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RESUMO

LOPES, Juliano Marçal. Stochastic optimization and machine learning applied
in the demand forecast, allocation and distribution of vaccines between Brazilian
states. 2022. 146 f. Tese (Doutorado) - Departamento de Engenharia Elétrica, Escola
Politécnica, Universidade de São Paulo, São Paulo, 2021.

Os avanços em pesquisa e desenvolvimento resultaram no surgimento de muitas novas
vacinas nas últimas décadas. No entanto, a distribuição de vacinas e o combate de doenças
imunopreveńıveis ainda é um desafio para os gestores da cadeia. A cadeia de suprimentos de
vacinas normalmente possui orçamentos limitados, dificuldade em controlar a temperatura
dos produtos, gerenciamento deficiente de inventário e falta de protocolo para alta demanda
e situações incertas. O mau gerenciamento da cadeia de suprimentos da vacina pode levar
a um surto de doença ou, na pior das hipóteses, a uma pandemia. Felizmente, um grande
número de desafios da cadeia de suprimentos de vacinas, como alocação ideal de doses,
melhoria da estratégia de vacinação e gerenciamento de inventário, entre outros, pode ser
aprimorado por meio de abordagens de otimização. Diante desse cenário, o objetivo desse
trabalho é o de propor métodos de redução de custos da cadeia. Isso se deu por meio da
criação de um modelo de machine learning para previsão de demandas e um modelo de
otimização estocástica para melhoria da distribuição de imunobiológicos entre estados
brasileiros. Os modelos aqui apresentados, apesar de considerarem o cenário brasileiro,
possuem o potencial de terem suas aplicações estendidas para a cadeia de suprimentos de
vacinas de outros páıses. Para realização desse trabalho, primeiramente foram realizadas
visitas em cinco estados brasileiros para entendimento e mapeamento dos processos da
cadeia de distribuição de vacinas do Ministério da Saúde. Este mapeamento permitiu que
as soluções aqui propostas fossem elaboradas levando em consideração o cenário atual da
cadeia. O modelo de machine learning desenvolvido engloba o uso das técnicas de Gradient
Boosting e Random Forest Regressor, e seus resultados são utilizados como dados de
entrada do modelo de otimização proposto. O modelo de otimização estocástica considera
a demanda incerta de três cenários. Os resultados do estudo mostram que o modelo de
machine learning apresenta uma previsão da demanda com erros relevantemente mais
baixos do que os que cadeia atualmente apresenta. E ainda, os resultados do modelo de
otimização auxiliam os tomadores de decisão com uma sugestão do número de doses que
devem sem enviados para cada estado em cada um dos meses do peŕıodo considerado,
reduzindo assim, a chance de falta de vacinas.

Palavras-Chave – Previsão de demanda, Demanda de Imunobiológicos, Vacinas,
Otimização estocástica.



ABSTRACT

LOPES, Juliano Marçal. Stochastic optimization and machine learning applied
in the demand forecast, allocation and distribution of vaccines between Brazilian
states. 2022. 146 f. Tese (Doutorado) - Departamento de Engenharia Elétrica, Escola
Politécnica, Universidade de São Paulo, São Paulo, 2021.

Advances in research and development have resulted in the emergence of many new
vaccines in recent decades. However, the distribution of vaccines and the fight against
vaccine-preventable diseases is still a challenge for chain managers. The vaccine supply
chain typically has limited budgets, difficulty controlling product temperatures, poor
inventory management, and lack of protocol for high demand and uncertain situations.
Mismanagement of the vaccine supply chain can lead to a disease outbreak or, at worst, a
pandemic. Fortunately, a large number of vaccine supply chain challenges such as optimal
dose allocation, improving vaccination strategy and inventory management, among others,
can be improved through optimization approaches. Given this scenario, the objective of
this work is to propose methods to reduce costs in the chain. This was done through the
creation of a machine learning model to forecast demand and a stochastic optimization
model to improve the distribution of immunobiologicals among Brazilian states. The
models presented here, despite considering the Brazilian scenario, have the potential to
have their applications extended to the vaccine supply chain in other countries. To carry
out this work, first visits were carried out in five Brazilian states to understand and map
the processes of the vaccine distribution chain of the Ministry of Health. This mapping
allowed the solutions proposed here to be elaborated taking into account the current
scenario of the chain. The developed machine learning model encompasses the use of
Gradient Boosting and Random Forest Regressor techniques, and its results are used
as input data for the proposed optimization model. The stochastic optimization model
considers the uncertain demand of three scenarios. The results of the study show that
the machine learning model presents a demand forecast with errors significantly lower
than those that the chain currently presents. Furthermore, the results of the optimization
model help decision makers with a suggestion of the number of doses that should be sent
to each state in each of the months of the considered period, thus reducing the chance of
vaccine shortages.

Keywords – Demand forecast, Immunobiological demand, Vaccines, Stochastic Opti-
mization.
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1 INTRODUCTION

“I believe there are phases, cycles, beginnings,
new beginnings. And I think I’m right in the

middle of one of them.”

-- Clarissa Corrêa

In the 1960s, vaccination campaigns were carried out worldwide with the aim of

eradicating smallpox. In Brazil the campaign was successful, and the disease was considered

eradicated in the 1970s, with the last case reported in 1971. In order to keep the campaigns

coordinated and to increase the coverage of the campaigns, the Brazilian Ministry of Health

(MS) formulated in 1973 the National Immunization Program (PNI) (Ministério da Saúde,

2017). Only later the Unified Health System (SUS) was created through the 1988 Brazilian

New Constitution. SUS is a complex public health system, with free and full access to the

entire population of the country.Thus, the PNI became part of the SUS. PNI is currently

part of the World Health Organization Program, with support from UNICEF, Rotary

International and the United Nations Development Program (UNDP).

The PNI currently aims to eradicate measles, neonatal tetanus, and control immunopre-

ventable diseases such as diphtheria, pertussis, accidental tetanus, hepatitis B, meningitis,

yellow fever, severe forms of tuberculosis, rubella, and mumps, as well as the maintenance

of polio eradication. The PNI is also responsible for the acquisition, distribution, and

standardization of the use of special immunobiologicals, which are indicated for specific

situations and population groups. These are attended at the Reference Centers for Special

Immunobiologicals (CRIE) (Ministério da Saúde, n.d.).

PNI’s infrastructure now has a total of over 38,000 vaccination rooms. In its traditional

operation, 49 products are distributed throughout Brazil, including vaccines, heterologous

sera (animal immunoglobulins) and homologous sera (human immunoglobulins). In

addition to these, other case-specific vaccines are distributed in CRIEs (Universidade

Aberta do SUS, 2021b).

Immunobiologicals are perishable products with a short expiration date that require

tight temperature control. Many of them should not be exposed to temperatures outside

the range of 2°C to 8°C. Others should be kept frozen. Temperature control during
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storage and transportation must be performed carefully to ensure product quality and

effectiveness (Universidade Aberta do SUS, 2021a).

Another challenge for PNI is the planning of demand and setting the vaccination

schedule for the whole country in advance. As there are not many producing laboratories

and their capacities are limited, vaccines must be ordered six months to one year in advance.

Errors in the planning stage, or the emergence of unexpected situations such as an outbreak,

require rapid and efficient measures from PNI. An example of this was the decision made

during the yellow fever outbreak between 2016 and 2018. If we consider only the period

between July 2017 and February 2018, 723 cases of the disease were confirmed, entailing a

total of 237 deaths (Ministério da Saúde, 2018b). In that situation, in order to meet the

increasing demand, the MS decided to proceed with the administration of fractional doses

in the states with the highest demand and population concentration (Ministério da Saúde,

2018a). Thus, immunization of the vaccinated population would be guaranteed, but with

the need for a new administration of doses after 10 years (previously, with the standard

dose, only one dose was sufficient for life-long immunization).

PNI’s supply chain is quite complex and Brazil’s continental characteristics further

increase the challenge of managing the chain. The subject of this doctoral thesis arose

from an approximation of the Gaesi Group, from the Polytechnic School of the University

of São Paulo and the Brazilian Ministry of Health. This partnership was made with the

objective of bringing improvements to the processes of the MS. The first activity to initiate

the collaborations was a mapping of the processes of the PNI’s vaccine logistics chain. For

a year, technical visits were made in four Brazilian states, ranging from federal, state,

regional, municipal distribution centers, vaccination rooms and CRIEs. The visits included

close monitoring of the distribution of immunobiologicals by boat in the Amazon rainforest

region, in the Amazonas state.

After mapping the processes and identifying the weaknesses of the chain, the next

steps of the project were defined. In addition to the previously known challenge of

immunobiological demand prediction, failures in vaccine allocation among Brazilian states

were identified. One of the problems pointed out by the technicians working in the chain

is that in the same period, there are states with a high stock of a given product and others

with a lack of the same vaccine. Still related to this problem, Brazilian states do not have

the habit of exchanging vaccines among themselves.

The objective of this work is therefore to propose models that can be used by managers

(both from the Brazilian Ministry of Health, as well as from other countries with similar
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management characteristics) to forecast immunobiological demand within a year and also

to better allocate vaccines between states.

The proposed demand forecasting model is a machine learning model composed of two

forecasting techniques: Gradient Boosting and Random Forest Regression.

To improve vaccine allocation, a two-step stochastic optimization model was proposed.

The model created aims to define the optimal number of vaccines that should be distributed

to each Brazilian state and also whether the states should exchange vaccines with each

other. The stochastic optimization model takes into account the uncertainty of demand.

Thus, three demand scenarios were considered for each of the twelve months, for the 27

Brazilian states: low, medium and high demand. The low and high demands were defined

through an analysis of the PNI historical data. For average demand, the output data from

the previously mentioned machine learning demand forecasting model were used. The

development of the optimization model is presented in Chapter 5.

1.1 Motivation

For many years Brazil has stood out for its public health policies, providing basic and

advanced care to all citizens. However, managing existing programs today with limited

resources is quite challenging. In order to improve the use of public resources, avoiding

losses and waste, as well as ensuring public health, this work aims to create solutions that

can bring improvements to the vaccine supply chain.

The initiative of this work came from the partnership between the Gaesi group of the

Polytechnic School of the University of São Paulo (USP) and the Brazilian Ministry of

Health. The main objective of the partnership was to bring improvements to the MS’s

logistics chain.

This partnership has resulted in several research projects that address the challenges

of MS management in various directions. The motivation for this specific work came from

the observation that the planning of the MS vaccination schedule is carried out at least

one year in advance. Because it is a long term, the demand for forecasting activity is even

more challenging. Another challenge that motivated this work is that the decision on the

number of vaccines sent to the states is almost unilateral, and the responsibility of the

federal government. In addition, as the MS sets the vaccination schedule well in advance,

they have little freedom to change vaccine allocation plans during the operation.
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1.2 Objectives

The aim of this work is to propose improvements in public resource management to

improve the availability and distribution of vaccines among Brazilian states.

1.3 Research tasks

The activities of this work can be divided into three main steps. The first is the

business modeling of the Ministry of Health vaccine supply chain. This first step (which is

best presented in Chapter 3) involves visiting various PNI sites in five Brazilian states.

This step provided data for defining the next two steps of the work. The second step is the

application of machine learning techniques to forecast vaccine demand for the 12-month

period (see Chapter 4). And the third and final step is to develop a stochastic optimization

model to improve vaccine allocation among Brazilian states (see Chapter 5).

Both the machine learning model and the stochastic optimization model were developed

in partnership with professors Dr. Michelle Alvarado and Dr. Panos M. Pardalos, both

professors of the Department of Industrial and Systems Engineering at the University

of Florida (UF), Gainesville, FL, USA. The activities at UF were carried out by the

author during his sandwich doctorate period, between April 2018 and December 2019.

The activities in the USA were funded by Coordination for the Improvement of Higher

Education Personnel (CAPES) through the Sandwich Doctorate Program Abroad (PDSE)

grant, process: 88881.187765/2018-01.

1.4 Research contributions

Both the Brazilian public health system and the PNI have very particular characteristics

when compared to other countries. This work was done with the care that the solutions

proposed here meet the needs of the PNI chain. Even the scope design of the work was

finalized only after visits to states with different realities was done (such as São Paulo,

Amazonas, Rio de Janeiro, and Maranhão). Still, even if directed to the Brazilian scenario,

this work can be easily adapted to the reality of other countries.
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1.5 Publications during the doctorate

During the period of the doctorate, the author published three papers and two were

submitted in indexed journals (one of them is under minor reviews). Also, one work

was presented in an international conference and two in national conference. Details are

presented below.

1.5.1 Manuscript published in journal I

The manuscript entitled “Smart Cities through Smart Regulation: The Case of São

Paulo” was published in March, 2019, by the journal IEEE Technology and Society

Magazine (ISSN 0278-0097; Impact Factor JCR=1.022; Qualis B1 in Engineering IV).

This work was carried out in partnership with the professors Eduardo Mario Dias and

Augusto Ferreira Brandão Junior, and the master degree candidate Gustavo Gil Gasiola,

all from the Department of Electrical Engineering at the University of São Paulo.

1.5.2 Manuscript published in journal II

The manuscript entitled “Health 4.0: Challenges for and orderly and inclusive inno-

vation” was published in September, 2019, by the journal IEEE Technology and Society

Magazine (ISSN 0278-0097; Impact Factor JCR=1.022; Qualis B1 in Engineering IV). This

work was carried out in partnership with the professors Eduardo Mario Dias and Sergio

Pereira, and the doctoral candidate Patŕıcia Veras Marrone, all from the Department of

Electrical Engineering at the University of São Paulo.

1.5.3 Manuscript submitted in journal III

The manuscript entitled “Improved predictive models for acute kidney injury with

IDEA: Intraoperative Data Embedded Analytics” was published in April, 2019, by the

journal PLOS One (ISSN 1932-6203; Impact Factor JCR=3.040; Qualis B1 in Engineering

IV). This work was carried out in partnership with the professors Dr. Azra Bihorac, from

the department of Medicine, College of Medicine, University of Florida. This publication

was the result of a period in which the author spent studying data analysis in the PrismaP

laboratory so that it could be possible to gather knowledge to carry out this study.
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1.5.4 Book chapter published

The book chapter entitled “Proposal for sustaining innovation by strengthening the

field of science, technology, engineering and mathematics” (from Portuguese: Proposta

de sustentação da inovação por meio do fortalecimento do campo da ciência, tecnologia,

engenharia e matemática) was included in the book entitled “Automation & Society:

Fourth Industrial Revolution, a look at Brazil” (from Portuguese: Automação & Sociedade:

Quarta Revolução Industrial, um olhar para o Brasil), ISBN 9788574528762. The book

was published in February, 2018. This book was organized by Dr. Elcio Brito da Silva

and Dr. Maria Ĺıdia Rebello Pinho Dias Scoton, and the professors Dr. Eduardo Mario

Dias and Dr. Sergio Luiz Pereira, all from the Department of Electrical Engineering at

the University of São Paulo.

1.5.5 Manuscript submitted in journal I

The manuscript entitled “Optimization methods for large-scale vaccine supply chains:

a rapid review” was submitted to the journal Annals of Operations Research (ISSN

1932-6203; Impact Factor JCR=4.854). This work was carried out in partnership with

the professors Dr. Panos Pardalos and Dr. Michelle Alvarado, from the department of

Industrial and Systems Engineering, University of Florida. Additionally, professor Dr.

Eduardo Mario Dias, Dr. Vidal Augusto Z. C. Melo and the doctorate candidate Leonardo

Batista Paiva, all from the Department of Electrical Engineering at the University of São

Paulo.

1.5.6 Manuscript submitted in journal II

The manuscript entitled “Paradigms and new perspectives on the debate about the

increase in health costs related to the incorporation of new technologies” was submitted

to the journal IEEE Technology and Society Magazine (ISSN 0278-0097; Impact Factor

JCR=1.022; Qualis B1 in Engineering IV). This work was carried out in partnership with

professor Dr. Panos Pardalos and Dr. Mahdi Fathi, from the department of Industrial and

Systems Engineering, University of Florida. Additionally, professor Dr. Eduardo Mario

Dias, Dr. Vidal Augusto Z. C. Melo, Dr. Maria Ĺıdia R. P. D. Scoton, and the doctorate

candidates Leonardo Batista Paiva and Patricia Véras Marrone, all from the Department

of Electrical Engineering at the University of São Paulo.
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1.5.7 Work presented in International Conference

The study entitled “Rapid Review: Application of Optimization in the Supply Chain

of Vaccines” was orally presented in the Technical Sections of the Conference INFORMS

Healthcare 2019, in Cambridge, MA, USA. This work was carried out in partnership

with professors Dr. Michelle Alvarado and Dr. Panos Pardalos, from the department of

Industrial and Systems Engineering, University of Florida. Additionally, professor Dr.

Eduardo Mario Dias and Dr. Vidal Augusto Z. C. Melo, from the Department of Electrical

Engineering at the University of São Paulo.

1.5.8 Work presented in National Conference I

The study entitled “Electronic Prescription (RM-e): Automation for Health Safety”

(from Portuguese: Receita médica eletrônica (RM-e): automação à serviço da segurança

na saúde) was presented in the Technical Sections of the Conference 5º CONAHP -

National Congress of Private Hospitals (from Portuguese: Congresso Nacional de Hospitais

Privados), in São Paulo, SP, Brazil. This work was carried out with the professors

Dr. Eduardo Mario Dias and Dr. Augusto Ferreira Brandão Junior, with the Master

Degree student Melissa Pokorny, all from the Department of Electrical Engineering at the

University of São Paulo.

1.5.9 Work presented in National Conference II

The study entitled “Data Governance of Unique Medical Device Identifiers in Brazil”

(from Portuguese: Governança de dados de Identificadores Únicos de Dispositivos médicos

no Brasil) was presented in the Technical Sections of the Conference 5º CONAHP -

National Congress of Private Hospitals (from Portuguese: Congresso Nacional de Hospitais

Privados), in São Paulo, SP, Brazil. This work was carried out with the professors Dr.

Eduardo Mario Dias and Dr. Sérgio Pereira, with the doctorate candidate Patricia Véras

Marrone, all from the Department of Electrical Engineering at the University of São Paulo.

1.6 Dissertation structure

This dissertation is divided into six chapters. The first one is an introduction to the

subject, and where we present the objectives of the study, the publications related to

the dissertation, and the dissertation structure. The second one presents a theoretical
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foundation, where the current work is related to the state of art of the field.

As this study was derived from a robust and more general study of the vaccine supply

chain of the Brazilian Ministry of Health, the third chapter presents the business modeling

process and design of the study.

The fourth chapter presents the development and results of the machine learning model

for vaccine demand forecast. In the fifth chapter, it is presented the development and

results of the stochastic optimization model for vaccine allocation between states in Brazil.

Conclusions are presented in the sixth chapter.
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2 THEORETICAL FOUNDATION

“If root’s strong, tree survive.”

-- Mr. Kesuke Miyagi

Advances in research have resulted in the emergence of many new vaccines in the last

decade. However, vaccine distribution is still challenging for many immuno-preventable

diseases. The vaccine supply chain typically has insufficient budgets, difficulty in controlling

temperature of items, poor inventory management and lack of protocol for high demand

and uncertain situations. Poor management of the vaccine supply chain can lead to

a disease outbreak, or at worst, a pandemic. Fortunately, a large number of vaccine

supply chain challenges such as optimal allocation of resources, improving vaccination

strategy, and inventory management, among others, can be improved through optimization

approaches.

The purpose of this chapter is to investigate and understand how optimization has

been applied to vaccine supply chain and logistics. Hence, here a rapid review methodology

is used, and a search for peer-reviewed journal articles, published between 2009 and 2019,

in four scientific databases was made. The search for the terms vaccine, optimization,

distribution, logistics, and supply chain resulted in 388 articles, of which 19 unique studies

met the inclusion criteria. This analysis focused on the identification of each article’s main

goal, the component of the vaccine supply chain that was studied, the type of optimization

method used, and whether outbreak scenarios were considered.

Approximately 58% of the studies included in the study dealt with vaccination strategy,

and the remainder dealt with logistics and inventory management. Only a small part

addressed finances (5%). There were 14 different types of optimization methods used,

but linear programming and optimal controlling were the most common (16% each).

Approximately 42% of the manuscripts considered uncertainties in their models. One

resulting observation was the lack of studies using optimization for vaccine inventory

management and logistics.

This chapter is composed of the following structure: in Section 2.1 an introduction

on the subject is brought. Section 2.2 brings an introduction to the vaccine supply chain.
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In Section 2.3, the rapid review methods used to identify relevant papers is presented.

In Section 2.4, it is presented the results and a discussion of the content of the selected

papers. Concluding remarks are given in Section 2.5. Appendices A1 and A2 brings more

information related to the manuscripts included in this Rapid Review.

2.1 Introduction

Efficiently operating large-scale vaccine supply chains is a global challenge. Op-

timization is one decision tool that can help mitigate challenges in this $59.2 billion

industry (GUZMAN, 2018) of large-scale vaccine supply chains. Those challenges include

budget limitations, transportation, temperature control, inventory management, and high

and uncertain demand. Poor management of the vaccine supply chain can lead to a disease

outbreak (SHAROMI; MALIK, 2017), or at worst, a pandemic. The purpose of this work

is to understand how optimization has been applied to large-scale vaccine supply chain

and logistics in the past. This paper utilizes a rapid review method to systematically

analyze optimization models in four areas of the vaccine supply chain. The rapid review

methodology was selected because it provides a structured search, organization, and

analysis technique for investigating a topic of interest (GANANN; CILISKA; THOMAS,

2010; KHANGURA et al., 2012; TRICCO et al., 2015). Specifically, this rapid review

investigates vaccine inventory management, vaccination strategies, vaccine logistics, and

vaccine market competition.

2.2 Vaccine Supply Chain

Vaccine supply chain management is the general set of processes and activities

involved in the planning of a vaccination campaign, including production and procurement

of vaccines, vaccine inventory management, vaccine distribution, vaccine logistics, vaccine

administration, vaccination strategies, among other activities. The main difference when

comparing a normal supply chain with that of vaccines is that it has great uncertainty of

demand and supply. When it comes to the prevention of vaccine-preventable diseases, it is

crucial that combat actions are taken quickly, otherwise, the demand for immunobiological

can increase exponentially. Another important point considering the vaccine supply chain

is that the vaccine allocation decisions are taken by the government, often politically

influenced.

It was identified unique characteristics of the vaccine supply chain: high uncertainty
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in both supply and demand; misalignment of objectives and decentralized decision making

between supplier, public health organization and end customer; complex political decisions

concerning allocation and the crucial importance of deciding and acting in time.

Vaccine supply chain management exists in every country where it adapts to local char-

acteristics and obstacles regarding prevalent diseases, population, geographic distribution,

infrastructure, and economic power. Even though the fight against immuno-preventable

diseases and vaccine development is not new, management of the vaccine supply chain

still faces a number of obstacles; this paper will investigate how operations research has

been used to overcome these obstacles (LEMMENS et al., 2016a; ASHOK; BRISON;

LETALLEC, 2017; KASONDE; STEELE, 2017; LEE; HAIDARI, 2017).

Four sub-components were investigated at a deeper level: inventory management,

strategies, logistics, and market competition.

• Vaccine inventory management involves the stock management, storage, ra-

tioning, and demand-side management of the vaccine supply chain (LIM; NORMAN;

RAJGOPAL, 2017; GAGNON; LAMPRON; BUYL, 2016). Due to the manufac-

turing lead time of the producers, vaccine production and planning is carried out

over a long period (e.g., sometimes over a year). Thus, population growth, vac-

cination schedules, regional characteristics, etc., can drastically change inventory

levels. Misaligned planning with the current scenario can reflect negatively on the

vaccination campaign, especially when demand is underestimated and left unmet.

In contrast, overestimating demand can also have negative impacts on the vaccine

supply chain since the vaccines are perishable and incur large refrigeration holding

costs. As could be observed during the COVID-19 pandemic health crisis, vaccine

manufacturing is an extremely important issue and one that directly affects the

vaccine supply chain (DUIJZER; JAARSVELD; DEKKER, 2018; LEMMENS et al.,

2016b). However, this issue requires that the approach consider the availability of

raw material, government purchase planning, as well as demand estimation itself.

Thus, this Rapid Review does not address manufacturing problems, focusing on

managing these products as soon as they are available on the market.

• Vaccination strategies refer to the decision-making behind who should be given

vaccines, when they should be given, and how often they should be given (KRESS,

2006). Some vaccines are a very limited and costly resource, so some research has

focused on the optimization of the distribution among the population (considering,

for example, age, gender, location, etc.) (HARVEY et al., 2016; SHOUKAT et
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al., 2016; GIERSING et al., 2017; KUROSKY; DAVIS; KRISHNARAJAH, 2016;

HARDT et al., 2016).

• Vaccine logistics refers to the manufacturing and distribution of vaccines to the

population. This stage of the vaccine supply chain management can be disrupted

when it is difficult to access a region (mainly in developing countries (ANPARASAN;

LEJEUNE, 2018)), or due to unexpected vaccines loss when the physical integrity of

the vaccines is compromised due to breakage, improper handling, or temperature

deviation (LEE et al., 2017; MVUNDURA et al., 2017; LLOYD et al., 2015; UDDIN

et al., 2016). This type of uncertainty in the vaccine supply chain causes challenges

with the optimal allocation of vaccines across a region. It is common that in the

same country two regions face completely different scenarios such as lack of vaccines

and loss due to expiration (HUANG et al., 2017; MOORE; LESSLER, 2015; YUAN

et al., 2015).

• Market competition refers to the laboratory competition on the price of vaccines.

This stage refers to the use of pricing models with respect to supply, demand, peer

competition, contracts, and insurance (LAUTON; ROTHKOPF; PIBERNIK, 2019).

In addition to those challenges just described, another critical challenge in large-scale

vaccine supply chains is that most operate at a budget limit which is often far from

ideal (LOZE et al., 2017; ONISHCHENKO et al., 2019), making financial decisions a

challenge. Likewise, supply chain management operations are also complex and challenging

due to the batch sizes, expiration date, temperature control, vaccination strategies, disease

outbreaks, among others (RAEVEN et al., 2019; CHEN et al., 2018).

These problems have a common feature: solutions can be developed through opti-

mization methods. In view of this, a rapid review was conducted to investigate how

optimization has been used to improve the supply chain of vaccines worldwide. To the best

of the knowledge, there exists three literature reviews related to the topic of this paper.

First, Lemmens et al. (LEMMENS et al., 2016b) reviewed models on general supply chain

network design (SCND) and discussed whether these models could be applied to the key

issues of the vaccine supply chain, specifically the case of the rotavirus vaccine. They

focused on the distribution and production phases of the supply chain and concluded that

existing general SCND models cannot address the complexities of the vaccine supply chain.

Meanwhile, Duijzer, van Jaarsveld and Dekker (DUIJZER; JAARSVELD; DEKKER,

2018) reviewed operations research and operations management (OR/OM) literature
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already applied to vaccine supply chains and categorized it into four supply chain com-

ponents: product, production, allocation, and distribution. They identified the main

challenges of vaccine logistics and shed light on ways that the OR/OM community can

contribute to improving the vaccine supply chain components and integrations among

them. In contrast, the search method for this rapid review only overlaps that of Duijzer,

van Jaarsveld and Dekker in four articles, meaning that 21 new manuscripts were reviewed.

Lastly, Boeck, Decouttere and Vandaele (BOECK; DECOUTTERE; VANDAELE,

2020) dove into the specifics of vaccine distribution chains (VDC) within low- and middle-

income countries and included both quantitative and qualitative studies (i.e., case studies,

interviews, etc.) in their analysis. They classified studies into four VDC parts (sourcing,

storage, transportation, and administration of vaccines) and discussed the gaps between

the qualitative and quantitative works within these countries to make results relevant to

both practitioners and the OR/OM community.

Our work contributes a different perspective on the OR/OM literature on vaccine

supply chains. First, this rapid review process is more systematic and reproducible than the

literature reviews in those papers. Second, an analysis of the type of optimization methodol-

ogy used in each study was performed. Finally, vaccine supply chain was characterized into

four stages: vaccination strategy, inventory management, logistics, and market competition.

Therefore, the results show how different studies applied different optimization methods

to the identified stages and what their objectives were. In addition, the rapid review notes

what optimization methods have been used and whether the manuscripts addressed data

uncertainties and outbreak scenarios. Thus, additional interesting optimization research

opportunities within the vaccine supply chain were identified.

2.3 Method

In this section, it is defined the method used to conduct the review. In general, a review

can be defined as the analysis of evidence that seeks to answer a clear question. It consists

of selecting, evaluating and criticizing relevant primary research. The basic premise of a

review is that your methods are clearly presented and reproducible (GANANN; CILISKA;

THOMAS, 2010; HARKER; KLEIJNEN, 2012).

There exists several types of reviews like Systematic Review, Rapid Review, Mapping

Review, Meta-Syntheses, Mixed Methods Review, Overview of Reviews, Accuracy Review,

Network Meta-Analysis and Living Systematic Review, to mention a few. Each type of
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review has a characteristic regarding their final objective, scope definition, time availability,

available resources, etc. (GANANN; CILISKA; THOMAS, 2010; KHANGURA et al., 2012;

TRICCO et al., 2015; SHAROMI; MALIK, 2017).

The type of review adopted in this work was that of Rapid Systematic Review, also

known as a Rapid Review. This method follows similar procedures of a full-systematic

review; however, it aims to answer a more restricted question and has its execution in less

time (from 4 to 8 weeks, depending on the scope of the research, whereas other methods

can take many months). The databases searched are also limited due to the execution

time. However, the studies included in the review are selected in a careful, transparent,

and replicable manner. And yet, the evaluation of the studies is critical and rigorous, and

findings can be both qualitative and quantitative. Rapid reviews can be opportune to bring

synthesis of evidence to decision-makers. They are designed to address new or emerging

issues, to update previous analysis, or to assess what is already known (KHANGURA et

al., 2012; TRICCO et al., 2015; KRESS, 2006).

Each step of this Rapid Review is described below and is organized as follows. Subsec-

tion 2.3.1 presents the question aimed to be answered with this review, subsection 2.3.2

presents the search strategy used to find the manuscripts, subsection 2.3.3 presents the

eligibility criteria, and subsection 2.3.4 presents how data were organized and analyzed.

2.3.1 Focused question

Faced with the challenge of managing the supply chain of vaccines, this review intends

to shed light on how optimization has been used to aid decision-making in these problems.

Given that, the question to be answered was the following:

How has optimization been applied to the fields of vaccine strategy, logistics, inventory

and market competition?

2.3.2 Search strategy

This rapid review of scientific studies followed the guidelines of the Preferred Reporting

of Systematic Reviews and Meta-Analyses (PRISMA) (MOHER et al., 2009). Four

databases were systematically searched for applications of optimization in the vaccine

supply chain as presented in Table 1.
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Table 1: Search strategy and bibliographic databases used to retrieve the articles falling
into the scope of this rapid review

Bibliographic Databases (Primary
Sources)

Search Strategy (Descriptors and Boolean
Operators)

SciVerse Scopus - Elsevier

(optimization OR optimisation) AND (distribu-
tion OR logistics) AND vaccine

Compendex – Engineering Village

Web of Science

Google Scholar Manual searches according to the reference lists
of the articles

2.3.3 Eligibility criteria

Papers written in English, Spanish, and Portuguese, and published between 2009 and

March 2020 were accepted (considering that in innovation a lot can change in a short period

of time, 10 years is a lot). Only original studies presenting new OR models (that excludes

reviews) were included in this rapid review. Although the search already contemplated the

language, dates and peer-reviewed journal papers criteria, that information was verified

again during a full-text screening. The inclusion criteria for the supply chain aspect of

papers was that studies should apply optimization in one of the following activities of

vaccine supply chain: (1) Vaccination strategy; (2) Logistics; (3) Inventory management;

or (4) Supply Chain Management (Competition). The definition of each of these four

areas is presented in Table 2.

2.3.4 Data pooling and analysis

The search for manuscripts was performed by one reviewer in the four databases

following the definition of descriptors presented in Section 2.3.2. The search process

resulted in 345 articles. Of this total, 172 were from Scopus, 90 from the Web of Science,

79 from Compendex, and 4 were included after manual search in Google Scholar. Figure 1

presents the screening and selection processes. The records retrieved from the search were

analyzed by one examiner in RefWorks (ProQuest), a web-based bibliography and database

manager, and 193 duplicate manuscripts were removed. The remaining 152 articles were

initially screened by title and abstract, at which point 110 were excluded. The remaining

42 papers then went through a full-text screening, resulting in 26 included manuscripts. In

questionable cases during screening, the final verdict was reached by having two reviewers
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Table 2: Division of the manuscripts into four vaccine supply chain components and their
corresponding descriptions

Vaccine supply chain components Description

Vaccination strategy Decision-making to reduce the proliferation
of vaccine-preventable diseases by determining
which populations (e.g., identified by age, lo-
cation, gender, risk of disease contagion, etc.)
should receive vaccines

Logistics Transportation and distribution of vaccines to
the population in order to meet the pre-defined
vaccination schedules and demand

Inventory management Stock management, storage, rationing, and
demand-side planning of vaccines

Market competition Impact of laboratory competition on the price of
vaccines

discuss the classifications and reach a common agreement. The reasons for exclusion of

articles in both screenings (that is, manuscripts excluded during the title and abstract

screening and the full-text screening) were: 1. out of the original scope of the research, 2.

focused on health care instead of vaccines, 3. optimization approaches were not used, and

4. optimization was not applied to the supply chain aspect of vaccines (i.e., optimization

of vaccine efficacy in the human body).

Two publications were related to the same project, so their information was combined.

After all the steps, a total of 25 unique studies met the search criteria (Appendix A). The

manuscripts that met the inclusion criteria were extracted from the RefWorks platform

and their information was organized into an Excel table. With the information compiled

and organized, it was possible to proceed with the exploratory analysis according to the

study design explained below.

For each of the manuscripts included, it was identified the main objective, type of

vaccine, the supply chain stage being studied, country of study, and the optimization

method used. The main objectives were identified with free text. The types of vaccines

under consideration in the studies are classified by the name of the specific vaccines or

the disease being studied (in cases of studies of developing vaccines). The supply chain

stage is classified within four key areas of the chain as defined in Section 2.3.3. Under

this characteristic, it was also analyze whether or not the study considers outbreak (or
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Figure 1: PRISMA flow diagram of the search strategy comprising the identification of
potentially relevant material, preliminary screening, and final selection of the studies
included in this review (based on PRISMA guidelines) (MOHER et al., 2009).

pandemic) scenarios. The country of study refers to where the application of the solution

occurred or where the data was retrieved from, not the country of affiliation of the authors.

The optimization method characteristic is also binary. Information on whether the studies

considered uncertainty and whether they dealt with the problem as a network problem

were also collected under the optimization method characteristic.
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2.4 Results and Discussion

In this section, it is presented and discuss the characteristics of the papers that met

all of the eligibility criteria of this rapid review. The characteristics discussed below are:

country of study, type of vaccine, study objectives, supply chain stage, and optimization

method. The following subsections address each one individually.

2.4.1 Country

It was identified the countries of origin of the data used by the studies. Data from

the United States was used in 28% of the studies, data from Pakistan was used in

8% of the studies (AGUSTO; KHAN, 2018; THAKKAR et al., 2019), and data from

Brazil (FERREIRA; ARRUDA; MARUJO, 2018) and Israel (HOVAV; TSADIKOVICH,

2015) were used in 4% each. Data from more than one country was used in 20% of the

studies—these included the UK, Wales, France, USA, Niger, Thailand, Vietnam, Brazil,

and the Netherlands. The other 36% of the studied were general applications, not directed

to a specific country.

2.4.2 Type of vaccine

The manuscripts included in this review dealt with different types of vaccines as

shown in Figure 2. The vaccine with the highest number of studies was Influenza/H1N1

with 32%, followed by Dengue with 8% (AGUSTO; KHAN, 2018; RODRIGUES; MON-

TEIRO; TORRES, 2014), and HPV (DEMARTEAU; BREUER; STANDAERT, 2012),

Measles (THAKKAR et al., 2019), Pertussis (GIRARD, 2010), and Polio (TEBBENS et

al., 2010) were each considered in 4% of studies. Addressing vaccines and other products

(including antidotes, vital vaccines, medicines to treat HIV/AIDS, malaria, tuberculosis,

among others) occurred in 12% of papers, and 4% of studies addressed multiple vac-

cines (ENGINEER; KESKINOCAK; PICKERING, 2009). A total of 20% of the studies

were included in the general category (which includes articles that exclusively deal with

vaccines but do not specify which).

2.4.3 Study objectives

The studies were divided into six categories according to their objectives. Many of

the studies, 40%, aimed at reducing impacts of an outbreak or pandemic by helping in
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Figure 2: List of vaccines addressed by the studies included in the rapid review.

the decision-making process under such situations. The cost reduction with vaccination

or vaccine allocation limited by budget was the goal of 20% of the studies. Meanwhile,

allocation or availability of vaccines was sought to be optimized in 20% of the studies (CHEN

et al., 2014; PRECIADO et al., 2014; SAMII et al., 2012), and another 20% of studies dealt

with the general reduction of disease impacts (ENGINEER; KESKINOCAK; PICKERING,

2009; FERREIRA; ARRUDA; MARUJO, 2018; MEDLOCK; GALVANI, 2009; MEYERS;

GALVANI; MEDLOCK, 2009). Two other objectives that were identified, each of them

addressed in 4% of the studies, were: to understand the impacts of new manufacturers

on vaccine prices (LAUTON; ROTHKOPF; PIBERNIK, 2019) and to improve stockpile

management of vaccines for eradicated diseases (TEBBENS et al., 2010), which are common

operations research applications.

2.4.4 Supply chain stage

The studies were separated into four unique categories, as shown in Figure 3, according

to the vaccine supply chain stage addressed. More than half, 64%, addressed vaccination

strategy. Of these, a portion of the studies focused on the allocation of vaccines in cases of

disease outbreak while others focused on the best use of resources in a situation of a limited

budget. Studies addressing the inventory management and logistics stages accounted for

12% each, and 8% dealt with both of these stages (shown by the yellow and orange bars

in Figure 3) (CHEN et al., 2014; VENKATRAMANAN et al., 2019). Finally, only 4% of

studies addressed competition (specifically, the impact of new manufacturers on vaccine

prices) (LAUTON; ROTHKOPF; PIBERNIK, 2019).

If it is considered the definition of a vaccination strategy, it could be thought of as
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Figure 3: Stage of the supply chain addressed by each study included in the rapid review.

part of strategic planning. However, in this review, it can be observed the difference in

studies that focused on general management activities from those that focused specifically

on vaccination distribution. This is shown by 64% of the studies which exclusively aimed

at improving vaccination strategies. Their strategies were defined in order to meet the

momentary needs of a country or region such as increase vaccine coverage of all or a

portion of the population, prevent an outbreak, control it or reduce its impact, improve

resource allocation, etc.

2.4.5 Optimization

It was identified 14 different types of optimization used in the manuscripts included

in the review. Figure 4 presents the identified models. You may notice that there are 29

studies shown in the figure. This is because three studies make use of 2 optimization types

and are therefore represented twice in the figure. Many of the studies approached their

models from an epidemiological perspective, however, not all specified the optimization type

they used. Therefore, the epidemiological model category in Figure 4 is a general category

for the studies that do not dive into the specifics of their optimization models. The most

common optimization type was Linear Programming (CHEN et al., 2014; DEMARTEAU;

BREUER; STANDAERT, 2012; TEBBENS et al., 2010; HOVAV; TSADIKOVICH, 2015),

followed by Control Theory (AGUSTO; KHAN, 2018; REN; ORDONEZ; WU, 2013;

RODRIGUES; MONTEIRO; TORRES, 2014) and Network Optimization (DIMITROV et

al., 2009; HOVAV; TSADIKOVICH, 2015; KIM et al., 2016). It was also looked into the

nature of the studies and identified them as theoretical or applied (applied work referring
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to articles that applied their model in a real life scenario). Results show that 56% were

theoretical papers while 36% had applied content, and 8% conducted simulation using real

data (LAUTON; ROTHKOPF; PIBERNIK, 2019; PENG et al., 2019).

Figure 4: Number of studies included in the rapid review on each optimization approach.

It was also analyzed the studies in order to understand if the authors considered uncer-

tainty in their models . Approximately, 52% of the studies did not consider uncertainties

in their models (i.e. models were deterministic, shown by blue bars in Figure 4), while

48% did so, meaning that they included stochastic data in their models. In order to

deepen the understanding of how this characteristic was included in the model, it was also

identified the variables that were considered to be uncertain. The articles were split into

two uncertainty type categories:

1. Need for vaccines: Within the vaccine need category, one half considered the

demand for vaccines to be uncertain, of which one also considered the uncertainty of

the arrival of new donations of supplies (in this case, the work dealt with items that

were perishable in humanitarian operations, including other products in addition to

vaccines) (FERREIRA; ARRUDA; MARUJO, 2018). The other half of the articles in this
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category considered the lead time of the arrival of new vaccines to be uncertain. One of these

included warehouse stock uncertainty, vaccine efficacy and disease severity. (LAUTON;

ROTHKOPF; PIBERNIK, 2019)

2. Transmission of disease: The second category considered disease transmission

to be uncertain. One of the papers addressed the probability of a traveler initiating

an epidemic at the destination (DIMITROV et al., 2009). And a very specific case

considered the rate of mosquito bites as stochastic, as well as the mosquito’s lifetime, in

the transmission of dengue (AGUSTO; KHAN, 2018). One study dealt with the chances

of disease transmission in the face of different perceptions of the transmission scenario and

different decision making (HOTA; SUNDARAM, 2019).

2.4.6 Insights

Given the results above, Figure 5 now illustrates how the studies scaled different

optimization methods to the different supply chain stages and what their main goals were.

All 25 papers are shown by the arrows (dotted arrows of the same color represent the

same paper). It it possible to make the following observations and draw some conclusions

from this figure. Even though control theory was one of the most common methods, it

was only applied within the vaccination strategy stage and addressed decision-making

challenges related to budget and outbreaks/pandemics. Similarly, mathematical modeling

is also applied to vaccination strategy with the objective of reducing the impact of diseases

and managing budget. Linear programming, on the other hand, is seen to be applied

to three different stages (vaccination strategy, inventory management and logistics) and

with multiple objectives. Likewise, mixed integer programming was applied to vaccination

strategy and logistics towards optimal allocation/availability, reducing impact of diseases

and outbreaks/pandemics.

In a similar manner, it could continue to trace the arrows and notice that the there’s

opportunity for future research apply these optimization methods to less common supply

chain stages (like supply chain management) and focusing on issues like the impact of new

manufacturers or the stockpile for an eradicated disease. There is no doubt that vaccination

strategy is one of the most important activities within supply chain management. However,

the defined strategies have a direct impact on the other areas of the chain (such as

distribution, stocks, etc.). Thus, there is a lack of more comprehensive studies that

investigate the effects of such strategies on the rest of the supply chain and a lack of

optimization and operations research applications to the integration of multiple stages.
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Figure 5: Relation of the supply chain stage, studies objectives and optimization methods
addressed by the manuscripts included in the rapid review.

This observation shows how relevant this present doctoral thesis is. It addresses the issue

of vaccine distribution precisely where there is a lack of depth. The beginning of this

work took place in early 2017, that is, long before the world turned its eyes to the vaccine

distribution chain. The existence of a pandemic situation only confirms that the failure

in the management of vaccine-preventable diseases deserves attention, and needs to be

increasingly optimized. Having its flaws an expensive price to pay: lives.

Finally, this rapid review analyzes 25 articles, of which 21 were not included in the

most recent work on this topic (DUIJZER; JAARSVELD; DEKKER, 2018). This study

shed light on the applications of optimization methods on the vaccine supply chain and

highlight interesting research directions for future works.

2.4.7 Impact of the studies

In 2011, UNICEF, the World Health Organization and various partners and stake-

holders from industry and non-governmental organizations released a document entitled

“Developing a Vision for Immunization Supply Systems in 2020”. The document heralded

the vision for the future of the supply chain of immunizations at the end of the decade.

The expected scenario for 2020 was that supply systems would adapt to global change to

be able to take vaccines to the right place, in the right quantity, in the right conditions,

and at a good cost (PATH, 2011; ZAFFRAN et al., 2013). The study also mentioned 5

priority areas for achieving this goal: 1. Vaccine products and packaging, 2. Immunization
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supply system efficiency, 3. Environmental impact of immunization supply systems, 4.

Immunization information systems, and 5. Human resources.

When compared to the priority areas of the 2011 document, it is possible to observe

that the studies included in this review are in line with the first four areas. Within the

first principle are the studies relating to supply chain management (pricing and funding).

Within the second principle are studies that address a better regional distribution of

warehouses (optimal design of the supply chain infrastructure), storage management,

as well as logistics and transport management. Within the third principle are studies

that address route optimization for the delivery of vaccines. The fourth principle, which

deals with immunization information systems (planning, immunization records, logistics

management, etc.), is contemplated by all the optimization models that have the capacity

to be integrated into a supply chain management system.

Additionally, the authors of this review participated in a researched project that aimed

to improve the vaccine distribution managed by the Brazilian Ministry of Health. Brazil

has a unique public health system (SUS) that includes the National Immunization Program

(PNI) which is responsible for combating immuno-preventable diseases in the country. The

PNI distributes 45 immunobiological types of vaccine and immunoglobulins to a population

of approximately 220 million inhabitants, served by more than 38,000 vaccination rooms.

Its size reflects in the complexity of the management of this chain, which is increased by

the limitation of resources and by the agency’s objective of offering free health services to

all citizens at any time. Worldwide, it is estimated that vaccine losses in the chain reach

55% (PARMAR et al., 2010). These losses occur due to a variety of reasons such as poor

handling during storage and transportation, expiration, lack of demand for the number of

units inside the bottle and poor temperature control. Moreover, it is well known that the

latter is responsible for a large share of the losses, and it is one of the great problems still

faced by the Brazilian government. However, no study in the review has addressed the

issue, which is a lack of optimization application in this subject. Therefore, it represents a

new research direction for future work in this field of particular interest to the authors.

2.4.8 Biases

As any scientific study, this Rapid Review can presents biases in its execution and

analysis, and it is important to knowledge them. First, the short timeline of the rapid

review and the authors’ subjective evaluation of inclusions/exclusions criteria undoubtedly

introduced bias to the review outcomes. The limitation of years of the study is of 10



42

years. Considering innovation this is a very much expressive period of time. However,

this definition may have left out studies relevant to the discussion. In addition, this

Rapid Review considers papers written in three different languages (English, Spanish and

Portuguese). In a similar way to what was said about the period of time definition, it

could be said that those three languages contemplate the major of the studies available.

Even more, because it is very well known that English is the language used by major of

the manuscripts of global interest. Even though, it could be said that studies published in

languages other than those included in this review may have relevant results that have

been disregarded. Reviewers may also have missed some relevant articles during the design

of the search process due to double-meanings of certain terms. For example, the term

“distribution” has several meanings in the context of vaccines where it sometimes refers

specifically to the logistics phase of vaccines and other times to the way in which the

vaccines were divided for the population. In these cases, to avoid misinterpretation of

the terms, the context of the paper was taken into consideration, and the studies were

classified according to the definition of the terms presented in this paper. In some stages,

the authors had difficulty classifying the studies. For example, the supply chain stage

characteristics were not explicit and their categorization was subjective. In these cases, to

reduce bias, more than one reviewer participated in the analysis of the studies, and the

categorization was performed by consensus.

2.5 Conclusions

This rapid review summarized how 14 optimization methods are scalable to the

challenges of the vaccine supply chain, specifically to the four identified components. The

25 studies that met the inclusion criteria were classified according to their objectives, type

of vaccine, supply chain stage and type of optimization used. The manuscripts were also

analyzed to see if uncertainties were considered and if the problem was addressed as a

network problem.

Results showed that most studies (56%) applied optimization methods to improving

vaccination strategies. Under different scenarios, those studies seeked to help decision-

makers better distribute vaccines to specifics portion of the population. To a lesser extent,

(20%) of studies dealt with inventory management and logistics. Given that these are two

areas where optimization is commonly used in general supply chains, it was expected a

greater proportion of the studies to address these two stages within large-scale vaccine

supply chain. Therefore, future research in these areas are encouraged. There is also



43

comment on the lack of studies that integrate two or more components of the supply

chain. Changes and improvements in one stage will impact other stages, therefore, the

OR community should consider this as future research directions.



44

3 CURRENT SCENARIO OF THE PUBLIC

INFRASTRUCTURE OF THE VACCINE

LOGISTICS CHAIN

“Sooner or later you’re going to realize, just as
I did, that there’s a difference between knowing

the path and walking the path.”

-- Morpheus

As is well known in science, research does not follow a linear trajectory, and this work

was no different. This work emerged from a partnership between GAESI and the Brazilian

Ministry of Health (MS). The MS demand for the University was for improvements to be

presented to the ministry as a whole. Based on meetings and discussions, MS managers

decided to focus on a large, organized and very important area: the National Immunization

Program (PNI). Before any proposal for innovation, technology, or management change, it

was important that the researchers first understood the reality of the program’s operation.

In this way, the author started a process mapping of the entire PNI. For this, it was

necessary to visit all kinds of places that were part of the PNI chain, from large centers

to the interior of the Amazon rainforest. After a year of study and process mapping, the

supply chain qualities and opportunities for improvement were identified and presented to

the PNI managers. These, in turn, pointed out the areas that they identified as the most

relevant and most likely to have public funding for the implementation of the solutions.

One of the areas pointed out was what guided this present study. This chapter aims to

present all this work carried out during one year. However, the reader will be able to

observe that the research approach was wider than the final objective of this doctoral

thesis. After all, the problem that would be addressed, or the solution that would be

proposed, was not yet known. Even so, the author believes that this is an important

chapter of the doctoral thesis and the trajectory of the research. Where it will be possible

to understand the complexity of the chain and the importance that the study has for

proposing models that would reduce the waste of public money in the country.
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3.1 Introduction

Recent innovations in Information Technology (IT) have led to accelerated changes in

supply chain management by redefining organizations and their relationship to management.

These changes when related to logistics help control operations and consequently reduce

logistics costs.

In this context, technological tools and systems are used as data compilers to provide

information to decision makers. Although chain operations are commonly well-divided (eg

purchase, storage, and distribution), they are interdependent, and their communication is

essential for good planning of the areas. However, in the face of so different activities and

needs for information, it is common for each area to have different information systems in

use in the operation.

In these cases, the concept of interoperability of these information systems, which

consists of the ability of a system (computerized or not) to communicate transparently (or

as close as possible) to another system (similar or not) is fundamental.

The impact of disaggregated data on logistics costs can be aggravated when it comes

to high value-added or perishable products. Minor errors in the logistics of high-value

products can result in significant damage to the operator and, in addition, require safety

during handling and distribution. Perishable products have limited shelf life and may

require agility between manufacturing and use as well as temperature control during all

logistics steps that may pass.

Drug distribution chains have the two characteristics mentioned (high added value

and perishable). According to the study “Right to medicines” released by the Institute of

Socioeconomic Studies - INESC (DAVID; ANDRELINO; BEGHIN, 2016), the Brazilian

Ministry of Health (MS) spending on medicines reached, in 2015, R$ 14.8 billion, which

represents a 74% increase compared to 2008. This increase is almost double what was

observed in the period for the health area as a whole.

Despite high drug expenditures, MS information systems do not allow robust product

traceability. Thus, the MS cannot guarantee the position of the load in the various spheres

it passes. This lack of information negatively impacts the distribution of inventories in the

country. In some cases, resources are directed to purchase immunobiologicals that are in

stock in other states, or there is loss of products due to expiration, while they could have

been previously directed to some region that demanded them. In 2014, for example, in

Minas Gerais state about R$13 million worth of overdue medicines was discarded. In Rio
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de Janeiro state, in 2016, 300 tons of expired medicines were discarded, and it is estimated

that another 700 tons were discarded between 2014 and 2015 (SATRIANO, 2016a, 2016b;

VEJA, 2016).

Ignorance of the situation of these drugs impacts the programming of their purchase,

and also their production. This happens because the raw material of some immunobiologi-

cals is scarce and the production institutions have a maximum limit of production capacity.

Thus, it can be said that errors in purchasing planning can lead to risks to the population

in case, for example, an increased demand for an outbreak of immunopreventable disease.

An example of this is the 2017 scenario where vaccine manufacturers, who due to the

outbreak of yellow fever, had to reduce the production of triple viral vaccines (against

measles, mumps, and rubella) to meet the new demand (FELIX, 2017).

The MS logistics chain involves several areas, some of which are controlled by spread-

sheets and have decentralized planning and execution. These problems increase the

inefficiency of the processes, the impairment in the distribution of resources and problems

in the care and delivery of health services. MS logistics still faces an interoperability

problem between the systems used. The more than 600 information systems available

today in MS are fragmented, with non-communicating platforms that make it impossible

to integrate the supply chain (demand plan, process manager for procurement, storage,

distribution and dispensing).

As the goal of the partnership with MS was to bring improvements to the vaccine

supply chain as a whole, it was important that we first knew the current reality of the

infrastructure. Given this, the decision was to map out all the processes involved in the

distribution of medicines by the MS, so it would be possible to have it clear the operation of

its logistics chain, and identify the bottlenecks and opportunities to improve its operation.

It would also make it possible to highlight the opportunities for innovation in the MS

logistics chain.

Since MS currently has many information systems in operation (it is estimated that

over 600), they does not intend to develop new technological systems, but to investigate

and map the current situation of their operations, in order to analyze what their real needs

are, considering everything they already have.

Thus, this chapter brings the description of the process of mapping the processes of

the cold chain of the MS, made by the author during the first year of his doctorate (2017).

The mapping was performed in 4 Brazilian states: Amazonas, Maranhão, Rio de Janeiro

and São Paulo. In addition, meetings with employees of the General Coordination of
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the National Immunization Program (CGPNI) in Brasilia were held to better serve the

management of the chain.

3.2 Objective

At this stage, the objective was to understand the environment and the characteristics

of the processes and infrastructure of immunobiological distribution in Brazil. The

expectation was that after better knowing the operation of the chain, it would be possible

to make propositions of ideas and/or projects that would contribute to the improvement

of the processes, increasing the control of operations and reducing costs in the logistics of

PNI.

3.3 Method

The execution of this phase of the project was carried out through technical visits in

four Brazilian states suggested by the team of the CGPNI: Rio de Janeiro, Maranhão,

Amazonas, and São Paulo. Two meetings were also held with PNI representatives in

Braśılia/DF (Figure 6).

The visits were made in the instances illustrated in Figure 7. The division of municipal

regional and city regional are not adopted in all states and cities.

3.3.1 Technical visits

The technical visits were carried out as described below:

• Brasilia: The first of the visits. This was a meeting with CGPNI representatives

from May 11-12, 2017. Its purpose was to understand the basic structure of the

entire Program, from the stages of annual calendar planning, inventory data analysis,

vaccine control, adverse events, immunobiological losses, etc., information flow among

the various instances of the entire PNI, receiving and releasing requests to states, and

other various activities performed by CGPNI; A second visit was made on August

8 and 9 in Brasilia to align the fellowship with the CGPNI team and to present

the process maps drawn from the information obtained during the visit to Rio de

Janeiro state;
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Figure 6: Places of visits.

Source: Author.

• Rio de Janeiro (RJ): From June 19 to 23, 2017. Visits were made to two CENADI

warehouses, the state central in Niterói, the São Gonçalo municipal central, the

municipal health secretary of Rio de Janeiro, a vaccination room and a CRIE;

• Maranhão (MA): From October 23rd to 27th, 2017. Visits were made to the CRIE

and the vaccination rooms in Santa Inês and Santa Inês and Pindaré Mirim, Santa

Inês, in the municipality of Pindaré Mirim, in the municipality of São Lúıs and Santa

Inês. São Lúıs;

• Amazonas (AM): November 20-24, 2017. Visits were made to the state and municipal

central in Manaus, central Manacapuru, vaccine room in Iranduba, and vaccine room

and CRIE of Manaus;

• São Paulo (SP): From November 27 to December 1, 2017. Visits were made to the

Franco da Rocha regional central, São Paulo municipal central, CRIE at the Mario

Covas State Hospital in Santo André, São Paulo State Central, and the vaccination

room at the UBS of Pinheiros, in São Paulo.
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Figure 7: Visited Instances.

Source: Author.

3.3.2 Business modeling

The processes were mapped and elaborated in a flowchart with the aid of Bizagi

software using the Business Process Model and Notation (BPMN) methodology.

3.4 Results

This section presents the results obtained through technical visits. Observations were

divided into strengths and weaknesses (opportunity for improvement).

3.4.1 Strengths observed

This section presents the strengths observed in the technical visits.

3.4.1.1 Temperature control culture

One of the initial concerns about the chain was the temperature control of immunobi-

ologicals during all movement stages from CENADI to dispensing. Since the temperature
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control process is still all manual, its success depends on the professional responsible for

sorting, packaging and receiving understanding the importance of temperature control.

During the visits, it was observed that the state and regional centers are attentive

to temperature control, as well as the setting of the thermal boxes before filling with

immunobiologicals. The most used thermometer is the digital one, which has the ability

to measure the internal and external temperature, as well as keeping the record of the

maximum and minimum temperatures reached in the indoor environment. This type

of thermometer is widely used for temperature control of thermal boxes and household

refrigerators. Many states and regions already have a laser thermometer (Figure 8), which

facilitates and speeds up the temperature measurement of both products, refrigerants, and

boxes.

In addition to temperature control during transport, the temperature control culture

of refrigerators was also observed. All refrigerators observed on visits have a manual

document on their door where a professional notes the current, minimum and maximum

temperature observed since the last measurement. This control is performed even in

scientific refrigerators, which are those that have a more accurate temperature control

integrated, capable of measuring the current, minimum and maximum internal temperature.

This shows how widespread the cold network is, the importance of keeping immunobi-

ologicals within the proper temperature range. In some cities in the interior of Maranhão,

for example, as recurrent situations of power outages, health professionals are organized in

shifts on weekends, so that in case of a power outage, they go to the health site to move im-

munobiologicals to refrigerated coolers. Thus, they can ensure that the immunobiologicals

are healthy for being administered.

3.4.1.2 Infrastructure

Although it is a widespread reality and this work has been elaborated based on what

was observed in only four Brazilian states, the state infrastructure seems to be sufficient

for temperature control. All states central observed have cold chambers and generators.

These, besides having a smaller temperature variation than refrigerators, allow the whole

separation process to be carried out in a refrigerated environment. Some states such as

Maranhão and São Paulo also have their own refrigerated vehicles for distribution to their

regional centers (Figure 9).

Manaus city deserves to be mentioned here for presenting an infrastructure with

100% of its refrigerators being scientific, besides presenting a separation environment with
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Figure 8: Laser thermometers on the top, digital thermometer on the bottom-left and
scientific cooler on the bottom-right.

Source: Author.

adequate temperature for the activity (Figure 9).

3.4.2 Weaknesses observed

This section presents the weaknesses observed in the technical visits.

3.4.2.1 Infrastructure

Immunobiological storage in domestic refrigerators recurs throughout the cold chain.

Although scientific refrigerators are more reliable, domestic refrigerators still have the

ability to keep immunobiologicals refrigerated at the proper temperature as long as local

health professionals are mindful of their performance.

In São Lúıs/MA municipal central, for example, a large amount of immunobiological is

stored, which should serve a population of almost one million inhabitants. Its infrastructure
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Figure 9: Refrigerated chamber of AM state, scientific refrigerators of Manaus/AM and
refrigerated vans of MA state.

Source: Author.

is all composed of old domestic refrigerators (Figure 10), the separation room is not properly

cooled and has no separation bench.

3.4.2.2 Professional training

Associated with the infrastructure problem is the problem of professionals who perform

temperature measurements, but do not understand the reason for doing so, or do not know

how to proceed in situations where the thermometer points to unexpected temperatures.

In some observed cases, the temperature deviation was recurrent, the professional pointed

out the refrigerator sheet, but did not take any action regarding this deviation (Figure 11).

Some professionals who are responsible for temperature control of immunobiologi-

cals perform the function without understanding very well the importance of keeping

immunobiologicals within the suggested temperature.
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Figure 10: Domestic refrigerators of São Lúıs/MA municipal central.

Source: Author.

(a) Temperature control worksheet highlighting high
temperatures (above allowable)

(b) Temperature control worksheet highlighting low
temperatures (below allowable)

Figure 11: Refrigerators Temperature Control Sheet.

Source: Author.

3.4.2.3 Syringe model

In addition to the loss of immunobiological due to improper temperature, vial breakage,

and technical loss (the loss of dose per vial opening for vaccination of fewer people than
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the number of vial doses), there is a very recurrent type of loss in the vaccination

rooms. Although immunobiological vials contain 10, 15, 25 or another number of doses,

practitioners are often unable to extract the same amount of doses. Some practitioners

have argued that it is recurrent that of a 10-dose vial only 6 are actually dispensed.

One of the reasons for this problem is the type of syringe and needle used in vaccination.

In some types of syringes, it is common for an amount of liquid in the tip not to be

dispensed, such as the syringes in the Figures 12a and 12b. The syringe in Figure 12c

has a specific internal part to force the application of fluid that would be lost in previous

syringes, however, it is common for health professionals to get confused at the time of

fluid collection (for example, In the syringe in Figure 12c some professionals read 1.8ml,

which is correct, but others read 0.4ml). The syringe in Figure 12d does not show any loss

of liquid because it contains the needle attached directly to the syringe.

(a) Syringe with fluid
loss at tip

(b) Syringe with fluid loss
at tip

(c) Syringe with no tip
loss but may confuse the
practitioner at the time
of fluid collection

(d) Syringe that does
not leak fluid because
it contains the at-
tached needle

Figure 12: Syringe Types.

Source: Author.

3.4.2.4 Information systems

The Ministry of Health (MS) has a very large number of information systems in place

(see Appendix C for an illustration of all information systems in use) and these have no

interoperability. This poses a major challenge for the MS to manage the chain in the face

of links that have poor communication. The inconsistency of information from the vaccine

rooms, and the difficulty of access by higher levels, leads to imprecise decision making

that can hinder chain flow, immunobiological distribution, as well as the entire planning

process.
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The National Immunization Program Information System (SIPNI) has three modules

that seemingly meet the Ministry’s data needs. However, in large centers, where demand

for vaccines at the stations is very high, SIPNI seems to delay attendance by requiring

too much input data. In Rio de Janeiro, for example, where they were experiencing an

outbreak of yellow fever, it was observed in a vaccination room that although all of their

professionals were committed to entering information on SIPNI vaccines, they were still

two months late.

Despite SIPNI failures, non-adherence to SIPNI appears to be even worse as vaccine

control data are not captured. Places where they still use the API Web system can only

tell how many doses have been applied. However, in metropolitan regions, for example, it

is common for citizens to get vaccinated in a different municipality from the one they live

in. This may lead to inconsistent data on vaccination coverage, which may generate false

information that the entire population of that municipality has been vaccinated.

There are still some cities, such as São Paulo, which have chosen to create their

own information systems for vaccination rooms. Although these feed into the Ministry’s

database, this makes it difficult to standardize data and consolidate databases.

The data and reports generated by the information systems (SIPNI, API Web, etc.)

seem to be little used by vaccination room professionals and municipal secretariats to

assist in decision making.

3.4.3 Challenges

This section provides information on the challenges of PNI immunobiological supply

chain management.

3.4.3.1 Different realities between states

While in some states the distribution is completely managed by road, in Amazonas

state, for example, immunobiologicals need to go through the air, road and also river modes

to reach several cities. Because it would be too costly for a professional to travel from the

country to Manaus to pick up immunobiologicals, they are taken unaccompanied from

a health professional from the state central to the city. Figure 13 shows a photographic

sequence of the vaccine distribution process between the Amazonas state central to Careiro

da Várzea city.



56

(a) In order: Immunobiologicals in the thermal box; temperature measurement with laser thermometer;
preparation for closing the thermal box with cardboard and soda; sealed thermal box; box being placed
in the vehicle that will transport it to the port of Manaus; box being taken to the boat that will take it
to the city.

(b) Continuation of previous. In order: Thermal box being allocated to the boat for transportation;
thermal box in the boat; the gateway to the city of Careiro da Várzea; thermal box seal being removed;
thermometer positioned for temperature verification with an analog thermometer; closed box for digital
thermometer temperature verification after analog thermometer failure.

Figure 13: Vaccine distribution process between the state central of Amazonas and the
city of Careiro da Várzea.

Source: Author.

3.4.3.2 Electricity supply problems

In all states visited there was a complaint of failures in the supply of electricity, which

increases the challenge of ensuring the integrity of immunobiologicals at the appropriate

temperature. This reality means that the integrity of immunobiologicals in many cities
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depends on the dedication of health professionals even outside office hours, by being alert

and willing to go to the storage place to move immunobiologicals in the event of a power

outage. Especially in places where immunobiologicals are stored in domestic refrigerators

and there is no generator.

3.5 Conclusions

The National Immunization Program deal with the challenge of managing a highly

complex chain by ensuring that the entire country is immune to preventable diseases. This

complexity can be expected due to the extension of the Brazilian territory and the different

realities of states and municipalities. One of the major challenges of the project at stake

in proposing a chain efficiency improvement solution is that it is currently not possible to

generalize the type of infrastructure available throughout the cold chain. There are several

types of coolers and thermometers (Figure 14), refrigerators and cold cameras (Figure 15),

as well as different realities related to access to computers and the internet.

(a) Digital thermometers (b) Analog ther-
mometer

(c) Laser thermometer (d) Datalog

Figure 14: Different types of thermometers and temperature control equipment in use in
the chain.

Source: Author.

The turnover of health professionals working with immunobiologicals allows untrained

people to handle products without understanding their particularities. This turnover of

professionals makes it difficult for the pieces of training that are offered to reach their

totality.
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(a) Domestic refrigerator (b) Solar refrigerator

(c) Single door scientific refrigera-
tor

(d) Multiple door scientific refrig-
erator

(e) Freezer-type refrigerator

Figure 15: Different types of refrigerators in use in the chain.

Source: Author.

The diversity of information systems and their inability to interoperate can be pointed

as the main factors that make the chain management difficult for the MS. The non-

standardization of the system operating in the vaccine rooms hinders data entry that is

paramount to demand forecast analysis, inventory management, vaccine coverage, etc.

Support for information systems does not seem to be very effective either, as many

vaccine rooms that have a computer with internet access still make use of SIPNI Desktop

instead of SIPNI Web.

The non-standardization of information systems in other instances also makes it

impossible to trace immunobiologicals through the chain, which makes it difficult to

operate in times of crisis, for example, when some batch needs to be removed from

circulation.
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4 MACHINE LEARNING ALGORITHM FOR

VACCINE DEMAND FORECASTING

“What passed, passed, but what passed glowing,
will shine forever.”

-- Johann Goethe

4.1 Introduction

One of the problems observed during the Ministry of Health’s process mapping was that

there are many information systems involved in the management of its immunobiologicals

supply chain. This characteristic affects the quality of planning in several ways. With

many systems in operation, a lot of important information is lost, or mismatched. Even if

good monitoring of the operations is done, it is difficult to compile all this data.

One of the steps of great importance for the fluidity of the chain is the forecast

of demand. The forecast data is used for planning an acquisition, storage, distribution,

vaccination campaigns, vaccine administration, vaccination coverage, among others. Failure

in the demand forecasting process can lead to chain failures, which can have serious public

health consequences, such as the lack of a vaccine during an outbreak. Laboratories

producing immunobiologicals have limited production, and their operation is planned in

advance, which may exceed one year. With this, the purchasing agency must organize

itself to carry out the purchase of immunobiologicals with great advance.

Currently, the demand forecasting stage is performed by trained technicians, using

various public health indicators, population growth, public data, demographic data, among

others. However, it is important to note that all this analysis is manual. This means that

in addition to being dependent on an employee, it is subject to parsing errors.

For this stage of the work, a machine learning model was developed, which uses public

historical data (applied doses, cases of diseases and population) to forecast the demand

for immunobiologicals for a determined period. These selected data are the same that the

Ministry of Health technicians use in their analyses. However, biases can be replicated

due to the fact that these data are reported manually by employees who work in the

vaccination room. This means that in addition to data entry may have errors, it may
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happen late, or not at all.

With the advancement of computer technology and capacity, machine learning tech-

niques have been increasingly used to solve classification and regression problems. Thus,

the initial hypothesis of this study was that machine learning techniques could bring good

results in predicting the demand for immunobiologicals through the use of public data.

4.1.1 Objective

The objective of this stage was to create a tool for forecasting the demand for vaccines

for Brazilian states for the period of 12 months, fed with historical data of public access.

4.2 Literature review

Understanding the concepts of inventory management and demand forecasting was

of great importance for carrying out this study, as well as the machine learning methods

used. This section provides a brief review of these concepts.

4.2.1 Demand forecasting

The demand forecast presents the manager with information that allows for estimating

an approximate future demand. This can be qualitative or quantitative. Qualitative

forecasting methods make use of information obtained through analysis of scenarios, judg-

ments, research or comparative techniques to produce quantitative forecasting data. These

methods are unscientific in nature, and therefore are difficult to standardize (BALLOU,

2006). Quantitative methods make use of historical data, trend and seasonal variations to

calculate a forecast through a mathematical approach.

Forecasting methods should be adopted according to the available data and the

forecast time horizon (short, medium and long term). The most common short-term

demand forecasting methods, as they are simple to apply and commonly present a good

approximation of the forecast with the real scenario, are: moving average, weighted moving

average and exponential weighting (smoothing) (BALLOU, 2006).

The moving average is a forecasting method applicable when demand is stable, with

little variation or seasonality. The weighted moving average gives greater weight to the

most recent points. The exponential smoothing is the same as the previous month’s

forecast plus a part of the error of the same (BALLOU, 2006). However, despite the wide
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possibility of application and its ease of understanding, these three methods do not have

their use recommended for forecasting products that suffer seasonal or trend effects in

their demand. Seasonality can be considered as the disturbance of linearity in the sales

data of a product and that occurs with a certain frequency. The trend is the phenomenon

close to the linearity of increase or decrease in sales of a product (CHOPRA; MEINDL;

GONÇALVES, 2011).

In face of the existence of trend, the Holt model, that is an exponential smoothing

method corrected by the trend, is recommended. But only when demand does not present

seasonality. Its application consists of performing a linear regression of the demand in the

studied period.

For products with more complex demand, that is, those with a trend and seasonality,

more complete methods should be applied. Chopra and Meindl (2011) present the

application of the Winter method that is appropriate for these cases. Before its application,

it is necessary to calculate initial level estimates, trend, and seasonality. The level and trend

estimate is initiated by analyzing demand to identify the period in which seasonality occurs.

With this, it is possible to perform the calculation of the non-seasonal demand, so that

in this way the linear regression can be performed (without this the next analyzes would

be incorrect due to the non-linearity of the data) through equations defined by Chopra,

Meindl and Gonçalves (2011). With the new demand, linear regression is performed with

the pattern, and the non-seasonal demand is then calculated for all periods (CHOPRA;

MEINDL; GONÇALVES, 2011).

The seasonal factor for a period is equal to the ratio between real and non-seasonal

demand. Considering the period in which the seasonality is repeated, it is possible to

identify which periods the seasonal factor should be equal, and this is calculated through

the average of data between similar periods. For example, for a 6-month periodicity in

12-month data, the months of January and July are considered to be similar in seasonality

behavior, therefore, they will have an equal seasonality factor, which should be calculated

using the average between two factors (CHOPRA; MEINDL; GONÇALVES, 2011).

With the values of L0, T0 and S for the entire period, the demand forecast is then

calculated according to Equations 4.1 and 4.2.

F(t+1) = (L1 + T1)S(t+1) (4.1)

F(t+1) = (L1 + lT1)S(t+1) (4.2)

Therefore, after calculating the demand for period t, the estimates of L, T and S for the
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same are revised, respectively according to Equations 4.3, 4.4, and 4.5.

L(t+1) = α
D(t+1)

S(t+1)

+ (1− α)(Lt + Tt) (4.3)

T(t+1) = β(L(t+1) − Lt) + (1 + β)Tt (4.4)

S(t+p+1) = γ
D(t+1)

L(t+1)

+ (1− γ)S(t+1) (4.5)

Where α, β and γ represent, respectively, the smoothing constants in the level, trend and

seasonality (CHOPRA; MEINDL; GONÇALVES, 2011).

An important feature of each of these models presented is that it requires that the

person who is forecasting demand, and consequently, applying the models, must identify

whether the historical data present a trend or seasonality. Each model has its particularities

and requirements regarding its application. Thus, it is possible that the application of a

complex and robust model, in historical data that does not present these characteristics,

generate results with low confidence. Therefore, it is important that the professional is

prepared to execute these predictions. Still, the demand curve can present totally different

characteristics when dealing with a specific vaccine or state. Thus, it is important that

the prediction activities are carried out in a branched way.

The models presented were considered to be used in this study, but in the face of so

many technologies emerging with the fourth industrial revolution, a way to automate and

optimize the application of predictive models was sought.

As mentioned earlier, with the advancement of technology computers have become

capable of processing more and more data. Artificial intelligence has started to allow

us to use algorithms in the analysis, interpretation and decision making in the face of

complex problems, which only with the human interpretation would be impossible to

obtain insights. In this work, a demand forecasting algorithm using artificial intelligence

(machine learning) was developed in order to reduce the need for human interpretation of

historical vaccine demand data. And in this way, allow greater automation of demand

forecasting activities. Thus, the idea is that with its use human errors can be reduced,

and also that it is possible to better adapt to the demand curves of each product and each

state.

Machine knowledge (ML) is an example of a technology that is not new, and its

application in regression is widespread, even more so in recent decades. The study

published by Lopes et al. (2019) shows that from 2000 to 2018 there was a growth of more

than 2300% in the number of scientific publications related to ML. In section 4.2.5 a better
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description of the ML characteristics is presented.

4.2.2 Inventory management

Stock is defined by Ballou (2006) as the accumulation of products at any stage or

point in the production and transportation channels. This accumulation of products may

be part of the company’s strategy, but when mismanaged it can be considered an activity

that, contrary to increasing profits or improving the flow of the operation, can harm the

company’s results.

The appearance of stocks can have several reasons and/or objectives. The greater the

stocks between phases of a process, it is expected that the more independent these become,

resulting in fewer chances of interruption due to lack of product (CORRÊA; GIANESI;

CAON, 2001). In productive operations environments, inventories can be divided into raw

material, semi-finished material, and finished product.

Stocks of raw materials serve to regulate supplier supply rates or demand and may

arise due to the forms of delivery by the supplier (batches smaller than the need for

the production line, low frequency of delivery, delays or low reliability) or changes in

production line demand. Stocks of semi-finished material appear to meet the different

demands between two production processes. And inventories of finished products arise so

that the company can face variations in the rates of the production process and demand, or

unforeseen events and uncertainties, such as machine stops (CORRÊA; GIANESI; CAON,

2001). Table 3 lists the main reasons for having and not having stocks.

In relation to inventories generated with the objective of reducing costs, even though

inventories may mean capital in the form of a product, they can indirectly bring benefits in

reducing operating costs. Purchases in larger lots allow for better bargaining in negotiation

and reduction of transport costs, and when in advance can guarantee security in relation

to market and production chain instabilities. In relation to inventories in order to increase

the level of service, inventories can allow demand and its variations to be met without

interrupting supply, keeping customer service rates high. In this way, it can be said

that when mismanaged, inventories can have major negative financial impacts on the

company (BALLOU, 2006).

Inventory management is a challenging activity that requires adaptation to the product

and market to which it belongs, and its identification is the first step to be taken before

choosing an inventory control method. The demand for air conditioning products is
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Table 3: Reasons to have stock or not

Reasons to have stock Reasons for not having stock

• Lack of coordination;

• Reduction of transport costs;

• Speculation;

• Response to changes;

• Availability in the distribution channel;

• Product availability.

• Cost;

• Impact on product quality;

• Risks of obsolescence and deteriora-
tion of products;

• Occupation of physical space.

Source: Author.

expected to be different from that of canned soups, for example. Ballou (2004) classifies

the types of demand as seasonal (eg swimming pools), terminal (eg aircraft parts), perpetual

(eg food) and irregular (eg construction equipment).

It is important to note that although inventory management brings benefits to the

supply chain, there are factors that directly influence stocks, but which must be treated

separately. For example, if a supplier is unreliable, delays supply, or fails to deliver, the

stock action would be to keep it high, however, a possibility to get around these problems

could be the approval of new suppliers. Another very recurrent example is a long time to

set up machines when exchanging products, which can directly affect the stock (CORRÊA,

2014).

4.2.2.1 Pushed stock

The philosophy of stock pushing is appropriate when production or purchases exceed

the need or are the determining areas regarding the quantity of replenishment of stocks.

One of the most important decisions when it comes to the push approach is the decision

on allocation of stocks (location and quantity), surplus or not, economically (BALLOU,

2006).
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4.2.2.2 Pulled stock

The pulled inventory control shows reduced inventory levels in the warehouses due to

meeting demand and cost reduction actions (BALLOU, 2006). Table 4 shows the different

management methods for established stocks.

Table 4: Pull inventory control methods.

Complexity Inventory control methods Characteristics

Basics
Single order quantity Used to scale inventory or order for a single

demand

Number of repeated orders Determines the quantity and frequency

of replenishment of stock in the face of

constant demand. The replacement can

be instantaneous or with delivery time.

Advanced

Order point with uncertain

demand

It considers demand perpetually acting

to decrease inventories, and calculates a

stock replacement point that guarantees

the availability of supplies until the next

replacement.

Order point with known out-

of-stock costs

Calculates the balance between service and

costs. Scales economic lot and resupply

point.

Order point with uncertain

demand and delivery time

Increased realism due to the dimension

of the uncertainty of product availability

during the delivery period.

Periodic review with uncer-

tain demand

It reviews the inventory levels of various

items in order to obtain gains in the ac-

quisition, transportation, and production

Continued on next page
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Table 4 – Continued from previous page

Complexity Inventory control methods Characteristics

Joint order It stops considering items in isolation and

proposes a joint order of several items.

Creates an inventory review deadline for

all items ordered together.

Practical

Min-Max System Suitable for uncertain demand. Maximum

stock is equal to safety stock plus demand

during the delivery time and the economi-

cal purchased lot.

Demand stock A type of periodic review system. It makes

use of scaling the demand rate of the item

in a specific period during the interval

between revisions.

Control of multiple items

and multiple locations

Integrated inventory approach considering

economic concerns, applicable when there

are several factories, products, and stock

points.

Multi-link control Applied when stock in the channel is an

important factor

Source: (BALLOU, 2004)

4.2.3 Service level

Service level can be considered as the quality in which a service is provided or a product

offered to the customer, from the arrival of the order until delivery to the final customer.

The control of the service level serves so that companies can measure their performance

and quality of operation. In general, small companies adopt the 100% policy as a service

level, which considers that every order must be fulfilled on time. However, when it comes

to large companies with broader distribution networks, it is practically impossible for this

policy to be implemented. Prioritizing delivery times, order fulfillment or keeping costs
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down are service-level decisions that impact on-chain and inventory management.

Operating systems that are not prepared to react instantly to customers’ requests make

use of inventories to provide a level of product availability to satisfy customer requests.

4.2.4 Customer service

Price, quality, and service are items used by customers to assess a supplier’s service.

In the case of this work, customers are the entire population of a country, and the

consequence of bad customer service can be an epidemic. Thus, understanding customer

service is indispensable. From this view, it can be considered that determining the level of

service that is expected to be delivered to the customer is essential for the elaboration

of the Ministry’s strategies as a whole, and with stocks, it is no different. According to

Ballou (2006), customer service elements can be classified as:

• Pre-transition elements: covers the organization’s structure, technical services,

system flexibility and commitment to the company’s procedures and delivery to the

customer;

• Transition elements: Covers the management of stock levels, elements of the order

cycle, system reliability, product replacement, processing time, etc.;

• Post transition elements: Covers activities of installation, warranty, repair,

packaging, temporary replacement of damaged products, product tracking, etc.

It is common for the logistics professional to consider that monitoring the level of customer

satisfaction is the responsibility of the sales or marketing teams. In the case of the Ministry

of Health, this means ensuring that the population believes in vaccination strategies, and

also monitoring the effects of a vaccination campaign. This said, it is important that the

Ministry of Health as a whole is aware of the impact of customer service.

4.2.5 Machine Learning

In 1959, Arthur Samuel defined Machine Learning (ML) as the ability of computers to

learn something without being explicitly programmed for it (SAMUEL, 1959). Currently,

with the advancement of technology and the capacity of computers, the application of ML

has been used to solve increasingly complex problems.
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Simply put, machine learning consists of an algorithm which is fed with a part of the

existing data (usually 80% of the data). The algorithm “learns” the characteristics of this

data. And then this algorithm is tested with the rest of the data (the remaining 20% of

the data). In this way, one can measure how accurate the model was.

Machine learning algorithms can be subdivided into three categories:

• Supervised learning: When the computer is powered by a piece of data that serves

as a guide. The algorithm then uses this data as a guide for future classifications;

• Unsupervised learning: In this case, the computer does not receive a reference,

and must learn by itself to differentiate data;

• Reinforcement learning: When the computer must learn something in a dynamic

environment. Examples of this are models who must learn a game while playing

with an opponent. Or even an autonomous car model. In these cases, the models

receive feedback (awards and incentives) to improve the model.

Another characteristic by which an ML model can be classified is the task that the

model is expected to perform. For example:

• Classification: Typically supervised, this model aims to classify data between two

or more groups. An example of this could be the classification of an email as spam

or safe;

• Regression: Also supervised, but has continuous outputs instead of discrete ones;

• Clustering: Unlike classification, this model, normally unsupervised, aims to classify

data when groups are not known.

In the case of the current study, the problem is classified as a time series regression

(demand forecast based on a historical series) of supervised learning. Table 5 provides

details of the two optimization techniques used in the study.
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Table 5: Gradient Boosting and Random Forest importance and main features

Algorithm Main features Importance of predictors

Gradient
Boosting

It aims to combine predictions from
a set of classifiers with an error
rate only slightly lower than that
of a random classification (decision
trees with few divisions) to build a
committee, responsible for the final
prediction.

Tabulation and sum of the rela-
tive influence of each predictor in
each tree that makes up the final
model (empirical improvement re-
sulting from the use of this predic-
tor in making a partition of the
tree). Calculation of the average
per predictor for all iterations, to
get an overview of your contribu-
tion to the final model.

Random
Forest

It aims to combine predictions from
a set of complex classifiers (decision
trees with many divisions), applied
to bootstrap samples of the training
set. Differential: random selection
of predictors to be used in order
to reduce the correlation between
the trees that will be aggregated to
produce the final prediction.

In each tree, the precision of the
prediction corresponding to the ob-
servations that did not compose
the bootstrap sample is calculated.
This same procedure is performed
after exchanging each of the pre-
dictors. The difference between
these two precision measures is cal-
culated and, subsequently, an aver-
age of this difference is computed
and normalized, for each predictor.

Source: (SANTOS, 2018).

Both models are widely used for time series regression. And yet, both have numerous

programming libraries (in Python) for application. The objective of this work is to offer

to technicians responsible for the management of the vaccine chain a robust, intelligent

technology, but mainly of easy access and understanding. The intention is that technicians

who are not experts in programming or artificial intelligence can apply the model as new

data become available. Using complex machine learning models could cause technology

adoption to be resisted.

4.3 Method

This section describes the method used to forecast vaccine demand as well as the

extraction of public data used in the models.
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4.3.1 Data acquisition and cleaning

The Informatics Department of the Unified Health System (DATASUS) was created in

1991 to create information technologies for SUS. Since then, more than 200 SUS support

systems have been created (Ministério da Saúde, 2020b). Among them is Tabnet, created

to integrate information from several health indicators, such as epidemiological data,

morbidity, demographic and socioeconomic data, among others (Ministério da Saúde,

2020a). That means, it is the system that compiles all the data used in this work.

Among the available data in Tabnet, one type were included in this study: the number

of doses applied. Its descriptions are presented below. It is important to note that all of

these data are publicly accessible.

4.3.2 Doses applied

Within the Health Care section in Tabnet platform there are public access data on Im-

munizations, fed since 1994. And here the applied dose data were considered. The number

of applied doses available covers each city in the country, with numbers compiled monthly,

by immunobiological product administered by the National Immunization Program (PNI).

The extracted data were compiled by the state, since the objective was to forecast the

monthly demand of each Brazilian state. In order to assist in the development of the tool,

data were also extracted aggregated for the whole country. Figure 16 presents a photo of

the screen of the Tabnet data extraction web page (it was automatically translated from

Portuguese to English). The platform offers different forms of data extraction, allowing the

selection of data compiled by region, states, health macro-regions, different immunologicals,

etc.

The extraction selection used (filters) in this study was as follows:

• Line: Month/Year;

• Column: Federation unity (state);

• Measures: Doses applied;

• Available periods: All years available;

• Available selections: Each immunobiological at a time.
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Figure 16: Screenshot of Tabnet data extraction web page automatically translated from
Portuguese.

Source: Author.
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The applied dose data were the limit of the study’s historical line. As only 162 months

of data were available in the public MS database, this was the limiting factor. The data

included in the study were from January 2004 to December 2017 (although data from

2018 to 2021 are also available on the platform, until the date of elaboration of this model,

they could have been changed due to possible delays in the inclusion of information in the

databases).

In order to allow the construction of the models, it was decided to proceed with data

from only one vaccine. The model built can be applied to all other vaccines. However,

it will be necessary to assess whether the machine learning model provides good results

for the demand curves of each of the immunobiologicals. Another point that prevented

the application of the model for all vaccines still in this study is that some vaccines have

a very recent registration of doses applied. Therefore, as BCG is a vaccine that has the

greatest historical data, it was the vaccine of choice.

4.4 Algorithm developed

The developed algorithm was written in Python. The codes are available in Appendix D.

As it is a supervised model, the historical series data was divided between training

data and test data. The model adopts a division of 130 months for training and 32 for

tests, which is close to an 80/20 ratio.

In order to control the quality of the model’s predictions, it also measures the Root

Mean Square Error (RMSE) of the predictions. This is a metric widely used to evaluate

regression models, and it is also easy to understand. For example, if the order quantity

was 100, but the forecast was 99, that -1 is the model error. The RMSE calculation is

presented in the Equation 4.6.

RMSE =

√√√√ 1

N

N∑
i=1

(xi)2 (4.6)

To normalize the number of doses applied, the difference between the number of doses

applied for the current month and the previous month (p1-p0) was calculated. These were

the data used by the ML models to predict applied doses.
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4.5 Results

This session presents the results generated by developed model. The Appendix E

brings graphs that were generated by applying the model to the data compiled from Brazil

and also from one state (São Paulo), for comparison purposes. For each model, and each

scenario, two graphs were generated, one of the actual and predicted data in the training,

and the other of the actual and predicted data in the test.

4.5.1 Scenario: Entire country

This section presents the results of applying the model considering historical data

for Brazil as a whole. Table 6 shows the Root Mean Square Error of the model applied

In-train, both for the Gradient Boosting and Random Forest Regressor models. The errors

for the same models are also shown in the test data. The third data, presented in the

last row of the table, is for a model that uses the prediction of both models. The results

can be interpreted as follows, for the last model the Root Mean Square Error is 52,991,

compared to a number of applied dose units that varied from 670,433 to 1,838,603 units.

This error represents a variation of 2.9% to 7.8%.

The data from the third model (which considers the two machine learning methods) is

presented non-normalized in Appendix E.3. That is, its scale is a real dose number.

Table 6: Root-mean-square deviation for the model applied to Brazil data

Sample Model RMSE Percentage

In-train
Gradient Boosting 55,927.81 3.0-8.3%

Random Forest Regressor 67,620.09 3.7-10.1%

In-test

Gradient Boosting 56,324.13 3.1-8.4%

Random Forest Regressor 60,806.08 3.3-9.1%

Gradient Boosting and Random Fores Regressor 52,991.40 2.9-7.8%

Source: Author.

4.5.2 Scenario: São Paulo state

This section presents the application of the machine learning model in the historical

data of São Paulo, for comparison purposes
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Table 7 shows the Root Mean Square Error of the model applied In-train (that is, in

the training data), both for the Gradient Boosting and Random Forest Regressor models.

The errors for the same models are also shown in the test data. The third data, presented

in the last row of the table, is for a model that uses the prediction of both models. The

results can be interpreted as follows, for the last model the Root Mean Square Error is

12,724, compared to a number of applied dose units that varied from 106,807 to 436,477

units.

Table 7: Root-mean-square deviation for the model applied to São Paulo state data

Sample Model RMSE Percentage

In-train
Gradient Boosting 12877.41 3.0-12.1%

Random Forest Regressor 17202.57 4.0-16.1%

In-test

Gradient Boosting 13604.45 3.1-12.7%

Random Forest Regressor 13660.23 3.1-12.8%

Gradient Boosting and Random Forest Regressor 12724.44 2.9-11.9%

Source: Author.

4.6 Conclusions

It is possible to observe that the model errs by 2.9-7.8% vaccines for the national

model, and 2.9-12.9% in the model for a state. When compared with information that

vaccine losses occur in the order of 50%, this result is very much positive.

It is important to note that the model aims to get as close as possible to reality, and

despite its error being approximately +50k doses of vaccines per year, in some periods the

model presented results below demand. This means that although in the end the model

sent more vaccines than necessary, there could be a vaccine shortage at some point. This

is because the demand forecast numbers here are not necessarily equal to the number of

vaccines shipped to each state. To make these decisions, chain managers must make a

decision regarding safety stock. That is, it is necessary to decide, for example, an extra

percentage of vaccines to be sent each month. This will decrease the risk of a vaccine

shortage, but consequently increase the number of doses sent in excess. However, despite

this, this can be a very assertive decision because of the costs that can arise due to lack of

doses. This is a strategic decision to make, and it should be based on dose cost, inventory
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cost, and vaccine shortage cost.

The model presented here was built based on public data. This data is composed of

information that is manually typed in the vaccine rooms. This data is subject to human

error. Also, it is very important to emphasize that in this study the demand was considered

equal to the number of doses applied, but it is known that this is not true in practice.

The demand may be less or greater than the number of doses applied in each state. A

number of doses applied considered as demand can ignore the possibility that this state

only applied this amount because of available stocks. Even if in fact, the demand could

be much higher. Given this, if it were possible to use more reliable data (if they actually

exist and are not publicly available), the model’s result would be even more reliable.

This work presented here has the potential to have a great impact on Brazilian public

health, and also on public spending. However, the ideal would be that the data holders

(in this case the Brazilian Ministry of Health) could reassess the study with their internal

data. Yet this work has the ability to scale to unimaginable proportions. For example,

the machine model could start to consider not only historical data on doses applied, but

historical data on disease, vaccination coverage, etc. In view of this, the next section

presents the directions that can be taken for the continuity of the study.

4.7 Work to be continued

As previously mentioned, the model presented here has great potential to be optimized

and increased.

A first step to improve the model will be a better understanding of the models’ quality

indicators. The RMSE is a widely used indicator, but others can be tested. And yet, it is

known that one of the most recurring problems in Machine Learning is overfitting, that is,

when the model adapts so much to a portion of the data that it is difficult to predict new

data.

A second step will be the testing of other public data obtained, such as historical

population growth and cases of the illness the vaccine is trying to avoid. The objective

here is to understand whether the use of this data helps or not in improving the models.

The hypothesis here is that knowing how good the vaccine campaign was in the state

(vaccination coverage), or how much the population of that state has increased (population

growth), it would be possible to better predict the demand for the vaccine will be. That

is, a state in which the vaccination campaign was not well conducted, or which grew a lot
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in population, may present a more considerable increase in demand than another state

that presented less growth and good vaccination coverage. Despite the idea that adding

more data can improve the model, it is not necessarily true. The addition of new data can

also result in the model overfitting. The overfitting problem happens when a model is so

well adapted to the training data that it expects the test data to behave in exactly the

same way. So it is to be expected that a machine learning model can make mistakes, but

this error must be monitored very well.

Data from the years 2018 to 2021 should be included in the historical data series used

feed the model, as soon as they are trustful to be used.
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5 OPTIMIZATION MODEL FOR VACCINE

ALLOCATION BETWEEN BRAZILIAN

STATES

“How wonderful it is that no one has to wait a
single moment to improve the world.”

-- Anne Frank

A demand forecasting model was presented in Chapter 4. The model aims to help

decision-makers in planning the acquisition of immunobiologicals, vaccination calendar,

vaccination campaign, distribution to states, among other various activities involved in

logistics chain management. Considering that the forecasting activity obtained good

results (that is, approximate forecasts of the real operation), good management of the

distribution of the products will still be necessary.

In the Brazilian scenario (previously presented in Chapter 3), the Ministry of Health is

responsible for the distribution of immunobiologicals to the states. Although the managers

of the states send a monthly estimate of the need for the following month (order), it is the

managers of the federal agency who decide the quantity sent. The result of this practice

is well known in supply chain management, the so-called bullwhip effect. When a state

manager notices that the amount of product received was less than what was requested,

he tries to adapt the next order. That is, in the next request, the manager will consider

a value greater than what he really needs in order to try to force the national manager

to meet his demand. The result of the bullwhip effect is that there is a large divergence

between the numbers at the ends of the chain (in the case of this work, the national

manager and vaccination rooms).

Despite efforts to maintain a good distribution of immunobiologicals, it is common for

the country’s dynamic characteristics to hamper this activity. It is not so uncommon the

scenario in which in some regions of the country there is a lack of an immunobiological

product while another region has an surplus (with the possibility of loss due to maturity).

As presented in Chapter 2, several optimization approaches have been applied to

improve the vaccine supply chain. However, as the problem here dealt with has many

particularities, the systematic review did not bring any model that has been applied to a
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problem similar it or with the same objective.

In order to bring improvements to the supply chain management, in this stage of the

study it was developed a stochastic optimization model that helps to improve the distribu-

tion of immunobiologicals among Brazilian states. One of the important characteristics of

the model is that it considers the scenario where states can exchange vaccines with each

other. This is a real possibility in the current operation of the chain, but its practice is

little used. Although this information was obtained through process mapping carried out

in 2017, there are no published data that can confirm the use or not of this practice, or

even how little it is used. With this model, it is possible to evaluate whether this practice

brings benefits to the chain. The output data of this model should be the information on

the number of immunobiologicals that should be sent to each of the 27 Brazilian states, in

each month of a period of time, considering 3 possible scenarios of uncertain demand (low,

medium and high demand). The model should also decide whether vaccines should be

exchanged between states.

5.1 Optimization model for allocation of vaccines be-

tween states

In this section, it is first detailed the problem statement. Next, it is introduced the

modeling assumptions and provide a mathematical formulation. Due to the probabilistic

constraints, it is also present an deterministic equivalent form of the model (this is so

that possible changes in the model can be tested in an ideal scenario before a stochastic

scenario).

5.1.1 Problem statement

Consider that a federal agency must distribute x immunobiologicals monthly (k ∈ K)

to the country. In this way, each of the i ∈ I states of a country will receive a xik amount

of immunologicals in each k month. If any state j ∈ I have a need for immunobiologicals

and a state i has the capacity to deliver, yijk immunobiologicals can be exchanged between

states. The transport to the states is individual, that is, the products sent to each state

go in separate loads (one flight for each state, but the state where the federal warehouse is

located). The purpose of this model is:

• To decide the number of immunobiologicals that should be sent to each state;
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Figure 17: Illustration of the transport of immunobiologicals between the federal warehouse
and the state, and between states.

Source: Author

• To minimize the operating cost of the entire chain.

For this, it is expected:

• To reduce the number of immunobiologicals sent to the states;

• To meet the demand;

• To reduce surplus;

• To avoid lack of product.

The current scenario of the chain’s operation has a lot of loss of immunobiologicals

due to poor handling during transport, due to failure in the temperature control, and also

dismissals with excess or lack of stocks. The hypothesis considered here is that, in case

of need, a state A with excess stock could supply the products to state B with a lack of

that same product, without the federal agency having to insert new products in the chain

(Figure 17). The hypothesis considers that this exchange of vaccines between states can

reduce transport costs, inventory costs and costs of unmet demand.



80

5.1.2 Model assumptions

Before presenting the model description it is important to understand the model’s

assumptions and justifications.

1. States can exchange vaccines as long as they send at least the minimum:

The exchange of immunobiologicals involves costs. Thus, it would be very costly for

the system that the vaccine transport effort be activated for a few units;

2. The cost of transportation (in R$/km) between the states and the federal

warehouse must be less than the cost of transportation between states:

The federative unit already has transportation infrastructure for sending immunobi-

ologicals to States. And yet, it is the body responsible for the distribution of them.

Therefore, if the states are going to exchange vaccines, they should trigger a less

used infrastructure, consequently more expensive. The difference is defined in the

model by α.;

3. Demand: The deterministic optimization model considers demand equal to the

demand forecast provided by the machine learning model presented in Chapter 4.

The stochastic optimization model considers demand to be uncertain. Thus, three

possible scenarios are considered: one of low, medium and high demand (these are

better described in the following sections);

The purpose of the model is to minimize system costs. The costs considered were as

follows:

1. Acquisition cost: unit cost of each vaccine unit times the number of new vaccines

arriving at the federal warehouse;

2. Unmet demand cost: cost incurred for each unmet demand unit;

3. State holding cost: cost incurred for each extra unit of product stored by the

states;

4. Transportation cost: cost of transportation between the federal warehouse and

the states;

5. Transshipment cost: cost of transportation between states;
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6. Federal holding cost: cost incurred for each unit of product stored in the federal

warehouse.

Each of the costs listed above is not public knowledge, being exclusively known by

the Ministry of Health. However, this does not prevent an optimization model from being

built. So that the model presented here could be built, an estimate of these values was

performed.

Vaccine costs were considered as the internationally known average cost value. Trans-

port costs were considered to be proportional to the distance between states. And the

costs of surplus and unmet demand were defined in such a way that the cost of a not-

administered vaccine was more expensive than a vaccine in stock (considering that the

public health costs with a person who has the disease are significantly higher than the

cost of the vaccine dose).

The three uncertain demand scenarios (low, medium and high) are presented below.

i) Low and ii.) High demand: In order to define the low and high demand values

of immunobiologicals, an analysis of historical data was performed. First, as vaccines

and immunopreventable diseases were being dealt, it can be said that the demand is

seasonal. Thus, the definition of the values was carried out for months separately (that

is, to define the demand for January, it was analyzed only the historical demand for the

months of January). The values considered as the low A and high amount was picked

using randomness within the minimum (Min ≤ Demand minimum ≤ A) and maximum

(B ≤ Demand maximum ≤ Max) intervals. That means, that the low demand will be a

number, picked randomly in the interval between the lowest observation and A. And the

high demand, in the interval between B and the highest demand observed in the period.

The intervals were defined as illustrated in Figure 18, using the Equations 5.1 and 5.2.

A = Min+
Max−Min

4
(5.1)

B = Max− Max−Min

4
(5.2)

iii.) Average demand: The output data of the machine learning model presented

in Chapter 4 was considered.
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Figure 18: Interval between the lowest and the highest number of doses applied in a month
in the historical series.

Source: Author

5.1.3 Stochastic model

This section presents the stochastic optimization model built. Appendix H presents

codes written in the format that the CPLEX solver requires.

Sets:

I Set of states, indexed by i

K Set of months, indexed by k

Ω Set of scenarios, indexed by ω

Parameters:

pω Probability of scenario ω ∈ Ω

hi Minimum amount of vaccines for interstate exchange of the state i ∈ I

c Cost of a vaccine dose

zi Cost of unmet demand in state i ∈ I

b Holding cost for the federal government (b < qi)

qi Holding cost for state i ∈ I (b < qi)

ti Cost of transportation from federal stock to state i ∈ I

rij Cost of transportation from state i ∈ I to state j ∈ I

α Discount on cost of transportation from federal stock to states (0 ≤ α ≤ 1)

β Manipulate percentage of unmet demand (0 ≤ β ≤ 1)

F ω Initial stock of federal government under scenario ω ∈ Ω
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lωi Initial stock of state i ∈ I under scenario ω ∈ Ω

gωi Unmet demand of state i ∈ I before first month under scenario ω ∈ Ω

dωik Predicted demand of vaccines of state i in month k under scenario ω ∈ Ω

First-stage decision variable:

vk New vaccines in the federal stock in month k ∈ K

Second-stage decision variables:

xω
ik Number of new vaccines sent from federal stock to state i in the beginning of month k

under scenario ω ∈ Ω

mω
ikUnmet demand of state i in the end of month k under scenario ω ∈ Ω

nω
ik Surplus of state i in the end of month k under scenario ω ∈ Ω

yωijk Number of vaccines to be sent from state ki to state j in the beginning of month k

under scenario ω ∈ Ω

sωk Surplus of federal stock at the end of month k under scenario ω ∈ Ω

uω
ijkBinary variable to decide if there will be transshipment from state i to state j in the

end of month k under scenario ω ∈ Ω

Mathematical Formulation

Minimize: ∑
k∈K

cvk + E[f(v, ω̃)] (5.3)

Subject to:

vk ≥ 0 ∀k ∈ K

where for each outcome (scenario) ω ∈ Ω of ω̃

minf(v, ω̃) =
∑
i∈I

∑
j∈I

∑
k∈K

(zim
ω
ik + qin

ω
ik + (1− α)tix

ω
ik + rijy

ω
ijk + bsωk ) (5.4)

Subject to:

xω
ik −mω

ik−1 + nω
ik−1 −

∑
j∈I,j ̸=i

yωijk +
∑

j∈I,j ̸=i

yωjik = dωik −mω
ik + nω

ik ∀i, j ∈ I, k ∈ K,ω ∈ Ω

∑
i∈I

xω
ik = vk + sωk−1 − sωk ∀k ∈ K,ω ∈ Ω
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yωijk ≤ Muω
ijk ∀i, j ∈ I, k ∈ K,ω ∈ Ω

yωijk ≥ hiu
ω
ijk ∀i, j ∈ I, k ∈ K,ω ∈ Ω

mω
ik ≤ (1− β)dωik ∀i ∈ I, k ∈ K,ω ∈ Ω

mω
ik = 0 ∀i ∈ I, ω ∈ Ω

mω
i0 = gωi ∀i ∈ I, ω ∈ Ω

sω0 = F ω ∀ω ∈ Ω

nω
i0 = lωi ∀i ∈ I, ω ∈ Ω

xω
ik, y

ω
ij,m

ω
ik, n

ω
ik, s

ω
k ≥ 0 ∀i, j ∈ I, k ∈ K,ω ∈ Ω

uω
ik ∈ {0, 1} ∀i ∈ I, k ∈ K,ω ∈ Ω

xω
ik, y

ω
ij,m

ω
ik, n

ω
ik ∈ Z+ ∀i, j ∈ I, k ∈ K,ω ∈ Ω

i ∈ {1, 2, . . . , |I|}

j ∈ {1, 2, . . . , |J |}

k ∈ {1, 2, . . . , |K|}
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5.1.4 Stochastic model-Region based

This section presents the same stochastic model introduced before, but as if it were

considering the possibility of optimizing vaccine distribution by region rather than by

state.

Sets:

I Set of regions, indexed by i

K Set of months, indexed by k

Ω Set of scenarios, indexed by ω

First-stage decision variable:

vk New vaccines in the federal stock in month k ∈ K

First-stage Parameters:

c Cost of the vaccine

Second-stage Parameters:

pω Probability of scenario ω ∈ Ω

hi Minimum amount of vaccines for regional exchange i ∈ I

c Cost of vaccine

zi Cost of unmet demand in region i ∈ I

b Holding cost for the federal government (b < qi)

qi Holding cost for region i ∈ I (b < qi)

ti Cost of transportation from federal stock to region i ∈ I

rij Cost of transportation from region i ∈ I to region j ∈ I

α Discount on cost of transportation from federal stock to any region (0 ≤ α ≤ 1)

β Maximum percentage of demand to be unmet (0 ≤ β ≤ 1)

F Initial stock of federal government

li Initial stock of region i ∈ I

gi Unmet demand of region i ∈ I before first month (k = 0)

dωik Predicted demand of vaccines of region i ∈ I in month k ∈ K under scenario ω ∈ Ω

Second-stage decision variables:

xω
ik Number of new vaccines sent from federal stock to region i ∈ I in the beginning of
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month k ∈ K under scenario ω ∈ Ω

mω
ikUnmet demand of region i ∈ I in the end of month k under scenario ω ∈ Ω

nω
ik Surplus of region i ∈ I in the end of month k under scenario ω ∈ Ω

yωijk Number of vaccines to be sent from region i ∈ I to region j ∈ I in the beginning of

month k ∈ K under scenario ω ∈ Ω

sωk Surplus of federal stock at the end of month k ∈ K under scenario ω ∈ Ω

uω
ijkBinary variable to decide if there will be transshipment from region i ∈ I to region

j ∈ I in the end of month k ∈ K under scenario ω ∈ Ω

Mathematical Formulation

Minimize: ∑
k∈K

cvk + E[f(v, ω̃)] (5.5)

Subject to:

vk ≥ 0 ∀k ∈ K

where for each outcome (scenario) ω ∈ Ω of ω̃

minf(v, ω̃) =
∑
i∈I

∑
j∈I

∑
k∈K

(zim
ω
ik + qin

ω
ik + (1− α)tix

ω
ik + rijy

ω
ijk + bsωk ) (5.6)

Subject to:

xω
ik −mω

ik−1 + nω
ik−1 −

∑
j∈I,j ̸=i

yωijk +
∑

j∈I,j ̸=i

yωjik = dωik −mω
ik + nω

ik ∀i ∈ I, k ∈ K

∑
i∈I

xω
ik = vk + sωk−1 − sωk ∀k ∈ K

yωijk ≤ Muω
ijk ∀i, j ∈ I, k ∈ K

yωijk ≥ hiu
ω
ijk ∀i, j ∈ I, k ∈ K

mω
ik ≤ (1− β)dωik ∀i ∈ I, k ∈ K

mω
iK = 0 ∀i ∈ I

mω
i0 = gi ∀i ∈ I

sω0 = F

nω
i0 = li ∀i ∈ I

xω
ik, y

ω
ij,m

ω
ik, n

ω
ik, s

ω
k ≥ 0 ∀i, j ∈ I, k ∈ K
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uω
ik ∈ {0, 1} ∀i ∈ I, k ∈ K

xω
ik, y

ω
ij,m

ω
ik, n

ω
ik ∈ Z+ ∀i, j ∈ I, k ∈ K

i ∈ {1, 2, . . . , |I|}

j ∈ {1, 2, . . . , |J |}

k ∈ {1, 2, . . . , |K|}

5.1.5 Deterministic equivalent model

This section presents the deterministic optimization equivalent model developed. Its

codes are presented in Appendix F.

Sets:

i index set of state regions, i ∈ I

j index set of all regions, j ∈ I

k index set of month, k ∈ K

Parameters:

dik predicted demand of vaccines of state i in month k

hi minimum amount of vaccines for interstate exchange of the state i

c cost of the vaccine

zi cost of unmet demand in state i

v holding cost for the federal government (v < qi)

qi holding cost for state i (v < qi)

ti cost of transportation from federal stock to state i

rij cost of transportation from state i to state j

α discount on cost of transportation from federal stock to states (0 ≤ α ≤ 1)

β manipulate percentage of unmet demand (0 ≤ β ≤ 1)

Fi federal government initial stock

Is states initial stock

Decision variables:

fk new vaccines in the federal stock in month k

xik number of new vaccines sent from federal stock to state i in the beginning of month k



88

mik unmet demand of state i in the end of month k

nik surplus of state i in the end of month k

yijk number of vaccines to be sent from state i to state j in the beginning of month k

sk surplus of federal stock i in the end of month k

uijk binary variable to decide if there will be transshipment from state i to state j in the

end of month k

Minimize:∑
k∈K

cfk+
∑
i∈I

∑
k∈K

zimik+
∑
i∈I

∑
k∈K

qinik+
∑
i∈I

∑
k∈K

(1−α)tixik+
∑
i∈I

∑
j∈I,j ̸=i

∑
k∈K

rijyijk+
∑
k∈K

vsk

(5.7)

Subject to:

xik −mik−1 + nik−1 −
∑

j∈I,j ̸=i

yijk +
∑

j∈I,j ̸=i

yjik = dik −mik + nik i ∈ I,∀k ∈ K

∑
i∈I

xik = fk + sk−1 − sk i ∈ I,∀j ∈ I,∀k ∈ K

yijk ≤ Muijk i ∈ I,∀j ∈ I,∀k ∈ K

yijk ≥ hiuijk i ∈ I,∀j ∈ I,∀k ∈ K

mik ≤ (1− β)dik i ∈ I,∀k ∈ K

miK=0 i ∈ I

s0 = Fi ∀k ∈ K

ni0 = Is i ∈ I,∀k ∈ K

xik, yij,mik, nik, fk, sk ≥ 0 i ∈ I,∀j ∈ I,∀k ∈ K

uik ∈ {0, 1} i ∈ I,∀k ∈ K

xik, yij,mik, nik, fk ∈ i ∈ I,∀j ∈ I,∀k ∈ K

i = 1, 2, . . . , |I|

j = 1, 2, . . . , |J |

k = 1, 2, . . . , |K|
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5.2 Deterministic results

The results presented in Appendix G are the results of the equivalent deterministic

optimization model. Because it is a very large model, the code with the deterministic

optimization model, written in GAMS language, was submitted to the NEOS Server solver.

It is important to remember that as the deterministic model considers a perfect model

(that is, real demand is equal to the expected demand). Also, because of this, the model

does not suggest the exchange of products between states. Therefore, the deterministic

model allows the construction of the model itself to be validated. The model presented a

suggestion to send exactly the same number of doses that the states presented as demand.

This means that the model is suitable to be implemented stochastically.

5.3 Stochastic results

For the stochastic model, the main challenge was to run the codes with all possible

scenarios, that is, considering the initial idea of the project to build a model to optimize

the distribution among 27 states, during 12 months, and 3 scenario possibilities. This

means that the number of possible scenarios for the model would be 3(12∗27) (3.9E+154).

A number as high as this requires massive computational processing. In face of that, it

was used an Sample Average Approximation (Monte Carlo Approximation) algorithm to

help the stochastic model to deal with this number of scenarios. SAA é a very well known

simulation-optimization method of solving otimization problems, for more information

related to it check the work published by Kim, Pasupathy, and Henderson 2015.

The results presented here take into account the following scenario: 4 Brazilian states,

3 possible demand scenarios, and 3 months of decision making. The results obtained

are shown in Table 8. The solution of the model itself (as the solver output format) is

presented in Appendix I.

The result obtained by the model complies with the requirements assumed in the

construction of the model. It is possible to observe that the model tried to avoid that a

vaccine shortage could occur during the period.

The values presented in the Received column refer to the model result itself. That is,

the number of doses that the model suggests that the federal warehouse sends to each of

the 4 states, during the 3 months considered.

It should be remembered that the model made decisions on how many vaccines to
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Table 8: Results for the stochastic optimization model considering 4 states and 3 months
S
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RO

0 200 1000 0 - - - - 800

1 - - 2186 3008 2545 2186 2887 99

2 - - 1784 2681 2298 1784 1862 21

3 - - 2206 3808 2621 2206 2207 20

AC

0 0 1000 - - - - - 1000

1 - - 1060 2207 1626 1060 1543 517

2 - - 1039 2221 1594 1039 1002 554

3 - - 1148 2907 1762 1148 1698 4

AM

0 200 1000 - - - - - 800

1 - - 7281 8876 7877 6577 7346 735

2 - - 8519 8785 7515 5290 8697 557

3 - - 6460 8878 7670 5890 6261 756

RR

0 0 1000 - - - - - 1000

1 - - 906 1906 1168 746 759 1147

2 - - 1148 1751 1148 843 971 1324

3 - - 730 1778 1110 730 1499 555

Source: Author.
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send to each state based on demand information that was estimated by the author. That

is, average demand equal to the result of machine learning model predictions, and low and

high demand based on the methodology presented earlier in this chapter.

The column with the actual data shows the number of doses that were actually

administered in that period.

In order to test it, it was stipulated that each state starts with a stockpile of 1000

doses. And two states start the 3-month period with a prior unmet demand of 200 doses.

The final stock column presents a survey of how many doses would have been in stock if

the model had been considered in the management of these 3 months (also considering that

the initial scenario of unmet demand and initial stock were the same as those presented in

the table).

As can be seen in the table, at the end of the last period, that is, at the end of the

third month, the four states would have a positive stock. With this, it is possible to say

that no vaccine had stopped being applied. This is due to the definition of costs defined

in the study, in which the cost of keeping stock in each state is considered lower than the

cost of an unapplied vaccine.

However, at the results of the RO and AC states it is possible to see that at the end

of the period, despite the number of doses in stock being positive, they are very low.

In building the model, the minimum number of doses sent between one state and

another was estimated. However, there was no definition of minimum stock in the states.

The inclusion of this parameter can be a good alternative to prevent the stock of states

from getting close to zero (the optimal scenario for the optimization model).

Despite the hypothesis that the stochastic optimization model could suggest exchange

of vaccines between states, it cannot be confirmed. The model results did not suggest

exchange of vaccines between states, but that does not mean that the hypothesis that this

practice would optimize the distribution chain is not valid. This happens because, again,

the model considers values that are estimates. Thus, this hypothesis would have to be

reassessed after a possible adaptation of the model to real data from the operation of the

vaccine supply chain considered in this study.

Due to the lack of access to the decision-making methodology used by the chain

managers, it was not possible to compare the results of the model with what was actually

decided at the time. Therefore, the model proposed here can be used as another tool to

aid decision making. Its adoption as a single method is only suggested if an adaptation of
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the assumptions is performed.

5.4 Discussion

The idea of developing an optimization model to improve the vaccine distribution chain

came from the observation that the its losses are very high. Building an optimization model

requires extensive work of translating a real-life problem into variables. An optimization

model that aims to optimize a supply chain as complex as the distribution of vaccines in

Brazil would obviously not be a small challenge.

The initial idea for the construction of this project considered a scenario where it would

be possible to test the optimization model with proximity to the day-to-day operation

of the chain. However this was not possible. The development of the model proposed

here required researchers to make several assumptions that may differ from real numbers.

This means that, if this model is adopted by managers in the future, the model needs to

undergo some adjustments. However, it is important to emphasize that this is a standard

procedure when taking an optimization model to real-time application.

An important step for the application of the model is also that the actual cost values

are defined. Although it seems simple, this is not an easy task. Transport, inventory and

unmet demand costs require in-depth analysis of chain costs. However, it is known that

managers responsible for decision-making in relation to stock and demand currently do

not consider all costs considered in this study.

The scope of this research needed to be revised frequently during its execution. The

definition of the problem itself was a major challenge for researchers and MS technicians.

Therefore, some stages of the research could not be carried out within the period of

execution of the doctorate. In the section 5.5, suggestions for future work are presented,

which could make this model better adapted to be used by chain managers.

However, it is important to emphasize that the simple construction of a model of this

complexity that can be adapted to the operation must be considered as one of the great

contributions of this research. As can be confirmed from the theoretical foundation of

this dissertation, optimization is an approach that has a lot of space to be used in the

management of the vaccine distribution chain. And unfortunately, despite this study having

started in 2017, the surprise of a COVID-19 pandemic made it clear that improvements in

the chain will be increasingly necessary. The scenario caused by the spread of this virus

turned the eyes of the whole world to all areas of management of this distribution chain.
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5.5 Future work

The model presented here has some limitations that can be overcome. One of them

would be to increase the processing capacity of possible scenarios. The way in which the

study was carried out model the regions are managed independently. Thus, if all states

are considered in the management of the model at once, the model proposal can be more

assertive. This step can happen in two ways, one that considers the use of a ”super” data

processor, where it is possible to leave the model running. And the other is from the

continued use of Sample Average Approximation.

Some experiments can also be performed. For example, if it is possible to access the

types of decision-making used by the chain managers, it would be possible to compare

their solution with the solution of the model proposed here. Ideally, the model proposed

here can be compared to different decision-making methods, whether used by technicians

from the Brazilian Ministry of Health, or others available in the literature.

And last but not least, it is necessary to review the estimated costs. The costs involved

in the chain (purchase, inventory, transport, and lack of vaccine) directly affect the results

of the model. In this work, the estimation of these values allowed the model to be built,

however, a review of the actual values is necessary before the model is implemented directly

in the operation.
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6 CONCLUSIONS

“It is necessary to choose a path that has no
end, but, still, always walk in the expectation of

finding it.”

-- Geraldo Magela Amaral

This work was the result of a long journey to, initially, understand the problem that

was being dealt with. The stage of the first year of the study, which mapped the processes

of the Ministry of Health’s vaccine distribution chain, made it possible to observe that:

• The vaccine distribution chain in Brazil is fraught with management challenges faced

daily by public and health professionals;

• The management of the chain is basically all manual, depending on the knowledge

of the technicians that make up the organization. This is observed both in the

management part and in the operational part;

• Despite the Brazilian National Immunization Program being internationally rec-

ognized, its vaccination coverage has a cost to the public coffers that could be

drastically reduced without necessarily reducing the quality of service provided to

the population;

• Despite the vaccine losses due to chain management, it is important to emphasize

that there are technical losses, which include loss of liquid in the syringes and loss of

doses due to the difficulty of accessing the liquid inside the bottle;

• Although the subject of management is widely discussed here, it should be con-

sidered that investment in the infrastructure of the chain must also be considered.

Refrigerators and vehicles for transporting vaccines are very poor in some parts of

the country.

After the first year of this study, the objective was to look for ways to improve the

vaccine distribution chain in Brazil as a whole. The decision to use machine learning came

from the desire to embrace the challenge of using new technologies. This stage of the work

led to the conclusion that:
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• Despite being a technology that can reach unimaginable levels of complexity, machine

learning can be used to solve linear supply chain management problems;

• The results obtained with the model presented in this study are of an acceptable

magnitude for the proportions of vaccine loss that the vaccine distribution chain in

Brazil currently faces;

• The proposed model could be used by technicians from the Ministry of Health to

support the decision in the management of vaccine demand, as the model is currently

found;

• The proposed vaccine prediction strategy has great potential to be expanded with

more and more data from the chain.

Finally, the biggest challenge of this whole work was the construction of the stochastic

optimization model. Translating a real-life problem into a mathematical equation requires

that every detail be defined with precision. With the completion of the development of

the optimization model, it can be concluded that:

• The optimization model fulfilled the objective of making a decision regarding the

number of vaccines to be sent to each state. And yet, with the objective of avoiding

that there is unmet demand;

• The model can be easily adapted to the operation, and has great potential to be an

aid tool in decision making;

• Although it was not possible to confirm the hypothesis that the exchange of vaccines

between states can benefit the chain, it was not refuted. It should be tested with

new experiments.

• The model presented could integrate the systems used in the management of the

chain. This would facilitate the use of the model, allowing technical experts in

management not necessarily to have knowledge in optimization or programming to

use it;

• The biggest challenge in building the optimization model is to be able to define all

the costs involved in the operation. Although it was necessary to estimate many of

the costs used in the model, it presents positive results;
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• Optimization is a widely used field in the improvement of vaccine supply chains.

However, it was possible to observe that most studies focus on optimizing the

vaccination strategy;

• This study collaborated with the application of optimization in the management

and logistics part of the vaccine supply chain.
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Dispońıvel em: ⟨http://dx.doi.org/10.1016/j.mbs.2018.09.007⟩.

ANPARASAN, A. A.; LEJEUNE, M. A. Data laboratory for supply chain response
models during epidemic outbreaks. Annals of Operations Research, Springer, v. 270, n. 1,
p. 53–64, 2018.

ASHOK, A.; BRISON, M.; LETALLEC, Y. Improving cold chain systems: challenges and
solutions. Vaccine, Elsevier, v. 35, n. 17, p. 2217–2223, 2017.

BALLOU, R. Business Logistics/supply Chain Management: Planning, Organizing,
and Controlling the Supply Chain. Pearson/Prentice Hall, 2004. ISBN 9780130661845.
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em: ⟨http://dx.doi.org/10.1080/0740817X.2013.813094⟩.
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APPENDIX A – STUDIES INCLUDED IN

THE RAPID REVIEW

Tables A1 and A2 brings information about the studies included in the rapid review

presented on Chapter 2.

Table A1: Main goal, supply chain part and vaccine or disease about the papers included
in the rapid review.

# Authors Main Goal Supply Chain

Part

Vaccine/ Dis-

ease

1 (AGUSTO; KHAN,

2018)

Outbreak/ pan-

demics

Vaccination

strategy

Dengue

2 (BRIAT; VERRIEST,

2009)

Outbreak/ pan-

demics

Vaccination

strategy

General

3 (CHEN et al., 2014) Optimal allocation/

availability

Logistics and In-

ventory manage-

ment

General

4 (DEMARTEAU;

BREUER; STAN-

DAERT, 2012)

Budget Vaccination

strategy

HPV

5 (DIMITROV et al.,

2009)

Outbreak/ pan-

demics

Logistics H1N1

6 (TEBBENS et al.,

2010)

Stockpile for eradi-

cated disease

Inventory man-

agement

Polio

Continued on next page
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Table A1 – Continued from previous page

# Authors Main Goal Supply Chain

Part

Vaccine/ Dis-

ease

7 (ENGINEER; KE-

SKINOCAK; PICK-

ERING, 2009)

Reduce impact of

diseases

Vaccination

strategy

Multiple vac-

cines

8 (FERREIRA; AR-

RUDA; MARUJO,

2018)

Reduce impact of

diseases

Inventory man-

agement

General

9 (GIRARD, 2010) Budget Vaccination

strategy

Pertussis

10 (GOLDSTEIN et al.,

2010)

Outbreak/ pan-

demics

Vaccination

strategy

Influenza

11 (HOVAV;

TSADIKOVICH,

2015)

Budget Logistics Influeza

12 (KIM et al., 2016) Outbreak/ pan-

demics

Vaccination

strategy

General

13 (LAUTON;

ROTHKOPF;

PIBERNIK, 2019)

Impact of new man-

ufacturers

Supply Chain

Management

Vaccine

and other

products

14a (MEDLOCK; GAL-

VANI, 2009)

Reduce impact of

diseases

Vaccination

strategy

H1N1

14b (MEYERS; GAL-

VANI; MEDLOCK,

2009)

Reduce impact of

diseases

Vaccination

strategy

H1N1

15 (PRECIADO et al.,

2014)

Optimal allocation/

availability

Logistics Vaccine

and other

products

Continued on next page



105

Table A1 – Continued from previous page

# Authors Main Goal Supply Chain

Part

Vaccine/ Dis-

ease

16 (REN; ORDONEZ;

WU, 2013)

Outbreak/ pan-

demics

Vaccination

strategy

H1N1

17 (RODRIGUES; MON-

TEIRO; TORRES,

2014)

Budget Vaccination

strategy

Dengue

18 (SAMII et al., 2012) Optimal allocation/

availability

Inventory man-

agement

Influeza

19 (SAVACHKIN;

URIBE, 2012)

Outbreak/ pan-

demics

Vaccination

strategy

Influeza

20 (PENG et al., 2019) Reduce impact of

diseases

Vaccination

strategy

General

21 (STANDAERT et al.,

2020)

Budget Vaccination

strategy

Influenza

22 (THAKKAR et al.,

2019)

Reduce impact of

diseases

Vaccination

strategy

Measles

23 (HOTA; SUN-

DARAM, 2019)

Reduce impact of

diseases

Vaccination

strategy

General

24 (ENAYATI;

ÖZALTIN, 2020)

Optimal allocation Vaccination

strategy

Influenza

25 (VENKATRAMANAN

et al., 2019)

Optimal allocation Inventory and lo-

gistics

Influenza

Source: Author
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Table A2: Optimization approach and solution applied in the papers included in the rapid
review and whether they consider outbreak scenarios, uncertainty, and as network problem.

# Authors Optimization

approach

Solution

Applied

Outbreak Uncertainty Network

1 (AGUSTO; KHAN,

2018)

Optimal Con-

trol

No Yes Yes No

2 (BRIAT; VERRIEST,

2009)

Epidemiological

Model

No Yes No No

3 (CHEN et al., 2014) Linear Pro-

gramming

Yes No No Yes

4 (DEMARTEAU;

BREUER; STAN-

DAERT, 2012)

Markov Model

and Linear pro-

gramming

No No No No

5 (DIMITROV et al.,

2009)

Network Opti-

mization

No Yes Yes Yes

6 (TEBBENS et al.,

2010)

Linear Pro-

gramming

No Yes Yes Yes

7 (ENGINEER; KE-

SKINOCAK; PICK-

ERING, 2009)

Dynamic Pro-

gramming

Yes No No No

8 (FERREIRA; AR-

RUDA; MARUJO,

2018)

Markov Deci-

sion Processes

No No Yes No

9 (GIRARD, 2010) Cost analysis,

forecasting

Yes No No No

10 (GOLDSTEIN et al.,

2010)

Simulation Yes Yes Yes Yes

Continued on next page
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Table A2 – Continued from previous page

# Authors Optimization

approach

Solution

Applied

Outbreak Uncertainty Network

11 (HOVAV;

TSADIKOVICH,

2015)

Linear Pro-

gramming +

Network

Yes No No Yes

12 (KIM et al., 2016) Network Opti-

mization

No Yes No Yes

13 (LAUTON;

ROTHKOPF;

PIBERNIK, 2019)

Game Theory Yes No Yes No

14a (MEDLOCK; GAL-

VANI, 2009)

Epidemiological

Model

Yes Yes No No

14b (MEYERS; GAL-

VANI; MEDLOCK,

2009)

Epidemiological

Model

Yes Yes No No

15 (PRECIADO et al.,

2014)

Geometric Pro-

gramming

Yes Yes Yes Yes

16 (REN; ORDONEZ;

WU, 2013)

Optimal Con-

trol + Mixed

integer pro-

gramming

(MIP)

No Yes No No

17 (RODRIGUES; MON-

TEIRO; TORRES,

2014)

Optimal Con-

trol

No Yes No No

18 (SAMII et al., 2012) Revenue Man-

agement

No No Yes Yes

Continued on next page
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Table A2 – Continued from previous page

# Authors Optimization

approach

Solution

Applied

Outbreak Uncertainty Network

19 (SAVACHKIN;

URIBE, 2012)

Simulation Yes Yes No Yes

20 (PENG et al., 2019) Epidemiological

Model

No Yes Yes Yes

21 (STANDAERT et al.,

2020)

Constrained

Optimization

Yes No No No

22 (THAKKAR et al.,

2019)

Epidemiological

Model

No No Yes No

23 (HOTA; SUN-

DARAM, 2019)

Game Theory

applied to Epi-

demiological

Model

No Yes Yes Yes

24 (ENAYATI;

ÖZALTIN, 2020)

Epidemiological

Model, Mixed-

integer pro-

gramming

(MIP)

No Yes No No

25 (VENKATRAMANAN

et al., 2019)

Epidemiological

Model

No No No Yes

Source: Author
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APPENDIX B – SUMMARY OF STUDIES

INCLUDED IN THE

RAPID REVIEW

Appendix B presents a summary of each of the manuscripts included in the rapid

review.

Table B1: Manuscripts included in the rapid review.

Authors Overview of the problem description

(AGUSTO; KHAN,

2018)

This paper investigates the transmission dynamic of dengue

and studies the impact of imperfect vaccine in the bid to control

the dengue. Their approach is to write and solve the optimal

control theory model and then using sensitivity analysis to

test and develop control strategies that reduce transmission.

Specifically, they focus on the use of insectiside and the use of

vaccination. Results showed that the use of both significantly

reduce transmission; also, as the cost of one increases, the use

of the other increases as well.

Continued on next page
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Table B1 – Continued from previous page

Authors Main Goal

(BRIAT; VERRIEST,

2009)

This work presents a modified SIR model that includes a

distribute delay when modeling the rate at which infected

people recover. The model is validated with data from an

influenza epidemic in a school and was used to develop an

optimal vaccination strategy (control theory application) by

measuring the cost of campaign and the time spent by the

population being sick. The model is run through a numerical

example.

(CHEN et al., 2014) This paper develops a linear programming model for the dis-

tribution networks of generic WHOEPI vaccines in developing

countries. They run 4 different scenarios in addition to the

baseline model. The model was applied to the supply chains of

3 countries, making it easy to adapt it to different environments

and use it as a planning and evaluation tool.

(DEMARTEAU;

BREUER; STAN-

DAERT, 2012)

This paper presents two model: a markov decision model

and a linear program. The markov model estimates the cost

and the number of cervical cancer cases for a population

of 100 000 women at prevention steady state level, for each

prevention strategy analysed separately. Then, using this as

input, the Linear Program finds the optimal mix of cervical

cancer prevention strategies to minimize the expected cervical

cancer incidence rate within a fixed budget, with additional

constraints on screening and vaccination coverage. It was

applied in UK and Brazil data and resulted in a reduction of

cancer cases.

Continued on next page
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Authors Main Goal

(DIMITROV et al.,

2009)

This paper presents an optimization model for distributing

a stockpile for treatment of infected cases during the early

stages of a pandemic, prior to the wide availability of vaccines.

The optimization method efficiently searches large sets of

intervention strategies applied to a stochastic network model of

pandemic influenza transmission within U.S. cities. Two main

results arise: 1) for mildly transmissible strains, an aggressive

community-based antiviral treatment strategy involving early,

widespread, pro-rata distribution of antivirals to States can

contribute to slowing the transmission, and 2) For more highly

transmissible strains, outcomes of antiviral use are more heavily

impacted by choice of distribution intervals, quantities per

shipment, and timing of shipments in relation to pandemic

spread. The results provide support for the management of

future influenza pandemics.

(TEBBENS et al.,

2010)

This paper develops a framework for determining the optimal

management of a vaccine stockpile over time. It is applied to

the polio vaccine stockpile for the post-eradication era. The

framework includes a Linear Progam and is used to discuss

issues on the development and use of the polio vaccine stockpile.

This serves as context in discussions among decision makers

by demonstrating how optimization may lead to useful results

in terms of the ordering strategy that minimizes the present

value of public health and vaccine costs.

Continued on next page
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Authors Main Goal

(ENGINEER; KE-

SKINOCAK; PICK-

ERING, 2009)

The authors examine the complicating characteristics of the

catch-up scheduling problem and design a Dynamic Program-

ming algorithm that constructs a schedule for a child based

on their vaccination history and current age that are optimal

with respect to the potential coverage provided to the child

.The paper presents four solutions obtained for two different

real-life scenarios for children requiring catch-up schedules.

(FERREIRA; AR-

RUDA; MARUJO,

2018)

This paper aims to build a Markov decision-making model to

find the optimal ordering (collecting) policy and inventory man-

agement of perishable items for humanitarian organizations

in continuous aid operations, considering uncertain (stochas-

tic) demands and donations and deterministic deterioration

rate. Different experiments are presented to show the different

optimal ordering policies for different shelf lives of critical

perishable goods. The outputs of the model are the actions

that must be executed at each decision period, as a function of

the inventory level at the onset of the current decision period.

(GIRARD, 2010) This paper performs a cost analysis that compares the to-

tal costs and benefits among different immunaztion programs

with varying percentages of vaccination coverage. Data from

England and Wales is used. When minimizing the total social

costs, they find that the program with 90% coverage main-

tained over time is best since the social benefits outweigh the

costs.

Continued on next page
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Authors Main Goal

(GOLDSTEIN et al.,

2010)

This paper develops a stratified mass-action model and tests

different influenza vaccination strategies on a population in

Utah using simulation and representing the dynamics as a

network. Considering age as the stratification, they found

that the top priority in an allocation of a sizeable quantity of

seasonal influenza vaccinations goes to young children (0–6),

followed by teens (14–18), then children (7–13), with the adult

share being quite low. They compare the results with influenza

vaccination coverage in the US.

(HOVAV;

TSADIKOVICH,

2015)

In this work, the authors aimed to reduce the costs of vaccine

distribution without reducing the effectiveness of the existing

vaccination campaign. They consider the number of manufac-

turers, distributing to distribution centres and clinics. The

developed Mixed Integer Programming Model is applied to

simulate several different scenarios of demand and supplier

numbers. They achieved a 12% reduction in costs in a simu-

lated scenario.

(KIM et al., 2016) This work aims to improve the distribution of vaccines based

on the concept of minimal flow, and thus reduce the number of

infected people until a cure emerges. They introduce the prob-

lem as the social-relation-based vaccine distribution planning

problem (SVDP). Based on simulations, their model presents

a better distribution strategy than a random distribution.

Continued on next page
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Authors Main Goal

(LAUTON;

ROTHKOPF;

PIBERNIK, 2019)

The work aims to understand the impacts faced by a non-for-

profit buyer related to the inclusion of a new manufacturer. It

is understood that the entry of a new generic supplier can help

to reduce the cost of the product but contributes to an increase

in supply chain risk. The work divides a buyer’s performance

into two stages: negotiation and coordination. For the bilateral

negotiation model, the Nash Bargaining Model is used, and in

the coordination model, a Mathematical Model is used.

(MEDLOCK; GAL-

VANI, 2009)

This paper focused on determining optimal vaccine allocation

for influenza considering five outcome measures: deaths, in-

fections, years of life lost, contingent valuation, and economic

costs. The model tracks 17 age groups and tests all possible

age-based vaccination policies. They found that optimal vac-

cination is achieved by prioritizing schoolchildren and adults

aged 30 to 39 years. An explanation for this is that children

are most responsible for transmission, and their parents serve

as bridges to the rest of the population. Therefore, age-specific

transmission dynamics is paramount to the optimal allocation

of influenza vaccines.

Continued on next page
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Authors Main Goal

(MEYERS; GAL-

VANI; MEDLOCK,

2009)

On this ocassion, the authors focused on determining optimal

vaccine allocation for influenza considering three outcome

measures: deaths, infections and hospitalizations. It was found

that optimal allocations of vaccine among people in different

age groups and peoplewith high-risk conditions depends on

the schedule of vaccine availability relative to the progress

of theepidemic. For the projected schedule of H1N1 vaccine

availability, the optimal strategy to reduceinfluenza-related

deaths is to initial target high-risk people, followed by school-

aged children (5–17) andthen young adults (18–44). The

optimal strategy to minimize hospitalizations, however, is

to target ages 5–44 throughout the vaccination campaign,

with only a tiny amount of vaccine used on high-risk people.

Optimizing at each vaccine release time independently does

not give the overall optimal strategy.

(PRECIADO et al.,

2014)

This work, in addition to considering the existence of vaccines,

takes into account the existence of drugs that can prevent the

continuation of a disease, such as an antidote. The objective

then was to find the optimal distribution of both limited-

budget and unlimited-budget products. The problem is solved

in polynomial time using geometric programming (GP). They

illustrate the solution applied to a real aerial network.

Continued on next page
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Authors Main Goal

(REN; ORDONEZ;

WU, 2013)

This work presents a multi-city resource allocation model to

distribute a limited amount of vaccine in order to minimize

the total number of fatalities due to a smallpox outbreak.

The model decides the amount of limited supplies to deliver

and which infection control measure (isolation, ring, or mass

vaccination) to use in each location in order to decrease the

number of fatalities. The proposed model approximates the

disease propagation dynamics in order to represent the prob-

lem as a mixed integer programming problem. The model is

applied to a case study in planning an emergency response to

a hypothetical national smallpox outbreak, which shows the

possibility of saving a significant number of lives compared

with a prorated allocation policy.

(RODRIGUES; MON-

TEIRO; TORRES,

2014)

This work considers a scenario where a vaccine for dengue is

existent. Thus, the objective is to simulate the optimization of

disease control according to vaccine efficacy and vaccine cover-

age. Also, the scenario where the pediatric population would

be vaccinated, and the scenario where the entire population

would be randomly vaccinated are simulated. They perform

an analysis with an optimal control approach to understand

the impact of introducing a vaccine.

(SAMII et al., 2012) This work addresses the optimization of vaccine distribution

and management of reserved stocks when there are two classes

of the population. It is common for a vaccination to be carried

out with priority for a portion of the population, such as health

professionals. They perform numerical simulations to sense

the impact of the model on the actions of different decision-

makers. They conclude that in some scenarios the allocation

of vaccines outweighs or impacts the reserve of vaccines for a

specific population.

Continued on next page
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Authors Main Goal

(SAVACHKIN;

URIBE, 2012)

This work uses simulation-optimization to create a dynamic

vaccine allocation model. The study presents a simulation

using data from 4 counties in Florida. The presented model has

the capacity to redistribute resources in face of the changes that

occurred during the outbreak situation. The main contribution

of the study is that it gives the decision maker a model that

allows him to modify the parameters as the situation of an

epidemic changes.

(PENG et al., 2019) This work presents a susceptible-infected-susceptible model.

The model considers the probability of individuals becoming

infected with heterogeneous spatial conditions. The study

takes into account the impact of infections by individuals who

move and with heterogeneous conditions of proximity. The

study confirmed that the distance radius in individuals directly

impacts the agility with which an epidemic is fought. The

results obtained were observed through simulations.

(STANDAERT et al.,

2020)

This study proposes a constrained optimization model to test

influenza vaccination strategies in the American scenario. The

study considers the existence of multiple vaccines and tests

multiple vaccination strategies with US data. The objective

was to confirm that the model can determine an optimal

vaccination strategy based on different age groups when the

scenario is of a limited budget.

(THAKKAR et al.,

2019)

This study considers the scenario of vaccination campaigns

against measles in Pakistan, and its results were used in the

2018 vaccination campaign. One of the main contributions

of this study is that it considers scenarios where the supply

chain infrastructure is not perfectly adequate, which matches

the reality of many developing countries.

Continued on next page
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Authors Main Goal

(HOTA; SUN-

DARAM, 2019)

This study considers the scenario of decisions regarding vacci-

nation in the face of different possibilities of human behaviour

(perspection).

They investigated ”decentralized vaccination decisions by hu-

man decision-makers against networked SIS epidemics in a

population game framework”.

(ENAYATI;

ÖZALTIN, 2020)

This study focuses on optimizing the vaccination strategy to

halt the advance of an early-stage epidemic.

The study proposes separating vaccine distribution for different

age groups and regions to find the best distribution strategy.

The study is composed of epidemic model models with a

nonlinear mathematical program and a global optimization

algorithm.

(VENKATRAMANAN

et al., 2019)

This study considers the US scenario regarding seasonal In-

fluenza.

Through simulation, the study seeks to find the best way to

distribute vaccines to American states, in order to reduce the

risk of an epidemic.

The study found that sending vaccines in advance to regions

that start epidemics can reduce vaccination campaign size by

17%.
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APPENDIX C – MAP OF INFORMATION

SYSTEMS BEING USED

BY PNI

Figure C1 shows a mapping of the information systems in use in the logistics chain of

the National Immunization Program (PNI). The different systems are identified by colors,

and the pools separate the departments.
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Figure C1: Illustration of the information systems in use at different instances in PNI
Source: Author
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APPENDIX D – MACHINE LEARNING

CODES

Below the code in Python with the three machine learning models introduced in

Chapter 4 is presented.

1 import pandas as pd

2 import numpy as np

3 import matplotlib.pyplot as plt

4 #from sklearn import linear_model

5 from sklearn import ensemble

6

7 data_raw = pd.read_csv(’working_data_diff.csv’)

8 data = data_raw.iloc [1: ,:] # removing first row with nan

↪→ value

9

10 train_test_cutoff = 130

11

12 # calculating normalization factors for delta_dosis

13 #m = data.iloc[: train_test_cutoff ,:]. delta_dosis.mean() #

↪→ mean

14 #s = data.iloc[: train_test_cutoff ,:]. delta_dosis.std() #

↪→ standard deviation

15 m=0

16 s=1

17

18 # creating a normalized delta_dosis column

19 data[’delta_dosis_norm ’] = (data.delta_dosis - m)/s

20
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21 # creating lags

22 for i in range(1, 6):

23 data["lag_{}".format(i)] = data.delta_dosis_norm.shift(i)

24

25 # removing nans resulting from shifting

26 data = data.iloc [5:,:]

27

28 # test set

29 data_test = data.iloc [130: ,:]

30

31 # train set

32 data_train = data.iloc [:130 ,:]

33

34 #regression column names

35 cols = [z for z in data_train if ’lag_’ in z]

36

37 # fitting regression

38 #R = linear_model.Ridge(alpha =0.05)

39 R = ensemble.GradientBoostingRegressor ()

40 R.fit(data[cols], data.delta_dosis_norm)

41

42 R2 = ensemble.RandomForestRegressor ()

43 R2.fit(data[cols], data.delta_dosis_norm)

44

45 # in-sample prediction

46 in_sample_preds = R.predict(data_train[cols])

47 in_sample_preds2 = R2.predict(data_train[cols]) #Juliano

48

49 # stacking real data and predictions

50 w = np.vstack ([np.array(data_train.delta_dosis_norm),

↪→ in_sample_preds ]).T

51 w2 = np.vstack ([np.array(data_train.delta_dosis_norm),

↪→ in_sample_preds2 ]).T #Juliano

52

53 # plotting prediction and real in -sample data

54 plt.figure(1, figsize =(13, 6))
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55 plt.plot(np.array(data_train.delta_dosis_norm),’r-o’,label=’

↪→ Real data’)

56 plt.plot(in_sample_preds ,’b-o’, label=’Predictions ’)

57 plt.xlabel(’Number of months of training data’)

58 plt.ylabel(’Normalized delta’)

59 plt.title(’Gadient Boosting prediction and real in -train data

↪→ ’)

60 plt.legend ()

61 plt.savefig(’BR_BCG_01_GB_NORM_TRAIN.png’)

62

63 #Juliano

64 plt.figure(2, figsize =(13, 6))

65 plt.plot(np.array(data_train.delta_dosis_norm),’r-o’, label=’

↪→ Real data’)

66 plt.plot(in_sample_preds2 ,’b-o’, label=’Predictions ’)

67 plt.xlabel(’Number of months of training data’)

68 plt.ylabel(’Normalized delta’)

69 plt.title(’Random Forest Regresssor prediction and real in-

↪→ train data’)

70 plt.legend ()

71 plt.savefig(’BR_BCG_02_RFR_NORM_TRAIN.png’)

72

73 # calculating MSE

74 in_sample_err = np.sqrt (1/ float(len(w))*np.dot((w[:,0]-w

↪→ [: ,1]), (w[:,0]-w[: ,1])))

75 in_sample_err2 = np.sqrt (1/ float(len(w2))*np.dot((w2[:,0]-w2

↪→ [: ,1]), (w2[:,0]-w2[:,1])))

76

77 # out -sample predictions

78 out_sample_preds = R.predict(data_test[cols])

79 out_sample_preds2 = R2.predict(data_test[cols])

80

81 out_sample_preds_ens = (out_sample_preds+out_sample_preds2)

↪→ *0.5

82

83 # stacking real data and predictions
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84 out_sample_w = np.vstack ([np.array(data_test.delta_dosis_norm

↪→ ), out_sample_preds ]).T

85

86 # stacking real data and predictions

87 out_sample_w2 = np.vstack ([np.array(data_test.

↪→ delta_dosis_norm), out_sample_preds2 ]).T

88

89 # stacking real data and predictions

90 out_sample_w_ens = np.vstack ([np.array(data_test.

↪→ delta_dosis_norm), out_sample_preds_ens ]).T

91

92 # plotting prediction and real in -sample data

93 plt.figure(3, figsize =(13, 6))

94 plt.plot(np.array(data_test.delta_dosis_norm),’r-o’,label=’

↪→ Real data’)

95 plt.plot(out_sample_preds ,’b-o’, label=’Predictions ’)

96 plt.xlabel(’Number of months of test data’)

97 plt.title(’Gadient Boosting predictions and real in-test data

↪→ ’)

98 plt.legend ()

99 plt.savefig(’BR_BCG_03_GB_NORM_TEST.png’)

100

101 plt.figure(4, figsize =(13, 6))

102 plt.plot(np.array(data_test.delta_dosis_norm),’r-o’,label=’

↪→ Real data’)

103 plt.plot(out_sample_preds2 ,’b-o’,label=’Predictions ’)

104 plt.xlabel(’Number of months of test data’)

105 plt.title(’Random Forest Regresssor predictions and real in-

↪→ test data’)

106 plt.legend ()

107 plt.savefig(’BR_BCG_04_RFR_NORM_TEST.png’)

108

109 # calculating MSE

110 out_sample_err = np.sqrt (1/ float(len(out_sample_w))*np.dot((

↪→ out_sample_w [:,0]- out_sample_w [:,1]), (out_sample_w

↪→ [:,0]- out_sample_w [:,1])))
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111

112 # calculating MSE

113 out_sample_err2 = np.sqrt (1/ float(len(out_sample_w2))*np.dot

↪→ (( out_sample_w2 [:,0]- out_sample_w2 [:,1]), (

↪→ out_sample_w2 [:,0]- out_sample_w2 [:,1])))

114

115 # calculating MSE

116 out_sample_err_ens = np.sqrt (1/ float(len(out_sample_w_ens))*

↪→ np.dot(( out_sample_w_ens [:,0]- out_sample_w_ens [: ,1]), (

↪→ out_sample_w_ens [:,0]- out_sample_w_ens [:,1])))

117

118 # recreating dosis values from dosis diff

119 # 6/1/2004 1788079

120

121 # in-sample dosis preds

122 d_pred_in_sample = []

123 dosis = 1788079

124 for i,x in enumerate(in_sample_preds):

125 # rescaling

126 x_hat = (x+m)*s

127 d_pred_in_sample.append(dosis+x)

128 dosis = data_train.iloc[i,:]. dosis_applied

129

130 d_pred_in_sample = np.array(d_pred_in_sample)

131

132 plt.figure(5, figsize =(13, 6))

133 plt.plot(np.array(data_train.dosis_applied),’r-o’,label=’Real

↪→ data’)

134 plt.plot(d_pred_in_sample , ’b-o’, label=’Predictions ’)

135 plt.xlabel(’Number of months of train data’)

136 plt.ylabel(’Number of dosis’)

137 plt.title(’Gradient Boosting and Random Forest Regression

↪→ predictions and real train data’)

138 plt.legend ()

139 plt.savefig(’BR_BCG_05_GBRFR_REAL_TRAIN.png’)

140
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141 # out -sample dosis preds

142 d_pred_out_sample = []

143 dosis = 1314352

144 for i,x in enumerate(out_sample_preds):

145 # rescaling

146 x_hat = (x+m)*s

147 d_pred_out_sample.append(dosis+x)

148 dosis = data_test.iloc[i,:]. dosis_applied

149

150 d_pred_out_sample = np.array(d_pred_out_sample)

151

152 plt.figure(6, figsize =(13, 6))

153 plt.plot(np.array(data_test.dosis_applied),’r-o’, label=’Real

↪→ data’)

154 plt.plot(d_pred_out_sample , ’b-o’,label=’Predictions ’)

155 plt.xlabel(’Number of months of test data’)

156 plt.ylabel(’Number of dosis’)

157 plt.title(’Gradient Boosting and Random Forest Regression

↪→ predictions and real test data’)

158 plt.legend ()

159 plt.savefig(’BR_BCG_06_GBRFR_REAL_TEST.png’)
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APPENDIX E – MACHINE LEARNING

OUTPUT GRAPHS

This session presents the prediction curves generated by the model developed. The

following figures were generated by applying the model to the data compiled from Brazil

and also from some states for comparison purposes.

The following sections provide graphical representations of actual historical data and

model forecasts.

E.1 Gradient Boosting preliminary results

Figures E1 and E2 illustrate the comparison between the output data of the Gradi-

ent Boosting model and the real Brazil’s historical data in the training and test data,

respectively.

Figure E1: Gadient Boosting prediction and real in-train data for Brazil.

Source: Author.
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Figure E2: Gadient Boosting prediction and real in-test data for Brazil.

Source: Author.

E.2 Random Forest Regressor preliminary results

Figures E3 and E4 illustrate the comparison between the output data of the Random

Forest Regressor model and the real Brazil’s historical data in the training and test data,

respectively.

Figure E3: Random Forest Regressor prediction and real in-train data for Brazil.

Source: Author.
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Figure E4: Random Forest Regressor prediction and real in-test data for Brazil.

Source: Author.

E.3 Gradient Boosting and Random Forest Regressor

preliminary results for Brazil

Figures E5 and E6 illustrate the comparison between the output data of the Random

Forest Regressor model with in addition to the Gradient Boosting model with the real

Brazil’s historical data in the training and test data, respectively. The data presented here

present real numbers of doses, that is, they are non-normalized data.

Figure E5: Gadient Boosting and Random Forest Regressor prediction and real in-train
data for Brazil

Source: Author.
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Figure E6: Gadient Boosting and Random Forest Regressor prediction and real in-test
data for Brazil.

Source: Author.

E.4 Scenario: States

In this section, the model is applied in forecasting exclusive demand for states. As it

is still in the development and adaptation phase, it is being tested with data from São

Paulo state. The final version of this study should include other Brazilian states.

E.4.1 Scenario: São Paulo

This section presents the application of the machine learning model in the historical

data of São Paulo.

Gradient Boosting preliminary results: Figures E7 and E8 illustrate the compar-

ison between the output data of the Gradient Boosting model and the real São Paulo’s

historical data in the training and test data, respectively.



131

Figure E7: Gadient Boosting prediction and real in-train data for São Paulo State.

Source: Author.

Figure E8: Gadient Boosting prediction and real in-test data for São Paulo State.

Source: Author.
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Random Forest Regressor preliminary results for São Paulo State: Figures E9

and E10 illustrate the comparison between the output data of the Random Forest Regressor

model and the real São Paulo’s historical data in the training and test data, respectively.

Figure E9: Random Forest Regressor prediction and real in-train data for São Paulo State.

Source: Author.

Figure E10: Random Forest Regressor prediction and real in-test data for São Paulo State.

Source: Author.
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Gradient Boosting and Random Forest Regressor preliminary results:

Figures E11 and E12 illustrate the comparison between the output data of the Random

Forest Regressor model with in addition to the Gradient Boosting model with the real São

Paulo’s historical data in the training and test data, respectively.

Figure E11: Gadient Boosting and Random Forest Regressor prediction and real in-train
data for São Paulo State.

Source: Author.

Figure E12: Gadient Boosting and Random Forest Regressor prediction and real in-test
data.

Source: Author.
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APPENDIX F – DETERMINISTIC

OPTIMIZATION MODEL

The deterministic optimization model first introduced in Chapter 5 is presented below

written in GAMS language. The model below is considering 4 states and 3 months, so it

is easier to understand its write.

1

2 $title vaccine allocation

3 Set

4 i ’states ’ /RO,AC,AM ,RR/

5 k ’month’ /1*3/;

6 Alias (i, j);

7 Parameter

8 is(i) ’initial stock of each state ’

9 /RO 1000

10 AC 1000

11 AM 1000

12 RR 1000/

13

14 iud(i) ’initial unmet demand ’

15 /RO 200

16 AC 0

17 AM 200

18 RR 0/

19

20 fi ’initial stock of federal government ’

21 /10000/

22
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23 h(i) ’minimum amount of vaccines for interstate exchange

↪→ of the state i’

24 /RO 1000

25 AC 1000

26 AM 1000

27 RR 1000/

28

29 c ’cost of the vaccine ’

30 /1/

31

32 p(i) ’cost of unmet demand in state i’

33 /RO 0.9

34 AC 0.4

35 AM 1.9

36 RR 0.2/

37

38 v ’holding cost for federal government ’

39 /0.2/

40

41 q(i) ’holding cost for state i’

42 /RO 0.099

43 AC 0.1

44 AM 0.098

45 RR 0.1/

46

47 t(i) ’cost of transportation from federal stock to state

↪→ i’

48 /RO 3.473

49 AC 4.007

50 AM 4.374

51 RR 5.159/

52

53 BigM ’big M’

54 /10000000000/

55

56 a ’alpha’
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57 /0.70/

58

59 b ’beta’

60 /0.0/;

61

62 Table d(i,k) ’predicted demand of vaccines of state i in

↪→ month k’

63 1 2 3

64 RO 2186 1784 2206

65 AC 1060 1039 1148

66 AM 6577 5290 5890

67 RR 746 843 730;

68

69 Table r(i,j) ’cost of transportation from state i to state

↪→ j’

70 RO AC AM RR

71 RO 1000 0.544 0.901 1.686

72 AC 0.544 1000 1.445 2.23

73 AM 0.901 1.445 1000 0.785

74 RR 1.686 2.23 0.785 1000;

75

76 Positive Variables

77

78 f(k) ’new vaccines in the federal stock in month k

↪→ ’

79 m(i,k) ’unmet demand of state i in the end of month

↪→ k’

80 n(i,k) ’surplus of state i in the end of month k’

81 y(i,j,k) ’number of vaccines to be sent from state i

↪→ to state j in the beginning of month k’

82 x(i,k) ’number of new vaccines sent from federal

↪→ stock to state i in the beginning of month k’

83 s(k) ’surplus of federal in the end of month k’;

84

85 Variable

86 z ’total cost of vaccine allocation ’;
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87

88 Binary Variable u(i,j,k) ’it will help to define if there

↪→ will be vaccines sent from the state i to state j in

↪→ the month k’;

89

90

91 Equation

92 cost ’objective function ’

93 demand(i,k) ’observe relation demand x order’

94 federalbalance(k) ’update federal stock ’

95 excapacity(i,j,k) ’used to determine a maximum amount

↪→ of ZERO or M vaccines permitted to be send to other

↪→ state.’

96 minamount(i,j,k) ’check if the state can send vaccine

↪→ and , if yes , the minimum amount allowed ’

97 percentage(i,k) ’check percentage of unmet demand ’

98 unmetattheend(i,k) ’guarantee that all demand is

↪→ satisfied in the last month ’;

99

100

101

102 cost.. z =e= sum((k), c*f(k)) + sum((i,k), p

↪→ (i)*m(i,k)) + sum((i,k), q(i)*n(i,k)) + sum((i,k), (1-a

↪→ )*t(i)*x(i,k)) + sum((i,j,k), r(i,j)*y(i,j,k)) + sum((k

↪→ ), v*s(k));

103

104 demand(i,k).. x(i,k) - m(i,k-1) + is(i)$(ord(k)=1)

↪→ - iud(i) + n(i,k-1) - sum(j, y(i,j,k)) + sum(j, y(j,i,k

↪→ )) =e= d(i,k) - m(i,k) + n(i,k);

105

106 federalbalance(k).. f(k)+ fi$(ord(k)=1) + s(k-1) -s(k) =e

↪→ = sum(i, x(i,k));

107

108 excapacity(i,j,k).. y(i,j,k) =l= BigM*u(i,j,k);

109

110 minamount(i,j,k).. y(i,j,k) =g= h(i)*u(i,j,k);
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111

112 percentage(i,k).. m(i,k) =l= (1-b)*d(i,k);

113

114 unmetattheend(i,k).. m(i,’3’) =e= 0;

115

116

117

118 model vaccineallocation /all/;

119 solve vaccineallocation using mip minimizing z;
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APPENDIX G – DETERMINISTIC

OPTIMIZATION MODEL

OUTPUT

The following file is a version of the output file of the deterministic optimization model

issued by NEOS Server. To get the results the model was fed with data from 4 states and

3 months, so it is easier to understand its results.

NEOS Server Deterministic Optimization Model Output.txt

NEOS Server Home

NEOS Server Version 5.0

Job# : 8059300

Password : GEeMIqQC

User : None

Solver : go:ANTIGONE:GAMS

Start : 2020-04-03 17:41:47

End : 2020-04-03 17:42:06

Host : NEOS HTCondor Pool

Disclaimer:

This information is provided without any express or

implied warranty. In particular, there is no warranty

of any kind concerning the fitness of this

information for any particular purpose.

Executed on prod-exec-5.neos-server.org

GAMS 30.1.0 re01a340 Released Jan 10, 2020 LEX-LEG x86 64bit/Linux 04/03/20 17:42:05 Page 1
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vaccine allocation

C o m p i l a t i o n

COMPILATION TIME = 0.000 SECONDS 3 MB 30.1.0 re01a340 LEX-LEG

GAMS 30.1.0 re01a340 Released Jan 10, 2020 LEX-LEG x86 64bit/Linux 04/03/20 17:42:05 Page 2

vaccine allocation

Model Statistics SOLVE vaccineallocation Using MIP From line 115

MODEL STATISTICS

BLOCKS OF EQUATIONS 6 SINGLE EQUATIONS 124

BLOCKS OF VARIABLES 8 SINGLE VARIABLES 139

NON ZERO ELEMENTS 439 DISCRETE VARIABLES 48

GENERATION TIME = 0.003 SECONDS 4 MB 30.1.0 re01a340 LEX-LEG

EXECUTION TIME = 0.004 SECONDS 4 MB 30.1.0 re01a340 LEX-LEG

GAMS 30.1.0 re01a340 Released Jan 10, 2020 LEX-LEG x86 64bit/Linux 04/03/20 17:42:05 Page 3

vaccine allocation

Solution Report SOLVE vaccineallocation Using MIP From line 115

S O L V E S U M M A R Y

MODEL vaccineallocation OBJECTIVE z

TYPE MIP DIRECTION MINIMIZE

SOLVER XPRESS FROM LINE 115

RESOURCE USAGE, LIMIT 0.028 1000.000

ITERATION COUNT, LIMIT 30 2000000000

FICO-Xpress 30.1.0 re01a340 Released Jan 10, 2020 LEG x86 64bit/Linux

Xpress Optimizer 33.01

Xpress Solver 64bit v8.5.8 Nov 14 2018

fixing discrete vars and re-solving as an LP.
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fixed LP solved successfully, objective = 39230.1696.

Integer solution proven optimal.

MIP solution : 39230.169600

Best possible : 39230.169600

Absolute gap : 0.000000 optca : 0.000000

Relative gap : 0.000000 optcr : 0.100000

LOWER LEVEL UPPER MARGINAL

---- EQU cost . . . 1.000

cost objective function

---- EQU demand observe relation demand x order

LOWER LEVEL UPPER MARGINAL

RO.1 1186.000 1186.000 1186.000 1.944

RO.2 1784.000 1784.000 1784.000 2.042

RO.3 2206.000 2206.000 2206.000 1.142

AC.1 60.000 60.000 60.000 2.104

AC.2 1039.000 1039.000 1039.000 2.202

AC.3 1148.000 1148.000 1148.000 1.802

AM.1 5577.000 5577.000 5577.000 2.214

AM.2 5290.000 5290.000 5290.000 2.312

AM.3 5890.000 5890.000 5890.000 1.900

RR.1 -254.000 -254.000 -254.000 2.448

RR.2 843.000 843.000 843.000 2.548

RR.3 730.000 730.000 730.000 2.348

---- EQU federalbalance update federal stock

LOWER LEVEL UPPER MARGINAL

1 -1.000E+4 -1.000E+4 -1.000E+4 0.902

2 . . . 1.000

3 . . . 0.800

---- EQU excapacity used to determine a maximum amount of ZERO or M vaccines p

ermitted to be send to other state.

LOWER LEVEL UPPER MARGINAL
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RO.RO.1 -INF . . .

RO.RO.2 -INF . . .

RO.RO.3 -INF . . .

RO.AC.1 -INF . . .

RO.AC.2 -INF . . .

RO.AC.3 -INF . . -0.116

RO.AM.1 -INF . . .

RO.AM.2 -INF . . .

RO.AM.3 -INF . . .

RO.RR.1 -INF . . .

RO.RR.2 -INF . . .

RO.RR.3 -INF . . .

AC.RO.1 -INF . . .

AC.RO.2 -INF . . .

AC.RO.3 -INF . . .

AC.AC.1 -INF . . .

AC.AC.2 -INF . . .

AC.AC.3 -INF . . .

AC.AM.1 -INF . . .

AC.AM.2 -INF . . .

AC.AM.3 -INF . . .

AC.RR.1 -INF . . .

AC.RR.2 -INF . . .

AC.RR.3 -INF . . .

AM.RO.1 -INF . . .

AM.RO.2 -INF . . .

AM.RO.3 -INF . . .

AM.AC.1 -INF . . .

AM.AC.2 -INF . . .

AM.AC.3 -INF . . .

AM.AM.1 -INF . . .

AM.AM.2 -INF . . .

AM.AM.3 -INF . . .

AM.RR.1 -INF . . .

AM.RR.2 -INF . . .

AM.RR.3 -INF . . .

RR.RO.1 -INF . . .

RR.RO.2 -INF . . .

RR.RO.3 -INF . . .

RR.AC.1 -INF . . .

RR.AC.2 -INF . . .

RR.AC.3 -INF . . .
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RR.AM.1 -INF . . .

RR.AM.2 -INF . . .

RR.AM.3 -INF . . .

RR.RR.1 -INF . . .

RR.RR.2 -INF . . .

RR.RR.3 -INF . . .

---- EQU minamount check if the state can send vaccine and, if yes, the minimu

m amount allowed

LOWER LEVEL UPPER MARGINAL

RO.RO.1 . . +INF .

RO.RO.2 . . +INF .

RO.RO.3 . . +INF .

RO.AC.1 . . +INF .

RO.AC.2 . . +INF .

RO.AC.3 . . +INF .

RO.AM.1 . . +INF .

RO.AM.2 . . +INF .

RO.AM.3 . . +INF .

RO.RR.1 . . +INF .

RO.RR.2 . . +INF .

RO.RR.3 . . +INF .

AC.RO.1 . . +INF .

AC.RO.2 . . +INF .

AC.RO.3 . . +INF .

AC.AC.1 . . +INF .

AC.AC.2 . . +INF .

AC.AC.3 . . +INF .

AC.AM.1 . . +INF .

AC.AM.2 . . +INF .

AC.AM.3 . . +INF .

AC.RR.1 . . +INF .

AC.RR.2 . . +INF .

AC.RR.3 . . +INF .

AM.RO.1 . . +INF .

AM.RO.2 . . +INF .

AM.RO.3 . . +INF .

AM.AC.1 . . +INF .

AM.AC.2 . . +INF .

AM.AC.3 . . +INF .

AM.AM.1 . . +INF .
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AM.AM.2 . . +INF .

AM.AM.3 . . +INF .

AM.RR.1 . . +INF .

AM.RR.2 . . +INF .

AM.RR.3 . . +INF .

RR.RO.1 . . +INF .

RR.RO.2 . . +INF .

RR.RO.3 . . +INF .

RR.AC.1 . . +INF .

RR.AC.2 . . +INF .

RR.AC.3 . . +INF .

RR.AM.1 . . +INF .

RR.AM.2 . . +INF .

RR.AM.3 . . +INF .

RR.RR.1 . . +INF .

RR.RR.2 . . +INF .

RR.RR.3 . . +INF .

---- EQU percentage check percentage of unmet demand

LOWER LEVEL UPPER MARGINAL

RO.1 -INF . 2186.000 .

RO.2 -INF . 1784.000 .

RO.3 -INF 2206.000 2206.000 -0.242

AC.1 -INF . 1060.000 .

AC.2 -INF . 1039.000 .

AC.3 -INF 1148.000 1148.000 -1.402

AM.1 -INF . 6577.000 .

AM.2 -INF . 5290.000 .

AM.3 -INF 5890.000 5890.000 .

RR.1 -INF . 746.000 .

RR.2 -INF . 843.000 .

RR.3 -INF 730.000 730.000 -2.148

---- VAR f new vaccines in the federal stock in month k

LOWER LEVEL UPPER MARGINAL

1 . . +INF 0.098

2 . 5525.000 +INF .

3 . . +INF 0.200
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---- VAR m unmet demand of state i in the end of month k

LOWER LEVEL UPPER MARGINAL

RO.1 . . +INF 0.998

RO.2 . . +INF .

RO.3 . 2206.000 +INF .

AC.1 . . +INF 0.498

AC.2 . . +INF .

AC.3 . 1148.000 +INF .

AM.1 . . +INF 1.998

AM.2 . . +INF 1.488

AM.3 . 5890.000 +INF .

RR.1 . . +INF 0.300

RR.2 . . +INF .

RR.3 . 730.000 +INF .

---- VAR n surplus of state i in the end of month k

LOWER LEVEL UPPER MARGINAL

RO.1 . . +INF 1.0000E-3

RO.2 . . +INF 0.999

RO.3 . . +INF 1.241

AC.1 . . +INF 0.002

AC.2 . . +INF 0.500

AC.3 . . +INF 1.902

AM.1 . 3177.000 +INF .

AM.2 . . +INF 0.510

AM.3 . . +INF 1.998

RR.1 . 254.000 +INF .

RR.2 . . +INF 0.300

RR.3 . . +INF 2.448

---- VAR y number of vaccines to be sent from state i to state j in the beginn

ing of month k

LOWER LEVEL UPPER MARGINAL

RO.RO.1 . . +INF 1000.000

RO.RO.2 . . +INF 1000.000

RO.RO.3 . . +INF 1000.000

RO.AC.1 . . +INF 0.384



146

RO.AC.2 . . +INF 0.384

RO.AC.3 . . +INF .

RO.AM.1 . . +INF 0.631

RO.AM.2 . . +INF 0.631

RO.AM.3 . . +INF 0.143

RO.RR.1 . . +INF 1.182

RO.RR.2 . . +INF 1.180

RO.RR.3 . . +INF 0.480

AC.RO.1 . . +INF 0.704

AC.RO.2 . . +INF 0.704

AC.RO.3 . . +INF 1.204

AC.AC.1 . . +INF 1000.000

AC.AC.2 . . +INF 1000.000

AC.AC.3 . . +INF 1000.000

AC.AM.1 . . +INF 1.335

AC.AM.2 . . +INF 1.335

AC.AM.3 . . +INF 1.347

AC.RR.1 . . +INF 1.886

AC.RR.2 . . +INF 1.884

AC.RR.3 . . +INF 1.684

AM.RO.1 . . +INF 1.171

AM.RO.2 . . +INF 1.171

AM.RO.3 . . +INF 1.659

AM.AC.1 . . +INF 1.555

AM.AC.2 . . +INF 1.555

AM.AC.3 . . +INF 1.543

AM.AM.1 . . +INF 1000.000

AM.AM.2 . . +INF 1000.000

AM.AM.3 . . +INF 1000.000

AM.RR.1 . . +INF 0.552

AM.RR.2 . . +INF 0.550

AM.RR.3 . . +INF 0.337

RR.RO.1 . . +INF 2.190

RR.RO.2 . . +INF 2.192

RR.RO.3 . . +INF 2.892

RR.AC.1 . . +INF 2.574

RR.AC.2 . . +INF 2.576

RR.AC.3 . . +INF 2.776

RR.AM.1 . . +INF 1.018

RR.AM.2 . . +INF 1.021

RR.AM.3 . . +INF 1.233

RR.RR.1 . . +INF 1000.000

RR.RR.2 . . +INF 1000.000
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RR.RR.3 . . +INF 1000.000

---- VAR x number of new vaccines sent from federal stock to state i in the be

ginning of month k

LOWER LEVEL UPPER MARGINAL

RO.1 . 1186.000 +INF .

RO.2 . 1784.000 +INF .

RO.3 . . +INF 0.700

AC.1 . 60.000 +INF .

AC.2 . 1039.000 +INF .

AC.3 . . +INF 0.200

AM.1 . 8754.000 +INF .

AM.2 . 2113.000 +INF .

AM.3 . . +INF 0.212

RR.1 . . +INF 0.002

RR.2 . 589.000 +INF .

RR.3 . . +INF .

---- VAR s surplus of federal in the end of month k

LOWER LEVEL UPPER MARGINAL

1 . . +INF 0.102

2 . . +INF 0.400

3 . . +INF 1.000

LOWER LEVEL UPPER MARGINAL

---- VAR z -INF 39230.170 +INF .

z total cost of vaccine allocation

---- VAR u it will help to define if there will be vaccines sent from the stat

e i to state j in the month k

LOWER LEVEL UPPER MARGINAL

RO.RO.1 . . 1.000 EPS

RO.RO.2 . . 1.000 EPS

RO.RO.3 . . 1.000 EPS

RO.AC.1 . . 1.000 EPS
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RO.AC.2 . . 1.000 EPS

RO.AC.3 . . 1.000 -1.162E+9

RO.AM.1 . . 1.000 EPS

RO.AM.2 . . 1.000 EPS

RO.AM.3 . . 1.000 EPS

RO.RR.1 . . 1.000 EPS

RO.RR.2 . . 1.000 EPS

RO.RR.3 . . 1.000 EPS

AC.RO.1 . . 1.000 EPS

AC.RO.2 . . 1.000 EPS

AC.RO.3 . . 1.000 EPS

AC.AC.1 . . 1.000 EPS

AC.AC.2 . . 1.000 EPS

AC.AC.3 . . 1.000 EPS

AC.AM.1 . . 1.000 EPS

AC.AM.2 . . 1.000 EPS

AC.AM.3 . . 1.000 EPS

AC.RR.1 . . 1.000 EPS

AC.RR.2 . . 1.000 EPS

AC.RR.3 . . 1.000 EPS

AM.RO.1 . . 1.000 EPS

AM.RO.2 . . 1.000 EPS

AM.RO.3 . . 1.000 EPS

AM.AC.1 . . 1.000 EPS

AM.AC.2 . . 1.000 EPS

AM.AC.3 . . 1.000 EPS

AM.AM.1 . . 1.000 EPS

AM.AM.2 . . 1.000 EPS

AM.AM.3 . . 1.000 EPS

AM.RR.1 . . 1.000 EPS

AM.RR.2 . . 1.000 EPS

AM.RR.3 . . 1.000 EPS

RR.RO.1 . . 1.000 EPS

RR.RO.2 . . 1.000 EPS

RR.RO.3 . . 1.000 EPS

RR.AC.1 . . 1.000 EPS

RR.AC.2 . . 1.000 EPS

RR.AC.3 . . 1.000 EPS

RR.AM.1 . . 1.000 EPS

RR.AM.2 . . 1.000 EPS

RR.AM.3 . . 1.000 EPS

RR.RR.1 . . 1.000 EPS

RR.RR.2 . . 1.000 EPS
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RR.RR.3 . . 1.000 EPS

0 INFEASIBLE

0 UNBOUNDED

EXECUTION TIME = 0.003 SECONDS 2 MB 30.1.0 re01a340 LEX-LEG

USER: NEOS server license G181108/0001AS-LNX

University of Wisconsin-Madison, Computer Sciences Dept. DC8499

License for teaching and research at degree granting institutions

Input /var/lib/condor/execute/dir_45218/MODEL.gms

Output /var/lib/condor/execute/dir_45218/solve.out

NEOS Server
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APPENDIX H – STOCHASTIC

OPTIMIZATION MODEL

The stochastic optimization model first introduced in Chapter 5 is presented below

written in C, and it was fed to CPLEX Solver Software.

Linear programming file

1 \ENCODING=ISO -8859 -1

2 \Problem name: vaccine.mps

3

4 Minimize

5 R0125: C0001 + C0002 + C0003 + 2.4311 C0076 + 2.4311 C0077 +

↪→ 2.4311 C0078

6 + 2.8049 C0079 + 2.8049 C0080 + 2.8049 C0081 + 3.0618

↪→ C0082

7 + 3.0618 C0083 + 3.0618 C0084 + 3.6113 C0085 + 3.6113

↪→ C0086

8 + 3.6113 C0087 + 0.2 C0088 + 0.2 C0089 + 0.2 C0090 +

↪→ 0.9 C0004 + 0.9 C0005 + 0.9 C0006 + 0.4 C0007

9 + 0.4 C0008 + 0.4 C0009 + 1.9 C0010 + 1.9 C0011 + 1.9

↪→ C0012 + 0.2 C0013

10 + 0.2 C0014 + 0.2 C0015 + 0.099 C0016 + 0.099 C0017 +

↪→ 0.099 C0018

11 + 0.1 C0019 + 0.1 C0020 + 0.1 C0021 + 0.098 C0022 +

↪→ 0.098 C0023

12 + 0.098 C0024 + 0.1 C0025 + 0.1 C0026 + 0.1 C0027 +

↪→ 1000 C0028

13 + 1000 C0029 + 1000 C0030 + 0.544 C0031 + 0.544 C0032

↪→ + 0.544 C0033



151

14 + 0.901 C0034 + 0.901 C0035 + 0.901 C0036 + 1.686

↪→ C0037 + 1.686 C0038

15 + 1.686 C0039 + 0.544 C0040 + 0.544 C0041 + 0.544

↪→ C0042 + 1000 C0043

16 + 1000 C0044 + 1000 C0045 + 1.445 C0046 + 1.445 C0047

↪→ + 1.445 C0048

17 + 2.23 C0049 + 2.23 C0050 + 2.23 C0051 + 0.901 C0052

↪→ + 0.901 C0053

18 + 0.901 C0054 + 1.445 C0055 + 1.445 C0056 + 1.445

↪→ C0057 + 1000 C0058

19 + 1000 C0059 + 1000 C0060 + 0.785 C0061 + 0.785 C0062

↪→ + 0.785 C0063

20 + 1.686 C0064 + 1.686 C0065 + 1.686 C0066 + 2.23

↪→ C0067 + 2.23 C0068

21 + 2.23 C0069 + 0.785 C0070 + 0.785 C0071 + 0.785

↪→ C0072 + 1000 C0073

22 + 1000 C0074 + 1000 C0075

23 Subject To

24 R0001: C0001 + C0002 + C0003 >= 0

25 R0001a: C0001 <= 50000

26 R0001b: C0002 <= 50000

27 R0001c: C0003 <= 50000

28 R0014: - C0001 + C0076 + C0079 + C0082 + C0085 + C0088 =

↪→ 10000

29 R0015: C0002 - C0077 - C0080 - C0083 - C0086 + C0088 - C0089

↪→ = 0

30 R0016: C0003 - C0078 - C0081 - C0084 - C0087 + C0089 - C0090

↪→ = 0

31 R0002: C0004 - C0016 - C0031 - C0034 - C0037 + C0040 + C0052

↪→ + C0064 + C0076

32 = 1386

33 R0003: C0007 - C0019 + C0031 - C0040 - C0046 - C0049 + C0055

↪→ + C0067 + C0079

34 = 60

35 R0004: C0010 - C0022 + C0034 + C0046 - C0052 - C0055 - C0061

↪→ + C0070 + C0082



152

36 = 5777

37 R0005: C0013 - C0025 + C0037 + C0049 + C0061 - C0064 - C0067

↪→ - C0070 + C0085

38 = -254

39 R0006: - C0005 + C0017 - C0018 - C0033 - C0036 - C0039 +

↪→ C0042 + C0054 + C0066

40 + C0078 = 2206

41 R0007: - C0008 + C0020 - C0021 + C0033 - C0042 - C0048 -

↪→ C0051 + C0057 + C0069

42 + C0081 = 1148

43 R0008: - C0011 + C0023 - C0024 + C0036 + C0048 - C0054 -

↪→ C0057 - C0063 + C0072

44 + C0084 = 5890

45 R0009: - C0014 + C0026 - C0027 + C0039 + C0051 + C0063 -

↪→ C0066 - C0069 - C0072

46 + C0087 = 730

47 R0010: - C0004 + C0005 + C0016 - C0017 - C0032 - C0035 -

↪→ C0038 + C0041 + C0053

48 + C0065 + C0077 = 1784

49 R0011: - C0007 + C0008 + C0019 - C0020 + C0032 - C0041 -

↪→ C0047 - C0050 + C0056

50 + C0068 + C0080 = 1039

51 R0012: - C0010 + C0011 + C0022 - C0023 + C0035 + C0047 -

↪→ C0053 - C0056 - C0062

52 + C0071 + C0083 = 5290

53 R0013: - C0013 + C0014 + C0025 - C0026 + C0038 + C0050 +

↪→ C0062 - C0065 - C0068

54 - C0071 + C0086 = 843

55 R0017: C0028 - 10000000000 C0091 <= 0

56 R0018: C0029 - 10000000000 C0092 <= 0

57 R0019: C0030 - 10000000000 C0093 <= 0

58 R0020: C0031 - 10000000000 C0094 <= 0

59 R0021: C0032 - 10000000000 C0095 <= 0

60 R0022: C0033 - 10000000000 C0096 <= 0

61 R0023: C0034 - 10000000000 C0097 <= 0

62 R0024: C0035 - 10000000000 C0098 <= 0
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63 R0025: C0036 - 10000000000 C0099 <= 0

64 R0026: C0037 - 10000000000 C0100 <= 0

65 R0027: C0038 - 10000000000 C0101 <= 0

66 R0028: C0039 - 10000000000 C0102 <= 0

67 R0029: C0040 - 10000000000 C0103 <= 0

68 R0030: C0041 - 10000000000 C0104 <= 0

69 R0031: C0042 - 10000000000 C0105 <= 0

70 R0032: C0043 - 10000000000 C0106 <= 0

71 R0033: C0044 - 10000000000 C0107 <= 0

72 R0034: C0045 - 10000000000 C0108 <= 0

73 R0035: C0046 - 10000000000 C0109 <= 0

74 R0036: C0047 - 10000000000 C0110 <= 0

75 R0037: C0048 - 10000000000 C0111 <= 0

76 R0038: C0049 - 10000000000 C0112 <= 0

77 R0039: C0050 - 10000000000 C0113 <= 0

78 R0040: C0051 - 10000000000 C0114 <= 0

79 R0041: C0052 - 10000000000 C0115 <= 0

80 R0042: C0053 - 10000000000 C0116 <= 0

81 R0043: C0054 - 10000000000 C0117 <= 0

82 R0044: C0055 - 10000000000 C0118 <= 0

83 R0045: C0056 - 10000000000 C0119 <= 0

84 R0046: C0057 - 10000000000 C0120 <= 0

85 R0047: C0058 - 10000000000 C0121 <= 0

86 R0048: C0059 - 10000000000 C0122 <= 0

87 R0049: C0060 - 10000000000 C0123 <= 0

88 R0050: C0061 - 10000000000 C0124 <= 0

89 R0051: C0062 - 10000000000 C0125 <= 0

90 R0052: C0063 - 10000000000 C0126 <= 0

91 R0053: C0064 - 10000000000 C0127 <= 0

92 R0054: C0065 - 10000000000 C0128 <= 0

93 R0055: C0066 - 10000000000 C0129 <= 0

94 R0056: C0067 - 10000000000 C0130 <= 0

95 R0057: C0068 - 10000000000 C0131 <= 0

96 R0058: C0069 - 10000000000 C0132 <= 0

97 R0059: C0070 - 10000000000 C0133 <= 0

98 R0060: C0071 - 10000000000 C0134 <= 0
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99 R0061: C0072 - 10000000000 C0135 <= 0

100 R0062: C0073 - 10000000000 C0136 <= 0

101 R0063: C0074 - 10000000000 C0137 <= 0

102 R0064: C0075 - 10000000000 C0138 <= 0

103 R0065: C0028 - 1000 C0091 >= 0

104 R0066: C0029 - 1000 C0092 >= 0

105 R0067: C0030 - 1000 C0093 >= 0

106 R0068: C0031 - 1000 C0094 >= 0

107 R0069: C0032 - 1000 C0095 >= 0

108 R0070: C0033 - 1000 C0096 >= 0

109 R0071: C0034 - 1000 C0097 >= 0

110 R0072: C0035 - 1000 C0098 >= 0

111 R0073: C0036 - 1000 C0099 >= 0

112 R0074: C0037 - 1000 C0100 >= 0

113 R0075: C0038 - 1000 C0101 >= 0

114 R0076: C0039 - 1000 C0102 >= 0

115 R0077: C0040 - 1000 C0103 >= 0

116 R0078: C0041 - 1000 C0104 >= 0

117 R0079: C0042 - 1000 C0105 >= 0

118 R0080: C0043 - 1000 C0106 >= 0

119 R0081: C0044 - 1000 C0107 >= 0

120 R0082: C0045 - 1000 C0108 >= 0

121 R0083: C0046 - 1000 C0109 >= 0

122 R0084: C0047 - 1000 C0110 >= 0

123 R0085: C0048 - 1000 C0111 >= 0

124 R0086: C0049 - 1000 C0112 >= 0

125 R0087: C0050 - 1000 C0113 >= 0

126 R0088: C0051 - 1000 C0114 >= 0

127 R0089: C0052 - 1000 C0115 >= 0

128 R0090: C0053 - 1000 C0116 >= 0

129 R0091: C0054 - 1000 C0117 >= 0

130 R0092: C0055 - 1000 C0118 >= 0

131 R0093: C0056 - 1000 C0119 >= 0

132 R0094: C0057 - 1000 C0120 >= 0

133 R0095: C0058 - 1000 C0121 >= 0

134 R0096: C0059 - 1000 C0122 >= 0
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135 R0097: C0060 - 1000 C0123 >= 0

136 R0098: C0061 - 1000 C0124 >= 0

137 R0099: C0062 - 1000 C0125 >= 0

138 R0100: C0063 - 1000 C0126 >= 0

139 R0101: C0064 - 1000 C0127 >= 0

140 R0102: C0065 - 1000 C0128 >= 0

141 R0103: C0066 - 1000 C0129 >= 0

142 R0104: C0067 - 1000 C0130 >= 0

143 R0105: C0068 - 1000 C0131 >= 0

144 R0106: C0069 - 1000 C0132 >= 0

145 R0107: C0070 - 1000 C0133 >= 0

146 R0108: C0071 - 1000 C0134 >= 0

147 R0109: C0072 - 1000 C0135 >= 0

148 R0110: C0073 - 1000 C0136 >= 0

149 R0111: C0074 - 1000 C0137 >= 0

150 R0112: C0075 - 1000 C0138 >= 0

151 R0113: C0004 <= 2186

152 R0114: C0005 <= 1784

153 R0115: C0006 <= 2206

154 R0116: C0007 <= 1060

155 R0117: C0008 <= 1039

156 R0118: C0009 <= 1148

157 R0119: C0010 <= 6577

158 R0120: C0011 <= 5290

159 R0121: C0012 <= 5890

160 R0122: C0013 <= 746

161 R0123: C0014 <= 843

162 R0124: C0015 <= 730

163 B1: C0091 <= 1

164 B2: C0092 <= 1

165 B3: C0093 <= 1

166 B4: C0094 <= 1

167 B5: C0095 <= 1

168 B6: C0096 <= 1

169 B7: C0097 <= 1

170 B8: C0098 <= 1
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171 B9: C0099 <= 1

172 B10: C0100 <= 1

173 B11: C0101 <= 1

174 B12: C0102 <= 1

175 B13: C0103 <= 1

176 B14: C0104 <= 1

177 B15: C0105 <= 1

178 B16: C0106 <= 1

179 B17: C0107 <= 1

180 B18: C0108 <= 1

181 B19: C0109 <= 1

182 B20: C0110 <= 1

183 B21: C0111 <= 1

184 B22: C0112 <= 1

185 B23: C0113 <= 1

186 B24: C0114 <= 1

187 B25: C0115 <= 1

188 B26: C0116 <= 1

189 B27: C0117 <= 1

190 B28: C0118 <= 1

191 B29: C0119 <= 1

192 B30: C0120 <= 1

193 B31: C0121 <= 1

194 B32: C0122 <= 1

195 B33: C0123 <= 1

196 B34: C0124 <= 1

197 B35: C0125 <= 1

198 B36: C0126 <= 1

199 B37: C0127 <= 1

200 B38: C0128 <= 1

201 B39: C0129 <= 1

202 B40: C0130 <= 1

203 B41: C0131 <= 1

204 B42: C0132 <= 1

205 B43: C0133 <= 1

206 B44: C0134 <= 1
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207 B45: C0135 <= 1

208 B46: C0136 <= 1

209 B47: C0137 <= 1

210 B48: C0138 <= 1

211 End

Stock file

1 STOCH VACCINE

2 INDEP DISCRETE

3 RHS R0002 2208 0.33

4 RHS R0002 1386 0.2

5 RHS R0002 1745 0.47

6 RHS R0003 1207 0.2

7 RHS R0003 60 0.13

8 RHS R0003 626 0.67

9 RHS R0004 8076 0.2

10 RHS R0004 5777 0.33

11 RHS R0004 7077 0.47

12 RHS R0005 906 0.47

13 RHS R0005 254 0.13

14 RHS R0005 168 0.4

15 RHS R0006 3808 0.53

16 RHS R0006 2206 0.07

17 RHS R0006 2621 0.4

18 RHS R0007 2907 0.4

19 RHS R0007 1148 0.07

20 RHS R0007 1762 0.53

21 RHS R0008 8878 0.13

22 RHS R0008 5890 0.4

23 RHS R0008 7670 0.47

24 RHS R0009 1778 0.53

25 RHS R0009 730 0.2

26 RHS R0009 1110 0.27

27 RHS R0010 2681 0.07

28 RHS R0010 1784 0.27

29 RHS R0010 2298 0.67
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30 RHS R0011 2221 0.2

31 RHS R0011 1039 0.07

32 RHS R0011 1594 0.73

33 RHS R0012 8785 0.13

34 RHS R0012 5290 0.33

35 RHS R0012 7515 0.53

36 RHS R0013 1751 0.6

37 RHS R0013 843 0.2

38 RHS R0013 1148 0.2

39 RHS R0113 3008 0.33

40 RHS R0113 2186 0.2

41 RHS R0113 2545 0.47

42 RHS R0114 2681 0.07

43 RHS R0114 1784 0.27

44 RHS R0114 2298 0.67

45 RHS R0115 3808 0.53

46 RHS R0115 2206 0.07

47 RHS R0115 2621 0.4

48 RHS R0116 2207 0.2

49 RHS R0116 1060 0.13

50 RHS R0116 1626 0.67

51 RHS R0117 2221 0.2

52 RHS R0117 1039 0.07

53 RHS R0117 1594 0.73

54 RHS R0118 2907 0.4

55 RHS R0118 1148 0.07

56 RHS R0118 1762 0.53

57 RHS R0119 8876 0.2

58 RHS R0119 6577 0.33

59 RHS R0119 7877 0.47

60 RHS R0120 8785 0.13

61 RHS R0120 5290 0.33

62 RHS R0120 7515 0.53

63 RHS R0121 8878 0.13

64 RHS R0121 5890 0.4

65 RHS R0121 7670 0.47
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66 RHS R0122 1906 0.47

67 RHS R0122 746 0.13

68 RHS R0122 1168 0.4

69 RHS R0123 1751 0.6

70 RHS R0123 843 0.2

71 RHS R0123 1148 0.2

72 RHS R0124 1778 0.53

73 RHS R0124 730 0.2

74 RHS R0124 1110 0.27

75 ENDATA

Time file

1 TIME VACCINE

2 PERIODS

3 C0001 R0001 TIME1

4 C0076 R0014 TIME2

5 ENDATA

Core file

1 * ENCODING=ISO -8859 -1

2 NAME C:\ Users\Michelle\Desktop\ESI6341\Lshaped\

↪→ Algorithm\Algorithm\vaccine.lp

3 ROWS

4 N R0125

5 G R0001

6 L R0001a

7 L R0001b

8 L R0001c

9 E R0014

10 E R0015

11 E R0016

12 E R0002

13 E R0003

14 E R0004

15 E R0005

16 E R0006
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17 E R0007

18 E R0008

19 E R0009

20 E R0010

21 E R0011

22 E R0012

23 E R0013

24 L R0017

25 L R0018

26 L R0019

27 L R0020

28 L R0021

29 L R0022

30 L R0023

31 L R0024

32 L R0025

33 L R0026

34 L R0027

35 L R0028

36 L R0029

37 L R0030

38 L R0031

39 L R0032

40 L R0033

41 L R0034

42 L R0035

43 L R0036

44 L R0037

45 L R0038

46 L R0039

47 L R0040

48 L R0041

49 L R0042

50 L R0043

51 L R0044

52 L R0045
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53 L R0046

54 L R0047

55 L R0048

56 L R0049

57 L R0050

58 L R0051

59 L R0052

60 L R0053

61 L R0054

62 L R0055

63 L R0056

64 L R0057

65 L R0058

66 L R0059

67 L R0060

68 L R0061

69 L R0062

70 L R0063

71 L R0064

72 G R0065

73 G R0066

74 G R0067

75 G R0068

76 G R0069

77 G R0070

78 G R0071

79 G R0072

80 G R0073

81 G R0074

82 G R0075

83 G R0076

84 G R0077

85 G R0078

86 G R0079

87 G R0080

88 G R0081
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89 G R0082

90 G R0083

91 G R0084

92 G R0085

93 G R0086

94 G R0087

95 G R0088

96 G R0089

97 G R0090

98 G R0091

99 G R0092

100 G R0093

101 G R0094

102 G R0095

103 G R0096

104 G R0097

105 G R0098

106 G R0099

107 G R0100

108 G R0101

109 G R0102

110 G R0103

111 G R0104

112 G R0105

113 G R0106

114 G R0107

115 G R0108

116 G R0109

117 G R0110

118 G R0111

119 G R0112

120 L R0113

121 L R0114

122 L R0115

123 L R0116

124 L R0117
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125 L R0118

126 L R0119

127 L R0120

128 L R0121

129 L R0122

130 L R0123

131 L R0124

132 L B1

133 L B2

134 L B3

135 L B4

136 L B5

137 L B6

138 L B7

139 L B8

140 L B9

141 L B10

142 L B11

143 L B12

144 L B13

145 L B14

146 L B15

147 L B16

148 L B17

149 L B18

150 L B19

151 L B20

152 L B21

153 L B22

154 L B23

155 L B24

156 L B25

157 L B26

158 L B27

159 L B28

160 L B29
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161 L B30

162 L B31

163 L B32

164 L B33

165 L B34

166 L B35

167 L B36

168 L B37

169 L B38

170 L B39

171 L B40

172 L B41

173 L B42

174 L B43

175 L B44

176 L B45

177 L B46

178 L B47

179 L B48

180 COLUMNS

181 C0001 R0125 1

182 C0001 R0001 1

183 C0001 R0001a 1

184 C0001 R0014 -1

185 C0002 R0125 1

186 C0002 R0001 1

187 C0002 R0001b 1

188 C0002 R0015 1

189 C0003 R0125 1

190 C0003 R0001 1

191 C0003 R0001c 1

192 C0003 R0016 1

193 C0076 R0125 2.4311

194 C0076 R0014 1

195 C0076 R0002 1

196 C0077 R0125 2.4311
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197 C0077 R0015 -1

198 C0077 R0010 1

199 C0078 R0125 2.4311

200 C0078 R0016 -1

201 C0078 R0006 1

202 C0079 R0125 2.8049

203 C0079 R0014 1

204 C0079 R0003 1

205 C0080 R0125 2.8049

206 C0080 R0015 -1

207 C0080 R0011 1

208 C0081 R0125 2.8049

209 C0081 R0016 -1

210 C0081 R0007 1

211 C0082 R0125 3.0618

212 C0082 R0014 1

213 C0082 R0004 1

214 C0083 R0125 3.0618

215 C0083 R0015 -1

216 C0083 R0012 1

217 C0084 R0125 3.0618

218 C0084 R0016 -1

219 C0084 R0008 1

220 C0085 R0125 3.6113

221 C0085 R0014 1

222 C0085 R0005 1

223 C0086 R0125 3.6113

224 C0086 R0015 -1

225 C0086 R0013 1

226 C0087 R0125 3.6113

227 C0087 R0016 -1

228 C0087 R0009 1

229 C0088 R0125 0.2

230 C0088 R0014 1

231 C0088 R0015 1

232 C0089 R0125 0.2
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233 C0089 R0015 -1

234 C0089 R0016 1

235 C0090 R0125 0.2

236 C0090 R0016 -1

237 C0004 R0125 0.9

238 C0004 R0002 1

239 C0004 R0010 -1

240 C0004 R0113 1

241 C0005 R0125 0.9

242 C0005 R0006 -1

243 C0005 R0010 1

244 C0005 R0114 1

245 C0006 R0125 0.9

246 C0006 R0115 1

247 C0007 R0125 0.4

248 C0007 R0003 1

249 C0007 R0011 -1

250 C0007 R0116 1

251 C0008 R0125 0.4

252 C0008 R0007 -1

253 C0008 R0011 1

254 C0008 R0117 1

255 C0009 R0125 0.4

256 C0009 R0118 1

257 C0010 R0125 1.9

258 C0010 R0004 1

259 C0010 R0012 -1

260 C0010 R0119 1

261 C0011 R0125 1.9

262 C0011 R0008 -1

263 C0011 R0012 1

264 C0011 R0120 1

265 C0012 R0125 1.9

266 C0012 R0121 1

267 C0013 R0125 0.2

268 C0013 R0005 1
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269 C0013 R0013 -1

270 C0013 R0122 1

271 C0014 R0125 0.2

272 C0014 R0009 -1

273 C0014 R0013 1

274 C0014 R0123 1

275 C0015 R0125 0.2

276 C0015 R0124 1

277 C0016 R0125 0.099

278 C0016 R0002 -1

279 C0016 R0010 1

280 C0017 R0125 0.099

281 C0017 R0006 1

282 C0017 R0010 -1

283 C0018 R0125 0.099

284 C0018 R0006 -1

285 C0019 R0125 0.1

286 C0019 R0003 -1

287 C0019 R0011 1

288 C0020 R0125 0.1

289 C0020 R0007 1

290 C0020 R0011 -1

291 C0021 R0125 0.1

292 C0021 R0007 -1

293 C0022 R0125 0.098

294 C0022 R0004 -1

295 C0022 R0012 1

296 C0023 R0125 0.098

297 C0023 R0008 1

298 C0023 R0012 -1

299 C0024 R0125 0.098

300 C0024 R0008 -1

301 C0025 R0125 0.1

302 C0025 R0005 -1

303 C0025 R0013 1

304 C0026 R0125 0.1
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305 C0026 R0009 1

306 C0026 R0013 -1

307 C0027 R0125 0.1

308 C0027 R0009 -1

309 C0028 R0125 1000

310 C0028 R0017 1

311 C0028 R0065 1

312 C0029 R0125 1000

313 C0029 R0018 1

314 C0029 R0066 1

315 C0030 R0125 1000

316 C0030 R0019 1

317 C0030 R0067 1

318 C0031 R0125 0.544

319 C0031 R0002 -1

320 C0031 R0003 1

321 C0031 R0020 1

322 C0031 R0068 1

323 C0032 R0125 0.544

324 C0032 R0010 -1

325 C0032 R0011 1

326 C0032 R0021 1

327 C0032 R0069 1

328 C0033 R0125 0.544

329 C0033 R0006 -1

330 C0033 R0007 1

331 C0033 R0022 1

332 C0033 R0070 1

333 C0034 R0125 0.901

334 C0034 R0002 -1

335 C0034 R0004 1

336 C0034 R0023 1

337 C0034 R0071 1

338 C0035 R0125 0.901

339 C0035 R0010 -1

340 C0035 R0012 1
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341 C0035 R0024 1

342 C0035 R0072 1

343 C0036 R0125 0.901

344 C0036 R0006 -1

345 C0036 R0008 1

346 C0036 R0025 1

347 C0036 R0073 1

348 C0037 R0125 1.686

349 C0037 R0002 -1

350 C0037 R0005 1

351 C0037 R0026 1

352 C0037 R0074 1

353 C0038 R0125 1.686

354 C0038 R0010 -1

355 C0038 R0013 1

356 C0038 R0027 1

357 C0038 R0075 1

358 C0039 R0125 1.686

359 C0039 R0006 -1

360 C0039 R0009 1

361 C0039 R0028 1

362 C0039 R0076 1

363 C0040 R0125 0.544

364 C0040 R0002 1

365 C0040 R0003 -1

366 C0040 R0029 1

367 C0040 R0077 1

368 C0041 R0125 0.544

369 C0041 R0010 1

370 C0041 R0011 -1

371 C0041 R0030 1

372 C0041 R0078 1

373 C0042 R0125 0.544

374 C0042 R0006 1

375 C0042 R0007 -1

376 C0042 R0031 1
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377 C0042 R0079 1

378 C0043 R0125 1000

379 C0043 R0032 1

380 C0043 R0080 1

381 C0044 R0125 1000

382 C0044 R0033 1

383 C0044 R0081 1

384 C0045 R0125 1000

385 C0045 R0034 1

386 C0045 R0082 1

387 C0046 R0125 1.445

388 C0046 R0003 -1

389 C0046 R0004 1

390 C0046 R0035 1

391 C0046 R0083 1

392 C0047 R0125 1.445

393 C0047 R0011 -1

394 C0047 R0012 1

395 C0047 R0036 1

396 C0047 R0084 1

397 C0048 R0125 1.445

398 C0048 R0007 -1

399 C0048 R0008 1

400 C0048 R0037 1

401 C0048 R0085 1

402 C0049 R0125 2.23

403 C0049 R0003 -1

404 C0049 R0005 1

405 C0049 R0038 1

406 C0049 R0086 1

407 C0050 R0125 2.23

408 C0050 R0011 -1

409 C0050 R0013 1

410 C0050 R0039 1

411 C0050 R0087 1

412 C0051 R0125 2.23
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413 C0051 R0007 -1

414 C0051 R0009 1

415 C0051 R0040 1

416 C0051 R0088 1

417 C0052 R0125 0.901

418 C0052 R0002 1

419 C0052 R0004 -1

420 C0052 R0041 1

421 C0052 R0089 1

422 C0053 R0125 0.901

423 C0053 R0010 1

424 C0053 R0012 -1

425 C0053 R0042 1

426 C0053 R0090 1

427 C0054 R0125 0.901

428 C0054 R0006 1

429 C0054 R0008 -1

430 C0054 R0043 1

431 C0054 R0091 1

432 C0055 R0125 1.445

433 C0055 R0003 1

434 C0055 R0004 -1

435 C0055 R0044 1

436 C0055 R0092 1

437 C0056 R0125 1.445

438 C0056 R0011 1

439 C0056 R0012 -1

440 C0056 R0045 1

441 C0056 R0093 1

442 C0057 R0125 1.445

443 C0057 R0007 1

444 C0057 R0008 -1

445 C0057 R0046 1

446 C0057 R0094 1

447 C0058 R0125 1000

448 C0058 R0047 1
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449 C0058 R0095 1

450 C0059 R0125 1000

451 C0059 R0048 1

452 C0059 R0096 1

453 C0060 R0125 1000

454 C0060 R0049 1

455 C0060 R0097 1

456 C0061 R0125 0.785

457 C0061 R0004 -1

458 C0061 R0005 1

459 C0061 R0050 1

460 C0061 R0098 1

461 C0062 R0125 0.785

462 C0062 R0012 -1

463 C0062 R0013 1

464 C0062 R0051 1

465 C0062 R0099 1

466 C0063 R0125 0.785

467 C0063 R0008 -1

468 C0063 R0009 1

469 C0063 R0052 1

470 C0063 R0100 1

471 C0064 R0125 1.686

472 C0064 R0002 1

473 C0064 R0005 -1

474 C0064 R0053 1

475 C0064 R0101 1

476 C0065 R0125 1.686

477 C0065 R0010 1

478 C0065 R0013 -1

479 C0065 R0054 1

480 C0065 R0102 1

481 C0066 R0125 1.686

482 C0066 R0006 1

483 C0066 R0009 -1

484 C0066 R0055 1
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485 C0066 R0103 1

486 C0067 R0125 2.23

487 C0067 R0003 1

488 C0067 R0005 -1

489 C0067 R0056 1

490 C0067 R0104 1

491 C0068 R0125 2.23

492 C0068 R0011 1

493 C0068 R0013 -1

494 C0068 R0057 1

495 C0068 R0105 1

496 C0069 R0125 2.23

497 C0069 R0007 1

498 C0069 R0009 -1

499 C0069 R0058 1

500 C0069 R0106 1

501 C0070 R0125 0.785

502 C0070 R0004 1

503 C0070 R0005 -1

504 C0070 R0059 1

505 C0070 R0107 1

506 C0071 R0125 0.785

507 C0071 R0012 1

508 C0071 R0013 -1

509 C0071 R0060 1

510 C0071 R0108 1

511 C0072 R0125 0.785

512 C0072 R0008 1

513 C0072 R0009 -1

514 C0072 R0061 1

515 C0072 R0109 1

516 C0073 R0125 1000

517 C0073 R0062 1

518 C0073 R0110 1

519 C0074 R0125 1000

520 C0074 R0063 1
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521 C0074 R0111 1

522 C0075 R0125 1000

523 C0075 R0064 1

524 C0075 R0112 1

525 C0091 R0017 -10000000000

526 C0091 R0065 -1000

527 C0091 B1 1

528 C0092 R0018 -10000000000

529 C0092 R0066 -1000

530 C0092 B2 1

531 C0093 R0019 -10000000000

532 C0093 R0067 -1000

533 C0093 B3 1

534 C0094 R0020 -10000000000

535 C0094 R0068 -1000

536 C0094 B4 1

537 C0095 R0021 -10000000000

538 C0095 R0069 -1000

539 C0095 B5 1

540 C0096 R0022 -10000000000

541 C0096 R0070 -1000

542 C0096 B6 1

543 C0097 R0023 -10000000000

544 C0097 R0071 -1000

545 C0097 B7 1

546 C0098 R0024 -10000000000

547 C0098 R0072 -1000

548 C0098 B8 1

549 C0099 R0025 -10000000000

550 C0099 R0073 -1000

551 C0099 B9 1

552 C0100 R0026 -10000000000

553 C0100 R0074 -1000

554 C0100 B10 1

555 C0101 R0027 -10000000000

556 C0101 R0075 -1000
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557 C0101 B11 1

558 C0102 R0028 -10000000000

559 C0102 R0076 -1000

560 C0102 B12 1

561 C0103 R0029 -10000000000

562 C0103 R0077 -1000

563 C0103 B13 1

564 C0104 R0030 -10000000000

565 C0104 R0078 -1000

566 C0104 B14 1

567 C0105 R0031 -10000000000

568 C0105 R0079 -1000

569 C0105 B15 1

570 C0106 R0032 -10000000000

571 C0106 R0080 -1000

572 C0106 B16 1

573 C0107 R0033 -10000000000

574 C0107 R0081 -1000

575 C0107 B17 1

576 C0108 R0034 -10000000000

577 C0108 R0082 -1000

578 C0108 B18 1

579 C0109 R0035 -10000000000

580 C0109 R0083 -1000

581 C0109 B19 1

582 C0110 R0036 -10000000000

583 C0110 R0084 -1000

584 C0110 B20 1

585 C0111 R0037 -10000000000

586 C0111 R0085 -1000

587 C0111 B21 1

588 C0112 R0038 -10000000000

589 C0112 R0086 -1000

590 C0112 B22 1

591 C0113 R0039 -10000000000

592 C0113 R0087 -1000
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593 C0113 B23 1

594 C0114 R0040 -10000000000

595 C0114 R0088 -1000

596 C0114 B24 1

597 C0115 R0041 -10000000000

598 C0115 R0089 -1000

599 C0115 B25 1

600 C0116 R0042 -10000000000

601 C0116 R0090 -1000

602 C0116 B26 1

603 C0117 R0043 -10000000000

604 C0117 R0091 -1000

605 C0117 B27 1

606 C0118 R0044 -10000000000

607 C0118 R0092 -1000

608 C0118 B28 1

609 C0119 R0045 -10000000000

610 C0119 R0093 -1000

611 C0119 B29 1

612 C0120 R0046 -10000000000

613 C0120 R0094 -1000

614 C0120 B30 1

615 C0121 R0047 -10000000000

616 C0121 R0095 -1000

617 C0121 B31 1

618 C0122 R0048 -10000000000

619 C0122 R0096 -1000

620 C0122 B32 1

621 C0123 R0049 -10000000000

622 C0123 R0097 -1000

623 C0123 B33 1

624 C0124 R0050 -10000000000

625 C0124 R0098 -1000

626 C0124 B34 1

627 C0125 R0051 -10000000000

628 C0125 R0099 -1000
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629 C0125 B35 1

630 C0126 R0052 -10000000000

631 C0126 R0100 -1000

632 C0126 B36 1

633 C0127 R0053 -10000000000

634 C0127 R0101 -1000

635 C0127 B37 1

636 C0128 R0054 -10000000000

637 C0128 R0102 -1000

638 C0128 B38 1

639 C0129 R0055 -10000000000

640 C0129 R0103 -1000

641 C0129 B39 1

642 C0130 R0056 -10000000000

643 C0130 R0104 -1000

644 C0130 B40 1

645 C0131 R0057 -10000000000

646 C0131 R0105 -1000

647 C0131 B41 1

648 C0132 R0058 -10000000000

649 C0132 R0106 -1000

650 C0132 B42 1

651 C0133 R0059 -10000000000

652 C0133 R0107 -1000

653 C0133 B43 1

654 C0134 R0060 -10000000000

655 C0134 R0108 -1000

656 C0134 B44 1

657 C0135 R0061 -10000000000

658 C0135 R0109 -1000

659 C0135 B45 1

660 C0136 R0062 -10000000000

661 C0136 R0110 -1000

662 C0136 B46 1

663 C0137 R0063 -10000000000

664 C0137 R0111 -1000
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665 C0137 B47 1

666 C0138 R0064 -10000000000

667 C0138 R0112 -1000

668 C0138 B48 1

669 RHS

670 rhs R0001a 50000

671 rhs R0001b 50000

672 rhs R0001c 50000

673 rhs R0014 10000

674 rhs R0002 1386

675 rhs R0003 60

676 rhs R0004 5777

677 rhs R0005 -254

678 rhs R0006 2206

679 rhs R0007 1148

680 rhs R0008 5890

681 rhs R0009 730

682 rhs R0010 1784

683 rhs R0011 1039

684 rhs R0012 5290

685 rhs R0013 843

686 rhs R0113 2186

687 rhs R0114 1784

688 rhs R0115 2206

689 rhs R0116 1060

690 rhs R0117 1039

691 rhs R0118 1148

692 rhs R0119 6577

693 rhs R0120 5290

694 rhs R0121 5890

695 rhs R0122 746

696 rhs R0123 843

697 rhs R0124 730

698 rhs B1 1

699 rhs B2 1

700 rhs B3 1
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701 rhs B4 1

702 rhs B5 1

703 rhs B6 1

704 rhs B7 1

705 rhs B8 1

706 rhs B9 1

707 rhs B10 1

708 rhs B11 1

709 rhs B12 1

710 rhs B13 1

711 rhs B14 1

712 rhs B15 1

713 rhs B16 1

714 rhs B17 1

715 rhs B18 1

716 rhs B19 1

717 rhs B20 1

718 rhs B21 1

719 rhs B22 1

720 rhs B23 1

721 rhs B24 1

722 rhs B25 1

723 rhs B26 1

724 rhs B27 1

725 rhs B28 1

726 rhs B29 1

727 rhs B30 1

728 rhs B31 1

729 rhs B32 1

730 rhs B33 1

731 rhs B34 1

732 rhs B35 1

733 rhs B36 1

734 rhs B37 1

735 rhs B38 1

736 rhs B39 1
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737 rhs B40 1

738 rhs B41 1

739 rhs B42 1

740 rhs B43 1

741 rhs B44 1

742 rhs B45 1

743 rhs B46 1

744 rhs B47 1

745 rhs B48 1

746 ENDATA
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APPENDIX I – STOCHASTIC

OPTIMIZATION MODEL

RESULTS

The results generated by the stochastic optimization model first introduced in Chapter 5

is presented below.

1

2 Evaluating the Best Solution from M = 30 candidate solutions

↪→ ...

3 Best average: 140207 found on iteration 1

4 Best average: 137823 found on iteration 2

5 Best average: 136680 found on iteration 5

6 Best average: 136388 found on iteration 21

7 Best average: 136109 found on iteration 23

8 Best average: 135421 found on iteration 29

9 The OPTIMAL stage 1 variables:

10 Stage 1 var 0 = 613.471

11 Stage 1 var 1 = 12356.3

12 Stage 1 var 2 = 17457.3

13 Stage 1 var 3 = 106965

14 -----------------------------------------------------------

15 Computing the UpperBound ...

16 ---------------------------------------------------

17 The stage 2 variables:

18 Stage 2 var 0 = 1745

19 Stage 2 var 1 = 1784

20 Stage 2 var 2 = 3808

21 Stage 2 var 3 = 626
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22 Stage 2 var 4 = 1039

23 Stage 2 var 5 = 2907

24 Stage 2 var 6 = 7281.27

25 Stage 2 var 7 = 8519.93

26 Stage 2 var 8 = 6460.8

27 Stage 2 var 9 = 906

28 Stage 2 var 10 = 1148

29 Stage 2 var 11 = 730

30 Stage 2 var 12 = 0

31 Stage 2 var 13 = 0

32 Stage 2 var 14 = 5892

33 Stage 2 var 15 = 0

34 Stage 2 var 16 = 0

35 Stage 2 var 17 = 0

36 Stage 2 var 18 = 0

37 Stage 2 var 19 = 0

38 Stage 2 var 20 = 0

39 Stage 2 var 21 = 0

40 Stage 2 var 22 = 0

41 Stage 2 var 23 = 0

42 Stage 2 var 24 = 0

43 Stage 2 var 25 = 0

44 Stage 2 var 26 = 0

45 Stage 2 var 27 = 0

46 Stage 2 var 28 = 0

47 Stage 2 var 29 = 0

48 Stage 2 var 30 = 0

49 Stage 2 var 31 = 0

50 Stage 2 var 32 = 0

51 Stage 2 var 33 = 204.266

52 Stage 2 var 34 = 1209.2

53 Stage 2 var 35 = 0

54 Stage 2 var 36 = 0

55 Stage 2 var 37 = 0

56 Stage 2 var 38 = 0

57 Stage 2 var 39 = 0



183

58 Stage 2 var 40 = 0

59 Stage 2 var 41 = 0

60 Stage 2 var 42 = 0

61 Stage 2 var 43 = 0

62 Stage 2 var 44 = 0

63 Stage 2 var 45 = 0

64 Stage 2 var 46 = 0

65 Stage 2 var 47 = 0

66 Stage 2 var 48 = 0

67 Stage 2 var 49 = 0

68 Stage 2 var 50 = 0

69 Stage 2 var 51 = 0

70 Stage 2 var 52 = 0

71 Stage 2 var 53 = 0

72 Stage 2 var 54 = 0

73 Stage 2 var 55 = 0

74 Stage 2 var 56 = 0

75 Stage 2 var 57 = 0

76 Stage 2 var 58 = 0

77 Stage 2 var 59 = 0

78 Stage 2 var 60 = 0

79 Stage 2 var 61 = 0

80 Stage 2 var 62 = 0

81 Stage 2 var 63 = 0

82 Stage 2 var 64 = 0

83 Stage 2 var 65 = 0

84 Stage 2 var 66 = 0

85 Stage 2 var 67 = 0

86 Stage 2 var 68 = 0

87 Stage 2 var 69 = 0

88 Stage 2 var 70 = 0

89 Stage 2 var 71 = 0

90 Stage 2 var 72 = 0

91 Stage 2 var 73 = 0

92 Stage 2 var 74 = 0

93 Stage 2 var 75 = 0
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94 Stage 2 var 76 = 0

95 Stage 2 var 77 = 0

96 Stage 2 var 78 = 0

97 Stage 2 var 79 = 0

98 Stage 2 var 80 = 0

99 Stage 2 var 81 = 0

100 Stage 2 var 82 = 0

101 Stage 2 var 83 = 0

102 Stage 2 var 84 = 0

103 Stage 2 var 85 = 0

104 Stage 2 var 86 = 0

105 Stage 2 var 87 = 0

106 Stage 2 var 88 = 0

107 Stage 2 var 89 = 0

108 Stage 2 var 90 = 0

109 Stage 2 var 91 = 0

110 Stage 2 var 92 = 0

111 Stage 2 var 93 = 0

112 Stage 2 var 94 = 0

113 Stage 2 var 95 = 0

114 Stage 2 var 96 = 0

115 Stage 2 var 97 = 0

116 Stage 2 var 98 = 0

117 Stage 2 var 99 = 0

118 Stage 2 var 100 = 0

119 Stage 2 var 101 = 0

120 Stage 2 var 102 = 0

121 Stage 2 var 103 = 0

122 Stage 2 var 104 = 0

123 Stage 2 var 105 = 0

124 Stage 2 var 106 = 0

125 Stage 2 var 107 = 0

126 Stage 2 var 108 = 0

127 Stage 2 var 109 = 0

128 Stage 2 var 110 = 0

129 Stage 2 var 111 = 0
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130 Stage 2 var 112 = 0

131 Stage 2 var 113 = 0

132 Stage 2 var 114 = 0

133 Stage 2 var 115 = 0

134 Stage 2 var 116 = 0

135 Stage 2 var 117 = 0

136 Stage 2 var 118 = 0

137 Stage 2 var 119 = 0

138 Stage 2 var 120 = 0

139 Stage 2 var 121 = 0

140 Stage 2 var 122 = 0

141 Stage 2 var 123 = 0

142 Stage 2 var 124 = 0

143 Stage 2 var 125 = 0

144 Stage 2 var 126 = 0

145 Stage 2 var 127 = 0

146 Stage 2 var 128 = 0

147 Stage 2 var 129 = 0

148 Stage 2 var 130 = 0

149 Stage 2 var 131 = 0

150 Stage 2 var 132 = 0

151 Stage 2 var 133 = 0

152 Stage 2 var 134 = 0

153 The LowerB Avg: 139177 with 0.05 CI: (138787 , 139566)

154 The UpperB Value: 140767 with 0.05 CI: (140745 , 140790)

155 CPU TIME: 101.037 seconds

156

157


