• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
https://doi.org/10.11606/D.3.2012.tde-30032012-123747
Documento
Autor
Nome completo
Renato Naville Watanabe
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2012
Orientador
Banca examinadora
Kohn, André Fábio (Presidente)
Cordero, Arturo Forner
Duarte, Marcos
Título em português
Simulação computacional do sistema neuromuscular para o estudo da variabilidade do torque exercido durante uma flexão plantar.
Palavras-chave em português
Controle motor
Simulação
Variabilidade de força
Resumo em português
A variabilidade da força muscular, geralmente em uma tarefa de força constante e isométrica, tem sido estudada tanto de forma experimental quanto com o uso de ferramentas computacionais. No entanto, a maioria dos estudos utilizando simulações computacionais tem sido feita em tarefas que utilizam apenas um músculo, geralmente da mão. Até onde se tem conhecimento, não foi feito um estudo, nem experimental nem teórico, abrangendo o comportamento da variabilidade do torque durante a flexão plantar de uma forma geral. Considerando isso, esse trabalho tem como objetivo estudar a variabilidade do torque de flexão plantar por meio de simulações e de modelos matemáticos, comparando os resultados com os obtidos em experimentos realizados localmente. Uma primeira tentativa foi feita utilizando um modelo de contração muscular do tipo Hill ativado pela envoltória dos sinais de eletromiograma captados de cada um dos três músculos do tríceps sural. Essa abordagem não foi bem sucedida em termos da reprodução dos resultados experimentais obtidos de variabilidade do torque em humanos, embora tenha reproduzido bem o valor médio do torque da flexão plantar. Essa impossibilidade em reproduzir os dados experimentais de variabilidade do torque com um modelo ativado por envoltória do eletromiograma provavelmente deveu-se à perda de informação no eletromiograma sobre os disparos dos motoneurônios. Em uma segunda tentativa, os disparos individuais dos motoneurônios foram obtidos de um simulador desenvolvido localmente, chamado de ReMoto, capaz de fornecer os instantes de disparos de todos os modelos de motoneurônios que ativam cada músculo, além de ser capaz de fornecer a força produzida por esse músculo, calculada a partir da força produzida pelas unidades motoras individualmente. No entanto, a versão original do ReMoto foi parametrizada quase que totalmente utilizando dados de gatos e, por isso, foi necessário modificar diversos parâmetros (como amplitude dos abalos e amplitude do potencial de ação da unidade motora) e modelos (como limiar de recrutamento e saturação da força) antes de utilizar o simulador para o estudo da variabilidade do torque. Também foi adicionado um segundo modelo de gerador de força, que consegue reproduzir melhor as características temporais dos abalos das unidades motoras. Adicionalmente, um modelo do tipo Hill também foi modificado para ser ativado pelo conjunto de motoneurônios do simulador ReMoto. Novas simulações foram feitas com a nova versão do simulador (adaptada a dados de humanos) e os resultados foram condizentes com os dados experimentais (variabilidade do torque e do eletromiograma), indicando que os modelos no simulador são uma representação razoável do que acontece no ser humano.
Título em inglês
Computational simulations for the study of torque variability during a plantar flexion.
Palavras-chave em inglês
Force variability
Motor control
Simulation
Resumo em inglês
The muscle force variability, usually in a constant and isometric force task, has been studied both experimentally and using computational tools. However, most studies using computer simulations have been made on tasks that use only one muscle, usually in the hand. As far as is known, no study has analyzed, either theoretically or experimentally, the overall behavior of the torque variability during plantar flexion. Therefore, this work aims to study the plantar flexion torque variability by means of mathematical models and simulations, comparing the results with those obtained in human experiments carried out locally. A first attempt was made using a Hill-type muscle contraction model activated by the electromyogram obtained from each of the three triceps surae muscles. This approach was not successful in terms of reproducing the torque variability results obtained from humans, although it estimated well the average value of plantar flexion torque. This inability to reproduce the torque variability found in experimental data was probably due to the information loss in the electromyogram of the spike times of motoneurons. In a second approach, the firing of individual motoneuron were obtained from a neuromuscular simulator developed locally, called ReMoto, capable of providing the spike times of all motoneuron models that activate each muscle and the respective muscle force. The latter is generated in the simulator from the forces generated by each motor unit that composes the muscle. However, the ReMoto original version was almost completely parameterized using data from cats and, hence, it was necessary to modify various parameter values (such as motor unit twitchs and action potential amplitudes) and models (such as the recruitment threshold and force saturation) before using the simulator to study torque variability in humans. Besides the second order twitch model already implemented in the original version of the simulator, two other models were implemented in this work. One was a more refined twitch model and the second was a Hill-type model modified to be activated by the ReMoto simulator motoneuron pool. New simulations were run with the new version of the simulator (adapted to human data) and the fittings to the experimental data (torque and electomyogram envelope variability) were good, suggesting that the models in the simulator are a reasonable representation of what occurs in the living human being.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2012-04-12
 
AVISO: O material descrito abaixo refere-se a trabalhos decorrentes desta tese ou dissertação. O conteúdo desses trabalhos é de inteira responsabilidade do autor da tese ou dissertação.
  • WATANABE, R. N., et al. Influences of pre-motoneuronal command statistics on the scaling of motor output variability during isometric plantarflexion. Journal of Neurophysiology, 2013.
  • Chaud, V.M., et al. A simulation study of the effects of activation-dependent muscle stiffness on proprioceptive feedback and short-latency reflex. In IEEE BioRobotics, Roma, 2012. CD Annals of BioRob.NY : IEEE, 2012.
  • Elias, L.A., et al. A web-based neuromuscular simulator applied to the teaching of the basics of neuroscience. In Meeting of the Society for Neuroscience, New Orleans, 2012. CD Annals.Washington : Society for Neuroscience, 2012. Abstract.
  • Elias, L.A., et al. Application of a web-based simulator to a study of neuromuscular training in humans. In 2011 Biomedical Engineering Society Annual Meeting, Hartford, 2011. Annals of the 2011 Biomedical Engineering Society Annual Meeting. : BMES, 2011. Abstract.
  • WATANABE, R. N., et al. Influences of motoneuron pool common drive statistics on plantar flexion torque variability. In Meeting of the Society for Neuroscience, New Orleans, 2012. CD Annals.Washington : Society for Neuroscience, 2012. Abstract.
  • WATANABE, R. N., et al. Influência dos processos de entrada dos motoneurônios na variabilidade do torque da flexão plantar. In Congresso Brasileiro de Engenharia Biomédica, Porto de Galinhas, 2012. Anais do XXIII CBEB., 2012.
  • WATANABE, R. N., e KOHN, A. F. Análise da média e da variabilidade do torque produzido em uma flexão plantar utilizando modelo matemático. In XIV Congresso Brasileiro de Biomecânica, Ribeirão Preto, 2011. Anais do XIV Congresso Brasileiro de Biomecânica.São Paulo : SBM, 2011. Resumo.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2024. Todos os direitos reservados.