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Resumo

Com a evolução dos computadores e da complexidade dos problemas em engenharia,
é natural que também ocorra o surgimento de novos métodos numéricos que se insiriam
nessa realidade. O Método dos Elementos Virtuais (MEV) se propõe a generalizar o clássico
Método dos Elementos Finitos (MEF), sendo mais permissivo ao que se diz respeito aos
elementos de discretização na malha, abrangendo qualquer polígono convexo e não convexo.
Utilizar quaisquer polígonos traz como consequência a utilização de funções de forma não
polinomiais. Para tanto, o método busca computar tais funções de forma implícita, sem a
necessidade de fórmulas de quadratura. O método foi originalmente aplicado a Equação de
Poisson e, por se tratar de um método relativamente recente, a gama de aplicações voltadas
para problemas reais de engenharia de estruturas ainda não é tão vasta quando comparada
com, por exemplo, o Método dos Elementos Finitos ou o Método dos Elementos Finitos Gen-
eralizados. Assim existem muitos caminhos possíveis para serem explorados com o intuito de
expandir o estado da arte referente ao MEV. Neste projeto, desenvolve-se uma metodologia
para aplicação do Métodos dos Elementos Virtuais no modelo reológico elástico linear. E,
consequentemente, realizam-se comparações com o clássico Método dos Elementos Finitos
ao que se diz respeito a desempenho em geometrias complexas, levando em consideração as
particularidades e características de cada método.

Palavras-chave: método dos elementos virtuais, método dos elementos finitos, modelo elás-
tico linear, equação de poisson
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Abstract

Considering the evolution of computers in the recent years and the notorious increase
in the complexity of engineering problems, it is natural that new numerical methods come
up in order to take part in this reality. The Virtual Element Method (VEM) main proposal
is to generalize the classical Finite Element Method (FEM), being more permissive regard-
ing the mesh discretization, embracing every convex and non-convex polygon. Using this
large variety of polygons types brings as consequence the necessity of working with non-
polynomial functions. The method computes these functions implicitly, without the need
of any quadrature formula. The Virtual Element Method was originally developed for the
Poisson Equation and, for being relatively recent, the range of applications related to struc-
tural engineering is still very limited when compared to the Finite Element Method or the
Generalized Finite Element Method. In this sense, there are a lot of possible paths that can
be followed aiming to expand the state of art related to VEM. On this project, it is presented
a methodology for the application of Virtual Element Method on the linear elastic rheolog-
ical model. Consequently, comparisons with the classical FEM were made with respect the
performance alongside simple and complex geometries, considering the particularities and
characteristics of each method.

Keywords: virtual element method, finite element method, linear elastic model, poisson
equation
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Chapter 1

Introduction

A great variety of engineering problems does not possess analytical solutions or they
are quite difficult to obtain in general contexts. In this sense, considering the evolution
of computers, numerical methods became an indispensable tool for engineers. There is a
entire research line dedicated to study this subject and it intersects different areas like
mathematics, physics and engineering. This research line is very general and is focused on
studying algorithms to solve mathematical problems numerically. Methods that are related
to partial differential equations (in short, PDEs) and integral equations are particularly
interesting to handle engineering problems. A classical method that is already consolidated
both on industry and on academia is the Finite Element Method (FEM). This method first
appearance dates from the 1940s and it is based on the work of Alexander Hrennikof and
Richard Courant.

In a general way, the Finite Element Method has foundations on variational calculus and
on analysis of partial differential equations. The method aims to solve PDEs approximately
by dividing the domain on smaller pieces called elements. Figure 1.1 shows three dimensional
images using tetrahedral elements. FEM has a sophisticated model but a relatively simple
implementation, making it very popular among different fields of engineering and being
applied not only to structural engineering but also to thermal, electromagnetic and fluid
dynamics problems. There is also a very strong mathematical interest behind FEM because
partial differential equations are a broad and fertile field.

While the complexity of engineering problems increases yearly, the computational power
grows up in the same proportion. In this scenario, alternative methods started appearing to
substitute, generalize or complement the classical Finite Element Method. The Generalized
Finite Element Method (GFEM) is a method that uses the concept of partition of unity on
the enrichment process to build the shape functions. As result, characteristics and informa-
tion of the problem’s original differential equation are inserted on each approximation space
and more precise approximation functions can be found. More details about the GFEM can
be found in Babuška and Melenk (1997) and Melenk and Babuška (1996). Other alternative
method is the Finite Cell Method (FCM) that addresses the mesh discretization. Here, the
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Figure 1.1: Three dimensional mesh with tetrahedral elements.
Source:(Geuzaine and Remacle, 2009)

mesh is not only made for the geometry but for the domain using squares and cubes as ele-
ments. Figure 1.2 shows the meshing process in steps (a) to (f) on FCM related to the modal
analysis of a ship propeller. Step (a) shows the definition of geometry domains exported by a
CAD software, step (b) shows the discretization of the domains using cubes, step (c) shows
the finite cell mesh, step (d) shows the refinement of cells, step (e) shows the connection of
finite cells and step (f) shows the result of the first eigenmode. Quadrature methods are use
to determine what is inside and whats is out of the geometry. For further details about the
method one can see Schillinger and Ruess (2015). The Smoothed Finite Element Method
(SFEM) is a combination of the classical FEM with meshless methods properties. It aims
to make mesh regularity less restrictive when compared to FEM and more details can be
found in Zeng and Liu (2018) and Zhang et al. (2020). Finally, the Virtual Element Method
(VEM) is the main study object of this project and it is described further.

It should be noted that working with numerical methods is a task that is not limited to
the field of application. Often, the models of these methods derive from concepts of pure
mathematics and must be adapted to an engineering solution. Therefore, it can be quite
a challenging task and it is important for the researcher working in this area to posses
domain from both ends. The VEM is a direct consequence of the Lax-Milgram Theorem and
the Riesz Representation Theory that are classical results of functional analysis and partial
differential equation analysis. The understanding of the details of the mathematical model
allows the researcher to have plenty domain of all potentialities of the method, understand
its limitations and find ways to enhance it.

The Virtual Element Method (VEM) is a relatively new model, first published in 2012
and developed by a group of mathematicians in Italy. The method has a rigorous mathe-
matical formulation requiring a background that is not common in engineering courses. To
understand the VEM and its potentialities it is necessary to be familiar with concepts such
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Figure 1.2: Finite Cell Method mesh discretization process on a ship propeller.
Source:(Schillinger and Ruess, 2015)

as Functional Analysis, Measurement Theory and Analysis of Partial Differential Equations.
The method aims to generalize the Finite Element Method with respect to the discretization
of the mesh, by being less restrictive with respect to the elements, covering any convex and
non-convex polygon. Figure 1.3 shows an illustrative example of non-convex mesh. Using
any polygons results in the use of non-polynomial functions. Therefore, the method seeks
to compute such functions implicitly, without properly knowing them. However, this makes
the method highly dependent on the choice of degrees of freedom and, consequently, on the
geometric input parameters.

Although recent, the VEM already has a certain projection in the scientific community
due to its performance in complex geometries and versatility in discretization. The bench-
mark used for the method is the Poisson Equation and, even that, requires a considerable
amount of work to be understood and implemented, as shown in next section. Even though
the description of Poisson Equation is broadly available, the formulation is not extensively
used in real structural engineering problems except for some particular problems and applica-
tions. This is due to its mathematical formulation that is not as intuitive as other numerical
methods. Consequently, there is a lack of comparative analysis of the performance of the
VEM to other methods in engineering problems. Thus, the central problem that the project
intends to address is to analyze the performance of the VEM applied in a linear elastic
rheology for a complex geometry.

1.1 Objectives

The main motivation for this project is the Virtual Element Method. Since VEM is very
recent, it has many paths to be explored with great potential for engineering research. As
stated in the previous section, the method generalizes the already consolidated FEM. In this

3



Figure 1.3: Non-convex mesh using the word VEM and a background as element.
Source:(Park et al., 2019)

way, it improves aspects of the FEM, making it able to become a powerful tool in structural
analysis. As this method is born from a research group in mathematics, at first, it is not
concerned with engineering applications. Over the past few years some applications have
emerged, showing the method a promising future. Thus, regarding to the Virtual Element
Method aspects mentioned before, the following hypothesis are used:

• Due to the less demanding quality of the mesh thanks to the greater flexibility in the
form of the discretizing elements, the Virtual Element Method is more accurate and
more precise when working with complex geometries than the classic Finite Element
Method.

• The Virtual Element Method is more robust about the mesh distortion. For example,
when the nodes coalesce, the method continues to present trustful results.

Those hypothesis were formulated based on the works of da Veiga et al. (2013a), da Veiga et al.
(2014), da Veiga et al. (2017b) and Mengolini et al. (2019).

The first part of the project aims to study the model of the method for the Poisson
Equation in a very detailed way, considering all mathematical aspects. Then, apply the
method to the linear elastic model. In this sense, the general objective of the project is to
explore the Virtual Elements Method particularities and characteristics. And, consequently,
to compare the results of VEM and FEM with complex geometries in structural engineering
problems. Therefore, the mathematical formulation for linear elastic problems is developed
based on the methodology used in the development of the method for the Poisson Equation
presented in the first VEM model.
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1.2 Outline

This work is divided in 9 chapters. The first chapter that was already presented is the
introduction to contextualize the problem and present the objectives. Chapter 2 is dedicated
to the literature review of the main works related to VEM. The next chapter is related to
the formulation of the Virtual Element Method to Poisson Equation and the mathematical
model of the method is presented. On Chapter 4, the implementation matrix framework is
shown alongside an example of a problem with analytical solution.

The Theory of Elasticity is introduced in Chapter 5 and Chapter 6 is dedicated to the
Saint-Venant Torsion problem, where the formulation using Pradtl’s Function is presented.
At the end, the results of VEM, FEM and FDM are compared. Next, the Virtual Element
Method applied in the linear elasticity context is presented. Thus, use cases of the VEM are
presented in Chapter 8, including the complex geometry case. Finally, Chapter 9 is dedicated
to conclusions.
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Chapter 2

Bibliographic Review

In this chapter the bibliographic review concerning to the Virtual Element Method is
presented. The first section is dedicated to discuss the original mathematical model of VEM
for Poisson Equation and for the differential equations of linear elasticity. Also in this section,
papers about Virtual Element Method implementation are analyzed. The second section is
focused on VEM usage in more specific applications in order to illustrate its versatility in
different situations.

2.1 The Virtual Element Method

The paper da Veiga et al. (2013a) is a canonical paper of the Virtual Element Method.
The authors presented in this work the mathematical formulation of the method for the
Poisson Equation in two dimensions. It started with the continuous formulation of this
equation in order to find a weak solution for it. For that, weak derivatives and Sobolev
Spaces were introduced. With the weak formulation, the discrete problem was introduced.
It was presented a set of hypotheses that establishes the main components of the method
and a set of hypotheses that presents conditions for its operation. Using these hypotheses, a
theorem was enunciated stating that the discrete problem has a unique solution and that the
method converges. Using this theorem, the authors showed that the method derives from
the classic result in Analysis of Partial Differential Equations, which is the Lax-Milgram
Theorem. Also in this article, it was shown how the construction of the virtual element
space is made, which can contain both polynomial and non-polynomial functions. It was
also proven that the set of degrees of freedom chosen for a given geometry is unisolvent,
that is, this set defines a single function in the space of virtual elements. In order to deal
with non-polynomial functions, the projection operator Π∇ was introduced, which projects
functions from the space of virtual elements onto the space of polynomials.

The work presented by da Veiga et al. (2014) gave a direction of how VEM can be applied
to the Poisson Equation. This paper has more practical aspects than the previous one. Taking
a random geometry, a discretization was made in simple polygons (convex or non-convex).
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Here, the authors elucidated how the choice of degrees of freedom should be made. Taking
any function in the virtual element space, the chosen degrees of freedom were: the value of
the function at the vertices of each polygon, the value of the function at the midpoint of
each edge and the value of the function at the interior points of the polygon. From there, a
non-canonical basis was defined for the polynomial space. This basis takes into consideration
a weighting with the geometric parameters (centroid, polygonal diameter and area) of each
element of discretization. Then, the projection operator Π∇ was used to build the stiffness
matrix using this non-canonical basis for the polynomial space and the chosen degrees of
freedom. It was shown that the local stiffness matrix is computed directly from the degrees of
freedom, reinforcing the importance of a robust input of geometry data. The loading vector
was computed by introducing a L2 operator that projects elements of the virtual element
space into the polynomial space using the L2-norm. Finally, some results are presented for
elements of different shapes.

Exploring VEM properties, de Dios et al. (2016) presented a nonconforming formulation
to the method regarding to the Poisson Equation. The nonconforming term here is related
to the mesh. The paper focused on proposing a very general mathematical model for the
nonconforming VEM in two and three dimensions. In this sense, a formulation for any
order of accuracy and any polygon shape was presented. The order of accuracy refers to the
dimension of the polynomial space in which the functions of the space of virtual elements
are projected. The authors stated that for triangular elements and order of accuracy equal
to one or two, the choice of degrees of freedom is the same for nonconforming VEM and
the nonconforming Finite Element Method. Because of the generality of VEM formulation
regarding to the mesh, the construction of the model is very similar to what is done in
both of previous papers. No numerical analysis was done but some formulation comparison
regarding the nonconforming FEM are made. The authors claim that the VEM formulation
is more direct and complex meshes can be analyzed in simpler way using functional analysis
tools. A extension of this work is presented on Cangiani et al. (2017b), where the authors
proposed a unified framework for conforming and nonconforming Virtual Element Method.
Also, numerical simulations were done for the Poisson Equation in a unitary square domain,
showing that conforming VEM has very close results to nonconforming VEM.

The Virtual Element Method formulation was presented for general elliptic problems in
da Veiga et al. (2016) and not just for the Laplace Operator as it has been done previously.
Roughly speaking, to make this formulation possible, the projector operator that was orig-
inally defined for the classical H1-norm is defined for the L2-norm. The formulation of the
projection operator with the L2-norm was developed in Ahmad et al. (2013). The pipeline
for the construction of the method is very similar to the papers presented earlier and a new
formulation for the error estimation is shown. Numerical tests showed that, for low accuracy
order, the method converged as expected.

In da Veiga et al. (2013b) a discussion was made about the application of the Virtual
Element Method regarding the linear elastic model. The theorems presented da Veiga et al.
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(2013a) are revisited and proved again. A set of hypotheses was made about the regularity
of the space of virtual elements that, in classical works, was implicit. The construction of
the method for the elastic rheology is very similar to what was presented in the classical
articles, being done from a rigorous mathematical perspective and not focusing on imple-
mentation. Thus, the construction of the method components, like the stiffness matrix and
the loading vector, were not very clear for immediate application. In Gain et al. (2014), a
three-dimensional formulation of VEM was presented with a focus on its application to the
linear elastic rheological model regarding to a set of differential equations to solve the linear
elasticity for solids. The formulation was derived in detail and an implementation framework
was presented. Both works presented some guidelines for error analysis and some numerical
tests. An extension of these works was presented in da Veiga et al. (2015), which the focus is
the formulation of VEM for non-linear elastic and inelastic problems for small deformations.

Artioli et al. (2017) proposed a matrix framework and explained in detail how to build
each component of VEM formulation. The main focus of the paper was to present guide-
lines to implement Virtual Element Method applied to linear elastic model, very similar
to what is done in da Veiga et al. (2014). This work is more general in many aspects than
da Veiga et al. (2013b) because it can be extended to non-linear problems. In the first part
of the work, general aspects of VEM, like the transition of the continuous problem to the
discrete problem, the choice of degrees of freedom and construction of virtual element space,
are presented. The second part is dedicated to discuss the construction of the bilinear form
and the load vector using a matrix framework. In particular, the bilinear form is divided
into consistent and stabilization term and their construction is discussed for linear and non-
linear cases. The linearity of VEM model is related to the order of accuracy as was discussed
before. Some tests on simple geometries were made and VEM was compared with FEM. The
Virtual Element Method numerical solutions were very close to the finite element ones both
for linear and non-linear model. Although, the author states that VEM was insensible with
respect to mesh distortions.

Sutton (2016) and Ortiz-Bernardin et al. (2019) centered the discussion not only on the
characteristics and particularities of the method implementation, but also proposed a solver
for VEM. In Sutton (2016), it was presented a practical work but dealing only with the
Poisson’s Equation in two dimensions without any rheological model applied. The author’s
main goal was to present the implementation of a solver for the Virtual Element Method in
MATLAB. The used model follows the same methodology presented in the last two previous
articles. After presenting the model, the author detailed each part of the developed code.
By presenting the code, the authors make the model less abstract and bring it more on
par to the structural engineering context. This project used both a MATLAB native mesh
generator and a generator developed by Talischi et al. (2012) (also written in MATLAB)
called Polymesher. Examples of the mesh types can be seen in the figure 2.1. No comparisons
were made between the Finite and Virtual Element Method.

Ortiz-Bernardin et al. (2019) proposed an implementation of the Virtual Element Method
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Figure 2.1: Mesh examples available on Sutton (2016) solver.
Source:(Sutton, 2016)

applied to the linear elastic model and the Poisson Equation in two dimensions using C ++.
The approach to solve the Poisson equation vary from previous articles. While in other works
the problem is dealt with a pure mathematical to numerical approach, this paper follows the
numerical path from the start. This can be clearly seen by the preponderant use of matrix
algebra in the model. Therefore, the implementation of the elliptical differential equation
was restricted to a particular implementation of the linear elastic model. In this project,
the authors took full advantage of the object orientation available in the C ++ language.
In the project was available a built-in mesh generator and the Polymesher generator. The
implementation for the linear elastic model was built upon the Weak Galerkin Method. The
matrix framework was a particularization for what was done in Gain et al. (2014) for the
case in two dimensions. Comparisons with FEM are allowed within the project due to an
available functionality that allows the calculation of the method’s convergence considering
the L2 norm and H1 norm. A comparison was made between FEM and VEM implementa-
tions, concluding that for the same number of degrees of freedom and for the same number
of elements of discretization, the precision and accuracy in the results was similar. A sim-
ulation of a problem with analytical solution in a unitary square domain was also carried
out. The domain was discretized using Voronoi mesh and the Virtual Element Method was
applied. This problem can be seen in Figure 2.2. It is obtained that in the standard L2 the
error is less than 3 %.

The work presented in Zhang et al. (2019) is an extension to the liner elasticity regarding
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Figure 2.2: Square plate domain for Poisson Equation and analytical solution.
Source:(Ortiz-Bernardin et al., 2019)

the mesh nonconforming VEM. The authors started with a quick review about nonconform-
ing FEM, stating that high-order elements for classical nonconforming FEM are difficult to
build. It was said that, for nearly incompressible materials, the lock phenomenon can hap-
pen. Therefore, the main proposal of the paper was to build a locking-free nonconforming
VEM. The model was formulated based on the linear elasticity presented in da Veiga et al.
(2013b) and on nonconforming VEM presented in de Dios et al. (2016). Numerical simula-
tions were performed and a comparison to conforming VEM was made, concluding that the
results were very close. Also, the authors conclude, as have been shown in the nonconforming
formulation for the Poisson Equation, that for low accuracy orders and triangular mesh the
nonconforming VEM coincides with nonconforming FEM.

Mengolini et al. (2019) focused on the comparison between Finite Element Method and
Virtual Element Method by studying linear elastic models. In the first part of the article,
the authors described the qualitative characteristics of the method and proposed a formula-
tion directly from the perspective of numerical methods. A pseudo-code was also presented,
highlighting the main points of its implementation, like computing the local stiffness ma-
trix directly from the degrees of freedom. This pseudo-code summarized what was done in
Gain et al. (2014), Sutton (2016) and Ortiz-Bernardin et al. (2019). In the second part of
the article, a comparison was made between VEM and the FEM taking into account the
number of degrees of freedom and the polygonal diameter h. Also, it was made a comparison
of VEM’s performance for different orders of accuracy k. For the evaluation of the error, the
standard L2 norm and the standard classic energy norm were used. The results were eval-
uated using a quadrilateral plate geometry. In Figure 2.3, it is possible to observe that the
convergence towards higher orders of accuracy is faster, making the error smaller for both
the number of degrees of freedom and the size of the polygonal diameter. The disadvantage
of using higher accuracy orders is that more geometric parameters will have to be computed
and more robust the data input must be, thus making the implementation of the method
more complicated. Is noteworthy that no complex geometry was tested.
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Figure 2.3: VEM convergence for different accuracy order with respect to the degrees of freedom
and polygonal diameter. The L2 norm is presented on (a) and (b) and the energetic norm is
presented on (c) and (d)

Source:(Mengolini et al., 2019)

From the papers reviewed, independently of the chosen approach (numerical method
framework or pure mathematics abstraction), it is clear that there is a methodology for
the implementation of Virtual Element Method concerning to the Poisson Equation as it is
described below:

1. Domain discretization.

2. Construction of virtual element space.

3. Introduction of projection operator Π∇.

4. Construction of the local stiffness matrix.

5. Construction of the local load vector.

6. Assembly the local components and solve the global problem as in the Finite Element
Method.

This project aims to develop a VEM formulation for linear elastic rheology problems, similar
to what is done using Finite Element MEthod.
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2.2 Applications of the Virtual Element Method

Some applications of the Virtual Element Method in more specific areas are presented
in this section. In Wriggers et al. (2016), the method was applied to the problem of struc-
tural contact, using Lagrange multipliers and penalty method, as in classical Finite Element
Method approach. According to the authors, the application of the virtual elements in the
contact formulation makes it possible to build a node-to-node contact approach. The contact
meshes were transformed into coincident meshes at the interfaces that were not necessarily
coincident. In general, VEM allows the addition of nodes in the discretization and, conse-
quently, the calculations for each element remains unchanged. A non-matching mesh and a
mesh with additional nodes considering VEM mesh discretization are shown in Figure 2.4.
In this article, only the linear case of VEM was used and the approach was very close to
Gain et al. (2014). A new way to build the bilinear form was introduced by Wriggers et al.
(2016). In Aldakheel et al. (2020), the contact formulation was extended to curved edges
that are related to modeling complex geometries. The authors concluded that there were no
major complications regarding the implementation of VEM.

Figure 2.4: Non-matching mesh and a mesh with additional nodes considering VEM mesh dis-
cretization

Source:(Wriggers et al., 2016)

Paulino and Gain (2015) presented an application of VEM for topology optimization
using tessellation. According to the authors, topology optimization main goal is to optimize
the material distribution according to design requirements. The Virtual Element Method
was used to solve the elasticity state equations concerning to the optimization. The authors
stated that tessellation is up to the next stage of element shape evolutionary line and in
the first part of the work a discussion about that was presented, starting with tessellation
of simple polygons and then presenting the ideas behind M.C. Escher’s Tessellations. The
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basic idea was to use the fact that VEM can work with any polygon and, consequently,
the shape functions can be computed implicitly. Some tests were performed using meshes of
different shapes and some comparisons with FEM were made. The results with VEM were
consistent and near to FEM solution. Figure 2.5 shows an example of topology optimization:
a) cantilever beam problem, b) mesh with bird elements, c) converged topology.

(a) Cantilever beam problem (b) Mesh with bird figures (c) Converged topology

Figure 2.5: Example of topology optimization.
Source:(Paulino and Gain, 2015)

The Virtual Element Method can also be applied to fluid dynamics problems. Consid-
ering the two dimensional case, according to the authors in da Veiga et al. (2017a), the
non-linearity of the Navier-Stokes Equation led to the introduction of new projections not
included in the original formulation of the method. The work proposed a rigorous error
analysis development, taking into account the characteristics of VEM. Simulations were also
carried out to test the numerical performance of the Virtual Element Method. They con-
cluded that the method is a valid approach, since considerably small errors were obtained.

The literature referring to VEM has been expanding in recent years, focusing not only
on the model itself but on contributions related to the particularities and potentialities of
the method. da Veiga et al. (2017b) focused on the stability analysis of the term that makes
up the bilinear form of the Virtual Element Method related to the treatment of functions in
a non-polynomial way (stability term). The authors intended to prove that the method is
robust by considering more general meshes. To analyze the stability, the Poisson equation in
two dimensions was considered. The article developed an approach to prove the convergence
of VEM using weaker stability conditions than in the classic formulation. Tests were carried
out in different situations to validate this approach. An analysis of the classic stability term
(presented in da Veiga et al. (2013a)) is also made for more general meshes. It was proved
that this term is equivalent to semi-norm in the Sobolev space H1. The article is essentially
mathematical, with numerical results that attest to the robustness of the method.

Cangiani et al. (2017a) implemented the Virtual Element Method for a quasilinear prob-
lem in which the projection operator of the method was used to treat non-linearity. In the
case of a non-linear problem, an iterative method was used, more specifically the fixed point

14



method. Also, it was proved that the problem is well posed with VEM.
Wriggers et al. (2020) proposed a greater generalization for the Virtual Element Method

discretization elements. The authors used an isoparametric and NURBS approach so that
the discretization elements do not necessarily need to have straight edges, allowing VEM to
adapt even more to complex geometries and to have even greater flexibility regarding the
quality of the mesh. Although, the proposal was restricted to small orders of accuracy, it
was mentioned by the authors that it can be extended to high orders.

These applications are useful in this project as they show the versatile characteristics of
the Virtual Element Method. Also, the papers present properties of the method that can
be explored and can be particularized for the linear elastic model. For example, stability
of the method concerning to less restrictive mesh requirements is particularly interesting to
enhance VEM applications in structural engineering problems.
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Chapter 3

The Virtual Element Method and the
Poisson Equation

The focus of this chapter is to present the VEM formulation for the Poisson Equation
as it was originally conceived. But first, some results in mathematics will be presented
and discussed. The continuous Poisson Problem will be shown and from it the weak form
will be constructed. Following the weak form, the discrete problem will be derived and the
VEM formulation for that problem will be presented. The chosen approach is to give a
detailed formulation of the method in order to show all particularities and characteristics
of the method. Finally, a brief discussion about mesh regularity concerning to the usage of
considerable small edges will be made in the last section.

3.1 The weak form of Poisson Equation

In this section, the main results of mathematics were based on the works of Evans (2010)
and Isnard (2013). Also, the monograph written by Professor Marcelo Furtado (Furtado,
2012) has great influence on this work. The inequalities and function space notations used
in this text can be found in Appendix A.

Let U be an open set of Rn and n ≥ 1. The Lebesgue Space is given by

Lp(U) =

{
f(x) :

∫
U

|f(x)|pdx <∞
}
, (3.1)

where p ∈ [1,∞]. The norm associated to that space is ∥u∥Lp(U) = (
∫
U
|u(x)|pdx)1/p. In this

work there is a particular interest in the p = 2 case that can be defined as

L2(U) =

{
f(x) :

∫
U

|f(x)|2dx <∞
}
. (3.2)
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The Lesbegue Space is important because the weak formulation will be built from it. In a
general way, the main goal is to make less restrictions as possible for functions. Basically,
it will not be necessary that a function is differentiable everywhere, only integrable in some
points. In this way, it is natural to define what does it mean to be locally integrable as
presented in Strichartz (2003):

Definition 1. Let f : U −→ C be a measurable function. Then, f is locally integrable if∫
U

|f(x)ϕ(x)|dx < ∞ (absolutely convergent) for every function ϕ ∈ C∞
c (U). The space of

locally integrable functions is denoted by L1
loc(U).

For the weak formulation, the week derivative concept is fundamental. It is enough that
functions are only differenciable locally as stated by definition below.

Definition 2. Assume u, v ∈ L1
loc(U) and α is a multi-index such that |α| = α1 + α2 + ...+

αn = k. Then, v is the α− th weak partial derivative of u if∫
U

uDαφdx = (−1)|α|
∫
U

vφdx

for all functions φ ∈ C∞
c (U). The φ ∈ C∞

c (U) are called test functions.

The term "weak" comes from the fact that instead of a k times derivative function u, it
is only required an integrable function v. The weak derivative will be denoted by Dαu = v.
Now it is possible to define the space of weak derivatives, called Sobolev Space.

Definition 3. The Sobolev Space is given by:

W k,p(U) = {u ∈ Lp(U)|Dαu = v ∈ Lp(U), (3.3)

for all α such that |α| ≤ k}.

For p = 2 the following notation will be used: Hk(U) = W k,2(U), for k non-negative
integer. Accordingly to Furtado (2012), the Sobolev Space norm is given by:

∥u∥Wk,p(U) =


(
∑

|α|≤k

∫
|Dαu|pdx)1/p, se p ∈ [1,∞)∑

|α|≤k

∥Dαu∥L∞(U), se p = ∞
(3.4)

and the semi-norm is given by

|u|Wk,p(U) =


(
∑

|α|=k

∫
|Dαu|pdx)1/p, se p ∈ [1,∞)∑

|α|=k

∥Dαu∥L∞(U), se p = ∞
(3.5)

Let {ui}i∈N be a sequence in W k,p(U). Thus, the sequence {ui}i∈N converges to u in W k,p(U)

if lim
i→∞

∥u − ui∥Wk,p(U) = 0. In this way, it is possible to prove that every Sobolev space is
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a complete space (Banach Space). This result is relevant in order to build Hilbert spaces
from Sobolev spaces. The definition of Hilbert spaces can be found in Appendix A. Also, it
is necessary to define the closure of C∞

c (U) in order to apply Dirichlet boundary conditions.

Definition 4. For 1 ≤ p ≤ ∞ and k a non-negative integer, the closure of C∞
c (U) in

W k,p(U) with respect to the norm ∥ · ∥Wk,p is denoted by W k,p
0 (U). For p = 2 it will be

denoted Hk
0 (U) = W k,2

0 (U).

The Virtual Element Method can be seen as a consequence of the next result as will
be shown further. The Lax-Milgram Theorem will guarantee under certain conditions the
existence and uniqueness of solution for the second order differential problem. But before
enunciate the theorem, the following definition is necessary:

Definition 5. For u, v ∈ H1
0 (U), the bilinear form is defined by:

a(u, v) =

∫
U

∇u · ∇vdx

From that definition it is possible to enunciate the Lax-Milgram Theorem:

Theorem 1 (Lax-Milgram). Let H be a real Hilbert space. Suppose that a : H ×H 7→ R is
a bilinear form as defined above and there exists constants α, β > 0 such that:

1. |a(u, v)| ≤ α∥u∥∥v∥,

2. β∥u∥2 ≤ a(u, u),

with u, v ∈ H. Given F ∈ H ′ there exists a unique u ∈ H such that

a(u, v) = F (v)

for all v ∈ H. The solution u is called weak solution of a(u, v) = F (v).

It is important to recall that H ′ denotes the dual space of H and ∥ · ∥ is the associated
norm of the inner product of H.

A more detailed presentation of the Sobolev spaces and a deeper discussion of the Lax-
Milgram Theorem can be found in Chapter 5 and 6 of Evans (2010), respectively. These
concepts and definitions will be crucial for the construction of the virtual element space
and the error analysis concerning to the convergence of VEM. Before delve into the Poisson
equation analysis, a brief discussion about the general form of elliptic equations is given as
the Poisson Equation is a particular case of second order elliptic equation defined by:Lu = f em U

u = 0 em ∂U
,
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where u ∈ C2(U) ∩ C(U), f ∈ L2(U) and L is a second order differential operator. This
operator is particularly important because with VEM formulation we will be able to choose
different types of it considering some restrictions related to the degrees of freedom and the
virtual element space. The second order operator form is equally presented in Evans (2010)
and Furtado (2012) as:

Lu = −
n∑

i,j=1

aij(x)uxixj
+

n∑
i=1

bi(x)uxi
+ c(x)u, (3.6)

where aij, bi, c ∈ L∞(U) and x ∈ U . The "elliptic" term mentioned above comes from the
following definition taken from Evans (2010):

Definition 6. A second order operator L is elliptic if there exists a positive constant η such
that:

ξA(x)ξ =
n∑

i,j=1

aij(x)ξiξj ≥ η|ξ|2, (3.7)

for almost everywhere x ∈ U and for all ξ ∈ Rn − {0}, where

A(x) =


a11(x) a12(x) · · · a1n(x)

a21(x) a22(x) · · · a2n(x)
...

... . . . ...
an1(x) an2(x) · · · ann(x)


is a symmetric matrix for each x ∈ U . This is the same as to require A to be positively
defined.

Take aij(x) = 1 if i = j, aij(x) = 0 if i ̸= j, bi(x) = 0 and c(x) = 0, for x ∈ U and
i, j ∈ [1, n]. As result we obtain the Laplacian Operator, denoted by ∆.

Now, consider the Poisson Equation in a polygonal domain Ω. The Poisson Equation
with Dirichlet boundary condition is given by:−∆u = f in Ω

u = 0 on ∂Ω
, (3.8)

where u ∈ C2(U)∩C(Ω) and f ∈ L2(Ω). It is possible to find a analytical solution applying
the Green’s Function. Although the solution is purely mathematical, the interest lays on the
difficulty to numerically compute the solution, especially for general domains. In this sense,
the strategy is to weaken the original problem, demanding less from the solution and it is
only natural to use the weak derivatives and the Sobolev space.

Let v ∈ H1
0 (Ω) be a test function. Multiplying equation (3.8) by v and integrating by
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parts: ∫
Ω

(−∆u− f)vdx =

∫
Ω

∇u · ∇vdx−
∫
∂Ω

v∇u · ηdS(x)−
∫
Ω

fvdx = 0 (3.9)

From equation (3.9) it is possible to conclude:∫
Ω

∇u · ∇vdx =

∫
Ω

fvdx. (3.10)

Equation (3.10) is weaker than equation (3.8) because it is only needed the first derivative of
u that does not need to be continuous, only integrable. Thus, it is enough that u ∈ H1

0 (Ω).
Now, will be proved the uniqueness of the solution using the Lax-Milgram Theorem. The
inner product can be associated to the space H1

0 (Ω) by:

(u, v)H1
0 (Ω) =

∫
Ω

∇u · ∇vdx. (3.11)

This inner product induces the norm of H1
0 (Ω):

∥u∥H1
0 (Ω) = ∥u∥W 1,2(Ω) =

∫
Ω

|∇u|2dx

1/2

= (u, u)
1/2

H1
0 (Ω)

. (3.12)

As mentioned before, the Sobolev space is complete and, with the defined inner product, it
is possible to conclude that H1

0 (Ω) is a Hilbert space. Using Definition 5,

a(u, v) =

∫
Ω

∇u · ∇vdx = (u, v)H1
0 (Ω). (3.13)

By Hölder and Cauchy-Schwarz inequalities presented in Appendix A, it is possible to con-
clude that

|a(u, v)| =

∣∣∣∣∣∣
∫
Ω

∇u · ∇vdx

∣∣∣∣∣∣ ≤
∫
Ω

|∇u||∇v|dx ≤ ∥∇u∥L2(Ω)∥∇v∥L2(Ω) =

= ∥∇u∥H1
0 (Ω)∥∇v∥H1

0 (Ω)

(3.14)

As |a(u, v)| ≤ ∥∇u∥H1
0 (Ω)∥∇v∥H1

0 (Ω), then the bilinear form a is continuous. It is also possible
to observe that

a(u, u) =

∫
Ω

|∇u|2dx = ∥u∥2H1
0 (Ω), (3.15)

guaranteeing the coercivity of the bilinear form. Let F (v) =
∫
Ω

fvdx be a linear functional.
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Using again the Cauchy-Schwarz and Hölder inequality:∣∣∣∣∣∣
∫
Ω

fvdx

∣∣∣∣∣∣ ≤
∫
Ω

|fv|dx ≤
∫
Ω

|f ||v|dx ≤ ∥f∥L2(Ω)∥v∥L2(Ω). (3.16)

By Poincaré Inequality, there exists C > 0 such that

∥f∥L2(Ω)∥v∥L2(Ω) ≤ ∥f∥L2(Ω)C∥∇v∥L2(Ω). (3.17)

Thus, the linear functional is continuous. By applying the Lax-Milgram Theorem, we con-
clude the uniqueness of the solution for equation (3.10).

3.2 The discrete problem

After transforming the continuous problem into the weak counterpart and proving that
it has a solution and it is unique, the next step is to setup the discrete problem in order to
use the numerical methods. This setup is done for the Virtual Element Method, thus it is
proved that the discrete problem has solution and it is unique for VEM formulation. The
following sections are based on the canonical work of da Veiga et al. (2013a) and in the work
presented on Savarè and Chanon (2016). The construction pipeline of the method used here
is very similar to both works and complementary commentaries were added in order to make
text simpler to read and the model easier to understand.

Considering a decomposition τh of Ω in polygons K. The h subscript refers to the maxi-
mum polygonal diameter, defined below:

Definition 7. Given a polygon K, the polygonal diameter, denoted by hK, is the largest
distance between two non consecutive vertices. The maximum polygonal diameter is h =

max
K∈τh

hK.

The bilinear form can be written as a(u, v) =
∑

K∈τh
aK(u, v), with u, v ∈ H1

0 (Ω) and

where aK(u, v) =
∫
K
∇u · ∇vdx following definition 5, for each K ∈ τh. The polygon K is a

simple polygon, thus it can be convex or non-convex. The general shape is one of the main
characteristics of Virtual Element Method, making it more general than FEM in terms of
discretization. The definition of simple polygons is given below:

Definition 8. Simple polygons are simply connected sets in which the boundary is formed
by straight line segments that do not intersect except at their ends.

Accordingly to definition in Savarè and Chanon (2016), for each polygon K the following
semi-norm is given:

|v|H1
0 (K) = aK(v, v)

1/2 (3.18)
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and the following norm is given:

∥v∥H1
0 (Ω) =

(∑
K∈τh

|v|2H1
0 (K)

)1/2

, (3.19)

for all v ∈ H1
0 (Ω). It is important to mention that the norm is originated from the Sobolev

space norm.
From the continuous problem it is possible to build the discrete version of it, given by: find

uh ∈ Vh such that ah(uh, vh) = ⟨fh, vh⟩, for all vh ∈ Vh. Here, the goal is to build the virtual
element space Vh, the bilinear form ah(u, v) and the load term ⟨fh, vh⟩. In da Veiga et al.
(2013a) the following hypothesis are taken:

Hypothesis 1. For each h, we have:

1. Vh ⊂ H1
0 (Ω),

2. a symmetric bilinear form ah : Vh × Vh −→ R and a bilinear form ah,K : Vh,K,k ×
Vh,K,k −→ R such that ah(u, v) =

∑
K∈τh

ah,K(u, v), where Vh,K,k is the local virtual

element space, and

3. a load term fh ∈ V ′
h.

Hypothesis 2. Let k ≥ 1 be an integer called order of accuracy such that, for all K ∈ τh:

1. Pk(K) ⊂ Vh,K,k, where Pk(K) is the polynomial space of degree k in K, P−1(K) = {0}
and Vh,K,k is the local virtual element space,

2. k-consistency: it is true that ah,K(q, v) = aK(q, v), for all q ∈ Pk(K) and for all
vh ∈ Vh,K,k,

3. stability: exists constants C1, C2 ∈ R+ that are independent of the polygonal diameter h
and the polygon K such that C1aK(v, v) ≤ ah,K(v, v) ≤ C2aK(v, v), for all v ∈ Vh,K,k.

It is worth mentioning that the first set of hypothesis gives the components necessary of
the method and the second set of hypothesis gives the conditions for the method to work.
The consistency and stability criterion have a fundamental part in the construction of the
bilinear form. The stability criterion is be responsible to treat the non-polynomial functions
inside the virtual element space. For the polynomial space, a scaled monomial basis, instead
of the canonical one, is chosen and given by:

mα =

1, if α = 1(
x−xc

h

)α
, if α > 1

(3.20)

such that Mk(K) = {mα : 0 ≤ |α| ≤ k} where x = (x, y), xc is the centroid and h is the
polygonal diameter. This choice will be important for the construction of the bilinear form.
Also, the following hypothesis are made concerning to the mesh regularity:
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Hypothesis 3. Denoting by lK,e the length of an edge e ∈ ∂K:

1. there exits a real number γ > 0 such that all elements K ∈ τh are star-shaped with
respect to a ball BK with radius RK ≥ γhK and center xK,

2. there exits a real number η > 0 such that for all elements K ∈ τh and all edges ∂K it
is true that lK,e ≥ ηhK.

The set of hypothesis 3 are later discussed in the Appendix B about mesh regularity.
It is shown that is possible to make weaker restrictions concerning to mesh regularity and
proving the robustness of the method before mesh distortions.

The next theorem is a consequence of Lax-Milgram Theorem as shown. The theorem
that guarantees the uniqueness of the solution and its convergence is the following:

Theorem 2. Under the set of hypothesis 1 and 2 mentioned above, it is true that:

1. the discrete problem has a unique solution,

2. with respect to the convergence, let uh be the solution for the discrete problem, for
all uπ that is piecewise in Pk(K) and for all uI ∈ Vh that is an approximation of u,
∥u− uh∥H1

0 (Ω) ≤ C̃(F̃h + ∥u− uπ∥H1
0 (Ω) + ∥u− uI∥H1

0 (Ω)), where C̃(C1, C2) ∈ R and F̃h

is the smallest constant such that F (v)− ⟨fh, v⟩ ≤ F̃h∥v∥H1
0 (Ω), for all v ∈ Vh.

Proof. The continuity of the discrete bilinear form ah comes from the stability hypothesis.
Using the Cauchy-Schwarz Inequality and the stability criterion, for all uh, vh ∈ Vh:

ah(uh, vh) =
∑
K∈τh

ah,K(uh, vh) ≤ C2

∑
K∈τh

|uh|H1
0 (K)|vh|H1

0 (K) ≤

≤ C2

(∑
K∈τh

|uh|2H1
0 (K)

)1/2(∑
K∈τh

|vh|2H1
0 (K)

)1/2

= C2∥uh∥H1
0 (Ω)∥vh∥H1

0 (Ω).

Then,
ah,K(uh, vh) ≤ C2∥uh∥H1

0 (Ω)∥vh∥H1
0 (Ω). (3.21)

Thus, from equation (3.21) it is possible to conclude that the bilinear form is a continuous
operator. It also can be observed that:

ah(vh, vh) =
∑
K∈τh

ah,K(vh, vh) ≥ C1

∑
K∈τh

aK(vh, vh) = C1a(vh, vh) = C1∥vh∥2H1
0 (Ω) (3.22)

From equation (3.22) it is possible to conclude that the bilinear form ah is also coercive. As
by definition, fh is a continuous functional, then by the Lax-Milgram Theorem the discrete
problem has a unique solution.

Defining ξh = uh − uI . Then, by the linearity of the operator:

ah(uh − uI , ξh) = ah(uh, ξh)− ah(uI , ξh) (3.23)
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Using equation (3.23) in (3.22):

C1∥ξh∥2H1
0 (Ω) ≤ ah(uh, ξh)− ah(uI , ξh) = ⟨fh, vh⟩ −

∑
K∈τh

ah,K(uI , ξh) (3.24)

Again, using the linearity of ah,K :

ah,K(uI − uπ + uπ, ξh) = ah,K(uI − uπ, ξh) + ah,K(uπ, ξh) (3.25)

From (3.25) in (3.24) and using consistency criterion:

C1∥ξh∥2H1
0 (Ω) ≤ ⟨fh, vh⟩ −

∑
K∈τh

[ah,K(uI − uπ, ξh) + ah(uπ, ξh)] = (3.26)

= ⟨fh, vh⟩ −
∑
K∈τh

[ah,K(uI − uπ, ξh) + aK(uπ − u+ u, ξh)] = (3.27)

= ⟨fh, vh⟩ −
∑
K∈τh

[ah,K(uI − uπ, ξh) + aK(uπ − u, ξh)]−
∑
K∈τh

aK(u, ξh). (3.28)

Using aK(u, v) =
∫
K
∇u · ∇vdx and equation (3.10) in (3.28):

C1∥ξh∥2H1
0 (Ω) ≤ ⟨fh, vh⟩ −

∑
K∈τh

[ah,K(uI − uπ, ξh) + aK(uπ − u, ξh)]− F (ξh) ≤ (3.29)

≤ |F (ξh)− ⟨fh, vh⟩|+
∑

K∈τh
[ah,K(uI − uπ, ξh) + aK(uπ − u, ξh)] ≤ (3.30)

≤ F̃h∥ξh∥H1
0 (Ω) − ah(uI − uπ, ξh)− a(uπ − u, ξh) (3.31)

Due to the continuity of ah and a:

C1∥ξh∥2H1
0 (Ω) ≤ ∥ξh∥H1

0 (Ω)

(
F̃h + C2∥uI − uπ∥H1

0 (Ω) + ∥uπ − u∥H1
0 (Ω)

)
≤ (3.32)

≤ ∥ξh∥H1
0 (Ω)max{C2, 1}

(
F̃h + ∥uI − uπ∥H1

0 (Ω) + ∥uπ − u∥H1
0 (Ω)

)
(3.33)

Using the Triangular Inequality:

∥u− uh∥H1
0 (Ω) ≤

(
max{C2, 1}

C1

+ 1

)(
F̃h + ∥uI − uπ∥H1

0 (Ω) + ∥uπ − u∥H1
0 (Ω)

)
. (3.34)

Now, the virtual element space Vh shall be constructed and the degrees of freedom shall
be chosen.

3.3 The virtual element space

To define the virtual element space, an adequate choice of the degrees of freedom must be
done, as they define unique approximation functions. First, the definition below will provide

25



some notation.

Definition 9. Let K be a simple polygon. Then, the number of vertices and edges are the
same and it is denoted by nK.

In Virtual Element Method, the usage of any simple polygons leads to an approximation
space that might contain functions that are not necessarily polynomials. Also, the behavior
of this functions shall be specific in some parts of the domain. Thus, in the case of edges that
composes the boundary ∂K of each polygon K, the following space of continuous function
is defined:

Definition 10. For each k ≥ 1, Ek(∂K) = {v ∈ C0(∂K) : v|e ∈ Pk(e),∀e ∈ ∂K}.

Definition 10 states that the functions in the space Ek(∂K) behaves like polynomials in
the edges. Due to the choice of degrees of freedom that will be presented further, a polynomial
function in ∂K will be determined by its values in the vertices and, for k > 1 also by its
k − 1 points in each edge. As result, the dimension o the space is given by:

dimEk(∂K) = nK + nK(k − 1) = nKk. (3.35)

Take u, v ∈ Ek(∂K) and a number β ∈ R. By definition, u and v are continuous in the
boundary implying that u+ βv is continuous in the boundary ∂K. For all e ∈ ∂K, u|e and
v|e are polynomials of degree k. As result, (u + βv)|e = u|e + βv|e is a polynomial in the
boundary ∂K. This shows that Ek(∂K) is also linear.

Considering k ≥ 1, the definition of the local virtual element space is given below.

Definition 11. For k ≥ 1, the local virtual element space regarding to polygon K is

Vh,K,k = {v ∈ H1
0 (K) : v|∂K ∈ Ek(∂K), ∆v|K ∈ Pk−2(K)}. (3.36)

By definition P−1(K) = {0} (see Hypothesis 1). Then, if k = 1, ∆v|K ≡ 0 and Vh,K,1 is a
space of harmonic functions that are linear on each edge of polygon K. In this sense, these
functions are uniquely defined by its values in the vertices and, consequently, dimVh,K,1 =

nK . In turn, if k = 2, the Laplacian for the functions in Vh,K,2 is constant and the polynomials
in ∂K have degree less or equal than 2. For each constant ω ∈ R and for all t ∈ E2(∂K), it
is possible to setup the following problem:∆v = ω, in K,

v = t, in ∂K
. (3.37)

Applying the Lax-Milgram Theorem it is possible to guarantee that equation (3.37) has a
unique solution. Therefore, v ∈ Vk,K,2 is determined by it values in the vertices, in the middle
point of edges and by an internal value that is consequence of equation (3.37). As result, it
is possible to conclude that dimVh,K,2 = 2nK + 1.
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In a more general way it is possible to determine the dimension of Vh,K,k for every k. By
Lax-Milgram Theorem, there exists a unique function v ∈ H1(K) such that∆v = q, in K,

v = t, in ∂K
, (3.38)

for all q ∈ Pk−2(K) and t ∈ Ek(∂K). Thus,

dimVh,K,k = dimEk(∂K) + dimPk−2(K) = nKk +

(
k

k − 2

)
= nKk +

k!

(k − 2)!2
(3.39)

Resulting in:

dimVh,K,k = nKk +
k(k − 1)

2
(3.40)

The total number of degrees of freedom that must be chosen in a way to represent all
functions on that space is equal to the dimension of the local virtual element space Vh,K,k.
For all, v ∈ Vh,K,k, the chosen degrees of freedom are:

• VK = the values of v in each vertex of K,

• EK = the values of v in the k − 1 middle points of each edge of K and for k > 1,

• PK = the values of v internal points with order up to k − 2 of K and for k > 1.

The internal points values are called moments and are given by:

iK(v) =
1

|K|

∫
K

m(x)v(x)dx, ∀m ∈ Mk−2(K), (3.41)

where |K| is the area of polygon K. As it was discussed before it is observable that:

dimVh,K,k = Ndof = nKk +
k(k − 1)

2
, (3.42)

where Ndof is the total number of degrees of freedom regarding to polygonK. This is justified
once the number of degrees of freedom in the set VK is equal to the number of vertices nK ,
the number of degrees of freedom in EK is equal to nK(k− 1) and, as PK is directly related
with Pk−2(K), the number of degrees in it is

(
k

k−2

)
.

The next necessary step is to show that a set of degrees of freedom VK ∪ EK ∪ PK

determines a unique function v ∈ Vh,K,k. Regarding to the choice of the degrees of freedom
and the definition of the virtual element space, the set VK ∪ EK are related to a polynomial
of degree less or equal to k in boundary of the polygonal element. In turn, the set of degrees
of freedom PK determines the projection of v in Pk−2(K) through L2-norm. This projection
will be denoted by LK

k−2v, for each v ∈ Vh,K,k.

Theorem 3. The set of degrees of freedom VK ∪ EK ∪ PK is unisolvent.
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Proof. Given a function v ∈ Vh,K,k, the goal is to prove for all K ∈ τh that:v = 0, in ∂K,

LK
k−2v = 0, in K

. (3.43)

In other words, the objective is to show that the operator that associates the degrees of
freedom with the function v is injective. To prove that v = 0 in ∂K it is enough to show
that ∆v = 0 in K. After solving ∆v = 0, in K,

v = 0, in ∂K
, (3.44)

it is possible to conclude that v ≡ 0 is the unique solution.
The second part can be proved by solving the following problem: for all p ∈ Pk−2(K),

find u ∈ H1
0 (K) such that −∆u = p, in K,

u = 0, in ∂K
. (3.45)

By Lax-Milgram Theorem, this problem has solution and its unique. This solution can be
written as u = ∆−1p. Considering T : Pk−2(K) −→ Pk−2(K) such that

T (p) = LK
k−2(∆

−1p) = LK
k−2u, (3.46)

for all p ∈ Pk−2(K), it is true that:∫
K

p · T (p)dK =

∫
K

p · LK
k−2udK =

∫
K

p · udK = aK(u, u) (3.47)

As u ∈ H1
0 (K):

T (p) = 0 ⇔ p = 0 (3.48)

It is true that:
LK
k−2v = LK

k−2

[
−∆−1(−∆v)

]
= T (−∆v), (3.49)

because ∆v ∈ Pk−2(K) and if v = 0 in ∂K, it implies that v ∈ H1
0 (K). Finally,

LK
k−2v = 0 ⇒ T (−∆v) = 0. (3.50)

Then, ∆v = 0 and, consequently, the mapping is injective.

By the construction of the local virtual element space, the global one is given as a union
of each local space.
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Definition 12. For k ≥ 1 and for all K ∈ τh

Vh =
⋃

K∈τh

Vh,K,k =
{
v ∈ H1

0 (Ω) : v|∂K ∈ Ek(∂K), ∆vK ∈ Pk−2(K), ∀K ∈ τh
}

(3.51)

Using the same arguments used to deduct the dimension of local space, it results that
the dimension of the global space is given by:

dimVh = Nvert +Nedge(k − 1) +Nel
k(k − 1)

2
, (3.52)

where Nvert is the total number of vertices, Nedge is the total number of edges and Nel is the
total number of elements. The sets of degrees of freedom are also very similar to what was
done for the local spaces, for v ∈ Vh:

• V = the values of v in each vertex,

• E = the values of v in the k − 1 middle points of each edge for k > 1,

• P = the values of v moments with order up to k − 2 for k > 1.

Analogously to the local case, the number of degrees of freedom coincides with the dimension
of Vh. Also, Theorem 3 can be extended to the global case. Thus, the degrees of freedom are
unisolvent in Vh. The next step is the construction of the bilinear form.

3.4 The bilinear form

Prior to the bilinear form presentation, the projection operator must be introduced.
The projection operator is responsible for projecting components of the virtual element
space into the the polynomial space and directly treating the non-polynomial functions. It is
important to recall that the polynomial space is contained in the virtual element space (see
set of Hypothesis 2). Considering the operator Π∇, the virtual element space can be seen as:

Vh,K,k = [polynomial] + [non− polynomial] = Π∇(Vh,K,k) + (1− Π∇)(Vh,K,k).

In this sense, the shape functions of Virtual Element Method can be computed implicitly
and direct from the degrees of freedom.

The classical choice for the projection operator Π∇ is:

Definition 13. Define Π∇ : Vh,K,k −→ Pk(K) such that∫
K

∇p · ∇(Π∇v − v)dK = 0, ∀p ∈ Pk(K) (3.53)
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and P0 : Π
∇ : Vh,K,k −→ P0(K) such that

P0v = 1
nK

nK∑
i=1

v(Vi) =
1
nK

nK∑
i=1

Π∇v(Vi), k = 1;

P0v = 1
|K|

∫
K
vdK = 1

|K|

∫
K
Π∇vdK, k ≥ 2,

(3.54)

where Vi is the i-th vertex of polygon K and for all v ∈ Vh,K,k. P0 is the projection operator
in the constant polynomial space P0(K).

Here, it is worth mentioning that other choice for the constant projection operator can
be made. For example, in da Veiga et al. (2017b) the constant projection operator is defined
as:

P0v =
1

|∂K|

∫
∂K

vdS, (3.55)

where |∂K| is the perimeter of K. In this work, definition 13 is used. It is important to
notice that if p ∈ Pk(K) then it is natural that Π∇p = p.

Fixing k ≥ 1, for all K ∈ τh, for all v ∈ Vh,K,k and for all q ∈ Pk(K), using integration
by parts:

aK(q, v) =

∫
K

∇q · ∇vdK = −
∫
K

∆qvdK +

∫
∂K

∂q

∂η
vdS. (3.56)

As stated in Savarè and Chanon (2016), analyzing the first term of equation (3.56), ∆q

can be written in terms of Mk−2(K) that is a basis of scaled monomials for Pk−2(K) (see
equation (3.20) regarding to monomial basis) since ∆q ∈ Pk−2(K). Thus, this integral is a
linear combination of polynomials with the chosen degrees of freedom and, consequently, it
can be computed exactly. The second term of the integral is composed by ∂q

∂η
∈ Pk−1(e) and

v ∈ Pk(e), with the edge e ∈ ∂K, that are all polynomials and the values of v are known in
the edges. As result, the second term of the integral can also be computed exactly. Finally,
it is possible to compute aK(q, v) exactly for any K ∈ τh, q ∈ Pk(K) and v ∈ Vh,K,k.

Then, the obvious choice for the bilinear form would be ah,K(u, v) = aK(Π
∇,Π∇v), for

all u, v ∈ Vh,K,k. Although, this choice would only satisfy the consistency criterion presented
in Hypothesis 2 and not the stability criterion because, due to a deviation included by the
projection, it would not be possible find the stability constants C1 and C2. Therefore, a term
must be added to guarantee stability. Defining the symmetrical bilinear form SK(u, v) such
that

C3aK(v, v) ≤ SK(u, v) ≤ C4aK(v, v), (3.57)

where C3, C4 ≥ 0 are independent of K and hk, it is possible to enunciate the following
theorem:

Theorem 4. Given the stability term as in equation (3.57), if for all u, v ∈ Vh,K,k, the
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discrete bilinear form is defined by

ah,K(u, v) = aK(Π
∇u,Π∇v) + SK(u− Π∇u, v − Π∇v), (3.58)

then ah,K satisfies the consistency and the stability criteria.

Proof. For all q ∈ Pk(K) and by the definition of the projection operator Π∇, it is true that:

SK(q − Π∇q, v − Π∇v) = 0, (3.59)

for all v ∈ Vh,K,k. Then consistency is given by:

ah,K(q, v) = aK(Π
∇q,Π∇v) = aK(q,Π

∇v) = aK(q, v). (3.60)

For all v ∈ Vh,K,k, it is true that Π∇ (Π∇v − v
)
= 0. Thus,

ah,K(v, v) ≤ aK(Π
∇v,Π∇v) + C4aK(v − Π∇v, v − Π∇v) ≤

≤ max{1, C4}
[
aK(Π

∇v,Π∇v) + aK(v − Π∇v, v − Π∇v)
]
.

(3.61)

Analogously,

ah,K(v, v) ≥ min{1, C3}
[
aK(Π

∇v,Π∇v) + aK(v − Π∇v, v − Π∇v)
]
. (3.62)

As result, stability criterion is satisfied.

The bilinear form SK : Vh,K,k × Vh,K,k −→ R must be asymptotic in order to guarantee
its behavior when problems, like mesh distortion, occurs. In this sense, the stiffness matrix
must continue stable even when parameters are changed. Some choices for SK can be made,
like in Wriggers et al. (2016), the stability term is given by:

SK(u, v) = hK

∫
∂K

∂u

∂s

∂v

∂s
ds, (3.63)

for all u, v ∈ Vh,K,k. However, in this work the classical choice presented in da Veiga et al.
(2013a) and da Veiga et al. (2014) is used:

SK(u, v) =

Ndof∑
p=1

dofp(u)dofp(v), (3.64)

where dofi : Vh,K,k −→ R is the application that gives the value of function v in the i-
th degree of freedom and Ndof is the total number of degrees of freedom. Defining the
basis (ϕi)i∈[1,Ndof ] for Vh,K,k, the application dof has the Kronecker property: dofi(ϕj) = δij.

Therefore, given v ∈ Vh,K,k at this point it is possible to write v =
Ndof∑
i=1

dofi(v)ϕi.
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It is possible to observe that equation (3.64) satisfy the stability criterion. Rewriting the

stability term as SK(v, v) =
Ndof∑
i=1

dofi(v)dofi(v) =
Ndof∑
i=1

dofi(v)
2. Also, the consistency term

can be written as aK(v, v) =
Ndof∑
i=1

v2i aK(ϕi, ϕi). Therefore,

aK(v, v) ≤ max
i

{aK(ϕi, ϕi)}
Ndof∑
i=1

dofi(v)
2 =

1

C4

SK(v, v) (3.65)

and

aK(v, v) ≥ min
i
{aK(ϕi, ϕi)}

Ndof∑
i=1

dofi(v)
2 =

1

C3

SK(v, v), (3.66)

where C3 =
1

min
i

{aK(ϕi,ϕi)} and C4 =
1

max
i

{aK(ϕi,ϕi)} .

3.5 Construction of the load term

To obtain the load term as given in equation (3.10), one can use the L2-norm to the
polynomial space. This construction can be divided in two cases. The first case regards to
k = 1 which fh is piecewise constant. Recalling that the operator LK

0 projects functions
using L2(K)-norm into the constant polynomial space P0(K). Thus, it possible to give the
following definition:

Definition 14. For k = 1,

⟨fh, v⟩ =
∑
K∈τh

LK
0 f

1

nK

nK∑
i=1

v(Vi), (3.67)

where {Vi}i∈[0,nK ] is the set of vertices of polygon K.

An analogous idea is used for k ≥ 2 case. However, here the projection operator LK
k−2

maps to Pk−2(K).

Definition 15. For k ≥ 2,

⟨fh, v⟩ =
∑
K∈τh

∫
K

fhvdK =
∑
K∈τh

∫
K

(LK
k−2f)vdK. (3.68)

It can be seen that the load term for k ≥ 2 can be written as a linear combination of the
moments given by equation 3.41. As result, it can be computed from the chosen degrees of
freedom.

This concludes the construction of the VEM for the Poisson equation. Implementation
aspects will be discussed in Chapter 4, in which a methodology about the construction of
the method for the Poisson Equation is shown in more details. First the virtual element
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space is constructed and then the degrees of freedom are chosen. With the adequate degrees
of freedom, the bilinear form is constructed taking in consideration the consistency and
stability criteria and choosing an adequate basis for the virtual element space. Finally, the
load term is constructed considering the idea of projecting L2 functions into polynomial
spaces.
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Chapter 4

Implementation of Virtual Element
Method for Poisson Equation

This chapter is dedicated to present the implementation framework for the Poisson Equa-
tion. The first section presents the construction of the stiffness matrix using the projection
operator and the scaled monomial basis. Next, the construction of the load term is presented
using the L2-projection operator. Finally, some numerical results are presented regarding to a
problem with analytical solution using two types of meshes and different number of elements.

4.1 Construction of the stiffness matrix

The next two sections are based on the works of da Veiga et al. (2014) and Sutton (2016).
The same matrix framework is used here aiming to write the stiffness matrix showing some
intermediary matrices that are easier to compute directly. For that, the projection operator
and the load vector will be used.

Recalling that the bilinear form in definition 5 can be written in terms of the inner
product as in equation (3.11). The projection operator in definition 13 can be written as:

(
∇q,∇(Π∇v − v)

)
K
=

∫
K

∇q · ∇(Π∇v − v)dK = 0, (4.1)

for all q ∈ Pk(K). Using the scaled monomial basis Mk(K) of Pk(K) and denoting by np

the dimension of the polynomial space Pk(K), it is possible to write the projection of v in
terms of scaled monomials:

Π∇v =

np∑
β=1

rβmβ. (4.2)
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As q ∈ Pk(K), it also can be written in terms of scaled monomials. Thus,

(∇mα,∇(Π∇v − v))K = 0 ⇒ (∇mα,∇Π∇v −∇v)K = 0

⇒ (∇mα,∇Π∇v)K − (∇mα,∇v)K = 0

⇒
np∑
β=1

rβ(∇mα,∇mβ)K = (∇mα,∇v)K .
(4.3)

In the case that q ∈ P0(K), the procedure is similar:

P0(Π
∇v − v) = 0 ⇒ P0Π

∇v = P0v ⇒
np∑
β=1

P0rβmβ = P0v. (4.4)

Rewriting equations (4.3) and (4.4) as a system of equations:

Gr = b, (4.5)

where

G =


P0m1 P0m2 . . . P0mnp

0 (∇m2,∇m2)K . . . (∇m2,∇mnp)K
...

... . . . ...
0 (∇mnp ,∇m2)K . . . (∇mnp ,∇mnp)K

 , (4.6)

r =


r1

r2
...
rnp

 and b =


P0v

(∇m2,∇v)K
...

(∇mnp ,∇v)K

 . (4.7)

Using the basis (ϕi)i∈[1,Ndof ] for Vh,K,k and writing v =
Ndof∑
i=1

dofi(v)ϕi as in Chapter 3. It

is possible to write:

r =


r1,i

r2,i
...

rnp,i

 and b =


P0v

(∇m2,∇ϕi)K
...

(∇mnp ,∇ϕi)K

 , (4.8)

for i = 1, 2, ..., Ndof . In order to consider and compute all degrees of freedom at once, the
matrix B is given by:

B =


P0ϕ1 P0ϕ1 . . . P0ϕNdof

(∇m2,∇ϕ1)K (∇m2,∇ϕ2)K . . . (∇m2,∇ϕNdof
)K

...
... . . . ...

(∇mnp ,∇ϕ1)K (∇mnp ,∇ϕ1)K . . . (∇mnp ,∇ϕNdof
)K

 . (4.9)
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The matrix B has dimension np × Ndof . In this sense, the matrix representation of the
projection operator presented in definition 13 is given by:

Π∇ = G−1B. (4.10)

This representation is directly related to handle with the polynomial function in virtual
element space, more specifically it is related to the consistency term. Now, it is also necessary
to define the matrix form of the projection operator in order to handle the stability term.
Recalling from the first item in the set of hypothesis 2, the polynomial space is contained in
Vh,K,k. The idea is to construct a extended projection operator from Vh,K,k to Vh,K,k. Using
the basis choices discussed earlier, it possible to define:

Π∇ϕi =

np∑
β=1

rβ,i

Ndof∑
j=1

dofj(mβ)ϕj =

Ndof∑
j=1

dijϕj, (4.11)

where

dij =

np∑
β=1

rβ,idofj(mβ). (4.12)

Thus, it is possible to define the matrix D as:

D =


dof1(m1) dof1(m2) · · · dof1(mnp)

dof2(m1) dof2(m2) · · · dof2(mnp)
...

... . . . ...
dofNdof

(m1) dofNdof
(m2) · · · dofNdof

(mnp)

 . (4.13)

The matrix D has dimension Ndof × np. From equation (4.13) in (4.12), the extended pro-
jection operator in matrix form can be defined by:

Π∇
† = D G−1B = D Π∇. (4.14)

Finally, with all this intermediary matrices defined, it is possible to assembly into the
stiffness matrix. Writing the u, v ∈ Vh,K,k in terms of the basis (ϕi)i∈[1,Ndof ] and substituting
in the bilinear form presented in theorem 4:

ah,K(ϕi, ϕj) = aK(Π
∇ϕi,Π

∇ϕj) + SK(ϕi − Π∇ϕi, ϕj − Π∇ϕj). (4.15)

using the classical choice for the stability term presented in equation (3.64) the stiffness
matrix is given by:

Kh = (Π∇)tG(Π∇) + (I−Π∇
† )

t(I−Π∇
† ), (4.16)

where G is the G with the first row completed with zeros.
The construction of the load term is very similar to what was done to construct the
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stiffness matrix. Instead of using the Π∇ operator the L2 projection operator denoted by LK
k

will be used. As before, the following orthogonality property is used:

(
∇q,∇(LK

k v − v)
)
K
= 0. (4.17)

Writing the projection in terms of scaled monomials as below:

LK
k v =

np∑
β=1

wβmβ, (4.18)

as in equation 4.5, the follwoing system is obtained:

Hw = c. (4.19)

The c vector can be associated to a matrix C. If α ∈ [1, np−2], then

Cα,i = (mα, ϕi)K , (4.20)

for i = 1, 2, ..., Ndof . Otherwise, if α ∈ (np−2, np], then

C = H G−1B. (4.21)

Thus, the L2-projection operator matrix is given by:

L = D H−1C (4.22)

With equation (4.22), the load term can be computed using the formulation presented in
Chapter 3. A detailed approach to the linear case is introduced by Sutton (2016).

4.2 Analytical solution for the Poisson Equation

In this section, the Virtual Element Method is implemented for the Poisson Equation with
a known analytical solution in a unitary square domain Ω = [0, 1]× [0, 1]. In this sense, the
equation is given by: −∆u = sin(πxc) sin(πyc) in Ω

u = 0 in ∂Ω
. (4.23)

The analytical result for this equation:

u(x) = −sin(πx) sin(πy)

2π2
, (4.24)

38



where x = (x, y). To perform the simulations, the Polymesher was used to generate the
Voronoi mesh. Also, a square uniform mesh was used. Both of them can be seen in Figure 4.1.
A detailed discussion about the mesh generator Polymehser can be found in Talischi et al.
(2012). It is important to mention that only the linear case of VEM will be implemented to
this work. As can be oserved in Sutton (2016), Ortiz-Bernardin et al. (2019) and da Veiga et al.
(2017b), the linear case is enough to make a very complete analysis of the method charac-
teristics.

(a) Uniform mesh (b) Voronoi mesh

Figure 4.1: Example of meshes used to perform simulations regarding to the Poisson Equation
with analytical solution

Source: Author

To evaluate the error, the L2-norm, denoted by ∥ · ∥L2 , was used. Thus,

e(uh, u) = ∥u− uh∥L2 , (4.25)

where u is the analytical solution and uh is the numerical solution. Table 4.1 shows the
results obtained from the simulations for different number of elements. Figure 4.3 shows a

Poisson Equation with Analytical Soluition
Elements e(uh, u)-Uniform e(uh, u)-Voronoi

16 3.10E-3 4.50E-3
36 1.90E-3 3.80E-3
64 1.40E-3 2.50E-3
144 8.84E-3 1.80E-3
256 6.58E-4 1.50E-3
400 5.24E-4 1.30E-3
1024 3.26E-4 7.94E-4
2704 2.01E-4 5.31E-4
4096 1.63E-4 4.71E-4

Table 4.1: Associated errors for different number of elements.

graphical representation of data in Table 4.1. It is possible to observe a faster convergence
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of the method when more elements are used, as expected. The idea here is not to compare
performance between the meshes but to illustrate VEM main characteristics. For different
meshes, even with the same number of elements, performance cannot be compared once the
number of degrees of freedom is different. The analytical solution plot can be seen in figure
4.3 and the plot of numerical solution for 16, 400 and 4096 elements regarding to the uniform
mesh is presented in Figures 4.4, 4.5 and 4.6, respectively.

Figure 4.2: Convergence of VEM for Poisson Equation with analytical solution.
Source:Author

Figure 4.3: Analytical solution of Poisson Equation 4.23.

Source:Author
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Figure 4.4: Numerical solution using 16 elements
Source: Author

Figure 4.5: Numerical solution using 400 elements
Source: Author

Figure 4.6: Numerical solution using 4096 elements

Source: Author
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It is possible to conclude that even with few elements, VEM shows convergence with
order of magnitude 10−3. One advantage of VEM before FEM regarding to the Voronoi
mesh is that no isoparametric elements are needed when five or six sided convex polygons
are present in the mesh. Thus, no transformation and no Jacobian matrix calculation is
needed, once Virtual Element Method can compute these elements directly as showed in
Chapter 3. In this section, the Poisson Equation with analytical solution was presented to
verify the convergence of the method.
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Chapter 5

Theory of Elasticity

On this chapter, the Theory of Elasticity is presented. The main goal here is to show the
mathematical formulation regarding to finite elasticity. Then, this formulation is particular-
ized to the linear elasticity theory of which Virtual Element Method will be applied. The
basic references for this chapter are the canonical work of Timoshenko and Goodier (1951)
and the work of Young and Budynas (2002). Also, it is used as support text the work of
Bucalem and Bathe (2011).

Accordingly to Timoshenko and Goodier (1951), in general the materials have the elastic
property. That means, there are external forces acting on a solid body causing deformation
and, if the force does no exceed a established limit when it is removed the deformation
disappears in part. In this sense, the first part is dedicated to study the finite elasticity
formulation, discussing the kinematics and stress analysis. The next step refers to make
hypothesis to introduce the linear elastic theory using the Generalized Hooke’s Law as con-
stitutive equation.

5.1 Displacement and Deformation in Elasticity

The configuration of a solid body refers to the portion occupied by this solid in an instant
of time t0. The main goal here is to write the deformed configuration V using a reference
configuration V0 in an instant t. The formulation is developed using the classical Euclidean
space R3 and the canonical basis related to this space is (e1, e2, e3). Figure 5.1 shows a
generic solid body in the reference configuration and in the deformed configuration after
suffering deformation.

Considering a vector x in the Euclidean space and the canonical basis defined earlier,
the following notation will be used:

x = x1e1 + x2e2 + x3e3 =

x1x2
x3

 , (5.1)
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Figure 5.1: Generic solid body in reference configuration and deformed configuration.
Source: Author

where xi ∈ R with i = 1, 2, 3 are called components. To keep the notation as clean as
possible, the components concerning to the reference configuration is denoted by x0i , for
each i = 1, 2, 3. The associated norm to the Euclidean space is given by:

∥x∥ =
√
x21 + x22 + x23. (5.2)

According to Bucalem and Bathe (2011), the normal strain depends on the fiber direction
and location. Considering the fiber dx0 in V0 and the fiber dx in V, it is possible to write:

dx = dx0 + u(x0 + dx0)− u(x0). (5.3)

Expanding ui(x1 + dx1, x2 + dx2, x3 + dx3) in terms of its derivatives (first order Taylor
series), it holds true for each i = 1, 2, 3 that:

ui(x
0
1 + dx1, x

0
2 + dx2, x

0
3 + dx3)− ui(x

0
1, x

0
2, x

0
3) =

= dx1
∂ui
∂x01

(x01, x
0
2, x

0
3) + dx1

∂ui
∂x02

(x01, x
0
2, x

0
3) + dx3

∂ui
∂x03

(x01, x
0
2, x

0
3).

(5.4)

Substituting equation (5.4) in (5.3):

dx1dx2

dx3

 =

dx
0
1

dx02

dx03

+


∂u1

∂x0
1

∂u1

∂x0
2

∂u1

∂x0
3

∂u2

∂x0
1

∂u2

∂x0
2

∂u2

∂x0
3

∂u3

∂x0
1

∂u3

∂x0
2

∂u3

∂x0
3


dx

0
1

dx02

dx03

 (5.5)
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with

∇u =


∂u1

∂x0
1

∂u1

∂x0
2

∂u1

∂x0
3

∂u2

∂x0
1

∂u2

∂x0
2

∂u2

∂x0
3

∂u3

∂x0
1

∂u3

∂x0
2

∂u3

∂x0
3

 (5.6)

is called displacement gradient. Thus, it is possible to define the deformation gradient as:

F = I+∇u =


∂x1

∂x0
1

∂x1

∂x0
2

∂x1

∂x0
3

∂x2

∂x0
1

∂x2

∂x0
2

∂x2

∂x0
3

∂x3

∂x0
1

∂x3

∂x0
2

∂x3

∂x0
3

 . (5.7)

The length of the reference fiber and the length of the fiber in current configuration are
defined, respectively, by:

dS0 = ∥dx0∥ and dS = ∥dx∥. (5.8)

The strain formula can be calculated using the quadratic formula given by:

εq =
1

2

(dS)2 − (dS0)2

(dS0)2
=

1

2
(λ2 − 1), (5.9)

where λ = dS
dS0 is the stretch. Substituting equation (5.8) in (5.9):

εq =
1

2

dx0 · FTFdx0 − dx0 · dx0

dx0 · dx0

=
1

2
χ̂0 ·

(
FTF− I

)
χ̂0 = χ̂0 · Eχ̂0, (5.10)

where χ̂0 is the unitary vector, FT is the transpose of the deformation gradient and

E =
1

2

(
FTF− I

)
=

1

2
(∇u+∇uT +∇uT∇u) (5.11)

is the Green-Lagrange strain tensor. An important characteristic of this tensor is that it is
symmetric.

From the Green-Lagrange strain tensor it is possible to define the distortion γ between
two unitary orthogonal fibers z1 and z2 as:

sin γ(z1, z2) =
2z1 · Ez2√

(2z1 · Ez1 + 1)(2z2 · Ez2 + 1)
. (5.12)

The diagonal of E regard to the normal strain and the other terms regards to the distortion.

5.2 The Stress Tensor and Motion Equations

After discussing strain and deformation, it is natural to introduce a stress analysis. A
solid body subjected to forces implies internal forces acting to maintain the equilibrium. The
internal forces are called stresses and they are related to an specific area. Figure 5.2 shows
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a half of a solid body subjected to forces and the stress p associated to the cut surface,
the area dA, the point x and the unitary normal vector n̂. It is known that the stress only
depends on the associated normal vector related to the cut surface.The generic stress p can
be divided into a normal component and a shear component as shown below:

p(x, n̂) = σ(x, n̂) + τ(x, n̂), (5.13)

where σ is the normal stress and τ is the shear stress.

Figure 5.2: Half of a solid body subjected to forces and the stress p.
Source: Author

Before introducing the stress tensor, it is relevant to present the principle of linear mo-
mentum (PLM).

Principle 1 (Linear Momentum). For any given volume V of a generic solid body and for
any time instant t, it holds true that:∫

V

bdV +

∫
S

pdS =

∫
V

µacdV, (5.14)

where b is the body force applied to the solid, µ is the specific mass, S is the surface area
and ac is the acceleration field.

From this principle, it can be concluded that:

p(x, n̂) = −p(x,−n̂). (5.15)

Also, it possible to present the Cauchy stress tensor T : R3 −→ R3 that maps a normal
vector to a stress vector, such that:

Tn̂ = p(x, n̂). (5.16)
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The tensor can be described by:

T =

T11 T12 T13

T21 T22 T23

T31 T32 T33

 , (5.17)

where the terms of the diagonal refer to normal stress and the other terms refer to shear
stress. It is important to mention that this matrix is symmetric. Considering the canonical
basis (e1, e2, e3) and the notation Tij, i indicates the direction and j the plane with normal ej.
Now, with the stress tensor defined it is possible to deduce the motion differential equations:∫

V

bdV +

∫
S

pdS =

∫
V

µacdV ⇒
∫
S

Tn̂dS =

∫
V

µac − bdV. (5.18)

Applying the Divergence Theorem to the term on the left-hand side of the equation such
that: ∫

S

Tn̂dS =

∫
V

divTdV, (5.19)

then it holds true that:∫
V

divTdV =

∫
V

µac − bdV ⇒
∫
V

(divT− µac + b)dV = 0. (5.20)

As equation (5.20) is true for any arbitrary V and considering static equilibrium:

divT+ b = 0. (5.21)

Equation (5.21) can be written as a system of equations:
∂T11

∂x1
+ ∂T12

∂x2
+ ∂T13

∂x3
+ b1 = 0

∂T21

∂x1
+ ∂T22

∂x2
+ ∂T23

∂x3
+ b2 = 0

∂T31

∂x1
+ ∂T32

∂x2
+ ∂T33

∂x3
+ b3 = 0

. (5.22)

5.3 Theory of Linear Elasticity

Everything presented until now considers the finite elasticity not restricted to small
displacements and rotations. Consequently, the resultant equation system contains non-
linear terms, which, in general, are difficult to handle. For a great range of problems a
simpler formulation can be considered, by adopting the linear hypothesis. The geometric
linearity hypothesis concerns to the assumption of infinitesimal displacements. In this sense,
the reference configuration and the deformed configuration can be considered as equal and
the non-linear term in the Green-Lagrange strain tensor, presented in equation (5.11) can

47



be considered zero:
E =

1

2
(∇u+∇uT ). (5.23)

In linear elasticity, the stress components can be represented by the Cauchy stress tensor
given in equation (5.17). As both E and T are symmetric, there are six independent com-
ponents from each tensor. Thus, using the Voigt’s notation, it is possible to represent them
as:

σ =



T11

T22

T33

T12

T13

T23


; ε =



E11

E22

E33

2E12

2E13

2E23


=



E11

E22

E33

γ12

γ13

γ23


. (5.24)

The physical linearity hypothesis is related to the behavior of the adopted material.
Therefore, it is possible to introduce a linear symmetric operator D which associates stresses
and strains, implying in a linear constitutive equation:

σ = Dε⇔ ε = Cσ, (5.25)

where C = D−1. Considering a linear elastic isotropic material, it is possible to write:

D =
E

(1 + ν)(1− 2ν)



(1− ν) ν ν 0 0 0

ν (1− ν) ν 0 0 0

ν ν (1− ν) 0 0 0

0 0 0 1−2ν
2

0 0

0 0 0 0 1−2ν
2

0

0 0 0 0 0 1−2ν
2


(5.26)

and, consequently,

C =
1

E



1 −ν −ν 0 0 0

−ν 1 −ν 0 0 0

−ν −ν 1 0 0 0

0 0 0 2(1 + ν) 0 0

0 0 0 0 2(1 + ν) 0

0 0 0 0 0 2(1 + ν)


. (5.27)

The principle of linear momentum still holds true and the balance equation is given
by 5.21. In this sense, considering the set of prescribed displacements Su and the set of
prescribed forces St, the differential formulation of the linear elasticity problem is complete.

A particular case of the Theory of Elasticity is the plane strain formulation in which the
displacement field in one direction is equal to zero. In this work, the plane strain is considered

48



in the context of linear elasticity. With this simplification, three dimensional problems can
be solved with a two dimensional formulation. Considering that u3 ≡ 0 ⇒ ε3 = E33 = 0.
Thus, the stress and strain are reduced to:

σ =

T11T22

T12

 ; ε =

 E11

E22

2E12

 =

E11

E22

γ12

 . (5.28)

The constitutive operator becomes:

D =
E

(1 + ν)(1− 2ν)

(1− ν) ν 0

ν (1− ν) 0

0 0 1−2ν
2

 (5.29)

and,

C =
1 + ν

E

(1− ν) −ν 0

−ν (1− ν) 0

0 0 2

 . (5.30)

The balance equations, considering static equilibrium are given by:∂T11

∂x1
+ ∂T12

∂x2
+ b1 = 0

∂T21

∂x1
+ ∂T22

∂x2
+ b2 = 0

. (5.31)

Again, considering the prescribed displacements and forces, the formulation for the plane
strain is complete.
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Chapter 6

Saint-Venant Torsion Problem

This chapter was inspired in the work presented in Moherdaui and Neto (2019) and the
main goal is to show an application of Virtual Element Method in a engineering problem
regarding to the Poisson Equation. Also, a comparison between Virtual Element Method,
Finite Element Method and Finite Difference Method is made. FDM is one of the classical
approaches for solving the Poisson Equation. Since the FDM method, which is based on
Taylor series approximations, requires a space of continuous function, an iterative approach
is used. As support text to build the formulation, the works in Timoshenko and Goodier
(1951) and Bucalem and Bathe (2011) were used.

The first section is dedicated to the formulation of the Saint-Venant torsion problem
using the Prandtl Stress Function. This function is the responsible for the construction of
Poisson Equation in the torsion problem. Then, using the implementation pipeline presented
in Chapter 4, the Virtual Element Method is used in order to find the torsion constant. The
results will be compared with a FEM and a FDM approach.

6.1 Formulation of Saint-Venant Torsion Problem

According to Timoshenko and Goodier (1951), Coloumb stated that for bars with cir-
cular cross-section no warping occurs during torsion. Here, warping can be understood as
the movement in the direction of the bar’s axis during torsion phenomenon. The authors
say that Navier assumed this hypothesis for prismatic bars with non-circular cross-section
and erroneously conclude that the torsion angle was inversely proportional to the cross-
section polar moment of inertia and that the maximum shear stress tend to occur at the
point farther of the centroid. This conclusion causes a contradiction between boundary and
equilibrium conditions. The correct formulation was given by Saint-Venant by considering
the warping. Thus, both boundary and equilibrium conditions were satisfied for an uniform
torsion problem. Under these circumstances, the following hypothesis are made:

Hypothesis 4. For a prismatic bar it is assumed that:

• the cross-sections experience rigid body rotation,
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• all cross-sections warp in the same way,

• the formulation is restricted for small rotations (sin θ ≈ θ and cos θ ≈ 1).

The linear elastic model is used in this formulation. Figure 6 shows the top view of the
cross-section where θ(x) is the rotation angle that occurs when a constant torque T is applied
and O is the rotation center. As the torsion is uniform, then the twist rate θ′(x) = ∂θ

∂x
(x)

is assumed constant and will be denoted just by θ′. Thus, by Saint-Venant’s formulation it
can be written as:

T = GItθ
′ ⇔ θ′ =

T

GIt
, (6.1)

where G is the shear modulus and It is the torsion constant. The shear modulus can be
computed as G = E

2(1+ν)
, where E is the elastic modulus and ν is the Poisson coefficient. It

also can be assumed that:
θ(0) = 0 and θ(x) = xθ′. (6.2)

Figure 6.1: Top view of the cross-section of a prismatic bar.
Source: Author

It is important to mention that the small rotation hypothesis implies that sin θ ≈ 0 and
cos θ ≈ 1. Thus, as in Timoshenko and Goodier (1951), the displacement field u = (u1, u2, u3)

is given by:

u1 = θ′Ψ(y, z), (6.3)

u2 = −zxθ′, (6.4)

u3 = yxθ′ (6.5)
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where Ψ(y, z) is the warping function. Consequently, the strain components are:

εx =
∂u1
∂x

= 0, εy =
∂u2
∂y

= 0, εz =
∂u3
∂z

= 0, (6.6)

γxz =
∂u1
∂z

+
∂u3
∂x

= θ′
(
∂Ψ

∂z
+ y

)
, (6.7)

γyz =
∂u2
∂z

+
∂u3
∂x

= −xθ′ + xθ = 0, (6.8)

γxy =
∂u1
∂y

+
∂u2
∂x

= θ′
(
∂Ψ

∂y
− z

)
. (6.9)

By the Generalized Hooke’s Law:

σx = σy = σz = τyz = 0, (6.10)

τxz = Gγxz = Gθ′
(
∂Ψ

∂z
+ y

)
, (6.11)

τxy = Gγxy = Gθ′
(
∂Ψ

∂y
− z

)
. (6.12)

Considering static equilibrium and no body force, the equilibrium equation can be written
as

divT = 0, (6.13)

where T is the Cauchy Stress Tensor. Substituting equation (6.10) in equation (6.13):

∂σx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

= 0 ⇔ ∂τxy
∂y

+
∂τxz
∂z

= 0. (6.14)

Now, substituting equations (6.10) and (6.11) in (6.14):

∂τxy
∂y

+
∂τxz
τxz

= 0 ⇒ Gθ′
(
∂2Ψ

∂y2
+
∂2Ψ

∂z2

)
= 0. (6.15)

As Gθ′ ̸= 0, equation (6.15) can be written as:

∂2Ψ

∂y2
+
∂2Ψ

∂z2
= 0 ⇔ ∆Ψ = 0,∀(y, z) ∈ Ω, (6.16)

where Ω is the geometric domain of the cross-section. Equation (6.16) is knows as Laplace
Equation and can be seen as an particular case of Poisson Equation when f ≡ 0. The bound-
ary conditions also need to be defined. Figure 6.2 shows the domain Ω, the boundary ∂Ω,
the normal vector n to the boundary and the tangent vector t to the boundary. Considering
the parameterization curve of the boundary given by r(s) = (0, y(s), z(s)) and the canonical
basis (e1, e2, e3) for the euclidean space, the tangent vector can be written as:

t =

(
0,
∂y

∂s
(s),

∂z

∂s
(s)

)
(6.17)
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Figure 6.2: Cross-section domain Ω, the boundary ∂Ω, the normal vector n to the boundary and
the tangent vector t to the boundary.

Source: Author

and the normal vector, using the cross product,

n = t× e1 =

(
0,−∂z

∂s
,
∂y

∂s

)
. (6.18)

Since the stress on ∂Ω is zero, it is possible to write:

Tn = 0 ⇔ Gθ′
(
∂Ψ

∂y
− z

)(
−∂z
∂s

)
+Gθ′

(
∂Ψ

∂z
+ y

)(
∂y

∂s

)
= 0. (6.19)

Equation (6.19) represents the boundary condition for the torsion problem.
The next step is define the Prandtl Stress Function in order to setup the Poisson Equation

as showed in Chapter 3.

Definition 16. Let Φ ∈ C2(Ω) such that

τxy =
∂Φ

∂z
(y, z), and τxz = −∂Φ

∂y
(y, z). (6.20)

This function is called Prandtl Stress Function.

In definition 16, since Φ ∈ C2(Ω) by applying the Schwarz Theorem it is possible to
conclude that:

∂2Φ

∂y∂z
=

∂2Φ

∂z∂y
. (6.21)

Substituting equations (6.11) and (6.12) in definition 16:

τxz = Gθ′
(
∂Ψ

∂z
+ y

)
= −∂Φ

∂y
, (6.22)

τxy = Gθ′
(
∂Ψ

∂y
− z

)
=
∂Φ

∂z
. (6.23)
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The derivatives of equations (6.22) and (6.23) with respect to y and z respectively are given
by:

Gθ′
(
∂2Ψ

∂z∂y
+ 1

)
= −∂

2Φ

∂y2
, (6.24)

Gθ′
(
∂2Ψ

∂z∂y
− 1

)
=

∂2Φ

∂z2
. (6.25)

Subtracting equation (6.25) from equation (6.24):

∂2Φ

∂y2
+
∂2Φ

∂z2
= −2Gθ′. (6.26)

Considering the total derivative of Φ denoted by DΦ:

DΦ =
∂Φ

∂y

∂y

∂s
ds+

∂Φ

∂z

∂z

∂s
ds =

(
∂Φ

∂y

∂y

∂s
+
∂Φ

∂z

∂z

∂s

)
ds =

dΦ

ds
ds, (6.27)

for all y, z ∈ ∂Ω. Rewriting equation (6.19) as:

− ∂Φ

∂z

∂z

∂s
− ∂Φ

∂y

∂y

∂s
= 0. (6.28)

Then,
dΦ

ds
= 0, ∀y, z ∈ ∂Ω. (6.29)

Arbitrating that Φ ≡ 0 on ∂Ω, thus the Poisson Equation regarding to Saint-Venant formu-
lation for torsion is: ∆Φ = ∂2Φ

∂y2
+ ∂2Φ

∂z2
= −2Gθ′ in Ω

Φ = 0 on ∂Ω
. (6.30)

Finally, the torque can be defined as the total moment in each cross-section:

T =

∫
Ω

(
y
∂Φ

∂y
− z

∂Φ

∂z

)
dΩ = −

∫
Ω

(
∂(yΦ)

∂y
+
∂(zΦ)

∂z
− 2Φ

)
dΩ =

=

∫
Ω

(
∂(yΦ)

∂y
+
∂(zΦ)

∂z

)
dΩ + 2

∫
Ω

ΦdΩ.

(6.31)

Applying the Divergence Theorem in the first term of equation (6.31):

T =

∫
∂Ω

Φ

(
−y∂z

∂s
+ z

∂y

∂s

)
d∂Ω + 2

∫
Ω

ΦdΩ. (6.32)
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Since Φ ≡ 0 on ∂Ω,

T = 2

∫
Ω

ΦdΩ. (6.33)

Substituting equation (6.33) in equation (6.1), the torsion constant is:

It =

2
∫
Ω

ΦdΩ

Gθ′
=

2

Gθ′

∫
Ω

ΦdΩ. (6.34)

6.2 VEM applied to torsion

This section is dedicated to present the results obtained by applying the Virtual Element
Method to the Saint-Venant’s torsion formulation showed earlier. Since the goal is to solve
Poisson Equation (6.30) and obtain the torsion constant by applying equation (6.34), the
implementation framework of VEM is the same as presented in Chapter 4. As mentioned
before, a comparison with FDM and FEM are also made and a discussion regarding the
performance of the methods are discussed. It is important to recall that for VEM and FEM
only the linear case is considered. The discussions about FEM and FDM implementation
were suppressed, since it is out of the scope of the present work. For further information about
the other methods, a detailed explanation about the Finite Difference Method and Finite
Element Method can be found in LeVeque (2007) and Alberty et al. (1999), respectively.

As in Chapter 4, the domain is a unitary square Ω = [0, 1]× [0, 1] representing the cross
section of the prismatic bar. In Timoshenko and Goodier (1951), an analytical value for It
concerning to rectangular cross sections is presented. Considering the width wi of the cross
section , the height he of the cross section and that Gθ′ = 1, the analytical value is given by
a trigonometric series:

It =
1

3
w3

i he

(
1− 192wi

heπ5

∞∑
i=0

1

(2i+ 1)5
tanh

(2i+ 1)heπ

2wi

)
. (6.35)

In this case, he = wi = 1, thus:

It =
1

3
(1− 0.63) = 0.1406. (6.36)

The numerical value of the torsion constant will be denoted by Iht and the error will be
evaluated by:

Error(%) =
|Iht − It|

It
100. (6.37)

The meshes used for VEM are the same shown in Figure 4.1. For FEM, only the uniform
square mesh was used. Table 6.1 shows the numerical values obtained using VEM, FEM
and FDM alongside the associated error for different number of elements. It is important
to mention that for FDM elements are not properly used, instead it is used a discretization
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composed by points equivalent to the nodes of VEM and FEM meshes. Figures 6.3 is graphi-

Numerical solution for Saint-Venant torsion problem
Elements VEM VEM Voronoi FEM FDM

Iht Error Iht Error Iht Error Iht Error
16 0.1354 3.6866 0.1450 3.0993 0.1279 9.0314 0.1152 18.0410
36 0.1382 1.6874 0.1444 2.7277 0.1348 4.0901 0.1286 8.5202
64 0.1392 0.9628 0.1427 1.5288 0.1373 2.3226 0.1337 4.9131
100 0.1397 0.6239 0.1421 1.0755 0.1385 1.4971 0.1361 3.1873
144 0.1400 0.4389 0.1418 0.8776 0.1391 1.0465 0.1375 2.2334
256 0.1402 0.2544 0.1413 0.5178 0.1398 0.5970 0.1388 1.2724
400 0.1404 0.1688 0.1411 0.3342 0.1401 0.3883 0.1394 0.8231
676 0.1405 0.1066 0.1409 0.1939 0.1403 0.2366 0.1399 0.4950
1024 0.1405 0.0759 0.1408 0.1249 0.1404 0.1618 0.1401 0.3328
2304 0.1405 0.0428 0.1407 0.0390 0.1405 0.0810 0.1404 0.1572
2704 0.1405 0.0389 0.1406 0.0269 0.1405 0.0715 0.1404 0.1364
4096 0.1406 0.0313 0.1406 0.0037 0.1405 0.0527 0.1405 0.0956

Table 6.1: Numerical results obtained regarding to the torsion constant.

cal representations of Table 6.1, showing the relation between number of elements and the
torsion constant. Figures 6.4 and 6.5 show the error in different graphical scales. From the
table and the figures it is possible to observe the convergence for all methods. The Virtual
Element Method using uniform and Voronoi mesh has a very similar performance when
compared to Finite Element Method. It is possible to note that VEM is slightly faster than
FEM for a small number of elements. On the other hand, comparing Virtual Element Method
outperforms Finite-Difference Method as one can be seen.

Figure 6.3: Numerical value of torsion constant and number of elements.

Source:Author

57



Figure 6.4: Error related to torsion constant and number of elements.
Source:Author

Figure 6.5: Error related to torsion constant and number of elements (logarithm scale).

Source:Author

To evaluate the Prandtl Stress Function Φ, the membrane analogy can be used. Accord-
ingly to Timoshenko and Goodier (1951), this analogy was introduced by Pradtl and it is
used when Φ cannot be determined explicitly. The membrane analogy can be seen as a mem-
brane above a empty structure. In the present case the structure is a square. A pressure is
applied to the membrane and it inflates. In this sense, by the analogy, the stress is tangential
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to the contour lines that emerges in the membrane as result of the pressure application and
the boundary, the module of the tangential stress in each cross section is proportional to the
membrane’s slope and the volume of the deformed membrane is proportional to the torque.
Thus, it is possible to observer that for the square cross section the Φ should be zero at
the boundaries and its maximum value must be in the center of the cross section. Figure
6.6 shows the membrane analogy regarding to Virtual Element Method using uniform and
Voronoi meshes with 1024 elements. And, Figure 6.7 shows the membrane analogy for FEM
and FDM with 1024 elements. It is possible to see from these figures the correspondence to
the membrane analogy assumptions.

(a) Uniform mesh (b) Voronoi mesh

Figure 6.6: Membrane analogy using the Virtual Element Method
Source: Author

(a) FDM (b) FEM

Figure 6.7: Membrane analogy using Finite-Difference Method and Finite Element Method

Source: Author

As expected, for simple geometries Virtual Element Method and Finite Element Method
has very similar performance. The VEM with Voronoi mesh showed a better performance
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than with the uniform mesh. Thus, it can be seen as an advantage of using VEM since the
use of Voronoi mesh with FEM requires the usage of isoparametric elements (as discussed in
Chapter 4) and with VEM the elements are computed directly from the degrees of freedom.
Also, it is important to mention that VEM performance for Poisson Equation implementation
is in accordance with the literature presented in Chapter 2.
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Chapter 7

Virtual Element Method Applied to
Linear Elasticity

In this chapter, Virtual Element Method is applied to solve the differential equations
in linear elasticity context considering the plane state hypothesis. As can be seen, the for-
mulation of VEM in this case is an extension of what was shown in the Poisson Equation
case. This chapter is mostly based on the model presented in Gain et al. (2014) and in
Ortiz-Bernardin et al. (2019). This model is restricted to the linear case (k = 1) but as it
is stated in Ortiz-Bernardin et al. (2019), due to the matrix framework the formulation is
more familiar to engineers.

The first part of this chapter is dedicated to present the weak formulation. Then, the
Virtual Element Formulation is shown keeping the notation presented in Chapter 3. Finally,
the implementation framework is displayed similarly to Chapter 4.

7.1 The weak formulation

Let Ω ⊂ R2 be a generic elastic solid domain. This solid is subjected to a body force b

in Ω and in ∂Ω it is subjected to an external traction g (Neumann’s boundary condition)
and prescribed displacements û (Dirichlet’s boundary condition) as shown in Figure 7.1. Sf

denotes the set of points where the external traction is applied and Sd denotes the set of the
points with prescribed displacement.

As described in Chapter 5, the differential formulation for the problem mentioned above
is given by: 

divT+ b = 0,

Tn̂ = g, x ∈ Sf ,

u = û, x ∈ Sd,

(7.1)

where u ∈ C2(Ω)∩C(Ω), b ∈ L2(Ω) and g ∈ L2(∂Ω). As in the Poisson Equation, to apply
the Virtual Element Method, the weak formulation is necessary.
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Figure 7.1: Generic elastic solid domain with Dirichlet and Neumann boundary conditions.
Source: Author

Let v ∈ H1
0 (Ω) be a test function. Multiplying equation (7.1) by the test function, one

shall obtain: ∫
Ω

divT · vdΩ +

∫
Ω

b · vdΩ = 0. (7.2)

Integrating by parts the first term of the equation above:∫
Ω

divT · vdΩ = −
∫
Ω

T : ∇vdΩ +

∫
∂Ω

Tn̂ · vdS. (7.3)

Using the Neumann boundary condition:∫
Ω

divT · vdΩ = −
∫
Ω

T : ∇vdΩ +

∫
∂Ω

g · vdS. (7.4)

Substituting equation (7.4) in 7.2, the weak formulation is given by:∫
Ω

T : ∇vdΩ =

∫
∂Ω

g · vdS +

∫
Ω

b · vdΩ, (7.5)

where u,v ∈ H1
0 (Ω). The operation T : ∇v = tr(TT∇v) refers to the scalar product between

two tensors, where tr(·) is the trace.
The approach shown above is also known as the Principle of Virtual Work and v is also

called virtual displacement field. As ∇v is a second order tensor it can be decomposed in a
symmetric and a skew-symmetric component. Thus, as only the symmetric component has
influence and considering the Voigt notation it is possible to write:∫

Ω

σ(u) · ε(v)dΩ =

∫
∂Ω

g · vdS +

∫
Ω

b · vdΩ. (7.6)
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It is worth mentioning that with the Voigt notation the scalar product between two vector
is considered. Writing the problem in terms of the bilinear form, one shall have:

a(u,v) = fs(v) + fb(v), (7.7)

where a(u,v) =
∫
Ω

σ(u) · ε(v)dΩ, fs(u) =
∫
∂Ω

g · vdS and fb(v) =
∫
Ω

b · vdΩ. With the weak

form constructed, the Virtual Element Method can be formulated.

7.2 The Virtual Element Method

Considering a decomposition τh of Ω into simple polygons K. Similarly to what what
done before, the idea is to construct each term of the discrete problem given by:

ah(u,v) = fb,h(v) + fs,h(v), (7.8)

for all u,v ∈ Vh and where ah(u,v) =
∑

K∈τh
ah,K(u,v), fb,h(v) =

∑
K∈τh

fb,K,h(v) and fs,h(v) =∑
K∈τh

fs,K,h(v). It is important to mention that hypothesis 1, 2, 3 are still assumed and

Theorem 2 is still valid. Thus, the uniqueness and convergence of the solution for the discrete
problem are guaranteed.

As stated in Gain et al. (2014) this formulation is restricted to the linear case (k=1). In
this way, the set of degrees of freedom are the values of v on the vertices of each simple
polygon K (see Chapter 3). Setting up EK = ∅ and PK = ∅, then VK ∪EK ∪PK is unisolvent
as shown in Theorem 3.

The authors in Ortiz-Bernardin et al. (2019) state that the convergence of the discrete
solution is associated with the characteristic of the approximated displacement field that can
be decomposed into a rigid body component and constant strain component. In this sense,
the continuous space given in Definition 10, now refers to the space of linear displacements,
characterized by a linear polynomial as presented in definition below.

Definition 17. For each K ∈ τh, the linear space is given by:

EK = {a+M(x− xc) : a ∈ R2, M ∈ R2×2}. (7.9)

With the linear space, it is possible to write the definition below.

Definition 18. The virtual element space is defined as:

Vh = {v ∈ C0(Ω) : v|K ∈ DK ,∀K ∈ τh}, (7.10)

where DK is the space of deformations associated to each polygon K and EK ⊆ DK.
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One can observe that DK ⊆ H1
0 (K), for all K ∈ τh, then Vh ⊆ H1

0 (Ω). From the definition
of virtual element space, it can be verified that DK has a similar role to the local virtual
element space in the formulation of VEM regarding to the Poisson Equation. Recalling that
a second order tensor can be decomposed into a symmetric and a skew-symmetric tensor,
M is written as:

M = M∗ +M∗, (7.11)

where M∗ = sym(M) and M∗ = skw(M). The linear space EK can be kinetically decom-
posed into a space of rigid body motion RK and a space of constant strain modes CSK , such
that:

RK = {a+M∗(x− xc) : a ∈ R2, M∗ ∈ R2×2}, (7.12)

CSK = {M∗(x− xc) : M
∗ ∈ R2×2} (7.13)

Then, it is possible to to write EK = RK + CSK , where EK ⊆ DK

The projection operator Π∇ is divided in three parts:

• Π∇
RK

: DK −→ RK that is responsible to extract the rigid body motions such that

Π∇
RK

r = r, ∀r ∈ RK ; (7.14)

• Π∇
CSK

: DK −→ CSK that is responsible to extract the constant strain modes, such
that

Π∇
CSK

c = c, ∀c ∈ CSK ; (7.15)

• Π∇
EK

: DK −→ EK that is responsible to extract the polynomial terms, such that

Π∇
EK

= Π∇
RK

+Π∇
CSK

and Π∇
EK

q = q, ∀q ∈ EK . (7.16)

This approach is much similar to what was done in the VEM formulation for the Poisson
Equation, once, functions that are not known in the first moment are being projected in
subspaces of polynomial spaces. The definition below gives the explicit formula for the Π∇

RK

operator.

Definition 19. For all v ∈ DK, it holds true that:

Π∇
RK

= v + ψ̂(v)(x− xc), (7.17)

where the mean tensor associated to the rigid body motion is given by:

ψ̂(v) =
1

|K|

∫
K

ψ(v)dK =
1

2|K|

∫
∂K

(v × n̂− n̂× v)dS, (7.18)
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with ψ(v) = 1
2
(∇v −∇vT ), n̂ is the normal vector to ∂K and v = 1

nK

nK∑
i=1

v(xi) is the mean

of v in the vertices.

From Definition 19, it can be observed that the term ψ̂(v)(x − xc) is related to the
rotations and v is related to translations. In the same way, the definition below presents a
explicit formula for the Π∇

CS operator.

Definition 20. For all v ∈ DK, it holds true that:

Π∇
CS = ε̂(v)(x− xc), (7.19)

where the mean tensor associated to the strain modes is given by:

ε̂(v) =
1

|K|

∫
K

ε(v)dK =
1

2|K|

∫
∂K

(v × n̂+ n̂× v)dS. (7.20)

Due to the orthogonality of the projection operators given by Π∇
RK

c = 0, for all c ∈
CSK and Π∇

CSK
r = 0, for all r ∈ RK , it is possible to conclude that ψ(Π∇

CSK
v) = 0 and

ε(Π∇
RK

v) = 0, for all v ∈ DK . There are other ways to define the projection operator
that may lead to differences in the results. For example, Artioli et al. (2017) define a single
operator that directly maps the displacement field to the strain field. On the other hand,
da Veiga et al. (2013b) and Mengolini et al. (2019) introduce a projection operator that
maps a displacement field directly into the polynomial space. Also, it is worth mentioning
that the projection operator Π∇

EK
can be easily obtained by a composition of Π∇

RK
and Π∇

CSK

as shown before.
The next step refers to build the discrete bilinear term. But first, in order to guarantee the

consistency property it is necessary to show that the residual term v−Π∇
CSK

v is orthogonal
to every c ∈ CSK . By the bilinear form definition:

aK(c,v − Π∇
CSK

v) =

∫
K

σ(c) · ε(v − Π∇
CSK

v)dK =

∫
K

σ(c) · [ε(v)− ε(Π∇
CSK

v)]dK. (7.21)

As σ(c) is constant for every c ∈ CSK :

aK(c,v − Π∇
CSK

v) = σ(c) ·

∫
K

ε(v)dK − |K|ε(Π∇
CSK

v)

 (7.22)

By Definition 20, it is possible to see that ε(Π∇
CSK

v) = ε̂(v). Thus,

aK(c,v − Π∇
CSK

v) = σ(c) ·

∫
K

ε(v)dK − |K|ε̂(v)

 = 0, (7.23)

proving the orthogonality.
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For every v ∈ DK it is possible to write:

v = Π∇
RK

v +Π∇
CSK

v + (v − Π∇
EK

v). (7.24)

The last term of this equation refers to the non-polynomial functions residues. In this sense,
one obtains:

aK(v,v) = aK(Π
∇
RK

v +Π∇
CSK

v + (v − Π∇
EK

v),Π∇
RK

v +Π∇
CSK

v + (v − Π∇
EK

v)). (7.25)

As mentioned before ε(Π∇
RK

v) = 0, i.e., no strain energy is associated to the rigid body
motions, as expected. Consequently,

aK(v,v) = aK(Π
∇
CSK

v + (v − Π∇
EK

v),Π∇
CSK

v + (v − Π∇
EK

v)). (7.26)

Thus,

aK(v,v) = aK(Π
∇
CSK

v,Π∇
CSK

v)+2aK(Π
∇
CSK

v, (v−Π∇
EK

v))+aK(v−Π∇
EK

v,v−Π∇
EK

v). (7.27)

From equation (7.23), one can observe that:

aK(v,v) = aK(Π
∇
CSK

v,Π∇
CSK

v) + aK(v − Π∇
EK

v,v − Π∇
EK

v). (7.28)

The bilinear form in equation (7.28) presents the consistency and the stability term. In this
way, by choosing an adequate stability term, without loss of generality, it is possible to write:

ah,K(v,v) = aK(Π
∇
CSK

v,Π∇
CSK

v) + SK(v − Π∇
EK

v,v − Π∇
EK

v), (7.29)

where SK is the symmetric bilinear form defined as in Gain et al. (2014) and it is detailed
in the next section.

Finally the load terms are piecewise constant for k = 1 and can be computed similarly
to the load term in the VEM formulation for the Poisson Equation. Thus, the body force is
given by:

fb,K,h(v) = |K|b̂ · v, (7.30)

where b̂ = 1
|K|

∫
K

bdK. In turn, the external traction can be calculated as:

fs,K,h(v) = lK,eĝ · v, (7.31)

where lK,e is the length of edge e and ĝ = 1
|K|

∫
K

gdK. With the formulation of the method

presented, the next section will be dedicated to present the implementation.
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7.3 Implementation

The implementation strategy is similar to what is done in da Veiga et al. (2014). Defining
(ϕi)i∈[1,nK ] as the basis for the space DK . The choice of the basis here is analogous to the
choice for the local virtual element space made in Chapters 3 and 4. For the space of rigid
body motion RK , the basis is given by r1 = (1, 0), r2 = (0, 1) and r3 = (x2−xc,2,−x1+xc,1)
such that

βr,j(x) =

nK∑
i=1

ϕi(x)r
j(xi), (7.32)

with j = 1, 2, 3. Recalling that v1 and v2 are the translations on the vertices and ψ̂12 is
associated with the rotations on the vertices. Thus, this values are directly related to the
choice of degrees of freedom. It is possible to write:

Π∇
RK

v = βr,1v1 + βr,2v2 + βr,3ψ̂12. (7.33)

Also, it is possible to write v in terms of (ϕi)i∈[1,nK ] and its values on vertices as:

v =

nK∑
i=1

ϕi(x)v
i, (7.34)

where vi = (vi,1, vi,2) are the values on the vertices. In matrix form, one shall have:

Π∇
RK

v = B Π∇
RK,†

d, (7.35)

where
d =

[
v11 v12 v21 v22 · · · vnK

1 vnK
2

]
(7.36)

and Π∇
RK,†

= DR Π∇
RK

with

Π∇
RK

=


1
nK

0 1
nK

0 · · · 1
nK

0

0 1
nK

0 1
nK

· · · 0 1
nK

η1,2 −η1,1 η2,2 −η2,1 · · · ηnK ,2 −ηnK ,1

 (7.37)

and ηi,j = 1
4|K|(lK,ei−1

n̂i−1,j + lK,ein̂i,j), for j = 1, 2, is the component associated with the
normal vectors. As before, B and DR are intermediary matrices given by:

B =

[
ϕ1 0 ϕ2 0 · · · ϕnK

0

0 ϕ1 0 ϕ2 · · · 0 ϕnK

]
(7.38)
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and

DR =



1 0 x12 − xc,2

0 1 −x11 + xc,1

1 0 x22 − xc,2

0 1 −x21 + xc,1
...

...
...

1 0 xnK
2 − xc,2

0 1 −xnK
1 + xc,1


. (7.39)

Analogously, defining a basis for the space of constant strain modes CSK as c1 = (x1 −
xc,1, 0), c2 = (0, x2 − xc,2) and c3 = (x2 − xc,2, x1 − xc,1) such that

βc,j(x) =

nK∑
i=1

ϕi(x)c
j(xi), (7.40)

with j = 1, 2, 3. Again, considering the choice of basis, it is possible to write:

Π∇
CSK

v = βc,1ε̂1 + βc,2ε̂2 + βc,3ε̂12. (7.41)

The matrix format is given by:

Π∇
CSK

v = B Π∇
CSK,†

d, (7.42)

where Π∇
CSK,†

= DCS Π∇
CSK

, with

DCS =



x11 − xc,1 0 x12 − xc,2

0 x12 − xc,2 x11 − xc,1

x21 − xc,1 0 x22 − xc,2

0 x22 − xc,2 x21 − xc,1
...

...
...

xnK
1 − xc,1 0 xnK

2 − xc,2

0 xnK
2 − xc,2 xnK

1 − xc,1


(7.43)

and

Π∇
CSK

=

2η1,1 0 2η2,1 0 · · · 2ηnK ,1 0

0 2η1,2 0 2η2,2 · · · 0 2ηnK ,2

η1,2 η1,1 η2,2 η2,1 · · · ηnK ,2 ηnK ,1

 . (7.44)

The matrix form of the projection operator Π∇
EK

is obtained by:

Π∇
EK,†

= Π∇
RK,†

+Π∇
CSK,†

. (7.45)
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By the definition of the intermediary matrix B, it is possible to write:

u = Bd and v = Bd. (7.46)

Substituting equations (7.42), (7.45) and (7.46) in equation (7.29), the local stiffness matrix
is given by:

Kh = |K|Π∇
CSK,†

D(Π∇
CSK,†

)T + (I− Π∇
EK,†

)TSK(I− Π∇
EK,†

), (7.47)

where
SK = |K| tr(D)

tr(DT
CSDCS)

(7.48)

as defined in Gain et al. (2014) and D is the constitutive operator defined in equation (5.29).
The body force vector and the external traction vector can be written directly as follow:

fb,K,h = |K|

[
1
nK

0 1
nK

0 · · · 1
nK

0

0 1
nK

0 1
nK

· · · 0 1
nK

]
b̂ (7.49)

and

fs,K,h = |K|

[
1
2

0 1
2

0

0 1
2

0 1
2

]
ĝ. (7.50)
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Chapter 8

Applications

This chapter is dedicated to present some examples regarding the Virtual Element
Method applied to linear elasticity. The first application is a square plate under traction
which possess and analytical solution. The second application, a non-convex polygon, does
not have an analytical solution and, thus, its results are compared against Ansys. The third
application is the problem of a rectangular plate with a hole. The formulation and analytical
results regarding to stress concentration factor are presented. The last application concerns
to the chosen complex geometry that is a zeta-shaped pressure armor.

The meshes used in this chapter are quadrilateral and square meshes and, to generate
these meshes, the Gmsh software presented in Geuzaine and Remacle (2009) is used. The
presented method implementation has influence from various works. The integral computa-
tions of normal vectors and vectorization of the process were based on the works of Sutton
(2016) and Chen (2018). The method implementation itself was inspired and based on VEM-
LAB library by Professor Ortiz, specially regarding to the post-processing, and the Veamy
software discussed in Chapter 2.

8.1 Unitary Square Plate

The first application is a unitary square plate with the movement restricted in horizontal
direction on the left edge and in vertical direction in the bottom edge. A distributed load
t = 1kN/m is applied on the right edge and the material parameters are E = 1MPa and
ν = 0.3. Accordingly to Artioli et al. (2017), the analytical solution for this problem is given
by:

u(x, y) =
g

E
x,

v(x, y) = −νg
E
y.

(8.1)
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The error is given by the author as:

e(uh, u) =

√√√√√
∑
x∈τh

∥u(x)− uh(x)∥2∑
x∈τh

∥u(x)∥2
, (8.2)

where x represents a node in the decomposition τh. This problem is inspired on Mengolini et al.
(2019) patch test and Figure 8.1 shows its illustration.

Figure 8.2 shows examples of used quadrilateral and triangular meshes. As mentioned
before the meshes were generated using Gmsh.

Figure 8.1: Unitary square plate with distributed load.
Source: Author

(a) Quadrilateral mesh (b) Triangular mesh

Figure 8.2: Example of meshes, generated with Gmsh, used to perform simulations.
Source: Author

Table 8.1 shows the error associated to the performed simulations for different element
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sizes. Figure 8.3 shows a graphical representation of this table. It is possible to observe that
the error values are very close to each other independent of the different element sizes and
different element shapes. This fact may indicate the robustness of Virtual Element Method
regarding the generalization of meshes. On the other hand, the errors obtained are not close
to one obtained in Artioli et al. (2017). This may occur because of the difference in the
formulations, especially regarding to the choice of the stabilization term. Also, it is possible
to see in table 8.1, that the convergence rate of the error is very small. A justification for
this occurrence is related to the choice of the stabilization term.

Patch test
Elements size e(uh, u)-Quadrilateral e(uh, u)-Triangle

0.4 0.0770 0.0767
0.2 0.0743 0.0753
0.1 0.0726 0.0733
0.08 0.0720 0.0718
0.04 0.0718 0.0716
0.02 0.0716 0.0715
0.01 0.0713 0.0712

Table 8.1: Associated errors for different size of elements regarding the quadrilateral and triangular
mesh.

Figure 8.3: Convergence of VEM for the patch test.
Source: Author

Figures 8.4, 8.5 and 8.6 show the analytical and numerical solution considering a quadri-
lateral mesh and a triangular mesh with element size of 0.04, respectively. The notation
∥Uh∥ represents the total displacement. From the presented results it is possible to conclude
that VEM converges to the patch test with a satisfactory error order.
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(a) Analytical solution u

(b) Quadrilateral Mesh - uh

(c) Triangular Mesh - uh

Figure 8.4: Solution for u component.

Source: Author
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(a) Analytical solution v

(b) Quadrilateral Mesh - vh

(c) Triangular Mesh - vh

Figure 8.5: Solution for v component.

Source: Author
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(a) Analytical solution U

(b) Quadrilateral Mesh - Uh

(c) Triangular Mesh - Uh

Figure 8.6: Total sum solution.

Source: Author
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8.2 Non-convex pentagon

In this application, a direct comparison between the Virtual Element Method and Ansys
is made. For each specified element sizes, the maximum absolute values of the horizontal
displacement uh, the vertical displacement vh and the total displacement Uh are compared.
This test uses the same material parameters of the patch test showed in the previous section.
The pentagon orthogonal edges are unitary and the inclined edges length is

√
2
2

. The geometry
with an unitary uniform load is showed in Figure 8.7. For this application, only quadrilateral
meshes generated using Gmsh were used, as shown in Figure 8.8.

Figure 8.7: Pentagon with unitary distributed load.
Source: Author

Figure 8.8: Pentagon quadrilateral mesh using Gmsh.
Source: Author

Table 8.2 shows the maximum absolute values obtained with VEM while Table 8.3 shows
the maximum absolute values obtained with Ansys. And Table 8.4 shows the deviation
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between the VEM and Ansys. It can be observed that the convergence rate of the Virtual
Element Method is slower than Ansys. Again, this might occur because of the choice of the
stability term. To enhance the VEM solution the high-order implementations (k ≥ 2) should
be a solution.

VEM - Pentagon
Elements Size max(|uh|) max(|vh|) max(Uh)

0.1 3.3506 9.0506 9.6509
0.05 3.4148 9.2143 9.8267
0.01 3.4854 9.3904 10.0164
0.008 3.4942 9.4075 10.0354
0.004 3.5045 9.4360 10.0658

Table 8.2: Maximum absolute values for the pentagon obtained with the Virtual Element Method.

Ansys - Pentagon
Elements Size max(|uh|) max(|vh|) max(Uh)

0.1 3.0875 8.7535 9.2820
0.05 3.3574 9.4226 10.0030
0.01 3.6305 10.1330 10.7640
0.008 3.6327 10.1410 10.7720
0.004 3.6653 10.2210 10.8580

Table 8.3: Maximum absolute values for the pentagon obtained with Ansys.

Deviation - Pentagon
Elements Size max(|uh|) max(|vh|) max(Uh)

0.1 0.0852 0.0339 0.0397
0.05 0.0171 0.0221 0.0176
0.01 0.0400 0.0733 0.0695
0.008 0.0381 0.0723 0.0684
0.004 0.0439 0.0768 0.0730

Table 8.4: Deviation regarding maximum absolute values for the pentagon.

Figures 8.9, 8.10 and 8.11 shows the numerical solution of VEM and Ansys. It is pos-
sible to conclude that the Virtual Element Method presents a satisfactory behavior when
compared to a commercial finite element software. Although, for simple geometries with
triangular or quadrilateral meshes the advantage of using VEM instead of FEM is not clear.

78



(a) Ansys solution uh (b) VEM Solution uh

Figure 8.9: Numerical solution uh for non-convex pentagon with element size equals to 0.008.

Source: Author

(a) Ansys solution vh (b) VEM Solution vh

Figure 8.10: Numerical solution vh for non-convex pentagon with element size equals to 0.008.

Source: Author
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(a) Ansys solution Uh (b) VEM Solution Uh

Figure 8.11: Numerical solution Uh for non-convex pentagon with element size equals to 0.008.

Source: Author

8.3 Thin plate with a hole

This example refers to a thin rectangular plate with a circular hole in the middle. The
plate has width W of 60cm, height H of 10cm and a central hole of diameter D of 1cm. It
is assumed that the thickness is much smaller than the width with value of t = 1cm. Thus,
a plane state can be considered. Also, a stress field of σF = 1000kNm−2 is applied on the
edges as shown in Figure 8.12. It is important to mention that σF is associated to a force F
and can be analytically calculated as

σF =
F

tH
. (8.3)

The meshes used are quadrilateral with a refinement near the hole generated by Gmsh.
Figure 8.13 shows a example of the mesh considering the double symmetry conditions.

Figure 8.12: Geometry of a thin rectangular plate with a hole geometry.

Source: Author

The main goal of this example is to evaluate the stress concentration in the rectangular
plate with a central hole for that the concentration factor (CF) is used. Accordingly to
Young and Budynas (2002), the CF can be calculated as:

CF =
kCFσnominal

σF
, (8.4)
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Figure 8.13: Quadrilateral mesh with refinement near to the hole.
Source: Author

where

kCF = 3− 3.13
D

H
+ 3.66

(
D

H

)2

− 1.53

(
D

H

)3

(8.5)

and
σnominal =

F

t(H −D)
. (8.6)

Equation 8.4 can just be applied to W
H

≥ 5 and D < H because under these condition the
edges will not influence in the analytical result. For the geometrical configuration of the
plate described earlier, the analytical value is CF = 3.0340. The error is calculated as:

Error(%) =
|CF − CFnumerical|

CF
100. (8.7)

Table 8.5 shows the concentration factor numerical values calculated with VEM for differ-
ent numbers of elements and the associated error with respect the analytical value. Figures
8.14 and 8.15 show the graphical representation of this table.

Concentration Factor
Number of Elements VEM - CF Error (%)

1995 2.9953 1.2761
6204 3.0183 0.5164
8001 3.0238 0.3361
14790 3.0.283 0.1866
17352 3.0.284 0.1843
22383 3.0293 0.1559
38922 3.0303 0.1206

Table 8.5: Concentration factor and error for the rectangular plate with a central hole.

It is possible to observe from the results that the associated error is satisfactory small
even for a few elements (near 1% for 1995 elements). Although, as it was seen earlier, the
results rate tend to stabilize when the number of elements increases. Again, that might be
associated to the choice of the stabilization term or even to the definition of the projector
operator.

The Virtual Element Method showed satisfactory results for simpler geometries. The
next step is to apply the method for a complex geometry.
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Figure 8.14: Concentration factor calculated with VEM.
Source: Author

8.4 Complex geometry: zeta-shaped pressure armor

A simplified model of a zeta-shaped pressure armor presented in Mendonça (2016) is
considered as a two dimensional model with left and right sides with movement restricted
and a distributed load applied on the top as shown in Figure 8.16. Also, it is important
to mention that the problem was modeled considering the plain strain state. The elastic
module is equal to E = 207GPa and the Poisson coefficient is ν = 0.3. For more details and
a contextualization abou the zeta-shaped pressure armor refer to Appendix C.

Figure 8.16: Simplified model of a zeta-shape profile.

Source: Author
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Figure 8.15: Error between the numerical and analytical values of the concentration factor calcu-
lated with VEM.

Source: Author

The approach here considers a model with 120227 nodes and a quadrilateral mesh in
Ansys as reference solution and compare the Virtual Element Method numerical solution
with it. Figure 8.17 shows an example of a mesh generated with Gmsh. The reference solution
is shown in Figure 8.18. The chosen metric to compare the VEM with Ansys is the maximum
absolute value for uh, vh and Uh. Regarding to the VEM, only quadrilateral meshes are
considered.

Figure 8.17: Zeta-shape profile with quadrilateral mesh generated with Gmsh.

Source: Author
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(a) Reference solution uh

(b) Reference solution vh

(c) Reference solution Uh

Figure 8.18: Reference solution generated with Ansys for 120227 nodes.

Source: Author
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Table 8.6, shows the deviation between the maximum value obtained with the VEM and
the maximum values in the reference solution. Figures 8.19 and 8.20 show the graphical
representation of this table. The convergence rate might be related to the choice of the sta-
bilization term as discussed in Wriggers et al. (2016). This is justified once the stabilization
term is responsible to handle the non-polynomial terms related to the projection opera-
tor. Thus, the projection of the displacement field onto the polynomial space shall have a
large residual associated. It is worth mentioning that for the Poisson Equation formulation
presented in Chapters 3 and 4 the choice of the stabilization term does not have signifi-
cant influence on the final results as proved in da Veiga et al. (2017b). Yet there is no clear
methodology for choosing the adequate stabilization term.

In the case of the complex geometry, another factor that may interfere in the error
convergence rate is the choice of the basis for the virtual element space. Probably the chosen
basis is a rough representation of the true behavior of the geometry. Changing the basis
would clearly imply in the alteration of the intermediary matrices and might also imply in
a greater computational cost. Different choices for the basis are not yet largely explored in
the literature.

Deviation - Zeta-shape profile
Number of Nodes max(|uh|) max(|vh|) max(Uh)

333 16.4371 14.7079 14.7725
475 14.6123 13.6303 13.6381
897 10.6689 10.3526 10.3600
2365 8.0977 8.0521 8.0364
4237 7.9137 7.7766 7.7637
15577 6.6954 6.9201 6.8971
19314 6.5645 6.823 6.7970
27901 6.3525 6.6498 6.6234
51541 6.1760 6.4995 6.4718

Table 8.6: Deviation between the VEM and the reference solution in Ansys for the zeta-shape
profile.
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Figure 8.19: Deviation in percentage between the reference model and the VEM.

Source: Author

Figure 8.20: Deviation in percentage between the reference model and the VEM in logarithm scale.

Source: Author

It also can be seen in Table 8.6, that for 51541 nodes, less than a half of the number of
nodes of the Ansys model, the associated deviation is around 6%. This result is in accordance
to the literature regarding to the Virtual Element Method performance regarding to complex
geometries. This results are related to the fact that the VEM is more flexible regarding to
the mesh quality, being able to achieve better results with a similar mesh in the parts of the
domain where the geometry is, for example, related to regions where the curvature changes
abruptly or with many curved components. Figures 8.21, 8.22 and 8.23, shows the results
obtained with the VEM of uh, vh and Uh.
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(a) uh for 2365 Nodes (b) uh for 51541 Nodes

Figure 8.21: VEM solution uh for the zeta-shape profile.

Source: Author

(a) vh for 2365 Nodes (b) uh for 51541 Nodes

Figure 8.22: VEM solution vh for the zeta-shape profile.

Source: Author

(a) Uh for 2365 Nodes (b) Uh for 51541 Nodes

Figure 8.23: VEM solution Uh for the zeta-shape profile.

Source: Author
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Chapter 9

Conclusions

The first part of this work consists on the formulation of Virtual Element Method for
the Poisson Equation. The details of the model are deeply discussed and it is possible to
observe that the main idea of the method is to work with any simple polygon as discretiza-
tion element and compute the functions implicitly using projection opertors. Inspired on
da Veiga et al. (2014), a matrix framework is presented in order to provide a guideline for
the implementation of VEM, showing how to compute each matrix. Then, the method is
implemented for a problem with a analytical solution for a square uniform mesh and the
Voronoi mesh. The results show the convergence of VEM and that the implementation using
the uniform mesh outperformed the implementation for the Voronoi mesh.

In order to apply Virtual Element Method to an engineering problem, the Saint Venant
torsion formulation is presented. This formulation is transformed into the Poisson Equation
using the Prandtl Stress Function Φ. The equation is solved numerically using the Virtual
Element Method, the Finite Element Method and the Finite-Difference Method. The torsion
constant It is calculated and it is possible to observe that VEM and FEM has a similar per-
formance but FDM presents a slower convergence. In this case, VEM is also implemented for
the uniform and the Voronoi mesh but here the Voronoi mesh implementation shows better
results, indicating the influence of the right-hand side term f . It is important to mention that
FEM is just implemented for the square uniform mesh. In the end, the membrane analogy
is briefly discussed.

Virtual Element Method provides expected results for simple geometry domains (unitary
square) as can be verified in the literature. One advantage of VEM when compared to FEM
is the fact that VEM can use any simple polygon as element of discretization. Thus, the
stiffness matrix and the load vector can be computed directly and no isoparametric elements
are needed, although the Virtual Element Method formulation is more complicated than the
classic Finite Element Method.

The second part of this work is related to the formulation and application of the Virtual
Element Method in the linear elasticity context. In the literature there are different varia-
tions for the formulation of VEM to this case. However, it is possible to observe a general
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pipeline for the VEM formulation and the case of linear elasticity context can be seen as an
extension of the Poisson Equation case. First the partial differential equations are arranged
into the weak form. This step is general for the Finite Element Method and for the Virtual
Element Method. The next step consists on discretizing this weak formulation by choosing
and adequate domain decomposition. In the VEM case, any simple polygon can be chosen
as discretization element. Then, the virtual element space is constructed upon the definition
of the degrees of freedom. It is important to mention that the choice of degrees of freedom is
the same for both the Poisson Equation and for the linear elasticity context. In order to de-
fine the discrete bilinear form. the projection operator is introduced. The idea is to project
function that are not known in a first moment from the local virtual element space to a
subspace of a polynomial space. The bilinear form is defined to satisfy both the consistency
and stability criteria. To ensure stability, a symmetric bilinear term SK is introduced. The
load term can be constructed analogously to the bilinear form.

In this work, the formulation presented on Gain et al. (2014) and Ortiz-Bernardin et al.
(2019) are chosen, once the implementation framework is more familiar for engineers. Al-
though, the model is restricted to the linear case (k = 1). Three examples of applications are
presented regarding to a problem with analytical solution, a non-convex pentagon geometry
and a plate with a hole in plain state context. Then a complex geometry related to a pressure
armor is presented and simulations with VEM and FEM are compared.

In all use cases, it is possible to observe a slow convergence rate. This may occur due
to the choice of the stability term. Once this term is related to the non-polynomial terms
projection residues, some choices may not lead to an adequate representation of the non-
polynomial functions behavior. Other aspect that may have influence in the convergence
rate is the choice of the basis for the virtual element space. Other basis shall represent the
displacement field with bigger accuracy and precision.

Regarding to the complex geometry, it is possible to see that the Virtual Element Method
presented satisfactory results, once with almost half of the number of nodes used in Ansys,
the VEM provided a deviation of around 6%. It is expected that with different choices of
stability term, this deviation decreases. Thus, as future work one shall try different stability
term to investigate their impact on complex geometries. Also, the Virtual Element should
be implemented to higher orders (k > 1) and tested with the complex geometry.
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Appendix A

Mathematical Tools

In order to fill the gaps of pure mathematics, some support material concerning to some
classical works were used. Before going through more advanced topics, a review of main
results and concepts of real analysis was made, based mostly on Bartle (1982) and Rudin
(1987). Specifically for Measure Theory, the work of Isnard (2013) was used as the book is
very illustrative with examples and introduce topics using a clear language. For Functional
Analysis, the work of Botelho et al. (2015) and Lax (2002) were mainly used. The book of
Brezis (2010) was particularly interesting because it builds the partial differential equation
theory upon the optics of functional analysis. The main reference for partial differential
equation theory was Evans (2010). This chapter is dedicated to present some mathematical
results used in this work. Even though proofs are suppressed in the text, the references to
find them are indicated.

First, the inequalities used in work are presented. The proof for each inequality can be
found in Evans (2010) and Furtado (2012).

Theorem 5 (Hölder Inequality). Let f ∈ Lp(U) and g ∈ Lq(U) with 1 ≤ p, q ≤ ∞ and
1
p
+ 1

q
= 1. Then, it holds

∥fg∥L1(U) ≤ ∥f∥Lp(U)∥g∥Lq(U). (A.1)

The Cauchy-Schwarz Inequality is particular case of Hölder Inequality when p = q = 2.
Thus, it can be written as:

∥fg∥L1(U) ≤ ∥f∥L2(U)∥g∥L2(U). (A.2)

The Poincaré Inequality relates a function of Sobolev Space to its gradient by a constant
M . The following theorem is an adaptation to whats is presented in Furtado (2012):

Theorem 6 (Poincaré Inequality). Let U be limited and 1 ≤ p ≤ n. There exists a constant
M dependent of p and U , such that

∥f∥Lp(U) ≤M∥∇f∥Lp(U), (A.3)
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for all f ∈ W 1,p
0 (U).

Following the notation of Evans (2010) and Furtado (2012), considering k a positive
integer and α a mulit-index, function spaces are denoted by:

• C(U) = {f : U −→ R | f is continuous},

• C(U) = {f ∈ C(U) | f is uniformly continuous in limited subsets of U },

• Ck(U) = {f : U −→ R |Dαf exists and is continuous in U ,∀|α| ≤ k},

• Ck(U) = {f ∈ Ck(U) |Dαu

exists and is uniformly continuous in limited subsets of U ,∀|α| ≤ k},

• C∞(U) = {f : U −→ R | f is infinitely differentiable,∀|α| ≤ k}.

The subscript c that may come with the notation above (e.g Ck
c (U), C∞

c (U)) refers to
functions with compact support. Recalling that the support of a function is the smallest
closed subset of the domain where the function is not zero.

The definition of Banach space is related to the Cauchy Sequence convergence in normed
spaces. Recalling that in Cauchy Sequences the terms start to get really close when the
sequence tends to infinity.

Definition 21. Let {ur}r∈N be a sequence in a real linear normed space B with a norm
∥ · ∥B. The sequence {ur}r∈N is called Cauchy Sequence if, given ε > 0, there exists N > 0,
such that

∥ui − uj∥B < ε ∀i, j ≥ N. (A.4)

Definition 22 (Banach Space). A Banach space B is a normed space where all Cauchy
Sequence converge.

Next, the definition of inner product and Hilbert space are given following Evans (2010).

Definition 23. Let H be a linear space, f, g, h ∈ H and α ∈ R. The mapping (·, ·)H :

H ×H −→ R is a inner product if it satisfies:

1. (f, g + h)H = (f, g)H + (f, h)H ,

2. (f, g)H = (g, f)H ,

3. (f, αg)H = α(f, g)H ,

4. (f, f)H ≥ 0, for all f ∈ H,

5. (f, f)H = 0 ⇔ f = 0.

Definition 24 (Hilbert Space). Given the inner product (·, ·)H and f ∈ H the associated
norm is ∥f∥ = (f, f)H . The Hilbert Space is a Banach Space with a inner product that
induces the norm.
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Appendix B

A brief discussion about mesh regularity

This chapter is dedicated to briefly discuss the error analysis regarding some assumptions
that are made in da Veiga et al. (2013a) and da Veiga et al. (2017b). The theorems are
presented and are followed by some intuitive discussion. The main motivation for this chapter
is the work of da Veiga et al. (2017b). An analysis of the stability term given by (3.64) and
(3.63) is presented in paper but in this project the analysis will be restricted to the term
given by (3.64).

First, the following definition shall be made:

Definition 25. Given the Sobolev Space H1
0 (Ω) and a polygon K ∈ τh Vh,K,k, the subspace of

sufficiently regular function that the stability term SK exists, is defined by HK ⊆ H1
0 (Ω)|K.

Also, the semi-norm induced by the stability term is given by

|v|2HK
= aK(Π

∇v,Π∇v) + SK((I− P0)v, (I− P0)v), (B.1)

for all v ∈ Vh,K,k +HK. Thus, the global semi-norm is given by

|v|2H =
∑
K∈τh

|v|2HK
. (B.2)

By this definition, the following set of hypothesis can be made:

Hypothesis 5. For all v ∈ Vh,K,k and for all q ∈ Pk(K), it is true that

aK(v, v) ≤ C5(K)|v|2HK
(B.3)

and
|q|2S,K ≤ C6(K)aK(q, q). (B.4)

It is important to mention that hypothesis (B.4) is weaker than the stability criterion
presented in the set of hypothesis 2 because there an estimate for all v ∈ Vh,K,k was required.
And now, it is sufficient to analyze the polynomials q ∈ Pk(K). Therefore, a more general
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convergence result can be presented when compared to convergence in Theorem 2. The
following theorem is also more general because it retrieves the semi-norm information.

Theorem 7. Assuming that (B.3) and (B.4) are true, given that the solution of the contin-
uous problem (3.10) satisfies u|K ∈ HK, for all K ∈ τh. Then, for all ui ∈ Vh and for all
approximation of uπ that is piecewise in Pk(K), it holds that for the discrete solution uh of
the discrete problem:

|u− uh|H1(Ω) ≤ Ce(h)
(
F̃h + |u− uI |H + |u− uI |H1(Ω) + |u− uπ|H + ∥u− uπ∥H1(Ω)

)
(B.5)

Defining C̃e(h) = max
K∈τh

{1, C6(K)}, C5(h) = max
K∈τh

{C1(K)}, Cα(K) = max{1, C5(K)C6(K)}
and Cα(h) = max

K∈τh
{Cα(K)}, the estimate for constant Ce(h) is

Ce(h) = max{1, C̃e(h)C5(h), C̃e(h)
3/2
√
Cα(h)C5(h)}. (B.6)

In Section 3.2 the set of hypothesis 3 was presented regarding to mesh regularity. Using
these hypothesis, it is shown in the classical works da Veiga et al. (2013a) and da Veiga et al.
(2014) a theorem concerning to the projection error.

Theorem 8. Let the set of hypothesis 3 holds true. Let u ∈ Hs(Ω), with s > 1, be the
solution for the continuous problem in (3.10). And, let uh ∈ Vh be the solution for the
discrete problem. Then,

∥u− uh∥Hs(Ω) ≤ hs−1∥u∥Hs(Ω), (B.7)

with 1 < s ≤ k + 1.

Although, in da Veiga et al. (2017b) some less restrictive hypothesis regarding to mesh
regularity are made as shown below.

Hypothesis 6. Denoting by lK,e the length of an edge e ∈ ∂K:

1. there exits a real number γ > 0 such that all elements K ∈ τh are star-shaped with
respect to a ball BK with radius RK ≥ γhK and center xK,

2. there exits σ ∈ N such that nK ≤ σ, for all K ∈ τh.

The first hypothesis in the set 3 and 6 are the same. However, the second hypothesis in
6 is much weaker than in 3 because it does not consider the polygonal diameter, just the
number of edges, thus it allows arbitrarily small edges. In this sense, the following theorem
can be written:

Theorem 9. Let the set of hypothesis 3 holds true. Let u ∈ Hs(Ω), with s > 1, be the solution
for the continuous problem in (3.10).And, let uh ∈ Vh be the solution for the discrete problem.
There exists a constant

κ(h) = max
K∈τh

[
ln

(
1 +

hk
lK,e

)]
(B.8)
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such that
∥u− uh∥Hs(Ω) ≤ κ(h)hs−1∥u∥Hs(Ω), (B.9)

with 1 < s ≤ k + 1.

Theorem 9 guarantees the robustness of the method regarding to mesh quality. it is
important to mention that before the work presented in da Veiga et al. (2017b), this result
was empirically observed but no proof was shown. Also, the demonstration of theorem 9 can
be found in da Veiga et al. (2017b) with a detailed discussion about how to deduce the term
κ. Regarding to the classical result presented in theorem 8, a more complete discussion can
be found in da Veiga et al. (2013a).
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Appendix C

Risers and pressure armors

In this appendix a contextualization about risers and zeta pressure armor is presented.
Tubes are very common structures used by offshore industry to transport oil. They can
be composed by metallic and polymeric layers (flexible tubes) or exclusively by steel (rigid
tubes). Accordingly to Mendonça (2016), the installation of the flexible tubes are inserted
in an adverse context in which the most significant loads are the pipe own weight, the radial
compression due to the shoes of the tensioner and the squeezing load applied to the pipe
due to the pressure armor. Also, the author states that main advantages of flexible tubes
are the robust behavior in extreme dynamical situations, the consistent isolation and the
compatibility with the environment chemical properties (the operation environment is filled
with corrosive gases).

Regarding to the configuration of pipes in an offshore oil exploitation system, if the pipe
is suspended it is called riser and if the pipe is touching the ground, it is called flowline. Ba-
sically, risers are used to connect the platform to the flowline, while jumpers are pipes with
smaller length that are used to connect different equipment. Figure C.1 shows a schematic
about the mentioned configuration. An alternative to tubes in riser structures are the um-
bilical cables. Accordingly to Provasi (2013), umbilical cables are responsible for hydraulic
and electrical controls, to pump fluids into the oil well and to transmit electrical energy and
signals.

Risers can present different sets of configuration. A very common riser configuration is
the free-hanging catenary where it is fixed on top, subjected to its own weight and suffers
traction. Accordingly to Gay Neto (2012), catenary may not be adequate for deepwater when
the movement of the platform is significantly big. In this situation the lazy-wave, in which
buoyancy modules are distributed in the middle of the tube, is better. There are some other
configurations like the steep wave where one of the extreme points is vertically connected
to the seabed and bend stiffeners are used. In Figure C.2, it possible to see the free-hanging
catenary, lazy wave, steep wave and other configurations of risers.

97



Figure C.1: Schematic representation of a platform with riser, flowline and jumper configuration.
Source: (Bai and Bai, 2019)

Figure C.2: Examples of possible risers configurations.

Source: (Bai and Bai, 2019)

It is important to know the different types of platform once its dynamics has direct
influence on risers. Provasi (2013) and Gay Neto (2012) briefly explain the main types of
platforms used in the offshore industry:

• Fixed Platform: they are built upon a metallic structure and fixed on the seabed
with stakes.

• Semi-submersible Platform: its construction is based on columns attached to a
buoyancy system and an anchor system is used to restrict the platform movement.
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• Compliant Platform: it has a similar construction when compared to the Fixed
Platforms but it has a better performance with respect to marine load due its flexibility.

• Tension Leg Platform (TLP): they are floating platform with a tension mooring
system that is responsible to keep the platform stable.

• SPAR: this kind of platform is connected to the seabed by an anchor line and its
movement is related to the environmental dynamics. The construction of a SPAR
makes the use of rigid tubes instead of the flexible ones.

• Floating Production, Storage and Offload (FPSO): they were first conceived as
an adaptation of oil ships but today they are built with this design. The FPSO has
a large capacity of storage but they are very susceptible to the ship hydrodynamics.
The turret configuration is adopted to overcome this problem.

Figure C.3: Illustration of platforms: Fixed Platform, Tension Leg Platform, SPAR, Semi-
submersible Platform and Floating Production, Storage and Offload

Source: <https://www.modec.com/>

This work focuses on flexible tubes used as risers. For this kind of application, the tubes
are classified as unbonded once the layers are independent and can move freely relatively
to another. This category of tubes are commonly used in deepwater exploitation but they
suffer with the wear of the structure. Flexible tubes can also be classified as bonded where
the layers have no relative movement and are mostly used in jumpers.

Accordingly to Mendonça (2016), the bonded flexible tubes are constructed with poly-
meric and metallic concentric layers to have low flexural stiffness and high axial stiffness. The
author says that the polymeric layers have are responsible to seal the anchor line and the
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metallic layers have a structural function. The main layers of a flexible tube are mentioned
bellow and Figure C.4 shows the layers and respective profiles with more detail:

• Interlocked carcass (metallic),

• Internal pressure sheath (polymeric),

• Pressure armor (metallic),

• Anti-wear layer (polymeric),

• Tensile armor (metallic),

• Outer sheath (polymeric).

Figure C.4: Bonded flexible tube structure

Source: (Pipa et al., 2010)

The chosen complex geometry to apply the Virtual Element Method is the pressure
armor. This layer is built with wire in a helix geometry with the main purpose of resisting
high pressure workload. Mendonça (2016) states that pressure armor are designed to resist
the crushing load, the squeezing load and hydrostatic pressure. In this way the armor has
a structural role in tube construction, elevating the tube resistance. Normally the pressure
armor are made of carbon steel and the most common profiles are the Zeta-shape, T-shape
and C-shape. Figure C.5 shows the zeta-shape that is the one chosen for this work.

Figure C.5: Zeta-shaped pressure armor with two steps

Source: (Mendonça, 2016)
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