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insist on improving. The pursuit of 

excellence should not be a goal, but a 

habit.” 

(Aristoteles) 
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ABSTRAC 

An analytical investigation was developed based on the concepts of deformable solid 

dynamics to determine the critical buckling load and induced strain behavior in very 

slender reinforced concrete (RC) columns. The elements of structural dynamics were 

taken into consideration in the analysis. Construction imperfections and/or second-

order effects were linearized using the negative component of geometric stiffness, the 

physical nonlinearity of concrete was accounted for by reducing the flexural stiffness 

product, and the viscoelastic behavior of concrete was considered according to the 

criteria outlined in NBR 6118:2014 from the Brazilian Association of Technical 

Standards (ABNT).This investigation was further supported by the publication of two 

articles in high-impact international journals. The initial article evaluated the 

deformation behavior of concrete induced by axial compressive force, including the 

contribution from material creep, using two distinct mathematical approaches. The first 

mathematical procedure adopted the stress-strain curve of concrete standardized by 

ABNT NBR6118:2014 and compared it to the method of integrating the differential 

displacement relationships along the length of the structure. In the second published 

work, the mathematical development was applied to a practical real case, generalizing 

the formulation's applicability to highly slender RC columns. It also assessed the 

influence of concrete's rheological properties on the critical buckling load, considering 

the possibility of implementing the structure in different regions of Brazil with varying 

temperature and humidity conditions. Ultimately, a maximum reduction of over 70% in 

the column's load capacity was observed in the most unfavorable region of the 

analysis. 

Keywords: Mathematical model; critical buckling load; slenderness; creep; reinforced 

concrete; dynamic analysis. 
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RESUMO 

Foi desenvolvida uma investigação analítica, baseada nos conceitos da dinâmica dos 

sólidos deformáveis, para determinação da carga crítica de flambagem e do regime 

de deformações induzidos em colunas extremamente esbeltas de concreto armado. 

Os elementos da dinâmica estrutural presentes na análise foram levados em 

consideração. As imperfeições construtivas e/ou efeitos de segunda ordem foram 

linearizadas por meio da parcela negativa da rigidez geométrica, a não linearidade 

física do concreto foi considerada por meio da redução do produto de rigidez à flexão 

e o comportamento viscoelástico do concreto foi levado em conta pelos critérios da 

NBR 6118:2014 da Associação Brasileira de Normas Técnicas (ABNT). A presente 

investigação foi consolidada com a publicação de dois artigos em periódicos de alto 

impacto internacional. O artigo inicial avaliou, por meio de duas abordagens 

matemáticas distintas, o regime de deformações do concreto induzido pela força 

normal de compressão, incluindo a parcela devida à fluência do material. No primeiro 

procedimento matemático, foi adotado a curva de tensão-deformação do concreto, 

padronizada pela ABNT NBR6118:2014, que foi comparado ao método de integração 

das relações diferenciais de deslocamentos ao longo do comprimento da estrutura. 

Em relação ao segundo trabalho publicado, o desenvolvimento matemático foi 

aplicado à um caso prático real, generalizando a validade da formulação em colunas 

extremamente esbeltas de concreto armado, além de avaliar a influência das 

propriedades reológicas do concreto, na carga crítica de flambagem, considerando-se 

a possibilidade de implantação da estrutura em diferentes regiões do Brasil, com 

índices de temperatura e umidade variáveis. Ao fim, contatou-se uma redução máxima 

de mais de 70% da capacidade de carga da coluna, na região mais desfavorável da 

análise. 

Palavras-chave: Modelo matemático; carga crítica de flambagem; esbeltez; fluência; 

concreto armado; análise dinâmica. 
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1 GENERAL INTRODUCTION 

This thesis, written in English, is a compilation of two articles published in high-impact 

international journals, preceded by this introduction about their context. 

The design of slender structures presents a formidable challenge to modern-day 

structural engineers due to the intricate interplay of nonlinear effects stemming from 

the structure's geometric configuration and material characteristics, notwithstanding 

the remarkable progress achieved in structural analysis technologies. Notably, 

reinforced concrete structures exhibit distinctive attributes owing to the behaviors of 

their constituent materials, namely concrete and steel. The inherent nonlinear behavior 

of such structures primarily arises from the inherent heterogeneity of concrete, which 

imparts diverse properties contingent upon its composition and may even manifest 

distinct chemical compositions contingent upon the locale of manufacture.  

Concrete's time-dependent response, intricately linked to rheological principles, 

encompasses the interplay of solid particles (aggregates) and a fluid component 

(hydrated cement paste). To capture the viscoelastic behavior of concrete more 

accurately, engineers employ rheological models incorporating interconnected springs 

and dampers, enabling the prediction of comprehensive deformations while 

considering crucial factors such as the duration, type, and timing of applied loads. 

Practically speaking, the technical codes guiding the analysis and design procedures 

of reinforced concrete structures account for influential phenomena like creep and 

shrinkage. These standards encompass two pivotal considerations in the dimensional 

design of construction systems. Firstly, they incorporate a reduction in the member's 

stiffness coefficient, and secondly, propose a strength reduction coefficient based on 

the duration of load application and the environmental conditions to which the member 

is exposed. For the design of reinforced concrete structures, typically three main 

analyses are conducted: deformation analysis, stress analysis, and stability 

verification. In the case of slender structures specifically, the primary safety concern is 

their stability, as the structure may collapse due to loss of stability before reaching the 
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material's ultimate strength. This investigation can be evaluated from different 

perspectives, either through static concepts (without considering inertial forces) or 

dynamically. 

The traditional and conventionally used procedure for this verification establishes the 

maximum force that can be applied to the structure near its collapse, which is defined 

as the critical buckling load. The first investigation of critical buckling load was 

conducted by Euler [1] in 1774, who established formulations based on statics. His 

studies were further complemented by Greenhill [2] in 1881, who included the self-

weight in the stability analysis of columns. According to Timoshenko [3], Euler buckling 

occurs only within the elastic range of the material. It is defined as the phenomenon in 

which a structural element loses its equilibrium under the action of a sufficiently large 

compressive axial force, causing it to deviate from its initial straight configuration. 

Although the initial postulations were statically solved by considering the forces 

developed in the most stressed section of a column after assuming a certain deflected 

configuration, the solution of buckling simultaneously enters the field of structural 

dynamics.  

In this regard, Wahrhaftig et al. [4] investigated analytical solutions to incorporate the 

self-weight in determining the critical load of columns. In this study, the complexity of 

including the self-weight lied in the fact that the mathematical formulation relied on 

integral solutions related to the differential equations of the problem. Ultimately, the 

authors compared the analytical results with computational methods and experimental 

procedures, demonstrating good agreement between the results. This validation 

supported the development of the presented analytical approach. 

When it comes to analytical methods for determining the fundamental frequency of 

structures, one of the most widely used methods was developed by Rayleigh  [5]. This 

method stands out as a simple and effective technique based on the principles of 

energy conservation in a system, considering its oscillation in free vibration. Therefore, 

the determination of the frequency corresponds to the equality between the maximum 

potential energy and kinetic energy terms for the adopted vibration configuration. In 
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other words, to obtain the final response, it is necessary to assume a deformed 

configuration of the structure during vibration, typically described by a function called 

the shape function. This function must exclusively satisfy the essential boundary 

conditions of the structure. Such a procedure can be employed for analyzing a wide 

range of problems related to structural stability. 

The procedure suggested by Rayleigh [5] can be applied both for calculating the 

frequency and determining the critical buckling load. In this analysis, all components 

of structural stiffness should be taken into account, including the conventional stiffness, 

which depends on the material behavior such as elasticity, viscoelasticity, or even 

plasticity, as well as the geometric stiffness, which depends on the axial force acting 

on the structure. Some mathematical approaches related to these analytical 

developments based on the method proposed by Rayleigh [5] can be found in the 

works of Wahrhaftig et al. [6]-[8]. 

In this regard, this research has been consolidated as a continuation of investigations 

based on the concepts established by Rayleigh [5], in which a mathematical 

investigation was developed to predict the variation of critical buckling load and 

induced deformation in extremely slender reinforced concrete columns using structural 

dynamics.  

The investigations conducted in this research were consolidated writing two articles 

published in high-impact international journals, which present the methods used and 

the obtained results. In the initial article, Magalhães et al. [9] evaluated, via two distinct 

mathematical approaches, the deformation behavior of concrete induced by 

compressive normal force (up to the critical buckling load), including the contribution 

of material creep. In the second article, Magalhães et al. [10] applied the mathematical 

development to a real practical case, generalizing the validity of the formulation for 

extremely slender reinforced concrete columns. The influence of the rheological 

properties of concrete, based on variations in relative humidity, on the critical buckling 

load was assessed. 
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2 CONTEXTUALIZATION OF INVESTIGATIONS 

A mathematical model was developed to assess the critical buckling load and induced 

stresses in extremely slender reinforced concrete columns, taking into account the 

concrete rheological properties. The chosen method of analysis involves a 

mathematical modeling based on the principles of deformable solid dynamics, which 

will be presented in this chapter. 

It is known that the natural vibration frequencies of reinforced concrete structures 

undergo changes influenced by several factors, such as: (a) the intensity and nature 

of applied loading, meaning they depend on the level and type of internal stresses; (b) 

variations in the material's elastic modulus due to creep; and (c) geometry, including 

the cross-sectional inertia that depends on the level of cracking experienced by the 

element. Thus, the mathematical procedure incorporates all these aspects to evaluate 

the changes in natural frequencies, deformations, and also to verify the load capacity 

of the columns under different usage scenarios. 

Thus, this thesis comprises a collection of two articles (Chapter 03 and Chapter 04), 

published in international journals, which address the applicability and validation of the 

concepts developed throughout this research. In summary, the first article titled "Strain 

regime induced by axial compression in slender reinforced concrete columns using 

different mathematical approaches" assessed the strain regime of concrete induced by 

axial compression, including the component attributed to material creep, through 

different mathematical approaches. Two mathematical procedures were employed: the 

first one adopted the standardized stress-strain curve of concrete, while the second 

procedure involved the integration of differential equations along the length of the 

structure at intervals defined by its geometry. In essence, this comparison aimed to 

validate the use of Hooke's law for the material's deformation region initially considered 

as linear. 
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In the second article, "Influence of Atmospheric Humidity on the Critical Buckling Load 

of Reinforced Concrete Columns," the mathematical development for determining the 

critical buckling load was expanded and applied to slender reinforced concrete 

columns, using a real case study as a reference to generalize the applicability of the 

formulation. Furthermore, the influence of the concrete's rheological properties on the 

variation of the critical load was investigated, considering the possibility of 

implementing the structure in different regions of Brazil, subjecting it to different 

temperature and humidity conditions. These factors had a significant impact on the 

obtained results, confirming the need for such verification in assessing the long-term 

load capacity of this type of structure. 

Next, a more detailed presentation will be given regarding the developed mathematical 

formulation in the studies, the analysis methodology applied to the two published 

articles, and the normative procedure provided by ABNT NBR6118:2014 [12] for 

predicting the behavior of concrete due to creep and shrinkage. 

2.1 GENERALIZED MATHEMATICAL FORMULATION 

The analytical method developed in this research is based on the concepts of 

mechanical vibration theory, specifically the determination of the natural frequencies 

of vibration of reinforced concrete columns. It considers that the element is influenced 

by gravitational forces resulting from the distributed mass due to its own weight and a 

concentrated mass at the upper free end. The hypothesis of undamped free vibration 

was adopted, considering only the horizontal degree of freedom at the top of the 

column and the assumption of small displacements. 

While it is well-known that single-degree-of-freedom (SDOF) systems may not always 

provide adequate modeling of a real structure, often requiring the use of multiple-

degree-of-freedom systems for a more comprehensive qualitative and quantitative 

description of their behavior, they are important for preliminary investigations as they 

offer greater ease of interpretation in terms of physical results. Such models are highly 

valuable within a hierarchical modeling philosophy of structures, where the primary 
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objective is to obtain an efficient model that represents the behavior closest to reality 

while considering a minimum number of degrees of freedom. 

To approximate the analyzed motion using a SDOF system, it is assumed that the 

element deforms in a single mode, which is appropriately chosen to represent the 

vibratory motion of the first buckling mode. The shape function that describes this 

deflection is defined as φ(x), where x is an independent variable representing the 

location along the height of the structure (in this specific case, the column), and the 

amplitude of the motion is represented by the generalized coordinate q(t). 

The shape function was obtained using Equation (1): 

( , )
( )

( )

v x t
x

q t
 

, 
(1) 

where v(x,t) represents the equation for the deflected shape of the element. By 

applying the Principle of Virtual Work (PVW) and its derivatives, considering the 

properties described in Figure 1, we have: 

 Ext IntW W , (2) 

where WExt represents the work of the external forces performed by the inertia forces, 

given by Equation (3), and WInt represents the work of the internal forces performed by 

the deflection, defined by Equation (4). 
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Figure 1 – Mathematical model of a column with one degree of freedom. 

 
Source: Author 

In Figure 1, g represents the acceleration due to gravity, L is the total length of the 

element; m0 is a concentrated mass at the top of the structure; x is the independent 

variable of the problem, with its origin at the base of the column; N(x) is the axial force; 

Ec is the longitudinal elastic modulus of the concrete; I is the second moment of area 

(moment of inertia) of the cross-section; Ahom is the homogenized cross-sectional area, 

accounting for the presence of steel rebars; and mi(x) is the distributed mass 

component, which includes its own weight and additional masses. 
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where M(x,t) is the bending moment. 
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Substituting Equations (3) and (4) into Equation (2): 

 
22 2

0 02 2
0 0

2

2
0

0
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 



( , ) ( , ) ( )
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( , )
( , ) .

L L

i

L

v x t v x t x
m x v x t dx m v x t dx m g N x dx
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Given that: 

2

2



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x
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and, by Equation (1), it is known that: 
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Rearranging Equation (5): 
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x
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x

. (8) 

Since the variation, q(t), can take any value, the term within brackets becomes zero 

and Equation (8) can be rewritten as: 
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, 
(9) 

where [M] represents the generalized mass matrix of the system (Equation (10)) and 

[K(mi)] represents the generalized total stiffness matrix of the problem (Equation (12)). 

The total generalized mass of the system, M(m0), is calculated using Equation (10): 

2
0 0

10




 ( ) ( )
L n

i

M m m x dx m g , 
(10) 

where φ(x) is the shape function that characterizes the vibratory motion and depends 

on the boundary conditions of the problem, which in the case under investigation can 

be given by Equation (11): 

1
2

     
 

( ) cos
x

x
L

. 
(11) 

Different shape functions that satisfy the boundary conditions of the problem can be 

applied to obtain the structural response [11]. 

The dynamic properties of the model can be obtained, i.e., the total generalized 

stiffness of the system, considering the weight force as positive, using Equation (12). 

0 0( ) ( )i gK m K K m  , (12) 

where K0 represents the conventional stiffness, given by Equation (13), and Kg(mi) 

represents the geometric stiffness, as given by Equation (14), in a general form. 
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, 

 
(14) 

where EcI is known as the flexural stiffness product, m0 is the mass applied at the top 

of the structure, and g is the acceleration due to gravity. The axial force component, 

N(x), included in the analysis for the consideration of geometric stiffness, is determined 

by Equation (15). 

 ( )N x m L x g  , (15) 

where m represents the mass per unit length and L is the total length of the element. 

In order to determine the moment of inertia of the homogenized section, it is necessary 

to consider the presence of reinforcing bars in slender reinforced concrete columns. 

Assuming that there are a number of bars, nb, distributed along the cross-sectional 

area S, with a diameter D and cover depth c, and each bar (bi) has a diameter dbi 

located at position i defined by Rbi and θi, as shown in Figure 2. 

Figure 2 – Determination of the homogenization factor 

 
 

Souce: author 

Therefore, based on Figure 2: 
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dD
R c  

. 
(16) 

The distance between the centroid of each bar and the axis of the cross-section can 

be calculated, considering θi as an independent variable that takes values between 0 

and 2π, by Equation (17): 

( ) sin( )i i b iy R  . (17) 

The spacing between the bars, esp, is determined by: 

2 bi

b

R
esp

n




, 
(18) 

where the angular phase displacement, Δθ, between two adjacent bars is given by 

Equation (19): 

bi

esp

R
 

. 
(19) 

Thus, the moment of inertia of each bar about the centroid of the cross-section, 

applying the Parallel Axis Theorem, can be calculated as follows: 

 
4 2

2

64 4

 
  ( ) bi bi

i i i

d d
I y . (20) 

Therefore, the homogenization of the moment of inertia is calculated using the 

following relation: 

 1hom ( )I I   , (21) 

where Ψ is the ratio between the longitudinal deformation moduli (steel, Ea,, and 

concrete, Ec) given by Equation (22): 



25 

 

 
 

a

c

E

E


. 
(22) 

To calculate the total (homogenized) moment of inertia of the cross-section, it is 

necessary to consider the non-homogenized moment of inertia, given by: 

4

64sI D



. 

(23) 

Added to the term from Equation (21), resulting in: 

h homsI I I  . (24) 

Finally, Equation (25) represents the frequency, in Hertz, as a function of the level of 

cracking and the generalized mass of the system: 

0
0

0

1

2

( )
( )

( )

K m
f m

M m
 . (25) 

Considering concrete as a time-dependent material, as discussed earlier, the variation 

of frequency becomes a temporal quantity, since the longitudinal modulus of elasticity 

of concrete is also time-dependent. Therefore, the longitudinal modulus of elasticity of 

concrete may be described as follows: 

1
1 




( )
( )c

c c

E t
t

E E

, 
(26) 

where ϕ(t) represents the creep coefficient, which can be estimated using different 

mathematical formulations. In the specific case of this research, the behavior due to 

concrete creep and shrinkage will be considered following the normative provisions 

presented by ABNT NBR6118 [12]. 
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In the creep and shrinkage calculation model of ABNT NBR6118 [12], for cases where 

the stress in the concrete does not vary significantly, the following simplifying 

assumptions are made: creep deformation varies linearly with applied stress, and the 

effects of stress increments at different times can be superimposed (the principle of 

superposition is adopted). 

Assuming no restriction on concrete deformation and considering a constant stress, 

the total deformation of concrete over time is given by: 

0( ) ( ) ( ) ( )c c cc cst t t t      , (27) 

where εc(t0) is the immediate deformation at time t0, εcc(t) is the creep deformation, and 

εcs(t) is the shrinkage deformation, both as a function of time t. 

In a reinforced concrete element, the determination of deformations due to the creep 

component, εcc(t), is calculated by applying Equation (28): 

0 0
0

28

 
  

 
   
 

( ) ( )
( ) ( , ) ( )

( )
c c

cc cc
c c

t t
t t t t

E E t
, 

(28) 

where σc(t0) is the normal stress at the time to (in days) when the structure is loaded, 

and Ec is the modulus of elasticity of concrete, defined in Equation (29): 

0

0 28

1
1 




( )
( , )c

c c

E t
t t

E E

, 

(29) 

where Ec0 is the modulus of longitudinal deformation of the concrete at the time of 

structure loading; Ec28 is the modulus of longitudinal deformation at 28 days (in MPa). 

The determination of the modulus of longitudinal deformation at time i is given by 

Equation (30) or Equation (31) depending on the characteristic compressive strength 

(fck) of the concrete, and ϕ(t,t0) is the concrete creep coefficient at time t for loads 

applied at time t0, given by Equation (32): 
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5600ci E ckE f , 
(30) 

where Eci is the initial modulus of deformation of the concrete, in this case considered 

for concretes fck ranging from 20 MPa (C20) to 50 MPa (C50), or, 

1
3

321 5 10 1 25
10

, ,ck
ci E

f
E      

 
, 

(31) 

for concretes fck ranging from 55 MPa (C55) to 90 MPa (C90), where fck (in MPa) is the 

characteristic compressive strength of the concrete and αE is a coefficient that depends 

on the type of aggregate used in the concrete. For basalt and diabase aggregate, the 

coefficient is 1.2; for granite and gneiss aggregate, the coefficient is 1.0; for limestone 

aggregate, the coefficient is 0.9; and for sandstone aggregate, the coefficient is 0.7. 

These values apply to both strength classes. 

0 0          ( , ) [ ( ) ( )] ( )a f f f d dt t t t t , 
(32) 

ϕa is the coefficient of rapid deformation, which depends on the compressive strength 

class of the concrete (C20 to C45 or C50 to C90) given by Equation (33) or Equation 

(34); ϕf∞, Equation (36), is the final value of the irreversible slow deformation coefficient, 

dependent on the relative humidity of the environment (U), the consistency of the 

concrete at casting, age of the concrete at the time of load application (t0), and the time 

considered for analysis (t), for concrete with compressive strength classes up to 50 

MPa. For concrete with compressive strength between 50 MPa and 90 MPa, a 

reduction factor of 0.45 is applied; βf at t and t0 are coefficients related to the irreversible 

slow deformation, depending on the age of the concrete; ϕd∞ is the final value of the 

reversible slow deformation coefficient, considered constant with a value of 0.4, and 

βd(t) is the coefficient related to the slow reversible deformation as a function of time 

elapsed after the start of loading (Equation (41)). Therefore: 
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(33) 

for concrete compressive strength classes between 20 MPa and 45 MPa (C20 to C45), 

or, 

01 4 1


 
  

 

( )
,

( )
c

a
c

f t

f t
, 

(34) 

for concrete compressive strength classes between 50 MPa and 90 MPa. The 

relationship f0(t0) and fc(tꚙ) corresponds to the increase in concrete strength and can 

be calculated using Equation (35): 

 
1

2281

1

s t
e

     
    , (35) 

where s is a factor related to the type of concrete: s = 0.38 for CPIII and CPIV cement; 

s = 0.25 for CPI and CPII cement; s = 0.20 for CPV-ARI cement. 

1 2   f c c , 
(36) 

where: 
 

1 4 45 0 035  . .c U , 
(37) 

U is the relative humidity in percentage. It is worth noting that the coefficient ϕ1c, given 

by Equation (37), is valid for slump values determined according to the 

recommendations of NBR 16889 (2020), in the range of 5 cm to 9 cm, and with U ≤ 

90%. For a humidity of 100%, the value suggested by the Brazilian standard is 0.8. 

Parameter ϕ2c is calculated using Equation (38): 

2

42

20






fic

c
fic

h

h
, 

(38) 
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where hfic is the fictitious thickness of the element expressed in centimeters, which is 

a parameter calculated based on the dimension and shape of the element, expressed 

as a single quantity in terms of the theoretical or effective thickness. This thickness is 

obtained by dividing the area of the section, Ac, by the semi-perimeter in contact with 

the atmosphere, Dc, calculated using Equation (39): 

2 c
fic

c

A
h

D




 , 
(39) 

where the parameter γ is the coefficient dependent on the relative humidity of the 

environment, obtained using Equation (40): 

7 8 0 11 ( . . )Ue    . 
(40) 

It is worth noting that there is a limit to the use of this coefficient, which is restricted to 

relative humidities between 40% and 90% (40% ≤ U ≤ 90%). When ambient humidity 

exceeds the upper limit of the range, up to U = 100%, the value of the coefficient 

becomes fixed at 30 (γ = 30). The coefficient βd(t) is given by: 

0

0

20

70
( )d

t t
t

t t


 


 
. 

(41) 

Another quantity dependent on the relative humidity conditions of the environment is 

the coefficient βf(t),, which is determined by Equation (42): 

2

2
( )f

t At B
t

t Ct D
  


 

, 
(42) 

where parameters A, B, C, D and E are given by Equations (43) to (47): 

40A  ; 
(43) 

3 2116 282 220 4 8.fic fic ficB h h h    ; (44) 
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32 5 8 8 40 7. . .fic ficC h h   ; (45) 

3 275 585 496 6 8.
fic fic ficD h h h     ; (46) 

4 3 2169 88 584 39 0 8.fic fic fic ficE h h h h      , (47) 

It is worth noting that in this case, the fictitious thickness should be expressed in 

meters. 

Once the parameters of interest have been obtained, the portion related to shrinkage 

deformation can be calculated using equation: 

0( ) [ ( ) ( )]cs cs
s s s st t t     , 

(48) 

where ( )cs
s t  is the final value of shrinkage, which is related to the consistency of the 

concrete and the relative humidity of the environment, determined by Equation (49), 

and βs(t0) is the coefficient related to concrete shrinkage at times t and t0, given by 

Equation (52). Thus, 

1 2
cs
s s s    , 

(49) 

where 1s is the coefficient dependent on the relative humidity of the environment and 

the consistency of the concrete, obtained by Equation (50): 

2 3 4
4

1 8 09 10
15 2284 133765 7608150

.s

U U U U  
      
 

, 
(50) 

It is worth noting that the coefficient 1s, given by Equation (50), is valid for concrete 

slump values between 5 cm and 9 cm, with relative humidity percentages between 40 

and 90. For a relative humidity of 100%, the deformation suggested by the standard is 

a fixed value of –1x104 cm. The coefficient ε2s is a function of the fictitious thickness of 

the element, and depends, among other factors, on the relative humidity of the 

environment, and is calculated by Equation (51): 
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(51) 

Finally, the coefficient βs(t) is given by: 

3 2

3 2

100 100 100
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C D E


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            
     

. 
(52) 

According to ABNT NBR6118 [12], in cases where high precision is not required in 

determining the final values of the creep coefficient and specific shrinkage deformation, 

the values can be obtained relatively easily through a simple linear interpolation from 

Table 1. This allows for a simplified estimation of the time-dependent behavior of 

concrete. 

Table 1 – Creep and shrinkage of ABNT NBR6118 [12] 

 

 
Environment 

 

 

Humidity 

(%) 

Creep Shrinkage (x104)  

 

  
 

Slump according to ABNT NBR NBR 

16889 [13] 

0 - 4 5 - 9 10 - 15 0 - 4 5 - 9 10 - 

15 

In water - 0,6 0,8 1,0 1,0 1,0 1,0 30,0 

In a very humid 

environment, immediately 

above water 

 

90 

 

1,0 

 

1,3 

 

1,6 

 

- 1,6 

 

- 2,5 

 

- 3,1 

 

5,0 

Outdoors, generally 70 1,5 2,0 2,5 - 3,8 - 5,0 - 6,2 1,5 

In a dry environment 40 2,3 3,0 3,8 - 4,7 - 6,3 - 7,9 1,0 

Source: adapted from ABNT NBR6118 [12]. 
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It should be noted that, according to the normative recommendations, the values 

presented in Table 1 are considered valid for plastic and ordinary Portland cement 

concretes, subjected to temperatures between 0°C and 40°C. 

The coefficient related to irreversible slow deformation, βf(t), which is a function of 

concrete age and given by Equation (42), can also be obtained, in a simplified manner, 

through a graphical analysis, considering the fictitious thickness of the element and the 

fictitious age of the concrete in days. Figure 3 shows the variation of the coefficient 

βf(t) 

Figure 3 – Graphical variation of the coefficient βf(t) 

 
Source: Author 

Similarly, the coefficient βs(t0) (for shrinkage) can be determined through graphical 

analysis using Figure 4. 
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Figure 4 – Graphical variation of the coefficient βs(t0) 

 
Source: Author 

It is also possible to determine, for the same concrete, the curves of irreversible slow 

strain as a function of time, corresponding to different initial loading application times, 

by shifting the strain axis parallelly, as shown in Figure 5. 

Figure 5 – Variation of irreversible slow deformation 

 
Source: adapted from ABNT NBR6118 [12] 

Therefore, Equation (25) can be extended in its final form as: 
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M m
 . (53) 

where it is possible to determine the variation of the structure's frequency as a function 

of the value of concentrated mass, varying at the top of the structure, and time, as the 

total generalized stiffness component will take into account some rheological 

properties of the concrete, namely, creep and shrinkage. 

Therefore, by expressing the frequency in terms of the concentrated mass at the free 

end and time, the critical buckling force is established as a certain value that causes 

the frequency to become zero. This value, when multiplied by the acceleration due to 

gravity, defines the force corresponding to the collapse of the system. 

2.2 STRAIN REGIME INDUCED BY AXIAL LOADING 

In the field of structural engineering, the assessment of a structure's behavior and 

performance under axial loading necessitates the consideration of its overall strain. 

This strain encompasses two primary components: elastic strains and inelastic strains. 

Elastic strains manifest immediately upon the application of the axial load and exhibit 

reversibility, governed by the material's elastic properties. Conversely, inelastic strains 

accrue over time and are irretrievable, attributed to phenomena like creep and 

shrinkage. To accurately anticipate the entirety of strains, engineers meticulously 

analyze both instantaneous elastic strains and time-dependent inelastic strains, 

thereby ensuring that the design adheres to performance criteria and adequately 

accounts for enduring structural modifications. 

In the case of slender reinforced concrete columns, the strain encompassing them 

entails an initial deformation complying with Hooke's Law, as well as a gradual 

augmentation of time-dependent strain rate. The determination of total strains 

assumes paramount significance in the design of these columns, as it guarantees their 

safety and performance throughout their service life. Mathematical models, 
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incorporating approaches grounded in stress-strain diagrams and the foundational 

principles of linear elastic behavior articulated by Robert Hooke [14], are employed to 

evaluate these deformations.  

These deformations can be evaluated using various mathematical models. However, 

two distinct mathematical methods will be presented, which were used in the 

investigations and are part of the collection of published articles that constitute this 

thesis. One method is based on the stress-strain diagram provided by ABNT NBR6118  

[12], which is directly dependent on the compressive strength curve of the concrete, 

i.e., its fck. The second method is based on the premise of linear elastic behavior, 

following the law established by Robert Hooke in 1678 [14]. 

Thus, assuming that the same stress levels are used in both analyses and considering 

the validity of the linear elastic regime, the expected result is that the strain behavior 

obtained by the two different mathematical methods will exhibit similar values. 

The method based on the stress-strain diagram of the Brazilian standard is related to 

the behavior depicted in Figure 6. It can be observed that there is an elastic and linear 

phase characterized by a supposedly straight and inclined segment, where the 

deformations are assumed to be completely recoverable after unloading, with the limits 

defined at positions 0,50fcd (half of the concrete compressive design strength) and εc1. 

This is followed by a nonlinear elastic phase, characterized by a curved and parabolic 

segment, which ends at the pair of points 0.85fcd and εc2. Finally, there is a plastic 

phase, represented by a horizontal line, where the induced deformation cannot be 

completely recovered after unloading. After that, the stresses remain unchanged even 

for increasing strains, which continue to progress for further loading until reaching the 

ultimate value, εcu, indicating failure due to the exhaustion of the structural section 

resistance. 
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Figure 6 – Idealized stress-strain diagram 

 

Source: Author 

The calculation of the compressive design strength of concrete (fcd) is determined 

according to the guidelines of ABNT NBR6118 [12] using equation (54): 


 ck

cd
c

f
f . (54) 

where c is the safety factor related to material uncertainties, which is a value specified 

by the standard, and fck is the characteristic strength assumed in concrete structure 

designs and should be verified using a standardized procedure after 28 days of 

material production. 

Equation (55) is the relationship between stress and strain of concrete, which can be 

used in various analyses, including the ultimate limit state. 

2

0,85 1 1

n

c
c cd

c

f



  
    
   

. (55) 

In equation (55), n = 2 is adopted for concretes with fck less than or equal to 50 MPa 

(fck ≤ 50 MPa). In this case, the adopted values for the specific shortening strain of 
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concrete at the beginning of the linear section (ϵc1), at the start of the plastic plateau 

(ϵc2), and at the rupture strain (ϵcu) are ϵc1 = 0.10%, ϵc2 = 0.20%, and ϵcu = 0.35%, 

respectively. 

To obtain the concrete strain, equation (55) can be inverted with respect to the strain 

component εc, as follows: 

21 1
0,85

c
nc c

ccf

 
 

    
 

. (56) 

As the investigation will be carried out in a temporal manner, the concrete creep strain 

was incorporated into equation (56), following equation (27). Thus, the stress-strain 

diagram becomes time-dependent, as follows: 

21 1 1 ( )
0,85

c
nc c f

cc

t
f

  
 

        
 

. (57) 

 

Figure 7 – Stress-strain diagram with concrete creep 

 
Source: Author 

For the second mathematical model, the approach was based on the assumption of 

elastic-linear behavior of concrete, a concept established by the English 
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mathematician and physicist Robert Hooke, who in 1678 presented a way to calculate 

the elongation in bars subjected to axial load, that, in modern notation, may be given 

by equation (58). 

( )

( )

N x dx
d

EA x
  . (58) 

where N(x) and A(x) are the normal force and the cross-sectional area varying in the 

differential element dx, and E is the modulus of elasticity of the material. Therefore, 

integrating equation (58) over the length of the bar will provide the total displacement 

induced by that force, thus: 

0

( )
( )

( )

L N x dx
t

EA x
   . (59) 

To incorporate the rheological behavior of concrete, we simply replace E with Ec(t), 

where the creep of concrete follows the assumptions described in equation (29).  

The present investigation focuses on the study of slender columns made of reinforced 

concrete. Figure 8 illustrates a generalized mathematical model of a non-prismatic bar 

under compression, which is adopted in the approaches to determine the critical load 

and the final deformation behavior of the column. 

As can be observed, the proposed model pertains to a column fixed at the base and 

free at the top, with a concentrated mass set at the free end. The column may or may 

not have variable geometry along its length. In this case, the column is subjected to 

gravitational forces originating from the concentrated mass distributed along its length. 
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Figure 8 – Mathematical model of a non-prismatic bar under compression 

 
Source: Author 

In Figure 8, g represents the acceleration due to gravity, L is the total length, Ls and Ls-

1 are the positions above and below a segment s; m0 is a concentrated mass fixed to 

the top of the structure; x is the independent geometric variable of the problem, with 

its origin at the base of the column. With respect to a particular segment, Es(t) is the 

longitudinal modulus of elasticity, which takes into account the viscoelastic behavior of 

the material; Ashom(x,t) is the cross-sectional area, assumed to vary with x, representing 

the interpolation of the upper and lower sections at the considered segment, both 

homogenized over time to include the presence of steel reinforcement bars; and mഥ s(x) 

is the portion of the distributed mass along the segment, which includes its own weight 

and other masses per unit length added to it. 

Thus, by adopting equation (59), it can be rewritten considering the variation of a mass 

(m0): 
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 
  


 . (60) 

By definition, it is known that the strain associated with the total elongation produced 

by axial forces related to a certain segment is obtained by summing the displacements 

of the segments located above, and including itself, under the conditions established 

in equation (61): 

0
1

0 2 0

1

( , )
( , ) ( , )

n

s
s

s cc n

s
s

t m
t m t m

L


  



 



. (61) 

where s represents the elongation of segment s and n is the number of segments 

considered in the analysis. In this context, the normal stress can then be calculated at 

section S considering the accumulated strain up to and including the strain of the 

segment under consideration, taking into account the modulus of elasticity of the 

material at the instant of interest, as follows: 

0 2 0( , ) ( , ) ( )cS cc ct m t m E t  . (62) 

Once the stress at a concrete section S is defined using equation (62), equation (57) 

should be written in terms of the same independent variables, leading to its rewriting 

in the form of equation (63): 

0
1 0 2

( , )
( , ) 1 1 (1 ( ))

0,85
cS

ncc c f
cd

t m
t m t

f

  
 

     
 

. (63) 

Therefore, equations (61) and (63) should yield identical results for the same analysis 

when the assumption of linear elastic behavior of concrete is valid. 
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Strain regime induced by axial compression in slender reinforced concrete columns 

using different mathematical approaches. 

3.4 ABSTRACT 

A mathematical investigation to determine the strain regime induced by normal 

compression force in concrete, including the portion due to material creep, was 

presented. The consideration of creep suggests the possibility of changing the 

constitutive law of the material since it introduces a temporal variation, hence the need 
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to use different mathematical paths to evaluate the imposed strains. The analysis was 

conducted on a real reinforced concrete column, with variable geometry and high 

slenderness ratio, on which two different approaches were considered. In the first one, 

a concrete stress-strain curve, standardized by a technical norm, was used. In the 

second one, the integration of differential relations of displacements along the length 

of the structure was adopted. The analysis was performed by considering the structural 

system loaded by just its self-weight to the critical buckling load. 
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3.7 INTRODUCTION 

The design of reinforced concrete structures must be done in such a way as to 

guarantee performance, durability, and safety. In this sense, there are normative 

regulations that aim to systematize the calculation procedures for the dimensioning 

and verification of structural elements built using concrete, presenting analytical-

mathematical formulations to be considered in the analysis process. The Brazilian 

technical standards (Brazilian Association of Technical Standards - ABNT) for projects 

using reinforced concrete structures is ABNT NBR 6118:2014 - Design of structural 

concrete - Procedure [1], which has a technical quality standard that is compatible with 
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international standards, such as ACI [2] and Eurocode [3], and is even ISO 9000 

certified. ABNT NBR6118 [1] presents criteria for evaluating concrete structures in 

relation to their Ultimate Limit State (ULS), which concern the dimensioning of these 

systems, the calculation of stresses and deformation, and verification of structural 

collapse conditions, for which the stress-strain curve of concrete is a central parameter 

of reference. 

In particular, the verification of the ULS of slender reinforced concrete columns has 

been a subject of constant investigation in the scientific environment, since it reaches 

an ULS defined by the loss of stability, which occurs without the column having 

exhausted the resistance capacity of its cross sections. It is noteworthy that advanced 

methods exist to assess the ULS of slender columns, although there are still some 

gaps in relation to their time-dependent behavior [4]-[5] However, it is important to be 

highlighted that the more slender a column, the lower its axial loading capacity due to 

aspects related to its stability [6]-[16]. 

For axially loaded reinforced concrete parts, the displacements resulting from the 

applied force gradually increase with the level of induced stress, passing through 

values that define the behavior of the stress-strain curve of the material. If the stress 

level remains unchanged over time, a solid made of concrete may show increased 

strain, even under these conditions, which are caused by the rheology of the material. 

This property changes the stress-strain curve of concrete as originally presented. 

Rheology is understood to be the study of deformation and flow of matter [17]-[18] 

which is a phenomenon that is directly related to the viscoelastic behavior of concrete 

[19]. When observed in the context of continuum mechanics, the basic assumptions 

associated with rheology admit that the response of a Hookean solid in terms of stress 

can be considered linearly proportional to the strain rate in time [20]. 

For reinforced concrete columns, part of the strain of the structure occurs 

instantaneously, at the moment of application of the load (initial strain) and this obeys 

Hooke's law. Another time-dependent portion (strain rate) tends to gradually increase, 

resulting in much higher values, when compared to the initial ones [21]. Thus, during 
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the design and/or verification of axially stressed slender columns, it is necessary to 

evaluate the total imposed strains, both instantaneous and temporal, to verify the 

suitability of the design for safety, in-service performance and durability [22]-[28]. 

With respect to the temporal strains of reinforced concrete structures, it should be 

noted that these are characteristic of the rheology of the material, called creep. Creep 

is defined as the temporal and gradual increase in the deformation of concrete, even 

under constant stress [29]. It is a phenomenon influenced by a series of factors such 

as, for example, the age of the concrete, when the loading takes place, atmospheric 

conditions and dimensions of the structural element [30]-[32]. Creep interferes with 

induced strains in concrete [33]-[39]. For this reason, in the calculation of strains due 

to creep, ABNT NBR6118 [1] recommends that a mathematical procedure be adopted, 

to determine the coefficient to be assigned to the modulus of elasticity of the material 

and that depicts, in a temporal way, the behavior of the material in terms of creep. This 

behavior is reflected in the entire course of the stress-strain curve, including the region 

of linear behavior. 

In the context of what was previously described, this study sought to investigate, 

through the assumption of two distinct analytic-mathematical processes, the total 

deformations induced by axial loading, which includes the portion due to creep. For 

this, a reinforced concrete column, real, prefabricated, and of variable cross-section 

was adopted. It is noteworthy that the investigated element has a high slenderness 

ratio, which potentiates the strains due to the creep of the concrete [40], resulting in 

reason of this characteristic its choice. The first process was developed based on the 

stress-strain diagram for concrete proposed by ABNT NBR6118 [1], which is a curve 

that is dependent on the characteristic compressive strength of concrete. In the second 

process, the differential relation of deformations of segments related to each cross 

section subject to concrete creep, were considered and conceptualized according to 

the principle established by Robert Hooke in 1678 [41]. As a premise, since the stress 

level is identical in both analyses within the linear regime, the expected result is that 

the strains obtained by the two processes present the same values. This is, therefore, 

the investigated hypothesis. 
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3.8 IDEALIZED STRESS-STRAIN DIAGRAM 

ABNT NBR 6118 [1] established that, for stresses acting lower than 50% of the 

compression strength of concrete, fc, a linear relationship between stresses and strains 

can be assumed. The strength of concrete is a quantity that consolidates as the 

material ages. In that sense, fck is the standard resistance assumed in the design of 

concrete structures, which must be verified by a standardized procedure when an age 

of 28 days is reached since the material was produced. Within the design scope, it is 

necessary to apply an adjustment factor to fck for safety, so that the design value of 

concrete cylinder compressive strength, fcd, is established in accordance with Equation 

(1): 

ck
cd

c

f
f


 , 

(1) 

where γc is the partial safety factor related to the uncertainties of the material, which is 

a value foreseen in the standard. In the analysis of the ULS, the stress-strain diagram 

shown in Figure 1 can be used, which represents the dependence of stress on the 

strain of the concrete established by Equation (2) and valid for the range of strains, 

including the linear elastic, non-linear elastic and plastic regions of behavior (extending 

to the limit allowed for concrete failure).  

As can be seen in Figure 1, there is a typically elastic and linear phase, characterized 

by a supposedly straight inclined line, where the deformations presented are assumed 

to be completely recoverable after unloading. Their limits define the position 0.50σc, 

i.e., 0.42fcd, and εc0; another stretch of non-linear elastic behavior, where the diagram 

is characterized by a curved, parabolic segment that ends at the pair of points 0.85fcd 

and εc2; and another plastic, horizontal segment, where the portion of the induced strain 

cannot be more completely recovered after the solid is unloaded. After yielding, the 

stresses remain unchanged, even for increasing values of strains, which continue 

advancing for new loadings up to the last possible value, εcu. 
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Figure 1 – Idealized stress-strain diagram for concrete in axial compression [1] 


 
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n

c
c c cd

c

f . 
(2) 

In Equation (2), n = 2 is adopted for concretes with fck less than or equal to 50 MPa (fck 

≤ 50 MPa). In this case, the adopted value for the strain of shortening the concrete at 

the limit of the linear stretch, εc0, is proportional to εc1 = 0.10%; at the beginning of the 

plastic plateau, it is εc2 = 0.20%; and for the strain of the shortening of the concrete at 

rupture, it is εcu = 0.35%. 

Equation (3) presents the terms for determining the total strain in compression, εc, 

including the immediate one, εci, and the creep of concrete, εcc, according to the 

definition of the technical reference standard, 

   c ci cc . 
(3) 

For the implementation of creep deformations in concrete, εcc, in the stress-strain 

diagram of the material, it is necessary to consider the two terms that contribute to the 

phenomenon, one referring to the slow deformation, εccf, and the other to the fast, εcca. 

Rapid deformation is irreversible and occurs during the first twenty-four hours after the 
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structure is subjected to loading. The slow strain is composed of two other parts, the 

slow irreversible strain, εccf, and the slow reversible strain, εccd, 

( )c ci cca ccf ccd        . 
(4) 

As can be seen, there is an important change in the constitutive relation of the concrete 

after including the creep, which modifies the stress-strain curve of the material, in 

addition to imposing the concept of irreversibility of strain, even after the body has been 

unloaded, which occurs regardless of the stress level that is induced. With this, it is 

understood that, if the material flows, the part related to this strain cannot be fully 

recovered even if the total discharge of the solid occurs. 

In turn, creep strain can be conveniently described as a function of a coefficient, ϕf(t), 

which is a quantity that incorporates time dependence into the calculation process. For 

its calculation,  ABNT NBR 6118:2014 considers that: (1) creep strain varies linearly 

with applied stress; (2) for stress additions applied at different time steps, the 

respective creep effects obey the superposition principle; (3) the fast strain portion is 

constant over time; (4) the irreversible slow strain is a function of time depending on 

the concrete strength at the loading instant and its final strength in time; (5) the 

coefficient of slow reversible strain depends only on the duration of loading, being its 

final value and growing independents of the concrete age at the time of load 

application; (6) the irreversible slow strain depends on the relative humidity of the 

environment, concrete slump, the member thickness, the age of the concrete at the 

loading time application, and the instant considered in the analysis; (7) the irreversible 

slow strain curve is a function of time which depends on the concrete age at the time 

of loading. 

In this way, it is possible to state that the time-dependent strain of the concrete, 

considering the basic assumptions contained in ABNT NBR 6118 [1], is given by the 

following set of equations, which was already experimentally validated [42]. 

 1 ( )c ci f t    , 
(5) 
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where the coefficient ϕf(t) represents the sum of the coefficients of fast deformation, ϕa, 

irreversible slow deformation, ϕf∞(t), and reversible slow deformation, ϕd∞(t): 

( ) ( ) ( ) ( )f a f dt t t t       . 
(6) 

The determination of the coefficient of fast, slow irreversible and slow reversible 

deformation is given by Equations (7), (9) and (18), respectively. 

0( )
( ) 0.8 1

( )
c

a
c

f t
t

f t


 
  

 
, 

(7) 

where fc(t0) represents the strength of the concrete at the beginning of the external 

loading and fc(t) is the strength of the concrete at time, t, when the analysis is 

performed. Both obey an exponential law that corrects the strength of concrete in 

relation to the design standard, which must be verified 28 days after the production of 

the material, and is given by: 

280.38 1

( )
t

t

c ckf t e f

 
    , (8) 

where t represents days and t28 means 28 days. It is easy to verify that fc(28 days) = 

fck. Therefore, it can be said that the relationship between fc(t0) and fc(t) represents the 

growth function of concrete strength. Observing Equation (8), it is possible to verify that 

the strength of concrete advances with time, surpassing the value of fck, the limit 

established in the stress-strain diagram for design purposes. 

The portion of irreversible slow deformation, as already mentioned, is defined by: 

22
0 0

1 2 2 2
0 0

( )f c c

t At Bt At B
t

t Ct D t Ct D
  

      
            

, 
(9) 

where ϕ1c and ϕ2c are calculated by Equations (10) and (11), respectively; t represents 

the total time, and t0 is the initial time when the load is applied. The coefficients A, B, 
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C and D are calculated, in that order, by the Equations from (13) to (17). Therefore, 

the first coefficient of irreversible strain, ϕ1c, is given by: 

1 4.45 0.035c U   , 
(10)  

where U represents the relative humidity of the environment, expressed as a 

percentage. In turn, the coefficient ϕ2c can be obtained by Equation (11): 

2

42

20
fic

c
fic

h

h






, 

(11)  

where hfic is the fictitious thickness of the part (in cm) given by: 

( 7.8 0.1 )21 U
S

fic
S

e A
h

D

 
 , 

(12) 

where AS and DS are the area and perimeter of the cross-section S, under 

consideration. Then, 

40A  , 
(13) 

3 2116( ) 282( ) 220 4.8fic fic ficB h h h    , 
(14) 

32.5( ) 8.8 40.7fic ficC h h   , 
(15) 

   3 2
75 585 496 6.8fic fic ficD h h h     , 

(16) 

4 3 2169( ) 88( ) 584( ) 39 0.8fic fic fic ficE h h h h      . 
(17) 

In turn, the coefficient ϕd∞(t) is calculated by: 

0

0

20
( ) 0.4

70d

t t
t

t t
 

  
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. 
(18) 
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In this way, the longitudinal deformation modulus of concrete, Ec(t), can be calculated, 

adding the material creep, by: 

0 28

1 1
( )

1 ( )c
f

c c

E t
t

E E


  , 

(19) 

where Ec0 is the longitudinal deformation modulus of the concrete at the moment when 

loading is applied, and Ec28 is the value of this same parameter 28 days after its 

production. For the definition of Ec28, it was considered the slope of the elastic-linear 

regime. Thus, according to the graph in Figure 1, it is possible to write that: 

28

0.85

0.001
cd

c

f
E  . 

(20) 

Therefore, incorporating the temporal variation of the strains to the behavior of the 

concrete, Equation (2) is now written as: 

 2

( , ) 0.85 1 1
1 ( )

n

c
c c cd

c f

t f
t


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 

  
        

, 
(21) 

allowing the introduction of the creep to the stress-strain diagram of the concrete in 

compression. The portion of the deformation due to the creep of the material influences 

all the limits of the original diagram. Figure 2 represents the idealized stress-strain 

diagram after considering the creep of the concrete. 
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Figure 2 – Stress-strain diagram of concrete in compression considering creep [1] 

On the other hand, it is possible to rewrite Equation (2) inversely, to obtain strains in 

terms of concrete stress. Therefore: 

 2( , ) 1 1 1 ( )
0.85

c
nc c c f

cd

t t
f


   

 
     

  
. 

(22) 

3.9 DIFFERENTIAL DEFORMATION RELATIONSHIPS 

Determination of the deformation of solids characterized as longitudinal bars goes back 

to the work of the English mathematician and physicist Robert Hooke. In 1678, Hooke 

established the law that allows calculating the elongation (positive or negative) of a bar 

subjected to normal forces, represented by Equation (23): 

( )

( )

N x
d dx

EA x
  . 

(23) 

N(x) and A(x) are the normal stress and the cross-sectional area, which vary in the 

differential element dx, and E is the modulus of elasticity of the material or Young’s 

modulus. Therefore, the integral of Equation (23) in the length of the bar will give the 

total displacement induced by that effort. If the material constituting the solid exhibits 

viscoelastic behavior, such as concrete, this affects the modulus of elasticity and the 
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cross-sectional area, since it is normally formed by the junction of concrete with 

another material, usually steel reinforcement bars. So, the previous equation can be 

written in the following form: 

hom

( )
( )

( ) ( , )c

N x
d t dx

E t A x t
  , 

(24) 

where Ahom(x,t) is the homogenized cross-section area of concrete, and the integral in 

the element domain (i.e., from 0 to L) leads to temporal displacements because the 

modulus of elasticity defines different values at different instants of time: 

hom0

( )
( )

( ) ( , )

L

c

N x
t dx

E t A x t
   . 

(25) 

If a column as indicated in Figure 3 is considered, the application of Equation (25) in 

this case must be restricted to the domain of each segment of the solid. So, the total 

deformation must represent the accumulation of displacements of all segments under 

consideration, i.e., a summation. The model described in Figure 3 concerns a column 

clamped at the base and free at the top, with a lumped mass applied to the free end, 

which may or may not have variable geometry along its length. In this case, the column 

is under the action of gravitational forces originating in the concreted and distributed 

mass, along its length. 
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Figure 3 – Mathematical model of a non-prismatic bar in compression 

In Figure 3, g is the acceleration due to gravity, Ls and Ls-1 are the positions above and 

below a segment s, m0 is a concentrated mass applied to the top of the structure, and 

x is the geometric independent variable of the problem, having its origin at the base of 

the column. Relative to a given segment s, Es(t) is the longitudinal deformation 

modulus, which considers the viscoelastic behavior of the material. If this is not the 

case, it will be a time-independent parameter, Es. As(x) the nominal area varying 

geometrically in the segment, and Ashom(x,t) is the concrete homogenized cross-section 

area, admitted variable with x and which represents the interpolation of the upper and 

lower sections of the considered segment. The homogenization of the cross-section is 

done to include the presence of steel reinforcement bars. After homogenizing, the 

sections formed by the viscoelastic modulus passe to be also a temporal function. In 

Figure 3, sm (x) is the portion of the distributed mass along the segment, which 

includes its own weight and other masses per unit length that are added to it. The 

dependence of x on the previous or forward parameters disappears if the segment is 

prismatic. 
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If it is assumed that the mass m0 can vary independently, the displacement δs(t,m0) 

presented by each segment s, depends on both time and this parameter, which can 

be written (in terms of what was established in Equation (25)) as: 

1

0 0 1
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(26) 

With 

0 0 0( )N m m g , 
(27) 

and 

1
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s

L

s s
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N m x gdx


  , with ( ) ( ) a
s s s sm x A x m  . 

(28) 

For the segment s, ρs is the density of the material (concrete plus reinforcement in the 

present case); As(x) is the gross cross-section area, which varies with x in said 

segment, as previously stated, if not, it will just be As; and a
sm  is a mass per unit length, 

representative of the external masses added to the segment. It can be written that: 
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
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(29) 

where AS is the nominal not-homogenized cross-sectional area (steel reinforcement 

bar and concrete) provided by the structural arrangement. In Equation (26), the 

homogenized area of the segment s, which geometrically varies with x is found by: 

hom hom 1
hom 1 hom 1

1

( ) ( )
( , ) ( ) ( )S S

s s S
s s

A t A t
A x t x L A t

L L


 



  


, 

(30) 

considering that AhomS(t) is the homogenization of AS, it can be obtained by: 
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hom ( ) ( )c st
S S SA t A A t  , with ( )

( )

st
S

c

E
t

E t
  , 

(31) 

where c
SA  and Ec(t) are the net area and the viscoelastic modulus of concrete, which 

is already defined in Equation (19). st
SA   and st

SE  are the area and modulus of elasticity 

of the steel reinforcement bar of a section S, with s and S having the same counter, n, 

in the summation. ξ(t) is the homogenizing factor. By definition, the strain, εcc2(t,m0), 

associated with the total elongation related to a given segment s is obtained by the 

sum of the displacements of the segments located above, and, even, under the 

conditions established in Equation (32): 

0
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2 0
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( , )
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s
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s
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t m
t m
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
 







, 

 
 
(32) 

where n is the number of segments considered in the analysis. In this context, the 

normal stress, σcS(t,m0), can then be calculated in section S considering the 

accumulated strain up to and including that of the segment under consideration, taking 

the temporal modulus of the material at the instant of interest, by: 

0 2 0( , ) ( , ) ( )cS cc ct m t m E t  . 
(33) 

Once the stress in a concrete section S is defined through Equation (33), Equation (22) 

must be written as a function of the same independent variables, which leads to 

rewriting it in the form of Equation (34): 

0
1 0 2

( , )
( , ) 1 1 (1 ( ))

0.85
cS

ncc c f
cd

t m
t m t

f


  

 
     

  
. 

(34) 

Thus, if the behavior established by the equation of the normative of reference correctly 

describes the linear stretch as such, the results obtained by Equations (32) and (34) 

must coincide. 
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3.10 APPLICATION 

For the present investigation, a slender, real, reinforced concrete post, with variable 

geometry along its height, was chosen. The column selected for the study was 46 m 

high, including the superstructure. It comprised a 40 m hollow circular section, a 

foundation of caisson type (with a base diameter of 140 cm and a length of 20 cm) and 

a shaft with a diameter of 80 cm and length of 580 cm, see Figure 4(a). Table 1 

presents the geometric parameters of the structure, where D is the external diameter; 

th represents the wall thickness of hollow structural sections; db and nb are the diameter 

and number of reinforcement bars, respectively; c' is concrete cover; L are the heights 

relative to the segment s; and S indicates a specific cross section. 

 

 

 

 

 

 

Table 1 – Geometric parameters of the structure 

Parameter 
Section 

S1 S2 S3 S4 S5 

D (cm) 140 80 80 70 70 

th (cm) - - 15 13 13 

db (mm) 12.5 12.5 12.5 12.5 12.5 

nb (und) 20 20 20 20 20 

c' (mm) 25 25 25 25 25 

L (cm) 0-20 20-600 600-1200 1200-1900 1900-4600 

D = external diameter; th = thickness; db = diameter of reinforcement bars, nb = number of reinforcement 

bars; c' = concrete cover; L = height; S = cross section. 

In Figure 4(b), the geometric characteristics of the column are described. In Figure 

4(c), photographs of the real system selected for study can be seen, in which the 
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existence of devices attached to its top can be observed, representing a concentrated 

mass applied to the free end of the column, whose value will be allowed to vary 

independently from zero until the force associated with that mass reaches the critical 

buckling load. With this strategy, it is possible to go through the entire possible range 

of stresses until the column reaches the ULS defined by the proximity of the loss of its 

stability. Additional devices are also installed along the entire structure, featuring a 

distributed mass of 40 kg/m which is added to the column's self-weight. The density, 

ρ, of reinforced concrete is considered equal to 2600 kg/m3 for the superstructure and 

2500 kg/m3 for the foundation. 

To include the creep of the concrete, the following hypotheses were considered: (a) 

the structure was loaded after 28 days of its production (t0 = 28 days); (b) the relative 

humidity of the environment admitted was 70%; (c) the characteristic compressive 

strength of concrete, defined for the superstructure, was 45 MPa (fck = 45 MPa). Thus, 

Ec0 = Ec28 = 27321.43 MPa. For the foundation, the strength of the concrete was 

assumed to be equal to 20 MPa (fck = 20 MPa). Therefore, for this part of the structure 

Ec0 = Ec28 = 12142.86 MPa. 

  

 

 

(a) Geometric parameters  (b) Cross-sections (c) Photographs 
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Figure 4 – The investigated structure. All dimensions are given in cm. 

3.11 RESULTS AND DISCUSSION 

The calculation of strain in these cross sections was exclusively aimed at sections S3, 

S4, and S5, and was performed assuming homogenization over time, in accordance 

with Equation (31). Using the parallel axis theorem [43]-[44], the values found at the 

beginning of the loading of the structure for the homogenization factors were: 1.066, 

1.079 and 1.084 for sections 3 to 5, in that order. At the end of the investigated period 

(7500 days), these values became 1.245, 1.298 and 1.318. It is noteworthy that 

sections S1 and S2 are part of the foundation and, therefore, do not incorporate creep 

in the proposed mathematical investigation, being unusual their verification in the 

present context. 

Table 2 summarizes the results obtained, where εcc2 and εcc1 are the strains obtained 

by the differential relations of displacements and by the stress-strain diagram of the 

concrete, calculated for the time periods of 0, 90, 500, 1000, 2000, 3000, 4000, 5000, 

and 7500 days, all of them chosen for mere convenience. In Table 2, ∆ indicates 

variation. AhomS3, AhomS4 and AhomS5 represent the homogenized sections S3, S4 and 

S5. The following considerations were made in the performed analyses: (a) the 

modulus of elasticity of steel reinforcement was equal to 205 GPa; (b) the concrete 

was produced under standard conditions; (c) the acceleration of gravity was 9.807 

m/s2; and (d) the normal force of compression was positive and applied to the 

geometric center of the section. 

Table 2 – Strains in time 

t cc2 (x 10-3) cc1 (x 10-3)  (%) cc1 , cc2  

(day) AhomS3 AhomS4 AhomS5 AhomS3 AhomS4 AhomS5 AhomS3 AhomS4 AhomS5 
0 0.0723 0.0719 0.0697 0.0737 0.0732 0.0709 1.94* 1.81 1.72 

90 0.1008 0.0971 0.0859 0.1022 0.0984 0.0869 1.39 1.34 1.16 
500 0.1212 0.1151 0.0972 0.1226 0.1163 0.0981 1.16 1.04 0.93 
1000 0.1285 0.1215 0.1012 0.1299 0.1228 0.1021 1.09 1.07 0.89 
2000 0.1340 0.1263 0.1042 0.1355 0.1276 0.1051 1.12 1.03 0.86 
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3000 0.1364 0.1284 0.1055 0.1379 0.1297 0.1063 1.10 1.01 0.76 
4000 0.1377 0.1295 0.1062 0.1392 0.1308 0.1070 1.09 1.00 0.75 
5000 0.1385 0.1303 0.1066 0.1400 0.1316 0.1075 1.08 1.00 0.84 
7500 0.1397 0.1313 0.1072 0.1412 0.1326 0.1081 1.07 0.99 0.84 
∆(%) 48.25 45.24 34.98 47.80 44.80 34.41 - - - 
ecc2 = strains obtained by the differential relations of displacements, Eq. (32); ecc1 = strains obtained 

from the stress-strain diagram of concrete, Eq. (34);  =  difference, * = maximum value. 

The values of strains for each instant of time, t, were calculated through Equations (32) 

and (34), respectively, considering the lowest positions of sections S3, S4 and S5 in 

their respective segments, after the lumped mass was set at the critical buckling load, 

mcr(t), according to Equation (35): 

( )
( ) cr

cr

N t
m t

g
 . 

(35) 

Ncr(t) is the critical buckling load at the instant analyzed. Ncr(t) is defined in accordance 

with Figure 5, which is the model of Figure 3 that can have segments of varying inertia, 

I(x,t), with the addition of lateral springs that characterize the soil-structure interaction 

and a function ϕ(x), which represents the first buckling mode of the column, see 

Equation (40). Under the conditions already established, the generalized stiffness [45] 

of the problem is calculated by considering the following equations. The conventional 

stiffness is found by: 

0 0
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(36) 

while the geometric stiffness is obtained by: 

0 0
1

( ) ( )
n

g gs
s

K m k m


 , 
(37) 

With 
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(38) 

The third part of the stiffness is that which results from the soil-structure interaction, 

being calculated by: 

1

n
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s
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 , with 
1

2( ) ( )
s

s

L
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s s
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k k x x dx


   and ( ) ( )so
s s sk x S D x , 

(39) 

where ( )so
sk x  is a factor that depends on the lateral dimension, Ds(x), of the foundation 

and of an elastic parameter, Ss, inherent to the soil type, in each layer s. Equation (40) 

describes the considered buckling mode: 

( ) 1 cos
2

x
x

L

     
 

. 
(40) 
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Figure 5 – Mathematical model for defining the critical buckling load. 

The final stiffness of the column, K(m0,t), is obtained by the sum of the previous 

components, resulting in: 

0 0 0( , ) ( ) ( )g SoK m t K t K m K   . 
(41) 

In this context, the critical buckling load is established for the condition of zero stiffness, 

at each instant, t, of interest, according to Equation (42): 

0
0 0 ( , ) 0

( ) ( )cr K m t
N t N m


 . 

(42) 

Once the instants of interest are defined, it is possible to follow the correlation of 

structural stiffness, Equation (41), with the force at the free end of the column, Equation 
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(27), and the corresponding Ncr(t) definition (Figure 6). The results consider the soil 

represented by an elastic parameter equal to 2699 kN/m3. 

    

Figure 6 – Correlation of structural stiffness with the force at the free end 

The comparative analysis of the results for the segments related to each cross section, 

assuming the loading condition at the critical buckling load, is shown in Figure 7(a) - 

Section S3; Figure 7(b) - Section S4, and Figure 7(c) - Section S5. 
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(a)  Section S3 (b)  Section S4 

 

     
    Label for the graphics of Figure 7 

(c)  Section S5  
Figure 7 – Strains by using the stress-strain diagram and differential relations. 

On the other hand, following the precepts contained in Equation (21), the stress and 

strain pairs for the referred sections can be determined. Figure 8 presents the stress-

strain diagram for the moments of interest already defined. In the graphs in Figure 9, 

the upper dashed line (dash-dash) indicates the stress corresponding to 0.42fcd, a 

value that delimits, by hypothesis, the linear behavior of concrete. The lower dashed 

line (dash-two dots-dash) indicates the maximum stress, σmax, induced by vertical 

loading in the respective homogenized concrete sections. 
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(a) Section S3 (b) Section S4 

 

 

  
Label for the graphics of Figure 8 

(c) Section S5  
Figure 8 – Stress-strain diagram for different time instants in sections S3-S5 

Using Equations (32) and (34), it is possible to evaluate the deformation regime for the 

set of forces applied at the end of the column, which varies from zero up to the load 

limit established by the critical buckling load. The results are presented for the initial 

and final time of the analysis. With this, it can be seen that there is a slight difference 

between both mathematical processes used for stress values close to the end of the 

loading.  

The simple observation of the graphs in Figure 9 can lead to the assumption that there 

is a perfect correspondence with a straight line, either for results obtained by the stress-

strain diagram or by the differential relations of displacements. However, this only 

holds for analyses performed by differential relations which, in fact, are linear, since 
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they obey Hooke's law. When the results obtained by the stress-strain diagram are 

carefully observed, it can be seen that the region conceptually defined to be linear is 

more properly characterized as a smooth curve, of long radius. This observation can 

be easily proven by calculating the relationships between stresses and strains for 

different pairs of values. In doing that, it is possible to verify the lack of a constancy of 

results, even for positions well below 0.42fcd. 

t = 0 t = 7500 days 
(a) Section S3 

t = 0 t = 7500 days 
(b) Section S4 
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t = 0 t = 7500 days 
(c) Section S5 

Figure 9 – Stress-strain relationship at critical buckling load 

As it is imperative to verify the stress levels in the concrete, this can be done for the 

limit value of the loading, established by the critical buckling load, Ncr(t), according to 

Equation (43), where mcr(t) is the mass associated with the critical buckling load, 

already defined in Equation (35), and σcS(t) is the normalized stress in the concrete 

homogenized section: 

( , ( ))
( )

0.85
cS cr

cS
cd

t m t
t

f


  . 

(43) 

The values of Ncr(t) and ( )cS t  in the analyzed sections, are shown in Table 3. They 

were calculated using the concrete modulus defined in the terms of Equation (20), with 

 indicating the reinforcement ratio of each section. The graph in Figure 10 represents 

the advance of the normalized stresses in the homogenized concrete sections at the 

selected time instants. The maximum stress was found to have a value slightly higher 

than 7% and corresponds to the S3 section at the initial moment of loading. 

 

 

 

 

 



67 

 

 
 

Table 3 – Critical buckling load and normalized stress in concrete 

t Ncr Ncr cS (%)

(day) (kN) (%) 
AhomS3 AhomS4 AhomS5 

(= 0.83%)   = 0.99%) (  = 1.10%) 

0 388.96 - 7.23* 7.19 6.97 

90 237.33 38.98 5.22 5.03 4.42 

500 192.82 18.75 4.56 4.32 3.62 

1000 181.69 5.77 4.38 4.13 3.41 

2000 174.38 4.03 4.26 4.00 3.27 

3000 171.54 1.63 4.21 3.95 3.21 

4000 170.03 0.88 4.18 3.92 3.18 

5000 169.09 0.55 4.17 3.91 3.17 

7500 167.78 0.77 4.14 3.88 3.14 

(%) = -56.86 - 42.74 46.04 54.95 

variation; Ncr = critical buckling load; normalized stress in the concrete homogenized section; 

 steel ratio; AhomS3, AhomS4, AhomS5 are the homogenized cross-sections 3, 4, 5; * = maximum value. 

 
Figure 10 – Normalized stress in the concrete homogenized section in time 
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Through direct observation of the graph in Figure 10, it is possible to see that the stress 

in the concrete tends to decrease with time due to the creep of the material, that is, as 

the strains in the concrete increase, the stresses in the homogenized sections 

decrease with time. The portion of the stress that is no longer resisted by the concrete 

is transferred to the steel of the reinforcement [47]-[48]. 

In addition to the previous analyses, the absolute stress levels for each section 

evaluated, with the normal force applied to the top of the structure, are presented in 

Figure 11. The inflection points represent the imminence of collapse of the system by 

bifurcation of the equilibrium, which assume different values according to each instant 

considered. 

  
(a) Section S3 (b) Section S4 

 

    
   Label for the graphics of Figure 11 

(c) Section S5  
Figure 11 – Stresses with the axial force at the column end 
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3.12 CONCLUSIONS 

In this work, two mathematical approaches were carried out to determine the strain 

regime imposed by axial loading, including the additional portion by creep that 

characterizes the rheological behavior of the material. The inclusion of creep modifies 

the constitutive law of the material and makes the analysis a time-dependent one. In 

the investigation, a slender column made of reinforced concrete, with a geometry 

varying along its length, was adopted for study. It was considered at a time interval of 

7500 days after the system was loaded. In the end, the following conclusions can be 

presented: 

 The maximum final strain refers to the segments above the section S3. Its value 

is equal to 0.141 x 10-3, when obtained by the stress-strain diagram of the 

concrete, and 0.139 x 10-3, when calculated through the differential relations of 

deformation: a difference of 1.07%. 

 The strain variations in the segments related to sections S3, S4, and S5, were 

47.8%, 44.8% and 34.4%, respectively, for the total time investigated when the 

stress-strain diagram was used. The previous percentages are situated at 

48.2%, 45.2% and 34.9% when the differential relationship method is utilized. 

This means that, in terms of the temporal variation of strains, the initial and final 

values is practically the same when observed by one or the other method. 

 Comparing the two mathematical procedures with each other, the time at which 

the analysis is performed is an intervening factor. Considering the period of 90 

days, the percentage difference between the methods is 1.39%, 1.34% and 

1.16%, for sections S3, S4 and S5, respectively. 

 The maximum stress level found corresponds to a little more than 7% of the 

design value of concrete cylinder compressive strength, revealing that the 

stresses induced by the maximum vertical loading, in the analyzed case, 

remained in the region assumed to be linear elastic behavior of the concrete. 

 The comparative study of the results, points to a good agreement between the 

normative stress-strain curve of the concrete and the calculations made with the 
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differential relations of displacements for the entire set of forces analyzed, 

whose value extends to the critical buckling load. This evidence suggests the 

authorization of the use of Hooke's law for the deformation region of the material 

considered as linear. 

 However, it is important to point out that, although the normative reference 

defines the existence of a linear region of strains, the equation suggested to 

describe this behavior cannot accurately associate it with a straight line; it is 

more appropriately characterized as a smooth curve. 
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and nano-engineering will be considered to published. Its impact factor is 2.597. 

4.3 TITLE 

Influence of Atmospheric Humidity on the Critical Buckling Load of Reinforced 

Concrete Columns 

4.4 ABSTRACT 

In this paper, an evaluation of the influence of atmospheric humidity on the critical 

buckling load of reinforced concrete columns is performed. A particular case consisting 

of a real, extremely slender reinforced concrete pole was taken for the study. The 
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chosen mathematical procedure for calculating the critical load is based on the 

Mechanics of Deformable Solids due to variations of structure vibration frequency over 

time. The rheological behavior of concrete related to creep and shrinkage, which 

illustrates the time-dependent aspect of the problem, was also considered in the 

analysis following normative recommendations from the Brazilian Association of 

Technical Standards (ABNT). In order to evaluate value changes of critical buckling 

loads, different time instants after loading the structure as well as different relative 

humidity from 0% to 100%, in 10% increments were considered. According to the 

selected criteria, it was possible to verify that a higher atmospheric humidity decreases 

the water transport from the interior out to the exterior surfaces of concrete, hence 

positively influencing structure stiffness. Therefore, the lowest reduction on critical 

buckling was 41.9% at 100% relative atmospheric humidity, versus the highest 60.7% 

at 0% relative humidity. A period of 7500 days after loading the structure was 

considered in the analysis. 
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Critical buckling load; shrinkage; creep; relative humidity. 
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4.7 INTRODUCTION 

Reinforced concrete is a material formed by fragments of aggregates and a hydraulic 

binder (cement). The water that activates chemical reactions in the cement have a 

direct influence on the properties of the reinforced concrete, since it is essentially 

related to hardening and workability [1]. 

When reinforced concrete structures are exposed to the environment, they may be 

subjected to atmospheric humidity variations, thus affecting its rheological properties: 

creep and shrinkage. Creep is defined as increase in strain with time under constant 

stress level while shrinkage is defined as volume reduction in concrete specimens, 

even when no external loads are applied [2]. Since creep and shrinkage are related to 

water loss from a saturated cement paste, environment humidity becomes an essential 

factor for their determination [3]-[7]. 

Absorbed water diffusion and water held by capillary tensile stress in cement paste are 

time-dependent process that occur over long periods of time [8]. Troxell et al. [9] 

studied these phenomena through creep and drying shrinkage experiments, including 

long term analysis, different concrete mix proportioning as well as different types of 

aggregates, environment and load conditions. According to Troxel et al. [9] 

conclusions, an increase in the atmospheric humidity slows down the relative rate of 

water flow from the interior to the outer surfaces of concrete, i.e., a drier the 

environment produces a higher creep coefficient. Due to this matter, Madureira and 

Fontes [10] evaluated temperature influences on creep of reinforced concrete 

structural elements, particularly observing that temperature increments speed up creep 

effects and also steel yielding, since the increase in reinforcing bars stresses due load 

transfer from concrete may occur earlier. Besides, this effect may also initialize 

concrete’s cracking process, endangering steel corrosion which could decrease 

durability and serviceability of the structure over its lifetime, according to conclusions 

obtained by Shaikh [11]. 
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Although relative atmospheric humidity variation is a phenomenon that is difficult to 

predict in creep and shrinkage experiments, as postulates Wei et al. [12], there are 

several studies published in academic literature that seek to evaluate the relationship 

between environmental exposure and rheological behavior [13]-[18]. Following this 

same line of research, Nastic et al. [19] performed experimental investigations in which 

the concrete was exposed to a relative humidity percentage less than 20%, hence 

observing creep and shrinkage behaviors along 110 days and also comparing the 

obtained results with formulations suggested in reinforced concrete design codes. In 

the end of the study, it was possible to conclude that the relative humidity percentages 

from evaluated normative codes are generally underestimated. On the other hand, 

Zhang et al. [20] studied creep and shrinkage development, correlating internal relative 

humidity levels with global deformation of structures at time instants next the concrete 

placing period. Applications from evaluation of relative environmental humidity 

influences on creep effects on real structures, such as slender buildings, can be found 

in Chowdhary e Sharma [21]. 

Regarding integrity analysis of slender columns designed in reinforced concrete, a 

direct relationship is noticed between the composite’s nonlinear behavior and its load 

capacity [22]. From that, Weng et al. [23] implemented investigations in which 

alternative methods were proposed, though simplified, to identify the instant when 

buckling of reinforced concrete columns occur. Although buckling studies began in 

Statics, in Rational Mechanics, this is a phenomenon with typically dynamic 

characteristics since it involves the equilibrium of mechanical systems. Particularly of 

reinforced concrete columns, stability determination, from Statics or Dynamics 

approaches, can be found in the work developed by Sharma et al. [24]-[25], 

respectively. 

Concrete is a composite material. Therefore, concrete’s properties depend on its 

components features, which may vary with time, temperature, environment conditions, 

and applied loads [26]. Specifically, reinforced concrete is a composite material that 

consists essentially of an association between concrete and a structural steel with low 

carbon content named reinforcement. The basic design hypothesis resides on the 
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perfect adherence between these materials. Design codes for reinforced concrete 

structures, e.g., ACI [27], Eurocode [28] and ABNT [29], present simplified formulations 

seeking to systematize the process of considering rheological behavior of concrete, 

also allowing calculations of load capacity of structural columns, or even contributing 

for strain prediction. In this context, comparisons among different mathematical 

procedures for determining the rheological behavior of concrete can be found in Goel 

et al. [30]. In general, mathematical models applied to predict creep can be represented 

by a time-dependent function associated with viscoelastic rheological models based 

on springs and dampers associations that seek to appropriately describe behavior over 

time, reliant to individual characteristics of the materials.   

Seeking to evaluate critical buckling load variations in slender reinforced concrete 

columns, also considering concrete rheological behavior and different environment 

exposure conditions, i.e., different atmospheric humidities, in this paper a 

mathematical analysis by using Dynamics approach was developed in order to 

evaluate relative atmospheric humidity influences on the determination of critical 

buckling loads of a real slender column, made of reinforced concrete. The criteria for 

considering creep and shrinkage were in accordance with recommendations from 

ABNT NBR6118 [29]. The Brazilian Association of Technical Standards (Associação 

Brasileira de Normas Técnicas – ABNT) is internationally known for its high-quality 

level, being ISO 9000 certified as well. In the presented context, the study in this paper 

comes after two previous developed works [31]-[32]. In the first article, [31], the 

mathematical model established to calculate critical buckling loads was evaluated by 

comparison with Finite Element Method (FEM) results, using computer modelling. In 

the second article, [32], moment of inertia variations over time due homogenization of 

cross-sections subjected to creep were included to structural stiffness portions. In both 

cases, the relative humidity was considered constant. Thus, the present article brings 

an additional step in the investigation, since it includes several relative atmospheric 

humidity percentages in the analysis, as well as analysis of the column load capacity 

for different periods of time. 
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4.8 DETERMINATION OF CRITICAL BUCKLING LOAD 

When developing a mathematical model that seeks to determinate critical buckling 

loads, it is crucial to define a theoretical model capable of representing, as accurately 

as possible, the actual behavior of the structure being analyzed. The developed model 

in this paper is based on the principle of virtual works and also generalized coordinates. 

The model allows the column to have properties varying along the length, such as 

geometry, elasticity or viscoelasticity, density, and reinforcement arrangement. Springs 

are applied to represent the lateral soil-structure interaction. With these conditions, the 

column is under the influence of gravitational forces originated from the distributed 

mass due to self-weight of the structure and other added masses; and of a 

concentrated mass at the top free end, to be defined at the event of loss of stability. It 

was adopted the hypothesis of free vibration mode, undamped, as well as small 

displacements condition, when the normal force direction does not change the 

implementation of the chosen function applied to describe the vibration (or buckling) 

mode. It is important to note that the analytical model is based on the frequency and 

natural mode of vibration, that is an intrinsic characteristic of the structure (column) 

[33]-[37]. 
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Figure 1 - Mathematical model  

Figure 1 represents the proposed model, where: ϕ(x) is a function to approximate the 

shape of the vibratory movement or buckling, known as shape function – an important 

parameter to evaluate structures using a dynamic approach in “trial  functions” method 

[38]-[39],  t indicates time; L is the total length of the column; Ls and Ls−1  are heights at 

the superior and inferior limits of a segment s, respectively; ksSo represents soil 

stuffiness; Es is the concrete elastic/viscoelastic module; sm is the distributed mass 

along the length;  Is is the cross section inertia; g is the gravitational acceleration; Gr 

indicates the buried portion of the column and v is the generalized coordinate, which 

depends on the boundary conditions of the problem – in this case, the free end. The 

proposed formulation is based on dynamics principles, for which the first vibration 

frequency of the column is applied to determinate the event of loss of stability by 

bifurcation of equilibrium. 

Applying the Principle of Virtual Work (PVW) and its derivatives, dynamic properties of 

the system can be obtained, i.e.: conventional elastic stiffness K0, calculated using 
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Equation (1); geometric stiffness, Kg, obtained from Equation (3); and the portion 

regarding the effective soil stiffness, KSoil, calculated with Equation (9). Therefore: 

0 0
1

( , ) ( , )
n

s
s

K t U k t U



, 

(1) 

where k0s is the term that represents variations of stiffness over time, being calculated 

by Equation (2): 
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in which Es is the concrete elastic/viscoelastic module, function of time t and relative 

environment humidity U; Is is the moment of inertia of the section that varies along the 

segment, taken according to the considered movement, obtained by interpolation of 

subsequent sections, all homogenized in time for considering the presence of 

reinforcement; and Kg is the geometric stuffiness obtained by Equation (3): 
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(4) 

in which the normal force at the column free end, N0, becomes a variable that depends 

on the concentrated mass, m0, also located at the free end, obtained by multiplying the 

mass by the gravitational acceleration g. Ns represents the normal force in the 

segments above the considered one, which can be obtained from Equation (5), 
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where sm  is the mass per unit length, defined by the product between material density 

and area of the considered section according to Equation (6), 

( ) ( )s s sm x A x   (6) 

where As represents the cross-section, which can be the tapered or not, area and ρs is 

the material density for the respective segment s. Therefore, the generalized mass of 

the system, which includes both the lumped mass at the free extremity and the 

contribution of the column’s self-weight, is obtained by observing Equation (7): 
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In order to include the soil influence in the equilibrium of the system, it is necessary to 

represent it as a series of translational vertically distributed springs along the 

foundation. Thereby, the soil contribution to the structure stiffness can be defined as: 

1

2( ) ( )
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So

soil s

L

k k x x dx
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  , (9) 

in which the parameter ksSo is an elastic property along the depth of the foundation. 

Considering positive the normal force, the total stiffness can be calculated by the 

expression: 
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0 0 0( , , ) ( , ) ( )g SoilK m t U K t U K m K   , (10) 

and finally, Equation (11) allows the determination of the first natural vibration 

frequency as a time-dependent function, considering the generalized stiffness portion, 

K, and the concentrated mass at the free end, M: 

0
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It is important to state that if some of the mentioned parameters, as functions of x 

and/or t, are constant over the segment length and time, these variables become 

known and assume constant values. In the previous equations, ϕ(x) is the shape 

function of the problem, established according to boundary conditions of the column. 

In the present study, Equation (12) refers to free-fixed columns, 

( ) 1 cos
2

x
x

L

     
 

, 
(12) 

where x is the geometric variable of the problem, beginning at the base of the system. 

Other functions may be used, depending on particulars conditions for the case being 

analyzed. The previous equation represents the solution of the first buckling mode for 

columns with boundaries conditions as indicated in Figure 1, since when x = 0, ϕ(0) = 

0 and x = v, ϕ(v) = 1, as also shown in Figure 3(c). It is worth mentioning that results 

from frequencies or natural periods of vibration were applied by Reis et al. [40] when 

determining the susceptibility to second-order effects as well as when evaluating 

stability of reinforced concrete buildings.  

Should be emphasized that the shape function choice regulates the approximation 

accuracy that must at least obey the essential boundary conditions of the problem 

(kinematic boundary conditions). For this paper, the chosen shape function respects 

the essential and natural boundary conditions (internal forces) in a certain way that no 

artificial stiffnesses are introduced in the generalized coordinate system. The 
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formulation presented above may be applied for calculating structural frequency as 

well as for defining critical buckling load. Specially in the latter case, the final force is 

obtained when the frequency of vibration becomes zero. More details of the 

mathematical procedure and its applications for the studied structure can be found in 

Ref. [41]-[44]. 

4.9 REOLOGICAL BEHAVIOR ACCORDING TO DESIGN CODES 

A mathematical alternative for considering rheological behavior of concrete consists in 

adopting models for predicting creep and shrinkage as presented in ABNT 

NBR611829, approach that does not prevent the use of other design codes. Once 

included in the problem, the analysis of instability of reinforced concrete columns 

becomes time-dependent, since the modulus of elasticity is also time-dependent.  

According to ABNT NBR611829 proposal for calculating creep and shrinkage, when 

concrete stresses show no significant variations, the following simplifying assumptions 

are taken: creep deformation varies linearly with applied stress; for stress increments 

at different time instants, it is possible to superpose their effects, and initial 

deformations generate constant deformations over time. Therefore, deformations due 

creep can be calculated by using Equation (13): 

0( , ) ( ) ( , )c c st U t E t U  , (13) 

where εc is the strain at the particular time t (in days), σc is the compressive stress at 

t0 when the structure is loaded, and Es is the modulus of elasticity, defined by Equation 

(14): 
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where Ec0 is the modulus of elasticity of concrete when loading starts (taken in the 

direction of longitudinal bars); Ec28 is the mean modulus of elasticity (at 28 days), and 
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φ is the creep coefficient at concrete age t due to load applied at the age t0, as given 

by Equation (15): 

0( , ) [ ( , ) ( , )] ( )a f f f d dt U t U t U t           , (15) 

in which φa is the elastic creep coefficient (related to initial deformation), φf∞, according 

to Equation (16), is the final value for creep coefficient (related to irreversible and slow 

strain), depending on relative environment humidity, U, concrete consistency at 

placing, notional thickness of the element, age of concrete at loading (t0) and at a 

particular instant of time (t), for concretes with characteristic compressive strength less 

than 50 MPa. For concretes with characteristic compressive strength between 50 MPa 

and 90 MPa, as indicated by ABNT NBR5379;45 βf at t and t0 are coefficients related 

to the slow irreversible strain depending on the age of concrete. φd∞ is the final value 

of creep coefficient related to initial and reversible strain, considered constant and 

equal to 0.4, while βd is the coefficient related to slow and reversible deformation for a 

given age of concrete after loading. Thus: 

1 2( ) ( ) ( )f c cU U U    , (16) 

in which: 

1 ( ) 4.45 0.035c U U   , (17) 

where U is expressed as percentage. It is worth mentioning that φ1c, as given by 

Equation (17), is valid for slumps in the range of 5 cm to 9 cm (following criteria for 

slump testes from ABNT NBR 1688941) with U ≤ 90%. For ambient humidity equals to 

100%, the Brazilian code suggests 0.8. The parameter φ2c may be calculated using 

Equation (18), 
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where hfic is the element notional thickness (in centimeters), which is a parameter 

calculated according to dimensions and shape of the specimen, expressed in terms of 

theoretical or effective thickness. This thickness can be obtained by a dividing the area 

of concrete section, As, by the perimeter in contact with atmosphere, Ds, as shown in 

Equation (19): 
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where γ is a constant depending on the relative environment humidity given by 

Equation (20): 

( 7.8 0.1 )( ) 1 UU e    . (20) 

Importantly, there is a limit for using this constant, restricted to relative humidities 

between 40 and 90 percent (40% ≤ U ≤ 90%). When the relative humidity becomes 

greater than 100% (including U = 100%) the constant assumes a value of 30 (γ = 30). 

Another variable depending on relative humidity conditions is the coefficient βf, 

determined by the following Equation (21): 
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where the parameters A, B, C, D e E are given from Equation (22) through Equation 

(26): 

40A  , (22) 
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3 2( ) 116( ( )) 282( ( )) 220 ( ) 4.8fic fic ficB U h U h U h U    , (23) 

3( ) 2.5( ( )) 8.8 ( ) 40.7fic ficC U h U h U   , (24) 

3 2( ) 75 585 496 ( ) 6.8
fic fic ficD U h h h U     , (25) 

4 3 2( ) 169( ( )) 88( ( )) 584( ( )) 39 ( ) 0.8fic fic fic ficE U h U h U h U h U      , (26) 

Note that the parameters B, C, D, and E are dependent on the element notional 

thickness (hfic) which has a reference interval between 5 and 160 centimeters (5 cm ≤ 

hfic ≤ 160 cm). For values out of that range, the corresponding extremes are adopted. 

Once all necessary parameters are obtained, the strain portion related to shrinkage 

can be calculated as: 

0( , ) [ ( , ) ( , )]cs cs
s s s st U t U t U     , (27) 

where is the final value of shrinkage, associated with the consistency of concrete and 

ambient humidity, as written in Equation (28), and βs is the coefficient related to 

shrinkage at concrete ages t and t0, Equation (31). Hence, 

1 2( ) ( ) ( )cs
s s sU U U    , (28) 

in which ε1s is a coefficient depending on the relative ambient humidity and consistency 

of concrete, calculated by Equation (29): 
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It is worth to remind that ε1s, as given by Equation (29), is valid for slumps between 5 

to 9 cm, with relative humidity between 40 and 90. For relative humidity of 100%, the 

strain suggested by the Brazilian code is constant and equal to –1 x 104 cm. The 

coefficient ε2s depends on the notional thickness, which also depends on the relative 

humidity, among other factors, and may be expressed as in Equation (30): 
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(31) 

4.10 CASE STUDY 

In order to investigate atmospheric humidity influences on the determination of critical 

buckling loads, a real slender reinforced concrete pole with geometry varying along the 

height was selected. The mathematical formulation main objective was to determinate 

the critical buckling load by using postulations from Mechanics of Deformable Solids, 

observing critical buckling load sensitivity to different relative environment humidity.   

The selected column is 46 m height, including a 40 m superstructure, with hollow 

circular cross-section, and belled shaft foundation with 140 cm diameter and 20 cm 

length at the base, and shaft of 80 cm diameter and 580 cm length. The column can 

be interpreted as an extremely slender structural system, with slenderness ratio of 408. 

Table 1 presents the column geometry, where D is the external diameter; th is the wall 

thickness; db and nb are the diameter and number of reinforcement bars, respectively; 

c' is the concrete cover; H is the height of a segment; and S indicates a specific cross-

section. 
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Table 1 - Cross-sections and reinforcements details 

 S1 S2 S3 S4 S5 

D (cm) 140 80 80 70 70 

th (cm) - - 15 13 13 

db (mm) 12.5 12.5 12.5 12.5 12.5 

nb (Qty) 20 20 20 20 20 

c’ (mm) 25 25 25 25 25 

H (cm) 0-20 20-600 600-1200 1200-1900 1900-4600 

Note: D = external diameter; th = section wall thickness; db and nb = diameter and number of 
reinforcement bars; c' = concrete cover; H = segment height; S = cross-section; Qty = 
quantity. 
 

As can be seen in Figure 2, a set of antennas and a platform are installed on the top 

of the structure. There are cables and ladder along the height of the structure, adding 

up a distributed mass of 40 kg/m. Table 2 summarizes masses and densities of the 

structure. 

  

Figure 2 - Pictures of the reinforced concrete pole 

Table 2 - Masses and densities 

Element Length Density 

Foundation 0-6 m 2500 kg/m3 

Superstructure 6-46 m 2600 kg/m3 
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Distributed mass 6-46 m 40 kg/m 

Concentrated mass 46 m To be determined 

 

Figure 3(a) and (b), show dimension details for each cross-section, including steel bars 

arrangement. For this case in particular, the shape function that defines the first 

buckling mode obeys Equation (12), as displayed in Figure 3(c), which represents the 

exact solution of the problem. It is important to mention that the application of Equation 

(12) for non-prismatic free-fixed columns was validated by Wahrhaftig et al. [31] in 

comparison with other mathematical models.  Evidently the selected case is a 

representative of a family of similar structures, since it is a pre-cast element that could 

be installed in any region of the globe with different atmospheric humidity. 

(a) Geometry (b) Sections (c) Buckling 
mode 

Figure 3 - Structural arrangement, in “cm”. 

Particularly in Brazil, a country of continental dimensions with a territory of 8.5 million 

square kilometers, which has pieces situated in both north and south hemispheres, 

climate conditions change substantially over different regions. Specially for relative 

humidity, the percentages may vary from 20% to 96%. Figure 4, sourced from the 
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National Institute of Meteorology (Instituto Nacional de Meteorologia – INMET) [47] of 

Brazil, shows the average annual relative humidity obtained for a period of 30 years 

(1981-2010) considering the state demarcation. However, as reveals the first National 

Assessment Report (RAN) presented in 2013 in the Brazil Panel on Climate Change 

(PBMC)48, the country’s climate tends to become warmer and reduce relative humidity 

due to global climate changes. 

 

 

Figure 4 - Relative humidity in Brazilian regions. 30 years (1981-2010) states average [47] 
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Data of 2019 taken from INMET,42 Table 3, Figure 5, indicate the highest and lowest 

relative humidity in some Brazilian capitals. 

Table 3 - Average relative humidity values of 2019 [47]  

City (State Abb.) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec ∆(%) 
Aracajú (SE) 61.8 63.9 66.4 66.0 67.5 71.2 72.9 71.9 70.4 67.9 64.3 60.3  21  
Belém (PA) 89.7 91.8 91.9 90.5 87.7 83.0 81.9 75.5 80.0 82.2 83.9 87.8  22  
Belo Horizonte (MG) 55.5 65.5 66.4 66.6 65.8 60.2 51.8 54.4 51.8 51.8 67.8 67.3  31  
Boa Vista (RR) 63.7 59.6 54.7 57.5 83.9 83.6 81.3 79.7 73.8 70.1 71.6 74.0  53  
Brasília (DF) 63.2 74.5 79.2 78.4 70.3 62.1 51.9 44.2 38.2 49.1 68.8 72.6  107  
Campo Grande (MT) 74.3 75.6 75.1 78.9 75.4 67.3 60.8 61.1 54.4 62.8 70.8 76.1  45  
Cuiabá (PR) 74.2 80.9 82.0 81.5 85.2 80.2 75.8 77.5 - - - -  15  
Florianópolis (SC) 81.4 80.1 74.5 78.9 84.1 83.4 80.2 79.2 79.5 81.4 75.5 73.1  15  
Fortaleza (CE) 81.6 84.7 90.1 87.1 84.4 80.1 78.2 73.0 73.4 71.9 72.6 -  25  
Goiânia (GO) 59.5 71.6 70.2 70.2 63.5 51.2 45.6 39.1 *33.9 48.5 63.6 66.8  111**  
João Pessoa (PB) 72.9 78.6 79.5 80.0 77.4 81.6 82.6 79.4 76.7 73.2 70.7 73.0  17  
Macapá (AP) 85.4 86.4 85.3 87.9 85.6 83.6 79.3 76.0 69.5 66.8 68.8 72.2  32  
Maceió (AL) 80.9 78.3 77.0 78.5 79.8 84.6 83.2 85.0 82.5 76.4 73.0 73.3  16  
Manaus (AM) 86.2 88.6 83.9 82.8 82.5 75.6 71.0 66.5 68.3 76.0 78.4 82.5  33  
Natal (RN) 74.5 78.1 80.6 81.8 79.0 80.2 80.4 78.0 78.0 76.1 76.2 76.1  10  
Palmas (TO) 78.5 81.0 81.8 78.8 71.8 54.9 48.1 38.8 41.3 71.3 74.3 74.7  111**  
Porto Alegre (RS) 73.3 71.2 73.8 81.0 86.1 80.9 81.6 76.0 76.1 78.8 72.5 60.5  42  
Recife (PE) 77.2 80.5 81.9 85.5 86.9 83.8 88.3 84.5 82.2 78.5 68.8 67.4  31  
Rio Branco (AC) **92.4 91.0 89.7 87.4 87.0 86.1 87.6 72.8 77.1 84.3 86.6 87.7  27  
Salvador (BA) 75.9 75.2 - - - 85.1 87.0 73.5 82.6 79.3 77.8 76.8  18  
São Paulo (SP) 74.0 75.4 76.8 74.6 74.8 69.0 66.9 70.2 72.7 70.6 75.8 75.1  15  
Vitória (ES) - 75.5 74.9 77.8 - 78.4 74.5 78.0 75.7 75.1 81.0 78.2  9*  

Abb.= Abbreviation; *minimum; **maximum; ∆ = variation 

 

 

Figure 5 - Average relative humidity values for month of the year of 2019. 
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Figure 7, adapted from the Brazilian Institute of Geography and Statistics (Instituto 

Brasileiro de Geografia e Estatística – IBGE), in association with Table 4 from INMET, 

offers an overview of relative humidity variations over that year in the most important 

cities of the country, which allows the comparison with other metropolises in countries 

of similar characteristics.  It is important to consider that what really exists in Figure 7 

are localized points (cities) in a plan (map). The colored regions in there represent an 

approximation of possible real values. The observation of the existing data, which are 

depicted in Figure 6, reveals an average variation of 37% among the considered cities, 

with some variation occurrences reaching 111% as in Goiânia (state of Goiás) and 

Palmas (state of Tocantins). The minimum variation for the year of 2019, by 8%, 

happened in Vitória (ES). The standard deviation for that year was 32%. 

 

Figure 6 - Humidity variation for the year of 2019 for Brazilian capital cities. 
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Table 4 - Two-Letter State Abbreviations (in alphabetical order). 

State name Abbreviation State name Abbreviation State name Abbreviation 

Acre AC Mato Grosso MT Rio Grande do 

Norte 

RN 

Alagoas AL Mato Grosso do 

Sul 

MS Rio Grande do 

Sul 

RS 

Amapá AP Minas Gerais MG Rondônia RO 

Amazonas AM Pará PA Roraima RR 

Bahia BA Paraíba PB Santa Catarina SC 

Ceará CE Paraná PR São Paulo SP 

Espírito 

Santo 

ES Pernambuco PE Sergipe SE 

Goiás GO Piauí PI Tocantins TO 

Maranhão MA Rio de Janeiro RJ Distrito Federal DF 

 

Figure 7 - Brazilian states and capitals with its respective variation of humidity in 2019. 
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4.11 RESULTS AND DISCUSSIONS 

For the analyzed case, the relative environment humidity variations were adopted 

considering U in the interval of 0% ≤ U ≤ 100%, with increments of 10%, and following 

criteria from ABNT NBR611829 to consider creep and shrinkage. Figure 8(a) shows 

the over-time variation of the parameter γ, as can be calculated by Equation (20). 

When the relative humidity was lower than 40%, it was assumed γ = 1.022; when U = 

100%, γ was considered equal to 30.0, as recommended by the Brazilian code. The 

ε1s coefficient, taken in order to determine shrinkage, is also dependent on the relative 

humidity. Figure 8(b) presents ε1s variations for different environment conditions. 

 

(a) Parameter γ Eq.(20) 
 

(b) Coefficient 1s (29) 

Figure 8 - Results of the parameter γ and coefficient e1s by different environment conditions. 

The frequency of the structure first vibration mode and its variation with time was 

computed for relative humidity from 0% to 100%, as can be seen in Figure 9. 

Frequency variations were investigated considering a time interval of 7500 days, 

counted from t0 = 28 days after concrete production, when the structure is initially 

loaded. In this context, the critical load is determined imposing a null value for the 
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frequency at different time instants in the structure lifetime. It was possible to observe 

that a convergency in the load capacity tends to occur around 7500 days, regardless 

the relative environment humidity. Once the load capacity of the column is found as a 

function of expected service life of the structure, the parameters for the evaluation of 

limit states, such as stress and strain, can be analyzed at the desired time instant, 

considering the suggested safety factors for engineering practical applications. 

 

(a) U= 0% 

 

(b) U= 10% 

 

(c) U= 20% 

 

(d) U= 30% 
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(e) U= 40% 

 

(f) U= 50% 

 

(g) U= 60% 

 

(h) U= 70% 
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(i) U= 80% 

 

(j) U= 90% 

 

(k) U= 100% 

 

Figure 9 - Structural frequency variation over-time 

Critical buckling load variations for different adopted relative humidities can be seen in 

Table 5, where Ncr is the critical buckling load e ∆Ncr indicates its variation. Figure 10 

presents a bar diagram to visualize the trend of the results.  According to the results, 

it is possible to conclude that as the relative humidity increases, the critical buckling 

load decreases, after 7500 days of service life of the structure. The greatest variation 

found in this study happened when the relative environment humidity was 0%, resulting 

in 60.7% reduction. In parallel, as the relative atmospheric humidity increased, the 
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critical buckling load variation for t = 0 and t = 7500 days decreased to 42.1%, when U 

= 100%. The results found in this analysis corroborate previous studies developed by 

[50]-[51]. For more humid environments, there is a reduction in rheological effects of 

the material, resulting in a greater load capacity when compared to drier environments. 

Table 5 - Obtained results. 

t U = 0% U = 10% U = 20% U = 30% U = 40% U = 50% 
 Ncr  Ncr Ncr  Ncr Ncr  Ncr Ncr  Ncr Ncr  Ncr Ncr Ncr 

(day) (kN) (%) (kN) (%) (kN) (%) (kN) (%) (kN) (%) (kN) (%) 
0 293.4 - 293.4 - 293.4 - 293.4 - 293.4 - 293.4 - 

90 155.7 46.9 158.8 45.9 161.9 44.8 165.6 43.6 169.8 42.1 174.8 40.4 
500 127.6 18.1 130.2 18.0 132.9 17.9 136.3 17.7 140.1 17.5 144.7 17.2 

1000 121.8 4.6 124.3 4.5 126.8 4.6 130.0 4.6 133.6 4.6 137.9 4.7 
2000 118.3 2.9 120.6 2.9 123.1 2.9 126.2 2.9 129.7 2.9 133.8 2.9 
3000 117.0 1.1 119.3 1.1 121.8 1.1 124.8 1.1 128.2 1.2 132.3 1.1 
4000 116.3 0.6 118.6 0.6 121.1 0.6 124.0 0.6 127.4 0.6 131.4 0.7 
5000 115.9 0.3 118.2 0.3 120.7 0.3 123.6 0.3 126.9 0.4 130.9 0.4 
7500 115.3 0.5 117.6 0.5 120.1 0.5 122.9 0.6 126.3 0.5 130.2 0.5 
D (%)   60.7  59.9  59.1  58.1  56.9  55.6 

      
t U = 60% U = 70% U = 80% U = 90% U = 100% 
 Ncr  Ncr Ncr  Ncr Ncr  Ncr Ncr  Ncr Ncr  Ncr 

(day) (kN) (%) (kN) (%) (kN) (%) (kN) (%) (kN) (%) 
0 293.4 - 293.4 - 293.4 - 293.4 - 293.4 - 

90 180.9 38.3 189.2 35.5 200.7 31.6 214.8 26.8 221.1 24.6 
500 150.5 16.8 158.6 16.2 170.5 15.0 187.2 12.8 195.2 11.7 

1000 143.4 4.7 150.9 4.8 161.8 5.1 177.8 5.0 186.2 4.6 
2000 138.9 3.1 145.8 3.4 155.7 3.8 170.2 4.3 178.7 4.0 
3000 137.3 1.1 143.9 1.3 153.2 1.6 166.8 2.0 175.3 1.9 
4000 136.4 0.7 142.8 0.8 151.8 0.9 164.9 1.1 173.4 1.1 
5000 135.9 0.4 142.2 0.4 150.9 0.6 163.7 0.7 172.2 0.7 
7500 135.1 0.6 141.3 0.6 149.7 0.8 161.9 1.1 170.3 1.1 
D (%)  53.9  51.8  48.9  44.8  41.9 

Note: Ncr = critical buckling load; D = variation 
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Figure 10 - Critical buckling load for relative humidity and time. 

Figure 11 presents critical load variations as a function of relative humidity for different 

time instants selected for this study. 

 

Figure 11 - Critical buckling load variation 
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It can be noted through Figure 11 that as the atmospheric humidity increases, the 

critical buckling load of the structure presents a smaller variation over time. In other 

words, in places with humidity rates greater, the vertical capacity of loading of the 

system tends to variate less over time than in locals with smaller rates. This result is 

related to the rheological behavior of concrete, which is caused by the water movement 

inside the hardened mass. That aspect is potentialized by an environment with low 

atmospheric humidity because it allows a greater exchangeability of moisture from the 

concrete to the environment [52]-[56]. 

4.12 CONCLUSIONS 

In this paper, the influence of relative environment humidity on the determination of 

critical buckling loads was evaluated for a slender column, with cross-section varying 

along the height, made from reinforced concrete. The analysis took into account all 

parameters necessary for the calculation, such as: geometric imperfections, material 

nonlinearity, and rheological properties of concrete. The main conclusions follow: 

 Due rheology of concrete, the evaluation of instability of concrete columns must 

be assessed considering a time-dependent approach. Taking the loading 

moment as 28 days of concrete production, there are still no creep and 

shrinkage effects. Therefore, the critical buckling load does not depend on 

atmospheric humidity.  

 For 0% relative humidity, a 60.7% critical buckling load variation occurred after 

7500 days, in which the result for this time instant is 32.3% lower than results 

for 100% relative humidity.  

 It is worth mentioning that the failure to comply with the previous conclusion 

may cause the system to collapse, whether during design stage or when 

updating the vertical load capacity of the structure, since the critical load 

increase cannot be bearded by load safety factors.  

 The maximum force that could be applied to the column (170.3 kN) refers to 

100% relative humidity condition. With the same percentage, the column 



104 

 

 
 

presented the lowest load capacity variation after 7500 days in service, i.e., 

42.9%.  

 According to this study, the most unfavorable condition for the critical buckling 

load occurs when the relative humidity is near zero. Therefore, when designing 

the element, this condition should be considered for the location where the 

structure will be installed.  

 Assuming Brazil as a reference, it was possible to verify that two urban centers 

presented an annual relative humidity variation that reached up to 111%. In a 

case, this variation was found between a minimum of 34% and a maximum of 

72%, and between 39% and 82% for another case. For Brazil, the maximum 

and minimum relative humidity registered in 2019 were 33.9% and 92.4%.  

 Based on the developed analysis, when assessing pre-cast structures that can 

be installed in any location in a country, it is recommended to adopt the lowest 

relative environment humidity as a precautionary measure. 

 Lastly, it was possible to conclude that the higher the relative humidity, the 

greater the load capacity of the structure and the lower its variation over time. 

This outcome happens due to the fact that a low relative environment humidity 

favors water transport inside the column, affecting concrete creep and 

shrinkage phenomena, which already was experimentally proven. 

 For future studies, a comparison among the results found in this paper and 

results considering other design codes is suggested. The application of the 

mathematical model to other structural systems, such as buildings, could also 

complement the present study. 
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5 GENERAL CONCLUSIONS AND FUTURE WORKS 

This study conducted an analytical-mathematical analysis with the purpose of 

accurately evaluating the load-carrying capacity and deformation behavior of extremely 

slender reinforced concrete columns. The approach adopted was based on the 

fundamental principles of the dynamics of deformable solids. The analysis was carried 

out with careful consideration of the time-dependent rheological behavior of concrete 

and taking into account various environmental exposure conditions following the 

application of loads. To achieve this, the analytical model employed incorporated the 

physical nonlinearity of the material by reducing the flexural stiffness of the concrete 

and mathematically representing its viscoelastic behavior, strictly following the 

normative guidelines prescribed by ABNT NBR6118:2014 [12] to accurately predict 

this phenomenon. 

Based on the advancements achieved throughout the research, it was possible to 

develop and publish two scientific articles in respectable international journals. The first 

article evaluated, through two distinct analytical-mathematical approaches, the total 

deformations induced by axial loading to confirm the premise that, within the 

considered range, Hooke's law is valid and, therefore, there should be no difference 

between the final deformations obtained by both methods. In the second article, the 

formulation was applied to a real practical case, assessing the influence of ambient 

relative humidity on the determination of the critical buckling load over a period of 7500 

days following the initiation of loading. In conclusion, important findings were obtained 

within the context of the two published articles, as described below: 

 As evidenced in the publication titled "Strain regime induced by axial 

compression in slender reinforced concrete columns using different 

mathematical approaches," it was found that the application of Hooke's Law as 

an assumption for the linear behavior of deformations is valid in the context of 

determining the critical buckling load in slender reinforced concrete columns. 

This validity encompasses the temporal behavior of concrete, taking into 

account the variation of properties over time. 
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 The analytical development presented in this research, using the concepts of 

solid mechanics, has proven to be effective in analyzing elements whose 

mathematical model can be represented in a one-dimensional manner, such as 

slender reinforced concrete columns, buildings etc., 

 The maximum difference in total deformations of the investigated structure 

using the two distinct mathematical approaches, namely the stress-strain curve 

(normative) of concrete and the method of integrating the differential 

displacement equations along the length of the structure, was found to be 

1.07%. This comparative study of the results indicates a good agreement, thus 

confirming the validity of Hooke's law for the linear deformation region of the 

material. 

 Despite the minimal difference observed in the comparison of the proposed 

mathematical methods in this study, it was noted that the equation suggested 

to describe the relationship between deformation and stress would be more 

suitable to characterize it as a smooth curve rather than a linear straight line. 

 After 3000 days since the structure was put into service, a convergence of 

deformation results was observed, validating the proposed time period in the 

conducted analyses, which corresponds to 7500 days. During this interval, it 

was found that the relative humidity of the environment has a significant impact 

on the load-carrying capacity of slender reinforced concrete columns. A 

maximum reduction of 60.7% in load capacity was observed when the relative 

humidity was 0%, and a reduction of 59.9% was observed when the relative 

humidity was 10%. 

 The results obtained in this research clearly highlight the importance of 

considering the rheological behavior of concrete when making design 

predictions for the load-carrying capacity of extremely slender reinforced 

concrete columns. The structure investigated in this study consisted of a precast 

reinforced concrete element with potential application in different regions. It was 

demonstrated that in areas with predominantly humid climates, such as the 

southern and southeastern regions of Brazil, the analysis becomes more critical 

due to the effects of the environment. 



112 

 

 
 

As suggestions for future work, it would be interesting to incorporate the formulation 

presented in this study into analyses of buildings, evaluating their behavior in a one-

dimensional manner. Additionally, adimensionalizing the analysis in terms of 

slenderness would be beneficial in order to broaden the applicability of the study. 

Comparisons with other calculation methods for slender reinforced concrete columns 

could be included to assess their effectiveness and accuracy. Another improvement 

would be to conduct experimental tests on slender reinforced concrete columns using 

strain gauges to compare the numerical results obtained in this investigation with 

empirical data. This would contribute to validating and enhancing the proposed 

mathematical analysis. 
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