𝑝
=
𝜕[
𝜆

2
𝐼1𝑰+𝜇(𝒇𝑗

𝑟⊗𝒇𝑗
𝑟)−

1

2
(3𝜆+2𝜇)𝑰]

𝜕𝑝
𝒇3
𝑟 + [

𝜆

2
𝐼1𝑰 + 𝜇(𝒇𝑗

𝑟⊗𝒇𝑗
𝑟) −

1

2
(3𝜆 + 2𝜇)𝑰]

𝜕𝒇3
𝑟

𝜕𝑝
= {𝜆[𝑝𝜓,𝛼𝜓,𝛼 + (𝜿

𝑟 × 𝜓𝒆3
𝑟) ∙ 𝜸𝑟] + 𝜇[(𝜓,𝛼𝒆3

𝑟  ) ⊗

(𝒇𝛼
𝑟 ) + (𝜿𝑟 ×𝜓𝒆3

𝑟)⊗ (𝒇3
𝑟) + (𝒇𝛼

𝑟 ) ⊗ (𝜓,𝛼𝒆3
𝑟  ) + (𝒇3

𝑟)⊗ (𝜿𝑟 ×

𝜓𝒆3
𝑟)]}𝒇3

𝑟 + [
𝜆

2
𝐼1𝑰 + 𝜇(𝒇𝑗

𝑟⊗𝒇𝑗
𝑟) −

1

2
(3𝜆 + 2𝜇)𝑰] (𝜿𝑟 × 𝜓𝒆3

𝑟), 

(4.54) 
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𝒅 =
𝜕𝝉3
𝑟

𝜕𝑝′
=
𝜕[
𝜆

2
𝐼1𝑰+𝜇(𝒇𝑗

𝑟⊗𝒇𝑗
𝑟)−

1

2
(3𝜆+2𝜇)𝑰]

𝜕𝑝′
𝒇3
𝑟 + [

𝜆

2
𝐼1𝑰 + 𝜇(𝒇𝑗

𝑟⊗𝒇𝑗
𝑟) −

1

2
(3𝜆 + 2𝜇)𝑰]

𝜕𝒇3
𝑟

𝜕𝑝′
= [𝜆𝜓(1 + 𝜸𝑟 ∙ 𝒆3

𝑟)𝑰 + 𝜇(𝜓𝒆3
𝑟⊗𝒇3

𝑟 + 𝒇3
𝑟⊗𝜓𝒆3

𝑟)]𝒇3
𝑟 +

+ [
𝜆

2
𝐼1𝑰 + 𝜇(𝒇𝑗

𝑟⊗𝒇𝑗
𝑟) −

1

2
(3𝜆 + 2𝜇)𝑰]𝜓𝒆3

𝑟, 

(4.55) 

 

𝑏𝛼 =
𝜕(𝝉𝛼

𝑟 ∙𝒆3
𝑟)

𝜕𝑝
= (

𝜕[
𝜆

2
𝐼1𝑰+𝜇(𝒇𝑗

𝑟⊗𝒇𝑗
𝑟)−

1

2
(3𝜆+2𝜇)𝑰]

𝜕𝑝
𝒇𝛼
𝑟) ∙ 𝒆3

𝑟 + [
𝜆

2
𝐼1𝑰 +

𝜇(𝒇𝑗
𝑟⊗𝒇𝑗

𝑟) −
1

2
(3𝜆 + 2𝜇)𝑰]

𝜕𝒇𝛼
𝑟

𝜕𝑝
∙ 𝒆3
𝑟 = 𝜆(𝜓,𝛽𝜓,𝛽𝑝 + (𝜿

𝑟 × 𝜓𝒆3
𝑟) ∙

𝜸𝑟)𝜓,𝛼𝑝 + 𝜇 (
𝜕𝒇𝑗

𝑟⊗𝒇𝑗
𝑟

𝜕𝑝
𝒇𝛼
𝑟 ) ∙ 𝒆3

𝑟 + [
𝜆

2
𝐼1𝑰 + 𝜇(𝒇𝑗

𝑟⊗𝒇𝑗
𝑟) −

1

2
(3𝜆 +

2𝜇)𝑰] (𝜓,𝛼𝒆3
𝑟) ∙ 𝒆3

𝑟, 

(4.56) 

 

𝑑𝛼 = (
𝜕[
𝜆

2
𝐼1𝑰+𝜇(𝒇𝑗

𝑟⊗𝒇𝑗
𝑟)−

1

2
(3𝜆+2𝜇)𝑰]

𝜕𝑝′
𝒇𝛼
𝑟) ∙ 𝒆3

𝑟 + [
𝜆

2
𝐼1𝑰 + 𝜇(𝒇𝑗

𝑟⊗𝒇𝑗
𝑟) −

1

2
(3𝜆 + 2𝜇)𝑰]

𝜕𝒇𝛼
𝑟

𝜕𝑝′
∙ 𝒆3
𝑟 = 𝜆𝜓(1 + 𝜸𝑟 ∙ 𝒆3

𝑟)𝜓,𝛼𝑝 + 𝜇 (
𝜕𝒇𝑗

𝑟⊗𝒇𝑗
𝑟

𝜕𝑝′
𝒇𝛼
𝑟 ) ∙ 𝒆3

𝑟, 

(4.57) 

 

4.4. Exact constitutive equation for Simo-Ciarlet’s material 

In the work from Dasambiagio [25], there is a deduction for the Simo-Ciarlet’s material for rods 

that leaves the results as functions of the columns of 𝑭𝑟, but no further detailing is done, nor numerical 

implementation is performed, as he allows for very generic displacement fields. A similar deduction 

was developed in the current work, but the terms were particularized for the current 7-DOF rod model 

and expanded, allowing for best visualization of the coupling interactions. The goal is the same as in 

Campello and Lago’s [2]: to express all the terms from 𝝈𝒓 and 𝑫 without neglecting any strain terms. 

The Simo-Ciarlet’s material is characterized by the potential function 

 𝜓ℎ(𝐽, 𝐼1) =
𝜆

2
[
1

2
(𝐽2 − 1) − 𝑙𝑛𝐽] +

𝜇

2
(𝐼1 − 3 − 2𝑙𝑛𝐽). (4.58) 

Calculating 
𝜕𝜓ℎ

𝜕𝐼𝑖
, one gets 

 
𝜕𝜓ℎ
𝜕𝐼1

=
𝜇

2
,

𝜕𝜓ℎ
𝜕𝐼2

= 0 and       
𝜕𝜓ℎ
𝜕𝐼3

=
𝜆

2
[𝐽 −

1

𝐽
] − 𝜇

1

𝐽
. (4.59) 

Thus 

 𝝉𝑖
𝑟  = [

𝜆

2
(𝐽 −

1

𝐽
) − 𝜇

1

𝐽
]𝒈𝑖

𝑟 + 𝜇𝒇𝑖
𝑟. (4.60) 

The operators 𝑪33, 𝒄, 𝒅, 𝑏𝛼 and 𝑑𝛼 for the Simo-Ciarlet’s material are defined as (using the auxiliary 

results (4.23)-(4.41)) 



 Marcos Pires Kassab 81 

Advances on a kinematically exact rod model for thin-walled open section members: consistent warping function and nonlinear constitutive equation 

 

𝑪33 =
𝜕𝝉3

𝑟

𝜕𝜸𝑟
= [
𝜆

2
(1 +

1

𝐽2
) + 𝜇

1

𝐽2
]𝒈3

𝑟
𝜕𝐽

𝜕𝜸𝑟
 + [

𝜆

2
(𝐽 −

1

𝐽
) − 𝜇

1

𝐽
]
𝜕𝒈3

𝑟

𝜕𝜸𝑟
+ 𝜇

𝜕𝒇3
𝑟

𝜕𝜸𝑟

= [
𝜆

2
(1 +

1

𝐽2
) + 𝜇

1

𝐽2
]𝒈3

𝑟(𝒇1
𝑟 × 𝒇2

𝑟)𝑇𝑰 + 𝜇𝑰

= [
𝜆

2
(1 +

1

𝐽2
) + 𝜇

1

𝐽2
]𝒈3

𝑟𝒈3
𝑟𝑇  + 𝜇𝑰

= [
𝜆

2
(1 +

1

𝐽2
) + 𝜇

1

𝐽2
]𝒈3

𝑟 ⊗ 𝒈3
𝑟 + 𝜇𝑰 

(4.61) 

 

𝒄 =
𝜕𝝉3
𝑟

𝜕𝑝
= [

𝜆

2
(1 +

1

𝐽2
) + 𝜇

1

𝐽2
]
𝜕𝐽

𝜕𝑝
 𝒈3
𝑟 + [

𝜆

2
(𝐽 −

1

𝐽
) − 𝜇

1

𝐽
]
𝜕𝒈3

𝑟

𝜕𝑝
+ 𝜇

𝜕𝒇3
𝑟

𝜕𝑝
=

[
𝜆

2
(1 +

1

𝐽2
) + 𝜇

1

𝐽2
] (𝒈𝑖

𝑟 ∙
𝜕𝒇𝑖

𝑟

𝜕𝑝
)𝒈3

𝑟 + [
𝜆

2
(𝐽 −

1

𝐽
) − 𝜇

1

𝐽
] (𝜖𝛼𝛽

𝜕𝒇𝛼
𝑟

𝜕𝑝
× 𝒇𝛽

𝑟 ) + 𝜇
𝜕𝒇3

𝑟

𝜕𝑝
=

[
𝜆

2
(1 +

1

𝐽2
) + 𝜇

1

𝐽2
] [−(𝜸𝑟 ∙ 𝒆𝛼

𝑟 )𝜓,𝛼 − 𝑝𝜓𝜓,𝛼(𝜿
𝑟 × 𝒆3

𝑟) ∙ 𝒆𝛼
𝑟 ]𝒈3

𝑟 + [
𝜆

2
(𝐽 −

1

𝐽
) −

𝜇
1

𝐽
] (−𝜓,𝛼)𝒆𝛼

𝑟 + 𝜇(𝜿𝑟 × 𝜓𝒆3
𝑟), 

 

(4.62) 

 

𝒅 =
𝜕𝝉3
𝑟

𝜕𝑝′
= [

𝜆

2
(1 +

1

𝐽2
) + 𝜇

1

𝐽2
]
𝜕𝐽

𝜕𝑝′
 𝒈3
𝑟 + [

𝜆

2
(𝐽 −

1

𝐽
) − 𝜇

1

𝐽
]
𝜕𝒈3

𝑟

𝜕𝑝′
+ 𝜇

𝜕𝒇3
𝑟

𝜕𝑝′
=

[
𝜆

2
(1 +

1

𝐽2
) + 𝜇

1

𝐽2
] (𝒈3

𝑟 ∙
𝜕𝒇3

𝑟

𝜕𝑝′
)𝒈3

𝑟 + 𝜇
𝜕𝒇3

𝑟

𝜕𝑝′
= [

𝜆

2
(1 +

1

𝐽2
) + 𝜇

1

𝐽2
] (𝒈3

𝑟 ⊗𝒈3
𝑟)
𝜕𝒇3

𝑟

𝜕𝑝′
+

𝜇𝑰
𝜕𝒇3

𝑟

𝜕𝑝′
= 𝑪33

𝜕𝒇3
𝑟

𝜕𝑝′
= 𝜓𝑪33𝒆3

𝑟, 

 

(4.63) 

 

𝑏𝛼 =
𝜕(𝝉𝛼

𝑟 ∙𝒆3
𝑟)

𝜕𝑝
= [

𝜆

2
(1 +

1

𝐽2
) + 𝜇

1

𝐽2
]
𝜕𝐽

𝜕𝑝
 𝒈𝛼
𝑟 ∙ 𝒆3

𝑟 + [
𝜆

2
(𝐽 −

1

𝐽
) − 𝜇

1

𝐽
]
𝜕𝒈𝛼

𝑟

𝜕𝑝
∙ 𝒆3
𝑟 +

𝜇
𝜕𝒇𝛼

𝑟

𝜕𝑝
∙ 𝒆3
𝑟 = [

𝜆

2
(1 +

1

𝐽2
) + 𝜇

1

𝐽2
] (𝒈𝑖

𝑟 ∙
𝜕𝒇𝑖

𝑟

𝜕𝑝
) (𝒈𝛼

𝑟 ∙ 𝒆3
𝑟) + [

𝜆

2
(𝐽 −

1

𝐽
) − 𝜇

1

𝐽
]
𝜕𝒈𝛼

𝑟

𝜕𝑝
∙

𝒆3
𝑟 + 𝜇

𝜕𝒇𝛼
𝑟

𝜕𝑝
∙ 𝒆3
𝑟 = [

𝜆

2
(1 +

1

𝐽2
) + 𝜇

1

𝐽2
] (𝒈𝛽

𝑟 ∙ 𝜓,𝛽𝒆3
𝑟 + 𝒈3

𝑟 ∙ 𝜿𝑟 × 𝜓𝒆3
𝑟)(−𝜸𝑟 ∙

𝒆𝛼
𝑟 ) + [

𝜆

2
(𝐽 −

1

𝐽
) − 𝜇

1

𝐽
] 𝜖𝛼𝛽𝜓(𝒆𝛽

𝑟 ∙ 𝜿𝑟) + 𝜇𝜓,𝛼 = [
𝜆

2
(1 +

1

𝐽2
) + 𝜇

1

𝐽2
] [−(𝜸𝑟 ∙

𝒆𝛽
𝑟)𝜓,𝛽 − 𝑝𝜓𝜓,𝛽(𝜿

𝑟 × 𝒆3
𝑟) ∙ 𝒆𝛽

𝑟 ](−𝜸𝑟 ∙ 𝒆𝛼
𝑟 ) + [

𝜆

2
(𝐽 −

1

𝐽
) − 𝜇

1

𝐽
] 𝜖𝛼𝛽𝜓(𝒆𝛽

𝑟 ∙ 𝜿𝑟) +

𝜇𝜓,𝛼, 

 

(4.64) 

 

𝑑𝛼 =
𝜕(𝝉𝛼

𝑟 ∙𝒆3
𝑟)

𝜕𝑝′
= [

𝜆

2
(1 +

1

𝐽2
) + 𝜇

1

𝐽2
]
𝜕𝐽

𝜕𝑝′
 𝒈𝛼
𝑟 ∙ 𝒆3

𝑟 + [
𝜆

2
(𝐽 −

1

𝐽
) − 𝜇

1

𝐽
]
𝜕𝒈𝛼

𝑟

𝜕𝑝′
∙ 𝒆3
𝑟 =

[
𝜆

2
(1 +

1

𝐽2
) + 𝜇

1

𝐽2
] 𝜓(−𝜸𝑟 ∙ 𝒆𝛼

𝑟 ). 

 

(4.65) 
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4.5. Notions on polyconvexity 

The Saint-Venant’s material law is a kind of constitutive model that can lead to a loss of ellipticity 

in the equilibrium equations at moderate to large strains, and making the problem numerically ill-

conditioned. One way to avoid this issue is by adopting a polyconvex constitutive model. 

Polyconvexity is a special condition on the strain energy function that defines the material, as first 

noted by Ball [51].  

In this section, the author intends to proportionate to the reader a contextualization about what is 

the first and one of the only theorems that guarantees the existence of the solution for solids with 

hyperelastic materials. The explanation has, by any means, the intention to exhaust the discussion 

about this subject. In fact, Ball [51] has a book dedicated to such topic, and Ciarlet [52], in his book 

about mathematical elasticity, supported by the aforementioned work, provides a robust framework of 

theorems about the existence of solution for elasticity problems. 

In this section, the discussion is centred around theorems that are sufficient for the existence of 

minimizers for the bodies total energy; therefore, they are only valid for conservative problems. 

Therefore, as by definition, hyperelastic materials have an associated potential function, it must be 

assumed that the loading is conservative in order to the polyconvexity condition be sufficient for the 

existence of solution. 

4.5.1. Convexity 

As defined in Ciarlet [52], a given subset 𝑈 of a normed vector space 𝑉 is said convex whenever, 

for every two pair of points 𝑢, 𝑣 from such subset, the closed segment linking those points [𝑢, 𝑣] is 

contained in 𝑈. 

The convexity of functions can be defined over convex or non-convex sets (in the latter case, a 

convex extension of the original set must be performed). Let 𝑈 be a convex subset of a vector space 𝑉 

Consider a function 𝑊:𝑈 → ℝ. Then, the function 𝑊 is considered convex if 

 𝑊(𝜆𝑢 + (1 − 𝜆)𝑣) ≤ 𝜆𝑊(𝑢) + (1 − 𝜆)𝑊(𝑣), ∀𝑢, 𝑣 ∈ 𝑈, 𝜆 ∈ [0,1] (4.66) 

Note that the definition above remains correct if the domain is extended so that {+∞} is included. 

This is an important case, which in the context of elasticity, will represent the stored potential energy 

in extreme strain situations. 

 

4.5.2. Polyconvexity 

First, based on the physical experience for solids, an important property for the internal strain 

potential energy 𝑊𝑠 is of interest: for the extreme defomation cases, with 𝑑𝑒𝑡𝑭 → 0 or 𝑑𝑒𝑡𝐹 → ∞, 

then 𝑊𝑠 → ∞. It can be proven that the aforementioned statement is incompatible with the convexity 

condition (the demonstration can be seen in Ciarlet [52], for example).  
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However, a weaker statement, proposed and proven by Ball [51] is of utmost importance: 

polyconvexity is a sufficient condition for quasiconvexity, which, in turn, at least for the class of 

problems of interest, implies the Legendre-Hadamard ellipticity condition, which is pivotal for 

material stability. Also, as pointed by Ciarlet [52], “polyconvexity does not conflict with any physical 

requirement and indeed, it is satisfied by realistic models”. Therefore, having a polyconvex 

constitutive equation is crucial to avoid undesirable material instability upon solution. 

Let us define polyconvexity for the three-dimensional case: consider a scalar function 𝑊 =

�̂�(𝑨,𝑯, 𝛿), with the arguments 𝑨,𝑯 ∈ 𝑀3𝑥3 (𝑀3𝑥3 denotes 3x3 matrices) and 𝛿 ∈ ℝ+. If 𝑊 is 

convex, then the potential energy function 𝑊𝑠 = 𝑊(𝑭, 𝑐𝑜𝑓𝑭, 𝑑𝑒𝑡𝑭) is polyconvex (𝑐𝑜𝑓𝑭 is the matrix 

of the cofactors of 𝑭). In summary, if one can write the potential energy as a convex function having 

as explicit arguments the minors of 𝑭 (𝑭 itself, 𝑐𝑜𝑓𝑭 and 𝑑𝑒𝑡𝑭), then such function is polyconvex. 

This is the case of the Simo-Ciarlet’s hyperelastic material (for 𝜆 and 𝜇 > 0), since by analysing its 

associated potential energy, it is clear that it is constituted by a sum of convex functions in 𝑭 and in 

𝑑𝑒𝑡𝑭. The Saint-Venant’s material, however, is not polyconvex (see demonstration by Raoult [53] 

which proves by a counter-example that the function 𝑊(𝐴,𝐻, 𝛿) of the St. Venant’s material is not 

convex).  

References such Ciarlet [52], Lahuerta [54] et al. ,and Campello and Lago [2], are also worth 

reading for discussions about this subject. 

Note that the polyconvexity condition, although desirable, is not mandatory for the existence of 

solution for particular cases: it is known, for example, that the Saint-Venant’s material is broadly 

appliable in a wide array of practical situations, mainly in low-strain configurations. For this reason. it 

is often regarded as a finitedeformation/low and moderate-strain material. 
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5. ROD MODEL SOLUTION THROUGH THE FINITE ELEMENT METHOD (FEM) 

The FEM method is a robust numerical procedure for solving partial differential equations, 

allowing for generic geometries, materials, boundary conditions and solution refinement, in the 

structural mechanical context. In fact, one of the first application of this method was to solve a 

mechanical problem intimately related to the current research: the Saint-Venant warping function for 

pure torsion (see [55], in which an incipient form of the FEM was introduced). Later, the method was 

formalized, and as research advanced, it was discovered that it could be used to solve a wide array of 

problems governed by differential equations, originated from different contexts. We refer to Appendix 

K for an introduction of the method and how integration is performed in the framework of 

isoparametric elements. 

The model that is currently being studied was implemented in PEFSYS, which is an already 

existent in-house FEM program for nonlinear static and dynamic analysis of structures. The main 

contribution of this work for the said software were the implementation of an interface for inputting 

open-section thin-walled geometries (which automatically generates the warping function from 

equation (3.80)), the implementation of constitutive equations derived from the Saint-Venant’s and 

Simo-Ciarlet’s material laws, and a brand-new subroutine for outputting results for ParaView©. 

Therefore, the model´s FEM solution that is described in this chapter is not particularly new, but is 

presented for completeness. 

5.1. Element FEM formulation 

First, let us take the weak form of the equilibrium (equation (3.39)) as the desired projection 

problem (see Appendix K), and apply on both the displacements and virtual displacements the same 

interpolation function 

 𝒅𝜃 = 𝑵𝒑,    𝛿𝒅𝜃 = 𝑵𝛿𝒑, (5.1) 

where 𝒑 is a vector that contains sub-vectors 𝒑𝑖 (𝛿𝒑 is its virtual counterpart). Each of those sub-

vectors contains the degrees of freedom (7 in this case) of a node 𝑖,  

 𝒑 = [

𝒑1
𝒑2
⋮
𝒑𝑛

] and 𝒑𝒊 = [

𝒖
𝜽
𝑝
]

𝑖

, (5.2) 

𝑵 = 𝑵(Ζ) is an operator that holds the Lagrange interpolation functions 𝑙𝑎
𝑖  for 𝑛 nodes, which can be 

built with 

 𝑵 = [𝑵1 𝑵2 … 𝑵𝑛], (5.3) 

where  

 𝑵𝑎 = 𝑙𝑎
𝑛−1𝑰𝑝, (5.4) 

with 

 𝑁𝑎 = 𝑙𝑎
𝑛−1 =

(Ζ−Ζ1)(Ζ−Ζ2)…(Ζ−Ζ𝑎−1)(Ζ−Ζ𝑎+1)…(Ζ−Ζ𝑛)

(Ζ𝑎−Ζ1)(Ζ𝑎−Ζ2)…(Ζ𝑎−Ζ𝑎−1)(Ζ𝑎−Ζ𝑎+1)…(Ζ𝑎−Ζ𝑛)
, (5.5) 
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and 𝑰𝒑 is the identity matrix with dimension consistent with the vector 𝒑 (7, in this case). 

Analysing (5.5), it is easy to perceive that, for a given node 𝑎, the Lagrangian interpolation has as 

main characteristic to be zero for every other node 𝑘 ≠ 𝑎. In the current work, elements with 2 and 3 

nodes are of interest. Thus, the interpolation can be linear or quadratic, respectively (see Table 13 in 

Appendix K). 

For one element with integration domain 𝐿𝑒, this renders,  

 

𝛿𝑊 = ∫ (𝝈𝑟 ∙ 𝜳𝜟𝑵δ𝒑 − �̅� ∙ 𝑵δ𝒑)𝑑휁
𝐿𝑒

− 𝒒∗ ∙ (𝑵δ𝒑)|
𝜁𝑡
𝑟

=

(∫ ((𝜟𝑵)T𝜳T𝝈𝒓 −𝑵T�̅�)𝑑휁
𝐿𝑒

) ∙ δ𝒑 − (𝑵T𝒒∗)|
𝜁𝑡
𝑟

∙ δ𝒑 = 0,  
(5.6) 

where 휁𝑡
𝑟 denotes the nodes with prescribed concentrated loads and with 𝝈𝒓 calculated based on the 

interpolated displacements and strains. Defining the quantity in parenthesis as the elemental residual 

force vector 𝑷𝑒 (this vector is exceptionally represented by a capital letter), one writes, in order to 

respect the equilibrium 

 𝑷𝑒 ∙ 𝛿𝒑 = (𝐍
T𝒒∗)|

𝜁𝑡
𝑟

∙ δ𝒑, ∀𝛿𝒑 ⟺ 𝑷 = (𝐍T𝒒∗)|
𝜁𝑡
𝑟

 (5.7) 

Using the fact that an interpolation function 𝑁𝑎 = 0 in other interpolated points, and by considering 

that only the extremities (coordinates 0 and 𝑙) have concentrated loads, one gets 

 𝑷𝑒 = ∫ (𝜟𝑵)T𝜳T𝝈𝑟 −𝑵𝑇�̅�)𝑑휁
𝐿

0

= (𝐍T𝒒∗)|
𝜁𝑡
𝑟

= 𝑵𝑛
𝑇𝒒∗(𝑙) + 𝑵𝟏𝒒

∗(0). (5.8) 

Let us define the tangent stiffness matrix for one element 

 𝒌𝑒 =
𝜕𝑷𝒆

𝜕𝒑
. (5.9) 

The result of this operation is known, since it is possible to make an analogy with the obtention of 

the tangent bilinear form of the equilibrium, the only difference lying on the fact that, in equation 

(5.8), the discretization and interpolation process were already performed. Therefore 

 

𝒌𝑒 = 𝒌𝐶 + 𝒌𝐺 − 𝒌𝐿

= ∫ (𝜟𝑵)T𝜳T𝑫𝜳𝜟𝑵𝑑휁
𝐿𝑒

+∫ (𝜟𝑵)T𝑮𝜃(𝜟𝑵)𝑑휁
𝐿𝑒

−∫ (𝑵𝑇𝑳𝜃𝐍)𝑑휁
𝐿𝑒

. 

(5.10) 

Note that the operators 𝑫,𝑮𝜽 and 𝑳𝜽 were already defined in section 3.2. 

5.2. Global assembly of residual force vector and tangent stiffness matrix 

The residual force vector (equation (5.8)) and tangent stiffness matrix (equation (5.10)) are valid 

for one isolated element. Now, the global residual vector and tangent matrix must be assembled. This 

operation consists of the arrangement of those equations in the correspondent blocks, complying with 

the numbering of the DOFs. Formally, consider that an element 𝑒, with associated nodal DOFs 𝒑𝑒. Let 
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𝑨𝑒 be the connectivity matrix, that associates the numbering of the DOFs from 𝒑𝑒 to the global 

numbering of the structure, so that 

 𝒑𝑒 = 𝑨𝑒𝒓, (5.11) 

where 𝒓 is the global vector of generalized nodal displacements. 

The structure of 𝑨𝑒 is simple: it is a matrix with 𝑛𝐷𝑂𝐹𝑒  lines and 𝑛𝐷𝑂𝐹𝑇  columns, where 𝑛𝐷𝑂𝐹𝑒  and 

𝑛𝐷𝑂𝐹𝑇  are the number of degrees of freedom on an element and on the whole structure, respectively, 

containing “ones” on the appropriate positions that relate the local to the global numbering and 

“zeros” elsewhere. Note that the 𝑨𝑒
𝑇 performs the opposite role, by taking local contributions and 

adequately allocating on the global matrix 

The global residual force vector 𝑹 (this vector is exceptionally represented by a capital letter) is 

then given by 

 𝑹 =∑𝑨𝑒
𝑇𝑷𝑒

𝑵𝑒

𝑒=1

 (5.12) 

Now, global equilibrium is achieved by imposing 

 𝑹 = �̂�(𝒓) = 𝟎. (5.13) 

Equation (5.13) is highly nonlinear, mainly due to the inherent nonlinearities from the exact 

kinematical description and the constitutive equation. Therefore, for a given set of external loadings, 

Newton’s method must be used to solve these equations. Applying said method for  (5.13), with an 

initial prediction 𝒓𝑖, one gets 

 𝒓𝑖+1 = 𝒓𝑖 − (
𝜕𝑹(𝒓𝑖)

𝜕𝒓
)
−1

𝑹(𝒓𝑖). (5.14) 

Note that the inversion does not have to be directly applied. It is possible, for example, to solve the 

linear system 

 𝑲𝑇Δ𝒓
𝑖 = −𝑹(𝒓𝑖), (5.15) 

with Δ𝒓𝑖 = (𝒓𝑖+1 − 𝒓𝑖) and 𝑲𝑇 = (
𝜕𝑹(𝒓𝑖)

𝜕𝒓
), and then update 𝒓. Calculating 𝑲𝑇, one gets 

 

𝑲𝑇 =
𝜕𝑹(𝒓𝑖)

𝜕𝒓
=
𝜕

𝜕𝒓
(∑𝑨𝑒

𝑇𝑷𝑒

𝑵𝑒

𝑒=1

) = 𝑨𝑒
𝑇 (∑

𝜕𝑷𝑒
𝜕𝒓

𝑵𝑒

𝑒=1

) = 𝑨𝑒
𝑇∑

𝜕𝑷𝑒
𝜕𝒑𝒆

𝜕𝒑𝑒
𝜕𝒓

𝑵𝑒

𝑒=1

=∑𝑨𝑒
𝑇𝒌𝑒𝑨𝑒

𝑵𝑒

𝑒=1

 

(5.16) 

It should be noted that, 𝑨𝑒 is a compact way to formally represent the connectivity, albeit never 

being used in the programming practice. Usually, a tracker list is used to appropriately allocate the 

information. 

It is also worth mentioning that the solution can be carried out entirely using the global reference 

system, without any base transformation. Usually, the components of 𝝈𝑟 are outputted w.r.t the local 

reference system for analysis purposes. 
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5.3. PEFSYS general aspects 

The described model was implemented in PEFSYS, which is written in Fortran. PEFSYS is a finite 

element program for advanced structural analysis, capable of static and dynamic non-linear analysis of 

solids and structures, specializing on thin members (rods, shells and membranes). Under development 

since the late 1990’s at the Department of Structural and Geotechnical Engineering of the Polytechnic 

School of the University of São Paulo, by a FAPESP thematic project coordinated by Prof. Paulo M. 

Pimenta, it has been serving as a programming platform for students and researchers of this master´s 

advisor’s group, for state-of-the-art research on rods, shells and membranes. It is coded in FORTRAN 

90/95/2003, setting up a modern programming environment based on the OOP (Object-Oriented 

Programming) paradigm, with full usage of encapsulation, polymorphism, inheritance and operator 

overloading. It contains advanced methods for the solution of large systems of non-linear equations as 

well as for time integration of the equations of motion, with exact kinematics (finite displacements, 

rotations and strains) and inelastic behaviour.  

In PEFSYS, the solver is direct, solving each step of the Newton’s method by Crout’s LDU 

decomposition, taking advantage of the symmetry of the system when applicable. The solver uses the 

incremental method to achieve the final load states and lacks yet the arc-length method. 

The program has a graphical interface for pre- and post-processing built on the auxiliary program 

GiD©, and a brand-new Paraview© outputting interface version has been developed here. In 

comparison with GiD, ParaView provides a wide array of native Python routines (personalized ones 

can also be implemented) that allows for better results manipulation but lacks pre-processing 

capabilities. It also has a significantly higher graphic quality and optimizes output files memory-wise. 
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6. NUMERICAL EXAMPLES AND DISCUSSION 

In order to benchmark the developments carried out in this work, some already existent models 

(available in PEFSYS, ANSYS or the literature) were chosen. They can be sorted according to the 

following hierarchical order: 

 

 

Figure 13– Benchmark framework. Used models from [2], [12], [22] and [3]. 

 

In the current work, kinematically exact shell models (Ansys Shell 281 element – large 

displacement: on – simulated by the author, or other shell models from the literature) are used as the 

hierarchically highest order reference solution. 

For the sake of conciseness, the following standard is used to denote the geometry of the analysed 

cross sections: 

 

Table 9 – Cross-sectional geometrical description 

Type Geometry 

Rectangular 

 

To be continued 
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Continued 

Cruciform section 

 

T-section 

 

Bisymmetric I-section 

 

Symmetric C-channel 

 

Axisymmetric Z-section 
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6.1. Validation on examples without buckling 

The examples 6.1.1 to 6.1.4 were taken from [50] – the analytical Vlasov’s solution is taken from 

there. For all rod examples, the mesh was made of 10 same-sized elements with linear interpolation (2 

nodes), except in example 6.1.3, in which 30 elements were used. For the shell models, also a regular 

mesh was used. It was refined until a sufficiently fine mesh (>90000 nodes) was obtained, which is 

almost the limit of the software´s academic version (100000 nodes). 

It should be noted that, in some models, the total torsion moment stress resultant (𝑇) includes both 

the bi-shear (𝑄) and uniform torsion (𝑀𝑢) contributions. In these cases, the uniform torsion can be 

found by doing 𝑀𝑢 = 𝑇 − 𝑄, since the models typically output 𝑄 and 𝑇. Also, as mentioned in section 

3.2, the values of 𝑄 were multiplied by −1, to be coincident with the linear Vlasov theory. 

6.1.1. I-cantilever with external torsional moment 

For this example, two cross-sections are evaluated: I 254x52,1 and CS 250x52 (see Figure 14). The 

material parameters are 𝐸 = 205 𝐺𝑃𝑎 and 𝐺 = 80 𝐺𝑃𝑎. In this example, the clamped end constrains 

all degrees of freedom: there are no displacements, rotations nor warping.  

As already shown in section 3.4, the warping functions obtained from equations (2.66) and (3.80), 

are rigorously the same for bi-symmetric I-sections, and therefore there is no point in simulating the 

example with both of them. In Figure 15, the warping functions used for the current model are 

depicted. 

 

Figure 14–Description of the example 6.1.1. 
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a) 

 

b) 

Figure 15 – Warping function for a) I 254x52,1; b) CS 250x52. Dimensions in cm. 

 

By investigating the stiffness properties of each cross-section, it is possible to infer whether it 

prioritizes the uniform torsion or the non-uniform torsion. Such preference can be quantified through 

the parameter 𝑘 = √
𝐺𝐼𝑇

𝐸𝐼𝜔
. For the I 254x52,1, 𝑘 = 0.0175 𝑐𝑚−1 and for the CS 250x52, 𝑘 =

0.00452 𝑐𝑚−1. This implies that, necessarily, for the former, uniform torsion is more intense in the 

load-carrying mechanism, and therefore the bi-shear is expected to be lower, whereas, in the latter, the 

opposite is expected. Indeed, this behaviour can be seen in Figure 16a) and Figure 17a). For the same 

reason, when compared with 6 DOF rod models (in which only the uniform torsion effect is accounted 

for), the results of the I 254x52,1 is significantly closer than the ones of the CS 250x52. Nevertheless, 

it is evident that the bi-shear is an important torsion-resisting mechanism, leading to smaller torsion 

rotations when such effect is considered. Note that, in both cases, every torsion-related quantity is in 

perfect agreement with the Vlasov’s theory8, and are almost coincident with shell models. The only 

noticeable difference is a slightly lower warping and bi-shear for the second example for the Simo-

Ciarlet material. For the other curves, the St.-Venant’s and Simo-Ciarlet’s materials are coincident. 

 

 

8 the warping intensity in the analytic Vlasov’s model is the second derivative of the torsion 

rotation. 
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a) 

 

b) c) 

 

d) 

Figure 16 – Beam diagrams for example 6.1.1, I 254x52,1: a) torsional rotation; b) warping intensity; c) torsional 

moment and bi-shear; d) bi-moment. 
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a) 

 

b) 
c)  

 

d) 

Figure 17 – Beam diagrams for example 6.1.1, CS 250x52: a) torsional rotation; b) warping intensity; c) torsional 

moment and bi-shear; d) bi-moment. 
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6.1.2. Simply supported beam with distributed load 

In this example, two similar situations are studied: a) an I-section beam, loaded with a uniformly 

distributed vertical load 𝑓𝑦 = 0.215 𝑘𝑁/𝑐𝑚 and a uniformly distributed torsional moment 𝑚𝑧 =

0.688 𝑘𝑁𝑐𝑚/𝑐𝑚 and length 𝐿 = 500 𝑐𝑚 is studied. This loading emulates a brick wall with 

unbalanced mortar coating (see Figure 18); b) a C-section beam, loaded with a uniformly distributed 

vertical load 𝑓𝑦 = 3 𝑘𝑁/𝑐𝑚 at the web plane (off the shear centre, thus torsion shall occur) and length 

𝐿 = 400 𝑐𝑚. Those are relatively low torsional moment of a realistic design situation, but still capable 

of mobilizing relevant non-uniform torsion effects. The profile is a CS 250x52 (see Figure 14). The 

material parameters are 𝐸 = 205 𝐺𝑃𝑎 and 𝐺 = 80 𝐺𝑃𝑎.  

 

 

a) 

 

b) 

c) 

 

d) 

Figure 18– Description of the example 6.1.2a): a) Design situation: wall with mortar coating, from [50]; b) problem 

schematics; c) cross-section description; d) warping function (units in cm). 
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a) 
 

b) 

 

c) 

 

d) 

Figure 19– Description of the example 6.1.2b): a) Problem schematics; b) cross-section description; c) present 

warping function; d) incorrect warping function from [2] (dimensions in cm). 

The strains from this example are small. Therefore, for torsion, there should be good adherence 

among linear Vlasov’s model and the kinematically exact 7-DOF rod models. The warping function 

generated by both equation (3.80) and from [2] for I-sections are the same and can be seen in Figure 

15b). Thus, this case is good for assessing the implementation of the Saint-Venant’s and Simo-

Ciarlet’s material laws. 

Firstly, it can be seen in Figure 20a) and d) that the consideration of non-uniform torsion is of 

utmost importance. Without this important load carrying mechanism, as in the 6 DOF rod model, the 

torsion rotation is severely overestimated in both cases. When the warping degree of freedom is 

introduced, the obtained torsion rotation is the same as the one provided by both the shell model and 

the linear theory.  

For the I-section, one can see in Figure 20 that all constitutive equations presented nearly the same 

behaviour for both vertical displacement due to bending (see Figure 20 (b)) and torsion rotation (see 

Figure 20 (a) and (c)). They are also in good agreement with the shell´s results. 
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For the C-channel, by examining Figure 21, it becomes evident that the model with the warping 

function from [2] yields inconsistent results – torsional response is extremely stiff. Apart from this 

one, the other rod models (i.e, with linear elastic, Saint-Venant’s and Simo-Ciarlet’s materials) are in 

accordance with the Vlasov’s theory. Vertical displacements are virtually the same for all cases, 

except for the case with incorrect warping function, in which the torsional contribution is severely 

underestimated. Results from 7-DOF rod models are also nearly coincident with the ones from the 

shell model, for both displacements and torsional rotation, which supports the proposed warping 

function. 

  

 
a) 

 
b) 

 
c) 

 
d)  

e) 
Figure 20 – Beam diagrams for example Simply supported beam with distributed load 6.1.2a): a) torsional rotation; b) 

vertical displacement; c) warping intensity; d) torsional moment and bi-shear; e) bi-moment. 
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a) 

 

b) 
 

c) 

 

d) 

 

e) 

Figure 21 – Beam diagrams for example 6.1.2b): a) torsional rotation; b) vertical displacement; c) warping intensity; 

d) torsional moment and bi-shear; e) bi-moment. 

 

6.1.3. Transversely loaded C-channel cantilever 

In this example, a C-channel cantilever (length 𝑙 =  900 𝑐𝑚) is loaded with a concentrated load 𝑃 

at the free tip, at the web/top chord intersection. The load is incremented up to 20 𝑘𝑁. At the clamped 

end, the deformation is completely restricted. For the rod models the axis is positioned at the web/top 

chord intersection, thus the load is exactly at the axis. A graphical description of this example can be 

seen in Figure 22. As the load is off the shear-centre, torsion is expected to occur. It is assumed 𝐸 =

210 𝐺𝑃𝑎 and 𝐺 = 80 𝐺𝑃𝑎. For the rod models, uniform mesh with 30 2-noded elements is used, in 

order to maintain consistency with the original benchmark from Gruttmann [18], [48]. This simulation 

can also be found in Gonçalves [35], with their 7-DOF rod. 
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For this example, a profile (here denominated C 300x100x10x16) is evaluated (see Figure 22). This 

is not the same cross-section used in reference [50], but the expression for the analytical solution, 

taken from that reference, is the same. 

 

Figure 22 – Description of the example 6.1.3. 

 

For C-sections, it was already discussed how important it is to adopt the corrected warping function 

(see Figure 23). It will be shown in a complete example the impact of adopting either equation (3.65) 

or (3.80).  

 

 

a) 

 

b) 
c) 

Figure 23 – Warping function of section C 300x100x10x16 using a) old equation (2.66); b) proposed equation (3.80). 

Dimensions in cm. c) solving Saint-Venant’s warping function in Mathematica software, pole in shear centre. 

A qualitative perspective of the simulations can be found in Figure 24. 
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a) 

 

b) 

Figure 24 – Simulation result, deformation in original scale (𝑷 = 𝟐𝟎𝒌𝑵) a) PEFSYS rod model 

with Linear elastic and Saint-Venant’s/Simo-Ciarlet’s materials (superimposed, units in cm); b) Ansys, shell 

elements (in m); 

 

 

a) 

b) 

Figure 25 – Superimposed view of rod with Saint-Venant’s/Simo-Ciarlet’s material (blue 

line) and Ansys’s shell (black line) a) View from the cantilever support; b) detail near the 

clamped end, with respective torsion rotation (rad). 

 

In Figure 26, the equilibrium path for a point at the loaded extremity, at mid-height of the web, is 

represented. 
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a) 

 

b) 

 

c) 

Figure 26 – Results from example 6.1.3. a) Vertical displacement; b) Lateral displacement; c) Torsional rotation. 

Gruttmann reference is [18]. 

As it can be seen in Figure 26, up to 𝑃 ≈ 8 𝑘𝑁, all models (even the linear Vlasov’s model) are 

almost in complete agreement. However, after this load level, results from the 7-DOFs models 

calculated with PEFSYS (linear elastic, exact Saint-Venant’s and Simo-Ciarlet’s material with 

corrected warping function) presented a rather stiffer solution than the corresponding ones from 

Gruttmann [18]. Theoretically, Gruttmann’s model should be equivalent to the 7-DOF model with 

linear elastic material implemented in PEFSYS – documented in [1]. Only two noticeable differences 

are present: 

• Gruttmann interpolates the base vectors 𝒆𝑖 instead of the Euler-Rodrigues parameters 𝜽 

which generates a non-orthogonal base at the Gauss points (the base is only orthogonal at 

the nodes). This might have an effect similar to the imposition of a shear correction factor, 

as some in-plane distortion is allowed due to the loss of the orthogonal base.;  

• for Gruttmann, the pole of the warping function is always coincident with the rod axis, 

instead of the principal pole, as done here. It must be mentioned that tests performed by the 

authors indicated that taking the axis as the pole leaded to worse results (said outputs were 

omitted for conciseness). It is worth mentioning that when the principal pole is not 
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coincident with the centroid, a choice must be made to either a) take the pole at the axis, 

which renders first-order coupling between axial force, bending moments and bi-moment; 

or b) take the pole at the shear centre, which uncouples the normal stress-dependent 

resultants, but creates an additional shear tension contribution for the shear forces, torsional 

moment and bi-shear. See Appendix E for a discussion about orthogonality conditions. 

 In Figure 25, one can see that, despite the differences due to different flexural torsion behaviour, 

the cross-section near the support undergoes rather intense in-plane distortion, a behaviour that cannot 

be described by the current 7-DOF models. Were in-plane distortional modes explicitly considered in 

the kinematical assumptions, such response could have been detected. It must also be highlighted that, 

comparing linear elastic rod and shell models, the most important torsional discrepancy is near the 

clamped end (for 𝑧 < 400 𝑐𝑚), where local web/flange distortions are more intense. The authors 

intend to address this issue in a future work, by enriching the rod´s kinematics. It should be also 

remarked that the torsional response is severely impacted by the usage of the advanced constitutive 

equations, when compared to the linear elastic material Figure 27, suggesting that torsional/bending 

strain coupling does occur at the level of the constitutive equation, and cannot be neglected for a 

proper beam´s response. 

By analysing Figure 26a), the reader might also be surprised that the vertical displacement 

calculated with the PEFSYS model with 6 DOFs and linear elastic material (documented in [22]) 

seems to be in better agreement with Gruttmann´s and shells´ results than the higher level models; this 

is, however a coincidence. As the bi-shear and bi-moment are not present in this model, the torsional 

stiffness of the system near to the clamped end is severely underestimated, leading to an exaggerated 

torsion rotation (see Figure 27b), which penalises the whole system stiffness due to the amplification 

of the higher order contribution of the lateral sway of the rod, leading to a greater vertical 

displacement overall (see Figure 27a). 

a) 
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b) 

Figure 27- Results from example 6.1.3. a) Vertical displacement and b) torsional rotation for 𝑷 = 𝟐𝟎𝒌𝑵. 

 

It should be noted again that the results of the Saint-Venant’s and Simo-Ciarlet’s material are in 

perfect agreement. 

6.1.4. Z-section cable with axial tension 

This example features a Z-section rod (lenght 𝐿 = 300 𝑐𝑚) that acts as a cable: it is loaded with 

concentrated axial tensile force 𝑁 on both ends, inducing a bi-moment 𝐵 = 𝑁𝜓𝑂  (𝑂 is the point of the 

concentrated load application). Formally, this is achieved by using the definition of bi-moment and the 

Dirac delta function. Note that this is, in general, a peculiar boundary condition, since 𝐵 = �̂�(𝑁). 

Despite that, in this case, the reaction at the support is known beforehand, due to how the problem is 

constrained. Warping is allowed at both extremities. 

Therefore, torsional rotation occurs, even without any external torsional moment In order to 

prevent rigid body motion, axial displacement (𝑢𝑧) and torsion rotation (휃𝑧) is restricted at one of the 

ends, as well as transverse displacements at both ends (𝑢𝑥, 𝑢𝑦). A graphical description of this 

example can be seen in Figure 28. It is assumed 𝐸 =  205 𝐺𝑃𝑎 and 𝐺 =  80 𝐺𝑃𝑎. For the rod 

models, uniform mesh with 10 linear elements is used.  

For this example, the profile Z 100x50x3,0 is evaluated (see Figure 28). For this section, the 

function that are generated using equations (2.66) and (3.80) can be seen in Figure 29. 
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Figure 28 – Description of the example 6.1.4. 

 

The diagrams of the relevant resultants and displacements are shown in Figure 30, while 

displacements result from the Ansys’ shell model is shown in Figure 31. 

 

a) 

 

b) 

Figure 29 – Warping function of section Z 100x50x3,0 using a) old equation (2.66); b) proposed equation (3.80). 

Dimensions in cm. 

Thus, let us first analyse the torsional behaviour (Figure 30 (a), (c)-(e)): when the 7-DOF model 

with linear elastic material is used, the analytic Vlasov’s solution for torsion is recovered, as expected. 

However, despite the fact that this is a small strains example when the 7-DOF model considers the 

exact Saint-Venant’s and Simo-Ciarlet’s materials and the proposed warping function (i.e., corrected 

and with secondary warping included) or shell elements are used, there is an apparent torsion/tension 

coupling effect that somewhat stiffens the torsion rotation. We draw the attention to the fact that the 

St.-Venant’s and Simo-Ciarlet’s materials are virtually coincident, and both much closer to the shell´s 

solution than the linear elastic material. Regarding axial displacement (𝑢𝑧, Figure 30(b)), all the rod 

models estimated somewhat lower 𝑢𝑧 when compared to the shell model. By analysing Figure 31(b), 

at both ends of the shell curve, it becomes evident that such output is due to a local deformation at the 

region where the concentrated load is introduced, which is much captured in the shell model. This can 

be clearly seen in (see Figure 31c). Despite this difference, analysing sections not so close to the 
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extremities, the deformation rates are fairly coincident – the curves of 𝑢𝑧(z) are parallel –, suggesting 

that such discrepancy are primarily due to the aforementioned reason. It is also worth mentioning that, 

in this example, the warping term 𝑝𝜓𝑂 has an important contribution to the total axial displacement. 

For this reason, the model with the incorrect warping function also presents a discrepant axial 

displacement value. It is again stated that the use of the corrected warping function is mandatory to 

accurately model torsion phenomena.  

Also, as expected, the 6-DOF model is unable to identify any torsion whatsoever, since it does not 

contemplate bi-moment and bi-shear capabilities. As consequence, there is no warping contribution for 

the axial displacement. 

 

 

a) 

b) c) 

d) e) 

Figure 30 – Beam diagrams for example 6.1.4: a) torsional rotation; b) axial displacement; c) warping intensity; d) 

torsional moment and bi-shear; e) bi-moment. 
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6.2. Validation on examples with buckling 

6.2.1. Buckling of a compressed I-cantilever  

In this example, a I-section cantilever (lenght 𝑙 =  240 𝑐𝑚) is studied. At the clamped end, the 

displacements are fully restricted. The evaluated profile is an I-section, (see Figure 32). The material 

parameters are 𝐸 = 200 𝐺𝑃𝑎 and 𝐺 = 80 𝐺𝑃𝑎. The compressive loading (𝑃) is incrementally 

increased, until 100 𝑘𝑁. A transverse lateral load perturbation (0.1% of the main load) is added in 

order to transpose the bifurcation at the load application point. The axis coincides with the line of 

centroids. At the free end, forces are applied at the centroid. 

a) 

b) c) 

Figure 31 – results from Ansys shell 281 model. a) isometric global view – 

axial displacements and b) cross-sectional view, magnitude of total displacements (original 

scale); c) detail of an extremity, axial displacements. Units in m 
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Figure 32 – Description of the example 6.2.1. 

The used warping function, as developed in this work, can be seen in Figure 33. 

 

Figure 33 – Warping function for example 6.2.1. Dimensions in cm. 

 

This is a classic case of buckling of a compressed column that, after reaching the critical load, 

deflects sideways and bends. The theoretical Euler critical load is 𝑃 =
𝜋2𝐸𝐼

4𝑙2
= 12.89𝑘𝑁. For rod 

models without the Poisson effect, (such as the ones presented in this work), the motion is completely 

bidimensional, and there is no torsion nor warping, and therefore, the only possible coupling is 

between compression and bending strains. As can be seen in Figure 34, linear elastic models presented 

similar results as those from the exact Saint-Venant’s and Simo-Ciarlet’s material. Thus, it can be 

deduced that such coupling had little effect on the solution. Also, the 6 DOF rod model was perfectly 

suitable for this simulation, as there is no torsion. As it can be seen, both the critical load and post-

critical equilibrium path from the kinematically exact rod models are in agreement with the Ansys 

shell model. At about 20 𝑘𝑁, the Ansys solver was not able to proceed incrementing the load, which 

probably indicates the existence of a second critical load associated to local instability, which was 

naturally not detected by the in-plane rigid rod models. Had rod models incorporated in-plane 

distortional DOFs, they might had stood a chance to capture such local behaviour, as done in 

Gonçalves et al. [42].  
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Figure 34–Critical load and equilibrium path for the example 6.2.1, with respect to the lateral displacement. 

 

6.2.2. Lateral buckling of a transversely loaded I-cantilever (load on centroid) 

This example shares the same configuration of the previous example, but with transversal loading 

(Figure 35). The transversal loading (𝑃) is incrementally increased, until 40 𝑘𝑁. A transverse 

perturbation (0.1% of the main load) is added at the load application point in order to transpose the 

bifurcation. The used warping function is in Figure 33. Again, for I-sections, the warping function 

generated by the (incorrect) equation (2.66) coincides with the one from equation (3.80), and 

therefore, there is no point in simulating both cases. 

 

 

Figure 35 – Description of the example 6.2.2. 

 

The beam presents a lateral torsional buckling (see Figure 37). The critical loads are depicted in 

Figure 36. Relevant non-uniform torsion occurs, and therefore the behaviour predicted by the 6-DOF 

rod model is not in agreement with higher level models, as shown in Figure 36. This is expected, since 

6-DOF rod models are less suited for thin-walled members with non-uniform torsion. When 7-DOF 

models are used, the critical load predicted by rod models with all materials are in excellent agreement 

with the one predicted by the Ansys Shell 281 model. 

However, while the 7-DOF model with linear elastic constitutive equation provides virtually the 

same result as the shell model with linear elastic constitutive equation, even for well-developed post-

critical states, the models with both hyperelastic exact constitutive equations present significant (and 
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similar between each other) coupling effects. This evidences a relevant coupling at a constitutive level, 

highlighting the importance of the completeness of the material law. Mainly in Figure 36(a), it is clear 

that the solution differs rather markedly from the models with linear elastic material (including shell) 

after approximately 10 𝑘𝑁 (corresponds to a 35 𝑐𝑚 lateral displacement, see Figure 36a)). 

In the shell model, as in the previous example, a local buckling apparently occurs at ~20 𝑘𝑁, and, 

for the same reason as in the previous example, the tested rod models were unable to detect such 

instability. The deformed configurations for rod and shell models can be seen in Figure 37. 

 

 
a) 

 
b) 

 
c) 

Figure 36 – Critical load and equilibrium path for the example 6.2.2, for the point at the mid-web of the free 

extremity, with respect to a) the lateral displacement; b) vertical displacement; c) torsional rotations. 
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Figure 37 – Simulation result, deformation in original scale (𝑷 = 𝟐𝟓 𝒌𝑵) a) PEFSYS, exact Saint-Venant’s and 

Simo-Ciarlet’s material (superimposed) (in cm); b) Ansys (shell) (in m). Notice the rather stiffer solution from the shell 

model at the post-critical stage. 

 

6.2.3. Buckling of compressed cruciform and T-section cantilever 

This example features two clamped columns. Two cross-sections are evaluated: a) cruciform 

(lenght 𝑙 =  50 𝑐𝑚) and b) T-shaped sections (lenght 𝑙 =  24 𝑐𝑚). In both cases, a compressive load 

acts at the section centroid at the free end. A graphical description of this example can be seen in 

Figure 38. In both cases, torsional buckling under compression is expected to occur (the theoretical 

critical load, according to Vlasov´s theory, is 𝑃𝑐𝑟𝑖𝑡 = 𝐺𝐴
𝐼𝑇

𝐼𝑠
0 ) due to the low torsional inertia of the 

profiles and to the shortness of the columns. It is assumed 𝐸 =  200 𝐺𝑃𝑎 and 𝐺 =  80 𝐺𝑃𝑎. For the 

rod models, uniform mesh with 10 linear elements is used. A torsional moment perturbation of 𝑇 =

0.01𝑃 𝑐𝑚 is used to transpose the bifurcation point. The compressive loading, which is applied at the 

centroid, is incrementally increased until 1500 𝑘𝑁 and 2000 𝑘𝑁, for the former and the latter section, 

respectively. 

 

Figure 38 – Description of the example 6.2.3. 

Let us compare the warping function that is generated from both equation (3.65) and (3.80): for the 

cruciform section, they generate the same function; however, this is not the case for the T-section 

(especially at the web). Those functions can be seen in Figure 39. 

 

a) 
 

b) 
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a) 

  
b) 

  
c) 

Figure 39 – Warping function for example 6.2.3. a) Cruciform section b) T-section with equation (2.66) c) T-section 

with equation (3.80). Dimensions in cm. 

 

This set of examples is one of the main motivations of this research: short columns with low 

torsional inertia, undergoing torsion buckling (see Figure 40). This behaviour is not captured by linear 

elastic rod models. Only when the Saint-Venant’s and Simo-Ciarlet’s material with higher order strain 

terms are used that the coupling between compression and torsion strains allows for the identification 

of the critical load. It should be noted that, for the T-section, if the incorrect warping expression is 

employed, the torsion inertia is so overestimated that the first buckling mode is the Euler´s (bending) 

mode, which has a rather higher critical load when compared to the torsional mode. 

As can be seen in Figure 40(b) (T-section), the corrected warping function proved crucial to 

accurately predict the critical load – the previous function (from [2]) estimates a 25% higher critical 

load than the shell model. It is also worth mentioning that incomplete versions of Saint-Venant’s and 

Simo-Ciarlet’s materials failed completely or partially at the task of finding critical load and post-

critical equilibrium paths (as reported in [1]–[3]), but the advances herein proposed solved this issue. 

Interestingly, Vlasov’s analytical expressions somewhat overestimates the critical load for this 

example. 

However, in the post-critical regime, the torsion rotation is severely underestimated by the current 

rod models as compared to the shell model (see Figure 40). By analysing the deformed configuration 

from the Ansys Shell 281 model, it is possible to observe that cross-sectional in-plane distortions take 
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place, which obviously are not captured by the rod models (see Figure 41 and Figure 42). It should 

also be noted that this shell model uses linear elastic material. Therefore, it might be possible that rod 

models with more complex kinematical assumptions, such as in-plane distortion modes, could also 

predict this sort of deformation, with a better prevision for the large displacement post-buckling 

regime, possibly even with the simpler linear elastic material.  

 

  
a) 

 
b) 

Figure 40 – Critical load and equilibrium path for the example 6.2.3, in the centroid of the free extremity, with respect 

to the torsional rotation for a) cruciform section; b) T-section. 
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a) 

 

b) 

Figure 41 – Simulation result, deformation in original scale (P=1500 𝒌𝑵) a) PEFSYS, Saint-Venant’s and Simo-

Ciarlet’s material (in cm); b) Ansys (in m). 

 

 

a) 

 

b) 

Figure 42 – Simulation result, deformation in original scale (P=1350 𝒌𝑵) a) PEFSYS, Saint-Venant’s and Simo-

Ciarlet’s material (in cm); b) Ansys (in m). 
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6.2.4. Flexural torsional buckling of a simple truss system 

This example features a study of a symmetric truss, which is conceived to have constant normal 

load at the top chord so that comparation with Vlasov’s analytical is possible. All the profiles are U 

150x70x2 (see Figure 43b)). Transversal displacements and torsional rotation at both extremities are 

fixed. Axial displacement is restricted at one end and free at the other. Warping is free at both 

supports. A vertical load is imposed at the midpoint of the top chord. See Figure 43 for details. Only 

rod models are studied. The material parameters are 𝐸 = 200 𝐺𝑃𝑎 and 𝐺 = 80 𝐺𝑃𝑎. 

 

a) 

 

b) 

Figure 43– Schematics of studied truss a) General attributes; b) Cross-section and relevant constrain observations 

 

It must be remarked that, by equilibrium, the compressive load at the top chord is 𝑁 =
𝑃

3
 in the 

linear context. 
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6.2.4.1. Simplified isolated rod model 

First, let us produce a reduced order model: only the top chord is simulated. The vertical 

displacement at the midpoint is fixed, in order to emulate the vertical constraints imposed by the 

diagonals. A compressive load is imposed at centroid of extremity in which axial displacement is free. 

See Figure 44 for a schematic representation of the simplified model. 

 

Figure 44 – Schematics of simplified top chord model 

Critical load from Vlasov’s second order theory for axially loaded mono-symmetric beams is the 

minimum absolute solution in 𝑁 of 

 (𝑁 − 𝑁1𝑒)[𝑟𝑜
2(𝑁 − 𝑁2𝑒)(𝑁 − 𝑁𝜓) − 𝑁

2𝑠2
2] = 0 (6.1) 

in which 

 𝑁1𝑒 = −
𝜋2𝐸𝐼11

𝑙1
2 , 𝑁2𝑒 = −

𝜋2𝐸𝐼22

𝑙2
2 , 𝑁𝜓 = −

𝜋2

𝑙𝜓
2 𝐸𝐼𝜓+𝐺𝐼𝑇

𝑟𝑜
2  

(6.2) 

where 𝑙1, 𝑙2, 𝑙𝜓 are the buckling lengths associated to flexural bending buckling around the local 𝒆1
𝑟 

and 𝑒2
𝑟 axis (coincident to the 𝑥 and 𝑦 global axis) and torsional buckling, respectively, 𝑟0

2 =
𝐼0
𝐺

𝐴
+

𝑠1
2 + 𝑠2

2 and 𝑠1 and 𝑠2 are the coordinates of the shear centre with respect to the centroid (in this case). 

For this example, 𝑙1 = 100 𝑐𝑚, 𝑙2 = 200 𝑐𝑚, 𝑙𝜓 = 100 𝑐𝑚, 𝐼11 = 214 𝑐𝑚
4, 𝐼22 = 29 𝑐𝑚

4 , 𝐼𝑇 =

0.077 𝑐𝑚4, 𝐼𝜓 = 1151 𝑐𝑚
6 and 𝑟0

2 = 60.1 𝑐𝑚2. Calculating the critical load for this case one gets 

𝑁1𝑒 = −1055 𝑘𝑁,𝑁2𝑒 = −576 𝑘𝑁,𝑁𝜓𝑒 = −105 𝑘𝑁 and 𝑁𝑐𝑟𝑖𝑡 = −102 𝑘𝑁. This example is a case 

of flexural-torsional buckling, from the coupling the modes that arises from 𝑁𝜓𝑒 and 𝑁2𝑒. Note that 

the critical load is much closer to 𝑁𝜓𝑒 than to 𝑁2𝑒. 

With PEFSYS, this simplified model is simulated with linear elastic, Saint-Venant’s and Simo-

Ciarlet’s materials. Results from those simulations are in Figure 45. A uniform mesh with 20 rod 

elements with linear interpolation is employed. 

As in the example 6.2.3, the linear elastic material was unable to find a torsion/compression 

coupled-buckling mode and the simulation was not able to proceed even before the Euler critical load 

(576 𝑘𝑁, much greater than the actual 101 𝑘𝑁 critical load) was reached.  

Only when the advanced material laws were employed that the correct critical load was found, 

which was consistent with the Vlasov’s analytical value. The simulation proceeded up to 412 𝑘𝑁, and 

then PEFSYS could not find balanced configurations with greater load factor. If the arc-length method 

was implemented, it might have been possible to find a viable and more developed equilibrium path. It 
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should be remarked that both Saint-Venant’s and Simo-Ciarlet’s materials yielded virtually the same 

results. 

 

Figure 45 – Equilibrium path for lateral displacement of the top chord midpoint when modelled as an isolated 

member 

 

 

Figure 46 – Flexural-torsional buckling of U-channel subjected to compressive load, when modeled as an isolated 

member. Configuration at 𝑵 = 𝟒𝟑𝟎 𝒌𝑵. Image generated with ParaView. 

6.2.4.2. Complete truss model 

In order to model the truss, some modelling techniques shall be employed to represent the hinged 

connections, since PEFSYS does not have explicit kinematical constraints for this situation. It must be 

highlighted that the imposition of hinges in the context of finite rotations is not trivial and nonlinear 

since the rotation axis varies as the structures deforms. Thus, transition elements with penalized inertia 

are employed. Apart from those special elements, each rod is discretized in 10 elements. A sensibility 

study is performed to evaluate the modelling of the special transition elements, and results are shown 

in Figure 47. 
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Figure 47 – Rod model with representation of special elements for hinge representation 

 

In that study, Simo-Ciarlet’s material is employed in all elements, with exception of the transition 

ones, in which the linear elastic material is used. The warping constant in all the special elements is 

null. The torsional inertia is only null at one end of each diagonal, so that the initial configuration is 

not unstable. The main dilemma, however, is that elements with a) zero flexural inertia provides initial 

unstable configuration although b) elements with slightly higher inertia stiffens considerably the 

system, leading to sensitively higher critical loads. Thus, a set of small (although non-zero) set of 

inertias must be meticulously chosen. Following the nomenclature from Figure 43b) the moment of 

inertia relative to the local axis 𝒆1
𝑟 is 𝐼11 = 𝛼, and the one relative to 𝒆2

𝑟 is 𝐼22 = 𝛽. In Figure 48 it can 

be seen that the critical load is sensitive the choice of 𝛼 and 𝛽. Supported by the results depicted in 

Figure 45, the model with 𝛼 = 1 𝑐𝑚4 and 𝛽 = 0.1 𝑐𝑚4 was chosen as the representative one, so that 

the critical load is consistent with the one from the simplified isolated rod model.  

 

Figure 48 – Equilibrium path for the lateral displacement of the top chord midpoint with respect to the normal force 

resultant 𝑵 =
𝑷

𝟑
. 

Let us now compare the simplified isolated rod model to the complete truss. Both models share the 

important characteristics of presenting flexural-torsional buckling mode that is NOT detected by 

models with linear elastic material, only by the ones with Saint-Venant’s or Simo-Ciarlet’s material 
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(see Figure 50). This supports the importance of the inclusion of higher order strain terms in the 

constitutive equation. Both models also fail to converge at higher loading levels, indicating the need of 

arc-length method for further calculation. The main difference is that the post-critical behaviour is 

fairly different, which was indeed expected, as after buckling, the truss itself does not provide a 

vertical support at the midpoint of the top chord anymore (remember that the simplified model has 

such vertical support). 

 

a) 

 

b) 

 

c) 

Figure 49 – Equilibrium path for the top chord midpoint (normal force) with respect to the a) lateral and b) vertical 

displacements and c) torsion rotation in the isolated member model (dashed lines) and complete truss model (full line). 

 

 

   

   

   

   

   

         

 
  
  

 

       

                   
                      
                   
                       
                   
                       
                   
                      

                   
                       
                   
                       

     :
                                144         
                           101   

 

   

   

   

   

   

                 

 
  
  

 

       

 

   

   

   

   

   

                   

 
  
  

 

       



 Marcos Pires Kassab 119 

Advances on a kinematically exact rod model for thin-walled open section members: consistent warping function and nonlinear constitutive equation 

 

 

Figure 50 – Post-critical configuration of the complete truss model with Saint-Venant’s/Simo-Ciarlet’s material. 

Applied vertical load 𝑷 = 𝟓𝟏𝟎 𝒌𝑵, and normal resultant 𝑵 = 𝟏𝟕𝟎 𝒌𝑵. The change of curvature of the rod at the 

special transition elements represents the hinge effect. Image generated with a) ParaView and b)GiD. 

 

 

 

 

 

Note the “hinge” effect 
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7. CONCLUSION 

The advancement of a 7-DOF, kinematically exact rod model with secondary-warping with the 

option of either exact (i.e. retaining all strain terms) Saint-Venant’s or exact Simo-Ciarlet’s 

constitutive equations was achieved. The model was validated in pre-critical loading situations, 

buckling load determination and in the post-critical regime – including some cases that were not 

correctly described by simpler rod models: the coupling effects between torsion strains and other 

degrees of freedom proved crucial at the constitutive equation for proper torsional bucking 

representation. 

While the Simo-Ciarlet’s material has the advantage of being polyconvex, and therefore, 

theoretically more suitable for finite displacements and large strain, the Saint-Venant’s material can be 

implemented in a more efficient way, dispensing the numerical integration of stress resultants and 

material tangent matrix along the cross-section (see Appendix I). For practical applications with the 

discussed rod model, both seemed virtually identical in the proposed examples. 

The warping function from Campello and Lago [2] was corrected by incorporation of a missing 

(linear through-the-thickness) term. As soon as the author began to deal with more complex cross-

sections, he realized that a modification was mandatory, originating expression (3.80). Later, it was 

discovered that the proposed approach renders a very good approximation to the Saint-Venant’s 

warping function for thin-walled open sections, composed by rectangular segments, with no need to 

solve any differential equation. As a subproduct of this process, a simple, yet general, algorithm for 

generating thin-walled sections´ warping functions was implemented in PEFSYS. Also, an initial 

version for an interface with ParaView was implemented, for post-processing. 

It should be noted that the expression (3.80) can be used to generate the warping function w.r.t any 

centre, the author decided to always use the shear centre, in order to uncouple warping and 

axial/bending effects. There are some works (Gruttmann [18], Gonçalves [35], for example) in which 

the orthogonality conditions for the warping mode are not enforced, leading to a different expression 

for the material stiffness contribution. Some examples in Appendix E suggest that the origin must 

indeed be the shear centre, to allow for a more coherent kinematical assumption. 

For the tested cases in which the rod models diverged from the shell to completely describe the 

displacement field, it was clear that the bottleneck of the current formulation is the lack of richer 

kinematical assumptions for the displacement field, which can be achieved by incorporating in- and 

out-of-plane distortional degrees of freedom. 

That said, the next logical step toward robust rod formulation is to study techniques to generate 

such distortional contributions, such as the Generalized Beam Theory (GBT), and posteriorly 

implement them in PEFSYS. 
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APPENDIX 

APPENDIX A.  BASIC CONCEPTS: KINEMATIC CHARACTERIZATION 

 

Let the domain of a continuum in the reference configuration, denoted by 𝑉𝑟, with the contour 𝑆𝑟 

undergo a transformation that results in the current configuration, denoted by 𝑉, with the contour 𝑆, as 

in. Figure 51. For the sake of simplicity, it will be assumed that the reference configuration is the same 

as the initial configuration, although this is not necessary in general. 

 

Figure 51 – Transformation of a continuum, from a reference configuration to the current configuration. 

Let  𝝃 be the reference position of a given point of a solid and 𝒙 be its current position, after a 

generic deformation. The displacement, for each point is given by 

 𝒖 = 𝒙 − 𝝃. (A.1) 

Then, the deformation gradient (𝑭) is the second order tensor given by 

 𝑭 =
𝜕𝒙

𝜕𝝃
= ∇𝒖 + 𝑰. (A.2) 

The transformation 𝑭 relates a solid infinitesimal fibre 𝒅𝒔𝑟 on the reference configuration to its 

state on the current configuration (𝒅𝒔) 

 𝒅𝒔 = 𝑭𝒅𝒔𝑟. (A.3) 

An important quantity is the Jacobian (𝐽) associated to 𝑭. It expresses the volume variation of an 

infinitesimal region of the studied continuum, with the expression  

 
𝑑𝑉

𝑑𝑉𝑟
=
< 𝑭𝒅𝒔𝑢 , 𝑭𝒅𝒔𝒗 , 𝑭𝒅𝒔𝑤 >

< 𝒅𝒔𝑢 , 𝒅𝒔𝒗 , 𝒅𝒔𝑤 >
= 𝑑𝑒𝑡𝑭 = 𝐽, (A.4) 

where < 𝒂, 𝒃, 𝒄 >= (𝒂 × 𝒃) ∙ 𝒄 is the triple product of a linear independent triplet 𝒂, 𝒃, 𝒄. 

Similarly, it is possible to study area variations. This can be achieved through Nanson’s rule 

 𝑑𝑆�̂� = 𝐽𝐹−𝑇𝒏�̂�𝑑𝑆𝑟 ⟹ 𝑑𝑆 = 𝐽‖𝐹−𝑇𝒏�̂�‖𝑑𝑆𝑟. (A.5) 

The Cauchy-Green (𝑪) and Green-Lagrange (𝑬) tensors are calculated as 
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  𝑪 = 𝑭𝑇𝑭, (A.6) 

 𝑬 =
1

2
(𝑪 − 𝑰). (A.7) 
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APPENDIX B.  BASIC CONCEPTS: STRESS CHARACTERIZATION 

 

In the context of solids and fluids dynamics, it is important to introduce Cauchy’s principle: it 

states that, for a hypothetical sectioned continuum, the actions and respective reactions of one part 

over the another are a) distributed forces over the sections area and b) only present on each section 

surface. Consequently, the vectorial stress field (𝝆) must be a function of a) the coordinate of the 

considered point (𝒙) and b) the local normal direction to the adopted section (𝒏). Therefore, 𝝆 =

�̂�(𝒙, 𝒏)  

 

Figure 52 – Relevant stress vector representation for the Cauchy (black arrow), 1st (yellow arrow) and 2nd Piola-

Kirchoff (red arrow) tensors. 

 

Cauchy stress tensor (𝑻) 

This tensor interpretation is direct. Each of its column contain one stress vector with respect to a 

determined face, normal to one vector of the three-dimensional base.  

The real (true) stress 𝝆 in a surface can be determined by 𝑻, w.r.t the normal unitary vector 𝒏 

(Figure 52),  

 𝝆 = 𝑻𝒏. (B.1) 

 

1st Piola-Kirchoff tensor (𝑷) 

This tensor represents the nominal stress state of a body. Whereas 𝑻 had as reference area the 

current configuration, 𝑷 uses the reference configuration area (see Figure 52). Thus, if 

 𝝆𝑟𝑑𝑆𝑟 = 𝝆𝑑𝑆, (B.2) 

then, admitting that 𝝆𝑟 can be calculated by a linear transformation of the unitary vector 𝒏𝑟, 

 𝑷𝒏𝑟𝑑𝑆𝑟 = 𝑻𝒏𝑑𝑆. (B.3) 

Using (A.5), one obtains 
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 𝑷 = 𝑻𝐽𝑭−𝑇. (B.4) 

This tensor is not generically symmetric neither objective (i.e, it is affected by rigid body motion). 

Nominal stress in a plane �̂�𝑟  can be calculated by 

 𝝆𝑟 = 𝑷𝒏𝑟. (B.5) 

 

2nd Piola-Kirchoff tensor (𝑺) 

This tensor is obtained by applying the inverse transformation 𝑭−1 on the nominal stress 

components, as if those vectors performed the same transformation as the continuum fibres (see Figure 

52), yielding  

 �̂�𝑟 = 𝑭−1𝝆𝑟 = 𝑭−1𝑷𝒏𝑟 = 𝑺𝒏𝑟, (B.6) 

thus, 

 𝑺 = 𝑭−1𝑷. (B.7) 

This tensor is always symmetric and objective, so is adequate to formulate constitutive equations. 
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APPENDIX C. SECTORIAL AREA, PRINCIPAL POLE AND ORIGIN FOR TOP HAT AND 

STIFFNED C-SECTIONS  

 

 

 

a) 

 

b) 

Figure 53 – Geometric attributes; b) Sectorial area for an arbitrary 𝑨,𝑩 (𝝎𝑨,𝑩). 

 

This cross-section area is 

 𝐴 = 2ℎ𝑡𝑤 + 2𝑏𝑖𝑡𝑖 + 𝑏𝑠𝑡𝑠. (C.1) 

 

The position of the centroid can be calculated, by definition, as 
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 |𝑦𝑔| =
ℎ2𝑡𝑤+2ℎ𝑡𝑖𝑏𝑖

𝐴
 . (C.2) 

The moment of inertia 𝐼2 with respect to the centroid is 

 

𝐼2
𝑔
=
𝑏𝑠
3𝑡𝑠
12

+ 2 [
𝑏𝑖
3𝑡𝑖
12

+ (
𝑏𝑠 + 𝑏𝑖
2

)
2

𝑏𝑖𝑡𝑖] + 2 (
𝑏𝑠
2
)
2

𝑡𝑤

=
𝑏𝑠
3𝑡𝑠
12

+
𝑏𝑖
3𝑡𝑖
6
+
(𝑏𝑆 + 𝑏𝑖)

2

2
𝑏𝑖𝑡𝑖 +

𝑏𝑠
2

2
𝑡𝑤 

(C.3) 

The sectorial moments of inertia 𝐼𝜔𝑥1
𝐴,𝐵

can be readily obtained, with the aid of symmetry as 

 

𝐼𝜔𝑥1
𝐴,𝐵 = 2 [∫

𝑏𝑠

2
𝑡𝑤(−𝜉2 + 𝑦𝑔) 

𝑦𝑔
𝑦𝑔−ℎ

𝑏𝑠

2
𝑑𝜉2 + ∫

𝑏𝑠ℎ

2
− (𝜉1 −

𝑏𝑠
2
+𝑏𝑖

𝑏𝑠
2

𝑏𝑠

2
) ℎ𝑡𝑖𝑑𝜉1] . 

(C.4) 

Using the substitutions 𝑢 = 𝑦𝑔 − 𝜉2 → 𝑑𝑢 = −𝑑𝜉2 and 𝑣 = 𝜉1 −
𝑏𝑠

2
→ 𝑑𝑣 = 𝑑𝜉1 

 

𝐼𝜔𝑥1
𝐴,𝐵 = 2 [∫

𝑏𝑠
2

4
𝑡𝑤𝑢(−𝑑𝑢) + ∫ [

𝑏𝑠ℎ

2
(𝑣 +

𝑏𝑠

2
) − 𝑣ℎ (𝑣 +

𝑏𝑠

2
)] 𝑡𝑖𝑑𝑣

𝑏𝑖
0

𝑏𝑖
0

] =

2 [
𝑏𝑆
2ℎ2𝑡𝑤

8
+
𝑏𝑠
2ℎ𝑏𝑖𝑡𝑖

4
−
𝑏𝑖
3ℎ𝑡𝑖

3
] =

𝑏𝑆
2ℎ2𝑡𝑤

4
+
𝑏𝑠
2ℎ𝑏𝑖𝑡𝑖

2
−
2𝑏𝑖

3ℎ𝑡𝑖

3
. 

(C.5) 

With equation (3.59), and with the aid of symmetry (𝐼12 = 0), the position of the shear centre is 

given by 

 yc = 𝜉2
𝐶 − 𝜉2

𝐴 =
𝐼𝜔𝑥1
𝐴,𝐵

𝐼2
𝑔  (C.6) 

Using the symmetry again, it is possible to infer that 𝐵 coincides with the principal origin. 

Therefore, the principal sectorial area function is readily obtained (see Figure 54). 

 

 

Figure 54 – Principal sectorial area (𝝎𝑪,𝑫). The expressions of the anti-symmetric part of the diagram were not 

shown. 
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Now, it is possible to obtain the principal sectorial moment of inertia, with 

 

𝐼𝜔
𝐶,𝐷 = 2 [∫ (−yc𝜉1)

2𝑡𝑠𝑑𝜉1

𝑏2
2

0

+∫ (−yc
𝑏𝑠
2
+
𝑏𝑠
2
(𝑦𝑔 − 𝜉2))

2

𝑡𝑤𝑑𝜉2

𝑦𝑔

𝑦𝑔−ℎ

+∫ (
𝑏𝑠ℎ

2
− (𝜉1 −

𝑏𝑠
2
) ℎ − yc)

2

𝑡𝑖𝑑𝜉1

𝑏𝑠
2
+𝑏𝑖

𝑏𝑠
2

  ]. 

(C.7) 

Using the substitutions 𝑢 = 𝑦𝑔 − 𝜉2 → 𝑑𝑢 = −𝑑𝜉2 and 𝑣 = 𝜉1 −
𝑏𝑠

2
→ 𝑑𝑣 = 𝑑𝜉1, one gets 

 

𝐼𝜔
𝐶,𝐷 = 2 [

𝑏𝑠
3𝑡𝑠yc

2

24
+ ∫ (−

yc𝑏𝑠
2
+
𝑏𝑠
2
𝑢)

2

𝑡𝑊(−𝑑𝑢)
0

ℎ

+∫ (
𝑏𝑠
2
(ℎ − yc) − 𝑣ℎ

∗)
2

𝑡𝑖𝑑𝑣
𝑏𝑖

0

], 

(C.8) 

with ℎ∗ = ℎ + yc and 𝑘 =
𝑏𝑠

2
(ℎ − yc). Performing other substitutions 𝑝 = 𝑢 − Δ𝜉2 and 𝑤 = 𝑘 − 𝑣ℎ∗, 

and then integrating the polynomials, it is obtained 

 

𝐼𝜔
𝐶,𝐷 = 2 [

𝑏𝑠
3𝑡𝑠yc

2

24
+
𝑏𝑠
2𝑡𝑤
4

((ℎ − yc)
3 − (yc)

3) −
𝑡𝑖|𝑏𝑖|

3ℎ∗
((𝑘 − 𝑏𝑖ℎ

∗)3 − 𝑘3)]

=
𝑏𝑠
3𝑡𝑆yc

2

12
+
𝑏𝑠
2

6
𝑡𝑤(ℎ

3 − 3ℎ2𝑦𝑐 + 3ℎ𝑦𝑐
2)

+
2|𝑏𝑖|

3
(3𝑘2 − 3𝑘𝑏𝑖ℎ

∗ + 𝑏𝑖
2ℎ∗2)𝑡𝑖. 

(C.9) 

Note that, sometimes, |𝑏𝑖| is taken is absolute value. This is due to the fact that 𝑏𝑖 might be positive 

(top hat section), negative (stiffened C-section) or zero (standard C-section). Therefore, this 

adjustment is necessary. 
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APPENDIX D.  SECTORIAL AREA, PRINCIPAL POLE AND ORIGIN FOR STIFFENED V-

SECTION  

 

 

 

(a) 

 

 

(b) 

Figure 55 – Geometric attributes; b) Sectorial area for an arbitrary 𝑨,𝑩 (𝝎𝑨,𝑩). 

 

First, let us define  

 𝑙 = √ℎ2 + 𝑏2. (D.1) 

This cross-section area is 

 𝐴 = 2𝑙𝑡𝑤 + 2𝑡𝑓𝑏𝑓. (D.2) 

 

The position of the centroid can be calculated, by definition, as 

 𝑦𝑔 =
ℎ𝑡𝑤𝑙+2𝑡𝑓𝑏𝑓ℎ

𝐴
 . (D.3) 

The moment of inertia 𝐼2 with respect to the centroid is 

 

𝐼2
𝑔
= 2∫ 𝜉1

2√1+ ℎ2/𝑏2𝑑𝜉1

𝑏

0

+ 2 [
𝑏𝑓
3𝑡𝑓

12
+ (𝑏 +

𝑏𝑓

2
)

2

𝑏𝑓𝑡𝑓]

=
2

3
𝑏2𝑙𝑡𝑤 +

𝑏𝑓
3𝑡𝑓

6
+ 2(𝑏 +

𝑏𝑓

2
)

2

𝑏𝑓𝑡𝑓 . 

(D.4) 

The sectorial moments of inertia 𝐼𝜔𝑥1
𝐴,𝐵

can be readily obtained, with the aid of symmetry as 

 𝐼𝜔𝑥1
𝐴,𝐵 = 2 [∫ ℎ(𝜉1 − 𝑏)𝜉1𝑡𝑓𝑑𝜉1

𝑏+𝑏𝑓
𝑏

] . (D.5) 

Using the substitutions 𝑢 = 𝑥 − 𝜉1 → 𝑑𝑢 = −𝑑𝜉1, one gets 

 𝐼𝜔𝑥1
𝐴,𝐵 = 2ℎ𝑡𝑓 ∫ 𝑢(𝑢 + 𝑏)𝑑𝑢

𝑏𝑓
0

= 2ℎ𝑡𝑓 (
𝑏𝑓
3

3
+
𝑏𝑓
2𝑏

2
). (D.6) 

With equation (3.59), and with the aid of symmetry (𝐼12 = 0), the position of the shear centre is 

given by 
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 yc = 𝜉2
𝐶 − 𝜉2

𝐴 =
𝐼𝜔𝑥1
𝐴,𝐵

𝐼2
𝑔  (D.7) 

Using the symmetry again, it is possible to infer that 𝐵 coincides with the principal origin (𝐷). 

Therefore, the principal sectorial area function is readily obtained (see Figure 56). 

 

 

Figure 56 – Principal sectorial area (𝝎𝑪,𝑫). The expressions of the anti-symmetric part of the diagram were not 

shown. 

 

Now, it is possible to obtain the principal sectorial moment of inertia, with 

 

𝐼𝜔
𝐶,𝐷 = 2 [∫ (−𝜉1𝑦𝐶)

2
𝑏

0

𝑡𝑤√1+ ℎ
2/𝑏2𝑑𝜉1

+∫ (−𝑏𝑦𝑐 + ℎ
∗(𝜉1 − 𝑏))

2
𝑡𝑓𝑑𝜉1

𝑏+𝑏𝑓

𝑏

], 

(D.8) 

with ℎ∗ = ℎ − 𝑦𝑐. 

Developing the expression, one gets 

 𝐼𝜔
𝐶,𝐷 =

2

3
𝑦𝑐
2𝑏2𝑙𝑡𝑤 +

2

3
𝑏𝑓 [3𝑏

2𝑦𝑐
2 − 3𝑏𝑦𝑐ℎ

∗𝑏𝑓 + (ℎ
∗𝑏𝑓)

2
] 𝑡𝑓. (D.9) 
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APPENDIX E.  EVALUATING THE POSITION OF THE AXIS AND POLE FOR WARPING 

FUNCTION GENERATION 

 

The first step for every rod model is to determine the axis that will represent the reference for the 

solid geometry. In the linear analysis, little discussion is made about this topic: the problem is 

separated in axial/shearing forces and bending moment, taking as reference the centroid, while for the 

torsion, the axis is taken at the torsion centre (in this context, equivalent to the shear centre and the 

principal pole). Sometimes, when only the Saint-Venant (uniform) torsion is considered, this 

discussion is not even approached, since a) it is known that 𝐼𝑇 is invariant to the choice of the rod axis; 

b) for a fixed centre, considering uniform specific rotation, the stress field is not dependent on such 

choice.  

In the kinematically exact context, it is known that the rigid body motion is not affected by the 

choice of the rod axis, as such transformation can be written in terms of any reference. The only 

requirement is that normal and shear stresses and its resultants are consistently derived, rendering 

equivalent models, regardless of the axis choices (at least, if the boundary conditions remain 

unchanged), as mentioned in Pimenta [22] or Campello [1].  

The other problem to be faced is the choice of the pole for the generation of the warping function, 

which is a more sensitive subject. In the uniform torsion, changing the pole leads to a difference of 

“only” a rigid body motion along the whole axis, whereas the stress field and the torsional rotation 

(which is the kinematical quantity of interest) are correctly calculated, and, as consequence, no further 

discussion is usually carried in this framework. 

However, in complex cases with non-uniform torsion (specially kinematically exact 3D rod 

theories), this subject becomes more sensitive, mainly when the bending/torsion rotations coexist and 

independent degrees of freedom are added to the model. Usually, one of the two alternatives is chosen: 

a) the so-called orthogonality conditions are applied: the pole is taken at the shear centre 

(principal pole). The idea is to uncouple first order torsion strains from axial and bending 

strains; 

b) the pole is the rod axis itself – no further treatment is done. 

This topic is rather underestimated, and sometimes the same author adopts one or another approach 

in different works without further explanations. However, it will be shown here that this choice is 

important and is much more than just an option to uncouple or not certain strain components. 

Here, it will be shown that the change of the warping pole changes the space of admissible 

solutions for the model, and therefore it must be treated as a modelling decision that impacts the 

solution.  

Proposition: Consider a generic cross section. Let us consider two warping functions 𝜓𝑎 and 𝜓𝑏 

generated with different poles 𝐴 and 𝐵. Using equation (3.79), the following relation is valid 

 𝜓𝑏 = 𝜓𝑎 + 𝑎𝜉1 + 𝑏𝜉2 + 𝑐 (E.1) 
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Let us prove that the possible deformation fields generated with 𝜓𝑎 and 𝜓𝑏 are different. 

Proof: Without any loss of generality, let us impose that 𝜓𝑎 obeys the orthogonality conditions, so 

that rigid body motions are filtered. Now, let us consider a generic cross-sectional deformation 

characterized by 𝒅𝑎 = [𝒖𝑎 , 𝜽𝑎 , 𝑝𝑎], that will act with the shape function 𝜓𝑎. Now, it is possible to 

build another set 𝒅𝑏 = [𝒖𝑏 , 𝜽𝑏 , 𝑝𝑏] so that the rigid motion that is embedded in 𝜓𝑏 (the terms 𝑎𝜉1 +

𝑏𝜉2 + 𝑐) is compensated. Formally, it is searched 𝒅𝑎 , 𝒅𝑏 such that 

 𝒖𝑎 +𝑸𝑎𝒂
𝑟 ∥ 𝒖𝑏 +𝑸𝑏𝒂

𝑟 + 𝒑𝑏(𝑎𝜉1 + 𝑏𝜉2 + 𝑐)𝒆3
𝑏 , ∀ 𝒂𝑟, (E.2) 

where the symbol ∥ stands for “parallel to”. 

Thus, since (𝑎𝜉1 + 𝑏𝜉2)𝒆3
𝑏 represents an additional rotation, necessarily 𝜽𝑎 ≠ 𝜽𝑏. As consequence, 

it is impossible for the “pure” warping contribution from 𝑝𝑏(𝜓b − 𝑎𝜉1 − 𝑏𝜉2 − 𝑐)𝒆3
𝑏 = 𝑝𝑏𝜓𝑎𝒆3

𝑏 to be 

equivalent to the one from 𝑝𝑎𝜓a𝒆3
𝑎, because, in general if 𝜽𝑎 ≠ 𝜽𝑏 ⇒ 𝒆3

𝑎 ≠ 𝒆3
𝑏, and therefore it is 

impossible to exactly convert the solution with pole 𝐵 into the one with pole 𝐴. This means that, 

physically, if a pole that is not principal is used, one might end up with a warping that is not really 

orthogonal to the cross-section, since it will be orthogonal to the plane that contains the vectors 𝑸𝑏𝒂
𝑟, 

instead of 𝑸𝑎𝒂
𝑟 . This is better illustrated in Figure 57. 

 

 

Figure 57 – On the differences of using or not the orthogonality conditions for the shear centre. 

 

Moreover, in the attempt to compensate the rigid body motion, the cross-sectional area before 

warping is NOT preserved, since, in case b), as the area of the projection is the original cross-section 

itself, when 𝒑𝑏(𝑎𝜉1 + 𝑏𝜉2 + 𝑐)𝒆3
𝑏 is added, the final “rotated” area must be greater than the one from 

the reference configuration.  

Thus, the conclusion is that the choice of the pole directly affects the space of admissible solutions, 

and therefore the model is NOT invariant to its choice, differently from the choice of the rods axis∎.  
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A question that also arises is how the use of a pole that is different from the axis impacts the stress 

field. Let us study a linear problem and compare to some results from the kinematically exact theory: 

Consider a rod with a generic cross-section, with a torsion rotation 휃3(𝜉3) and warping intensity 

𝑝(𝜉3). The geometric characterization of three different cases can be found in Figure 58. In case a), 

the rotation is around the shear centre, and the principal warping function 𝜓𝑎 is used. In case b) a 

generic point is used as rotation centre, and the corresponding warping function 𝜓𝑏 is used. In case c), 

the rotation is around the same point as in case b), but 𝜓𝑎 is used. 

 

 

a) 

 

b) 

 

c) 

Figure 58 – Three kinematical descriptions for different axial reference and pole. Dash-dot line: reference 

configuration. Full line: current configuration. a) Axis and pole in the shear centre; b) Axis and pole in generic point; c) 

Axis in the same point as b) and pole in shear centre. 

 

It is possible to represent the axial reference translation by 

 𝜉�̅� = 𝜉𝛼 − 𝑠𝛼 (E.3) 
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Let us compare the relevant displacements, strains and stress fields, assuming small displacements 

and linear elastic materials (Table 10, where 𝑢𝑖 is the displacement in direction 𝑖, 휀𝑖 =
𝜕𝑢𝑖

𝜕𝜉𝑖
 is the axial 

linear strain in direction 𝑖, 𝛾𝑖𝑗 =
𝜕𝑢𝑖

𝜕𝜉𝑗
+
𝜕𝑢𝑗

𝜕𝜉𝑖
 is the shear strain in the 𝑖 plane at the 𝑗 direction,𝜏𝑖𝑗 is the 

stress in the 𝑖 plane at the 𝑗 direction, taken from the Cauchy’s stress tensor). 

Table 10 – Displacement, strain and stress field for cases a), b) and c) 

 Case a) Case b) Case c) 

Displacement 

𝑢1 = −휃3𝜉2̅ 

𝑢2 = 휃3𝜉1̅ 

𝑢3 = 𝑝𝜓𝑎(𝜉1̅, 𝜉2̅) 

𝑢1 = −휃3𝜉2 

𝑢2 = 휃3𝜉1 

𝑢3 = 𝑝𝜓𝑏(𝜉1, 𝜉2) 

𝑢1 = −휃3𝜉2 

𝑢2 = 휃3𝜉1 

𝑢3 = 𝑝𝜓𝑎(𝜉1, 𝜉2) 

Strain 

휀1 = 휀2 = 𝛾12 = 0 

휀3 = 𝑝
′𝜓𝑎 

𝛾𝛼3 = 𝑒𝛽𝛼휃3
′𝜉�̅� + 𝑝𝜓𝑎,𝛼 

휀1 = 휀2 = 𝛾12 = 0 

휀3 = 𝑝
′𝐸𝜓𝑏 

𝛾𝛼3 = 𝑒𝛽𝛼휃3
′𝜉𝛽 + 𝑝𝜓𝑏,𝛼  

휀1 = 휀2 = 𝛾12 = 0 

휀3 = 𝑝
′𝐸𝜓𝑎 

𝛾𝛼3 = 𝑒𝛽𝛼휃3
′𝜉𝛽 + 𝑝𝜓𝑎,𝛼 

Stress 

𝑇11 = 𝑇12 = 𝑇22 = 0 

𝑇33 = 𝐸𝑝
′𝜓𝑎 

𝑇𝛼3 = 𝐺(𝑒𝛽𝛼휃3
′𝜉�̅� + 𝑝𝜓𝑎,𝛼) 

𝑇11 = 𝑇12 = 𝑇22 = 0 

𝑇33 = 𝐸𝑝
′𝜓𝑏 

𝑇𝛼3 = 𝐺(𝑒𝛽𝛼휃3
′𝜉𝛽 + 𝑝𝜓𝑏,𝛼) 

𝑇𝛼3 = 𝐺𝛾𝛼3 

𝑇33 = 𝐸𝑝
′𝜓𝑏 

𝑇𝛼3 = 𝐺(𝑒𝛽𝛼휃3
′𝜉𝛽 + 𝑝𝜓𝑎,𝛼) 

In order to obtain the Saint-Venant’s warping function, for the cases a) and b), one can impose the 

uniform torsion basic assumptions: 휃3 = 휃3
′𝜉3, with 휃3

′ = 𝑐𝑡𝑒, 𝑝 = 휃3
′  and traction-free lateral 

boundary. Therefore, from the traditional Saint-Venant’s theory, one gets, for case a) 

 {
𝜓𝑎,𝛼𝛼 = 0

𝜓𝑎,𝛼𝑛𝛼 = −𝑒𝛼𝛽(𝜉�̅�)𝑛𝛽 = −𝑒𝛼𝛽(𝜉𝛼 − 𝑠𝛼)𝑛𝛽
, (E.4) 

and for case b), 

 {
𝜓𝑏,𝛼𝛼 = 0

𝜓𝑏,𝛼𝑛𝛼 = −𝑒𝛼𝛽(𝜉𝛼)𝑛𝛽
, (E.5) 

where 𝒏 = [𝑛1 𝑛2 0]𝑇 is the unitary normal to the boundary external vector and 𝒆 = [
0 1
−1 0

]. 

As already mentioned throughout the text, for Saint-Venant’s warping functions generated from 

different poles, the following relation is valid 

 
(𝜓𝑎,𝛼 − 𝑒𝛽𝛼𝑠𝛽)𝑛𝛼 = 𝜓𝑏,𝛼𝑛𝛼 ⟹𝜓𝑎,𝛼𝑛𝛼 = (𝜓𝑏,𝛼 + 𝑒𝛽𝛼𝑠𝛽)𝑛𝛼 ⟹ 

𝜓𝑎 = 𝜓𝑏 − 𝑠2𝜉1 + 𝑠1𝜉2 + 𝑐 
(E.6) 

Rewriting the tangential strain field from case c) in terms of 𝜓𝑏, one gets 

 𝛾𝛼3 = 𝑒𝛽𝛼휃3
′𝜉𝛽 + 𝑝(𝜓𝑏,𝛼 + 𝑒𝛽𝛼𝑠𝛽) (E.7) 

Therefore, the tangential stress field become 

 𝑇𝛼3 = 𝐺(𝑒𝛽𝛼휃3
′𝜉𝛽 + 𝑝𝜓𝑏,𝛼) + 𝐺𝑝𝑒𝛽𝛼𝑠𝛽  (E.8) 

Let us now calculate the stress resultants for those cases, for generic 𝑝, 휃𝑧,휃𝑧
′ (Table 11). Using the 

definitions from the linear theory, 𝑁 = ∫ 𝑇33𝑑𝐴𝐴
, 𝑉𝛼 = ∫ 𝑇𝛼3𝑑𝐴𝐴

, 𝑀𝛼 = 𝑒𝛼𝛽 ∫ 𝑇33𝜉𝛽𝑑𝐴𝐴
, 𝑇 =

∫ 𝑒𝛼𝛽𝜉𝛼𝑇𝛽3𝑑𝐴𝐴
, one gets, (some results concerning the integration of products of the type 

∫ 𝜓,𝛼𝑑𝐴𝐴
, ∫ 𝜓,𝛼𝜉𝛽𝑑𝐴𝐴

, etc are used, see Campello [1] or Gruttmann [18], [48] for details) 
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Table 11 – Stress resultants for the proposed problem 

Case a) Case b) Case c) 

𝑁 = 𝑝′𝐸𝑆𝜓𝑎 = 0 

𝑉1 = (𝑝 − 휃3
′ )𝐺𝐴�̅�2 

𝑉2 = −(𝑝 − 휃3
′ )𝐺𝐴�̅�1 

𝑀1 = 𝑝
′𝐸𝐼𝜓𝑎2̅ = 0 

𝑀2 = −𝑝
′𝐸𝐼𝜓𝑎1̅ = 0 

𝑇 = 𝐺휃3
′ 𝐼0̅ + 𝐺𝑝𝐼𝑇 

𝑁 = 𝑝′𝐸𝑆𝜓𝑏 

𝑉1 = (𝑝 − 휃3
′ )𝐺𝐴𝑔2 

𝑉2 = −(𝑝 − 휃3
′ )𝐺𝐴𝑔1 

𝑀1 = 𝑝
′𝐸𝐼𝜓𝑏2 

𝑀2 = −𝑝
′𝐸𝐼𝜓𝑏1 

𝑇 = 𝐺휃3
′ 𝐼0 + 𝐺𝑝𝐼𝑇 

𝑁 = 𝑝′𝐸𝑆𝜓𝑎 = 0 

𝑉1 = −𝐺휃3
′𝐴𝑔2 − 𝑝𝐺𝐴(𝑠2 − 𝑔2) 

𝑉2 = 𝐺휃3
′𝐴𝑔1 + 𝑝𝐺𝐴(𝑠1 − 𝑔1) 

𝑀1 = 𝑝
′𝐸𝐼𝜓𝑎2 = 0 

𝑀2 = −𝑝
′𝐸𝐼𝜓𝑎1 = 0 

𝑇 = 𝐺휃3
′ 𝐼0 + 𝐺𝑝(𝐼𝑇 − 𝐼0 + 𝐴𝑔𝛼𝑠𝛼) 

In Table 11, 𝑔𝛼 denotes the position of the centroid and the other symbols are used as defined 

during the text. 

Of course, if 𝑝 = 휃3
′ , and 휃3 = 휃3

′𝜉3, case a) and case b) recover the uniform torsion problem, with 

𝑁 = 𝑉1 = 𝑉2 = 𝑀1 = 𝑀2 = 0 and 𝑇 = 𝐺휃3
′ 𝐼𝑇.  

Comparing equations (E.4) and (E.5) with Table 10 for the case b), it is clear that the traction-free 

boundary condition is not met in case c), even if the torsion was uniform, since there is a discrepancy 

between the pole and the axis. The practical consequence of this statement for the rod model is that, by 

integrating the stresses, the shear resultant forces would only be zero in uniform torsion situations if a 

shear deformation strain were added (proportional to 𝜅𝛼), in order to counterbalance the term 𝐺𝑝𝑒𝛽𝛼𝑠𝛽 

– this would generate a sideways deflection, i.e. the deformed axis would not remain parallel to the 

original configuration. This is expected, since, comparing the displacements field from cases a) to c), 

despite the warping being the same, rigid body lateral and vertical displacements are added. On the 

other hand, the orthogonality conditions from the warping function eliminates any kind of axial and 

bending resultants. Only when the shear centre is taken as the rod axis that the traction-free boundary 

condition is respected and both axial and bending resultants remains null.  

All those statements are in perfect agreement with the formulation of kinematically exact theories. 

In Simo [17] (equation (63)), Campello [1] (equation (4.22)), the orthogonality conditions are imposed 

and the shear resultants 𝑉1 = 𝑝𝐺𝐴(𝑔2 − 𝑠2) and 𝑉2 = 𝑝𝐺𝐴(𝑠1 − 𝑔1) are present (the same happens, 

implicitly, in 6 DOF models from Pimenta and Yojo [22] (equation (128)) and Gruttmann [48] 

(equation (45)) and also the bi-shear is modified (becomes function of 𝑠𝛼). In Gruttmann [18](equation 

(53)), where the pole is fixed as the same as the axis, no shear resultant is present, but the warping 

contributes to the bending resultants 𝑀1 = 𝑝
′𝐸𝐼𝜓1, 𝑀2 = −𝑝′𝐸𝐼𝜓2 and bi-moment. If bi-moment 

(depends on the normal stresses, therefore, on 𝐸𝜓) and bi-shears (depends on the shear stresses, 

therefore, on 𝐺𝜓,𝛼)were also calculated, similar conclusions would hold. 

NOTE: merely by inspecting how the bending and torsional moments are defined, one can see that 

they are axis-dependent, in order to generate a mechanically equivalent system. Analogously, if bi-

moment and bi-shear are calculated on various poles, they shall differ among them. 

Neither of the approaches for the pole position is wrong a priori, but one must acknowledge that 

they might impact the solution. Therefore, some practical situations were studied, in order to 
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investigate such influence. Three examples were simulated, and for each one of them, five models are 

created:  

a) Analytic Vlasov’s linear model; 

b) kinematically exact 7 DOF with linear elastic material – axis and pole at the load point 

application;  

c) kinematically exact 7 DOF with linear elastic material – axis and pole at the shear centre; 

d) kinematically exact 7 DOF with linear elastic material – axis at the load point application 

and pole at the shear centre; 

e) Ansys shell 281 model (with large deformation). 

The models b), c) and d) were simulated using PEFSYS, based on the formulation from Pimenta 

and  Yojo [22], and Campello [1]. 

For cases all the rod models, a homogeneous mesh with 30 linear elements is adopted.  

 

Example C1) I-cantilever, vertically loaded at the top flange 

This example is completely equivalent to the one from section 6.2.2. It has as material properties 

𝐸 = 200 𝐺𝑃𝑎 and 𝐺 = 80 𝐺𝑃𝑎 and the vertical load is incremented up to 40 𝑘𝑁. A small lateral 

perturbation is imposed in order to transpose the bifurcation. One can see in Figure 59 and Figure 60 

the geometric characterization of the problem and the adopted warping function, respectively. 

 

 

  

a) 

 

b) 

 Figure 59 – Geometric description of the example and warping function C1. a) Axis on right-top flange; b) Axis on 

shear centre. 
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a) 

 

b) 

Figure 60 – Warping function for pole in a) shear centre; b) rod axis (top flange/web intersection). 

 

In Figure 61, the equilibrium path for vertical and horizontal displacements, torsional rotation and 

warping intensity were displayed. It was stated that adopting a pole which is not principal has 

completely changed the solution, when compared to rod models that uses the shear centre as pole. 

Those differences become more noticeable at higher loadings (after 5.4 𝑘𝑁). 

We refer the reader to the 6.2.2 for a broader discussion about this example, since this appendix is 

only dedicated to the choice of the pole for the warping function. 
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a) 

 

b) 

 

c) 
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d) 

Figure 61 – Equilibrium paths for example E1, at the web mid-height. a) Lateral displacement; b) Vertical 

displacement; c) Torsional rotation; d) warping intensity. 

 

Example C2) C-channel cantilever, vertically loaded at the top flange/web intersection (same 

as example 6.1.3) 

This example is completely equivalent to the one from section 6.1.3. It has as material parameters 

𝐸 = 210 𝐺𝑃𝑎 and 𝐺 = 80 𝐺𝑃𝑎. The load is incremented up to 𝑃 = 20 𝑘𝑁. One can see in 

  

 

 

a) 

 

b) 

Figure 62 – Geometric description of the example and warping function E.2. a) Axis on the point of load application; 

b) Axis on shear centre. 
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a) 

 

b) 

Figure 63 – Warping function for pole in a) shear centre; b) rod axis (top flange/web intersection). 

 

In Figure 64, the equilibrium path for vertical and horizontal displacements, torsional rotation and 

warping intensity were displayed. It was stated that adopting a pole which is not principal has 

artificially stiffened the system as a whole, leading to significantly smaller displacements, when 

compared to rod models that uses the shear centre as pole. Those differences become more noticeable 

at higher loadings (after 7.7 𝑘𝑁). 

We refer the reader to the 6.1.3 for a broader discussion about this example, since this appendix is 

only dedicated to the choice of the pole for the warping function. 

 

 

 

a) 
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b) 

 

c) 

 

d) 

Figure 64 – Equilibrium paths for example E3, at the web mid-height. a) Lateral displacement; b) Vertical 

displacement; c) Torsional rotation; d) warping intensity. 
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Example C3) C-channel cantilever, vertically loaded at the top flange/web intersection 

This example has the same geometry as the one from section 6.1.3, but the load is now horizontal. 

It has as material parameters 𝐸 = 210 𝐺𝑃𝑎 and 𝐺 = 80 𝐺𝑃𝑎. The load is incremented up to 𝑃 =

80 𝑘𝑁. One can see in Figure 65 the geometric characterization of the problem. The adopted warping 

functions are the same as in the previous example. 

 

  
a) 

b) 

Figure 65 – Geometric description of the example and warping function E.4. a) Axis on the point of load application; 

b) Axis on shear centre. 

 

In Figure 66, the equilibrium path for vertical and horizontal displacements, torsional rotation and 

warping intensity are displayed. As in the previous example, it was stated that adopting a pole which is 

not principal has a major impact on the warping intensity field, whereas the other kinematic quantities 

are almost not impacted in this example. Those differences become more evident at higher loadings, 

notably after 20 𝑘𝑁. It must be highlighted the invariance of the displacement field with the change of 

the axis. Comparing to the shell model, at higher loads the displacements are underestimated, probably 

due to the lack of in-plane distortion modes, such as web local bending. 

 

a) 
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b) 

 

c) 

 

d) 

Figure 66 – Equilibrium paths for example E4, at the web mid-height. a) Lateral displacement; b) Vertical 

displacement; c) Torsional rotation; d) warping intensity. 

 

MODELLING NOTE: the rigid link was imposed through a very stiff rod element. It must be 

remarked that such element cannot influence the warping field, therefore, one of the following 

precautions must be adopted: a) link with null warping constant; b) unlink the warping intensity field 
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of the rigid element from the rest of the structure; c) use other method to impose the link (Lagrange’s 

multiplicator, implementation that allows a buffer on the applied load, etc). 

 

CONCLUSION OF THE APPENDIX 

Having in mind the theoretical aspects that were presented in this topic, altogether with the 

numerical results, the author has chosen to adopt the orthogonality conditions for warping function 

generation, even if that means that the pole is different from the rod axis. The simulated examples 

suggests that, by not doing so, a locking effect might be sensed. Also, as already stated in many 

references, it was seen that the position of the axis does not alter the solutions, and therefore, the 

modeller is free to choose the one that she/he considers more suitable. Therefore, in all the examples 

from section 4.5, the rod models were simulated using the shear centre as pole. 

The beforementioned posture seems also to be prudent for more advanced formulations that 

employ a wide array of warping mode: if each one of them carries embedded additional rigid body 

motion, the “real” rotation of the cross-section is either lost or only recoverable through specific post-

processing, which is cumbersome. That said, there is still the risk of artificial stiffening, which is 

undesirable. It should be noted that in linear Generalized Beam Theory, the warping/distortion modes 

are always orthogonal to each other, thus it would not be an absurd extrapolation to conceive that 

equivalent non-linear models should also respect orthogonality conditions. 

NOTE: 6 DOF models can be derived from 7 DOF models by imposing 𝑝 = 𝜅3 and ignoring the 

work that comes from the bi-moment. By doing so, the constitutive equation is no longer function of 

𝑝′ (and usually the “new” warping intensity derivative 𝜅3′ is not calculated), forcing one to adopt as 

pole the shear centre, in order to not lose information about the bending moment contribution 𝑝′𝐸𝐼𝜓𝛼, 

which becomes forcingly zero.  
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APPENDIX F.  ROTATION DERIVATIVES 

Some important derivatives are deducted here, for didactic purposes. They have already been 

documented in many classic works, such as [15], [22], [46], and were also deduced in other modern 

works, such as [25], [26]. 

Let us consider the time derivative-related tensor 𝜴 = �̇�𝑸𝑇. First, let us verificate that 𝜴 is skew-

symmetric: 

 𝑸𝑸𝑇 = 𝑰 ⇔ �̇�𝑸𝑇 +𝑸�̇�𝑇 = 𝟎 ⇔ �̇�𝑸𝑇 = −𝑸�̇�𝑇 = −(�̇�𝑸𝑇)
𝑇
⇔ 𝜴 = −𝜴𝑇 ∎ (F.9) 

By definition, and using the fact that 𝑸 is skew-symmetric 

 𝜴 = (ℎ̇1𝜣+ ℎ1�̇� + ℎ̇𝟐𝜣
2 + ℎ2(𝜣�̇� + �̇�𝜣))(𝐈 − ℎ1𝜣+ ℎ2𝜣

2), (F.10) 

where ℎ𝑖 was used instead of ℎ𝑖(휃) to alleviate the notation.  

It is appropriate to introduce some properties of the skew-symmetric operators. For generic skew-

symmetric 𝑩,𝑪, 𝑻, with axial vectors 𝒃, 𝒄, 𝒕, and a generic vector 𝒘 

 𝒃 × 𝒘 = 𝑩𝒘 (F.11) 

 𝑻 = 𝑩𝑪 = 𝒄⊗ 𝒃 − (𝒃 ∙ 𝒄)𝑰, (F.12) 

 𝒕 = 𝒃 × 𝒄 ⇔ 𝑻 = 𝑩𝑪− 𝑪𝑩, (F.13) 

 𝑻3 = 𝑡2𝑻, 𝑻4 = −𝑡2𝑻2, 𝑻5 = +𝑡4𝑻, 𝑻6 = +𝑡4𝑻2. (F.14) 

A consequence of (F.12) and (F.13) is that, for 𝒕 = 𝒃 × 𝒄, 

 𝑻 = 𝑠𝑘𝑒𝑤(𝒕) = 𝑠𝑘𝑒𝑤(𝒃 × 𝒄) = 𝑩𝑪 − 𝑪𝑩 = 𝒄⊗𝒃 − 𝒃⊗ 𝒄 (F.15) 

The definition of the dyadic product is also useful. Let 𝒂, 𝒃, 𝒙 be generic vectors, and 𝑻 a generic 

second-order tensor. Thus 

 (𝒂⊗ 𝒃)𝒙 = (𝒃 ∙ 𝒙)𝒂. (F.16) 

As a consequence of this definition, 

 (𝒂⊗ 𝒃)𝑻𝒙 = (𝒃 ∙ 𝑻𝒙)𝒂 = (𝑻𝑇𝒃 ∙ 𝒙)𝒂 = (𝒂⊗ (𝑻𝑇𝒃))𝒙. (F.17) 

Thus 

 (𝒂⊗ 𝒃)𝑻 = (𝒂⊗ (𝑻𝑇𝒃)) (F.18) 

Consider now that 

 휃̇ = √𝜽 ∙ 𝜽 ⇒ 휃̇ =
1

2

2(𝜽 ∙ �̇�)

√𝜽 ∙ 𝜽
=
𝜽 ∙ �̇�

휃
.  (F.19) 

Then 

 ℎ�̇� =
𝑑ℎ𝑖
𝑑휃

휃̇ =
𝑑ℎ𝑖
𝑑휃

𝜽 ∙ �̇�

휃
, (F.20) 

and evaluating the derivatives of ℎ1 and ℎ2, one gets 

 

𝑑ℎ1
𝑑휃

=
휃 cos 휃 − 𝑠𝑒𝑛휃

휃2
=
cos 휃 − ℎ1

휃
; 

𝑑ℎ2
𝑑휃

=
휃𝑠𝑒𝑛휃 − 2 + 2𝑐𝑜𝑠휃

휃3
=
ℎ1 − 2ℎ2

휃
. 

(F.21) 

Applying (F.20) and (F.21) on (F.10), one gets 
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𝜴 = ℎ1�̇� + ℎ2𝜣�̇� + (ℎ1 − ℎ1

2 − 휃2ℎ2
2)�̇�𝜣 + (ℎ̇1 + ℎ1ℎ̇2휃

2 − ℎ2ℎ̇1휃
2)𝜣

+ (ℎ̇2 − ℎ1ℎ̇1 − ℎ2ℎ̇2휃
2)𝜣2 − ℎ1ℎ2𝜣�̇�𝜣+ ℎ2

2𝜣�̇�𝜣2. 
(F.22) 

Using the property from equation (F.12), 

 (𝜣�̇�)𝜣 = (�̇� ⊗ 𝜽)𝜣 − (𝜽 ∙ �̇�)𝜣, (F.23) 

and with equation (F.17), 

 
(𝜣�̇�)𝜣 = (�̇� ⊗𝜣𝑻𝜽) − (𝜽 ∙ �̇�)𝜣 = −(�̇�⊗ (𝜽 × 𝜽)⏟    

=𝟎

) − (𝜽 ∙ �̇�)𝜣

= −(𝜽 ∙ �̇�)𝜣. 

(F.24) 

Applying (F.24) in (F.22) 

 

𝜴 = ℎ1�̇� + ℎ2𝚯�̇� + (ℎ1 − ℎ1
2 − 휃2ℎ2

2)�̇�𝚯 + (ℎ̇1 + ℎ1ℎ̇2휃
2 −

ℎ2ℎ̇1휃
2 + ℎ1ℎ2(𝜽 ∙ �̇�))𝚯 + (ℎ̇2 − ℎ1ℎ̇1 − ℎ2ℎ̇2휃

2 − h2
2(𝜽 ∙ �̇�))𝚯2. 

(F.25) 

Evaluating the scalar terms, and substituting the derivatives from (F.25), 

 

ℎ1 − ℎ1
2 − 휃2ℎ2

2 = ℎ2 −
𝑠𝑒𝑛2𝜃

𝜃2
+
𝜃2

4
+
(𝑠𝑒𝑛4𝜃)

(𝜃 2⁄ )4
= ℎ2 −

4

𝜃2
𝑠𝑒𝑛2 (

𝜃

2
) (𝑐𝑜𝑠2 (

𝜃

2
) + 𝑠𝑒𝑛2 (

𝜃

2
)) = ℎ2 − 2ℎ2 = −ℎ2, 

(F.26) 

 

ℎ̇1 + ℎ1ℎ̇2휃
2 − ℎ2ℎ̇1휃

2 + h1h2(𝜽 ∙ �̇�) = (
cos𝜃−ℎ1

𝜃

1

𝜃
 + ℎ1

ℎ1−2ℎ2

𝜃
휃 −

ℎ2
cos𝜃−ℎ1

𝜃
휃 + ℎ1ℎ2) (𝜽 ∙ �̇�) = (

𝑐𝑜𝑠𝜃

𝜃2
−
ℎ1

𝜃2
+ ℎ1

2 − 2ℎ1ℎ2 − ℎ2𝑐𝑜𝑠휃 +

ℎ1ℎ2 + ℎ1ℎ2 ) (𝜽 ∙ �̇�) = (−
𝑠𝑒𝑛𝜃

𝜃3
+

1

𝜃3
) (𝜽 ∙ �̇�) = (

𝟏−𝒉𝟏

𝜽𝟐
) (𝜽 ∙ �̇�) =

ℎ3(𝜽 ∙ �̇�),   

(F.27) 

 

ℎ̇2 − ℎ1ℎ̇1 − ℎ2ℎ̇2휃
2 − h2

2(𝜽 ∙ �̇�)

= (
ℎ1 − 2ℎ2

휃

1

휃
− ℎ1

cos 휃 − ℎ1
휃

1

휃
− ℎ2

ℎ1 − 2ℎ2
휃

휃

− ℎ2
2) (𝜽 ∙ �̇�)

= (
ℎ1
휃2
−
2ℎ2
휃2

−
ℎ1𝑐𝑜𝑠휃

휃2
+
ℎ1
2

휃2
− ℎ1ℎ2 + ℎ2

2) (𝜽 ∙ �̇�)

= (
𝑠𝑒𝑛휃

휃3
−
2(1 − 𝑐𝑜𝑠휃)

휃4
−
𝑠𝑒𝑛휃𝑐𝑜𝑠휃

휃3
+
𝑠𝑒𝑛2휃

휃4

−
𝑠𝑒𝑛휃(1 − 𝑐𝑜𝑠휃)

휃3
+
(1 − 2𝑐𝑜𝑠휃 + cos2 휃)

휃4
) (𝜽 ∙ �̇�) = 0. 

(F.28) 

Therefore 

 𝜴 = h1�̇� + ℎ2(𝜣�̇� − �̇�𝜣) + ℎ3(𝜽 ∙ �̇�)𝜣. (F.29) 

Using the properties from equation (F.13), the axial vector is 

 𝝎 = ℎ1�̇� + ℎ2(𝜽 × �̇�) + ℎ3(𝜽 ∙ �̇�)𝜽 (F.30) 

Using the result (F.16) and (F.12) 
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 𝝎 = (ℎ1𝑰 + ℎ2𝜣+ ℎ3(𝜣𝜣+ 휃
2𝑰))�̇�. (F.31) 

Further manipulating, 

 𝝎 = ((ℎ1 + 휃
2ℎ3)𝑰 + ℎ2𝜣+ ℎ3𝜣

2)�̇�, (F.32) 

but 

 ℎ1 + 휃
2ℎ3 = ℎ1 + (1 − ℎ1) = 1. (F.33) 

Thus 

 𝝎 = (𝑰 + ℎ2𝜣+ ℎ3𝜣
2)�̇� = 𝜞�̇�. (F.34) 

Note that, in equation (F.34) the operator 

 𝜞 = (𝑰 + ℎ2𝜣+ ℎ3𝜣
2) (F.35) 

is defined and is present throughout the whole work. 

The derivative of this tensor with respect to a scalar is also relevant. Let us calculate 

 �̇� = ℎ̇2𝜣+ ℎ2�̇� + ℎ̇3𝜣
2 + ℎ3(𝜣�̇� + �̇�𝜣). (F.36) 

Since 

 
𝑑ℎ3

𝑑𝜃
= −

2

𝜃3
− (

𝜃3𝑐𝑜𝑠𝜃−3𝜃2𝑠𝑒𝑛𝜃

𝜃6
) = (

−3+3ℎ1

𝜃3
) + (

1−𝑐𝑜𝑠𝜃

𝜃3
) =

ℎ2−3ℎ3

𝜃
, (F.37) 

then, defining 

 

ℎ4 =
𝑑ℎ2
𝑑휃

1

휃
=
휃𝑠𝑒𝑛휃 − 2 + 2𝑐𝑜𝑠휃

휃4
=
ℎ1 − 2ℎ2
휃2

, 

ℎ5 =
ℎ2 − 3ℎ3
휃2

, 

(F.38) 

one gets 

 �̇� = ℎ2�̇� + ℎ3(𝜣�̇� + �̇�𝜣) + ℎ4(𝜽 ∙ �̇�)𝜣 + ℎ5(𝜽 ∙ �̇�)𝜣
2. (F.39) 

The operator 𝜞 has some properties, which will not be demonstrated here: 

a) 𝜞 and 𝑸 are commutative, as they share the same eigenvectors. Ibrahimbegovic shows this in 

[56]; 

b) 𝑸𝑇𝜞 = 𝜞𝑇 ⇔ 𝜞𝑇 = 𝜞𝑸𝑇. The left-hand side of this demonstration can be done by simply 

substituting (2.4), (2.5) and (F.35), and using the property 𝜣 = −𝜣𝑇 and manipulating the 

expression in terms of ℎ𝑖. The right-hand side comes from the fact that 𝑸𝑸𝑇𝜞 = 𝜞 = 𝑸𝜞𝑇 ⇒

𝜞𝑇 = 𝜞𝑸𝑇. 

The same expressions can be used to derivate the rotation tensor with respect to any scalar. For 

example, for the coordinate 휁, that indicates the position along a rod axis becomes 

 𝑲 = 𝑸′𝑸𝑇, and 𝜿 = 𝑎𝑥𝑖𝑎𝑙(𝜥), (F.40) 

 𝜴 = h1𝜣′ + ℎ2(𝜣𝜣′ − 𝜣′𝜣) + ℎ3(𝜽 ∙ 𝜽
′)𝜣 (F.41) 

 𝜿 = 𝜞𝜽′ (F.42) 

 𝜞′ = ℎ2𝜣′ + ℎ3(𝜣𝜣′ + 𝜣′𝜣) + ℎ4(𝜽 ∙ 𝜽
′)𝜣 + ℎ5(𝜽 ∙ 𝜽

′)𝜣2 (F.43) 

and those identities are also present throughout the text. 
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From now on, let us assume 𝒕 as a constant vector. Then, using the skew-symmetry of 𝜣, the 

product �̇�𝑇𝒕 is 

 �̇�𝑇𝒕 = (−ℎ2�̇� + ℎ3(𝜣�̇� + �̇�𝜣) − ℎ4(𝜽 ∙ �̇�)𝜣 + ℎ5(𝜽 ∙ �̇�)𝜣
2)𝒕. (F.44) 

Transforming term �̇�𝒕 in a cross product, and manipulating it 

 �̇�𝒕 = �̇� × 𝒕 = −𝒕 × �̇� = −𝑻�̇�. (F.45) 

 

With equations (F.13) and (F.45), the product 

 
(𝜣�̇� + �̇�𝜣)𝒕 = �̇� × (𝜣𝒕) − 𝜣𝑻�̇� = −𝑠𝑘𝑒𝑤(𝜽 × 𝒕)�̇� − 𝜣𝑻�̇�

= −𝟐𝜣𝑻�̇� − 𝑻𝜣�̇�, 
(F.46) 

and with the definition of dyadic product from equation (F.16) 

 
(𝜽 ∙ �̇�)𝜣𝒕 = (𝜣𝒕⊗ 𝜽)�̇� 

(𝜽 ∙ �̇�)𝜣2𝒕 = (𝜣2𝒕⊗ 𝜽)�̇� 
(F.47) 

the equation (F.44) becomes 

 �̇�𝑇𝒕 = 𝑽(𝜽, 𝒕)�̇�, (F.48) 

by defining 

 𝑽(𝜽, 𝒕) = ℎ2𝑻 + ℎ3(𝑻𝜣 − 𝟐𝜣𝑻) − ℎ4(𝜣𝒕⊗ 𝜽) + ℎ5(𝜣
2𝒕⊗ 𝜽) (F.49) 

An important property used to demonstrate that the geometric tangent operator is symmetric is that 

 𝑽(𝜽, 𝒕) − 𝑽𝑇(𝜽, 𝒕) = 𝜞𝑇𝑻𝜞 (F.50) 

since 

 𝑽𝑇(𝜽, 𝒕) = −ℎ2𝑻 + ℎ3(𝜣𝑻 − 𝟐𝑻𝜣) − ℎ4(𝜽⊗𝜣𝒕) + ℎ5(𝜽⊗𝜣2𝒕), (F.51) 

and, consequently 

 

𝑽(𝜽, 𝒕) − 𝑽𝑇(𝜽, 𝒕)

= 2ℎ2𝑻− ℎ4(𝜣𝒕⊗ 𝜽 − 𝜽⊗𝜣𝒕)

+ ℎ5(𝜣
2𝒕⊗ 𝜽 − 𝜽⊗𝜣2𝒕) + 3ℎ3(𝑻𝜣 − 𝜣𝑻). 

(F.52) 

Using the identities (F.14) and (F.15), 

 𝜣2𝒕⊗ 𝜽 − 𝜽⊗𝜣2𝒕 = 𝑠𝑘𝑒𝑤(𝜽 × 𝜣2𝒕) = 𝑠𝑘𝑒𝑤(𝜣3𝒕) = −휃2𝑠𝑘𝑒𝑤(𝜣𝒕). (F.53) 

Also, with equation (F.15) 

 𝜣𝒕⊗ 𝜽 − 𝜽⊗𝜣𝒕 = 𝑠𝑘𝑒𝑤(𝜽 × 𝜣𝒕) = 𝑠𝑘𝑒𝑤(𝜣2𝒕), (F.54) 

thus 

 𝑽(𝜽, 𝒕) − 𝑽𝑇(𝜽, 𝒕) = 2ℎ2𝑻 − (3ℎ3 + 휃
2ℎ5)𝑠𝑘𝑒𝑤(𝜣𝒕) − ℎ4𝑠𝑘𝑒𝑤(𝜣

2𝒕). (F.55) 

However, using (F.27) and (F.38), 3ℎ3 + 휃
2ℎ5 = ℎ2, and, therefore 

 𝑽(𝜽, 𝒕) − 𝑽𝑇(𝜽, 𝒕) = 2ℎ2𝑻 − ℎ2𝑠𝑘𝑒𝑤(𝜣𝒕) − ℎ4𝑠𝑘𝑒𝑤(𝜣
2𝒕), (F.56) 

which can be rewrite as 
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𝑽(𝜽, 𝒕) − 𝑽𝑇(𝜽, 𝒕) = 2ℎ2 [𝑠𝑘𝑒𝑤(𝒕) −
1

2
𝑠𝑘𝑒𝑤(𝜣𝒕) −

ℎ4
2ℎ2

𝑠𝑘𝑒𝑤(𝜣2𝒕)]

= 2ℎ2𝑠𝑘𝑒𝑤 [(𝑰 −
1

2
𝜣 −

ℎ4
2ℎ2

𝜣2) 𝒕]. 

(F.57) 

Using the results of the determinant and inverse of 𝜞 (from Ibrahimbegovic [56]) 

 𝑑𝑒𝑡𝜞 =
2(1−𝑐𝑜𝑠𝜃)

𝜃2
 and 𝚪−1 = 𝑰 −

1

2
𝜣−

ℎ4

2ℎ2
𝜣2, (F.58) 

 

one gets 

 𝑽(𝜽, 𝒕) − 𝑽𝑇(𝜽, 𝒕) = 𝑑𝑒𝑡𝜞skew(𝚪−1𝒕). (F.59) 

Deducing the Nanson’s rule from the Euler’s relation for a tensor 𝑲, with linear independent 

vectors 𝒂, 𝒃, 𝒄 

 

𝑑𝑒𝑡𝑲 =
[𝑲𝒂,𝑲𝒃,𝑲𝒄]

[𝒂,𝒃,𝒄]
⟺ 𝑑𝑒𝑡𝑲(𝒂 × 𝒃) ∙ 𝒄 = (𝑲𝒂 ×𝑲𝒃) ∙ 𝑻𝒄 =

𝑲𝑇(𝑲𝒂 × 𝑲𝒃) ∙ 𝒄 ⟹ 𝑲𝑇(𝑲𝒂 × 𝑲𝒃) = 𝑑𝑒𝑡𝑲(𝒂 × 𝒃) ⇔ 𝑠𝑘𝑒𝑤(𝑲𝒂)𝑲𝒃 =

𝑑𝑒𝑡𝑲(𝑲−𝑇𝑨)𝒃 ⇔ 𝑠𝑘𝑒𝑤(𝑲𝒂)𝑲 = 𝑑𝑒𝑡𝑲(𝑲−𝑇𝑨), 

(F.60) 

and taking 𝜞−1 as 𝑲 and 𝒕 as 𝑨, and remembering that 𝑑𝑒𝑡𝜞−1 = (𝑑𝑒𝑡𝜞)−1, equation (F.60) becomes 

 𝑠𝑘𝑒𝑤(𝜞−1𝒕)𝜞−1 = 𝑑𝑒𝑡𝜞−1((𝜞−1)−𝑇𝑻) ⟹ 𝑑𝑒𝑡𝜞𝑠𝑘𝑒𝑤(𝜞−1𝒕) = 𝜞𝑇𝑻𝜞, (F.61) 

and finally substituting (F.61) in (F.59), 

 𝑽(𝜽, 𝒕) − 𝑽𝑇(𝜽, 𝒕) = 𝜞𝑇𝑻𝜞   ∎.  (F.62) 

Now, it is of interest to find the derivative of (F.49) along the rod axis 

 (�̇�𝑇𝒕)
′
= 𝑽(𝜽, 𝒕)′�̇� + 𝑽(𝜽, 𝒕)�̇�′, (F.63) 

with 

 

𝑽′(𝜽, 𝒕) = 𝒉𝟐
′ 𝑻 + 𝒉𝟑

′ (𝑻𝜣 − 𝟐𝜣𝑻) + 𝒉𝟑(𝑻𝜣
′ − 𝟐𝜣′𝑻) − 𝒉𝟒

′ (𝜣𝒕⊗ 𝜽)

− 𝒉𝟒(𝜣
′𝒕⊗ 𝜽 +𝜣𝒕⊗ 𝜽′) + 𝒉𝟓

′ (𝜣2𝒕⊗ 𝜽)

+ 𝒉𝟓((𝜣
2)′𝒕⊗ 𝜽 + 𝜣2𝒕⊗ 𝜽′), 

(F.64) 

and, using the definitions of ℎ4 and ℎ5 from (F.38), and further defining another two quantities 

 

ℎ6 =
𝑑ℎ4
𝑑휃

1

휃
=
1

휃
[
(
𝑑ℎ1
𝑑휃

− 2
𝑑ℎ2
𝑑휃
)휃2 − 2휃(ℎ1 − 2ℎ2)

휃4
]

=
1

휃2
[
1 − 5ℎ1 + 7ℎ2

휃2
] =  

1

휃2
[ℎ3 − ℎ2 − 4ℎ4], 

(F.65) 

 

ℎ7 =
𝑑ℎ5
𝑑휃

1

휃
=
1

휃
[
(
𝑑ℎ2
𝑑휃

− 3
𝑑ℎ3
𝑑휃
)휃2 − 2휃(ℎ2 − 3ℎ2)

휃4
]

=
1

휃2
[
ℎ1 − 7ℎ2 − 15ℎ3

휃2
] =

1

휃2
[ℎ4 − 5ℎ5], 

(F.66) 

one gets 
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Equation (F.67) can be rewritten as 

 

𝑽′(𝜽, 𝒕) = 𝒉𝟑(𝑻𝜣
′ − 𝟐𝜣′𝑻) − 𝒉𝟒(𝜣

′𝒕⊗ 𝜽 + 𝜣𝒕⊗ 𝜽′)

+ 𝒉𝟓((𝜣
′𝜣+𝜣𝜣′)𝒕⊗ 𝜽 + 𝜣2𝒕⊗ 𝜽′)

+ (𝜽 ∙ 𝜽′)[𝒉𝟒𝑻 + 𝒉𝟓(𝑻𝜣 − 𝟐𝜣𝑻) − 𝒉𝟔(𝜣𝒕⊗ 𝜽)

+ 𝒉𝟕(𝜣
2𝒕⊗ 𝜽)] 

(F.68) 

 

The relation of 𝑽′(𝜽, 𝒕) and 𝑽′𝑇(𝜽, 𝒕) directly comes from (F.50) 

 𝑽′
𝑇(𝜽, 𝒕) = 𝑽′(𝜽, 𝒕) − 𝜞′

𝑇
𝑻𝜞 − 𝜞𝑇𝑻𝜞′ (F.69) 

 

 

𝑽′(𝜽, 𝒕) = ℎ4(𝜽 ∙ 𝜽
′)𝑻 + ℎ3(𝑻𝜣

′ − 𝟐𝜣′𝑻) + ℎ5(𝜽 ∙ 𝜽
′)(𝑻𝜣 − 𝟐𝜣𝑻)

− ℎ4(𝜣
′𝒕⊗ 𝜽 + 𝜣𝒕⊗ 𝜽′) − ℎ6(𝜽 ∙ 𝜽

′)(𝜣𝒕⊗ 𝜽)

+ ℎ5((𝜣
′𝜣+𝜣𝜣′)𝒕⊗ 𝜽 + 𝜣2𝒕⊗ 𝜽′)

+ ℎ7(𝜽 ∙ 𝜽
′)(𝜣2𝒕⊗ 𝜽) 

(F.67) 
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APPENDIX G.  DEDUCTION OF THE TANGENT OPERATOR  

The tangent operator can be consistently deduced by taking the variation of the equilibrium weak 

form (linearization), represented by the virtual work theorem for rod (equation (3.39)). Therefore, this 

operator is the second variation of the work, and can be found with the aid of the derivative of (3.39) 

with respect to a scalar. For the sake of simplicity, the virtual work from concentrated loads will be 

neglected, but by using the Dirac delta, its insertion is trivial. Let us perform the derivative with 

respect to the scalar time: 

 
𝑑

𝑑𝑡
(𝛿𝑊) =

𝑑

𝑑𝑡
(∫ (𝝈𝑟 ∙ 𝛿𝜺𝑟 − �̅� ∙ 𝛿𝒅𝜃)𝑑휁

𝐿

0

) , 𝛿𝒅𝜃(휁) ∈ ℋ1
0(Ω) (G.1) 

Using the product rule, 

 
𝑑

𝑑𝑡
(𝛿𝑊) = ∫ (�̇�𝑟 ∙ 𝛿𝜺𝑟 + 𝝈𝑟 ∙ 𝜹�̇�𝑟 − (�̅�)̇ ∙ 𝛿𝒅𝜃)𝑑휁

𝐿

0

 (G.2) 

Using the chain rule in the first term 

 �̇�𝑟 ∙ 𝜹𝜺𝑟 =
𝝏𝝈𝑟

𝝏𝜺𝑟 
�̇�𝑟 ∙ 𝜹𝜺𝑟 = 𝑫�̇�𝑟 ∙ 𝜹𝜺𝑟 = 𝜳𝜟𝜹𝒅𝜃 ∙ 𝑫𝜳𝜟�̇�𝜃 (G.3) 

The composition of 𝑫 was discussed throughout the text, and here, this representation is sufficient. 

However, the second term must be more carefully treated here. Using the definition 𝜹𝜺𝑟 =

[𝛿𝜼𝑟 𝛿𝜿𝑟 𝛿𝑝 𝛿𝑝′]𝑇, 

 𝝈𝑟 ∙ 𝛿�̇�𝑟 = 𝝈𝑟 ∙ �̇�𝜟𝛿𝒅𝜽 = [

𝒏𝑟

𝒎𝑟

𝑄
𝐵

] ∙

[
 
 
 
 �̇�𝑇𝛿𝒖′ +

𝑑

𝑑𝑡
(𝑸𝑇𝒁′𝜞)𝛿𝜽

𝑑

𝑑𝑡
(𝑸𝑇𝜞′)𝛿𝜽 +

𝑑

𝑑𝑡
(𝑸𝑇𝜞)𝛿𝜽′

0
0 ]

 
 
 
 

. (G.4) 

Each one of the components are now expanded. The first one of them is, using the fact that 𝜴 =

�̇�𝑸𝑇 = 𝑠𝑘𝑒𝑤(𝜞�̇�) 

 
𝒏𝑟 ∙ �̇�𝑇𝛿𝒖′ = �̇�𝒏𝑟 ∙ 𝛿𝒖′ = 𝑠𝑘𝑒𝑤(𝜞�̇�)𝑸𝒏𝑟 ∙ 𝛿𝒖′ = 𝜞�̇� × 𝒏 ∙ 𝛿𝒖′

= −𝑵𝜞�̇� ∙ 𝛿𝒖′. 
(G.5) 

The second one is 

 𝒏𝑟 ∙
𝑑

𝑑𝑡
(𝑸𝑇𝒁′𝜞)𝛿𝜽 = 𝒏𝑟 ∙ (�̇�𝑇𝒁′𝜞 + 𝑸𝑇�̇�′𝜞 + 𝑸𝑇𝒁′�̇�)𝛿𝜽, (G.6) 

with aid of the equation (F.34), and the definition of 𝜴, 

 

𝒏𝑟 ∙ �̇�𝑇𝒁′𝜞𝛿𝜽 =  𝒏𝑟 ∙ (𝑠𝑘𝑒𝑤(𝜞�̇�)𝑸)
𝑇
𝒁′𝜞𝛿𝜽 = 𝒏 ∙ 𝑠𝑘𝑒𝑤(𝜞�̇�)

𝑇
𝒁′𝜞𝛿𝜽

= 𝒏 ∙ (−𝜞�̇� × 𝒁′𝜞𝛿𝜽) = −𝒁′𝜞𝛿𝜽 ∙ (𝒏 × 𝜞�̇�)

= 𝜞𝑻𝒁′𝑵𝜞�̇� ∙ 𝛿𝜽, 

(G.7) 

 𝒏𝑟 ∙ 𝑸𝑇�̇�′𝜞𝛿𝜽 = 𝒏 ∙ �̇�′ × 𝜞𝛿𝜽 = 𝜞𝑇𝑵�̇�′ ∙ 𝛿𝜽 = −(𝑵𝜞)𝑇�̇�′ ∙ 𝛿𝜽 (G.8) 

 𝒏𝑟 ∙ 𝑸𝑇𝒁′�̇�𝛿𝜽 = −�̇�𝑇𝒁′𝒏 ∙ 𝛿𝜽 = −𝑽(𝜽, 𝒛′ × 𝒏) ∙ 𝛿𝜽, (G.9) 

rendering 

 𝒏𝑟 ∙
𝑑

𝑑𝑡
(𝑸𝑇𝒁′𝜞)𝜹𝜽 = [𝜞𝑻𝒁′𝑵𝜞�̇�−(𝑵𝜞)𝑇�̇�′ − 𝑽(𝜽, 𝒛′ × 𝒏)] ∙ 𝛿𝜽. (G.10) 
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The third term is, with the aid of equations (F.34),(F.48), the definition of 𝜴, and using the property 

of permutation for triple products, 

 
𝒎𝑟 ∙

𝑑

𝑑𝑡
(𝑸𝑇𝜞′)𝜹𝜽 = 𝒎𝑟 ∙ (�̇�𝑇𝜞′ +𝑸𝑇�̇�′)𝜹𝜽 = 𝒎 ∙ (−𝜞�̇� × 𝜞′𝛿𝜽) +

�̇�′𝑇𝒎 ∙ 𝛿𝜽 = (−𝜞′𝑴𝜞�̇�) ∙ 𝛿𝜽 + (𝑽′(𝜽,𝒎)�̇� + 𝑽(𝜽,𝒎)�̇�′) ∙ 𝛿𝜽. 

(G.11) 

The last term is 

 
𝒎𝑟 ∙

𝑑

𝑑𝑡
(𝑸𝑇𝜞)𝛿𝜽′ = 𝒎𝑟 ∙ (�̇�𝑇𝜞 +𝑸𝑇�̇�)𝛿𝜽′ = 𝒎 ∙ 𝑠𝑘𝑒𝑤(𝜞�̇�)

𝑇
𝜞𝛿𝜽′ +

�̇�𝑇𝒎 ∙ 𝛿𝜽′ = (−𝜞𝑻𝑴𝜞�̇� + 𝑽(𝜽,𝒎)�̇�) ∙ 𝛿𝜽′. 
(G.12) 

Using the result from equations (F.34),(F.48), the definition of 𝜴, and using the property of 

permutation for triple products, one gets 

 

𝝈𝑟 ∙ �̇�𝜟𝛿𝒅𝜽 = −𝑵𝜞�̇� ∙ 𝛿𝒖
′−(𝑵𝜞)𝑇�̇�′ ∙ 𝛿𝜽 + [𝜞𝑻𝒁′𝑵𝜞− 𝑽(𝜽, 𝒛′ × 𝒏)]�̇�

∙ 𝛿𝜽 + (𝑽′(𝜽,𝒎) − 𝜞′𝑴𝜞)�̇� ∙ 𝛿𝜽 + 𝑽(𝜽,𝒎)�̇�′ ∙ 𝛿𝜽

+ (−𝜞𝑻𝑴𝜞+ 𝑽(𝜽,𝒎)) �̇� ∙ 𝛿𝜽′ =

= −𝑵𝜞�̇� ∙ 𝛿𝒖′+(−𝑵𝜞)𝑇�̇�′ ∙ 𝛿𝜽

+ [𝜞𝑻𝒁′𝑵𝜞− 𝑽(𝜽, 𝒛′ × 𝒏)]�̇� ∙ 𝛿𝜽 + (𝑽′(𝜽,𝒎) − 𝜞′𝑴𝜞)�̇�

∙ 𝛿𝜽 + 𝑽(𝜽,𝒎)�̇�′ ∙ 𝛿𝜽 + 𝑽𝑇(𝜽,𝒎)�̇� ∙ 𝛿𝜽′ 

(G.13) 

Rewriting this expression in a compactly 

 
𝝈𝑟 ∙ �̇�𝜟𝛿𝒅𝜽 =

[
 
 
 
 
𝛿𝒖′

𝛿𝜽
𝛿𝜽′

𝛿𝑝

𝛿𝑝′]
 
 
 
 

∙

[
 
 
 
 
𝑶 𝑮𝑢′𝜃 𝑶 𝒐 𝒐
𝑮𝜃𝑢′ 𝑮𝜃𝜃 𝑮𝜃𝜃′ 𝒐 𝒐
𝑶 𝑮𝜃′𝜃 𝑶 𝒐 𝒐

𝒐𝑇 𝒐𝑇 𝒐𝑇 0 0
𝒐𝑇 𝒐𝑇 𝒐𝑇 0 0]

 
 
 
 

[
 
 
 
 
�̇�′

�̇�
�̇�′
�̇�

�̇�′]
 
 
 
 

= 𝚫𝛿𝒅𝜃 ∙

𝑮𝚫�̇�𝜃, 

(G.14) 

with 

 

𝑮𝑢′𝜃 = 𝑮𝑢′𝜃
𝑇 = −𝑵𝜞, 

𝑮𝜃𝜃′ = 𝑮𝜃′𝜃
𝑇 = 𝑽(𝜽,𝒎) 

𝑮𝜃𝜃 = 𝜞
𝑻𝒁′𝑵𝜞− 𝑽(𝜽, 𝒛′ × 𝒏) + 𝑽′(𝜽,𝒎) − 𝜞′𝑴𝜞 

(G.15) 

Let us now prove that 𝑮𝜃𝜃 is symmetric, by analysing 𝑠𝑘𝑒𝑤(𝑮𝜃𝜃) =
1

2
(𝑮𝜃𝜃 −𝑮𝜃𝜃

𝑇 ). Using equations 

(F.50), (F.69) and (G.15), and remembering that 𝑠𝑘𝑒𝑤(𝒛′ × 𝒏) = 𝒁′𝑵−𝑵𝒁′, 

 

 

𝑠𝑘𝑒𝑤(𝑮𝜃𝜃) =
1

2
[𝜞𝑻𝒁′𝑵𝜞− 𝑽(𝜽, 𝒛′ × 𝒏) + 𝑽′(𝜽,𝒎) − 𝜞′𝑴𝜞

− (𝜞𝑻𝑵𝒁′𝜞 − 𝑽𝑇(𝜽, 𝒛′ × 𝒏) + 𝑽′
𝑇(𝜽,𝒎) + 𝜞𝑇𝑴𝜞′

𝑇
)]

=
1

2
[(𝑽𝑇(𝜽, 𝒛′ × 𝒏) + 𝜞𝑻(𝒁′𝑵−𝑵𝒁′)𝜞 − 𝑽(𝜽, 𝒛′ × 𝒏))

+ 𝑽′(𝜽,𝒎) − (𝑽′
𝑇(𝜽,𝒎) + 𝜞′𝑴𝜞+ 𝜞𝑇𝑴𝜞′

𝑇
)] = 𝟎. 

(G.16) 

Having proven that 𝑮𝜃𝜃 is symmetric, it is now evident that 𝑮 also is. 



 Marcos Pires Kassab 159 

Advances on a kinematically exact rod model for thin-walled open section members: consistent warping function and nonlinear constitutive equation 

Now, it is only left the external loading contribution. Using the chain rule 

 −(�̅�)̇ ∙ 𝛿𝒅𝜃 = −𝛿𝒅𝜃 ∙
𝜕�̅�

𝜕𝒅𝜃
�̇�𝜃 = −𝛿𝒅𝜃 ∙ 𝑳𝜃�̇�𝜃. (G.17) 

The structure of 𝑳𝜃 is as follows 

 𝑳𝜃 = [

𝑳𝑢𝑢 𝑳𝑢𝜃 𝑳𝑢𝑝
𝑳𝜃𝑢 𝑳𝜃𝜃 𝑳𝑝𝜃
𝑳𝑝𝑢 𝑳𝑝𝜃 𝑳𝑝𝑝

], (G.18) 

with 

 

𝑳𝑢𝑢 =
𝜕�̅�

𝜕𝒖
 𝑳𝑢𝜃 =

𝜕�̅�

𝜕𝜽
 𝑳𝑢𝑝 =

𝜕�̅�

𝜕𝑝
 

𝑳𝜃𝑢 =
𝜕𝜞𝑇�̅�

𝜕𝒖
 𝑳𝜃𝜃 =

𝜕𝜞𝑇�̅�

𝜕𝜽
 𝑳𝑝𝜃 =

𝜕𝜞𝑇�̅�

𝜕𝑝
 

𝑳𝑝𝑢 =
𝜕�̅�

𝜕𝒖
 𝑳𝑝𝜃 =

𝜕�̅�

𝜕𝜽
 𝑳𝑝𝑝 =

𝜕�̅�

𝜕𝑝
 

 

(G.19) 

Note that the 𝑳𝜃is not necessarily symmetric. There is a broad discussion about specific cases for 

which it might be symmetric, for example, when the load is conservative. It is suggested that the 

reader sees [22], [1]or [26] for more information. 

With the results from equations (G.3), (G.14) and (G.18) it is possible to write the Fréchet 

derivative of the virtual work in the bilinear form,  

 𝛿2𝑊 = ∫ (𝜳𝜟𝛿𝒅𝜃 ∙ 𝑫𝜳𝜟𝛿𝒅𝜃 + 𝚫𝛿𝒅𝜃 ∙ 𝑮𝚫𝛿𝒅𝜃 − 𝛿𝒅𝜃 ∙ 𝑳𝜃𝛿𝒅𝜃)𝑑휁
𝐿

0
. (G.20) 

Due to how each of these contributions is built, the tensors 𝑫,𝑮, 𝑳𝜃 are named, respectively the 

material, geometric and external loading tangent contributions for the tangent operator. 
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APPENDIX H.  DEDUCTION OF DERIVATIVES OF THE STRAIN INVARIANTS 

The derivatives of the first and second invariants w.r.t to 𝑪 is easy 

 
𝜕𝐼1
𝜕𝑪

=
𝜕(𝑰: 𝑪)

𝜕𝑪
=
𝜕(𝑡𝑟𝑪)

𝜕𝑪
=
𝜕(𝐶𝑘𝑘)

𝜕𝐶𝑖𝑗
𝒆𝑖
𝑟⊗𝒆𝑗

𝑟 = 1𝒆𝑘
𝑟 ⊗𝒆𝑘

𝑟 = 𝑰 (H.1) 

 

 

𝜕𝐼2
𝜕𝑪

=
1

2

𝜕(𝑰: 𝑪2)

𝜕𝑪
=
1

2

𝜕(𝑡𝑟𝑪2)

𝜕𝑪
=
1

2

𝜕((𝑪2)𝑘𝑘)

𝜕𝐶𝑖𝑗
𝒆𝑖
𝑟⊗𝒆𝑗

𝑟 =
1

2

𝜕(𝐶𝑘𝑙𝐶𝑙𝑘)

𝜕𝐶𝑖𝑗
𝒆𝑖
𝑟⊗𝒆𝑗

𝑟

=
1

2
(
𝜕(𝐶𝑘𝑙)

𝜕𝐶𝑖𝑗
𝐶𝑙𝑘 + 𝐶𝑘𝑙

𝜕(𝐶𝑙𝑘)

𝜕𝐶𝑖𝑗
)𝒆𝑖

𝑟⊗𝒆𝑗
𝑟

=
1

2
(𝐶𝑗𝑖𝒆𝑖

𝑟⊗𝒆𝑗
𝑟 + 𝐶𝑗𝑖𝒆𝑖

𝑟⊗𝒆𝑗
𝑟) = 𝐶𝑗𝑖𝒆𝑖

𝑟⊗𝒆𝑗
𝑟 = 𝑪𝑇

= 𝑪 (𝑪 is symmetric) 

(H.2) 

In order to find the derivatives of 𝐼3, some auxiliar results are needed.  

First, let us remember that 

 𝐽 =
𝑭𝒗1∙𝑭𝒗2×𝑭𝒗3

𝒗1∙𝒗2×𝒗3
. (H.3) 

Deriving w.r.t a scalar (time, for example). Using the Nanson’s rule, for a linear independent 

constant triplet 𝒗1, 𝒗2, 𝒗3 

 

𝜕𝐽

𝜕𝑡
= 𝐽̇ =

�̇�𝒗1∙𝑭𝒗2×𝑭𝒗3

𝒗1∙𝒗2×𝒗3
+
𝑭𝒗1∙�̇�𝒗2×𝑭𝒗3

𝒗1∙𝒗2×𝒗3
+
𝑭𝒗1∙𝑭𝒗2×�̇�𝒗3

𝒗1∙𝒗2×𝒗3
=

�̇�𝒗1∙𝐽𝑭
−𝑇(𝒗2×𝒗3)+�̇�𝒗2∙𝐽𝑭

−𝑇(𝒗3×𝒗1)+�̇�𝒗3∙𝐽𝑭
−𝑇(𝒗1×𝒗2)

𝒗1∙𝒗2×𝒗3
. 

(H.4) 

Taking 𝒗𝑖 = 𝒆𝑖
𝑟 

 

𝜕𝐽

𝜕𝑡
= 𝐽̇ = 𝐽(�̇�𝒆𝑖

𝑟 ∙ 𝑭−𝑇𝒆𝑖
𝑟) = 𝐽𝑭−1�̇�(𝒆𝑖

𝑟 ∙ 𝒆𝑖
𝑟) = 𝐽𝑡𝑟(𝑭−1�̇�) =

𝐽(𝑰: 𝑭−1�̇�) = 𝐽(𝑭−𝑇: �̇�). 
(H.5) 

Now, let us evaluate the following expression 

 �̇� = �̇�𝑇𝑭 + 𝑭𝑇�̇�. (H.6) 

Using this result, 

 

1

2
𝑪−1: �̇� =

1

2
((𝑭𝑇𝑭)−1: �̇�𝑇𝑭 + (𝑭𝑇𝑭)−1: 𝑭𝑇�̇�) =

1

2
(𝑭−1𝑭−𝑇: 𝑭𝑇�̇� +

𝑭−𝑇: �̇�) = 𝑭−𝑇: �̇�. 
(H.7) 

Comparing (H.5) with (H.7), one gets 

 𝐽̇ = (
𝐽

2
𝑪−1: �̇�). (H.8) 

Revaluating (H.5) using the chain rule, and comparing with (H.8) 

 𝐽̇ =
𝜕𝐽

𝜕𝑪
:
𝜕𝑪

𝜕𝑡
= (

𝐽

2
𝑪−1: �̇�) ⇒

𝜕𝐽

𝜕𝑪
=
𝐽

2
𝑪−1, (H.9) 

thus 

 
𝜕𝐼3

𝜕𝑪
=
𝐽

2
(𝐹𝑟

−1𝐹𝑟−𝑇). (H.10) 
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APPENDIX I. EXACT CONSTITUTIVE EQUATION FOR SAINT-VENANT’S MATERIAL: 

DEDUCTION FROM [2] 

 

This approach is the one that is actually implemented in PEFSYS, despite being less compact to 

write in reports. 

Let us consider the basic potential expression 

 𝜓ℎ(𝑬) =
1

2
𝜆𝐼1
2 + 2𝜇𝐼2, (I.1) 

where 𝐼𝑖 are the Green-Lagrange tensor invariants 

 𝐼1 = 𝑡𝑟𝑬 = (𝑰: 𝑬); 𝐼2 =
1

2
𝑡𝑟(𝑬2);  𝐼3 =

1

3
𝑡𝑟(𝑬3) . (I.2) 

Using the definition (4.1),  

 𝑺 = 𝔻𝑬 = 𝜆(𝑰: 𝑬)𝑰 + 2μ𝑬, (I.3) 

where 𝑬 is Green-Lagrange strain tensor. 

Using the definitions of the first (𝑷) and second (𝑺) Piola-Kirchoff stress tensor 

 𝑷 = 𝑭𝑺 (I.4) 

and calculating the back-rotated stresses 𝑷𝑟, one gets 

 𝑷𝑟 = 𝑸𝑇𝑭𝑺 = 𝑭𝑟𝑺 = 𝑭𝑟{𝜆(𝑰: 𝑬)𝑰 + 2𝜇𝑬}. (I.5) 

The Green-Lagrange strain tensor (𝑬) is computed with the aid of the right Cauchy-Green strain 

tensor (𝑪 = 𝑭𝑇𝑭), as  

 𝑬 =
1

2
(𝑪 − 𝑰) =

1

2
𝒄𝛼⊗𝒆𝛼

𝑟 +
1

2
𝒄3⊗𝒆3

𝑟, (I.6) 

where the vectors 𝒄𝑖 are defined in such a way that 

 
𝑪 = 𝑭𝑇𝑭 = (𝑸𝑭𝒓)𝑇(𝑸𝑭𝑟) = 𝑭𝑟𝑇𝑸𝑇𝑸𝑭𝑟 = 𝑭𝒓𝑇𝑭𝑟

= 𝑰 + 𝒄𝛼⊗𝒆𝛼
𝑟 + 𝒄3⊗𝒆3

𝑟 . 
(I.7) 

Let us compute 𝑪 in terms of the generalised strain measures from equation (3.5). Performing the 

multiplications 

 

𝑪 = (𝑰 +  𝑝𝜓,𝛼𝒆𝛼
𝑟 ⊗𝒆3

𝑟 + 𝒆3
𝑟⊗𝜸𝑟)(𝑰 +  𝑝𝜓,𝛽𝒆3

𝑟⊗𝒆𝛽
𝑟 + 𝜸𝑟⊗𝒆3

𝑟) = 

= 𝑰 +  𝑝𝜓,𝛽𝒆3
𝑟⊗𝒆𝛽

𝑟 + 𝜸𝑟⊗𝒆3
𝑟 +  𝑝𝜓,𝛼𝒆𝛼

𝑟 ⊗𝒆3
𝑟 + 𝑝2𝜓,𝛼𝜓,𝛽𝒆𝛼

𝑟 ⊗𝒆𝛽
𝑟 +

𝑝𝜓,𝛼(𝜸
𝑟 ∙ 𝒆3

𝑟)𝒆𝛼
𝑟 ⊗𝒆3

𝑟 + 𝒆3
𝑟⊗𝜸𝑟 + 𝑝𝜓,𝛽(𝜸

𝑟 ∙ 𝒆3
𝑟)𝒆3

𝑟⊗𝒆𝛽
𝑟 + (𝜸𝑟 ∙ 𝜸𝑟)𝒆3

𝑟⊗𝒆3
𝑟. 

(I.8) 

Rewriting 𝜸𝒓 = (𝜸𝒓 ∙ 𝒆𝜷
𝒓 )𝒆𝜷

𝒓 + (𝜸𝒓 ∙ 𝒆𝟑
𝒓)𝒆𝟑

𝒓  , then grouping the terms 

 
𝑪 = 𝑰 + (𝑝𝜓,𝛼𝒆3

𝑟 + (𝜸𝑟 ∙ 𝒆𝛽
𝑟)𝒆3

𝑟 + 𝑝𝜓,𝛼(𝜸
𝑟 ∙ 𝒆3

𝑟)𝒆3
𝑟 + 𝑝2𝜓,𝛼𝜓,𝛽𝒆𝛽

𝑟)⊗

𝒆𝛼
𝑟 + (𝜸𝑟 + (𝜸𝑟 ∙ 𝒆3

𝑟)𝒆3
𝑟 + (𝜸𝑟 ∙ 𝜸𝑟)𝒆3

𝑟 + 𝑝𝜓,𝛼𝒆𝛼
𝑟 + 𝑝𝜓,𝛼(𝜸

𝑟 ∙ 𝒆3
𝑟)𝒆𝛼

𝑟 )⊗ 𝒆3
𝑟. 

(I.9) 

It is now possible to put in evidence the quantities 

 
𝒄𝛼 = 𝑝𝜓,𝛼𝒆3

𝑟 + (𝜸𝑟 ∙ 𝒆𝛽
𝑟)𝒆3

𝑟 + 𝑝𝜓,𝛼(𝜸
𝑟 ∙ 𝒆3

𝑟)𝒆3
𝑟 + 𝑝2𝜓,𝛼𝜓,𝛽𝒆𝛽

𝑟  

𝒄3 = 𝜸
𝑟 + (𝜸𝑟 ∙ 𝒆3

𝑟)𝒆3
𝑟 + (𝜸𝑟 ∙ 𝜸𝑟)𝒆3

𝑟 + 𝑝𝜓,𝛼𝒆𝛼
𝑟 + 𝑝𝜓,𝛼(𝜸

𝑟 ∙ 𝒆3
𝑟)𝒆𝛼

𝑟 . 
(I.10) 

Introducing (3.70) and (3.74) in (3.68) 
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𝑷𝑟 = 𝜆(𝑰: 𝑬)𝑰 + 𝜇𝒄𝛼⊗𝒆𝛼
𝑟 + 𝜇𝒄𝟑⊗𝒆𝟑

𝒓 + 𝜆(𝑰: 𝑬)𝜸𝑟⊗𝒆3
𝑟 +

𝜇(𝒄𝛼 ∙ 𝒆3
𝑟)𝜸𝑟⊗𝒆𝛼

𝑟 + 𝜇(𝒄3 ∙ 𝒆3
𝑟)𝜸𝑟⊗𝒆3

𝑟 + 𝜆(𝑰: 𝑬)𝑝𝜓,𝛼𝒆3
𝑟⊗𝒆𝛼

𝑟 +

𝜇𝑝𝜓,𝛽(𝒄𝛼 ∙ 𝒆𝛽
𝑟)𝒆3

𝑟⊗𝒆𝛼
𝑟 + 𝜇𝑝𝜓,𝛼(𝒄𝟑 ∙ 𝒆𝛼

𝑟 )𝒆3
𝑟⊗𝒆3

𝑟. 

(I.11) 

Grouping the terms in columns 

 

𝑷𝑟 =  𝜆(𝑰: 𝑬)𝒆𝑖
𝑟⊗𝒆𝑖

𝑟 + [𝜇𝒄𝜶 + 𝜇(𝒄𝛼 ∙ 𝒆3
𝑟)𝜸𝑟 + 𝜆(𝑰: 𝑬)𝑝𝜓,𝛼𝒆3

𝑟 +

𝜇𝑝𝜓,𝛽(𝒄𝛼 ∙ 𝒆𝛽
𝑟)𝒆3

𝑟] ⊗ 𝒆𝛼
𝑟 + [𝜇𝒄𝟑 + 𝜆(𝑰: 𝑬)𝜸

𝑟 + 𝜇(𝒄3 ∙ 𝒆3
𝑟)𝜸𝑟 +

𝜇𝑝𝜓,𝛼(𝒄3 ∙ 𝒆𝛼
𝑟 )𝒆3

𝑟] ⊗ 𝑒3
𝑟, 

(I.12) 

yielding 

 

𝝉𝛼
𝑟 = 𝜆(𝑰: 𝑬)𝑒𝛼

𝑟 + 𝜇𝒄𝜶 + 𝜇(𝒄𝛼 ∙ 𝒆3
𝑟)𝜸𝑟 + 𝜆(𝑰: 𝑬)𝑝𝜓,𝛼𝒆3

𝑟

+ 𝜇𝑝𝜓,𝛽(𝒄𝛼 ∙ 𝒆𝛽
𝑟)𝒆3

𝑟 

𝝉3
𝑟 = 𝜆(𝑰: 𝑬)𝑒3

𝑟 + 𝜇𝒄𝟑 + 𝜆(𝑰: 𝑬)𝜸
𝑟 + 𝜇(𝒄𝟑 ∙ 𝒆3

𝑟)𝜸𝑟 + 𝜇𝑝𝜓,𝛼(𝒄𝟑 ∙ 𝒆𝛼
𝑟 )𝒆𝟑

𝒓 . 

(I.13) 

The expressions in equation (I.13) are precisely the ones that are employed for obtaining the stress 

resultants (equation (3.28)) and the constitutive contribution to the tangent stiffness matrix (equation 

(3.48) ) of the rod model. Despite being compactly written, they are in fact enormous expressions with 

many high order strain terms (of third order), with a wide array of products, not only with the axial, 

bending, torsion and warping strains, but also with the warping function and its derivatives. Therefore, 

when those stress vectors are in the integrand of any expression, usually numeric integration is more 

convenient. 

The internal product 𝑰: 𝑬 is 

 𝑰: 𝑬 = 𝑡𝑟(𝑬) =
1

2
(𝒄𝑖 ∙ 𝒆𝑖

𝑟) = (𝜸𝑟 ∙ 𝒆3
𝑟) +

1

2
(𝜸𝑟 ∙ 𝜸𝑟) +

1

2
𝑝2𝜓,𝛽

2 . (I.14) 

In [2], the stress vectors were further dissected, being then represented by more elemental scalar 

values that constitute the generalized strain quantities, in order to emphasize the highly non-linear 

behaviour of this equation. Many of the so-called “Wagner terms” were put into evidence, highlighting 

the important coupling effects among different strain measures. This will not be done here, since it just 

represents equation (I.14) (and, consequently, (I.13)) in a less compact manner.  

The operators 𝑪33, 𝒄, 𝒅, 𝑏𝛼 and 𝑑𝛼 for the Saint-Venant’s material are defined as 

 

𝑪33 =
𝜕𝝉3
𝑟

𝜕𝜸𝑟
= 𝜆𝒆3

𝑟⊗ (𝒆3
𝑟 + 𝜸𝑟) + 𝜇(𝑰 + 𝒆3

𝑟⊗𝒆3
𝑟 + 2𝒆3

𝑟⊗𝜸𝑟 +

𝑝𝜓,𝛼𝒆𝛼
𝑟 ⊗𝒆3

𝑟) + 𝜆[𝜸𝑟⊗ (𝒆3
𝑟 + 𝜸𝑟) + (𝑰: 𝑬)𝑰] + 𝜇[𝜸𝒓⊗ (2𝒆3

𝑟 + 2𝜸𝑟) +

(𝒄3 ∙ 𝒆3
𝑟)𝑰] + 𝜇𝑝𝜓,𝛼(𝒆3

𝑟⊗𝒆𝛼
𝑟 + 𝑝𝜓,𝛼𝒆3

𝑟⊗𝒆3
𝑟), 

 

𝒄 =
𝜕𝝉𝟑
𝒓

𝜕𝑝
= 𝜆[𝜸𝑟 ∙ (𝜓𝜿𝑟 × 𝒆3

𝑟) + 𝑝𝜓,𝛽
2 ]𝒆3

𝑟 + 𝜇[𝜓𝜿𝑟 × 𝒆3
𝑟 + 2𝜓(𝜸𝑟 ∙

(𝜿𝑟 × 𝒆3
𝑟))𝒆3

𝑟 + 𝜓,𝛼(1 + 𝜸
𝑟 ∙ 𝒆3

𝑟)𝒆𝛼
𝑟 ] + 𝜆[(𝜸𝑟 ∙ (𝜓𝜿𝑟 × 𝒆3

𝑟) + 𝑝𝜓,𝛽
2 )𝜸𝑟 +

(𝑰: 𝑬)𝜓𝜿𝑟 × 𝒆3
𝑟] + 𝜇[(2𝜸𝑟 ∙ (𝜓𝜿𝑟 × 𝒆3

𝑟))𝜸𝑟 + (𝒄3 ∙ 𝒆3
𝑟)(𝜓𝜿𝑟 × 𝒆3

𝑟)] +

(I.15) 
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𝜇[𝜓,𝛼(𝒄3 ∙ 𝒆𝛼
𝑟 )𝒆3

𝑟 + 𝑝𝜓,𝛼(𝒆𝛼
𝑟 ∙ (𝜓𝜿𝑟 × 𝒆3

𝑟 + 2𝜸𝑟 ∙ (𝜓𝜿𝑟 × 𝒆3
𝑟)𝒆3

𝑟 + 𝜓,𝛼𝒆𝛼
𝑟 +

𝜓,𝛼(𝜸
𝑟 ∙ 𝒆3

𝑟)𝒆𝛼
𝑟 )𝒆3

𝑟  )], 

𝒅 =
𝜕𝝉3
𝑟

𝜕𝑝′
= 𝜆(𝜓 + 𝜓𝜸𝑟 ∙ 𝒆3

𝑟)𝒆3
𝑟 + 𝜇[2𝜓𝒆3

𝑟 + 2𝜓(𝜸𝑟 ∙ 𝒆3
𝑟)𝒆3

𝑟 +

𝑝𝜓,𝛼𝜓𝒆𝛼
𝑟 ] + 𝜆[(𝜓 + 𝜓𝜸𝑟 ∙ 𝒆3

𝑟)𝜸𝑟 + (𝑰: 𝑬)𝜓𝒆3
𝑟] + 𝜇[(2𝜓 + 2𝜓𝜸𝑟 ∙ 𝒆3

𝑟)𝜸𝑟 +

(𝒄𝟑 ∙ 𝒆3
𝑟)𝜓𝒆3

𝑟] + 𝜇𝑝2𝜓,𝛼
2𝜓𝒆3

𝑟, 

 

𝑏𝛼 =
𝜕(𝝉𝜶

𝒓 ∙𝒆𝟑
𝒓)

𝜕𝑝
= 𝜇[𝜓,𝛼 + 𝒆𝛼

𝑟 ∙ (𝜓𝜿𝑟 × 𝒆3
𝑟) + 𝜓,𝛼(𝜸

𝑟 ∙ 𝒆3
𝑟)] +

𝜇[𝜓,𝛼 +𝜓(𝜿
𝑟 × 𝒆3

𝑟) ∙ 𝒆𝛼
𝑟 +𝜓,𝛼(𝜸

𝑟 ∙ 𝒆3
𝑟)](𝜸𝑟 ∙ 𝒆3

𝑟) + 𝜆[𝜸𝑟 ∙ (𝜓𝜿𝑟 × 𝒆3
𝑟) +

𝑝𝜓,𝛽
2 ]𝑝𝜓,𝛼 + 𝜆(𝑰: 𝑬)𝜓,𝛼 + 𝜇𝜓,𝛽[(𝑐𝛼 ∙ 𝑒𝛽

𝑟) + 2𝑝2𝜓,𝛽𝜓,𝛼], 

 

𝑑𝛼 =
𝜕(𝝉𝜶

𝒓 ∙𝒆3
𝑟)

𝜕𝑝′
= 𝜇[𝑝𝜓,𝛼𝜓] + 𝜇[𝑝𝜓,𝛼𝜓(𝜸

𝑟 ∙ 𝒆3
𝑟) + (𝒄𝜶 ∙ 𝒆𝟑

𝒓)𝜓] +

𝜆[(𝜓 + 𝜓𝜸𝑟 ∙ 𝒆3
𝑟  )𝑝𝜓,𝛼]. 

 

Note that, since 𝝉𝑖
𝑟 are also polynomials in 𝜺𝑟, the expressions from (I.15) can also be represented 

as polynomials in 𝜺𝑟, having as coefficients products of the material properties and geometric 

properties (powers of 𝑎1, 𝑎2, 𝜓, 𝜓,1, 𝜓,2). Thus, generically speaking, for the Saint-Venant’s material, 

each entry of 𝝈𝑟 can be represented by 

 

𝜎𝑖
𝑟 = ∑ 𝑐𝑗(𝑚𝑗𝐸 + 𝑛𝑗𝐺) ∗

𝑘𝑖
𝑗=1

∫ 𝐹 (𝑎𝑟1
(𝑝1)𝑗𝑎𝑟2

(𝑝2)𝑗𝜓(𝑝3)𝑗𝜓,1
(𝑝4)𝑗𝜓,2

(𝑝5)𝑗) 𝑑𝐴𝑟
𝐴𝑟

∗

(휂1
𝑟(𝑤1)𝑗휂2

𝑟(𝑤2)𝑗휂3
𝑟(𝑤3)𝑗𝜅1

𝑟(𝑤4)𝑗𝜅2
𝑟(𝑤5)𝑗𝜅3

𝑟(𝑤6)𝑗𝑝(𝑤7)𝑗𝑝′
(𝑤8)𝑗). 

(I.16) 

with 𝑚𝑗, 𝑛𝑗, 𝑐𝑗 ∈ ℝ and (𝑝𝑖)𝑗 , (𝑤𝑖)𝑗 ∈ ℕ. Note that ∫ 𝐹(𝑎1
𝑝1𝑎2

𝑝2𝜓𝑝3𝜓,1
𝑝4𝜓,2

𝑝5)𝑑𝐴𝑟
𝐴𝑟

 can be interpreted 

as a generalized geometric property, which can be calculated only once beforehand. Due to this 

structure, equation (I.16) is easy to procedurally differentiate, for obtention of the integrands of 𝑫 

(differentiation directly w.r.t 휂𝑖
𝑟, 𝜅𝑖

𝑟, 𝑝 or 𝑝′). By arranging those terms conveniently, the integration of 

𝝈𝑟 and 𝑫 can be sped up, since several repeated terms arise. In Table 12, the values for 

𝑚𝑗, 𝑛𝑗, (𝑝𝑖)𝑗, (𝑤𝑖)𝑗 are shown, for each of the stress resultants. 

Table 12 – Coefficients of equation (I.16) for the Saint-Venant’s material 

 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6 𝑤7 𝑤8 ORDER 𝑚𝑗 𝑛𝑗 𝑐𝑗 
 Monomials for 𝑛1

𝑟 

1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 

2 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 1 -1 

3 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 1 

4 0 0 0 0 0 1 0 1 0 0 0 0 0 2 1 0 1 

To be continued 
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Continued 

5 0 1 0 0 0 1 0 0 1 0 0 0 0 2 1 0 1 

6 1 0 0 0 0 1 0 0 0 1 0 0 0 2 1 0 -1 

7 0 0 1 0 0 1 0 0 0 0 0 0 1 2 1 0 1 

8 0 1 0 0 0 0 0 1 0 0 1 0 0 2 1 0 -1 

9 0 0 0 1 0 0 0 1 0 0 0 1 0 2 0 1 1 

10 0 2 0 0 0 0 0 0 1 0 1 0 0 2 1 0 -1 

11 0 1 0 1 0 0 0 0 1 0 0 1 0 2 0 1 1 

12 1 1 0 0 0 0 0 0 0 1 1 0 0 2 1 0 1 

13 1 0 0 1 0 0 0 0 0 1 0 1 0 2 0 1 -1 

14 0 0 1 0 0 0 0 0 0 1 0 1 0 2 0 1 1 

15 0 1 1 0 0 0 0 0 0 0 1 0 1 2 1 0 -1 

16 0 0 1 1 0 0 0 0 0 0 0 1 1 2 0 1 1 

17 0 0 0 0 0 3 0 0 0 0 0 0 0 3 1 0 0,5 

18 0 1 0 0 0 2 0 0 0 0 1 0 0 3 1 0 -1,5 

19 0 0 0 0 0 1 2 0 0 0 0 0 0 3 1 0 0,5 

20 1 0 0 0 0 1 1 0 0 0 1 0 0 3 1 0 1 

21 0 0 0 0 0 1 0 2 0 0 0 0 0 3 1 0 0,5 

22 0 1 0 0 0 1 0 1 1 0 0 0 0 3 1 0 1 

23 1 0 0 0 0 1 0 1 0 1 0 0 0 3 1 0 -1 

24 0 0 1 0 0 1 0 1 0 0 0 0 1 3 1 0 1 

25 0 2 0 0 0 1 0 0 2 0 0 0 0 3 1 0 0,5 

26 1 1 0 0 0 1 0 0 1 1 0 0 0 3 1 0 -1 

27 0 1 1 0 0 1 0 0 1 0 0 0 1 3 1 0 1 

28 2 0 0 0 0 1 0 0 0 2 0 0 0 3 1 0 0,5 

29 1 0 1 0 0 1 0 0 0 1 0 0 1 3 1 0 -1 

30 2 0 0 0 0 1 0 0 0 0 2 0 0 3 1 0 0,5 

31 0 2 0 0 0 1 0 0 0 0 2 0 0 3 1 0 1,5 

32 0 0 0 2 0 1 0 0 0 0 0 2 0 3 1 0 0,5 

33 0 0 0 2 0 1 0 0 0 0 0 2 0 3 0 1 -1 

34 0 0 0 0 2 1 0 0 0 0 0 2 0 3 1 0 0,5 

35 0 0 0 0 2 1 0 0 0 0 0 2 0 3 0 1 -1 

36 0 0 2 0 0 1 0 0 0 0 0 0 2 3 1 0 0,5 

37 0 1 0 0 0 0 2 0 0 0 1 0 0 3 1 0 -0,5 

38 1 1 0 0 0 0 1 0 0 0 2 0 0 3 1 0 -1 

39 0 1 0 0 0 0 0 2 0 0 1 0 0 3 1 0 -0,5 

40 0 2 0 0 0 0 0 1 1 0 1 0 0 3 1 0 -1 

41 1 1 0 0 0 0 0 1 0 1 1 0 0 3 1 0 1 

42 0 0 1 0 0 0 0 1 0 1 0 1 0 3 1 0 1 

43 0 1 1 0 0 0 0 1 0 0 1 0 1 3 1 0 -1 

44 0 3 0 0 0 0 0 0 2 0 1 0 0 3 1 0 -0,5 

45 1 2 0 0 0 0 0 0 1 1 1 0 0 3 1 0 1 

46 0 1 1 0 0 0 0 0 1 1 0 1 0 3 1 0 1 

47 0 2 1 0 0 0 0 0 1 0 1 0 1 3 1 0 -1 

48 2 1 0 0 0 0 0 0 0 2 1 0 0 3 1 0 -0,5 

49 1 0 1 0 0 0 0 0 0 2 0 1 0 3 1 0 -1 
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50 1 1 1 0 0 0 0 0 0 1 1 0 1 3 1 0 1 

51 0 0 2 0 0 0 0 0 0 1 0 1 1 3 1 0 1 

52 2 1 0 0 0 0 0 0 0 0 3 0 0 3 1 0 -0,5 

53 0 3 0 0 0 0 0 0 0 0 3 0 0 3 1 0 -0,5 

54 0 1 0 2 0 0 0 0 0 0 1 2 0 3 1 0 -0,5 

55 0 1 0 2 0 0 0 0 0 0 1 2 0 3 0 1 1 

56 0 1 0 0 2 0 0 0 0 0 1 2 0 3 1 0 -0,5 

57 0 1 0 0 2 0 0 0 0 0 1 2 0 3 0 1 1 

58 0 1 2 0 0 0 0 0 0 0 1 0 2 3 1 0 -0,5 

59 0 0 1 0 0 2 0 0 0 1 0 1 0 4 1 0 1,5 

60 0 0 1 0 0 1 1 0 1 0 0 1 0 4 1 0 -1 

61 1 0 1 0 0 1 0 0 1 0 1 1 0 4 1 0 -1 

62 0 1 1 0 0 1 0 0 0 1 1 1 0 4 1 0 -3 

63 0 0 1 0 0 0 2 0 0 1 0 1 0 4 1 0 0,5 

64 0 1 1 0 0 0 1 0 1 0 1 1 0 4 1 0 1 

65 1 0 1 0 0 0 1 0 0 1 1 1 0 4 1 0 1 

66 0 0 1 0 0 0 0 2 0 1 0 1 0 4 1 0 0,5 

67 0 1 1 0 0 0 0 1 1 1 0 1 0 4 1 0 1 

68 1 0 1 0 0 0 0 1 0 2 0 1 0 4 1 0 -1 

69 0 0 2 0 0 0 0 1 0 1 0 1 1 4 1 0 1 

70 0 2 1 0 0 0 0 0 2 1 0 1 0 4 1 0 0,5 

71 1 1 1 0 0 0 0 0 1 2 0 1 0 4 1 0 -1 

72 0 1 2 0 0 0 0 0 1 1 0 1 1 4 1 0 1 

73 1 1 1 0 0 0 0 0 1 0 2 1 0 4 1 0 1 

74 2 0 1 0 0 0 0 0 0 3 0 1 0 4 1 0 0,5 

75 1 0 2 0 0 0 0 0 0 2 0 1 1 4 1 0 -1 

76 2 0 1 0 0 0 0 0 0 1 2 1 0 4 1 0 0,5 

77 0 2 1 0 0 0 0 0 0 1 2 1 0 4 1 0 1,5 

78 0 0 1 2 0 0 0 0 0 1 0 3 0 4 1 0 0,5 

79 0 0 1 2 0 0 0 0 0 1 0 3 0 4 0 1 -1 

80 0 0 1 0 2 0 0 0 0 1 0 3 0 4 1 0 0,5 

81 0 0 1 0 2 0 0 0 0 1 0 3 0 4 0 1 -1 

82 0 0 3 0 0 0 0 0 0 1 0 1 2 4 1 0 0,5 

83 0 0 2 0 0 1 0 0 2 0 0 2 0 5 1 0 0,5 

84 0 0 2 0 0 1 0 0 0 2 0 2 0 5 1 0 1,5 

85 0 0 2 0 0 0 1 0 1 1 0 2 0 5 1 0 -1 

86 0 1 2 0 0 0 0 0 2 0 1 2 0 5 1 0 -0,5 

87 1 0 2 0 0 0 0 0 1 1 1 2 0 5 1 0 -1 

88 0 1 2 0 0 0 0 0 0 2 1 2 0 5 1 0 -1,5 

89 0 0 3 0 0 0 0 0 2 1 0 3 0 6 1 0 0,5 

90 0 0 3 0 0 0 0 0 0 3 0 3 0 6 1 0 0,5 
 Monomials for 𝑛2

𝑟 

1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0,00 1,00 1,00 

2 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1,00 1,00 

3 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1,00 1,00 
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4 0 0 0 0 0 0 1 1 0 0 0 0 0 2 1 0,00 1,00 

5 0 1 0 0 0 0 1 0 1 0 0 0 0 2 1 0,00 1,00 

6 1 0 0 0 0 0 1 0 0 1 0 0 0 2 1 0,00 -1,00 

7 0 0 1 0 0 0 1 0 0 0 0 0 1 2 1 0,00 1,00 

8 1 0 0 0 0 0 0 1 0 0 1 0 0 2 1 0,00 1,00 

9 0 0 0 0 1 0 0 1 0 0 0 1 0 2 0 1,00 1,00 

10 1 1 0 0 0 0 0 0 1 0 1 0 0 2 1 0,00 1,00 

11 0 0 1 0 0 0 0 0 1 0 0 1 0 2 0 1,00 -1,00 

12 0 1 0 0 1 0 0 0 1 0 0 1 0 2 0 1,00 1,00 

13 2 0 0 0 0 0 0 0 0 1 1 0 0 2 1 0,00 -1,00 

14 1 0 0 0 1 0 0 0 0 1 0 1 0 2 0 1,00 -1,00 

15 1 0 1 0 0 0 0 0 0 0 1 0 1 2 1 0,00 1,00 

16 0 0 1 0 1 0 0 0 0 0 0 1 1 2 0 1,00 1,00 

17 0 0 0 0 0 2 1 0 0 0 0 0 0 3 1 0,00 0,50 

18 1 0 0 0 0 2 0 0 0 0 1 0 0 3 1 0,00 0,50 

19 0 1 0 0 0 1 1 0 0 0 1 0 0 3 1 0,00 -1,00 

20 1 1 0 0 0 1 0 0 0 0 2 0 0 3 1 0,00 -1,00 

21 0 0 0 0 0 0 3 0 0 0 0 0 0 3 1 0,00 0,50 

22 1 0 0 0 0 0 2 0 0 0 1 0 0 3 1 0,00 1,50 

23 0 0 0 0 0 0 1 2 0 0 0 0 0 3 1 0,00 0,50 

24 0 1 0 0 0 0 1 1 1 0 0 0 0 3 1 0,00 1,00 

25 1 0 0 0 0 0 1 1 0 1 0 0 0 3 1 0,00 -1,00 

26 0 0 1 0 0 0 1 1 0 0 0 0 1 3 1 0,00 1,00 

27 0 2 0 0 0 0 1 0 2 0 0 0 0 3 1 0,00 0,50 

28 1 1 0 0 0 0 1 0 1 1 0 0 0 3 1 0,00 -1,00 

29 0 1 1 0 0 0 1 0 1 0 0 0 1 3 1 0,00 1,00 

30 2 0 0 0 0 0 1 0 0 2 0 0 0 3 1 0,00 0,50 

31 1 0 1 0 0 0 1 0 0 1 0 0 1 3 1 0,00 -1,00 

32 2 0 0 0 0 0 1 0 0 0 2 0 0 3 1 0,00 1,50 

33 0 2 0 0 0 0 1 0 0 0 2 0 0 3 1 0,00 0,50 

34 0 0 0 2 0 0 1 0 0 0 0 2 0 3 1 0,00 0,50 

35 0 0 0 2 0 0 1 0 0 0 0 2 0 3 0 1,00 -1,00 

36 0 0 0 0 2 0 1 0 0 0 0 2 0 3 1 0,00 0,50 

37 0 0 0 0 2 0 1 0 0 0 0 2 0 3 0 1,00 -1,00 

38 0 0 2 0 0 0 1 0 0 0 0 0 2 3 1 0,00 0,50 

39 1 0 0 0 0 0 0 2 0 0 1 0 0 3 1 0,00 0,50 

40 1 1 0 0 0 0 0 1 1 0 1 0 0 3 1 0,00 1,00 

41 0 0 1 0 0 0 0 1 1 0 0 1 0 3 1 0,00 -1,00 

42 2 0 0 0 0 0 0 1 0 1 1 0 0 3 1 0,00 -1,00 

43 1 0 1 0 0 0 0 1 0 0 1 0 1 3 1 0,00 1,00 

44 1 2 0 0 0 0 0 0 2 0 1 0 0 3 1 0,00 0,50 

45 0 1 1 0 0 0 0 0 2 0 0 1 0 3 1 0,00 -1,00 

46 2 1 0 0 0 0 0 0 1 1 1 0 0 3 1 0,00 -1,00 

47 1 0 1 0 0 0 0 0 1 1 0 1 0 3 1 0,00 1,00 

48 1 1 1 0 0 0 0 0 1 0 1 0 1 3 1 0,00 1,00 
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49 0 0 2 0 0 0 0 0 1 0 0 1 1 3 1 0,00 -1,00 

50 3 0 0 0 0 0 0 0 0 2 1 0 0 3 1 0,00 0,50 

51 2 0 1 0 0 0 0 0 0 1 1 0 1 3 1 0,00 -1,00 

52 3 0 0 0 0 0 0 0 0 0 3 0 0 3 1 0,00 0,50 

53 1 2 0 0 0 0 0 0 0 0 3 0 0 3 1 0,00 0,50 

54 1 0 0 2 0 0 0 0 0 0 1 2 0 3 1 0,00 0,50 

55 1 0 0 2 0 0 0 0 0 0 1 2 0 3 0 1,00 -1,00 

56 1 0 0 0 2 0 0 0 0 0 1 2 0 3 1 0,00 0,50 

57 1 0 0 0 2 0 0 0 0 0 1 2 0 3 0 1,00 -1,00 

58 1 0 2 0 0 0 0 0 0 0 1 0 2 3 1 0,00 0,50 

59 0 0 1 0 0 2 0 0 1 0 0 1 0 4 1 0,00 -0,50 

60 0 0 1 0 0 1 1 0 0 1 0 1 0 4 1 0,00 1,00 

61 0 1 1 0 0 1 0 0 1 0 1 1 0 4 1 0,00 1,00 

62 1 0 1 0 0 1 0 0 0 1 1 1 0 4 1 0,00 1,00 

63 0 0 1 0 0 0 2 0 1 0 0 1 0 4 1 0,00 -1,50 

64 1 0 1 0 0 0 1 0 1 0 1 1 0 4 1 0,00 -3,00 

65 0 1 1 0 0 0 1 0 0 1 1 1 0 4 1 0,00 -1,00 

66 0 0 1 0 0 0 0 2 1 0 0 1 0 4 1 0,00 -0,50 

67 0 1 1 0 0 0 0 1 2 0 0 1 0 4 1 0,00 -1,00 

68 1 0 1 0 0 0 0 1 1 1 0 1 0 4 1 0,00 1,00 

69 0 0 2 0 0 0 0 1 1 0 0 1 1 4 1 0,00 -1,00 

70 0 2 1 0 0 0 0 0 3 0 0 1 0 4 1 0,00 -0,50 

71 1 1 1 0 0 0 0 0 2 1 0 1 0 4 1 0,00 1,00 

72 0 1 2 0 0 0 0 0 2 0 0 1 1 4 1 0,00 -1,00 

73 2 0 1 0 0 0 0 0 1 2 0 1 0 4 1 0,00 -0,50 

74 1 0 2 0 0 0 0 0 1 1 0 1 1 4 1 0,00 1,00 

75 2 0 1 0 0 0 0 0 1 0 2 1 0 4 1 0,00 -1,50 

76 0 2 1 0 0 0 0 0 1 0 2 1 0 4 1 0,00 -0,50 

77 0 0 1 2 0 0 0 0 1 0 0 3 0 4 1 0,00 -0,50 

78 0 0 1 2 0 0 0 0 1 0 0 3 0 4 0 1,00 1,00 

79 0 0 1 0 2 0 0 0 1 0 0 3 0 4 1 0,00 -0,50 

80 0 0 1 0 2 0 0 0 1 0 0 3 0 4 0 1,00 1,00 

81 0 0 3 0 0 0 0 0 1 0 0 1 2 4 1 0,00 -0,50 

82 1 1 1 0 0 0 0 0 0 1 2 1 0 4 1 0,00 -1,00 

83 0 0 2 0 0 1 0 0 1 1 0 2 0 5 1 0,00 -1,00 

84 0 0 2 0 0 0 1 0 2 0 0 2 0 5 1 0,00 1,50 

85 0 0 2 0 0 0 1 0 0 2 0 2 0 5 1 0,00 0,50 

86 1 0 2 0 0 0 0 0 2 0 1 2 0 5 1 0,00 1,50 

87 0 1 2 0 0 0 0 0 1 1 1 2 0 5 1 0,00 1,00 

88 1 0 2 0 0 0 0 0 0 2 1 2 0 5 1 0,00 0,50 

89 0 0 3 0 0 0 0 0 3 0 0 3 0 6 1 0,00 -0,50 

90 0 0 3 0 0 0 0 0 1 2 0 3 0 6 1 0,00 -0,50 
 Monomials for 𝑛3

𝑟 

1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 

2 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 
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3 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 -1 

4 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 1 

5 0 0 0 0 0 2 0 0 0 0 0 0 0 2 1 0 0,5 

6 0 1 0 0 0 1 0 0 0 0 1 0 0 2 1 0 -1 

7 0 0 0 1 0 1 0 0 0 0 0 1 0 2 0 1 1 

8 0 0 0 0 0 0 2 0 0 0 0 0 0 2 1 0 0,5 

9 1 0 0 0 0 0 1 0 0 0 1 0 0 2 1 0 1 

10 0 0 0 0 1 0 1 0 0 0 0 1 0 2 0 1 1 

11 0 0 0 0 0 0 0 2 0 0 0 0 0 2 1 0 1,5 

12 0 1 0 0 0 0 0 1 1 0 0 0 0 2 1 0 3 

13 1 0 0 0 0 0 0 1 0 1 0 0 0 2 1 0 -3 

14 0 0 1 0 0 0 0 1 0 0 0 0 1 2 1 0 3 

15 0 2 0 0 0 0 0 0 2 0 0 0 0 2 1 0 1,5 

16 1 1 0 0 0 0 0 0 1 1 0 0 0 2 1 0 -3 

17 0 1 1 0 0 0 0 0 1 0 0 0 1 2 1 0 3 

18 2 0 0 0 0 0 0 0 0 2 0 0 0 2 1 0 1,5 

19 1 0 1 0 0 0 0 0 0 1 0 0 1 2 1 0 -3 

20 2 0 0 0 0 0 0 0 0 0 2 0 0 2 1 0 0,5 

21 0 2 0 0 0 0 0 0 0 0 2 0 0 2 1 0 0,5 

22 1 0 0 0 1 0 0 0 0 0 1 1 0 2 0 1 1 

23 0 1 0 1 0 0 0 0 0 0 1 1 0 2 0 1 -1 

24 0 0 0 2 0 0 0 0 0 0 0 2 0 2 1 0 0,5 

25 0 0 0 0 2 0 0 0 0 0 0 2 0 2 1 0 0,5 

26 0 0 2 0 0 0 0 0 0 0 0 0 2 2 1 0 1,5 

27 0 0 0 0 0 2 0 1 0 0 0 0 0 3 1 0 0,5 

28 0 1 0 0 0 2 0 0 1 0 0 0 0 3 1 0 0,5 

29 1 0 0 0 0 2 0 0 0 1 0 0 0 3 1 0 -0,5 

30 0 0 1 0 0 2 0 0 0 0 0 0 1 3 1 0 0,5 

31 0 1 0 0 0 1 0 1 0 0 1 0 0 3 1 0 -1 

32 0 2 0 0 0 1 0 0 1 0 1 0 0 3 1 0 -1 

33 1 1 0 0 0 1 0 0 0 1 1 0 0 3 1 0 1 

34 0 0 1 0 0 1 0 0 0 1 0 1 0 3 1 0 1 

35 0 1 1 0 0 1 0 0 0 0 1 0 1 3 1 0 -1 

36 0 0 0 0 0 0 2 1 0 0 0 0 0 3 1 0 0,5 

37 0 1 0 0 0 0 2 0 1 0 0 0 0 3 1 0 0,5 

38 1 0 0 0 0 0 2 0 0 1 0 0 0 3 1 0 -0,5 

39 0 0 1 0 0 0 2 0 0 0 0 0 1 3 1 0 0,5 

40 1 0 0 0 0 0 1 1 0 0 1 0 0 3 1 0 1 

41 1 1 0 0 0 0 1 0 1 0 1 0 0 3 1 0 1 

42 0 0 1 0 0 0 1 0 1 0 0 1 0 3 1 0 -1 

43 2 0 0 0 0 0 1 0 0 1 1 0 0 3 1 0 -1 

44 1 0 1 0 0 0 1 0 0 0 1 0 1 3 1 0 1 

45 0 0 0 0 0 0 0 3 0 0 0 0 0 3 1 0 0,5 

46 0 1 0 0 0 0 0 2 1 0 0 0 0 3 1 0 1,5 

47 1 0 0 0 0 0 0 2 0 1 0 0 0 3 1 0 -1,5 
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48 0 0 1 0 0 0 0 2 0 0 0 0 1 3 1 0 1,5 

49 0 2 0 0 0 0 0 1 2 0 0 0 0 3 1 0 1,5 

50 1 1 0 0 0 0 0 1 1 1 0 0 0 3 1 0 -3 

51 0 1 1 0 0 0 0 1 1 0 0 0 1 3 1 0 3 

52 2 0 0 0 0 0 0 1 0 2 0 0 0 3 1 0 1,5 

53 1 0 1 0 0 0 0 1 0 1 0 0 1 3 1 0 -3 

54 2 0 0 0 0 0 0 1 0 0 2 0 0 3 1 0 0,5 

55 0 2 0 0 0 0 0 1 0 0 2 0 0 3 1 0 0,5 

56 0 0 0 2 0 0 0 1 0 0 0 2 0 3 1 0 0,5 

57 0 0 0 0 2 0 0 1 0 0 0 2 0 3 1 0 0,5 

58 0 0 2 0 0 0 0 1 0 0 0 0 2 3 1 0 1,5 

59 0 3 0 0 0 0 0 0 3 0 0 0 0 3 1 0 0,5 

60 1 2 0 0 0 0 0 0 2 1 0 0 0 3 1 0 -1,5 

61 0 2 1 0 0 0 0 0 2 0 0 0 1 3 1 0 1,5 

62 2 1 0 0 0 0 0 0 1 2 0 0 0 3 1 0 1,5 

63 1 1 1 0 0 0 0 0 1 1 0 0 1 3 1 0 -3 

64 2 1 0 0 0 0 0 0 1 0 2 0 0 3 1 0 0,5 

65 0 3 0 0 0 0 0 0 1 0 2 0 0 3 1 0 0,5 

66 1 0 1 0 0 0 0 0 1 0 1 1 0 3 1 0 -1 

67 0 0 1 0 1 0 0 0 1 0 0 2 0 3 0 1 -1 

68 0 1 0 2 0 0 0 0 1 0 0 2 0 3 1 0 0,5 

69 0 1 0 0 2 0 0 0 1 0 0 2 0 3 1 0 0,5 

70 0 1 2 0 0 0 0 0 1 0 0 0 2 3 1 0 1,5 

71 3 0 0 0 0 0 0 0 0 3 0 0 0 3 1 0 -0,5 

72 2 0 1 0 0 0 0 0 0 2 0 0 1 3 1 0 1,5 

73 3 0 0 0 0 0 0 0 0 1 2 0 0 3 1 0 -0,5 

74 1 2 0 0 0 0 0 0 0 1 2 0 0 3 1 0 -0,5 

75 0 1 1 0 0 0 0 0 0 1 1 1 0 3 1 0 -1 

76 0 0 1 1 0 0 0 0 0 1 0 2 0 3 0 1 1 

77 1 0 0 2 0 0 0 0 0 1 0 2 0 3 1 0 -0,5 

78 1 0 0 0 2 0 0 0 0 1 0 2 0 3 1 0 -0,5 

79 1 0 2 0 0 0 0 0 0 1 0 0 2 3 1 0 -1,5 

80 2 0 1 0 0 0 0 0 0 0 2 0 1 3 1 0 0,5 

81 0 2 1 0 0 0 0 0 0 0 2 0 1 3 1 0 0,5 

82 0 0 1 2 0 0 0 0 0 0 0 2 1 3 1 0 0,5 

83 0 0 1 0 2 0 0 0 0 0 0 2 1 3 1 0 0,5 

84 0 0 3 0 0 0 0 0 0 0 0 0 3 3 1 0 0,5 

85 0 0 1 0 0 1 0 1 0 1 0 1 0 4 1 0 1 

86 0 1 1 0 0 1 0 0 1 1 0 1 0 4 1 0 1 

87 1 0 1 0 0 1 0 0 0 2 0 1 0 4 1 0 -1 

88 0 0 2 0 0 1 0 0 0 1 0 1 1 4 1 0 1 

89 0 0 1 0 0 0 1 1 1 0 0 1 0 4 1 0 -1 

90 0 1 1 0 0 0 1 0 2 0 0 1 0 4 1 0 -1 

91 1 0 1 0 0 0 1 0 1 1 0 1 0 4 1 0 1 

92 0 0 2 0 0 0 1 0 1 0 0 1 1 4 1 0 -1 
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93 1 0 1 0 0 0 0 1 1 0 1 1 0 4 1 0 -1 

94 0 1 1 0 0 0 0 1 0 1 1 1 0 4 1 0 -1 

95 1 1 1 0 0 0 0 0 2 0 1 1 0 4 1 0 -1 

96 0 0 2 0 0 0 0 0 2 0 0 2 0 4 1 0 0,5 

97 2 0 1 0 0 0 0 0 1 1 1 1 0 4 1 0 1 

98 0 2 1 0 0 0 0 0 1 1 1 1 0 4 1 0 -1 

99 1 0 2 0 0 0 0 0 1 0 1 1 1 4 1 0 -1 

100 1 1 1 0 0 0 0 0 0 2 1 1 0 4 1 0 1 

101 0 0 2 0 0 0 0 0 0 2 0 2 0 4 1 0 0,5 

102 0 1 2 0 0 0 0 0 0 1 1 1 1 4 1 0 -1 

103 0 0 2 0 0 0 0 1 2 0 0 2 0 5 1 0 0,5 

104 0 0 2 0 0 0 0 1 0 2 0 2 0 5 1 0 0,5 

105 0 1 2 0 0 0 0 0 3 0 0 2 0 5 1 0 0,5 

106 1 0 2 0 0 0 0 0 2 1 0 2 0 5 1 0 -0,5 

107 0 0 3 0 0 0 0 0 2 0 0 2 1 5 1 0 0,5 

108 0 1 2 0 0 0 0 0 1 2 0 2 0 5 1 0 0,5 

109 1 0 2 0 0 0 0 0 0 3 0 2 0 5 1 0 -0,5 

110 0 0 3 0 0 0 0 0 0 2 0 2 1 5 1 0 0,5 
 Monomials for 𝑚1

𝑟 

1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 

2 0 2 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 

3 1 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 -1 

4 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 1 

5 0 1 0 0 0 2 0 0 0 0 0 0 0 2 1 0 0,5 

6 0 2 0 0 0 1 0 0 0 0 1 0 0 2 1 0 -1 

7 0 1 0 1 0 1 0 0 0 0 0 1 0 2 0 1 1 

8 0 1 0 0 0 0 2 0 0 0 0 0 0 2 1 0 0,5 

9 1 1 0 0 0 0 1 0 0 0 1 0 0 2 1 0 1 

10 0 0 1 0 0 0 1 0 0 0 0 1 0 2 0 1 -1 

11 0 1 0 0 1 0 1 0 0 0 0 1 0 2 0 1 1 

12 0 1 0 0 0 0 0 2 0 0 0 0 0 2 1 0 1,5 

13 0 2 0 0 0 0 0 1 1 0 0 0 0 2 1 0 3 

14 1 1 0 0 0 0 0 1 0 1 0 0 0 2 1 0 -3 

15 0 1 1 0 0 0 0 1 0 0 0 0 1 2 1 0 3 

16 0 3 0 0 0 0 0 0 2 0 0 0 0 2 1 0 1,5 

17 1 2 0 0 0 0 0 0 1 1 0 0 0 2 1 0 -3 

18 0 2 1 0 0 0 0 0 1 0 0 0 1 2 1 0 3 

19 2 1 0 0 0 0 0 0 0 2 0 0 0 2 1 0 1,5 

20 1 1 1 0 0 0 0 0 0 1 0 0 1 2 1 0 -3 

21 2 1 0 0 0 0 0 0 0 0 2 0 0 2 1 0 0,5 

22 0 3 0 0 0 0 0 0 0 0 2 0 0 2 1 0 0,5 

23 1 0 1 0 0 0 0 0 0 0 1 1 0 2 0 1 -1 

24 1 1 0 0 1 0 0 0 0 0 1 1 0 2 0 1 1 

25 0 2 0 1 0 0 0 0 0 0 1 1 0 2 0 1 -1 

26 0 0 1 0 1 0 0 0 0 0 0 2 0 2 0 1 -1 
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27 0 1 0 2 0 0 0 0 0 0 0 2 0 2 1 0 0,5 

28 0 1 0 0 2 0 0 0 0 0 0 2 0 2 1 0 0,5 

29 0 1 2 0 0 0 0 0 0 0 0 0 2 2 1 0 1,5 

30 0 1 0 0 0 2 0 1 0 0 0 0 0 3 1 0 0,5 

31 0 2 0 0 0 2 0 0 1 0 0 0 0 3 1 0 0,5 

32 1 1 0 0 0 2 0 0 0 1 0 0 0 3 1 0 -0,5 

33 0 1 1 0 0 2 0 0 0 0 0 0 1 3 1 0 0,5 

34 0 2 0 0 0 1 0 1 0 0 1 0 0 3 1 0 -1 

35 0 3 0 0 0 1 0 0 1 0 1 0 0 3 1 0 -1 

36 1 2 0 0 0 1 0 0 0 1 1 0 0 3 1 0 1 

37 0 1 1 0 0 1 0 0 0 1 0 1 0 3 1 0 1 

38 0 2 1 0 0 1 0 0 0 0 1 0 1 3 1 0 -1 

39 0 1 0 0 0 0 2 1 0 0 0 0 0 3 1 0 0,5 

40 0 2 0 0 0 0 2 0 1 0 0 0 0 3 1 0 0,5 

41 1 1 0 0 0 0 2 0 0 1 0 0 0 3 1 0 -0,5 

42 0 1 1 0 0 0 2 0 0 0 0 0 1 3 1 0 0,5 

43 1 1 0 0 0 0 1 1 0 0 1 0 0 3 1 0 1 

44 0 0 1 0 0 0 1 1 0 0 0 1 0 3 1 0 1 

45 1 2 0 0 0 0 1 0 1 0 1 0 0 3 1 0 1 

46 0 1 1 0 0 0 1 0 1 0 0 1 0 3 1 0 -2 

47 2 1 0 0 0 0 1 0 0 1 1 0 0 3 1 0 -1 

48 1 0 1 0 0 0 1 0 0 1 0 1 0 3 1 0 1 

49 1 1 1 0 0 0 1 0 0 0 1 0 1 3 1 0 1 

50 0 0 2 0 0 0 1 0 0 0 0 1 1 3 1 0 -1 

51 0 1 0 0 0 0 0 3 0 0 0 0 0 3 1 0 0,5 

52 0 2 0 0 0 0 0 2 1 0 0 0 0 3 1 0 1,5 

53 1 1 0 0 0 0 0 2 0 1 0 0 0 3 1 0 -1,5 

54 0 1 1 0 0 0 0 2 0 0 0 0 1 3 1 0 1,5 

55 0 3 0 0 0 0 0 1 2 0 0 0 0 3 1 0 1,5 

56 1 2 0 0 0 0 0 1 1 1 0 0 0 3 1 0 -3 

57 0 2 1 0 0 0 0 1 1 0 0 0 1 3 1 0 3 

58 2 1 0 0 0 0 0 1 0 2 0 0 0 3 1 0 1,5 

59 1 1 1 0 0 0 0 1 0 1 0 0 1 3 1 0 -3 

60 2 1 0 0 0 0 0 1 0 0 2 0 0 3 1 0 0,5 

61 0 3 0 0 0 0 0 1 0 0 2 0 0 3 1 0 0,5 

62 1 0 1 0 0 0 0 1 0 0 1 1 0 3 1 0 -1 

63 0 0 1 0 1 0 0 1 0 0 0 2 0 3 0 1 -1 

64 0 1 0 2 0 0 0 1 0 0 0 2 0 3 1 0 0,5 

65 0 1 0 0 2 0 0 1 0 0 0 2 0 3 1 0 0,5 

66 0 1 2 0 0 0 0 1 0 0 0 0 2 3 1 0 1,5 

67 0 4 0 0 0 0 0 0 3 0 0 0 0 3 1 0 0,5 

68 1 3 0 0 0 0 0 0 2 1 0 0 0 3 1 0 -1,5 

69 0 3 1 0 0 0 0 0 2 0 0 0 1 3 1 0 1,5 

70 2 2 0 0 0 0 0 0 1 2 0 0 0 3 1 0 1,5 

71 1 2 1 0 0 0 0 0 1 1 0 0 1 3 1 0 -3 
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72 2 2 0 0 0 0 0 0 1 0 2 0 0 3 1 0 0,5 

73 0 4 0 0 0 0 0 0 1 0 2 0 0 3 1 0 0,5 

74 1 1 1 0 0 0 0 0 1 0 1 1 0 3 1 0 -2 

75 0 0 2 0 0 0 0 0 1 0 0 2 0 3 0 1 1 

76 0 1 1 0 1 0 0 0 1 0 0 2 0 3 0 1 -2 

77 0 2 0 2 0 0 0 0 1 0 0 2 0 3 1 0 0,5 

78 0 2 0 0 2 0 0 0 1 0 0 2 0 3 1 0 0,5 

79 0 2 2 0 0 0 0 0 1 0 0 0 2 3 1 0 1,5 

80 3 1 0 0 0 0 0 0 0 3 0 0 0 3 1 0 -0,5 

81 2 1 1 0 0 0 0 0 0 2 0 0 1 3 1 0 1,5 

82 3 1 0 0 0 0 0 0 0 1 2 0 0 3 1 0 -0,5 

83 1 3 0 0 0 0 0 0 0 1 2 0 0 3 1 0 -0,5 

84 2 0 1 0 0 0 0 0 0 1 1 1 0 3 1 0 1 

85 0 2 1 0 0 0 0 0 0 1 1 1 0 3 1 0 -1 

86 1 0 1 0 1 0 0 0 0 1 0 2 0 3 0 1 1 

87 0 1 1 1 0 0 0 0 0 1 0 2 0 3 0 1 1 

88 1 1 0 2 0 0 0 0 0 1 0 2 0 3 1 0 -0,5 

89 1 1 0 0 2 0 0 0 0 1 0 2 0 3 1 0 -0,5 

90 1 1 2 0 0 0 0 0 0 1 0 0 2 3 1 0 -1,5 

91 2 1 1 0 0 0 0 0 0 0 2 0 1 3 1 0 0,5 

92 0 3 1 0 0 0 0 0 0 0 2 0 1 3 1 0 0,5 

93 1 0 2 0 0 0 0 0 0 0 1 1 1 3 1 0 -1 

94 0 0 2 0 1 0 0 0 0 0 0 2 1 3 0 1 -1 

95 0 1 1 2 0 0 0 0 0 0 0 2 1 3 1 0 0,5 

96 0 1 1 0 2 0 0 0 0 0 0 2 1 3 1 0 0,5 

97 0 1 3 0 0 0 0 0 0 0 0 0 3 3 1 0 0,5 

98 0 0 1 0 0 2 1 0 0 0 0 1 0 4 1 0 -0,5 

99 1 0 1 0 0 2 0 0 0 0 1 1 0 4 1 0 -0,5 

100 0 1 1 0 0 1 1 0 0 0 1 1 0 4 1 0 1 

101 0 1 1 0 0 1 0 1 0 1 0 1 0 4 1 0 1 

102 0 2 1 0 0 1 0 0 1 1 0 1 0 4 1 0 1 

103 1 1 1 0 0 1 0 0 0 2 0 1 0 4 1 0 -1 

104 0 1 2 0 0 1 0 0 0 1 0 1 1 4 1 0 1 

105 1 1 1 0 0 1 0 0 0 0 2 1 0 4 1 0 1 

106 0 0 1 0 0 0 3 0 0 0 0 1 0 4 1 0 -0,5 

107 1 0 1 0 0 0 2 0 0 0 1 1 0 4 1 0 -1,5 

108 0 0 1 0 0 0 1 2 0 0 0 1 0 4 1 0 -0,5 

109 0 1 1 0 0 0 1 1 1 0 0 1 0 4 1 0 -2 

110 1 0 1 0 0 0 1 1 0 1 0 1 0 4 1 0 1 

111 0 0 2 0 0 0 1 1 0 0 0 1 1 4 1 0 -1 

112 0 2 1 0 0 0 1 0 2 0 0 1 0 4 1 0 -1,5 

113 1 1 1 0 0 0 1 0 1 1 0 1 0 4 1 0 2 

114 0 1 2 0 0 0 1 0 1 0 0 1 1 4 1 0 -2 

115 2 0 1 0 0 0 1 0 0 2 0 1 0 4 1 0 -0,5 

116 1 0 2 0 0 0 1 0 0 1 0 1 1 4 1 0 1 
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117 2 0 1 0 0 0 1 0 0 0 2 1 0 4 1 0 -1,5 

118 0 2 1 0 0 0 1 0 0 0 2 1 0 4 1 0 -0,5 

119 0 0 1 2 0 0 1 0 0 0 0 3 0 4 1 0 -0,5 

120 0 0 1 2 0 0 1 0 0 0 0 3 0 4 0 1 1 

121 0 0 1 0 2 0 1 0 0 0 0 3 0 4 1 0 -0,5 

122 0 0 1 0 2 0 1 0 0 0 0 3 0 4 0 1 1 

123 0 0 3 0 0 0 1 0 0 0 0 1 2 4 1 0 -0,5 

124 1 0 1 0 0 0 0 2 0 0 1 1 0 4 1 0 -0,5 

125 1 1 1 0 0 0 0 1 1 0 1 1 0 4 1 0 -2 

126 0 0 2 0 0 0 0 1 1 0 0 2 0 4 1 0 1 

127 2 0 1 0 0 0 0 1 0 1 1 1 0 4 1 0 1 

128 0 2 1 0 0 0 0 1 0 1 1 1 0 4 1 0 -1 

129 1 0 2 0 0 0 0 1 0 0 1 1 1 4 1 0 -1 

130 1 2 1 0 0 0 0 0 2 0 1 1 0 4 1 0 -1,5 

131 0 1 2 0 0 0 0 0 2 0 0 2 0 4 1 0 1,5 

132 2 1 1 0 0 0 0 0 1 1 1 1 0 4 1 0 2 

133 0 3 1 0 0 0 0 0 1 1 1 1 0 4 1 0 -1 

134 1 0 2 0 0 0 0 0 1 1 0 2 0 4 1 0 -1 

135 1 1 2 0 0 0 0 0 1 0 1 1 1 4 1 0 -2 

136 0 0 3 0 0 0 0 0 1 0 0 2 1 4 1 0 1 

137 3 0 1 0 0 0 0 0 0 2 1 1 0 4 1 0 -0,5 

138 1 2 1 0 0 0 0 0 0 2 1 1 0 4 1 0 1 

139 0 1 2 0 0 0 0 0 0 2 0 2 0 4 1 0 0,5 

140 2 0 2 0 0 0 0 0 0 1 1 1 1 4 1 0 1 

141 0 2 2 0 0 0 0 0 0 1 1 1 1 4 1 0 -1 

142 3 0 1 0 0 0 0 0 0 0 3 1 0 4 1 0 -0,5 

143 1 2 1 0 0 0 0 0 0 0 3 1 0 4 1 0 -0,5 

144 1 0 1 2 0 0 0 0 0 0 1 3 0 4 1 0 -0,5 

145 1 0 1 2 0 0 0 0 0 0 1 3 0 4 0 1 1 

146 1 0 1 0 2 0 0 0 0 0 1 3 0 4 1 0 -0,5 

147 1 0 1 0 2 0 0 0 0 0 1 3 0 4 0 1 1 

148 1 0 3 0 0 0 0 0 0 0 1 1 2 4 1 0 -0,5 

149 0 0 2 0 0 2 0 0 1 0 0 2 0 5 1 0 0,5 

150 0 0 2 0 0 1 1 0 0 1 0 2 0 5 1 0 -1 

151 0 1 2 0 0 1 0 0 1 0 1 2 0 5 1 0 -1 

152 1 0 2 0 0 1 0 0 0 1 1 2 0 5 1 0 -1 

153 0 0 2 0 0 0 2 0 1 0 0 2 0 5 1 0 1,5 

154 1 0 2 0 0 0 1 0 1 0 1 2 0 5 1 0 3 

155 0 1 2 0 0 0 1 0 0 1 1 2 0 5 1 0 1 

156 0 0 2 0 0 0 0 2 1 0 0 2 0 5 1 0 0,5 

157 0 1 2 0 0 0 0 1 2 0 0 2 0 5 1 0 1,5 

158 1 0 2 0 0 0 0 1 1 1 0 2 0 5 1 0 -1 

159 0 0 3 0 0 0 0 1 1 0 0 2 1 5 1 0 1 

160 0 1 2 0 0 0 0 1 0 2 0 2 0 5 1 0 0,5 

161 0 2 2 0 0 0 0 0 3 0 0 2 0 5 1 0 1 
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162 1 1 2 0 0 0 0 0 2 1 0 2 0 5 1 0 -1,5 

163 0 1 3 0 0 0 0 0 2 0 0 2 1 5 1 0 1,5 

164 2 0 2 0 0 0 0 0 1 2 0 2 0 5 1 0 0,5 

165 0 2 2 0 0 0 0 0 1 2 0 2 0 5 1 0 0,5 

166 1 0 3 0 0 0 0 0 1 1 0 2 1 5 1 0 -1 

167 2 0 2 0 0 0 0 0 1 0 2 2 0 5 1 0 1,5 

168 0 2 2 0 0 0 0 0 1 0 2 2 0 5 1 0 0,5 

169 0 0 2 2 0 0 0 0 1 0 0 4 0 5 1 0 0,5 

170 0 0 2 2 0 0 0 0 1 0 0 4 0 5 0 1 -1 

171 0 0 2 0 2 0 0 0 1 0 0 4 0 5 1 0 0,5 

172 0 0 2 0 2 0 0 0 1 0 0 4 0 5 0 1 -1 

173 0 0 4 0 0 0 0 0 1 0 0 2 2 5 1 0 0,5 

174 1 1 2 0 0 0 0 0 0 3 0 2 0 5 1 0 -0,5 

175 0 1 3 0 0 0 0 0 0 2 0 2 1 5 1 0 0,5 

176 1 1 2 0 0 0 0 0 0 1 2 2 0 5 1 0 1 

177 0 0 3 0 0 1 0 0 1 1 0 3 0 6 1 0 1 

178 0 0 3 0 0 0 1 0 2 0 0 3 0 6 1 0 -1,5 

179 0 0 3 0 0 0 1 0 0 2 0 3 0 6 1 0 -0,5 

180 1 0 3 0 0 0 0 0 2 0 1 3 0 6 1 0 -1,5 

181 0 1 3 0 0 0 0 0 1 1 1 3 0 6 1 0 -1 

182 1 0 3 0 0 0 0 0 0 2 1 3 0 6 1 0 -0,5 

183 0 0 4 0 0 0 0 0 3 0 0 4 0 7 1 0 0,5 

184 0 0 4 0 0 0 0 0 1 2 0 4 0 7 1 0 0,5 
 Monomials for 𝑚2

𝑟 

1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 -1 

2 1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 -1 

3 2 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 

4 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 -1 

5 1 0 0 0 0 2 0 0 0 0 0 0 0 2 1 0 -0,5 

6 1 1 0 0 0 1 0 0 0 0 1 0 0 2 1 0 1 

7 0 0 1 0 0 1 0 0 0 0 0 1 0 2 0 1 1 

8 1 0 0 1 0 1 0 0 0 0 0 1 0 2 0 1 -1 

9 1 0 0 0 0 0 2 0 0 0 0 0 0 2 1 0 -0,5 

10 2 0 0 0 0 0 1 0 0 0 1 0 0 2 1 0 -1 

11 1 0 0 0 1 0 1 0 0 0 0 1 0 2 0 1 -1 

12 1 0 0 0 0 0 0 2 0 0 0 0 0 2 1 0 -1,5 

13 1 1 0 0 0 0 0 1 1 0 0 0 0 2 1 0 -3 

14 2 0 0 0 0 0 0 1 0 1 0 0 0 2 1 0 3 

15 1 0 1 0 0 0 0 1 0 0 0 0 1 2 1 0 -3 

16 1 2 0 0 0 0 0 0 2 0 0 0 0 2 1 0 -1,5 

17 2 1 0 0 0 0 0 0 1 1 0 0 0 2 1 0 3 

18 1 1 1 0 0 0 0 0 1 0 0 0 1 2 1 0 -3 

19 3 0 0 0 0 0 0 0 0 2 0 0 0 2 1 0 -1,5 

20 2 0 1 0 0 0 0 0 0 1 0 0 1 2 1 0 3 

21 3 0 0 0 0 0 0 0 0 0 2 0 0 2 1 0 -0,5 
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22 1 2 0 0 0 0 0 0 0 0 2 0 0 2 1 0 -0,5 

23 0 1 1 0 0 0 0 0 0 0 1 1 0 2 0 1 -1 

24 2 0 0 0 1 0 0 0 0 0 1 1 0 2 0 1 -1 

25 1 1 0 1 0 0 0 0 0 0 1 1 0 2 0 1 1 

26 0 0 1 1 0 0 0 0 0 0 0 2 0 2 0 1 1 

27 1 0 0 2 0 0 0 0 0 0 0 2 0 2 1 0 -0,5 

28 1 0 0 0 2 0 0 0 0 0 0 2 0 2 1 0 -0,5 

29 1 0 2 0 0 0 0 0 0 0 0 0 2 2 1 0 -1,5 

30 1 0 0 0 0 2 0 1 0 0 0 0 0 3 1 0 -0,5 

31 1 1 0 0 0 2 0 0 1 0 0 0 0 3 1 0 -0,5 

32 2 0 0 0 0 2 0 0 0 1 0 0 0 3 1 0 0,5 

33 1 0 1 0 0 2 0 0 0 0 0 0 1 3 1 0 -0,5 

34 1 1 0 0 0 1 0 1 0 0 1 0 0 3 1 0 1 

35 0 0 1 0 0 1 0 1 0 0 0 1 0 3 1 0 1 

36 1 2 0 0 0 1 0 0 1 0 1 0 0 3 1 0 1 

37 0 1 1 0 0 1 0 0 1 0 0 1 0 3 1 0 1 

38 2 1 0 0 0 1 0 0 0 1 1 0 0 3 1 0 -1 

39 1 0 1 0 0 1 0 0 0 1 0 1 0 3 1 0 -2 

40 1 1 1 0 0 1 0 0 0 0 1 0 1 3 1 0 1 

41 0 0 2 0 0 1 0 0 0 0 0 1 1 3 1 0 1 

42 1 0 0 0 0 0 2 1 0 0 0 0 0 3 1 0 -0,5 

43 1 1 0 0 0 0 2 0 1 0 0 0 0 3 1 0 -0,5 

44 2 0 0 0 0 0 2 0 0 1 0 0 0 3 1 0 0,5 

45 1 0 1 0 0 0 2 0 0 0 0 0 1 3 1 0 -0,5 

46 2 0 0 0 0 0 1 1 0 0 1 0 0 3 1 0 -1 

47 2 1 0 0 0 0 1 0 1 0 1 0 0 3 1 0 -1 

48 1 0 1 0 0 0 1 0 1 0 0 1 0 3 1 0 1 

49 3 0 0 0 0 0 1 0 0 1 1 0 0 3 1 0 1 

50 2 0 1 0 0 0 1 0 0 0 1 0 1 3 1 0 -1 

51 1 0 0 0 0 0 0 3 0 0 0 0 0 3 1 0 -0,5 

52 1 1 0 0 0 0 0 2 1 0 0 0 0 3 1 0 -1,5 

53 2 0 0 0 0 0 0 2 0 1 0 0 0 3 1 0 1,5 

54 1 0 1 0 0 0 0 2 0 0 0 0 1 3 1 0 -1,5 

55 1 2 0 0 0 0 0 1 2 0 0 0 0 3 1 0 -1,5 

56 2 1 0 0 0 0 0 1 1 1 0 0 0 3 1 0 3 

57 1 1 1 0 0 0 0 1 1 0 0 0 1 3 1 0 -3 

58 3 0 0 0 0 0 0 1 0 2 0 0 0 3 1 0 -1,5 

59 2 0 1 0 0 0 0 1 0 1 0 0 1 3 1 0 3 

60 3 0 0 0 0 0 0 1 0 0 2 0 0 3 1 0 -0,5 

61 1 2 0 0 0 0 0 1 0 0 2 0 0 3 1 0 -0,5 

62 0 1 1 0 0 0 0 1 0 0 1 1 0 3 1 0 -1 

63 0 0 1 1 0 0 0 1 0 0 0 2 0 3 0 1 1 

64 1 0 0 2 0 0 0 1 0 0 0 2 0 3 1 0 -0,5 

65 1 0 0 0 2 0 0 1 0 0 0 2 0 3 1 0 -0,5 

66 1 0 2 0 0 0 0 1 0 0 0 0 2 3 1 0 -1,5 
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67 1 3 0 0 0 0 0 0 3 0 0 0 0 3 1 0 -0,5 

68 2 2 0 0 0 0 0 0 2 1 0 0 0 3 1 0 1,5 

69 1 2 1 0 0 0 0 0 2 0 0 0 1 3 1 0 -1,5 

70 3 1 0 0 0 0 0 0 1 2 0 0 0 3 1 0 -1,5 

71 2 1 1 0 0 0 0 0 1 1 0 0 1 3 1 0 3 

72 3 1 0 0 0 0 0 0 1 0 2 0 0 3 1 0 -0,5 

73 1 3 0 0 0 0 0 0 1 0 2 0 0 3 1 0 -0,5 

74 2 0 1 0 0 0 0 0 1 0 1 1 0 3 1 0 1 

75 0 2 1 0 0 0 0 0 1 0 1 1 0 3 1 0 -1 

76 1 0 1 0 1 0 0 0 1 0 0 2 0 3 0 1 1 

77 0 1 1 1 0 0 0 0 1 0 0 2 0 3 0 1 1 

78 1 1 0 2 0 0 0 0 1 0 0 2 0 3 1 0 -0,5 

79 1 1 0 0 2 0 0 0 1 0 0 2 0 3 1 0 -0,5 

80 1 1 2 0 0 0 0 0 1 0 0 0 2 3 1 0 -1,5 

81 4 0 0 0 0 0 0 0 0 3 0 0 0 3 1 0 0,5 

82 3 0 1 0 0 0 0 0 0 2 0 0 1 3 1 0 -1,5 

83 4 0 0 0 0 0 0 0 0 1 2 0 0 3 1 0 0,5 

84 2 2 0 0 0 0 0 0 0 1 2 0 0 3 1 0 0,5 

85 1 1 1 0 0 0 0 0 0 1 1 1 0 3 1 0 2 

86 0 0 2 0 0 0 0 0 0 1 0 2 0 3 0 1 1 

87 1 0 1 1 0 0 0 0 0 1 0 2 0 3 0 1 -2 

88 2 0 0 2 0 0 0 0 0 1 0 2 0 3 1 0 0,5 

89 2 0 0 0 2 0 0 0 0 1 0 2 0 3 1 0 0,5 

90 2 0 2 0 0 0 0 0 0 1 0 0 2 3 1 0 1,5 

91 3 0 1 0 0 0 0 0 0 0 2 0 1 3 1 0 -0,5 

92 1 2 1 0 0 0 0 0 0 0 2 0 1 3 1 0 -0,5 

93 0 1 2 0 0 0 0 0 0 0 1 1 1 3 1 0 -1 

94 0 0 2 1 0 0 0 0 0 0 0 2 1 3 0 1 1 

95 1 0 1 2 0 0 0 0 0 0 0 2 1 3 1 0 -0,5 

96 1 0 1 0 2 0 0 0 0 0 0 2 1 3 1 0 -0,5 

97 1 0 3 0 0 0 0 0 0 0 0 0 3 3 1 0 -0,5 

98 0 0 1 0 0 3 0 0 0 0 0 1 0 4 1 0 0,5 

99 0 1 1 0 0 2 0 0 0 0 1 1 0 4 1 0 -1,5 

100 0 0 1 0 0 1 2 0 0 0 0 1 0 4 1 0 0,5 

101 1 0 1 0 0 1 1 0 0 0 1 1 0 4 1 0 1 

102 0 0 1 0 0 1 0 2 0 0 0 1 0 4 1 0 0,5 

103 0 1 1 0 0 1 0 1 1 0 0 1 0 4 1 0 1 

104 1 0 1 0 0 1 0 1 0 1 0 1 0 4 1 0 -2 

105 0 0 2 0 0 1 0 1 0 0 0 1 1 4 1 0 1 

106 0 2 1 0 0 1 0 0 2 0 0 1 0 4 1 0 0,5 

107 1 1 1 0 0 1 0 0 1 1 0 1 0 4 1 0 -2 

108 0 1 2 0 0 1 0 0 1 0 0 1 1 4 1 0 1 

109 2 0 1 0 0 1 0 0 0 2 0 1 0 4 1 0 1,5 

110 1 0 2 0 0 1 0 0 0 1 0 1 1 4 1 0 -2 

111 2 0 1 0 0 1 0 0 0 0 2 1 0 4 1 0 0,5 
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112 0 2 1 0 0 1 0 0 0 0 2 1 0 4 1 0 1,5 

113 0 0 1 2 0 1 0 0 0 0 0 3 0 4 1 0 0,5 

114 0 0 1 2 0 1 0 0 0 0 0 3 0 4 0 1 -1 

115 0 0 1 0 2 1 0 0 0 0 0 3 0 4 1 0 0,5 

116 0 0 1 0 2 1 0 0 0 0 0 3 0 4 0 1 -1 

117 0 0 3 0 0 1 0 0 0 0 0 1 2 4 1 0 0,5 

118 0 1 1 0 0 0 2 0 0 0 1 1 0 4 1 0 -0,5 

119 1 0 1 0 0 0 1 1 1 0 0 1 0 4 1 0 1 

120 1 1 1 0 0 0 1 0 2 0 0 1 0 4 1 0 1 

121 2 0 1 0 0 0 1 0 1 1 0 1 0 4 1 0 -1 

122 1 0 2 0 0 0 1 0 1 0 0 1 1 4 1 0 1 

123 1 1 1 0 0 0 1 0 0 0 2 1 0 4 1 0 -1 

124 0 1 1 0 0 0 0 2 0 0 1 1 0 4 1 0 -0,5 

125 2 0 1 0 0 0 0 1 1 0 1 1 0 4 1 0 1 

126 0 2 1 0 0 0 0 1 1 0 1 1 0 4 1 0 -1 

127 1 1 1 0 0 0 0 1 0 1 1 1 0 4 1 0 2 

128 0 0 2 0 0 0 0 1 0 1 0 2 0 4 1 0 1 

129 0 1 2 0 0 0 0 1 0 0 1 1 1 4 1 0 -1 

130 2 1 1 0 0 0 0 0 2 0 1 1 0 4 1 0 1 

131 0 3 1 0 0 0 0 0 2 0 1 1 0 4 1 0 -0,5 

132 1 0 2 0 0 0 0 0 2 0 0 2 0 4 1 0 -0,5 

133 3 0 1 0 0 0 0 0 1 1 1 1 0 4 1 0 -1 

134 1 2 1 0 0 0 0 0 1 1 1 1 0 4 1 0 2 

135 0 1 2 0 0 0 0 0 1 1 0 2 0 4 1 0 1 

136 2 0 2 0 0 0 0 0 1 0 1 1 1 4 1 0 1 

137 0 2 2 0 0 0 0 0 1 0 1 1 1 4 1 0 -1 

138 2 1 1 0 0 0 0 0 0 2 1 1 0 4 1 0 -1,5 

139 1 0 2 0 0 0 0 0 0 2 0 2 0 4 1 0 -1,5 

140 1 1 2 0 0 0 0 0 0 1 1 1 1 4 1 0 2 

141 0 0 3 0 0 0 0 0 0 1 0 2 1 4 1 0 1 

142 2 1 1 0 0 0 0 0 0 0 3 1 0 4 1 0 -0,5 

143 0 3 1 0 0 0 0 0 0 0 3 1 0 4 1 0 -0,5 

144 0 1 1 2 0 0 0 0 0 0 1 3 0 4 1 0 -0,5 

145 0 1 1 2 0 0 0 0 0 0 1 3 0 4 0 1 1 

146 0 1 1 0 2 0 0 0 0 0 1 3 0 4 1 0 -0,5 

147 0 1 1 0 2 0 0 0 0 0 1 3 0 4 0 1 1 

148 0 1 3 0 0 0 0 0 0 0 1 1 2 4 1 0 -0,5 

149 0 0 2 0 0 2 0 0 0 1 0 2 0 5 1 0 1,5 

150 0 0 2 0 0 1 1 0 1 0 0 2 0 5 1 0 -1 

151 1 0 2 0 0 1 0 0 1 0 1 2 0 5 1 0 -1 

152 0 1 2 0 0 1 0 0 0 1 1 2 0 5 1 0 -3 

153 0 0 2 0 0 0 2 0 0 1 0 2 0 5 1 0 0,5 

154 0 1 2 0 0 0 1 0 1 0 1 2 0 5 1 0 1 

155 1 0 2 0 0 0 1 0 0 1 1 2 0 5 1 0 1 

156 0 0 2 0 0 0 0 2 0 1 0 2 0 5 1 0 0,5 
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157 1 0 2 0 0 0 0 1 2 0 0 2 0 5 1 0 -0,5 

158 0 1 2 0 0 0 0 1 1 1 0 2 0 5 1 0 1 

159 1 0 2 0 0 0 0 1 0 2 0 2 0 5 1 0 -1,5 

160 0 0 3 0 0 0 0 1 0 1 0 2 1 5 1 0 1 

161 1 1 2 0 0 0 0 0 3 0 0 2 0 5 1 0 -0,5 

162 2 0 2 0 0 0 0 0 2 1 0 2 0 5 1 0 0,5 

163 0 2 2 0 0 0 0 0 2 1 0 2 0 5 1 0 0,5 

164 1 0 3 0 0 0 0 0 2 0 0 2 1 5 1 0 -0,5 

165 1 1 2 0 0 0 0 0 1 2 0 2 0 5 1 0 -1,5 

166 0 1 3 0 0 0 0 0 1 1 0 2 1 5 1 0 1 

167 1 1 2 0 0 0 0 0 1 0 2 2 0 5 1 0 1 

168 2 0 2 0 0 0 0 0 0 3 0 2 0 5 1 0 1 

169 1 0 3 0 0 0 0 0 0 2 0 2 1 5 1 0 -1,5 

170 2 0 2 0 0 0 0 0 0 1 2 2 0 5 1 0 0,5 

171 0 2 2 0 0 0 0 0 0 1 2 2 0 5 1 0 1,5 

172 0 0 2 2 0 0 0 0 0 1 0 4 0 5 1 0 0,5 

173 0 0 2 2 0 0 0 0 0 1 0 4 0 5 0 1 -1 

174 0 0 2 0 2 0 0 0 0 1 0 4 0 5 1 0 0,5 

175 0 0 2 0 2 0 0 0 0 1 0 4 0 5 0 1 -1 

176 0 0 4 0 0 0 0 0 0 1 0 2 2 5 1 0 0,5 

177 0 0 3 0 0 1 0 0 2 0 0 3 0 6 1 0 0,5 

178 0 0 3 0 0 1 0 0 0 2 0 3 0 6 1 0 1,5 

179 0 0 3 0 0 0 1 0 1 1 0 3 0 6 1 0 -1 

180 0 1 3 0 0 0 0 0 2 0 1 3 0 6 1 0 -0,5 

181 1 0 3 0 0 0 0 0 1 1 1 3 0 6 1 0 -1 

182 0 1 3 0 0 0 0 0 0 2 1 3 0 6 1 0 -1,5 

183 0 0 4 0 0 0 0 0 2 1 0 4 0 7 1 0 0,5 

184 0 0 4 0 0 0 0 0 0 3 0 4 0 7 1 0 0,5 
 Monomials for 𝑚3

𝑟 

1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 -1 

2 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 

3 2 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 

4 0 2 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 

5 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1 1 

6 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 1 -1 

7 0 1 0 0 0 1 0 1 0 0 0 0 0 2 1 0 -1 

8 0 2 0 0 0 1 0 0 1 0 0 0 0 2 1 0 -1 

9 1 1 0 0 0 1 0 0 0 1 0 0 0 2 1 0 1 

10 0 1 1 0 0 1 0 0 0 0 0 0 1 2 1 0 -1 

11 1 0 0 0 0 0 1 1 0 0 0 0 0 2 1 0 1 

12 1 1 0 0 0 0 1 0 1 0 0 0 0 2 1 0 1 

13 2 0 0 0 0 0 1 0 0 1 0 0 0 2 1 0 -1 

14 1 0 1 0 0 0 1 0 0 0 0 0 1 2 1 0 1 

15 2 0 0 0 0 0 0 1 0 0 1 0 0 2 1 0 1 

16 0 2 0 0 0 0 0 1 0 0 1 0 0 2 1 0 1 
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17 1 0 0 0 1 0 0 1 0 0 0 1 0 2 0 1 1 

18 0 1 0 1 0 0 0 1 0 0 0 1 0 2 0 1 -1 

19 2 1 0 0 0 0 0 0 1 0 1 0 0 2 1 0 1 

20 0 3 0 0 0 0 0 0 1 0 1 0 0 2 1 0 1 

21 1 0 1 0 0 0 0 0 1 0 0 1 0 2 0 1 -1 

22 1 1 0 0 1 0 0 0 1 0 0 1 0 2 0 1 1 

23 0 2 0 1 0 0 0 0 1 0 0 1 0 2 0 1 -1 

24 3 0 0 0 0 0 0 0 0 1 1 0 0 2 1 0 -1 

25 1 2 0 0 0 0 0 0 0 1 1 0 0 2 1 0 -1 

26 0 1 1 0 0 0 0 0 0 1 0 1 0 2 0 1 -1 

27 2 0 0 0 1 0 0 0 0 1 0 1 0 2 0 1 -1 

28 1 1 0 1 0 0 0 0 0 1 0 1 0 2 0 1 1 

29 2 0 1 0 0 0 0 0 0 0 1 0 1 2 1 0 1 

30 0 2 1 0 0 0 0 0 0 0 1 0 1 2 1 0 1 

31 1 0 1 0 1 0 0 0 0 0 0 1 1 2 0 1 1 

32 0 1 1 1 0 0 0 0 0 0 0 1 1 2 0 1 -1 

33 0 1 0 0 0 3 0 0 0 0 0 0 0 3 1 0 -0,5 

34 1 0 0 0 0 2 1 0 0 0 0 0 0 3 1 0 0,5 

35 2 0 0 0 0 2 0 0 0 0 1 0 0 3 1 0 0,5 

36 0 2 0 0 0 2 0 0 0 0 1 0 0 3 1 0 1,5 

37 0 1 0 0 0 1 2 0 0 0 0 0 0 3 1 0 -0,5 

38 1 1 0 0 0 1 1 0 0 0 1 0 0 3 1 0 -2 

39 0 1 0 0 0 1 0 2 0 0 0 0 0 3 1 0 -0,5 

40 0 2 0 0 0 1 0 1 1 0 0 0 0 3 1 0 -1 

41 1 1 0 0 0 1 0 1 0 1 0 0 0 3 1 0 1 

42 0 1 1 0 0 1 0 1 0 0 0 0 1 3 1 0 -1 

43 0 3 0 0 0 1 0 0 2 0 0 0 0 3 1 0 -0,5 

44 1 2 0 0 0 1 0 0 1 1 0 0 0 3 1 0 1 

45 0 2 1 0 0 1 0 0 1 0 0 0 1 3 1 0 -1 

46 2 1 0 0 0 1 0 0 0 2 0 0 0 3 1 0 -0,5 

47 1 1 1 0 0 1 0 0 0 1 0 0 1 3 1 0 1 

48 2 1 0 0 0 1 0 0 0 0 2 0 0 3 1 0 -1,5 

49 0 3 0 0 0 1 0 0 0 0 2 0 0 3 1 0 -1,5 

50 0 1 0 2 0 1 0 0 0 0 0 2 0 3 1 0 -0,5 

51 0 1 0 2 0 1 0 0 0 0 0 2 0 3 0 1 1 

52 0 1 0 0 2 1 0 0 0 0 0 2 0 3 1 0 -0,5 

53 0 1 0 0 2 1 0 0 0 0 0 2 0 3 0 1 1 

54 0 1 2 0 0 1 0 0 0 0 0 0 2 3 1 0 -0,5 

55 1 0 0 0 0 0 3 0 0 0 0 0 0 3 1 0 0,5 

56 2 0 0 0 0 0 2 0 0 0 1 0 0 3 1 0 1,5 

57 0 2 0 0 0 0 2 0 0 0 1 0 0 3 1 0 0,5 

58 1 0 0 0 0 0 1 2 0 0 0 0 0 3 1 0 0,5 

59 1 1 0 0 0 0 1 1 1 0 0 0 0 3 1 0 1 

60 2 0 0 0 0 0 1 1 0 1 0 0 0 3 1 0 -1 

61 1 0 1 0 0 0 1 1 0 0 0 0 1 3 1 0 1 
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62 1 2 0 0 0 0 1 0 2 0 0 0 0 3 1 0 0,5 

63 2 1 0 0 0 0 1 0 1 1 0 0 0 3 1 0 -1 

64 1 1 1 0 0 0 1 0 1 0 0 0 1 3 1 0 1 

65 3 0 0 0 0 0 1 0 0 2 0 0 0 3 1 0 0,5 

66 2 0 1 0 0 0 1 0 0 1 0 0 1 3 1 0 -1 

67 3 0 0 0 0 0 1 0 0 0 2 0 0 3 1 0 1,5 

68 1 2 0 0 0 0 1 0 0 0 2 0 0 3 1 0 1,5 

69 1 0 0 2 0 0 1 0 0 0 0 2 0 3 1 0 0,5 

70 1 0 0 2 0 0 1 0 0 0 0 2 0 3 0 1 -1 

71 1 0 0 0 2 0 1 0 0 0 0 2 0 3 1 0 0,5 

72 1 0 0 0 2 0 1 0 0 0 0 2 0 3 0 1 -1 

73 1 0 2 0 0 0 1 0 0 0 0 0 2 3 1 0 0,5 

74 2 0 0 0 0 0 0 2 0 0 1 0 0 3 1 0 0,5 

75 0 2 0 0 0 0 0 2 0 0 1 0 0 3 1 0 0,5 

76 2 1 0 0 0 0 0 1 1 0 1 0 0 3 1 0 1 

77 0 3 0 0 0 0 0 1 1 0 1 0 0 3 1 0 1 

78 1 0 1 0 0 0 0 1 1 0 0 1 0 3 1 0 -1 

79 3 0 0 0 0 0 0 1 0 1 1 0 0 3 1 0 -1 

80 1 2 0 0 0 0 0 1 0 1 1 0 0 3 1 0 -1 

81 0 1 1 0 0 0 0 1 0 1 0 1 0 3 1 0 -1 

82 2 0 1 0 0 0 0 1 0 0 1 0 1 3 1 0 1 

83 0 2 1 0 0 0 0 1 0 0 1 0 1 3 1 0 1 

84 2 2 0 0 0 0 0 0 2 0 1 0 0 3 1 0 0,5 

85 0 4 0 0 0 0 0 0 2 0 1 0 0 3 1 0 0,5 

86 1 1 1 0 0 0 0 0 2 0 0 1 0 3 1 0 -1 

87 3 1 0 0 0 0 0 0 1 1 1 0 0 3 1 0 -1 

88 1 3 0 0 0 0 0 0 1 1 1 0 0 3 1 0 -1 

89 2 0 1 0 0 0 0 0 1 1 0 1 0 3 1 0 1 

90 0 2 1 0 0 0 0 0 1 1 0 1 0 3 1 0 -1 

91 2 1 1 0 0 0 0 0 1 0 1 0 1 3 1 0 1 

92 0 3 1 0 0 0 0 0 1 0 1 0 1 3 1 0 1 

93 1 0 2 0 0 0 0 0 1 0 0 1 1 3 1 0 -1 

94 4 0 0 0 0 0 0 0 0 2 1 0 0 3 1 0 0,5 

95 2 2 0 0 0 0 0 0 0 2 1 0 0 3 1 0 0,5 

96 1 1 1 0 0 0 0 0 0 2 0 1 0 3 1 0 1 

97 3 0 1 0 0 0 0 0 0 1 1 0 1 3 1 0 -1 

98 1 2 1 0 0 0 0 0 0 1 1 0 1 3 1 0 -1 

99 0 1 2 0 0 0 0 0 0 1 0 1 1 3 1 0 -1 

100 4 0 0 0 0 0 0 0 0 0 3 0 0 3 1 0 0,5 

101 2 2 0 0 0 0 0 0 0 0 3 0 0 3 1 0 1 

102 0 4 0 0 0 0 0 0 0 0 3 0 0 3 1 0 0,5 

103 2 0 0 2 0 0 0 0 0 0 1 2 0 3 1 0 0,5 

104 2 0 0 2 0 0 0 0 0 0 1 2 0 3 0 1 -1 

105 2 0 0 0 2 0 0 0 0 0 1 2 0 3 1 0 0,5 

106 2 0 0 0 2 0 0 0 0 0 1 2 0 3 0 1 -1 
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107 0 2 0 2 0 0 0 0 0 0 1 2 0 3 1 0 0,5 

108 0 2 0 2 0 0 0 0 0 0 1 2 0 3 0 1 -1 

109 0 2 0 0 2 0 0 0 0 0 1 2 0 3 1 0 0,5 

110 0 2 0 0 2 0 0 0 0 0 1 2 0 3 0 1 -1 

111 2 0 2 0 0 0 0 0 0 0 1 0 2 3 1 0 0,5 

112 0 2 2 0 0 0 0 0 0 0 1 0 2 3 1 0 0,5 

113 1 0 1 0 0 2 0 0 1 0 0 1 0 4 1 0 -0,5 

114 0 1 1 0 0 2 0 0 0 1 0 1 0 4 1 0 -1,5 

115 0 1 1 0 0 1 1 0 1 0 0 1 0 4 1 0 1 

116 1 0 1 0 0 1 1 0 0 1 0 1 0 4 1 0 1 

117 1 1 1 0 0 1 0 0 1 0 1 1 0 4 1 0 2 

118 2 0 1 0 0 1 0 0 0 1 1 1 0 4 1 0 1 

119 0 2 1 0 0 1 0 0 0 1 1 1 0 4 1 0 3 

120 1 0 1 0 0 0 2 0 1 0 0 1 0 4 1 0 -1,5 

121 0 1 1 0 0 0 2 0 0 1 0 1 0 4 1 0 -0,5 

122 2 0 1 0 0 0 1 0 1 0 1 1 0 4 1 0 -3 

123 0 2 1 0 0 0 1 0 1 0 1 1 0 4 1 0 -1 

124 1 1 1 0 0 0 1 0 0 1 1 1 0 4 1 0 -2 

125 1 0 1 0 0 0 0 2 1 0 0 1 0 4 1 0 -0,5 

126 0 1 1 0 0 0 0 2 0 1 0 1 0 4 1 0 -0,5 

127 1 1 1 0 0 0 0 1 2 0 0 1 0 4 1 0 -1 

128 2 0 1 0 0 0 0 1 1 1 0 1 0 4 1 0 1 

129 0 2 1 0 0 0 0 1 1 1 0 1 0 4 1 0 -1 

130 1 0 2 0 0 0 0 1 1 0 0 1 1 4 1 0 -1 

131 1 1 1 0 0 0 0 1 0 2 0 1 0 4 1 0 1 

132 0 1 2 0 0 0 0 1 0 1 0 1 1 4 1 0 -1 

133 1 2 1 0 0 0 0 0 3 0 0 1 0 4 1 0 -0,5 

134 2 1 1 0 0 0 0 0 2 1 0 1 0 4 1 0 1 

135 0 3 1 0 0 0 0 0 2 1 0 1 0 4 1 0 -0,5 

136 1 1 2 0 0 0 0 0 2 0 0 1 1 4 1 0 -1 

137 3 0 1 0 0 0 0 0 1 2 0 1 0 4 1 0 -0,5 

138 1 2 1 0 0 0 0 0 1 2 0 1 0 4 1 0 1 

139 2 0 2 0 0 0 0 0 1 1 0 1 1 4 1 0 1 

140 0 2 2 0 0 0 0 0 1 1 0 1 1 4 1 0 -1 

141 3 0 1 0 0 0 0 0 1 0 2 1 0 4 1 0 -1,5 

142 1 2 1 0 0 0 0 0 1 0 2 1 0 4 1 0 -1,5 

143 1 0 1 2 0 0 0 0 1 0 0 3 0 4 1 0 -0,5 

144 1 0 1 2 0 0 0 0 1 0 0 3 0 4 0 1 1 

145 1 0 1 0 2 0 0 0 1 0 0 3 0 4 1 0 -0,5 

146 1 0 1 0 2 0 0 0 1 0 0 3 0 4 0 1 1 

147 1 0 3 0 0 0 0 0 1 0 0 1 2 4 1 0 -0,5 

148 2 1 1 0 0 0 0 0 0 3 0 1 0 4 1 0 -0,5 

149 1 1 2 0 0 0 0 0 0 2 0 1 1 4 1 0 1 

150 2 1 1 0 0 0 0 0 0 1 2 1 0 4 1 0 -1,5 

151 0 3 1 0 0 0 0 0 0 1 2 1 0 4 1 0 -1,5 
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152 0 1 1 2 0 0 0 0 0 1 0 3 0 4 1 0 -0,5 

153 0 1 1 2 0 0 0 0 0 1 0 3 0 4 0 1 1 

154 0 1 1 0 2 0 0 0 0 1 0 3 0 4 1 0 -0,5 

155 0 1 1 0 2 0 0 0 0 1 0 3 0 4 0 1 1 

156 0 1 3 0 0 0 0 0 0 1 0 1 2 4 1 0 -0,5 

157 0 1 2 0 0 1 0 0 2 0 0 2 0 5 1 0 -0,5 

158 1 0 2 0 0 1 0 0 1 1 0 2 0 5 1 0 -1 

159 0 1 2 0 0 1 0 0 0 2 0 2 0 5 1 0 -1,5 

160 1 0 2 0 0 0 1 0 2 0 0 2 0 5 1 0 1,5 

161 0 1 2 0 0 0 1 0 1 1 0 2 0 5 1 0 1 

162 1 0 2 0 0 0 1 0 0 2 0 2 0 5 1 0 0,5 

163 2 0 2 0 0 0 0 0 2 0 1 2 0 5 1 0 1,5 

164 0 2 2 0 0 0 0 0 2 0 1 2 0 5 1 0 0,5 

165 1 1 2 0 0 0 0 0 1 1 1 2 0 5 1 0 2 

166 2 0 2 0 0 0 0 0 0 2 1 2 0 5 1 0 0,5 

167 0 2 2 0 0 0 0 0 0 2 1 2 0 5 1 0 1,5 

168 1 0 3 0 0 0 0 0 3 0 0 3 0 6 1 0 -0,5 

169 0 1 3 0 0 0 0 0 2 1 0 3 0 6 1 0 -0,5 

170 1 0 3 0 0 0 0 0 1 2 0 3 0 6 1 0 -0,5 

171 0 1 3 0 0 0 0 0 0 3 0 3 0 6 1 0 -0,5 
 Monomials for 𝑄 

1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 1 

2 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 1 

3 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 1 

4 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0 1 -1 

5 0 0 0 2 0 0 0 0 0 0 0 1 0 1 0 1 1 

6 0 0 0 0 2 0 0 0 0 0 0 1 0 1 0 1 1 

7 0 0 0 1 0 1 0 1 0 0 0 0 0 2 0 1 1 

8 0 1 0 1 0 1 0 0 1 0 0 0 0 2 0 1 1 

9 0 0 1 0 0 1 0 0 0 1 0 0 0 2 0 1 1 

10 1 0 0 1 0 1 0 0 0 1 0 0 0 2 0 1 -1 

11 0 0 1 1 0 1 0 0 0 0 0 0 1 2 0 1 1 

12 0 0 0 0 1 0 1 1 0 0 0 0 0 2 0 1 1 

13 0 0 1 0 0 0 1 0 1 0 0 0 0 2 0 1 -1 

14 0 1 0 0 1 0 1 0 1 0 0 0 0 2 0 1 1 

15 1 0 0 0 1 0 1 0 0 1 0 0 0 2 0 1 -1 

16 0 0 1 0 1 0 1 0 0 0 0 0 1 2 0 1 1 

17 1 0 0 0 1 0 0 1 0 0 1 0 0 2 0 1 1 

18 0 1 0 1 0 0 0 1 0 0 1 0 0 2 0 1 -1 

19 0 0 0 2 0 0 0 1 0 0 0 1 0 2 1 0 1 

20 0 0 0 0 2 0 0 1 0 0 0 1 0 2 1 0 1 

21 1 0 1 0 0 0 0 0 1 0 1 0 0 2 0 1 -1 

22 1 1 0 0 1 0 0 0 1 0 1 0 0 2 0 1 1 

23 0 2 0 1 0 0 0 0 1 0 1 0 0 2 0 1 -1 

24 0 0 1 0 1 0 0 0 1 0 0 1 0 2 0 1 -2 
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25 0 1 0 2 0 0 0 0 1 0 0 1 0 2 1 0 1 

26 0 1 0 0 2 0 0 0 1 0 0 1 0 2 1 0 1 

27 1 1 0 1 0 0 0 0 0 1 1 0 0 2 0 1 1 

28 0 1 1 0 0 0 0 0 0 1 1 0 0 2 0 1 -1 

29 2 0 0 0 1 0 0 0 0 1 1 0 0 2 0 1 -1 

30 0 0 1 1 0 0 0 0 0 1 0 1 0 2 0 1 2 

31 1 0 0 2 0 0 0 0 0 1 0 1 0 2 1 0 -1 

32 1 0 0 0 2 0 0 0 0 1 0 1 0 2 1 0 -1 

33 1 0 1 0 1 0 0 0 0 0 1 0 1 2 0 1 1 

34 0 1 1 1 0 0 0 0 0 0 1 0 1 2 0 1 -1 

35 0 0 1 2 0 0 0 0 0 0 0 1 1 2 1 0 1 

36 0 0 1 0 2 0 0 0 0 0 0 1 1 2 1 0 1 

37 0 0 0 2 0 2 0 0 0 0 0 1 0 3 1 0 0,5 

38 0 0 0 2 0 2 0 0 0 0 0 1 0 3 0 1 -1 

39 0 0 0 0 2 2 0 0 0 0 0 1 0 3 1 0 0,5 

40 0 0 0 0 2 2 0 0 0 0 0 1 0 3 0 1 -1 

41 0 0 1 0 0 1 0 1 0 1 0 0 0 3 1 0 1 

42 0 1 1 0 0 1 0 0 1 1 0 0 0 3 1 0 1 

43 1 0 1 0 0 1 0 0 0 2 0 0 0 3 1 0 -1 

44 0 0 2 0 0 1 0 0 0 1 0 0 1 3 1 0 1 

45 0 1 0 2 0 1 0 0 0 0 1 1 0 3 1 0 -1 

46 0 1 0 2 0 1 0 0 0 0 1 1 0 3 0 1 2 

47 0 1 0 0 2 1 0 0 0 0 1 1 0 3 1 0 -1 

48 0 1 0 0 2 1 0 0 0 0 1 1 0 3 0 1 2 

49 0 0 0 2 0 0 2 0 0 0 0 1 0 3 1 0 0,5 

50 0 0 0 2 0 0 2 0 0 0 0 1 0 3 0 1 -1 

51 0 0 0 0 2 0 2 0 0 0 0 1 0 3 1 0 0,5 

52 0 0 0 0 2 0 2 0 0 0 0 1 0 3 0 1 -1 

53 0 0 1 0 0 0 1 1 1 0 0 0 0 3 1 0 -1 

54 0 1 1 0 0 0 1 0 2 0 0 0 0 3 1 0 -1 

55 1 0 1 0 0 0 1 0 1 1 0 0 0 3 1 0 1 

56 0 0 2 0 0 0 1 0 1 0 0 0 1 3 1 0 -1 

57 1 0 0 2 0 0 1 0 0 0 1 1 0 3 1 0 1 

58 1 0 0 2 0 0 1 0 0 0 1 1 0 3 0 1 -2 

59 1 0 0 0 2 0 1 0 0 0 1 1 0 3 1 0 1 

60 1 0 0 0 2 0 1 0 0 0 1 1 0 3 0 1 -2 

61 0 0 0 2 0 0 0 2 0 0 0 1 0 3 1 0 0,5 

62 0 0 0 0 2 0 0 2 0 0 0 1 0 3 1 0 0,5 

63 1 0 1 0 0 0 0 1 1 0 1 0 0 3 1 0 -1 

64 0 0 1 0 1 0 0 1 1 0 0 1 0 3 0 1 -2 

65 0 1 0 2 0 0 0 1 1 0 0 1 0 3 1 0 1 

66 0 1 0 0 2 0 0 1 1 0 0 1 0 3 1 0 1 

67 0 1 1 0 0 0 0 1 0 1 1 0 0 3 1 0 -1 

68 0 0 1 1 0 0 0 1 0 1 0 1 0 3 0 1 2 

69 1 0 0 2 0 0 0 1 0 1 0 1 0 3 1 0 -1 
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70 1 0 0 0 2 0 0 1 0 1 0 1 0 3 1 0 -1 

71 0 0 1 2 0 0 0 1 0 0 0 1 1 3 1 0 1 

72 0 0 1 0 2 0 0 1 0 0 0 1 1 3 1 0 1 

73 1 1 1 0 0 0 0 0 2 0 1 0 0 3 1 0 -1 

74 0 0 2 0 0 0 0 0 2 0 0 1 0 3 0 1 1 

75 0 1 1 0 1 0 0 0 2 0 0 1 0 3 0 1 -2 

76 0 2 0 2 0 0 0 0 2 0 0 1 0 3 1 0 0,5 

77 0 2 0 0 2 0 0 0 2 0 0 1 0 3 1 0 0,5 

78 2 0 1 0 0 0 0 0 1 1 1 0 0 3 1 0 1 

79 0 2 1 0 0 0 0 0 1 1 1 0 0 3 1 0 -1 

80 1 0 1 0 1 0 0 0 1 1 0 1 0 3 0 1 2 

81 0 1 1 1 0 0 0 0 1 1 0 1 0 3 0 1 2 

82 1 1 0 2 0 0 0 0 1 1 0 1 0 3 1 0 -1 

83 1 1 0 0 2 0 0 0 1 1 0 1 0 3 1 0 -1 

84 1 0 2 0 0 0 0 0 1 0 1 0 1 3 1 0 -1 

85 0 0 2 0 1 0 0 0 1 0 0 1 1 3 0 1 -2 

86 0 1 1 2 0 0 0 0 1 0 0 1 1 3 1 0 1 

87 0 1 1 0 2 0 0 0 1 0 0 1 1 3 1 0 1 

88 1 1 1 0 0 0 0 0 0 2 1 0 0 3 1 0 1 

89 0 0 2 0 0 0 0 0 0 2 0 1 0 3 0 1 1 

90 1 0 1 1 0 0 0 0 0 2 0 1 0 3 0 1 -2 

91 2 0 0 2 0 0 0 0 0 2 0 1 0 3 1 0 0,5 

92 2 0 0 0 2 0 0 0 0 2 0 1 0 3 1 0 0,5 

93 0 1 2 0 0 0 0 0 0 1 1 0 1 3 1 0 -1 

94 0 0 2 1 0 0 0 0 0 1 0 1 1 3 0 1 2 

95 1 0 1 2 0 0 0 0 0 1 0 1 1 3 1 0 -1 

96 1 0 1 0 2 0 0 0 0 1 0 1 1 3 1 0 -1 

97 2 0 0 2 0 0 0 0 0 0 2 1 0 3 1 0 0,5 

98 2 0 0 2 0 0 0 0 0 0 2 1 0 3 0 1 -1 

99 2 0 0 0 2 0 0 0 0 0 2 1 0 3 1 0 0,5 

100 2 0 0 0 2 0 0 0 0 0 2 1 0 3 0 1 -1 

101 0 2 0 2 0 0 0 0 0 0 2 1 0 3 1 0 0,5 

102 0 2 0 2 0 0 0 0 0 0 2 1 0 3 0 1 -1 

103 0 2 0 0 2 0 0 0 0 0 2 1 0 3 1 0 0,5 

104 0 2 0 0 2 0 0 0 0 0 2 1 0 3 0 1 -1 

105 0 0 0 4 0 0 0 0 0 0 0 3 0 3 1 0 0,5 

106 0 0 0 2 2 0 0 0 0 0 0 3 0 3 1 0 1 

107 0 0 0 0 4 0 0 0 0 0 0 3 0 3 1 0 0,5 

108 0 0 2 2 0 0 0 0 0 0 0 1 2 3 1 0 0,5 

109 0 0 2 0 2 0 0 0 0 0 0 1 2 3 1 0 0,5 

110 0 0 1 0 0 3 0 0 0 1 0 0 0 4 1 0 0,5 

111 0 0 1 0 0 2 1 0 1 0 0 0 0 4 1 0 -0,5 

112 1 0 1 0 0 2 0 0 1 0 1 0 0 4 1 0 -0,5 

113 0 1 1 0 0 2 0 0 0 1 1 0 0 4 1 0 -1,5 

114 0 0 1 0 0 1 2 0 0 1 0 0 0 4 1 0 0,5 
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115 0 1 1 0 0 1 1 0 1 0 1 0 0 4 1 0 1 

116 1 0 1 0 0 1 1 0 0 1 1 0 0 4 1 0 1 

117 0 0 1 0 0 1 0 2 0 1 0 0 0 4 1 0 0,5 

118 0 1 1 0 0 1 0 1 1 1 0 0 0 4 1 0 1 

119 1 0 1 0 0 1 0 1 0 2 0 0 0 4 1 0 -1 

120 0 0 2 0 0 1 0 1 0 1 0 0 1 4 1 0 1 

121 0 2 1 0 0 1 0 0 2 1 0 0 0 4 1 0 0,5 

122 1 1 1 0 0 1 0 0 1 2 0 0 0 4 1 0 -1 

123 0 1 2 0 0 1 0 0 1 1 0 0 1 4 1 0 1 

124 1 1 1 0 0 1 0 0 1 0 2 0 0 4 1 0 1 

125 2 0 1 0 0 1 0 0 0 3 0 0 0 4 1 0 0,5 

126 1 0 2 0 0 1 0 0 0 2 0 0 1 4 1 0 -1 

127 2 0 1 0 0 1 0 0 0 1 2 0 0 4 1 0 0,5 

128 0 2 1 0 0 1 0 0 0 1 2 0 0 4 1 0 1,5 

129 0 0 1 2 0 1 0 0 0 1 0 2 0 4 1 0 1,5 

130 0 0 1 2 0 1 0 0 0 1 0 2 0 4 0 1 -3 

131 0 0 1 0 2 1 0 0 0 1 0 2 0 4 1 0 1,5 

132 0 0 1 0 2 1 0 0 0 1 0 2 0 4 0 1 -3 

133 0 0 3 0 0 1 0 0 0 1 0 0 2 4 1 0 0,5 

134 0 0 1 0 0 0 3 0 1 0 0 0 0 4 1 0 -0,5 

135 1 0 1 0 0 0 2 0 1 0 1 0 0 4 1 0 -1,5 

136 0 1 1 0 0 0 2 0 0 1 1 0 0 4 1 0 -0,5 

137 0 0 1 0 0 0 1 2 1 0 0 0 0 4 1 0 -0,5 

138 0 1 1 0 0 0 1 1 2 0 0 0 0 4 1 0 -1 

139 1 0 1 0 0 0 1 1 1 1 0 0 0 4 1 0 1 

140 0 0 2 0 0 0 1 1 1 0 0 0 1 4 1 0 -1 

141 0 2 1 0 0 0 1 0 3 0 0 0 0 4 1 0 -0,5 

142 1 1 1 0 0 0 1 0 2 1 0 0 0 4 1 0 1 

143 0 1 2 0 0 0 1 0 2 0 0 0 1 4 1 0 -1 

144 2 0 1 0 0 0 1 0 1 2 0 0 0 4 1 0 -0,5 

145 1 0 2 0 0 0 1 0 1 1 0 0 1 4 1 0 1 

146 2 0 1 0 0 0 1 0 1 0 2 0 0 4 1 0 -1,5 

147 0 2 1 0 0 0 1 0 1 0 2 0 0 4 1 0 -0,5 

148 0 0 1 2 0 0 1 0 1 0 0 2 0 4 1 0 -1,5 

149 0 0 1 2 0 0 1 0 1 0 0 2 0 4 0 1 3 

150 0 0 1 0 2 0 1 0 1 0 0 2 0 4 1 0 -1,5 

151 0 0 1 0 2 0 1 0 1 0 0 2 0 4 0 1 3 

152 0 0 3 0 0 0 1 0 1 0 0 0 2 4 1 0 -0,5 

153 1 1 1 0 0 0 1 0 0 1 2 0 0 4 1 0 -1 

154 1 0 1 0 0 0 0 2 1 0 1 0 0 4 1 0 -0,5 

155 0 1 1 0 0 0 0 2 0 1 1 0 0 4 1 0 -0,5 

156 1 1 1 0 0 0 0 1 2 0 1 0 0 4 1 0 -1 

157 0 0 2 0 0 0 0 1 2 0 0 1 0 4 1 0 1 

158 2 0 1 0 0 0 0 1 1 1 1 0 0 4 1 0 1 

159 0 2 1 0 0 0 0 1 1 1 1 0 0 4 1 0 -1 
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160 1 0 2 0 0 0 0 1 1 0 1 0 1 4 1 0 -1 

161 1 1 1 0 0 0 0 1 0 2 1 0 0 4 1 0 1 

162 0 0 2 0 0 0 0 1 0 2 0 1 0 4 1 0 1 

163 0 1 2 0 0 0 0 1 0 1 1 0 1 4 1 0 -1 

164 1 2 1 0 0 0 0 0 3 0 1 0 0 4 1 0 -0,5 

165 0 1 2 0 0 0 0 0 3 0 0 1 0 4 1 0 1 

166 2 1 1 0 0 0 0 0 2 1 1 0 0 4 1 0 1 

167 0 3 1 0 0 0 0 0 2 1 1 0 0 4 1 0 -0,5 

168 1 0 2 0 0 0 0 0 2 1 0 1 0 4 1 0 -1 

169 1 1 2 0 0 0 0 0 2 0 1 0 1 4 1 0 -1 

170 0 0 3 0 0 0 0 0 2 0 0 1 1 4 1 0 1 

171 3 0 1 0 0 0 0 0 1 2 1 0 0 4 1 0 -0,5 

172 1 2 1 0 0 0 0 0 1 2 1 0 0 4 1 0 1 

173 0 1 2 0 0 0 0 0 1 2 0 1 0 4 1 0 1 

174 2 0 2 0 0 0 0 0 1 1 1 0 1 4 1 0 1 

175 0 2 2 0 0 0 0 0 1 1 1 0 1 4 1 0 -1 

176 3 0 1 0 0 0 0 0 1 0 3 0 0 4 1 0 -0,5 

177 1 2 1 0 0 0 0 0 1 0 3 0 0 4 1 0 -0,5 

178 1 0 1 2 0 0 0 0 1 0 1 2 0 4 1 0 -1,5 

179 1 0 1 2 0 0 0 0 1 0 1 2 0 4 0 1 3 

180 1 0 1 0 2 0 0 0 1 0 1 2 0 4 1 0 -1,5 

181 1 0 1 0 2 0 0 0 1 0 1 2 0 4 0 1 3 

182 1 0 3 0 0 0 0 0 1 0 1 0 2 4 1 0 -0,5 

183 2 1 1 0 0 0 0 0 0 3 1 0 0 4 1 0 -0,5 

184 1 0 2 0 0 0 0 0 0 3 0 1 0 4 1 0 -1 

185 1 1 2 0 0 0 0 0 0 2 1 0 1 4 1 0 1 

186 0 0 3 0 0 0 0 0 0 2 0 1 1 4 1 0 1 

187 2 1 1 0 0 0 0 0 0 1 3 0 0 4 1 0 -0,5 

188 0 3 1 0 0 0 0 0 0 1 3 0 0 4 1 0 -0,5 

189 0 1 1 2 0 0 0 0 0 1 1 2 0 4 1 0 -1,5 

190 0 1 1 2 0 0 0 0 0 1 1 2 0 4 0 1 3 

191 0 1 1 0 2 0 0 0 0 1 1 2 0 4 1 0 -1,5 

192 0 1 1 0 2 0 0 0 0 1 1 2 0 4 0 1 3 

193 0 1 3 0 0 0 0 0 0 1 1 0 2 4 1 0 -0,5 

194 0 0 2 0 0 2 0 0 2 0 0 1 0 5 1 0 0,5 

195 0 0 2 0 0 2 0 0 0 2 0 1 0 5 1 0 1,5 

196 0 0 2 0 0 1 1 0 1 1 0 1 0 5 1 0 -2 

197 0 1 2 0 0 1 0 0 2 0 1 1 0 5 1 0 -1 

198 1 0 2 0 0 1 0 0 1 1 1 1 0 5 1 0 -2 

199 0 1 2 0 0 1 0 0 0 2 1 1 0 5 1 0 -3 

200 0 0 2 0 0 0 2 0 2 0 0 1 0 5 1 0 1,5 

201 0 0 2 0 0 0 2 0 0 2 0 1 0 5 1 0 0,5 

202 1 0 2 0 0 0 1 0 2 0 1 1 0 5 1 0 3 

203 0 1 2 0 0 0 1 0 1 1 1 1 0 5 1 0 2 

204 1 0 2 0 0 0 1 0 0 2 1 1 0 5 1 0 1 
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205 0 0 2 0 0 0 0 2 2 0 0 1 0 5 1 0 0,5 

206 0 0 2 0 0 0 0 2 0 2 0 1 0 5 1 0 0,5 

207 0 1 2 0 0 0 0 1 3 0 0 1 0 5 1 0 1 

208 1 0 2 0 0 0 0 1 2 1 0 1 0 5 1 0 -1 

209 0 0 3 0 0 0 0 1 2 0 0 1 1 5 1 0 1 

210 0 1 2 0 0 0 0 1 1 2 0 1 0 5 1 0 1 

211 1 0 2 0 0 0 0 1 0 3 0 1 0 5 1 0 -1 

212 0 0 3 0 0 0 0 1 0 2 0 1 1 5 1 0 1 

213 0 2 2 0 0 0 0 0 4 0 0 1 0 5 1 0 0,5 

214 1 1 2 0 0 0 0 0 3 1 0 1 0 5 1 0 -1 

215 0 1 3 0 0 0 0 0 3 0 0 1 1 5 1 0 1 

216 2 0 2 0 0 0 0 0 2 2 0 1 0 5 1 0 0,5 

217 0 2 2 0 0 0 0 0 2 2 0 1 0 5 1 0 0,5 

218 1 0 3 0 0 0 0 0 2 1 0 1 1 5 1 0 -1 

219 2 0 2 0 0 0 0 0 2 0 2 1 0 5 1 0 1,5 

220 0 2 2 0 0 0 0 0 2 0 2 1 0 5 1 0 0,5 

221 0 0 2 2 0 0 0 0 2 0 0 3 0 5 1 0 1 

222 0 0 2 2 0 0 0 0 2 0 0 3 0 5 0 1 -2 

223 0 0 2 0 2 0 0 0 2 0 0 3 0 5 1 0 1 

224 0 0 2 0 2 0 0 0 2 0 0 3 0 5 0 1 -2 

225 0 0 4 0 0 0 0 0 2 0 0 1 2 5 1 0 0,5 

226 1 1 2 0 0 0 0 0 1 3 0 1 0 5 1 0 -1 

227 0 1 3 0 0 0 0 0 1 2 0 1 1 5 1 0 1 

228 1 1 2 0 0 0 0 0 1 1 2 1 0 5 1 0 2 

229 2 0 2 0 0 0 0 0 0 4 0 1 0 5 1 0 0,5 

230 1 0 3 0 0 0 0 0 0 3 0 1 1 5 1 0 -1 

231 2 0 2 0 0 0 0 0 0 2 2 1 0 5 1 0 0,5 

232 0 2 2 0 0 0 0 0 0 2 2 1 0 5 1 0 1,5 

233 0 0 2 2 0 0 0 0 0 2 0 3 0 5 1 0 1 

234 0 0 2 2 0 0 0 0 0 2 0 3 0 5 0 1 -2 

235 0 0 2 0 2 0 0 0 0 2 0 3 0 5 1 0 1 

236 0 0 2 0 2 0 0 0 0 2 0 3 0 5 0 1 -2 

237 0 0 4 0 0 0 0 0 0 2 0 1 2 5 1 0 0,5 

238 0 0 3 0 0 1 0 0 2 1 0 2 0 6 1 0 1,5 

239 0 0 3 0 0 1 0 0 0 3 0 2 0 6 1 0 1,5 

240 0 0 3 0 0 0 1 0 3 0 0 2 0 6 1 0 -1,5 

241 0 0 3 0 0 0 1 0 1 2 0 2 0 6 1 0 -1,5 

242 1 0 3 0 0 0 0 0 3 0 1 2 0 6 1 0 -1,5 

243 0 1 3 0 0 0 0 0 2 1 1 2 0 6 1 0 -1,5 

244 1 0 3 0 0 0 0 0 1 2 1 2 0 6 1 0 -1,5 

245 0 1 3 0 0 0 0 0 0 3 1 2 0 6 1 0 -1,5 

246 0 0 4 0 0 0 0 0 4 0 0 3 0 7 1 0 0,5 

247 0 0 4 0 0 0 0 0 2 2 0 3 0 7 1 0 1 

248 0 0 4 0 0 0 0 0 0 4 0 3 0 7 1 0 0,5 
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 Monimials for 𝐵 

1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 1 

2 0 1 1 0 0 0 0 0 1 0 0 0 0 1 1 0 1 

3 1 0 1 0 0 0 0 0 0 1 0 0 0 1 1 0 -1 

4 0 0 2 0 0 0 0 0 0 0 0 0 1 1 1 0 1 

5 0 0 1 0 0 2 0 0 0 0 0 0 0 2 1 0 0,5 

6 0 1 1 0 0 1 0 0 0 0 1 0 0 2 1 0 -1 

7 0 0 1 1 0 1 0 0 0 0 0 1 0 2 0 1 1 

8 0 0 1 0 0 0 2 0 0 0 0 0 0 2 1 0 0,5 

9 1 0 1 0 0 0 1 0 0 0 1 0 0 2 1 0 1 

10 0 0 1 0 1 0 1 0 0 0 0 1 0 2 0 1 1 

11 0 0 1 0 0 0 0 2 0 0 0 0 0 2 1 0 1,5 

12 0 1 1 0 0 0 0 1 1 0 0 0 0 2 1 0 3 

13 1 0 1 0 0 0 0 1 0 1 0 0 0 2 1 0 -3 

14 0 0 2 0 0 0 0 1 0 0 0 0 1 2 1 0 3 

15 0 2 1 0 0 0 0 0 2 0 0 0 0 2 1 0 1,5 

16 1 1 1 0 0 0 0 0 1 1 0 0 0 2 1 0 -3 

17 0 1 2 0 0 0 0 0 1 0 0 0 1 2 1 0 3 

18 2 0 1 0 0 0 0 0 0 2 0 0 0 2 1 0 1,5 

19 1 0 2 0 0 0 0 0 0 1 0 0 1 2 1 0 -3 

20 2 0 1 0 0 0 0 0 0 0 2 0 0 2 1 0 0,5 

21 0 2 1 0 0 0 0 0 0 0 2 0 0 2 1 0 0,5 

22 1 0 1 0 1 0 0 0 0 0 1 1 0 2 0 1 1 

23 0 1 1 1 0 0 0 0 0 0 1 1 0 2 0 1 -1 

24 0 0 1 0 2 0 0 0 0 0 0 2 0 2 1 0 0,5 

25 0 0 1 2 0 0 0 0 0 0 0 2 0 2 1 0 0,5 

26 0 0 3 0 0 0 0 0 0 0 0 0 2 2 1 0 1,5 

27 0 0 1 0 0 2 0 1 0 0 0 0 0 3 1 0 0,5 

28 0 1 1 0 0 2 0 0 1 0 0 0 0 3 1 0 0,5 

29 1 0 1 0 0 2 0 0 0 1 0 0 0 3 1 0 -0,5 

30 0 0 2 0 0 2 0 0 0 0 0 0 1 3 1 0 0,5 

31 0 2 1 0 0 1 0 0 1 0 1 0 0 3 1 0 -1 

32 0 1 1 0 0 1 0 1 0 0 1 0 0 3 1 0 -1 

33 1 1 1 0 0 1 0 0 0 1 1 0 0 3 1 0 1 

34 0 0 2 0 0 1 0 0 0 1 0 1 0 3 1 0 1 

35 0 1 2 0 0 1 0 0 0 0 1 0 1 3 1 0 -1 

36 0 0 1 0 0 0 2 1 0 0 0 0 0 3 1 0 0,5 

37 0 1 1 0 0 0 2 0 1 0 0 0 0 3 1 0 0,5 

38 1 0 1 0 0 0 2 0 0 1 0 0 0 3 1 0 -0,5 

39 0 0 2 0 0 0 2 0 0 0 0 0 1 3 1 0 0,5 

40 1 0 1 0 0 0 1 1 0 0 1 0 0 3 1 0 1 

41 1 1 1 0 0 0 1 0 1 0 1 0 0 3 1 0 1 

42 0 0 2 0 0 0 1 0 1 0 0 1 0 3 1 0 -1 

43 2 0 1 0 0 0 1 0 0 1 1 0 0 3 1 0 -1 

44 1 0 2 0 0 0 1 0 0 0 1 0 1 3 1 0 1 
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Continued 

45 0 0 1 0 0 0 0 3 0 0 0 0 0 3 1 0 0,5 

46 0 1 1 0 0 0 0 2 1 0 0 0 0 3 1 0 1,5 

47 1 0 1 0 0 0 0 2 0 1 0 0 0 3 1 0 -1,5 

48 0 0 2 0 0 0 0 2 0 0 0 0 1 3 1 0 1,5 

49 0 2 1 0 0 0 0 1 2 0 0 0 0 3 1 0 1,5 

50 1 1 1 0 0 0 0 1 1 1 0 0 0 3 1 0 -3 

51 0 1 2 0 0 0 0 1 1 0 0 0 1 3 1 0 3 

52 2 0 1 0 0 0 0 1 0 2 0 0 0 3 1 0 1,5 

53 1 0 2 0 0 0 0 1 0 1 0 0 1 3 1 0 -3 

54 2 0 1 0 0 0 0 1 0 0 2 0 0 3 1 0 0,5 

55 0 2 1 0 0 0 0 1 0 0 2 0 0 3 1 0 0,5 

56 0 0 1 0 2 0 0 1 0 0 0 2 0 3 1 0 0,5 

57 0 0 1 2 0 0 0 1 0 0 0 2 0 3 1 0 0,5 

58 0 0 3 0 0 0 0 1 0 0 0 0 2 3 1 0 1,5 

59 0 3 1 0 0 0 0 0 3 0 0 0 0 3 1 0 0,5 

60 1 2 1 0 0 0 0 0 2 1 0 0 0 3 1 0 -1,5 

61 0 2 2 0 0 0 0 0 2 0 0 0 1 3 1 0 1,5 

62 2 1 1 0 0 0 0 0 1 2 0 0 0 3 1 0 1,5 

63 1 1 2 0 0 0 0 0 1 1 0 0 1 3 1 0 -3 

64 2 1 1 0 0 0 0 0 1 0 2 0 0 3 1 0 0,5 

65 0 3 1 0 0 0 0 0 1 0 2 0 0 3 1 0 0,5 

66 1 0 2 0 0 0 0 0 1 0 1 1 0 3 1 0 -1 

67 0 1 1 2 0 0 0 0 1 0 0 2 0 3 1 0 0,5 

68 0 0 2 0 1 0 0 0 1 0 0 2 0 3 0 1 -1 

69 0 1 1 0 2 0 0 0 1 0 0 2 0 3 1 0 0,5 

70 0 1 3 0 0 0 0 0 1 0 0 0 2 3 1 0 1,5 

71 3 0 1 0 0 0 0 0 0 3 0 0 0 3 1 0 -0,5 

72 2 0 2 0 0 0 0 0 0 2 0 0 1 3 1 0 1,5 

73 1 2 1 0 0 0 0 0 0 1 2 0 0 3 1 0 -0,5 

74 3 0 1 0 0 0 0 0 0 1 2 0 0 3 1 0 -0,5 

75 0 1 2 0 0 0 0 0 0 1 1 1 0 3 1 0 -1 

76 1 0 1 2 0 0 0 0 0 1 0 2 0 3 1 0 -0,5 

77 1 0 1 0 2 0 0 0 0 1 0 2 0 3 1 0 -0,5 

78 0 0 2 1 0 0 0 0 0 1 0 2 0 3 0 1 1 

79 1 0 3 0 0 0 0 0 0 1 0 0 2 3 1 0 -1,5 

80 2 0 2 0 0 0 0 0 0 0 2 0 1 3 1 0 0,5 

81 0 2 2 0 0 0 0 0 0 0 2 0 1 3 1 0 0,5 

82 0 0 2 2 0 0 0 0 0 0 0 2 1 3 1 0 0,5 

83 0 0 2 0 2 0 0 0 0 0 0 2 1 3 1 0 0,5 

84 0 0 4 0 0 0 0 0 0 0 0 0 3 3 1 0 0,5 

85 0 0 2 0 0 1 0 1 0 1 0 1 0 4 1 0 1 

86 0 1 2 0 0 1 0 0 1 1 0 1 0 4 1 0 1 

87 1 0 2 0 0 1 0 0 0 2 0 1 0 4 1 0 -1 

88 0 0 3 0 0 1 0 0 0 1 0 1 1 4 1 0 1 

89 0 0 2 0 0 0 1 1 1 0 0 1 0 4 1 0 -1 
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Continued 

90 0 1 2 0 0 0 1 0 2 0 0 1 0 4 1 0 -1 

91 1 0 2 0 0 0 1 0 1 1 0 1 0 4 1 0 1 

92 0 0 3 0 0 0 1 0 1 0 0 1 1 4 1 0 -1 

93 1 0 2 0 0 0 0 1 1 0 1 1 0 4 1 0 -1 

94 0 1 2 0 0 0 0 1 0 1 1 1 0 4 1 0 -1 

95 1 1 2 0 0 0 0 0 2 0 1 1 0 4 1 0 -1 

96 0 0 3 0 0 0 0 0 2 0 0 2 0 4 1 0 0,5 

97 2 0 2 0 0 0 0 0 1 1 1 1 0 4 1 0 1 

98 0 2 2 0 0 0 0 0 1 1 1 1 0 4 1 0 -1 

99 1 0 3 0 0 0 0 0 1 0 1 1 1 4 1 0 -1 

100 1 1 2 0 0 0 0 0 0 2 1 1 0 4 1 0 1 

101 0 0 3 0 0 0 0 0 0 2 0 2 0 4 1 0 0,5 

102 0 1 3 0 0 0 0 0 0 1 1 1 1 4 1 0 -1 

103 0 0 3 0 0 0 0 1 2 0 0 2 0 5 1 0 0,5 

104 0 0 3 0 0 0 0 1 0 2 0 2 0 5 1 0 0,5 

105 0 1 3 0 0 0 0 0 3 0 0 2 0 5 1 0 0,5 

106 1 0 3 0 0 0 0 0 2 1 0 2 0 5 1 0 -0,5 

107 0 0 4 0 0 0 0 0 2 0 0 2 1 5 1 0 0,5 

108 0 1 3 0 0 0 0 0 1 2 0 2 0 5 1 0 0,5 

109 1 0 3 0 0 0 0 0 0 3 0 2 0 5 1 0 -0,5 

110 0 0 4 0 0 0 0 0 0 2 0 2 1 5 1 0 0,5 
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APPENDIX J. RECOVERING THE 6-DOF KINEMATICALLY EXACT ROD MODEL 

FROM THE 7-DOF MODEL 

 

The 6-DOF rod model can be obtained from the 7-DOF model by imposing 𝑝 = 𝜅3
𝑟 (thus, also 

𝛿𝑝 = 𝛿𝜅3
𝑟) and by neglecting the bi-moment contribution for the virtual work (both internal and 

external). Hence, one gets,  

 

 
𝛿𝑊𝑖𝑛𝑡 = ∫ 𝑷: 𝛿𝑭𝑑𝑉𝑟 = ∫ 𝝈𝑟 ∙ 𝛿𝜺𝑟𝑑휁 =

𝐿

0𝑉𝑟 ∫ 𝝈𝑟 ∙ 𝜳𝜟δ𝐝θ𝑑휁
𝐿

0
, ∀𝛿𝒅𝜃(휁) ∈

ℋ1
0(𝛺), 

(J.1) 

with  

 𝝈𝑟 = [
𝒏𝑟

𝒎𝑟 + 𝑄𝒆3
𝑟], 𝛿𝜺

𝑟 = [
𝛿𝜼𝑟

𝛿𝜿𝑟
], (J.2) 

 

and 

 𝛿𝑊𝑒𝑥𝑡 = ∫ �̅� ∙ 𝛿𝒅𝜃𝑑휁
𝐿

0
,   ∀𝛿𝒅𝜃(휁) ∈ ℋ1

0(𝛺), (J.3) 

with 

 �̅� = [
�̅�
�̅�
], 𝛿𝒅𝜃 = [

𝛿𝒖
𝛿𝜽
]. (J.4) 

Using linear elastic materials, one gets 

 𝝈𝑟 = 𝑫𝐿𝜺
𝑟, (J.5) 

with 

 𝑫𝐿 =

[
 
 
 
 
 
 
𝐺𝐴 0 0 0 0 −𝐺𝐴𝑠2

𝐺𝐴 0 0 0 𝐺𝐴𝑠1
𝐸𝐴 𝐸𝐴𝑔2 −𝐸𝐴𝑔1 0

𝐸𝐼1 𝐸𝐼12 0

𝑆𝑦𝑚. 𝐸𝐼2 0

𝐺(𝐼𝑇 + 𝐴𝑔𝛼𝑠𝛼)]
 
 
 
 
 
 

, (J.6) 

which is precisely what is found in [22]. 

Note that the sixth input of 𝝈𝑟 is 𝑚3
𝑟 + 𝑄. As discussed on section 3.2, the sign of 𝑄 used in the 

current development is the opposite as the one defined in the Vlasov’s theory. Having that in mind, 

one can interpret 𝑇𝑢 = 𝑚3
𝑟 + 𝑄 as the uniform torsion contribution from the total torsion experienced 

by the rod. Thus, in the equilibrium equation, the external torsional moment (�̅�3) is only balanced by 

𝑇𝑢 explaining why the 6-DOF rod model is usually less stiff than the 7-DOF counterpart. 
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APPENDIX K. BASIC CONCEPTS FOR FINITE ELEMENTS METHOD (FEM) 

 

Introducing the method 

For a specially constructed vectorial space of approximation (�̃�), the real solution 𝒔, that is in a 

higher order vectorial space (𝑉), is projected into �̃�, obtaining the approximated solution �̃�. Let �̅� ∈ �̃� 

be an arbitrary vector, herein called trial function. In the rod contexts (one-dimensional, in 휁), let the 

scalar product be the trivial < 𝒂, 𝒃 > = ∫ 𝒂 ∙ 𝒃𝑑휁
𝐿

0
. Using the fact that �̃� is a projection, with the aid of 

the residual function 𝒓(휁) = 𝒔 − �̃� , 

 < 𝒓, �̅� > = ∫ 𝒓 ∙ �̅�𝑑휁
𝐿

0

= 0 (K.1) 

Let us compare equation (3.22) with (K.2). It becomes evident that, if the virtual displacement 𝛿𝒅𝜽 

is interpreted as the trial function, and the stress resultants calculated based on some approximation as 

the residue, this form of the Virtual Work Theorem represents a projection problem for kinematically 

exact rods. Therefore, the residual function is minimized.  

The FEM is based on the Bubnov-Galerkin’s method, in which the trial function (virtual 

displacements) is built exactly as the approximation function. This method itself is a “Weighted 

Residue Method”, such as the colocation method, the least squares method, and others. This 

denomination is due to the form of the interpolation function 

 �̃� = ∑ 𝚽𝐢𝒂𝒊
𝑁
𝑖=1 , (K.2) 

with 𝚽𝐢 representing the interpolation shape functions and 𝒂𝒊 being the weights that minimizes the 

residues. In the mechanical context, these weights represent generalized displacements quantities on 

each node.  

 In the FEM, the interpolation functions are taken in a manner that only the nodes that belongs to a 

given elements influence on the interpolation of this sub-domain, rendering sparse matrixes for the 

system solution. 

 

Interpolation functions – isoparametric rod element 

In order to efficiently parametrize any rod element, a standard approach is to perform a change of 

variables from the reference configuration 0 ≤ 휁 ≤ 𝐿 to natural coordinates −1 ≤ Ζ ≤ 1. A direct 

implication of this transformation is that a Jacobian 𝐽𝜁 will be needed to perform the integrations.  

Consider the definitions of 𝑝, 𝛿𝑝, 𝑑𝜃, 𝛿𝑑𝜃, 𝑁 from chapter 5 (equations (5.1) to (5.5))  

With the proposed interpolation, it is also possible to map the position of the element points in the 

reference configuration using the isoparametric transformation 

 휁(Ζ) = 𝑁𝑖(Ζ)휁i. (K.3) 

Consider the integration of a generic function 𝑓(휁) in the domain of a given element. Then, let us 

use the isoparametric transformation 
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 𝐼 = ∫ 𝑓(휁)𝑑휁 = ∫ 𝑓(Ζ)𝐽Ζ𝑑Ζ
1

−1

𝑙

0
. (K.4) 

The Jacobian 𝐽𝜁, for functions that are ℝ → ℝ is simply  

 𝐽Ζ =
𝑑휁

𝑑Ζ
=
𝑑𝑁𝑖(Ζ)

𝑑Ζ
휁i. (K.5) 

Consider now the derivatives of the shape form. In the formulation, the derivative with respect to 

the reference configuration (휁) is needed, although the parametrization is on (Ζ). This can be 

circumvented with the aid of the chain rule, hence 

 
𝜕𝑁𝑎
𝜕휁

=
𝜕𝑁𝑎
𝜕Ζ

𝜕Ζ

𝜕휁
= (𝐽Ζ)

−1
(𝜕𝑁𝑎)

𝜕Ζ
. (K.6) 

For this work, elements with 2 and 3 nodes are of interest. They represent, respectively, linear and 

quadratic interpolations. See the table below (Table 13) for details about their interpolation. 

Table 13– Finite element interpolation for 2 and 3 nodes rod elements 

 2 nodes 3 nodes 

Element 

description 

  

Natural 

coordinates 
휁1 = 0; 휁2 = 𝐿 

휁1 = 0; 휁2 = 𝛼𝐿; 휁3 = 𝐿 

0 < 𝛼 < 𝐿 

Isoparametric 

coordinates 
𝑍1 = −1;𝑍2 = 1 𝑍1 = −1; 𝑍2 = 0; 𝑍3 = 1 

Interpolation 

functions 

𝑁1(Ζ) = 𝑙1
1(Ζ) =

1

2
(1 − Ζ)  

𝑁2(Ζ) = 𝑙2
1(Ζ) =

1

2
(1 + Ζ)  

𝑁1(Ζ) = 𝑙1
2(Ζ) =

1

2
Ζ(Z − 1)  

𝑁2(Ζ) = 𝑙2
2(Ζ) = −Ζ2 + 1  

𝑁3(Ζ) = 𝑙3
2(Ζ) =

1

2
Ζ(1 + Ζ).  

Natural 

coordinates 

interpolation 

휁𝑖 =
1

2
(1 − Ζ) ∗ 0 +

1

2
(1 + Ζ)

∗ 𝐿

=
1

2
(1 + Ζ) ∗ 𝐿 

휁𝑖 =
1

2
Ζ(Z − 1) ∗ 0 + (−Ζ2 + 1)𝛼𝐿 +

1

2
Ζ(1 + Ζ)𝐿 = [Z2 (−𝛼 +

1

2
) +

1

2
𝑍 + 𝛼] 𝐿  

(𝜕𝑁𝑎)

𝜕Ζ
 

𝑁1,Ζ = −
1

2
 

𝑁2,Ζ =
1

2
 

𝑁1,Ζ =
1

2
(2Ζ − 1)  

𝑁2,Ζ = −2Ζ  

𝑁1,Ζ =
1

2
(1 + 2Ζ)  

Jacobian  𝐽Ζ(Ζ) =
1

2
∗ 0 +

1

2
∗ 𝐿 =

𝐿

2
 

𝐽Ζ(Ζ) =
1

2
(1 − 2Ζ) ∗ 0 + (−2Ζ) ∗ 𝛼𝐿 +

1

2
(1 + 2Ζ) ∗ 𝐿 = [Z(−2𝛼 + 1) +

1

2
] 𝐿  

 


