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Resumo

Paz S, Pablo Estabilidade de Tensão de Sistemas de Energia na Presença
da Crescente Penetração de Energia Eólica. 73 p. A thesis – Escola Politécnica,
Universidade de São Paulo, 2022.

Nas pesquisas desenvolvidas e apresentadas nesta tese, foram feitas contribuições para
o estado da arte na área de estabilidade de tensão. A primeira contribuição está relacio-
nada à estabilidade de tensão de longa duração. Uma nova solução analítica foi proposta
para encontrar o ponto de bifurcação de sistemas de potência (nariz da curva PV). A
solução não está relacionada aos métodos de Newton e pode ser aplicada aos novos de-
safios das redes elétricas com alta penetração de fontes renováveis. O método proposto
é baseado na teoria do cálculo variacional e pode rastrear a bifurcação usando o "último
ponto computado", tornando-o adequado para aplicações em tempo real. A segunda parte
da tese é dedicada à estabilidade transitória, propondo um novo controle de tensão para
um parque eólico. O objetivo é introduzir uma condição de operação "preventiva"capaz
de melhorar o tempo crítico de falta durante a ocorrência de um curto circuito. Com-
plementarmente ao controle preventivo, é proposto um controle corretivo local baseado
em dados para restaurar rapidamente a tensão de acordo com os requisitos dos grid codes
modernos. Os dados do Model Predictive Control treinam os controladores baseado em
dados por meio de uma técnica de aprendizado com consciência de risco. O controle local
baseado em dados atualiza as entradas para os controladores PI do compensador síncrono
estático e dos geradores eólicos para restaurar a tensão de forma mais eficaz. Os resulta-
dos indicam que os controles propostos apresentam melhor desempenho comparando com
aqueles baseados na reserva de potência reativa dinâmica.

Palavras-chave: Margem da Estabilidade de Tensão; Controle baseado em dados; Par-
que Eólico; Modelo de Controle Preditivo.





Abstract

Paz S, Pablo Voltage Stability of Power Grids in the Presence of Increasing
Wind Power Penetration. 73 p. Ph.D. Thesis – Polytechnic School, University of
São Paulo, 2022.

The research carried out and presented in this thesis was performed to contribute to
the state-of-the-art in the area of voltage stability. The first contribution is related to
long-term voltage stability. A new analytical solution was proposed to find the power
system’s bifurcation point (the PV curve’s nose). The solution is not related to Newton’s
methods and can be applied to the new challenges of the power grid with high penetration
of renewable sources. The proposed method is based on variational calculus theory and
can track the bifurcation using the "last computed point,"making it suitable for real-time
applications. The second part of the thesis is dedicated to transitory stability, proposing a
new voltage control for a wind farm. The objective is to introduce a "preventive"operating
condition capable of increasing the critical clearing time during the occurrence of a fault.
Complementary to the preventive control, a local data-driven corrective control is pro-
posed to quickly restore the voltage according to the requirements of modern grid codes.
Model Predictive Control data train the data-driven controllers through a risk-aware le-
arning technique. The local data-driven control updates the inputs for the PI controllers
of the static synchronous compensator and the wind generators to restore voltage more
effectively. The results indicate that the proposed controls perform better than those
based on the dynamic reactive power reserve.

Keywords: Voltage Stability Margin;Data-Driven Control; Wind Farms; Model Predic-
tive Control.





List of Figures

Figure 1 – Two bus system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 2 – PV Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 3 – Limit reached with less VSM . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 4 – Immediate instability when limit is reached . . . . . . . . . . . . . . . 25

Figure 5 – List of possible bifurcations . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 6 – Quasi-direction of steepest ascent 𝑌 (𝑥) and direction of steepest ascent
∇𝜆(𝑥) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 7 – Representation of the iterative procedure to find the SNB by the EFM. 40

Figure 8 – Tracking SNB Point Scheme . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 9 – Infeasible Contingency Case . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 10 – Wind farm architecture. The pathway for measurement signals to be
used for corrective control can be observed. The STATCOM uses total
active power (𝑝𝑚𝑣 ) and VARs (𝑞𝑚𝑣 ) from the MV bus. Every WG
uses the total active power (𝑝𝑓 ) from the feeder it belongs. . . . . . . . 47

Figure 11 – Learning framework approach for the corrective control. . . . . . . . . 52

Figure 12 – Comparisson among 𝛼-VaR, 𝛼-CVaR, and average loss. . . . . . . . . . 53

Figure 13 – Comparisson of line transmission (3-9) pre-fault measurements between
the proposed and the DRPR based preventive control. . . . . . . . . . 55

Figure 14 – Impact of preventive controls on voltage restoration after a fault on
bus4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 15 – Impact of preventive controls on voltage restoration after a fault on bus7. 56

Figure 16 – Voltage at PCC when a fault at bus 4 is applied and cleared after 170
ms; a) Voltage without zoom. b) Zoomed in voltage axis . . . . . . . . 58



Figure 17 – Voltage at PCC when a fault at bus 7 is applied and cleared after 90
ms; a) Voltage without zoom. b) Zoomed in voltage axis . . . . . . . . 58

List of Tables

Table 1 – Comparison between methods; IEEE 14-bus system . . . . . . . . . . . 39
Table 2 – Comparison between methods; IEEE 30-bus system . . . . . . . . . . . 39
Table 3 – Comparison between methods; IEEE 57-bus system . . . . . . . . . . . 39
Table 4 – Comparison between methods; IEEE 118-bus system . . . . . . . . . . . 40
Table 5 – Testing large 𝜆 cases; 𝑥0 = [1̄, 0̄]𝑇 (IEEE 30-bus system) . . . . . . . . . 41
Table 6 – Tracking Performance of the EF Method - IEEE 30-bus system . . . . . 41
Table 7 – EFM Providing 𝑥0 for PoC method - IEEE 30-bus system . . . . . . . . 43
Table 8 – Comparisson between critical clearing times between preventive controls 56
Table 9 – Comparisson of critical recovering time between corrective controls . . . 59



List of Acronyms

CPF Continuation Power Flow

CVaR Conditional Value at Risk

CSC Convertible Static Compensator

DRPR Dynamic Reactive Power Reserve

DFIG Double-Fed Induction Generator

EFM Extended Functional Method

ESS Energy Storage System

HB Hopf Bifurcation

HV High Voltage

LIB Limited Induced Bifurcation

LVRT Low Voltage Ride Through

ML Machine Learning

MSE Mean Squared Error

MPC Model Predictive Control

MIMO Multi Input Multi Output

MV Medium Voltage

NN Neural Network

OC Operation Condition

ODE Ordinary Differential Equation



OPF Optimal Power Flow

PMU Phasor Measurements Units

PCC Point of Common Coupling

PI Proportional Integral

PID Proportional Integral Derivative

PML Point of Maximum Loadability

PoC Point of Collapse

PVL Point of Voltage Collapse

QDSA Quasi-Direction of the Steepest Ascent

SNB Saddle-Node Bifurcation

SCADA Supervisory Control and Data Acquisition

STATCOM Static Synchronous Compensator

SVC Static Var Compensator

SVG Static Var Generator

VSM Voltage Stability Margin

VC Voltage Collapse

WF Wind Farm

WG Wind Generator



Contents

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.1 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 LONG TERM VOLTAGE STABILITY AND BIFURCATION
THEORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Bifurcations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Detection of Bifurcation Points in Power Systems . . . . . . . . 21
2.3.1 Voltage stability definition . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Voltage Collapse (VC) and Point of Voltage Collapse (PVC) . . . . . . 22
2.3.3 Voltage Stability Margin (VSM) . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Saddle Node Bifurcations (SNB) . . . . . . . . . . . . . . . . . . . 22
2.4.1 PV Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Limited Induced Bifurcations (LIB) . . . . . . . . . . . . . . . . . 24
2.6 Hopf Bifurcations (HB) . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.7 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 DEVELOPED METHOD FOR CALCULATING THE SNB . 29
3.1 Background on the Extended Functional Method . . . . . . . . . 29
3.1.1 Nonsmooth bifurcation functional . . . . . . . . . . . . . . . . . . . . . 32
3.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.1 Pseudo-Code for the Quasi-Direction of Steepest Ascent Algorithm (QDSA) 37
3.3 Study Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.1 Testing various initial points 𝑥0 . . . . . . . . . . . . . . . . . . . . . . 38
3.3.2 Testing large 𝜆 cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.3 Tracking Performance of the Extended Functional Method . . . . . . . . 40
3.3.4 Infeasible Power Flow (0 < 𝜆 < 1) . . . . . . . . . . . . . . . . . . . . . 41



3.3.5 EFM providing 𝑥0 for PoC method . . . . . . . . . . . . . . . . . . . . . 43
3.3.6 Discussion on the performance of the extended functional method . . . 43

4 VOLTAGE CONTROL AND SHORT-TERM STABILITY . . 45
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 System Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.1 Objective function - Preventive Mode . . . . . . . . . . . . . . . . . . . 49
4.3.2 Objective function - Corrective Mode . . . . . . . . . . . . . . . . . . . 50
4.3.3 Risk-Aware Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 Numerical Validations . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4.1 Preventive Control Results . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4.2 Corrective Control Results . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.1 Published Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

APPENDIX 71

APPENDIX A – STATCOM STATE SPACE MODEL DERIVA-
TION . . . . . . . . . . . . . . . . . . . . . . . . . 73



15

Chapter 1
Introduction

In 2019 global carbon dioxide emissions were held at 33 gigatons after two years of
growth (IEA, 2019). This stop in carbon emissions can be attributed to the decline
in fossil fuel-based energy use in the electricity sector in advanced economies, which
have expanded generation based on renewable energies (mainly wind and solar), and high
nuclear generation. Since fossil fuels are a finite energy source likely to end in the medium
term, besides the need for climate change mitigation, renewable sources, and energy
storage systems are the agreed path to replace conventional fossil fuel-based generation.
Energy Storage Systems (ESS) are a promising alternative to solve the problem of source
intermittency and are currently an area of much research for achieving future operations
with 100% renewable (KROPOSKI, 2017).

Due to the climate change mitigation plan, the system’s complexity has been rising
regarding high meshed networks, high penetration of renewables, and high Flexible AC
Transmission System (FACTS) employment, among others. Due to the network’s comple-
xity, many possible operating states and uncertainties make system security monitoring
a crucial task. Besides, we are facing the new inverter-based microgrid era with many
challenges. The main feature of renewable generation is the intermittent nature of the
driving force, which causes most challenges regarding new grids. Recently, IEEE Task
Forces have described global guidelines challenges for renewable expansion, pointing out
voltage control and the real-time voltage stability margin among important challenges to
overcome (SUN et al., 2019).

We are living at an inflection point regarding power grid technology. As a result of
pursuing decarbonization to mitigate climate change, renewable resource penetration has
grown drastically in the last decade in two ways: as conventional power plants injecting
power via transmission lines and as distributed resources in distribution grids. Those
renewable sources rely on power electronics converters to produce the sinusoidal behavior
of conventional synchronous generators. Inverted-based resources are becoming predomi-
nant in the power grid and are switching from "grid following"to "grid forming". In this
context, academia is making a great effort to draw the power grid of the future, facing
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complex challenges such as closing the gap of variable sources feeding a quasi-steady state
load, feasible storage systems, and flexible loads, among others.

Voltage stability is a subject of much research and interest because it represents one
of the significant threats to the security of power systems. The loss of voltage stability
has been the cause of blackouts in North America, Brazil, Europe, and Asia. In the past,
voltage instability was associated with weak systems and long lines. Classical techniques
to find the exact bifurcation point are unsuitable for real-time application since those
techniques are time-consuming and computationally expensive. To surveil the Voltage
Stability Margin (VSM), the researchers have developed a wide range of techniques for
calculating the VSM, like Thevenin’s theorem-based method, PMU-based index, and
Artificial Intelligence-based methods, among others. Despite the good performance of
those techniques, more accuracy may be needed for scenarios that get away from situations
where those techniques work well. For instance, it is not guaranteed that all possible
operational conditions in the grid to be generalized by a machine learning training data
set.

This thesis makes contributions related to long and short-term voltage stability. Regar-
ding long-term voltage stability, the first part of this work aims to contribute to an often
overlooked problem: long-term voltage stability. In the past, voltage stability margin was
a concern from a load growth "uncertainty"perspective since conventional generation avai-
lability was less uncertain. Nowadays, source generation is becoming more intermittent,
and the available methods to calculate the bifurcation point in a "real-time"fashion under
this new scenario can be computationally expensive. There are two closed-form solutions
to address the bifurcation point that has not been updated since the ’90s: the Continua-
tion Power Flow (CPF) and the Point of Collapse (PoC). The CPF is the most popular
method to calculate the bifurcation point and is the only technique used in today’s most
famous power system commercial software. However, as stated before, this method may
not be suitable for real-time, which might be imperative for future power systems since
CPF’s main "path following"feature makes generation variability behavior hard to model.
The PoC is another closed-form method characterized by a direct "one point"calculation.
However, rely on a robust close guess point solution to start the iteration, which is very
difficult to obtain, and that is why it is not included in most popular power system solvers.

This thesis contributes to developing an original method based on the variational
theory that can chase the bifurcation point displaced by a change in the network using
the initial bifurcation point previous to the change. This "chasing"feature makes the
methodology attractive, especially for new power grids constantly subject to topology
and generation changes.

The contribution of short-term voltage stability is the development of voltage control
of a wind farm which helps to avoid voltage instability during grid faults and enhance
LVRT capabilities. A loss minimization preventive control is proposed for the voltage
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control of a wind farm. This preventive control can improve critical clearing times and
voltage restoration after a fault. Also, a local data-driven corrective control is proposed
to enhance the voltage restoration after clearing a fault. The novelty of the data-driven
corrective control approach is the application of an innovative way to learn. A "risk-aware
learning’ technique is used to train a neural network reducing the risk of predictions that
could harm the control performance.

1.1 Research Objectives

Since renewable energy technology is constantly improving and considering that further
renewable penetration is coming, there is a need to update power system analysis adapted
to the intrinsic characteristics of these new technologies. In this context, this work aims to
contribute to adapting voltage stability assessment to upcoming power grids characterized
by a high renewable source penetration.

The specific objectives are:

❏ Develop a new method to find the bifurcation point of "new grids,"specially adapted
to track/chase the bifurcation point displaced by a shift in generation/topology.

❏ Develop a control to improve the short-term voltage stability of a wind farm

1.2 Thesis Structure

In Chapter 2, a brief review of bifurcation theory is presented as a base tool for
developing the proposed method to assess voltage stability. Chapter 3 introduces the
base of variational calculus and the development to use it for saddle-node bifurcation
point calculation. Chapter 4 introduces a loss minimization-based preventive control that
improves critical clearing time and voltage restoration. Also, a local data-driven voltage
control to restore the voltage after a fault is presented. Chapter 5 presents a conclusion
about the results and the upcoming work.
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Chapter 2
Long Term Voltage Stability and

Bifurcation Theory

The physical model of power systems is usually represented by variables and parame-
ters governed by physics laws and expressed by a set of autonomous ordinary differential
equations (ODEs) describing a nonlinear dynamic system. Bifurcations are an intrinsic
quality of a nonlinear system related to the qualitative and abrupt change of the system
behavior by changing one or more parameters.

In the 1980s, static bifurcation was associated with loss of steady-state stability and
voltage collapse in power systems by (ARAPOSTHATIS; SASTRY; VARAIYA, 1981;
KWATNY; PASRIJA; BAHAR, 1986). Later on, in the early 1990s, a more in-depth the-
ory on static and dynamic bifurcations was developed for the analysis of voltage stability
(DOBSON; CHIANG, 1989; CHIANG et al., 1990; AJJARAPU; LEE, 1992; CANIZA-
RES, 1995). At that time, researchers realized that most events associated with voltage
collapse were happening with heavily loaded systems as long-term phenomena.

This way, various voltage stability problems were well adapted from a static perspec-
tive, considering a single parameter responsible for the lack of reactive power supply and
the voltage drop: the load.

By the static approach, the equilibrium points of the ODEs are represented by a non-
linear system of algebraic equations (e.g., the power flow, that are used in the parametric
representation to find the bifurcation. The parameter used to find the bifurcation point
in the power flow case is the load, and the value of this parameter at the bifurcation point
represents the maximum loading capacity.

A voltage stability theory and its relation with bifurcations are presented in this
chapter.
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2.1 Preliminaries

Consider the following nonlinear dynamic system described by an autonomous diffe-
rential equation:

�̇� = 𝑓(𝑥, 𝜆), 𝑥 ∈ R𝑛; 𝜆 ∈ R𝑘 (1)

Where 𝑥 denotes the vector of state variables (bus voltage magnitudes, generators
angles, generator angular velocities, etc) and the conditions of existence and uniqueness
of solution are assumed to be satisfied for 𝑓 : R𝑛 → R𝑛. 𝜆 is a vector of time invariant
scalar parameters. A point (𝑥0, 𝜆0) is called an equilibrium point of (1) if 𝑓(𝑥0, 𝜆0) = 0.

The behavior of the system can be explained by two theories which complements each
other:

❏ The Hartman-Grobman theorem

If the Jacobian 𝜕𝑓/𝜕𝑥0 has no eigenvalues with zero real part, then (𝑥0, 𝜆0) is an
hyperbolic fix point and has the same topological structure than a locally linearized
system in (𝑥0, 𝜆0). That means that when the eigenvalues has non-zero real part, a
linear stability analysis suffices at all.

❏ The Center Manifold Theory

The points where at least one eigenvalue has zero real part are non-hyperbolic
fixed points (𝑥𝑐, 𝜆𝑐) and are called Bifurcation points. The bifurcation points are
structurally unstable and several branches coalesces at (𝑥𝑐, 𝜆𝑐). Here is not possible
to use linear stability and the center manifold theory is applied as follows:

Let (𝑥0, 𝜆0) be the equilibrium point of 𝑓(𝑥, 𝜆). The real part of the eigenvalues (𝜇)
defines the corresponding generalized eigenspaces 𝐸𝑠, 𝐸𝑢, and 𝐸𝑐 of the Jacobian
matrix 𝜕𝑓/𝜕𝑥|𝑥0 following the next scheme:

+𝑅𝑒(𝜇) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
< 0 − 𝐸𝑠

= 0 − 𝐸𝑐

> 0 − 𝐸𝑢

(2)

Then the stable 𝑊 𝑠, unstable 𝑊 𝑢 and center manifold 𝑊 𝑐 are tangential to 𝑊 𝑠,
𝑊 𝑢 and 𝑊 𝑐 respectively at (𝑥0, 𝜆0). The center manifold theory is based on the
reduction of the dynamics produced by the flow on the center manifold. Considering
that unstable manifold 𝑊 𝑢 is empty, the nonlinear vector field can be transformed
to the following form, in order to calculate the flow of the reduced dynamics on 𝑊 𝑐.

𝑥𝑐 = 𝐴𝑐𝑥𝑐 + 𝑓(𝑥𝑐, 𝑥𝑠); 𝑋𝑐 ∈ R𝑛𝑐 (3)

𝑥𝑠 = 𝐴𝑠𝑥𝑠 + 𝑔(𝑥𝑐, 𝑥𝑠); 𝑋𝑠 ∈ R𝑛𝑠 (4)
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The matrix 𝐴𝑐(𝑛𝑐, 𝑛𝑐) contains 𝑛𝑐 eigenvalues with zero real parts as well as the matrix
𝐴𝑠(𝑛𝑠, 𝑛𝑠) contains 𝑛𝑠 eigenvalues with negative real parts. Due to nonlinear couplings
between 𝑥𝑠 and 𝑥𝑐, 𝑥𝑠 = ℎ(𝑥𝑐) has to be introduced in (3) to compute the so called
Center Manifold Reduction, yielding:

𝑥𝑐 = 𝐴𝑐𝑥𝑐 + 𝑓(𝑥𝑐, ℎ(𝑥𝑐)); 𝑋𝑐 ∈ R𝑛𝑐 (5)

The center manifold theory states that dynamics of 1 and 5 are equivalent with 𝜆 fixed
at the value 𝜆.

2.2 Bifurcations

In summary, if 𝑥 is non-hyperbolic, the local stability behavior is entirely governed by
the flow on the center manifold. Centers manifolds play an essential role in bifurcation
theory. The center manifold reduction, in combination with some system parameter 𝜆,
leads to the concept of bifurcations. The name "bifurcation"was first introduced by Henri
Poincaré in 1885 in his first paper in mathematics showing such behavior. Bifurcation is
the phenomenon that occurs when a small smooth change made to one or more parameter
values of a system causes a sudden ’qualitative’ or topological change in its behavior. The
number of possible types of bifurcation increases rapidly with an increasing dimension of
the parameter space. The bifurcations are organized hierarchically with increasing co-
dimension, where co-dimension is the lowest dimension of a parameter space necessary
to observe a given bifurcation phenomenon. From here onward, we will discuss only the
dynamical system with a single parameter variation.

Changing this parameter may drive the system into a critical state at which the
eigenvalues will define the bifurcation type according to the following values:

❏ Static Bifurcation A real eigenvalue becomes zero, and new branches of stationary
solutions usually arise and are called static. Typical static bifurcations are saddle-
node, trans-critical, pitchfork, and limited induced.

❏ Dynamic Bifurcation A pair of complex conjugate eigenvalues become imaginary
and may lead to the birth of a branch of periodic solutions. Typical dynamical
bifurcation is Hopf.

The bifurcations mentioned above are local types. Global bifurcation will be no treated
in this work.

2.3 Detection of Bifurcation Points in Power Systems

In this work, only common bifurcation in power systems will be shown, like Saddle
Node Bifurcation (SNB), Limited Induced Bifurcation (LIB), and Hopf Bifurcation (HB).
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Before going into detail about each type of bifurcation, some definitions used in power
systems are explained.

2.3.1 Voltage stability definition

The IEEE/CIGRE Joint Task Force on Stability Terms and Definitions defines voltage
sytability as follows: Voltage stability refers to the ability of a power system to maintain
steady voltages at all buses in the system after being subjected to a disturbance from a given
initial operating condition (KUNDUR et al., 2004). Voltage stability can be divided into
long and short-term voltage stability. Long-term voltage stability is generally related to
loading change, and short-term voltage stability is related to disturbances.

2.3.2 Voltage Collapse (VC) and Point of Voltage Collapse (PVC)

Voltage Collapse (VC) happens when the system stability is lost due to the birth of
any bifurcation. The Point of Voltage Collapse (PVC) is the value of all the variables of
the EDO at which the Voltage Collapse happens, being the load parameter of particular
interest. The PVC load represents the power system’s maximum loading condition. The
PVC is often called The Point Of Maximum Loadability (PML).

2.3.3 Voltage Stability Margin (VSM)

The Voltage Stability Margin is the difference between the value of the load at the
PVC and the current load. It represents how much load can be increased in the power
system until the PVC.

2.4 Saddle Node Bifurcations (SNB)

In the ’80s, a major discussion was if the VC was a static or dynamic event. Both
kinds of events were successfully approached and are helpful depending on the scenario.
Given the longer time frame involved and supposing the load parameter varies slowly with
time, researchers agree that for the calculation of the VSM, the static analysis is a suitable
approach and can give a reasonable accuracy. The advantage of the static approach is
that it is computationally much more straightforward than the dynamic approach. The
saddle-node bifurcation consists of the stable equilibrium 𝑥0 coalescing with a nearby
unstable type one equilibrium 𝑥1 and disappearing, causing the system to lose stability
(DOBSON, 1992).

The Jacobian 𝜕𝑓(𝑥*, 𝜆*)/𝜕𝑥 is singular and has a unique simple zero eigenvalue with
a corresponding right eigenvector 𝑣* so that (𝜕𝑓(𝑥*, 𝜆*)/𝜕𝑥)𝑣* = 0. Where 𝑥* and 𝜆* are



2.4. SADDLE NODE BIFURCATIONS (SNB) 23

the critical values for the state vector (bus voltage magnitudes and angles), and the load
parameter, respectively.

The model described in (SEYDEL, 1988) states for the equations of equilibria with
constraints ensuring a zero eigenvalue at the point of interest. The conditions are expres-
sed as follows:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑓(𝑥, 𝜆) = 0[︃
𝜕𝑓(𝑥, 𝜆)

𝜕𝑥

]︃
𝑣 = 0

𝑣 ̸= 0

(6)

This method was applied to voltage stability in (ALVARADO, 1989; CANIZARES et
al., 1992) and usually is called the Point of Collapse Method (PoC).

In order to point out the SNB and points of equilibria graphically, to follow, the famous
PV curve is introduced.

2.4.1 PV Curve

Consider the two bus system in Fig. 1. The Power flow yields Two Voltages at Bus
2 for each load level until it reaches the PML or PVC where the two solutions coalesce
in only one point. These two solutions are the stable and unstable equilibrium points.
The stable and unstable equilibrium points are in the upper and the lower part of Fig. 2
respectively.

The PV curve is one of the most used methods of voltage stability analysis. The PV
curve presents the current Equilibrium Point and the distance to the PVC called VSM.
For large meshed networks, P can be the total active load in the load area, and V can be
the voltage of the critical or representative bus.

21

r+jx

Load

Figure 1 – Two bus system



24 CHAPTER 2. LONG TERM VOLTAGE STABILITY AND BIFURCATION THEORY

0 1 2 3 4 5 6 7 8 9

Active Power[p.u.]

0

0.2

0.4

0.6

0.8

1

1.2

B
u
s
 2

 V
o
lt

a
g
e
[p

.u
.]

StableEquilibrium Points

Saddle Node Bifurcation

Unstable Equilibrium Points

Figure 2 – PV Curve

2.5 Limited Induced Bifurcations (LIB)

After reaching the generator’s reactive power limit, the power system becomes more
vulnerable. This effect immediately changes the system equations. Limited Induced Bi-
furcations is the phenomenon in which the power systems become immediately unstable
when the reactive power limit is reached. This system’s instability led the system to VC
(DOBSON; LU, 1992).
Consider a general power system modeled by the parametric differential equations �̇� =
𝑓(𝑥, 𝜆), where 𝑥 ∈ R𝑛. When the system is operating at the stable equilibrium point
𝑓(𝑥0, 𝜆0) = 0 and the reactive limit is reached, the system equations immediately change
to �̇� = 𝑓 𝑙𝑖𝑚(𝑥, 𝜆) remaining the position 𝑥0. That means 𝑓(𝑥0, 𝜆0) = 𝑓𝑙𝑖𝑚(𝑥0, 𝜆0).
There are two possibilities for this encounter; the curves can cross in the stable or unstable
parts, as shown in Figures 3 and 4, respectively. In (YUE; VENKATASUBRAMANIAN,
2007), the authors presented the following method to detect the occurrence of LIB. Con-
sider the system around the critical point:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐹 (𝑥, 𝑄, 𝑉, 𝜆) = 0

𝑄 < 𝑄𝑚𝑎𝑥

𝑉 < 𝑉𝑟𝑒𝑓

(𝑄 − 𝑄𝑚𝑎𝑥)(𝑉 − 𝑉𝑟𝑒𝑓 ) = 0

(7)
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Figure 4 – Immediate instability when limit is reached

Transforming, ⎧⎪⎨⎪⎩𝑄′ = ℎ(𝑄 − 𝑄𝑚𝑎𝑥)

𝑉 ′ = ℎ(𝑉 − 𝑉𝑟𝑒𝑓 )
(8)

Combining (8) and (9),
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐹 ′(𝑥, 𝑄′, 𝑉 ′, 𝜆) = 0

𝐹 ′(𝑥, 𝑄′ + 𝑄𝑚𝑎𝑥, 𝑉 ′ + 𝑉𝑟𝑒𝑓 , 𝜆) = 0

𝑄′𝑉 ′ = 0

(9)

Developing linear algebra, differentiating, and linearizing yields the so-called Comple-
mentary Induced Bifurcation Theorem:

𝑑𝑒𝑡

[︃
𝜕F
𝜕𝑥

· 𝜕F
𝜕𝑄′

]︃
· 𝑑𝑒𝑡

[︃
𝜕F
𝜕𝑥

· 𝜕F
𝜕𝑉 ′

]︃
> 0 (10)

2.6 Hopf Bifurcations (HB)

The Hopf Bifurcation is a dynamical bifurcation. Can be detected when a complex
conjugate pair of eigenvalues of the Jacobian 𝜕𝑓(𝑥, 𝜆)/𝜕𝑥 crosses the imaginary axis
and moves into the right half-plane (AJJARAPU; LEE, 1992). The system may start
oscillating with a small amplitude.

The onset of this oscillatory phenomenon is described by Hopf’s Bifurcation theory as
follows:

Consider the system 𝐹 (𝑥ℎ, 𝜆ℎ) = 0. Suppose the Jacobian matrix [𝜕𝐹/𝜕𝑥] has a simple
pair of purely imaginary eigenvalues 𝑢(𝜆ℎ) = ±𝑖𝜔0 (1st Condition) and the derivative
𝑑(𝑅𝑒(𝑢(𝜆ℎ)))/𝑑𝜆 ̸= 0 (2nd Condition). In that case, depending on the second condition’s
sign, there is a birth or death of limit cycles at (𝑥ℎ, 𝜆ℎ). The Hopf bifurcation concludes
specifically that a one-parameter family of periodic solutions 𝑥(𝑡, 𝜖) always exists in the
neighborhood of (𝑥ℎ, 𝜆ℎ). If the sign of the second condition is positive, the parameter 𝜖

can be chosen as follows:

𝑥 = 𝑥ℎ + 𝜖𝑥1(𝑡) + ... (11)

𝜆 = 𝜆ℎ + 𝜆2𝜖
2 + ... (12)

𝑇 = 2𝜋/𝜔0 + 𝑇2𝜖
2 + ... (13)

The bifurcations discussed so far are the most common in Power Systems. Figure 5
shows the list of possible bifurcations.
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Figure 5 – List of possible bifurcations

2.7 Literature review

To date, there still is research interest in real-time applications to find a suitable tool
to predict the collapse point accurately. (VU et al., 1999; BAO; HUANG; XU, 2003;
ZHOU; ANNAKKAGE; RAJAPAKSE, 2010; LEONARDI; AJJARAPU, 2010; WANG
et al., 2011; LEONARDI; AJJARAPU, 2012; HU et al., 2015; GUTIÉRREZ; RAMIREZ
et al., 2014; CHANDRA; PRADHAN, 2019) and to improve short term voltage stability
(HAN et al., 2017; HAN; CHEN; MA, 2018).

In this way, a great variety of voltage stability problems were well modeled and analy-
zed from a static perspective taking into account a single slowly varying parameter: the
load. In the static approach, the Power System is represented by a set of nonlinear
algebraic equations (the power flow equations), and the maximum loading capacity is
associated with a bifurcation of these equations as a consequence of load variation.

Several computational techniques were developed from a static perspective to pre-
dict the loadability limit in power systems. These techniques can be classified into two
categories: indirect or path-following methods and direct methods. For example, the
continuation power flow methods (CPF) (AJJARAPU; CHRISTY, 1992; CHIANG et al.,
1995) are indirect methods that are widely applied to determine the relationship between
power demand and voltage profile (P-V curve). These methods compute the bifurcation
point by increasing the load until reaching the loadability limit. On the other hand, di-
rect methods attempt to compute the bifurcation point without computing the system’s
trajectory from the initial load to the maximum one.
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The Point of Collapse (PoC) is a direct method used to compute the SNB point
solving a set of nonlinear algebraic equations. A closed initial guess of the SNB point is
required to ensure convergence. (ALVARADO, 1989; AJJARAPU, 1991; CANIZARES;
ALVARADO, 1993; DOBSON; LU, 1993).

In (CANIZARES, 1998b; CANIZARES, 1998a), the calculation of SNBs was formula-
ted in the context of Optimal Power Flow (OPF). In contrast, in (VOURNAS; KARYS-
TIANOS; MARATOS, 2000; ROSEHART; ROMAN; SCHELLENBERG, 2005), a cons-
trained OPF to calculate the maximum loadability of the system, taking into account
the limitation of reactive power generation, was formulated. In (AVALOS et al., 2008),
was demonstrated the equivalence between CPF and OPF to calculate SNBs and Limited
Induced Bifurcations (LIB).

Recently, novel algorithms with improved computational times have been developed.
In (GÓMEZ-QUILES; GÓMEZ-EXPÓSITO; VARGAS, 2015), for instance, the maxi-
mum loadability is computed via factored power flow, whereas reference (NEVES; AL-
BERTO; CHIANG, 2020), presents a fast method for finding LIBs.
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Chapter 3
Developed Method for Calculating the

SNB

This chapter aims to develop a method to monitor the VSM in real time, considering
the new characteristics of power grids that imply high penetration of renewable sources.
We present the so-called extended functional method:sub-gradient approach (IL’YASOV,
2007) as a tool from variational theory and nonsmooth optimization.

3.1 Background on the Extended Functional Method

The main objective of this section is to present a background on the extended functi-
onal method introduced in (IL’YASOV, 2007). This method will form the computational
basis for further analysis in this thesis.

Consider the power system balance in the following form:

𝑓(𝑥, 𝜆) = 𝑔(𝑥) − 𝜆𝑏 = 0, 𝑥 ∈ 𝑄 ⊆ R𝑛, 𝜆 ∈ R. (𝑓)

Here 𝑔 : 𝑄 → R𝑛 is continuously differentiable function, 𝑄 is an open domain in R𝑛,
𝑏 ∈ R𝑛, and 𝜆 the parameter of load. Hereafter, ‖ · ‖, ⟨·, ·⟩ stand for the Euclidean
norm and the scalar product in R𝑛, respectively; 𝑒1 = (1, . . . , 0), . . . , 𝑒𝑛 = (0, . . . , 1) is
an orthonormal system of vectors, ∇𝑥 := (𝜕/𝜕𝑥1 . . . 𝜕/𝜕𝑥𝑛)𝑇 . Throughout the thesis we
assume that 𝑏𝑖 > 0, for all 𝑖 ∈ {1, . . . 𝑛}. Obviously, one can always achieve this condition
by multiplying on (-1) and summing equations in (𝑓). In paper (IL’YASOV, 2007), the
following functional corresponding to (𝑓) has been introduce

𝑄(𝑥, 𝜆, 𝜉) := ⟨𝑔(𝑥), 𝜉⟩ − 𝜆 ⟨𝑏, 𝜉⟩ , (𝑥, 𝜉) ∈ 𝑄 × R𝑛.

This functional has been called there extended functional due to the fact that it is defined
on the extended space 𝑄×R𝑛. In more general cases, for instance if we allow for function
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⟨𝑏, 𝜉⟩ to be equal zero, the zero set 𝑄(𝑥, 𝜆, 𝜉) = 0 of this functional can be used for finding
bifurcations. Consider the following quotient

𝜆(𝑥, 𝜉) = ⟨𝑔(𝑥), 𝜉⟩
⟨ℎ(𝑥), 𝜉⟩

, ⟨ℎ(𝑥), 𝜉⟩ ≠ 0, (𝑥, 𝜉) ∈ 𝑄 × R𝑛, (14)

which is obtained from 𝑄(𝑥, 𝜆, 𝜉) = 0 by resolving with respect to 𝜆.
It is natural to call this quotient as extended quotient or may be better to call as

extended Collatz-Wieland quotient. Notice that the so-called Collatz-Wieland quotient in
linear theory of positive matrix 𝐴 is defined as follows

𝜆(𝑥, 𝑖) = ⟨𝐴𝑥, 𝑒𝑖⟩
⟨𝑥, 𝑒𝑖⟩

, 𝑥 ∈ (R+)𝑛.

whereas with respect to our theory the corresponding extended Collatz-Wieland quotient
is

𝜆(𝑥, 𝜉) = ⟨𝐴𝑥, 𝜉⟩
⟨𝑥, 𝜉⟩

, ⟨ℎ(𝑥), 𝜉⟩ ≠ 0, (𝑥, 𝜉) ∈ (R+)𝑛 × R𝑛,

which is defined on the extended space (R+)𝑛 ×R𝑛. The basic idea of the extended func-
tional method (IL’YASOV, 2007) consists in finding a functional which stationary points
correspond with the saddle-node bifurcations (bifurcations point for short) of solutions of
the system. Following this idea we introduce the so-called extended functional quotient

𝜆(𝑥, 𝜉) = ⟨𝑔(𝑥), 𝜉⟩
⟨𝑏, 𝜉⟩

, ⟨𝑏, 𝜉⟩ ≠ 0, 𝑥 ∈ 𝑄, 𝜉 ∈ R𝑛 ∖ 0. (15)

A remarkable feature of this function is that the set of its stationary points corresponds to
the set of bifurcation points of (𝑓). Indeed, assume that �̄� = 𝜆(�̄�, 𝜉) is a critical value of
𝜆(𝑥, 𝜉) which corresponds to the stationary point (�̄�, 𝜉) ∈ 𝑄 × (R𝑛 ∖ 0). Then calculating
the derivatives yields

∇𝜉𝜆(�̄�, 𝜉) = 1⟨
𝑏, 𝜉

⟩(𝑔(�̄�) − �̄�𝑏) = 0, (16)

∇𝑥𝜆(�̄�, 𝜉) = 1⟨
𝑏, 𝜉

⟩(𝐽𝑥𝑔(�̄�))𝑇 𝜉 = 0, (17)

Since 1
⟨𝑏,𝜉⟩ ̸= 0, this implies:

(𝑔(�̄�) − �̄�𝑏) = 0,

𝐽𝑥𝑔(�̄�)𝑇 𝜉 = 0,

Taking into account that (𝐽𝑥𝑔(�̄�))𝑇 = (𝐽𝑥𝑓(�̄�, �̄�))𝑇 we obtain (18) which implies:⎧⎪⎨⎪⎩𝑓(�̄�, �̄�) = 0,

(𝐽𝑥𝑓(�̄�, �̄�))𝑇 (𝜉) = 0,
(18)

with �̄� = 𝜆(�̄�, 𝜉) and where
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(𝐽𝑥𝑓(𝑥, 𝜆))𝑇 = (∇𝑥𝑓𝑖)1≤𝑖≤𝑛.

is the transpose of the Jacobian matrix 𝐽𝑥𝑓(𝑥, 𝜆) of 𝑓(𝑥, 𝜆), i.e.,

𝐽𝑥𝑓(𝑥, 𝜆) = ( 𝜕𝑓

𝜕𝑥𝑖

)1≤𝑖≤𝑛 =

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

𝜕𝑓1
𝜕𝑥1

· · · 𝜕𝑓1
𝜕𝑥𝑛... . . . ...

𝜕𝑓𝑛

𝜕𝑥1
· · · 𝜕𝑓𝑛

𝜕𝑥𝑛

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

Evidently, if (18) is satisfied then there is 𝜁 ∈ R𝑛 ∖ 0 such that (�̄�, 𝜁) satisfies to the
branching system (see (ABBOTT et al., 1977; DOEDEL; KELLER; KERNEVEZ, 1991;
KELLER, 1977; SEYDEL, 2009))⎧⎪⎨⎪⎩𝑓(�̄�, �̄�) = 0,

(𝐽𝑥𝑓(�̄�, �̄�))(𝜁) = 0.
(19)

Since every saddle-node bifurcation point (�̄�, �̄�) satisfies (19) with some bifurcation vector
𝜁 ∈ R𝑛 ∖ 0, we conclude that any methods of finding bifurcations, including such as
direct and continuation methods (AJJARAPU; CHRISTY, 1992; CHIANG et al., 1995;
ALVARADO, 1989; AJJARAPU, 1991; CANIZARES; ALVARADO, 1993; DOBSON;
LU, 1993) are inherently ones of the particular approaches of finding the stationary points
of the extended quotient 𝜆(𝑥, 𝜉). Hereafter, we call (18) the conjugate branching system
while 𝜉 we call a conjugate bifurcation vector corresponding to �̄�, and we call (�̄�, 𝜉) the
simple stationary point of 𝜆(𝑥, 𝜉) if (18) holds true and 𝐾𝑒𝑟(𝐽𝑥𝑓(�̄�, �̄�))𝑇 =span {𝜉}.

It appears, that under general conditions, stationary points of 𝜆(𝑥, 𝜉) corresponding to
bifurcation points of (𝑓), are defined by the saddle points of the function. However, saddle
points are difficult for detecting using direct variational methods such as minimization or
maximization of 𝜆(𝑥, 𝜉).

Approaches based on Newton’s method in some cases, can be better alternatives.
In the theory of finding bifurcations, these type of methods are often called direct (see
e.g., (SEYDEL, 2009)) . The extended functional approch allows introducing the direct
method in a more unified form. Indeed, consider

𝐹 (𝑦) =
⎡⎣∇𝜉𝜆(𝑥, 𝜉)
∇𝑥𝜆(𝑥, 𝜉)

⎤⎦ = 0, where 𝑦 =
⎡⎣𝑥

𝜉

⎤⎦ , (20)

and

∇𝜉𝜆(𝑥, 𝜉) = 1
⟨𝑏, 𝜉⟩

(𝑔(𝑥) − 𝜆(𝑥, 𝜉)𝑏),

∇𝑥𝜆(𝑥, 𝜉) = 1
⟨𝑏, 𝜉⟩

∇𝑥𝑔(𝑥)𝜉.

Thus, in the framework of the extended functional approach, bifurcation points of (𝑓)
can be calculated by applying the Newton method to 𝐹 (𝑦) = 0 similar to the direct
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method (see e.g., (ALVARADO, 1989; AJJARAPU, 1991; CANIZARES; ALVARADO,
1993; DOBSON; LU, 1993; SEYDEL, 2009)). But now the situation is different that is
we have only 2𝑛 variables and 2𝑛 equations and we would need only to guess a reasonable
initial point (𝑥0, 𝜉0) to start the iterative process to apply the direct method. Notice that
the standard approach of the direct method deals with 2𝑛 + 1 equations and in addition,
one must guess the appropriate initial value 𝜆0.

3.1.1 Nonsmooth bifurcation functional

A bifurcation point (𝑥*, 𝜆*) is said to be maximal of (𝑓) in 𝑄 if 𝜆′ ≤ 𝜆* for any other
bifurcation (𝑥′, 𝜆′) of (𝑓) in 𝑄. It is important to point out, that throughout the thesis,
the maximum bifurcation point of (𝑓) corresponds to a constant parametric growth, as
a simplifying basis to introduce the extended functional. It, therefore, understandably
represents the maximum loading capacity of the power system for a constant direction of
load growth.

From now on, we shall assume that 𝑏𝑖 > 0, for all 𝑖 ∈ {1, . . . 𝑛}. Obviously, if 𝑏𝑖 ̸= 0, for
all 𝑖 ∈ {1, . . . 𝑛}, one can always achieve this condition by multiplying on (-1) equations
in (𝑓).

Consider the following maximin problem

𝜆* = max
𝑥∈𝑄

inf
𝜉∈(R+)𝑛

𝜆(𝑥, 𝜉). (21)

From (IL’YASOV; IVANOV, 2016) we have:

Lemma 1. Assume that there exists a maximizer 𝑥* of (21). Let 𝜉* be the corresponding
conjugate bifurcation vector. Suppose that (𝑥*, 𝜉*) is a simple stationary point of 𝜆(𝑥, 𝜉).
Then (𝑥*, 𝜆*) is a maximal bifurcation point of (𝑓) in 𝑄.

It turns out that problem (21) is equivalent to a non-smooth optimization problem.
Indeed, let us define the so-called bifurcation function

𝜆(𝑥) = inf
𝜉∈(R+)𝑛

𝜆(𝑥, 𝜉), 𝑥 ∈ 𝑄.

Then by (IL’YASOV, 2007; IVANOV; IL’YASOV, 2013) the following identity is satisfied

𝜆(𝑥) = min
𝑖=1,...,𝑛

⟨𝑔(𝑥), 𝑒𝑖⟩
⟨𝑏, 𝑒𝑖⟩

= min
𝑖=1,...,𝑛

𝑟𝑖(𝑥), 𝑥 ∈ 𝑄, (22)

where 𝑟𝑖(𝑥) = ⟨𝑔(𝑥), 𝑒𝑖⟩ / ⟨𝑏, 𝑒𝑖⟩ ≡ 𝑔𝑖(𝑥)/𝑏𝑖, 𝑖 = 1, 2, ..., 𝑛.
Since 𝑟𝑖 ∈ 𝐶1(𝑄), 𝑖 = 1, 2, ..., 𝑛, this implies that 𝜆(𝑥) is a piecewise continuously differen-
tiable function. Thus, problem (21) is equivalent to the following nonsmooth optimization
problem 𝜆* = max𝑥∈𝑄 𝜆(𝑥). Following (DEMYANOV et al., 2013), let us define

𝜕𝜆(𝑥) : = 𝑐𝑜𝑛𝑣{∇𝑟𝑖(𝑥) : 𝑖 ∈ 𝑁(𝑥)} (23)
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where “conv” denotes the convex hull of a set, 𝑁(𝑥) = {𝑖 ∈ [1 : 𝑛] : 𝑟𝑖(𝑥) = 𝜆(𝑥)}, and
|𝑁(𝑥)| denotes the number of elements in 𝑁(𝑥). A point �̄� ∈ 𝑄 is said to be stationary
point of 𝜆(𝑥) if 0 ∈ 𝜕𝜆(�̄�) or the same if there holds

∑︁
𝑖∈𝑁(�̄�)

∇𝑟𝑖(�̄�)𝜉𝑖 = 0

with some 𝜉 ∈ (R+)𝑁(�̄�)∖0. Notice that in the case |𝑁(�̄�)| = 𝑛, this yields (𝐽𝑥𝑓(�̄�, �̄�))𝑇 (𝜉) =
0 and by (22) one has 𝑓(�̄�, �̄�) = 0. Thus, any stationary point �̄� of 𝜆(𝑥) such that
|𝑁(�̄�)| = 𝑛 satisfies to conjugate branching system (18). It can be make the conjecture
that for the power balance system, any stationary point �̄� satisfies |𝑁(�̄�)| = 𝑛. Then we
have:

❏ The maximum bifurcation point of the power balance system (𝑓) and therefore the
maximum loading capacity of the power system is located at the maximizing point of
the nonsmooth function 𝜆(𝑥) = min𝑖 𝑟𝑖(𝑥).

Nonsmooth optimization deals with optimization problems where objective functions
have discontinuous gradients and it has been intensively developing over the past few
decades. There is a large amount of literature on nonsmooth optimization algorithms,
and there are various numerical methods for such problems: subgradient, cutting plane,
bundle, gradient sampling methods, etc. (see e.g., (BAGIROV; KARMITSA; MÄKELÄ,
2014; DEM’YANOV; MALOZEMOV, ; KIWIEL, 2006)). All these methods have their
supporters and advantages, which may depend on the type of problems under considera-
tion.

Given the power balance system (𝑓) has not yet been investigated under the framework
of the theory of nonsmooth optimization, it makes sense to test the known methods of
this theory to determine the optimal one.

In the present work, we test the subgradient method for (𝑓). In this regard, it makes
sense to emphasize that the continuation approach of finding the bifurcation, as it has
been shown in (IL’YASOV; IVANOV, 2016) (see also below Remark 1), is a special case
of the subgradient method.

3.2 Algorithm

To find the maximizing point of 𝜆(𝑥), we apply the subgradient method using an
approach introduced in (IL’YASOV; IVANOV, 2016; IVANOV; IL’YASOV, 2013). By
(DEM’YANOV; MALOZEMOV, ; ROCKAFELLAR, 1984), 𝜆(𝑥) is a directionally diffe-
rentiable function in 𝑄 with respect to any vector 𝑑 ∈ R𝑛 and the directional derivative
is defined by

𝜆′(𝑥; 𝑑) = min
𝑖

{⟨∇𝑟𝑖(𝑥), 𝑑⟩ : 𝑖 ∈ 𝑁(𝑥)}. (24)
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Following (DEM’YANOV; MALOZEMOV, ; ROCKAFELLAR, 1984) we call a maximizer
𝑑(𝑢) ∈ R𝑛 of

�̂�(𝑥) = 𝜆′(𝑥; 𝑑(𝑥)) = max{𝜆′(𝑥; 𝑑) : ||𝑑|| = 1} (25)

(if �̂�(𝑥) > 0) a direction of steepest ascent of 𝜆(𝑥) at 𝑥 ∈ 𝑄. In this case, we define a
gradient of 𝜆(𝑥) as follows

∇𝜆(𝑥) := 𝜆′(𝑥; 𝑑(𝑥)) · 𝑑(𝑥) ≡ �̂�(𝑥) · 𝑑(𝑥).

Observe that by Demyanov-Malozemov’s Theorem (DEM’YANOV; MALOZEMOV, ),
∇𝜆(𝑥) is a nearest point from the origin 0𝑛 to the convex set 𝜕𝜆(𝑥). Introduce matrices

𝐴𝑁(𝑥) = (∇𝑟𝑖𝑘
(𝑥))𝑇

1≤𝑘≤|𝑁(𝑥)| , Γ𝑁(𝑥) = 𝐴𝑇
𝑁(𝑥)𝐴𝑁(𝑥),

where 𝑖1, ..., 𝑖𝑁 ∈ 𝑁(𝑥) is an arrangement of the set 𝑁(𝑥) such that 𝑖1 < 𝑖2 < . . . <

𝑖𝑁 . From (IL’YASOV; IVANOV, 2016; IVANOV; IL’YASOV, 2013) it follows that the
maximization problem (25) is equivalent to the following quadratic programming problem

�̂�2(𝑥) = min
𝛼

{𝛼𝑇 Γ𝑁(𝑥)𝛼 : 𝛼 ∈ R𝑁(𝑥), (26)
𝑁(𝑥)∑︁
𝑖=1

𝛼𝑖 = 1, 𝛼𝑖 ≥ 0, 𝑖 = 1, ..., 𝑁(𝑥)},

so that if �̂�(𝑥) is a minimizer of (26), then

∇𝜆(𝑥) =
𝑁∑︁

𝑘=1
�̂�𝑘∇𝑓𝑖𝑘

(𝑥) ≡ 𝐴𝑁(𝑥)�̂�(𝑥), (27)

and
𝑑(𝑥) = ∇𝜆(𝑥)/�̂�(𝑥) ≡

𝐴𝑁(𝑥)�̂�(𝑥)
||𝐴𝑁(𝑥)�̂�(𝑥)|| (28)

is a maximizer of (25) (IVANOV; IL’YASOV, 2013).
An important property of �̂�(𝑥) (see (DEM’YANOV; MALOZEMOV, ; DEMYANOV

et al., 2013)) is that if �̂�(𝑥) > 0, then there exist 𝜏0 > 0 such that

𝜆(𝑥 + 𝜏𝑑(𝑥)) > 𝜆(𝑥)

for any 𝜏 ∈ (0, 𝜏0). Furthermore (see (IL’YASOV; IVANOV, 2016)) if 𝑥* ∈ 𝑄 is a
maximizer of 𝜆(𝑥), then the necessary conditions of optimality �̂�(𝑥*) = 0 is satisfied and
there exists 𝜉* ∈ (R+)𝑛 ∖ 0 such that 𝜉* ∈ 𝐾𝑒𝑟(𝐽𝑥𝑓𝑇 (𝑥*, 𝜆*)𝑇 ).

Accordingly, one can introduce the iteration formula for steepest ascent direction
method (see e.g., (IVANOV; IL’YASOV, 2013))

𝑥𝑘+1 = 𝑥𝑘 + 𝑡𝑘
𝑑(𝑥𝑘)

‖𝑑(𝑥𝑘)‖
.

Here 𝑡𝑘 > 0 is a predetermined step size. However, this approach has a certain
deficiency, namely the finding of the steepest ascent direction by (26) is time-consuming.
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Figure 6 – Quasi-direction of steepest ascent 𝑌 (𝑥) and direction of steepest ascent ∇𝜆(𝑥)

To avoid this, the authors in (IL’YASOV; IVANOV, 2016), proposed the so-called method
of quasi-direction of steepest ascent. In this way, the quasi-direction of steepest ascent
𝑌 (𝑥) is determined by solving a system of linear equations which is less time-consuming
than solving (26).

Let us shortly describe the ideas of this method. For 𝛿 ∈ R, consider the following
system of equations ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Γ𝑁(𝑥)𝛼 = 𝛿 · 1|𝑁(𝑥)|,

|𝑁(𝑥)|∑︀
𝑖=1

𝛼𝑖 = 1,

(29)

where 𝛼 = (𝛼1, ..., 𝛼|𝑁(𝑥)|)𝑇 .
Assume that |𝑁(𝑥)| > 1. Consider the affine space

𝐿𝑁(𝑥) = {𝑣 =
∑︁

𝑖∈𝑁(𝑥)
𝛽𝑖∇𝑟𝑖(𝑥) :

∑︁
𝑖∈𝑁(𝑥)

𝛽𝑖 = 1}.

Introduce 𝑌 (𝑥) = 𝐴𝑇
𝑁(𝑥)𝛼(𝑥), where 𝛼(𝑥) satisfies (29). Observe, if 𝛿 > 0, then (29)

implies
⟨𝑌 (𝑥), ∇𝑟𝑖(𝑥)⟩ = ⟨𝐴𝑁(𝑥)𝛼, ∇𝑟𝑖(𝑥)⟩ = ⟨Γ𝑁(𝑥)𝛼, 𝑒𝑖⟩ (30)

∀𝑖 ∈ 𝑁(𝑥). From this it follows that 𝑌 (𝑥) is an orthogonal vector to 𝐿𝑁(𝑥) (see (IL’YASOV;
IVANOV, 2016)) and thus 𝑌 (𝑥) is the nearest point from the origin 0𝑛 ∈ R𝑛 to the affine
space 𝐿𝑁(𝑥). Recall that ∇𝜆(𝑥) is a nearest point from the origin 0𝑛 to the convex set
𝜕𝜆(𝑥). Hence and since 𝜕𝜆(𝑥) lies on 𝐿𝑁(𝑥), it follows that the necessary conditions of
optimality �̂�(𝑥*) = 0, i.e., 0 ∈ 𝜕𝜆(𝑥), entails 𝑌 (𝑥*) = 0. See Figure 6.

Furthermore, the following main lemma holds (see (IL’YASOV; IVANOV, 2016))

Lemma 2. Let 𝑥 ∈ 𝑄 and assume that (𝛼, 𝛿) is a solution of (29). Then

a) If 𝛿 = 0, then |𝑁(𝑥)| = 𝑛 and 𝛼𝑘 ̸= 0, ∀𝑘 = 1, ..., 𝑛.

b) If 𝛿 = 0 and 𝛼𝑘 > 0, ∀𝑘 = 1, ..., 𝑛, then �̂�(𝑥) = 0, and there exists 𝜉 ∈ (R+)𝑛 ∖ 0 such
that 𝜉 ∈ 𝐾𝑒𝑟(𝐽𝑥𝑓(𝑥, 𝜆))𝑇 with 𝜆 = 𝜆(𝑥, 𝜉).
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c) If 𝛿 = 0 and there exist subsets 𝑁1(𝑥), 𝑁2(𝑥) such that 𝑁1(𝑥) ∪ 𝑁2(𝑥) = 𝑁(𝑥) and
𝛼𝑘 > 0, ∀𝑘 ∈ 𝑁1(𝑥), whereas 𝛼𝑘 ≤ 0, ∀𝑘 ∈ 𝑁2(𝑥), then ∇𝜆(𝑥) lies on the boundary
𝜕𝑁1(𝑥)𝜆(𝑥) of 𝜕𝜆(𝑥).

The following convergence iteration by quasi-direction of steepest ascent method can
be introduced:

𝑥𝑘+1 = 𝑥𝑘 + 𝜏𝑘
𝑌 (𝑥𝑘)

‖𝑌 (𝑥𝑘)‖
where 𝜏𝑘 > 0 is a predetermined step size (IL’YASOV; IVANOV, 2016). Below, the
finding of the maximal SNB point of (𝑓) will be carried out with a given accuracy. Let us
give the corresponding definitions. Following (IL’YASOV; IVANOV, 2016), we say that
𝑥 is a solution of (𝑓) with accuracy 𝜀 > 0, if

|𝑟𝑖(𝑥) − 𝜆(𝑥)| < 𝜀 for all 𝑖 = 1, 2, ..., 𝑛. (31)

Denote 𝑁𝜀(𝑥) = {𝑖 ∈ [1 : 𝑛] : |𝑟𝑖(𝑥) − 𝜆(𝑥)| < 𝜀}. Then 𝑥 is a solution of (𝑓) with
accuracy 𝜀 > 0 if and only if |𝑁𝜀(𝑢)| = 𝑛.

Let 𝜀0 > 0, 𝛿0 > 0. We call 𝑥*
(𝜀0,𝛿0) the 𝛿0- SNB point of (𝑓) with accuracy 𝜀0 if

(i) |𝑁𝜀0(𝑥*
(𝜀0,𝛿0))| = 𝑛,

(ii) Γ𝑁𝜀0 (𝑥*
(𝜀0,𝛿0))𝛼 = 𝛿 · 1|𝑁𝜀0 (𝑥*

(𝜀0,𝛿0))|,

for 𝛿 ∈ (0, 𝛿0) and 𝛼 ∈ R
|𝑁𝜀0 (𝑥*

(𝜀0,𝛿0))|
+ such that ∑︀1≤𝑖≤|𝑁𝜀0 (𝑥*

(𝜀0,𝛿0))| 𝛼𝑖 = 1.

The corresponding pseudo-code of the quasi-direction of the steepest ascent (QDSA)
algorithm for finding the 𝛿0- SNB point with a given accuracy 𝜖0 is presented in the next
section. The algorithm enables the finite cyclic reduction of 𝜖 and 𝛿. The convergence of
this algorithm is discussed in (IL’YASOV; IVANOV, 2016).

Remark 1. Assume 𝑁(𝑥) = 𝑛, then

𝜆(𝑥) = 𝑔𝑖(𝑥)
𝑏𝑖

, ∀ 𝑖 = 1, . . . , 𝑛,

which means that 𝑥 satisfies (𝑓) with 𝜆 = 𝜆(𝑥) and thus, the point 𝑥 lies on the branch
of the solutions of (𝑓). On the other hand, if 𝑁(𝑥) = 𝑛 and (𝛼, 𝛿) solves (29), then:

𝐴(𝑥)𝐴𝑇 (𝑥)𝛼 = 𝛿1𝑛

Now denoting �̇� = 𝐴𝑇 (𝑥)𝛼
𝛿

, we obtain (see (IVANOV; IL’YASOV, 2013)) the Davidenko-
Abbott system

𝐽𝑥𝑓(𝑥, 𝜆))�̇� = −𝑓𝜆(𝑥, 𝜆), (32)

which lies at the core of the continuation methods (see e.g. (KELLER, 1977; SEYDEL,
2009)). Notice that equality 𝑌 (𝑥) = �̇�𝛿 implies that the quasi-direction of steepest ascent
𝑌 (𝑥) is collinear with the tangent vector �̇� to the curve of the branch of the solutions of
(𝑓). Thus, the predictor step by the tangent vector in the continuation approach is, in fact,
a particular case of the quasi-direction of the steepest ascent method when |𝑁(𝑥)| = 𝑛.
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3.2.1 Pseudo-Code for the Quasi-Direction of Steepest Ascent
Algorithm (QDSA)

Algorithm 1 The QDSA Pseudo-Code
1: Set an initial point 𝑥0 and accuracies 𝜖0 > 0 and 𝛿0 > 0

For 𝑘 = 0, 1, 2.... until the saddle-node bifurcation point (𝑥*, 𝜆*) is found.
2: Compute

𝜆(𝑥𝑘) = min
𝑖

𝑟𝑖(𝑥𝑘)

𝜇(𝑥𝑘) = max
𝑖

𝑟𝑖(𝑥𝑘)

Compute
𝜖 = (𝜇(𝑥𝑘) − 𝜆(𝑥𝑘))/2

3: Input the set of indexes

𝑁𝜖(𝑥𝑘) = {𝑖 ∈ {1 : 𝑛} : |𝑟𝑖(𝑥𝑘) − 𝜆(𝑥𝑘)| < 𝜖},

𝑁 = |𝑁𝜖(𝑥𝑘)|

4: Find 𝛿𝑘 and 𝛼𝑘 by solving
ℳ𝑁𝜖(𝑥𝑘)𝑡

𝑘 = 𝑞𝑁 ,

where

ℳ𝑁𝜖(𝑥𝑘) =
⎛⎝ Γ𝑁𝜖(𝑥𝑘) −1𝑁𝜖(𝑥𝑘)

1𝑇
𝑁𝜖(𝑥𝑘) 0

⎞⎠ .

Γ𝑁𝜖(𝑥𝑘) = 𝐴𝑇
𝑁𝜖(𝑥𝑘)𝐴𝑁𝜖(𝑥𝑘), 𝑡𝑘 =

(︃
𝛼𝑘

𝛿𝑘

)︃
, 𝑞𝑁 =

(︃
0
1

)︃

5: If 𝛿𝑘 < 𝛿0, then go to Step 6, otherwise
a) Compute the quasi-direction of steepest ascent

𝑦𝑘 = 𝑌 𝑘

‖𝑌 𝑘‖
, 𝑌 𝑘 = 𝐴𝑇

𝑁𝜖(𝑥𝑘)𝛼
𝑘

b) Find the step length 𝜏 𝑘 by the golden search rule applied to

𝜏 𝑘 = 𝑎𝑟𝑔 max{min
𝑖

𝑟𝑖(𝑥𝑘 + 𝜏𝑦𝑘)}, 𝜏 > 0

c) Compute 𝑥𝑘+1 = 𝑥𝑘 + 𝜏 𝑘𝑦𝑘 and return to Step 2
6: If 𝜖 < 𝜖0, then go to step 7, otherwise 𝜖 = 𝜖/2 and return to step 3
7: If 𝑁 = 𝑛, Output the bifurcation point 𝑥*

(𝜖,𝛿) and 𝜆*
(𝜖,𝛿), otherwise 𝛿0 = 𝛿0/2 and return

to step 6
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3.3 Study Cases

In this section, we present the performance of the EFM applied on various tasks and
the comparison with CPF and PoC method. The IEEE 14, 30, 57 and 118 test systems
are used for simulations ignoring reactive power limits of generators. The study cases are
divided into five sections:

❏ Testing various initial points 𝑥0.

❏ Testing large 𝜆 cases.

❏ Tracking performance of the proposed method.

❏ Infeasible Power Flow (0 < 𝜆 < 1).

❏ The EFM providing 𝑥0 for PoC.

3.3.1 Testing various initial points 𝑥0

The state vector 𝑥 is composed of 𝑛 unknown variables (𝑛𝑏𝑢𝑠 +𝑛𝑝𝑞 −1 = 𝑛), where 𝑛𝑏𝑢𝑠

is the number of buses and 𝑛𝑝𝑞 is the number of PQ type buses . The first 𝑛𝑝𝑞 elements
of the vector 𝑥 represent voltage modules 𝑉 := [𝑣1, . . . , 𝑣𝑛𝑝𝑞 ], followed by voltage angles
𝜃 := [𝜃1, . . . , 𝜃𝑛𝑏𝑢𝑠−1], so that 𝑥 = [𝑉, 𝜃]𝑇 .

Four initial guess points 𝑥0 are used to start the algorithm:

❏ 𝑥0 = [1̄, 0̄]𝑇 (Flat start)

❏ 𝜆(𝑥0) = 1 (Equilibrium base case point)

❏ 𝑥0 = [0̄.5, −̄𝜋
10 ]𝑇

❏ 𝑥0 = [0̄.5, −̄𝜋
6 ]𝑇

In all scenarios, the performance is compared with the Continuation Power Flow and PoC
Methods, using the open-access Matlab software PSAT (MILANO, 2005).

The EFM was implemented in MatLab R2015. For the Continuation Power Flow
simulations on PSAT, the following settings were applied:

❏ Stop criterion: At Bifurcation point.

❏ Correction method: Perpendicular intersection.

❏ Adaptive Step Size with different initial values in order to not exceed 50 iterations
(default).
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Table 1 – Comparison between methods; IEEE 14-bus system

EFM CPF-PSAT PoC-PSAT
Case 𝜆 Time [s] 𝜆 Time [s] Step Size 𝜆 Time [s]
𝑥0 = [1̄, 0̄]𝑇 3.87 0.61 3.87 0.41 0.5 3.87 0.14
𝜆(𝑥0) = 1 3.87 0.84 3.87 0.31 0.5 3.87 0.14
𝑥0 = [0̄.5, −̄𝜋

10 ]𝑇 3.87 0.73 NCa 0.5 NCa

𝑥0 = [0̄.5, −̄𝜋
6 ]𝑇 3.87 0.73 NCa 0.5 NCa

a Not Converged;

Table 2 – Comparison between methods; IEEE 30-bus system

EFM CPF-PSAT PoC-PSAT
Case 𝜆 Time [s] 𝜆 Time [s] Step Size 𝜆 Time [s]
𝑥0 = [1̄, 0̄]𝑇 2.52 1.7 2.52 1.52 0.5 2.52 0.29
𝜆(𝑥0) = 1 2.52 4.9 2.52 1.42 0.5 2.52 0.29
𝑥0 = [0̄.5, −̄𝜋

10 ]𝑇 2.52 2.7 NCa 0.5 NCa

𝑥0 = [0̄.5, −̄𝜋
6 ]𝑇 2.52 4.5 NCa 0.5 NCa

a Not Converged;

Table 3 – Comparison between methods; IEEE 57-bus system

EFM CPF-PSAT PoC-PSAT
Case 𝜆 Time [s] 𝜆 Time [s] Step Size 𝜆 Time [s]
𝑥0 = [1̄, 0̄]𝑇 1.55 9.1 1.55 0.937 0.1 1.55 0.15
𝜆(𝑥0) = 1 1.56 11.1 1.55 0.837 0.1 1.55 0.15
𝑥0 = [0̄.5, −̄𝜋

10 ]𝑇 1.55 112.8 NCa 0.5 NCa

𝑥0 = [0̄.5, −̄𝜋
6 ]𝑇 1.55 115.6 NCa 0.5 NCa

a Not Converged;

For the PoC on PSAT, all simulations begin running CPF to get a close initial start
point since otherwise, none of the cases converge. Simulations were run on an Intel i7 of
3.2 GHz CPU and 16 GB of RAM.

As shown in Tables 1,2,3, and 4, the EFM was the only one that converged successfully
and found the solutions using initial guess points 𝑥0 = [0̄.5, −̄𝜋

10 ]𝑇 and 𝑥0 = [0̄.5, −̄𝜋
6 ]𝑇 . No

case converged with the PoC method using a flat start, and the converged cases used a
suitable initial point provided by the CPF method.

Fig. 7 shows the schematic representation of the iterative procedure of the EFM to
find the SNB using a flat start as the initial guess point.

3.3.2 Testing large 𝜆 cases

Six random load level scenarios of the IEEE 30-bus system were simulated, decreasing
the system’s total load in the subsequent scenario to increase the voltage Stability Margin
(VSM) and to stress the methods. Table 5 shows that the PoC is the fastest method among
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Table 4 – Comparison between methods; IEEE 118-bus system

EFM CPF-PSAT PoC-PSAT
Case 𝜆 Time [s] 𝜆 Time [s] Step Size 𝜆 Time [s]
𝑥0 = [1̄, 0̄]𝑇 2.05 74.5 2.05 1.12 0.5 2.05 0.2
𝜆(𝑥0) = 1 2.05 76.8 2.05 1.02 0.5 2.05 0.2
𝑥0 = [0̄.5, −̄𝜋

10 ]𝑇 2.05 235.7 NCa 0.5 NCa

𝑥0 = [0̄.5, −̄𝜋
6 ]𝑇 2.05 256.8 NCa 0.5 NCa

a Not Converged;
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Figure 7 – Representation of the iterative procedure to find the SNB by the EFM.

all (with initial guess provided by the CPF method). On the other hand, EFM has shown
better performance than CPF for large 𝜆.

The CPF is time-consuming for cases with large 𝜆 (Base Case far from SNB), while
the EFM seems to have a constant-time performance independent of 𝜆 size.

Even with the initial guess provided by CPF, two cases did not converge using the
PoC method, and one converged case yielded a wrong answer.

3.3.3 Tracking Performance of the Extended Functional Method

We compared the EFM and the PoC method tracking an SNB point shifted by a
network contingency using the SNB point before perturbation as the initial guess for
finding the new SNB. The CPF method does not work in this case because it is dependent
on the base case convergence. For testing tracking performance, two perturbations were
introduced in Case 1 of the IEEE 30-bus system. The first one causes the SNB point
displacement due to the outage of two capacitors (buses 10 and 14). This contingency
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Table 5 – Testing large 𝜆 cases; 𝑥0 = [1̄, 0̄]𝑇 (IEEE 30-bus system)

EFM CPF-PSAT PoC-PSAT
Case 𝜆 Time [s] 𝜆 Time [s] Step Size 𝜆 Time [s]
1 2.52 1.7 2.52 1.52 0.5 2.52 0.29
2 4.85 1.9 4.85 1.08 0.5 4.85 0.2386
3 6.00 2.1 6.00 0.68 0.5 6.00 0.2758
4 7.14 1.4 7.14 2.73 0.5 7.15 0.2385
5 9.67 1.3 9.68 1.73 2 NCa NCa

6 13.87 1.7 13.87 2.6 2 WAb WAb

a Not Converged;
b Wrong Answer

is considered a small perturbation since 𝜆 decreases less than 2% (from 2.52 to 2.48).
The outage of line 2-5 causes the second displacement of the SNB. This contingency is
considered a significant perturbation since 𝜆 decreases considerably (from 2.48 to 2.02).
Table 6 shows that both the EFM and PoC method tracks the first SNB displacement
successfully, being PoC faster than EFM. The second displacement is tracked successfully
only by the EFM. Fig. 8 shows the schematic representation of the tracking procedure.

Table 6 – Tracking Performance of the EF Method - IEEE 30-bus system

EFM PoC-PSAT
Case 𝑥0 𝜆 Time [s] 𝜆 Time [s]

Cont. 1 Base Case SNB 2.48 1.1 2.48 0.268
Cont. 2 Cont.1 SNB 2.02 1.4 NCa NCa

a Not Converged;

3.3.4 Infeasible Power Flow (0 < 𝜆 < 1)

We tested an infeasible power flow in which the given load level is beyond the SNB
point, and a physical solution does not exist. In this case, SNB point exists with a load
level smaller than the given load level, so that the SNB point exists in the range 0 < 𝜆 < 1.
For testing an infeasible power flow, a severe contingency to case 1 of the IEEE 30-bus-
system was applied. Generators 2, 3, 5, and 13 were set as PQ buses, generators 8 and
11 were set with 1 [p.u.] of voltage output, capacitors 10 and 24, lines 2-5, 6-8, and 14-15
were set out of service. This simulation converged successfully with the EFM yielding
𝜆 = 0.84. PoC method did not converge. Fig. 9 shows how the PV curve decreases to
the infeasible region (0 < 𝜆 < 1) due to the severe contingency.
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Figure 8 – Tracking SNB Point Scheme
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Figure 9 – Infeasible Contingency Case
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3.3.5 EFM providing 𝑥0 for PoC method

Finally, we tested the EFM, providing suitable 𝑥0 for the PoC method. We tested
Cases 5 and 6 of the IEEE 30-bus system, in which the PoC method did not converge
with the initial guess point provided by the CPF method. The stop criterion for the EFM
to provide suitable initial guess point are |𝑁(𝑥𝑘)| = 𝑛 and 𝜇(𝑥𝑘) − 𝜆(𝑥𝑘) < 5. It is worth
noting that the initial right eigenvector and 𝜆 for the PoC method can be provided by
the EFM as well. Using the mentioned stop criterion, the EFM provided a suitable initial
guess point for PoC convergence. Table 7 shows the total time of the two cases using
both the EFM and PoC method.

Table 7 – EFM Providing 𝑥0 for PoC method - IEEE 30-bus system

EFM PoC-PSAT
Case 𝜆 Time [s] Time [s] Total Time [s]

5 9.68 0.5 0.3 0.8
6 13.87 0.9 0.25 1.15

3.3.6 Discussion on the performance of the extended functional
method

A new concept for finding saddle-node bifurcation points has been presented. The
stationary points of the nonsmooth functional 𝜆(𝑥) correspond to the saddle-node bifur-
cation point. A full range of nonsmooth optimization methods can be applied to find
bifurcation points. Among these methods, the subgradient method for nonsmooth func-
tions (QDSA algorithm) has been applied to find the maximal bifurcation point of power
systems. As a result, the following achievements can be highlighted:

❏ It is the first time using the extended functional and introducing a variational func-
tion 𝜆(𝑥) in a precise form in which stationary points correspond to the maximum
loading capacity of the power system.

❏ We show that 𝜆(𝑥) is nonsmooth, and thus any method of calculation of the ma-
ximum loading capacity of the power system deals with nonsmooth optimization.
Notice that nonsmooth optimization is among the most challenging tasks in opti-
mization.

Also, various features can be highlighted:

❏ Only a portion of the jacobian matrix of the system is used in each iteration be-
cause trajectory equilibrium points are not of interest. This feature decreases the
computational cost of solving the linear system when finding the functional 𝜉.
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❏ The iterations and time consumption are not proportional to the distance between
the base to the SNB. In this way, the initial guess does not affect convergence even
when the base case is far away from the SNB.

❏ Since the method only looks for the SNB, it can be considered a direct method but
without the need for a close initial start point for 𝜆 and the left/right eigenvector.

❏ Unlike the CPF method, the computing time is not proportional to 𝜆 size.

❏ The EFM can also be used to find a suitable close initial start point to accelerate
the PoC method.

❏ Unlike the PoC method, the EFM does not need an initial guess point close to the
solution to ensure convergence. Instead, the EFM converges using an initial guess
point away from the solution.
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Chapter 4
Voltage Control and Short-Term

Stability

4.1 Introduction

Enforcing grid codes has become increasingly challenged by the growing penetration
of renewable sources to achieve a net-zero carbon emission goal. In North America, grid
codes require wind farms (WFs) with an aggregated nameplate capacity above 20MVA to
provide ride-through capabilities, i.e., staying online during abnormal frequency/voltage
disturbances (ELLIS et al., 2012). The low voltage ride-through (LVRT) capability aims
to guarantee continuous injection while the system is under low voltage during a distur-
bance and a fast voltage recovery during the post-fault transient (YARAMASU et al.,
2015; MULLANE; LIGHTBODY; YACAMINI, 2005). One can apply several techniques
to achieve LVRT requirements, e.g., the double-fed induction generator (DFIG) can per-
form a continuous operation under low voltage for a short period. In this technique,
the crowbar resistor and the DC-link chopper, protects the power converter, which has
a restricted over-current limit (VIDAL et al., 2013; PANNELL; ATKINSON; ZAHAWI,
2010). After clearing a disturbance, the DFIG returns to normal operation, and the
voltage should recover to its nominal value as fast as possible. Voltage stability is a
critical issue during the entire process. If there is insufficient reactive power, a voltage
collapse will cause the outage of the WF. To help with the reactive power (VAR) sup-
port during this critical transient, VAR compensators are being used, such as the Static
Synchronous Compensator (STATCOM), Static Var Compensator (SVC), Static Var Ge-
nerators (SVG) and Convertible Static Compensators (CSC) (HINGORANI; GYUGYI;
EL-HAWARY, 2000; SALLES; FREITAS; MORELATO, 2004). In that regard, a dyna-
mic reactive power reserve (DRPR) from VAR compensators criterion has been proposed
during normal operation to ensure fast VAR availability for a successful ride through.

The strategies mentioned above are well established and have reached maturity. Howe-
ver, it is important to highlight at this point other aspects besides DRPR criterion that
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plays an essential role in the continuous improvement of the LVRT. One of these aspects
is the OC’s role before the disturbance on a successful ride-through. This paper will
demonstrate that the VAR reserves should be available not only at the medium voltage
bus (from VAR compensators) but at every WF node. In other words, maximizing VAR
reserves in the WF is necessary for a normal OC. In (ZHAO et al., 2016; ZHAO et al.,
2017; GUO et al., 2015), a preventive control based on the SVC/CVG DRPR is presented.
However, as stated before, DRPR from the VAR compensator might not be enough to
improve LVRT capability. In (ZHAO et al., 2016; ZHAO et al., 2017), a Model predic-
tive control-based voltage control (MPC) is proposed for a normal operation condition.
However, a widely recognized shortcoming of MPC is that it is designed for applications
with slow dynamics, while its performance in fast dynamics like those of inverter-based
sources is not ideal due to communication latency.

Another important aspect is the behavior of the local controls after the disturbance
to restore the voltage . After clearing the fault, the local set-point remains at pre-fault
constant values, which are not adequate for post-fault conditions and will not restore
the voltage properly as required by grid codes. Classical local controls such as PID
controllers rely on local measurements without taking into account the capacity and the
OC of the system, depriving an optimal and coordinated response of all the WF resources
(LIN; LIU; ZHU, 2021). In (QIAO; HARLEY; VENAYAGAMOORTHY, 2009), dynamic
programming and a radial basis neural network is proposed to restore the voltage of a
DFIG-based WF after a disturbance. However, the WF is reduced to an equivalent DFIG
machine, which can cause miscalculations because each DFIG has its own VAR limit. To
improve LVRT capability, reinforcement learning is applied to control a VAR compensator
like CSC and STATCOM (ZHOU; SWAIN; UKIL, 2019). Nonetheless, the limit of VAR of
each individual wind generator is not taken into account. During the transient restoration
period, ideally, all available reactive resources should coordinately inject VAR to restore
the voltage as fast as possible. As a result, the set-points ideally should change during
the short transient period accordingly to the OC and the availability of resources of each
wind generator.

The ideal centralized response is physically limited due to communication delays
between the local and centralized controllers, and the time needed to solve the opti-
mization problem to obtain the set-points during the transient period (GUO et al., 2017).
To tackle the limitations of local controllers and centralized communications, we propose
a risk-aware learning framework that allows us to systematically reduce the worst-case
prediction guaranteeing a safe voltage control. Using only local and other reachable mea-
surements of interest, the data-driven local voltage control is able to quickly calculate the
set-points during the post-fault transient. The non-linearities due to the combination of
local Proportional Integral (PI) control over the VAR first-order dynamics, in addition to
the effects on the system power flow, make a neural network (NN) a suitable tool for the
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learning process. To train the NN, a data-set is obtained offline by performing an ideal
(without computation and communication limitations) centralized model predictive con-
trol (MPC) that is an efficient multi-input-multi-output (MIMO) control strategy when
system dynamics are taken into account.

Notation: Upper (lower) boldface symbols stand for matrices (vectors); (·)⊤ stands
for matrix transposition; ‖ · ‖2 denotes the 𝐿2-norm; Upper (̄·) and lower bars (

¯
·) stand

for maximum and minimum limits respectively, and hat (̂·) stands for setpoint.

4.2 System Modeling

PCC
HV (230kV)

MV (35kV)

 

230kV

WG1 WG2 WG3 WG4 WG5

LT
To IEEE-9

bus system

Measurement box

Signal pathway

STATCOM

9 3

Figure 10 – Wind farm architecture. The pathway for measurement signals to be used
for corrective control can be observed. The STATCOM uses total active power (𝑝𝑚𝑣 )
and VARs (𝑞𝑚𝑣 ) from the MV bus. Every WG uses the total active power (𝑝𝑓 ) from the
feeder it belongs.

Consider a WF consisting of a point of common coupling (PCC), a High Voltage
(HV) bus, a Medium Voltage (MV) bus, and 𝑁 wind generators (WGs). A STATCOM
is connected to the MV bus for VAR support. The goal is to control the PCC voltage by
coordinating the outputs from WGs and the STATCOM. Using the Thevenin equivalent
of the external system model, one can use the Thevenin voltage 𝑣𝑡ℎ as the slack bus, as
shown in Figure 10.

Thereby, the vector of WF nodal voltages 𝑣 can be modeled as:

𝑣 ≊ 𝑅𝑝 + 𝑋𝑞 + 𝑣𝑡ℎ1𝑁 (33)

with 𝑣 = [𝑣𝑝𝑐𝑐, 𝑣ℎ𝑣, 𝑣𝑠, 𝑣𝑤
1 , ..., 𝑣𝑤

𝑁 ]⊤, 𝑝 and 𝑞 as the vectors of active power and VAR
injections, respectively. In addition, 𝑅 and 𝑋 represent the corresponding sensitivity
matrices. For example, using the linearized DistFlow approximation (BARAN; WU,
1989), they can be respectively formed using the node-to-edge graph incidence matrix 𝑀
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(ZHU; LIU, 2015), as given by:

𝑅 = 2(𝑀−1)⊤diag(𝑟)(𝑀−1) (34)

𝑋 = 2(𝑀−1)⊤diag(𝑥)(𝑀−1) (35)

where the vectors 𝑟 and 𝑥 respectively collecting all line resistance/reactance parameters.
In addition to the WF network model, one needs to consider the internal WG dynamics

due to VAR control loop as simplified by a first-order system (SOENS et al., 2005).
The WG’s VAR dynamics can be represented by a first-order model, as: (superscript 𝑤

denoting WG)

Δ𝑞𝑤 = −Δ𝑞𝑤

𝜏𝑤
+ Δ𝑞𝑤

𝜏𝑤
(36)

where 𝜏𝑤 is the WG’s time constant. The equivalent state-space model considering 𝑁

WGs is:
Δ�̇�𝑤 = 𝐴𝑤 · Δ𝑞𝑤 + 𝐵𝑤 · Δ�̂�𝑤 (37)

with:

𝐴𝑤 = diag(−1
𝜏𝑤

1
, ...,

−1
𝜏𝑤

𝑁

), and 𝐵𝑤 = diag(−1
𝜏𝑤

1
, ...,

−1
𝜏𝑤

𝑁

)

Similarly, the STATCOM’s VAR dynamics can be simplified by an equivalent first-
order model, as; (superscript 𝑠 denoting STATCOM)

Δ𝑞𝑠 = −Δ𝑞𝑠

𝜏 𝑠
+ Δ𝑞𝑠

𝜏 𝑠
(38)

where 𝜏 𝑠 is the STATCOM’s time constant. As the STATCOM is typically controlled
by a voltage setpoint, the VAR setpoint in (38) is determined by the following s-domain
Proportional Integral (PI) control rule:

Δ𝑞𝑠 = 𝑘𝑝(𝑣𝑠 − 𝑣𝑠) + 𝑘𝑖
∫︁ 𝑡

0
(𝑣𝑠 − 𝑣𝑠)𝑑𝜏 (39)

where 𝑘𝑝 and 𝑘𝑖 are the fixed gains of the proportional and integral control, respectively.
With the following definition:

Δ𝑣𝑖𝑛𝑡 =
∫︁ 𝑡

0
(𝑣𝑠 − 𝑣𝑠)𝑑𝜏 (40)

where "int"denotes the integration of the deviation (𝑣𝑠 − 𝑣𝑠). Combining (33), (38), (39)
and (40), one can construct the state space form of the STATCOM as:

⎡⎣ Δ𝑞𝑠

Δ�̇�𝑖𝑛𝑡

⎤⎦ = 𝐴𝑠

⎡⎣ Δ𝑞𝑠

Δ𝑣𝑖𝑛𝑡

⎤⎦− 𝑏𝑠Δ𝑞𝑤 + 𝑐𝑠Δ𝑣𝑠 (41)

where matrix 𝐴𝑠, and vectors 𝑏𝑠, 𝑐𝑠 are presented in the Appendix.
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The general state space including 𝑁𝑤 WGs can be written as:

Δ�̇� = 𝐴Δ𝑥 + 𝐵Δ�̂� (42)

where
Δ𝑥 = [Δ𝑞𝑠, Δ𝑣𝑖𝑛𝑡, Δ𝑞𝑤

1 , ..., Δ𝑞𝑤
𝑁 ]⊤

Δ�̂� = [Δ𝑣𝑠, Δ𝑞𝑤
1 , ..., Δ𝑞𝑤

𝑁 ]⊤

𝐴 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐴𝑠 𝑏𝑠 . . . 0
0 − 1

𝜏𝑤
1

. . . 0
... ... . . . ...
0 0 . . . − 1

𝜏𝑤
𝑁

⎤⎥⎥⎥⎥⎥⎥⎥⎦

𝐵 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑐𝑠 . . . . . . 0
... 1

𝜏𝑤
1

. . . 0
... ... . . . ...
0 0 . . . 1

𝜏𝑤
𝑁

⎤⎥⎥⎥⎥⎥⎥⎥⎦
The general state-space model can be discretized to the form 𝑥𝑡+1 = 𝐴𝑑𝑥𝑡 + 𝐵𝑑𝑢𝑡

to be used as a model prediction, where 𝐴𝑑 and 𝐵𝑑 are the discrete forms of 𝐴 and 𝐵,
respectively. The discretized form is done by applying the sampling time Δ𝜏 𝑝 using the
method described in (TÓTH, 2010).

4.3 Problem formulation

4.3.1 Objective function - Preventive Mode

The preventive mode is switched on when the voltages are within conventional th-
resholds, and the objective is to set the OC of the WF in such a way that it would have
enough reactive power reserve to supply in case of a disturbance.

Proposition 1. By minimizing the losses in the WF during regular operation, the net
VAR used to regulate voltage is minimized, maximizing the VAR reserves in all WGs and
STATCOM.

The ohmic losses can be approximated as a convex quadratic function of power injec-
tion by using a second-order Taylor’s series expansion over eq. 33 (TAHERI et al., 2020;
TURITSYN et al., 2011).

𝐿 ≈ 𝑝𝑇 𝑅𝑝 + 𝑞𝑇 𝑅𝑞 (43)
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Remark 1. Unlike proposed preventive control such as (ZHAO et al., 2016; ZHAO et al.,
2017; GUO et al., 2015) where the objective is to reserve VAR from the STATCOM or
CSV, the proposed method in this paper is to "reserve"VAR from the whole WF regardless
of how much VAR is injected by the STATCOM as long as the WF’s net VAR is minimized.
This criterion is applied assuming that modern DFIG converters have a time constant
similar to the STATCOM.

Then, for preventive control, the cost function is the voltage deviation from eq.(33)
and the losses from eq. (43).

𝑞 = 𝑎𝑟𝑔 min (||𝑣 − 1||22 + (𝑣𝑡ℎ − 1)2) + 𝑞𝑇 𝑅𝑞

s. to:

¯
𝑞 ≤ 𝑞 ≤ �̄�

𝑋𝑞 + 𝑅𝑝 + 𝑣𝑡ℎ1𝑁 − �̄� ≤ 0

− 𝑋𝑞 − 𝑅𝑝 − 𝑣𝑡ℎ1𝑁 +
¯
𝑣 ≤ 0

(44)

Weights to both parts of the cost function can be applied. After solving the optimi-
zation problem; the voltage set-point for the STATCOM can be calculated as:

𝑣𝑠 = 𝑣𝑡ℎ + 𝑟𝑇
𝑚𝑣𝑝 + 𝑥𝑇

𝑚𝑣𝑞 (45)

where 𝑟𝑇
𝑚𝑣 := col𝑚𝑣𝑅𝑇 and 𝑥𝑇

𝑚𝑣 := col𝑚𝑣𝑋𝑇

The reactive power limits of each WG can be expressed as a function of the terminal
voltage and the active power output. Non-controllable buses such as the point of common
coupling (PCC), high voltage bus (HV), and medium voltage bus (MV) are also included
by setting the constraint 𝑞 = 0. The preventive control is carried out by a centralized
controller at the substation. The setpoints are calculated in the range of seconds, which
is suitable for a real-time communication system.

4.3.2 Objective function - Corrective Mode

The corrective mode is switched on when the voltages lie out of the thresholds due
to a disturbance e.g. an external line transmission fault. The objective is to restore the
voltage in all buses once the disturbance is cleared.

Since the centralized controller is sending the set-points within a period of 1 second,
a fault can occur at any moment during this period and after the fault is cleared, the
last set-points will remain constant until the next set-points are sent by the controller.
Because of communication latency restrictions, typically, the voltage is restored by those
remaining constant set-points which causes a delayed and undamped voltage recovery
(ASADOLLAH; ZHU; LISERRE, 2019).
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Nowadays, demanding grid codes require a response time smaller than one second and
a maximum overshoot of 5% (MARTÍNEZ et al., 2011).

Remark 2. Since the time scales during a fault are very short in the range of millise-
conds and considering the fast dynamics of the converters, a suitable control time for the
transients would be around 50 ms, which is not possible due to communication delays.
Therefore, the following formulation is to obtain a training data-set

The optimization problem aims to restore the voltage within the established th-
resholds. One can apply a model predictive control (MPC) approach to calculate the
control set-points as follows:

min
𝑞𝑞 ,𝑣𝑠

𝑁𝑝−1∑︁
𝑘=1

(||𝑣𝑡+1 − 1||22 + (𝑣𝑡ℎ − 1)2)

s. to:

�̃�𝑡+1 = 𝐴𝑑�̃�𝑡 + 𝐵𝑑�̃�𝑡

¯
𝑞 ≤ 𝑞0 + �̃�𝑡+1 ≤ �̄�

(46)

Where 𝑁𝑝 is the prediction steps and is calculated as 𝑁𝑝 = 𝑇𝑝

Δ𝑇𝑝
, being 𝑇 the prediction

time horizon. Such time horizon should be closed to the open-loop settling time of the
system (CAMACHO; ALBA, 2013). The sampling time Δ𝑇𝑝 should be smaller than the
constant time of the STATCOM.

The constraints regarding voltage thresholds should be relaxed to find feasible solutions
since after clearing the fault the voltage will restore from low voltages. In the same
way that the preventive mode optimization problem the non-controllable buses are also
included by setting the constraint 𝑞 = 0.

The objective of the MPC formulation is to obtain a training data-set for learning
purposes to use it in a local fashion. That is the reason why the communication latency
is disregarded.

Remark 3

Since the dynamic model is an approximation making some assumptions such as cons-
tant active power injection (See appendix), in order to evaluate the performance of the
MPC, it should be applied to a system that simulates the real dynamics of the wind gene-
rators with a satisfactory degree of fidelity.

4.3.3 Risk-Aware Learning

Recently, decentralized decision rules through supervised learning approaches such as
kernel learning and neural networks have been proposed (NNs) (LIU; SHI; ZHU, 2016;
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JALALI et al., 2019). Basically, the goal of a machine learning (ML)-based solutions is to
obtain the regression model Φ(𝑦) → 𝑧 from the OC 𝑦 to the optimal 𝑧, such that it follows
a pre-specified scalable structure. Since our gol is to use local information and any other
reachable measurement, one can enforce one model for each WG Φ(·)𝑘, ∀𝑘 = 1, ..., 𝑁𝑤 and
for the STATCOM Ψ(·)𝑠.

For each WG we can use the following input features:

𝑦 = [𝑞, 𝑞, 𝑝, 𝑣, 𝑝𝑏]𝑇 (47)

where 𝑞 is the actual reactive power set-point, 𝑞 is the actual reactive power, 𝑝 is the
actual active power, 𝑣 is the voltage at the WG terminal, and 𝑝𝑏 is the total active power
of the feeder where the WG is located at.

The input features for the STATCOM:

𝑦𝑠 = [𝑣𝑠, 𝑞𝑠, 𝑝𝑚𝑣, 𝑣𝑚𝑣]𝑇 (48)

where 𝑣𝑠 is the actual voltage set-point, 𝑞𝑠 is the actual reactive power injected by
the STATCOM, 𝑝𝑚𝑣 is the total active power at the medium voltage bus, and 𝑣𝑚𝑣 is the
voltage at the medium voltage bus. The output for each WG and the STATCOM are
𝑧 = 𝑞 and 𝑧𝑠 = 𝑣𝑠 respectively. Fig.11 shows the schematic learning framework approach
for the corrective control.
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Figure 11 – Learning framework approach for the corrective control.

To develop the mappings Φ(·) and Ψ(·), a multi-layer perceptron (MLP) Neural
Network (NN) can be adopted, well known for being an excellent universal function
approximator (LECUN; BENGIO; HINTON, 2015). As an MLP, the architecture of
a NN consists of an input layer (features) , hidden layers and output layers (prediction).
Each hidden layer consists of n nodes. The output per node n is calculated using the
previous layer 𝑦𝑙−1 as input, where 𝑙 is the correspondent layer. The previous layer is
linearly transformed (using weights and bias) followed by a nonlinear function activation
as follows:
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𝑦𝑙+1
𝑛 = 𝜎(𝑊 𝑙

𝑛𝑦𝑙 + 𝑏𝑙
𝑛), ∀𝑡 = 0, ..., 𝑇 − 1 (49)

where 𝜎(·) is the nonlinear activation function e.g. ReLU, tanh, sigmoid, etc. The
weights 𝑊𝑛 and bias 𝑏𝑛 are parameters to be learned. From now on, the set of these
parameters will be called 𝜙. 𝜙 learns through offline training using 𝐾 data samples.
Each sample 𝑘 contains the input 𝑦𝑘 (such as 47 and 48) and the corresponding output𝑧𝑘.
For simplicity, the rest of the thesis will use 𝑘 to index samples. To train 𝜙, we aim to
minimize the average loss in predicting z over all K samples, as given by:

min
𝜙

𝑓(𝜙) := 1
𝐾

𝐾∑︁
𝑘=1

ℓ(Φ(𝑦𝑘; 𝜙), 𝑧𝑘) (50)

where ℓ(·) denotes the loss function between the predicted and real output value. A
commonly used function loss is the 𝐿2-norm called the mean-squared error (MSE). One
issue with 𝐿2-norm is that the average loss metric can achieve acceptable values if 𝐾 is
large enough, and predictions with large errors can disguise under apparent a small average
loss. These worst-case prediction scenarios can be harmful applied to a voltage control
leading to possible voltage overshoots or a slow voltage recovery. To tackle this problem
the risk-aware learning approach will be applied, enabling to statistically reduce the risk
of prediction with large losses. To quantify the risk of the sample distribution we will
use the conditional value-at-risk (CVaR), a well known technique used in reinforcement
learning problems and robust optimization (GABREL; MURAT; THIELE, 2014; CHOW
et al., 2015; CARDOSO; XU, 2019) that has been applied to voltage optimization also
(LIN; LIU; ZHU, 2021). To define CVaR we will first pose the 𝛼-VaR, where for a given
significance level 𝛼 ∈ (0, 1), the 𝛼-VaR represents the threshold value for the (1 − 𝛼)-
quantile of a random distribution as shown in Figure.12.
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Figure 12 – Comparisson among 𝛼-VaR, 𝛼-CVaR, and average loss.
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Given 𝜙, the 𝛼-CVaR is analytically formed by all K samples, as:

𝛾𝛼(𝜙) := 1
𝛼𝐾

𝐾∑︁
𝑘=1

ℓ(Φ(𝑦𝑘; 𝜙), 𝑧𝑘) × 1{ℓ(Φ(𝑦𝑘; 𝜙), 𝑧𝑘) ≥ 𝑣} (51)

where 1(·) is the indicator function and 𝑣 is the 𝛼-VaR. The CVaR metric can be
computed using a bisection typed line search to find 𝑣. The corresponding optimization
problem can be posed as follows:

𝛾𝛼(𝜙) := min
𝛽∈R

{︃
𝛽 + 1

𝛼𝐾

𝐾∑︁
𝑘=1

[ℓ(Φ(𝑦𝑘; 𝜙), 𝑧𝑘) − 𝛽]+
}︃

(52)

where the positive projection operator [·]+ := 𝑚𝑎𝑥{0, 𝑎}. The value of 𝛽 that minimizes
(52) is the equal to 𝛼-VaR. The advantage and popularity of (52) are due to its convexity
property.

4.4 Numerical Validations

The proposed preventive and corrective control is applied to a WF consisting of 20
DFIGs of 3.6 MW divided into 4 feeders of 35 KV. The power is transmitted from the
HV/MV substation (115/335) to the PCC through a 115 kV Line 10 km in length. A ±
20 MVAr Statcom is connected to the MV Bus. The WF is injecting power into the IEEE
9 Bus system. Figure 10 shows the WF configuration.

The MPC was developed in Matlab/Simulink using Yalmix toolbox optimization to
solve the quadratic programming problem (LOFBERG, 2004). The WF is created using
high fidelity DFIG models in Digsilent PowerFactory software (POWERFACTORY, 2016)
that interfaces Matlab to update WG’s voltages, active power and reactive power, mea-
surements as a result of the set-points applied.

To create realistic scenarios with a variety of active power injections from each DFIG,
one minute of wind field was created using WindSimFarm (GRUNNET et al., 2010) that
updates the Wind speed for each feeder considering the wake effect.

4.4.1 Preventive Control Results

The performance of the proposed preventive control is evaluated in two aspects: the
loss minimization before the disturbance and its effect on the Critical Clearing Time. For
evaluation purposes, we compared the proposed preventive control with another state-of-
the-art method in the literature based on DRPR (ZHAO et al., 2016). The simulation
starts with different wind speeds for all four feeders changing slowly until a fault causes
a disturbance. The initial voltage at the PCC is 1 p.u. Two fault cases are simulated:

❏ Case 1 : three-phase short-circuit event at Bus 4 cleared after 170 ms.
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❏ Case 2: three-phase short-circuit event at Bus 7 cleared after 90 ms.

4.4.1.1 Loss minimization performance

The pre-fault condition is the same for all three cases. We can see the proposed pre-
ventive control’s performance in loss minimization in Figure 13. Compared to the DRPR-
based voltage control, the proposed preventive control yields a lower current flowing th-
rough the line transmission 3-9 while delivering the same active power. The consequence
of this is meaningful since the proposed method provides fewer VAR resources for voltage
regulation.
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Figure 13 – Comparisson of line transmission (3-9) pre-fault measurements between the
proposed and the DRPR based preventive control.

4.4.1.2 Increasing Critical Clearing Time

Despite the preventive control proposed in (ZHAO et al., 2016) yields more DRPR
from the STATCOM as shown in Figure 14, the preventive control presented in this
paper has better performance regarding voltage restoration and Critical Clearing Times.
It can be noticed in Figure 16 that the proposed preventive method yields better voltage
restoration even when we use the same corrective control. We can observe in Figure 15 that
the system loose voltage stability when applied the DRPR-based preventive control. Table
8 compares the critical clearing time of most representative bus short-circuits between the
proposed and the DRPR-based preventive control. In all cases, the proposed preventive
control improves the critical clearing time. That means that the loss minimization-based
preventive control increases the Critical Clearing Time.
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Table 8 – Comparisson between critical clearing times between preventive controls

Critical Clearing Time [ms] (z=0)
Bus 4 5 6 7 8 9
DRPR-based 170 160 200 90 110 140
Loss Min-based 175 170 220 95 120 155
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Figure 14 – Impact of preventive controls on voltage restoration after a fault on bus4.
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Figure 15 – Impact of preventive controls on voltage restoration after a fault on bus7.
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4.4.2 Corrective Control Results

In this section, the performance of the proposed data-driven corrective control is evalu-
ated and compared to the conventional constant set-point applied to the STATCOM and
WGs PI controllers, which as stated before uses tha last set-point to restore the voltage.

It is worth nothing that both corrective controls restore the volage trough the STAT-
COM and WGs PI controllers. The difference lies in the rate of change of the set-point.
The data-driven-based control is able to update the set-points every 50 ms for both STAT-
COM and WGs during the transient, while the conventional control uses the constant
pre-fault set-points that only is able to be updated in the range of seconds.

The training data was obtained by simulating faults in all buses in different opera-
ting conditions. The set-points for those faults were obtained by performing MPC.The
measurements from the fault simulations and their respective set-points from MPC con-
trol forms the data-set containing 1055 samples splitted in 80% for training and 20% for
testing.

The training process via 𝛼-CVaR was implemented using the Pytorch library in
Python. Two NN were trained separately, the first one for predicting the STATCOM
voltage reference and the second for predicting reactive each WG power injection. Af-
ter the learning process, the performance of the NNs in the testing data set yielded a
maximum prediction error of 7.2% and 8.3% for the STATCOM and WG respectively.

Figures 16 and 17 show the voltage recovery comparison for cases 1 an 2 respectively.
For case 2 the fault is cleared before reaching the Critical Clearing Time for the DRPR-
based preventive control to prevent voltage collapse. The proposed data-driven corrective
control (red line) has a close performance when compared to the idealized MPC control
(black line) and for this reason the latest one have been disregarded in the figures.

Since the pre-fault operating condition plays a big role in voltage restoration, the same
preventice control has been applied for a fair comparisson. I both cases the proposed data-
driven preventive control has better performance than the PI controller with the pre-fault
constant set-points.

After the voltage restoration,once the voltage is within the established threshold for
one second, the preventive mode is switched on.
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Figure 16 – Voltage at PCC when a fault at bus 4 is applied and cleared after 170 ms; a)
Voltage without zoom. b) Zoomed in voltage axis
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Figure 17 – Voltage at PCC when a fault at bus 7 is applied and cleared after 90 ms; a)
Voltage without zoom. b) Zoomed in voltage axis

Table 9 shows the comparison of the critical recovering time of most representative
buses between corrective controls. In all cases the proposed data-driven control is faster
than the conventional one. Again for a fair comparison, the same preventive control is
applied before the fault.



4.5. DISCUSSION 59

Table 9 – Comparisson of critical recovering time between corrective controls

Critical Recovering Time [sec] (z=0)
Bus 4 5 6 7 8 9
Constant sp
(v=0.9 p.u.) 0.36 0.38 0.365 0.375 0.4 0.41

Constant sp
(v=1 p.u.) ≫ 1 ≫ 1 ≫ 1 ≫ 1 ≫ 1 ≫ 1

Data-driven
(v=0.9 p.u.) 0.36 0.38 0.365 0.375 0.39 0.4

Data-driven
(v=1 p.u) 0.5 0.52 0.51 0.52 0.55 0.56

4.5 Discussion

While minimizing losses, the proposed preventive voltage control decreases the like-
lihood of voltage instability by improving critical clearing times and voltage restoration
after a disturbance. The proposed data-driven-based corrective voltage control has shown
good performance, improving the voltage restoration compared to the conventional pre-
fault constant set-points. Due to the efficient risk aware learning, the data-driven control
can locally set up appropriate set-points, using only local and feeder-head measurements.
Due to the low computation time required by the trained neural network, the data-driven
corrective control set a new set-point every 0.05 seconds during the transient. As a result,
oscillations are also damped, which would not be possible using conventional communi-
cation channels.
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Chapter 5
Conclusions

This thesis addresses the long and short-term voltage stability, proposing methods to
improve real-time monitoring for the first case and to improve voltage restoration and
critical clearing times for the latest one. These two aspects of voltage stability play an
essential role in the upcoming grids with high penetration of renewable sources to mitigate
climate change. The contributions of the thesis for each one of the fields can be highlighted
in the following paragraphs.

A new approach to finding saddle-node bifurcation points based on variational theory
was presented. One contribution is related to long-term voltage stability. It has been
demonstrated that the proposed method can easily track the bifurcation point displaced
by a significant disturbance without starting over from the current operating point. The
tracking property allows for monitoring the voltage stability margin in real time. It
makes the proposed method attractive for finding the bifurcation point of networks with
high generation variability, such as those of the upcoming grids with high penetration of
renewables.

Another contribution is related to short-term voltage stability. A voltage control that
minimizes losses in a wind farm and reduces the possibility of voltage instability during
faults was presented. It has been shown that the voltage restoration after a fault does not
only depend on the corrective control but also the predictive control. Having an operating
condition that minimizes losses before the fault increases the critical clearing time and,
consequently, decreases the probability of voltage instability after the fault.

5.1 Published Papers

Salazar, Pablo Daniel Paz and Ilyasov, Yavdat and Alberto, Luís Fernando Costa and
Costa, Eduardo Coelho Marques and Salles, Mauricio BC, Saddle-node bifurcations of
power systems in the context of variational theory and nonsmooth optimization, IEEE
Access,8, 110986–110993, 2020,IEEE.
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5.2 Future Work

The future work is related to asses the influence of the wind-farm voltage control
over the long-term voltage stability of the system. Also, we aim to use strictly local
information for the data-driven control able to achieve good generalization for different
operation scenarios.
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APPENDIX A
STATCOM State Space Model

Derivation

Let consider the voltage on the bus (medium voltage) controlled by the STATCOM :

𝑣𝑠 = 𝑣𝑠0 + 𝑣𝑠 (53)

Since the STATCOM is injecting reactive power to the medium bus voltage, and
assuming a constant active power injection during the time horizon:

𝑣𝑠 = (𝑣𝑡ℎ + 𝑟𝑇
𝑚𝑣𝑝 + 𝑥𝑇

𝑚𝑣𝑞𝑓 ) − (𝑣𝑡ℎ + 𝑟𝑇
𝑚𝑣𝑝 + 𝑥𝑇

𝑚𝑣𝑞0)

𝑣𝑠 = 𝑥𝑇
𝑚𝑣�̂�

(54)

Substitute 40 and 54 into 39:

^̃𝑞𝑠 = 𝑘𝑝(^̃𝑣𝑠 − 𝑥𝑇
𝑚𝑣𝑞) + 𝑘𝑖

^̃𝑣𝑖𝑛𝑡 (55)

Substitute 55 into 38:

˙̃𝑞𝑠 = −𝑞𝑠

𝜏𝑠

+ 𝑘𝑝𝑣𝑠

𝜏𝑠

− 𝑘𝑝(𝑥𝑇
𝑚𝑣𝑞)

𝜏𝑠

+ 𝑘𝑖𝑣𝑖𝑛𝑡

𝜏𝑠

(56)

Substitute 54 and 53 into 40 :

˙̃𝑣𝑖𝑛𝑡 := ^̃𝑣𝑠 − 𝑥𝑇
𝑚𝑣�̃� (57)

𝑥𝑇
𝑚𝑣�̃� can be decomposed into:

𝑥𝑇
𝑚𝑣�̃� = 𝑥𝑚𝑣−𝑠𝑞𝑠 + 𝑥𝑇

𝑚𝑣−𝑤�̃�𝑤 (58)

Equations 56 and 57 form the state space model of the STATCOM:

⎡⎣ ˙̃𝑞𝑠

˙̃𝑣𝑖𝑛𝑡

⎤⎦ =
⎡⎣− 1

𝜏𝑠
(1 + 𝑘𝑝𝑥𝑚𝑣−𝑠) 𝑘𝑖

𝜏𝑠

−𝑥𝑚𝑣−𝑠 0

⎤⎦⎡⎣ 𝑞𝑠

𝑣𝑖𝑛𝑡

⎤⎦−

⎡⎣𝑘𝑝

𝜏𝑠
𝑥𝑇

𝑚𝑣−𝑤

𝑥𝑇
𝑚𝑣−𝑤

⎤⎦ �̃�𝑤 +
⎡⎣𝑘𝑝

𝜏𝑠

1

⎤⎦ ^̃𝑣𝑠 (59)
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