• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.3.2019.tde-29032022-103129
Document
Author
Full name
Kelly Caroline Mingorancia de Carvalho Enomoto
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2019
Supervisor
Committee
Matakas Junior, Lourenço (President)
Angelico, Bruno Augusto
Marafão, Fernando Pinhabel
Ota, João Inácio Yutaka
Pomilio, José Antenor
Title in Portuguese
Uma proposta de modelagem e controle para conversores MMC em frequência fixa.
Keywords in Portuguese
Conversores elétricos
Eletrônica de potência
Abstract in Portuguese
Este trabalho apresenta uma proposta de modelagem e controle para conversor modular multinível (Modular Multilevel Converter-MMC) trifásico operando com três e quatro fios. A partir do modelo do MMC apresenta-se decomposição em circuitos desacoplados de corrente circulante e de rede. A análise da contribuição das parcelas das tensões e correntes, de rede e circulantes, nas tensões dos capacitores dos submódulos leva à proposta de uma estratégia de controle baseada em um conjunto de malhas concatenadas que usam controladores simples dos tipos proporcional (P) e proporcional integral (PI). O desacoplamento das variáveis permite i) separar o sistema originalmente do tipo Multiple Input Multiple Output (MIMO) em diversas malhas Single Input Single Output (SISO) e ii) propor método de ajuste dos controladores. Como o desempenho das malhas de balanceamento das tensões individuais dos capacitores dos submódulos se degrada na operação com baixos valores de corrente de rede, propõe-se solução com bom desempenho baseada na injeção de correntes circulantes que não afetam a corrente no lado DC nem as do lado AC. As propostas são validadas por simulações e experimentos.
Title in English
Modelling and control proposal for MMC converters in fixed frequency.
Keywords in English
Current
Modelling
Multilevel converters
Power electronics
Voltage control
Abstract in English
This work presents a modelling and control strategy for the three-phase modular multilevel converter (MMC) operating with three and four wires. The presented model allows a decomposition of the circulating and grid currents in two decoupled circuits. The contribution of circulating and grid currents in the arm capacitor voltages grants the proposal of a control strategy based on concatenated control loops. This work proposes the use of simple proportional (P) and proportional integral (PI) controllers in the control loops. The achieved decoupled modelling permits: i) to separate the originally Multiple Input Multiple Output (MIMO) system in multiple Single Input Single Output (SISO) control loops, ii) the proposal of a tuning method for the controllers. This work shows that the behavior of the voltage balancing strategies deteriorate in low current injection cases; therefore, a solution based on additional current injection is proposed. The additional current proposed to stabilize the voltage balancing control does not interfere with the other control loops. The proposed control strategy is validated by simulation and experimental results.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2022-03-29
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.