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RESUMO

Filtros adaptativos são normalmente empregados em situações em que o ambiente está
em constante mudança, de forma que um sistema fixo não possui o desempenho adequado
para executar de forma ideal a tarefa desejada. Dentre os exemplos de aplicação, podemos
citar: equalização de canal, predição de dados, cancelamento de eco e assim por diante.
Um recurso fundamental dos filtros adaptativos é sua capacidade de rastrear variações
nas estat́ısticas de um sinal em ambientes não estacionários. No entanto, como são nor-
malmente utilizados em aplicações de tempo real, devem ser baseados em algoritmos que
requerem menos operações por dado de entrada. O algoritmo Least Mean Squares (LMS)
representa um dos filtros adaptativos mais simples e fáceis de se aplicar com complexidade
linear, enquanto o algoritmo Recursive Least Squares (RLS) é conhecido por sua rápida
taxa de convergência, mas requer um custo computacional elevado (O(M2) para um filtro
de tamanho M).

Em cenários variantes no tempo, os esquemas de combinação oferecem recursos de
rastreamento aprimorados em relação as componentes de cada filtro. Ao combinar filtros
de diferentes famı́lias, nomeadamente LMS e RLS, é posśıvel tirar vantagem das pro-
priedades de rastreamento de cada filtro e obter uma estrutura com melhor desempenho
do que se cada filtro fosse implementado individualmente.

Por outro lado, apesar da alta complexidade computacional (O(M3) para modelos
gerais de espaço de estados), o filtro de Kalman tem se mostrado a solução ideal para
muitas tarefas de rastreamento e predição de dados, em um ampla variedade de aplicações,
desde navegação até processamento de imagens. Este filtro é ótimo no sentido de min-
imizar o erro quadrático médio dos parâmetros estimados quando todos os rúıdos en-
volvidos são gaussianos e o vetor de parâmetros a ser estimado muda de acordo com um
modelo linear. Ao contrário dos filtros adaptativos, para poder ser projetado, o filtro
de Kalman requer conhecimento prévio do modelo matemático do sistema e das carac-
teŕısticas estat́ısticas dos rúıdos envolvidos. Outras versões desse filtro, como o Extended
Kalman Filter (EKF) e Unscented Kalman Filter (UKF), foram desenvolvidas para lidar
com modelos não lineares.

Com base neste cenário, o presente trabalho busca comparar o desempenho entre os
filtros adaptativos LMS e RLS, bem como sua combinação convexa com a solução ótima
obtida via filtro de Kalman sob diferentes modelos autorregressivos de primeira ordem.
Além disso, este trabalho também mostra que existem outros modelos para a evolução do
vetor de peso ótimo para os quais é posśıvel derivar versões rápidas (ou seja, O(M)) do
filtro de Kalman, estendendo o algoritmo RLS-DCD proposto na literatura.

Palavras-Chave – Filtro adaptativo, Filtro de Kalman, Combinação convexa, Processos
estocásticos.



ABSTRACT

Adaptive filters are usually employed in situations where the environment is constantly
changing, so that a fixed system would not have adequate performance to optimally
perform the desired task. Examples include channel equalization, data prediction, echo
cancellation and so on. A fundamental feature of adaptive filters is their ability to track
variations in the signal statistics for nonstationary environments. However, as they are
usually applied in real-time applications, they must be based on algorithms that require a
small number of computations per input sample.The least mean squares (LMS) algorithm
represents the simplest and most easily applied adaptive filter with linear complexity while
the standard recursive least squares (RLS) algorithm is known for its high convergence
rate, but requires a higher computational cost (O(M2) for a filter of size M).

In time-varying scenarios, combination schemes o↵er improved tracking capabilities
with respect to the component filters. When combining filters from di↵erent families,
namely LMS and RLS, it is possible to take advantage of the tracking properties from each
filter and obtain a structure with better performance than if each filter were implemented
individually.

On the other hand, despite the high computational complexity (O(M3) for general
state-space models), the Kalman filter has long been shown to be the optimal solution
to many tracking and data prediction tasks, in a wide variety of applications ranging
from navigation to image processing. This filter is optimal in the sense it minimizes the
mean square error of the estimated parameters when all noises involved are Gaussian and
the parameter vector to be estimated changes according to a linear model. Unlike the
adaptive filters, the Kalman filter requires prior knowledge of the mathematical model
of the system and the statistical characteristics of noise in order to be designed. Other
versions of this filter, such as extended Kalman filter and unscented Kalman filter, were
develop in order to deal with nonlinear models.

Based on this scenario, the present work seeks to compare the performance between
the adaptive filters LMS and RLS as well as their convex combination with the optimum
solution obtained via Kalman filter under di↵erent first order autoregressive models. In
addition, this work also shows that there exist other models for the evolution of the
optimum weight vector for which it is possible to derive fast (i.e., O(M)) versions of the
Kalman filter, extending the RLS-DCD algorithm proposed in the literature.

Keywords – Adaptive filter, Kalman filter, Convex combination, Stochastic process.
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We collect here, for ease of reference, a list of the main symbols used throughout the
text:

R set of real numbers
x boldface letter denotes a random scalar or vector variable
X boldface capital letter denotes a matrix

E{·} expectation operator
diag{X} column vector with the diagonal entries of X
Tr{X} trace of the matrix X

I identity matrix
µ step size
� forgetting factor
M filter length
�
2

v noise variance
wo

i optimum weight (column vector)
wi weight estimate (column vector)
w̃i weight error vector (column vector)
ui regressor (column vector)
qi random process noise for the adaptive filter (column vector)
d(i) desired variable
x(i) reference signal
y(i) filter output
e(i) output estimation error
ea(i) a priori estimation error
rdui cross-covariance vector of d(i) and ui

Ri covariance matrix of the regression data
Q covariance matrix of the random process noise for the adaptive filter
Pi inverse of an approximation to the covariance matrix Ri

Ti covariance matrix of the random process noise for the Kalman filter
Fi transition state matrix
Hi measurement matrix
Gi control-input model
Vi covariance matrix of the random measurement noise for the Kalman filter
ti random process noise for the Kalman filter (column vector)
zi observation signal (column vector)
xi state vector (column vector)
P i error covariance matrix for the Kalman filter
ri residual vector for DCD (column vector)
H step-size for DCD
Nu number of updates for DCD
B number of bits assigned to each coe�cient in DCD
⌘(i) mixing factor
⇣(i) excess mean-square error
"(i) mean-square deviation
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1 INTRODUCTION

1.1 Thesis Overview

Adaptive filters find application in diverse fields such as communications, control,

radar, sonar, acoustics, and speech processing. In most applications, the computational

complexity for the adaptation of the filter coe�cients must be kept as small as possible,

to save expensive real-time resources such as computational power and memory. On the

other hand, many applications require the algorithm to be able to track variations on the

unknown parameters. Given this scenario, the present thesis describes di↵erent techniques

to improve the tracking capabilities of adaptive filters, while keeping the complexity of

these algorithms as low as possible, either by taking advantage of structure in the data

or in the recursive equations, or by using low-complexity minimization algorithms (such

as the DCD — Dichotomous Coordinate Descent algorithm).

The following sections present a brief bibliographic review of the main tools (such as

DCD, combinations of adaptive filters and Kalman Filtering), that are used later in the

text to create new low-complexity algorithms for di↵erent types of problems. The next

chapters are structured as follows: Chapter 2 describes how the low-complexity convex

combination between one LMS and one RLS filters can be used for tracking problems and

still obtain performance close to the optimum solution obtained through the Kalman filter;

Chapter 3 studies the tracking behavior of combinations of LMS and RLS filters using a

more general model for the evolution of the optimum weight vector than the one used in

Chapter 2; Chapter 4 discusses under which conditions it is possible to obtain a Kalman

filter with linear complexity using the DCD technique; Finally, Chapter 5 presents some

topics to be studied in future research.
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1.2 Adaptive Filtering

Adaptive filters are required when either the filter specifications are unknown or when

they cannot be satisfied by time-invariant filters [1]. These filters are employed in situa-

tions in which the environment is constantly changing, so that a fixed system would not

have adequate performance. As they are usually applied in real-time applications, they

must be based on algorithms that require a small number of computations per input sam-

ple. Due to their low cost, reliability, accuracy and flexibility adaptive filters can be very

attractive in many applications such as: echo cancellation, system identification, channel

equalization, etc.

Figure 1: General block diagram of an adaptive-filter.

The general block diagram of an adaptive filtering application is illustrated in Figure

1. In this figure, i is the iteration number, x(i) denotes the reference signal, ŷ(i) is the

filter output and d(i) defines the desired signal. The error e(i) is calculated as d(i)� ŷ(i)

and is then used by the adaptation algorithm in order to determine the appropriate update

of the filter coe�cients. The update law for the filter coe�cients is derived through a cost

function, which is chosen such that its minimum is achieved when the filter is performing

the desired task.

For the class of FIR filters with length M , which will be the case considered in the

next chapters, the output of the adaptive filter is given by

ŷ(i) , uT
i wi�1, (1.1)

where wi�1 is a column vector with the filter coe�cients

wi�1 = [w0(i� 1) w1(i� 1) · · · wM�1(i� 1)]T
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and ui is known as the input regressor vector and is frequently a tap-delay line

ui = [x(i) x(i� 1) · · · x(i�M + 1)]T .

For the general block diagram of Figure 1, assume that we have access to several

observations of the zero mean random variables d(i) and ui, say, {d(0), d(1), . . .} and

{u0,u1, . . .} with their respective second-order moments �2

d(i) = E{d2(i)}, Ri = E{uiuT
i }

and rdui = E{d(i)ui}. Then, in the case of a nonstationary environment in which the

optimum solution changes with time, the goal of the adaptive filter is to find the optimal

weight M ⇥ 1 column vector wo

i�1
that solves the minimization problem

wo

i�1
= argmin

wi�1

E
�
[d(i)� uT

i wi�1]
2
 
. (1.2)

When dealing with adaptive filters there are many types of algorithms, several of each

based on two main approaches, namely Steepest-descent and Newton’s methods. Since it

is hard to know the exact signal statistics (e.g., covariances and cross covariances), which

are rarely available in practice, it is necessary to replace the required gradient vectors and

Hessian matrices by suitable approximations. Di↵erent approximations lead to di↵erent

algorithms with varied degrees of complexity and di↵erent performance properties [2]. In

this work, the main algorithms that will be used for comparison and study are: Least

Mean Squares — LMS and Recursive Least Squares — RLS. The Kalman filter, which

is the optimum filter under certain conditions, will be used as a standard for comparison

purposes. For each one of the previous algorithms, except for the Kalman filter which

will be discussed later in section 1.5, the optimum solution of (1.2) can be approximated

iteratively via the recursions described in Table 1.

Table 1: Adaptive Algorithms

Algorithms Recursions

LMS wi = wi�1 + µui

⇥
d(i)� uT

i wi�1

⇤

RLS
wi = wi�1 +Piui

⇥
d(i)� uT

i wi�1

⇤
, with

Pi = �
�1

h
Pi�1 �

��1Pi�1uiuT
i Pi�1

1+��1uT
i Pi�1ui

i

For these recursions, we assumed real-valued signals with the following definitions:

i � 0, with w�1 being an initial guess (usually a zero column vector), µ is a positive step-
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size, P�1 = initial guess (usually defined as ⌫�1I, where ⌫ is a small positive parameter

and I is the identity matrix), � is a forgetting factor which lies in the interval 0⌧ � < 1

and Pi is the inverse of an approximation R̂i to the covariance matrix Ri given by

R̂�1

i =

 
�
i+1

⌫I+
iX

`=0

�
i�`u`u

T
`

!�1

,

where ⌫I is an initial condition to guarantee invertibility.

In order to compare the performance of these algorithms, the following measures are

commonly used in the literature and will be used in the next chapters:

• Mean-square error (MSE):

J(i) , E
�
e
2(i)
 
= E

�
[d(i)� uT

i wi�1]
2
 
;

• Excess mean-square error (EMSE):

⇣(i) , E
�
e
2

a(i)
 
= E

�
(uT

i w̃i�1)
2
 
,

where ea(i) is the excess a priori error and w̃i�1 is the weight error vector defined

as wo

i�1
�wi�1;

• Mean-square deviation:

"(i) , E{kw̃i�1k
2
}.

1.3 DCD - Dichotomous Coordinate Descent Algo-
rithm

Many adaptive algorithms require multiplication, division and square root operations,

which are complex for hardware implementation since they require a significant chip area

and high power consumption [3]. Therefore, it is important to design algorithms that

require few multiplication, division and square root operations.

Fast adaptive algorithms based on Newton’s method may be unstable in finite preci-

sion implementations since they use the inverse of the Hessian matrix, or an approximation

to it, to improve the search direction used by the gradient algorithm. As shown in [4],

this stability problem can be avoided by using an alternative approach based on solving

normal equations e�ciently. Although these techniques have good performance to com-

pute the optimal solution, their computational complexity is high, of the order of O(M2)
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operations per sample (M being the filter length). As an example for these techniques, the

following algorithms can be highlighted: Euclidean direction search (EDS) [5], stochastic

line search algorithm [6] and conjugate gradient [7, 8].

In adaptive filtering, the conventional recursive least squares (RLS) algorithm is

known to possess fast convergence, but also to be numerically unstable in finite preci-

sion arithmetic and to have a high complexity of O(M2) operations [2]. To solve both

of these problems, di↵erent versions of RLS such as lattice-RLS [9], fast-QR [10, 11] and

RLS-DCD [3] algorithms were proposed in the literature. The last technique is based on

using the dichotomous coordinate descent (DCD) algorithm to solve the normal equa-

tions (see (1.3) below). Although both algorithms, lattice and RLS-DCD, are stable and

require a shift structure for the input regressor ui, the RLS-DCD algorithm has the ad-

vantage of computing explicitly an approximate solution for the weight vector and error

signal, while the lattice algorithm computes the error signal exactly using the reflection

coe�cients, but the filter weights are not provided. The DCD algorithm is designed to be

easily implementable in hardware (such as FPGAs, for example), and thus uses additions

and comparisons to avoid multiplications, divisions and other operations that are costly

to implement in hardware.

Before we give an explanation about the DCD algorithm, let us start with a brief

introduction about how the DCD can be applied to the RLS algorithm.

Assume that the RLS weight vector estimates are the solution of the following normal

equation:

R̂iwi = r̂dui , (1.3)

where R̂i and r̂dui are given by the recursions

R̂i = �
i+1

⌫I+
iX

j=0

�
i�juju

T
j = �R̂i�1 + uiu

T
i (1.4)

and

r̂dui =
iX

j=0

�
i�j

d(j)uj = �r̂dui�1 + d(i)ui, (1.5)

with initial conditions R̂�1 = ⌫I and r̂du�1 = 0.

The di�culty in solving these expressions is that a general solution for (1.3) involves

O(M3) operations. This is usually too costly for practical applications, except perhaps

for very short filters [12]. The classical RLS algorithm solves this problem partially by

using the matrix inversion lemma to compute the inverse of Ri. This reduces the total
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number of computations to O(M2). However, because of numerical errors, the resulting

algorithm may easily diverge and is di�cult to implement in practice.

The RLS-DCD algorithm avoids both of these problems by using some approxima-

tions. Assume that we have a good approximation ŵi�1 for wi�1. Then, it is possible

to compute an approximate solution ŵi to (1.3), by using a recursive algorithm where

ŵi�1 is set as an initial condition and the next iterations are computed just by adding a

correction term �wi to the current solution, i.e, ŵi = ŵi�1 +�wi.

Since the current solution ŵi�1 is already close to the solution ŵi, we need only a

few iterations of our recursive algorithm to obtain ŵi. However, this idea only helps if

each iteration of the recursive algorithm is very cheap to compute. As shown in [13], in

many situations it is possible to obtain a close approximation to the performance of the

RLS algorithm by using 1 to 4 updates to approximate the optimal solution wo

i with a

computational complexity of O(M) operations.

In general words, DCD is a coordinate descent optimization algorithm modified so

as to avoid multiplications and divisions, as we show next. So, let us first consider the

problem of finding the solution that minimizes the following one-dimensional quadratic

function:

min
w

⇢
f(w) =

1

2
aw2
� bw + c

�
, (1.6)

where a > 0, b and c are constants.

Assume that we have an approximation for ŵ(0). By choosing an step-size H > 0, it

is possible to compute:

�f+ = f(ŵ(0) +H)� f(ŵ(0)), �f� = f(ŵ(0)�H)� f(ŵ(0)). (1.7)

If �f+ < 0, update ŵ(1) = ŵ(0) + H, and if �f� < 0, update ŵ(1) = ŵ(0) � H.

If both �f+ and �f� are positive, choose ŵ(1) = ŵ(0) and reduce the step-size by

half: H  H/2. With the new estimate ŵ(1), the procedure can be repeated until ŵ(i)

converges to the minimum of f(·). Figure 2 illustrates this procedure.

The above procedure can be extended to minimize convex functions of several variables

as follows. Consider for example the problem of finding the solution wo to

min
w

⇢
f(w) =

1

2
wTRw � rTduw + c

�
, (1.8)

where R 2 RM⇥M and {w, rdu} 2 RM .
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Figure 2: DCD procedure for minimization.

Assume that we have an initial approximation ŵ0 to the solution and we want to

find an improved approximation by changing one entry of ŵ0 at a time. In order to

di↵erentiate each new approximation, we define:

ŵi = [ŵi(1) ŵi(2) · · · ŵi(M)]T ,

�f
(i�1)

+ (j) = f(ŵi�1 +Hej)� f(ŵi�1) and

�f
(i�1)

� (j) = f(ŵi�1 �Hej)� f(ŵi�1),

where i denotes the number of the iteration, j = 1 . . .M is the number of the entry and

ej denotes j column of M ⇥M identity matrix.

Each entry of ŵi will be updated at each iteration according to the following rule:

ŵi =

8
>>>><

>>>>:

ŵi�1 +Hej, if �f
(i�1)

+ (j) < 0,

ŵi�1 �Hej, if �f
(i�1)

� (j) < 0,

ŵi�1, otherwise.

(1.9)

The change �f
(i�1)

+ (j) in the cost-function obtained by adding H to each entry is

�f
(i�1)

+ (j) = f(ŵi�1 +Hej)� f(ŵi�1)

=
1

2
(ŵi�1 +Hej)

TR(ŵi�1 +Hej)� rTdu(ŵi�1 +Hej) + c

�
1

2
ŵT

i�1
Rŵi�1 + rTduŵi�1 � c

= HeTj Rŵi�1 +
1

2
H

2eTj Rej �HrTduej.

(1.10)
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Similarly, the variation �f
(i�1)

� (j) obtained from subtracting H from each entry is

�f
(i�1)

� (j) = f(ŵi�1 �Hej)� f(ŵi�1)

= �HeTj Rŵi�1 +
1

2
H

2eTj Rej +HrTduej.
(1.11)

If no update is made for j = 1 . . .M , before repeating the procedure in the next

iteration, we decrease the step H by a factor of two (i.e., H  H/2).

Implemented as described so far, the algorithm has a high computational cost. The

evaluation of �f
(i�1)

+ (j) and �f
(i�1)

� (j) at each step and the corresponding update of all

entries of ŵi would require more than M
2 multiplications. However, by taking advantage

of the fact that only one entry of the vector is changed at each iteration and of some

properties of hardware implementations to compute the arithmetic operations, the number

of operations can be reduced substantially as described next.

To begin with, let us define the following M ⇥ 1 residue vector

ri = rdu �Rŵi, (1.12)

where (1.12) denotes the residue of solving the normal equation Rw = rdu using ŵi as an

approximation to the solution. By replacing (1.9) in (1.12), we get the following update

rule for ri at each iteration:

ri =

8
>>>><

>>>>:

rdu �R(ŵi�1 +Hej) = ri�1 �HRej, if �f
(i�1)

+ (j) < 0,

rdu �R(ŵi�1 �Hej) = ri�1 +HRej, if �f
(i�1)

� (j) < 0,

ri�1, otherwise.

(1.13)

This still requires M multiplications since H is multiplying the j + 1 column of R.

However, if H is defined as 2k for some integer k, the computation of ri in fixed-point

arithmetic requires only M shifts and M additions, which is easier to implement in hard-

ware.

Besides the advantage of hardware implementation, another simplification can also

be applied in the update process of ŵi and ri by avoiding the computation of �f
(i�1)

+ (j)

and �f
(i�1)

� (j) for each entry. To see this, let us rewrite (1.10) and (1.11) using (1.12) to

obtain

�f
(i�1)

+ (j) = �HeTj ri�1 +
1

2
H

2eTj Rej = �Hri�1(j) +
1

2
H

2R(j, j) (1.14)
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and

�f
(i�1)

� (j) = HeTj ri�1 +
1

2
H

2eTj Rej = Hri�1(j) +
1

2
H

2R(j, j). (1.15)

Since H and R(j, j) are positive (R is positive-definite), the condition �f
(i�1)

+ (j) < 0

only holds if

ri�1(j) >
1

2
HR(j, j).

Similarly, the condition for �f
(i�1)

� (j) < 0 is

ri�1(j) < �
1

2
HR(j, j).

Given the previously conditions, we see that the j entry of ŵi will be updated if and

only if

|ri�1(j)|>
1

2
HR(j, j), (1.16)

with updates

ŵi = ŵi�1 +H sign{ri�1(j)}ej (1.17)

ri = ri�1 �H sign{ri�1(j)}Rej. (1.18)

As shown in [13], the optimal solution wo for (1.8) can be obtained through the DCD

procedure described in Algorithm 1 using fixed-point arithmetic for hardware implemen-

tation. In this algorithm, the entries of ŵi are updated bit by bit considering B bits

assigned to each coe�cient.

Algorithm 1: DCD algorithm for minimization of function (1.8)

Data:
Initialization:
ŵ�1 = 0, r�1 = rdu, h = H, cont = 0 and i = 0;

1 for b = 0 : B � 1 do // Bit by bit loop
2 flag = 1 // Update identifier
3 while flag = 1 do // Iteration loop
4 flag = 0
5 for j = 1 : M do // j-entry loop update
6 if |ri�1(j)|>

1

2
hR(j, j) then // Condition (1.16)

7 ŵi = ŵi�1 + hsign{r(j)}I1:M,j // See (1.17)
8 ri = ri�1 � hsign{r(j)}R1:M,j // See (1.18)
9 cont = cont+ 1 // Update counter

10 flag = 1
11 if cont > Nu then
12 Stop the algorithm

13 i = i+ 1

14 h = h/2
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Given an initial approximation ŵ0, the algorithm cyclically updates each element of

ŵi using the procedure described before (j = 1, . . . ,M) from the most significant bits

towards the less significant bit. Due to the quantized step-size H, there are iterations

at step 6 without update of the solution (requiring a reduction in the step-size by half

in step 14, these iterations are called ‘unsuccessful’). On the other hand, in ‘successful’

iterations the solution ŵ(j) and the residual vector r are updated according to steps 7

and 8. In order to have an e�cient algorithm, the number of successful updates Nu must

be small.

In Algorithm 1, b is the index of the binary representation of the entries of ŵi, M

is the length of vector ŵi, H is a power of two step-size, cont is a counter variable of

‘successful’ iterations, Nu is the maximum number of ‘successful’ iterations before the

algorithm stops and ri is the residue vector. The entries of ŵi are updated cyclically from

the element j = 1 until M . The notations I1:M,j and R1:M,j correspond to the elements

from rows 1 through M of column j of the identity matrix and R, respectively. Note that

we used normal font for R(j, j) in line 6 because this is a scalar variable that corresponds

to the element (j, j) of the matrix R. The resulting computational complexity of this

algorithm is O(M(2Nu +B � 1) +Nu) [3].

If the number of updates Nu is larger then B, the complexity of the DCD algorithm is

approximately upper bounded by 2MNu. However, if the number of updates Nu is small,

the term MB will dominate in the DCD complexity. In this case, a computationally

more e�cient variant of the DCD algorithm was proposed in [3] in order to eliminate this

term. This algorithm finds a ‘leading’ element (i.e., the element with largest residue) in

�ŵi = wi � ŵi�1 to be updated at each iteration. Algorithm 2 describes the e�cient

DCD version using the leading element.

Algorithm 2: Leading DCD algorithm
Data:
Initialization:
�ŵ�1 = 0, r�1 = rdu, h = H, m = 1;

1 for i = 0, . . . , Nu � 1 do
2 p = argmaxj=1,...,M{|ri�1(j)|}
3 while |ri�1(p)|

1

2
hR(p, p) do

4 m = m+ 1
5 h = h/2
6 if m > B then
7 Algorithm stops.

8 �ŵi = �ŵi�1 + sign{ri�1(p)}hI1:M,p

9 ri = ri�1 � sign{ri�1(p)}hR1:M,p
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As shown in [3], the complexity of the leading DCD algorithm is upper bounded by

(2M +1)Nu+B additions. This corresponds to a worst case scenario when the algorithm

makes use of all Nu updates and the condition at step 6 in Algorithm 2 is never satisfied

[3].

As we mentioned in the beginning of this section, the RLS-DCD algorithm uses the

DCD technique to solve the normal equation given by (1.3) as follows: Assume that wi

denotes the exact solution of (1.3) obtained via RLS and ŵi is the approximate solution

obtained via RLS-DCD. Then, by replacing R and rdu by their respective approximations

(1.4) and (1.5) in (1.12), we get the following expression for the residue vector at the time

instant i� 1

ri�1 = r̂dui�1 � R̂i�1ŵi�1. (1.19)

In order to apply the DCD algorithm to solve for ŵi, we define the following di↵erence

equations:

�wi = wi � ŵi�1, (1.20a)

�R̂i = R̂i � R̂i�1, (1.20b)

�r̂dui = r̂dui � r̂dui�1 . (1.20c)

Using the relations of (1.20), the normal equation (1.3) becomes

R̂i [ŵi�1 +�wi] = r̂dui ,

and thus

R̂i�wi = r̂dui�1 � R̂i�1ŵi�1 +�r̂dui ��R̂iŵi�1

= ri�1 +�r̂dui ��R̂iŵi�1 , �i.

(1.21)

From equations (1.4) and (1.5), the evaluation of (1.20b) and (1.20c) are given by

�R̂i = (�� 1)R̂i�1 + uiu
T
i , (1.22a)

�r̂dui = (�� 1)r̂dui�1 + d(i)ui. (1.22b)

Replacing the results of (1.19) and (1.22) in �i, we obtain

�i = r̂dui�1 � R̂i�1ŵi�1 + (�� 1)r̂dui�1 + d(i)ui �

h
(�� 1)R̂i�1 + uiu

T
i

i
ŵi�1

= �

⇣
r̂dui�1 � R̂i�1ŵi�1

⌘
+ ui

⇥
d(i)� uT

i ŵi�1

⇤

= �ri�1 + uie(i).

(1.23)
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Given an approximate solution �ŵi to (1.20a), we obtain an updated approximate

solution ŵi = ŵi�1 +�ŵi with the corresponding residue vector at time i

ri = r̂dui � R̂iŵi

= r̂dui�1 +�r̂dui � R̂i [ŵi�1 +�ŵi]

= r̂dui�1 +�r̂dui � R̂i�ŵi �

h
R̂i�1 +�R̂i

i
ŵi�1

= ri�1 +�r̂dui ��R̂iŵi�1| {z }
= �i from (1.21)

�R̂i�ŵi

= �i � R̂i�ŵi.

(1.24)

As shown in [13], the DCD algorithm can then be used to compute an approximate so-

lution �ŵi to (1.21) and update the residue (1.24) using the RLS-DCD routine described

in Algorithm 3.

Algorithm 3: RLS-DCD algorithm
Data:
Initialization:
ŵ�1 = 0, r�1 = 0, R̂�1 = ⇧ > 0;

1 for i = 0, 1, 2 . . . do
2 R̂i = �R̂i�1 + uiuT

i // See (1.4)
3 ŷ(i) = uT

i ŵi�1

4 e(i) = d(i)� ŷ(i)
5 �i = �ri�1 + uie(i) // See (1.23)

6 R̂i�ŵi = �i // Use algorithm 1 or 2 to compute �ŵi

7 ŵi = ŵi�1 +�ŵi

As explained in [13], the resulting complexity of Algorithm 3 can be substantially

reduced when ui is modeled as a tap-delay line. In this particular case the matrices R̂i

and R̂i�1 share a common structure and so the computation of R̂i in Algorithm 3 can be

replaced by an update of only its first column [R̂i]1:M,1, that is

[R̂i]1:M,1 = �[R̂i�1]1:M,1 + x(i)ui. (1.25)

Since R̂i is symmetric, its first row is equal to the transpose of (1.25). The remaining

terms are equal to the top-left (M � 1)⇥ (M � 1) block matrix [R̂i�1]1:M�1,1:M�1. Using

this procedure, the resulting complexity of the RLS-DCD is O(2MNu + 6M).

In Chapter 4 we show a numerical example in which the DCD technique is used to

derive a fast (i.e. O(M)) version of the Kalman filter using an specific model for the

evolution of the optimum weight vector wo

i .
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1.4 Convex Combination

When the a priori knowledge about the filtering scenario is limited or imprecise,

selecting the most adequate filter and adjusting its parameters becomes a challenging task,

and erroneous choices can lead to suboptimal performance. To address this di�culty, one

useful approach is to rely on the use of combinations of adaptive structures.

Combinations of adaptive filters have received considerable attention lately, since

they decrease the sensitivity of the filter to choices of parameters such as the step-size,

forgetting factor or filter length [13]. The idea is to combine the outputs of two (or several)

di↵erent independently-run adaptive algorithms to achieve better performance than that

of a single filter. In general, this approach is more robust than variable parameter schemes

[14].

Due to its relative simplicity, since the operating rules of the combination schemes are

no more complicated than those of the individual component filters, the convex combina-

tion of adaptive filters was the first combined scheme that attracted attention. As shown

in [15], it can be proved that the optimum combination is universal, i.e., for stationary

inputs the optimum combined estimate is at least as good as the best of the component

filters in steady-state.

Several applications for combination of adaptive filters have been proposed, such as:

acoustic echo cancellation [16], adaptive line enhancement [17], array beamforming [18],

and active noise control [19]. Figure 3 illustrates a convex combination structure between

two adaptive filters used to estimate a given desired variable d(i) based on the observation

of an input regressor vector ui.

As is seen in Figure 3, combination schemes can be divided in the following two

concurrent adaptive sections: one section for the adaptation of the individual filters and

a second one for the adaptation of the overall combination structure.

As shown in this figure, both adaptive filters have access to the same input and

reference signals and produce their individual estimates of the optimum weight vector

wo

i . Based on each filter output, the combination layer aims to learn dynamically the

best weights to optimize the overall performance.

According to Figure 3, the output of the convex combination is given by

y(i) = ⌘(i)y(1)(i) + [1� ⌘(i)]y(2)(i), (1.26)
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Figure 3: Convex combination of two transversal adaptive filters.

where ⌘(i) is the mixing parameter that lies in [0, 1], y(n)(i) = uT
i w

(n)
i�1

, for n = 1, 2, are

the outputs of the transversal filters, ui is the input regressor vector and w(n)
i�1

are the

weight vectors of the component filters. The weight vector and the estimation error of

the overall filter are given respectively by

wi = ⌘(i)w(1)

i + [1� ⌘(i)]w(2)

i , (1.27)

and

e(i) = d(i)� y(i) = ⌘(i)e(1)(i) + [1� ⌘(i)]e(2)(i). (1.28)

In order to reduce the gradient noise when ⌘(i) ⇡ 0 or ⌘(i) ⇡ 1 and to ensure that

⌘(i) will remain between [0, 1], a nonlinear transformation of an auxiliary variable a(i)

was proposed in [20]

⌘(i) =
sgm[a(i)]� sgm[�a+]

sgm[a+]� sgm[�a+]
, (1.29)

where sgm(a) = 1

1+e�a , a(i) is restricted to an interval [�a+, a+] in order to avoid that

the adaptation of a(i) (see (1.30) below) slows down too much when ⌘(i) is close to 0 or

to 1 because of the factor sgm[a(i)]{1� sgm[a(i)]} [21]:

a(i+ 1) = a(i) +
µa

✏+ p(i)
e(i)[y(1)(i)� y

(2)(i)]sgm[a(i)]{1� sgm[a(i)]}. (1.30)

Here, ✏ is a small positive number and p(i) is a low-pass filtered estimate of the power of

[y(1)(i)� y
(2)(i)] defined by

p(i) = �p(i� 1) + (1� �)[y(1)(i)� y
(2)(i)]2, (1.31)
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with 0⌧ � < 1.

The step-size µa usually will be chosen in the interval [0.01, 1]. As mentioned in [22],

a common choice in practice for a+ is 4.

It can be shown that the optimum mixing parameter in steady state is given by [15,23]:

⌘
o =

⇣
(2)
� ⇣

(12)

⇣(1) � 2⇣(12) + ⇣(2)

�����

1

0

, (1.32)

where ⇣(n) is the steady-state excess mean-square error (EMSE) for each component filter,

given by

⇣
(n) = lim

i!1
E{[e(n)a (i)]2}, for n = 1, 2, (1.33)

e
(n)
a (i) is the a priori error given by

e
(n)
a (i) = uT

i w̃
(n)
i�1

, (1.34)

with w̃(n)
i�1

= wo

i�1
�w(n)

i�1
and ⇣

(12) is the cross EMSE between both filters in the convex

combination which is obtained according to

⇣
(12) = lim

i!1
E{e(1)a (i)e(2)a (i)}. (1.35)

In equations (1.33) and (1.35), the a priori error ea(i) of the overall combination

structure can be written as a function of the a priori errors of the component filters [14],

i.e,

ea(i) = ⌘(i)e(1)a (i) + [1� ⌘(i)]e(2)a (i). (1.36)

As mentioned in [22], the optimum EMSE for the convex combination between two

adaptive filters, using the optimum mixing parameter ⌘o, is given by

⇣
COMB = ⇣

(12) +
�⇣

(1)�⇣
(2)

�⇣(1) +�⇣(2)
(1.37a)

= ⇣
(1)
� [1� ⌘

o]�⇣
(1) (1.37b)

= ⇣
(2)
� ⌘

o�⇣
(2)
, (1.37c)

where �⇣
(n) = ⇣

(n)
� ⇣

(12), for n = 1, 2.

According to (1.37), when the optimum mixing parameter is either 1 or 0, the convex

combination behaves just like the best filter component. However, in the case where

0 < ⌘
o
< 1 and the cross-EMSE ⇣

(12)
< min{⇣(1), ⇣(2)}, it can be seen that the combination

outperforms both component filters simultaneously.
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In chapters 2 and 3 we show numerical examples using the convex combination be-

tween LMS and RLS filters under two di↵erent models, one for each chapter, for the

evolution of the optimum weight vector wo

i , and compare the resulting performance with

the optimum solution obtained via Kalman filter.

1.5 Kalman Filter

The Kalman filter (KF) is the Bayesian solution to the problem of sequentially esti-

mating the states of a dynamical system in which the state evolution and measurement

processes are both linear and Gaussian [24]. This filter has long been used to derive

approximations to the optimal solution to many tracking and data prediction tasks, such

as: linear estimation [25], target tracking [26] and navigation systems [27].

This filter is optimum in the sense that it minimizes the mean square error of the

estimated parameters when all noises involved are Gaussian and the parameter vector to

be estimated changes according to a linear model [28].

Thus, assume that we want to estimate a vector xi that changes in time according to

the model described by the following set of state-space equations:

xi = Fixi�1 +Giti,

zi = Hixi�1 + vi,

(1.38)

where xi is the unknown M ⇥ 1 state vector, Fi is the M ⇥M state-transition matrix,

Gi is an M ⇥ N matrix, ti is an N ⇥ 1 real Gaussian random state noise vector with

zero mean and covariance matrix Ti, zi is the D⇥ 1 observation vector, Hi is the D⇥M

measurement matrix, and vi is a D ⇥ 1 real Gaussian random measurement noise vector

with zero mean and covariance matrix Vi. Matrices Fi, Gi, Hi, Ti and Vi are assumed

to be real and known.

The covariances and cross-covariances of the random processes ti and vi are denoted

by:

E

8
<

:

"
ti

vi

#"
tj

vj

#T9=

; =

"
Ti Si

ST
i Vi

#
�ij, (1.39)

where

�ij =

8
<

:
1, if i = j

0, if i 6= j.
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The initial state x�1 is assumed to have zero mean, covariance matrix ⇧�1 and to be

uncorrelated with ti and vi, i.e:

E{x�1x
T
�1
} = ⇧�1 > 0, E{tixT

�1
} = 0 and E{vix

T
�1
} = 0, for i � 0. (1.40)

Given observations zi that satisfy the state-space model described in (1.38), an esti-

mate x̂i for xi can be recursively computed by using the following set of KF equations

[2]:

⌦i = Vi +HiP i�1H
T
i , (1.41a)

Ki = (FiP i�1H
T
i +GiSi)⌦

�1

i , (1.41b)

ei = zi �Hix̂i�1, (1.41c)

x̂i = Fix̂i�1 +Kiei, (1.41d)

P i = FiP i�1F
T
i +GiTiG

T
i �Ki⌦iK

T
i , (1.41e)

where x̂i is the optimal estimate considering the observations {z(0), z(1) . . . , z(i�1), z(i)}

and P i is the M ⇥M error covariance matrix, i.e.,

P i = E{(xi � x̂i)(xi � x̂i)
T
}, (1.42)

E{·} denotes expectation, Ki is the M ⇥D Kalman gain, Si = E{tivT
i } and ei is a D⇥ 1

error vector.

In chapters 2 and 3 we show numerical examples using the Kalman filter equations

under di↵erent state-space models, one for each chapter, and compare the resulting per-

formance with the LMS and RLS algorithms, as well as with their convex combination. In

chapter 4 we present a numerical example in which the DCD technique is used to derive

a fast (i.e. O(M)) version of the Kalman filter using a specific model for the evolution of

the state vector xi.

1.6 Contributions

The main contributions of the present dissertation are:

• Chapter 2: Comparison of tracking performance between the convex combination

of LMS and RLS filters with the optimal solution obtained via Kalman filter. We

show that combination schemes may have a tracking performance close to that of a

Kalman filter, but with lower computational complexity (linear in the filter length
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instead of quadratic — in the case of the example shown in chapter 2 — or cubic,

for general Kalman models).

• Chapter 3: Analysis of the fastest speed of change of the optimum parameter vector

that an adaptive filter can track and comparison between the theoretical steady-state

EMSE and MSD of the convex combination of LMS and RLS filters with the optimal

solution obtained via Kalman filter for a more general state-space model than in

Chapter 2. We show that, as long as the pole of the AR model used in chapter 3

is greater than a minimum value, the performance of the low-cost approach using

convex combination is close to the optimal case obtained via Kalman filter. In

addition, we present a theoretical mean-square analysis for the Kalman filter with

a random measurement matrix.

• Chapter 4: Derivation of a low-cost recursion for the covariance matrix P i in the

Kalman filter, using the Dichotomous Coordinate Descent (DCD) technique. We

show that it is possible to reduce the complexity of the Kalman filter from O(M2)

to O(M) for a certain class of diagonal matrices Fi.

This research gave rise to 4 publications, which are:

1. Ra↵aello Claser, Vı́tor H. Nascimento, and Yuriy V Zakharov. A low-complexity

RLS-DCD algorithm for Volterra system identification. In 2016 24th European

Signal Processing Conference (EUSIPCO), pages 6–10. IEEE, 2016. Since this

article is outside the scope of this dissertation, this work was not included in the

final text.

2. Ra↵aello Claser and Vı́tor H Nascimento. Low-complexity approximation to the

Kalman filter using convex combinations of adaptive filters from di↵erent families.

In 2017 25th European Signal Processing Conference (EUSIPCO), pages 2630–2633.

IEEE, 2017.

3. Ra↵aello Claser, Vı́tor H. Nascimento, and Yuriy V Zakharov. Low-complexity

approximation to the Kalman filter using the Dichotomous Coordinate Descent Al-

gorithm. In Asilomar Conference on Signals, Systems, and Computers, 2018.

4. Ra↵aello Claser and Vı́tor H Nascimento. On the tracking performance of adaptive

filters. Submitted to the IEEE Transactions on Signal Processing.
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2 LOW-COMPLEXITY APPROXIMATION TO
THE KALMAN FILTER USING CONVEX
COMBINATIONS OF ADAPTIVE FILTERS
FROM DIFFERENT FAMILIES

When choosing an adaptive algorithm for a given application, one of the important

points to be considered is the algorithm’s ability to track variations in the parameter

vector one wishes to estimate [14]. The Kalman filter (KF) has long been shown to be

the optimal solution to many tracking and data prediction tasks [28], in the sense it

minimizes the mean square error of the estimated parameters when all noises involved are

Gaussian and the parameter vector to be estimated changes following a linear model [28]

(see chapter 1, section 1.5).

When a combination of two adaptive filters of the same family is used, for example two

least mean-squares (LMS) with di↵erent step sizes, or two recursive least-squares (RLS)

with di↵erent forgetting factors, the resulting performance will never be better than the

performance of a single filter using optimum settings for a given nonstationary condition

[22].

On the other hand, as was shown in [14, 22], when combining filters from di↵erent

families, namely LMS and RLS, it is possible to take advantage of the tracking properties

from each filter and obtain a structure with better performance than that which would

be possible with each filter, even if both were implemented using the optimum values of

step-size and forgetting factor. Combinations of Kalman filters were also proposed using

di↵erent update rules as proposed in [29] and [30].

Assuming we want to estimate a vector with M parameters, the computational com-

plexity for a convex combination between one LMS and one RLS can be implemented with

O(M) operations when the regressor vector is a tap delay line (if lattice or Dichotomous

Coordinate Descent - DCD algorithms are used) while the Kalman filter requires O(M2)

operations (for a first-order random walk state-space model, see (2.2) below), or O(M2.376)

[31] for a general state-space model. This chapter describes how close the combination
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scheme can get to the optimal excess mean square error (EMSE) obtained via Kalman

filter. We show that the performance gain obtained with the Kalman filter is not very

large, less than 1dB, even when we do not have exact knowledge of the true covariance

matrix of the noise process.

2.1 Problem Formulation

The Kalman filter is the optimal linear least-mean-squares (l.l.m.s.) solution to the

problem of sequentially estimating the states of a dynamical system in which the state

evolution and measurement processes are both linear and Gaussian [24]. Therefore, for

the KF equations described in (1.41), in general one needs O(M3) operations to compute

the Kalman gain Ki and the covariance matrix P i. Depending on the application, this

computational cost may be prohibitive. We propose here to use a combination of an LMS

and an RLS instead, and show that, in the case of the model usually employed to study

tracking of adaptive filters, the optimum solution obtained with the KF is only slightly

better than the result obtained with the combination.

2.2 Data Model

In the sequel we adopt the following assumptions.

• d(i) and ui are related according to the following linear regression model

d(i) = uT
i w

o

i�1
+ v(i), (2.1)

where v(i) is i.i.d. noise, independent of ui and with variance �
2

v .

• E{ui} = 0 and E{d(i)} = 0.

• wo

i changes according to a first-order random walk

wo

i = wo

i�1
+ qi, (2.2)

where qi is independent of ui, with autocovariance Q = E{qiqT
i }.

Note that, due to its simplicity, this is the most usual model used in the literature

to study tracking properties of adaptive filters [2]. By comparing the state-space model

described in (1.38) with the random-walk described in (2.2) and the linear regression



33

model described in (2.1), the Kalman model corresponding to (2.2) and (2.1) is such that:

xi corresponds to wo

i , Hi corresponds to uT
i , ti corresponds to qi, vi corresponds to v(i),

zi corresponds to d(i) and the matrices Fi and Gi are equal to I, the M ⇥M identity

matrix. Under these conditions, the number of matrix multiplications in equations (1.41b)

and (1.41e) is reduced, resulting in an O(M2) computational complexity for the KF.

As will be shown in section 2.3, once the matrix Q is known, the excess mean-square

error (EMSE) obtained via the KF can be closely approximated by the combination of

two adaptive filters (namely LMS and RLS) and their respective parameters, step-size µ

and forgetting factor �, which are chosen optimally according to the equations [2]:

µ
o =

s
Tr{Q}

�2
vTr{R}

and �
o = 1�

s
Tr{RQ}

�2
vM

, (2.3)

where µ
o and �

o are the optimum tracking parameters.

The advantage is that the combination can be implemented with O(M) complexity,

while the Kalman filter for model (2.2) requires computational complexity O(M2). In

addition, [15] proposes a method for estimating the optimal step sizes online, which can

be useful in cases in which one does not have knowledge of the true value of Q.

During their operation, adaptive filters normally go from a convergence phase, where

the expected error decreases, to a steady-state regime in which the error variance tends

towards some asymptotic value [32]. Table 2 presents the theoretical optimum steady-

state EMSE expressions for each adaptive filter, and their combination [22].

Table 2: Optimum steady-state EMSEs (⇣o) for LMS, RLS and their combination.

Alg. ⇣
o

µ
o-LMS

p
�2
vTr{R}Tr{Q}

�
o-RLS

p
�2
vMTr{QR}

Combination
⇣
(1)
⇣
(2)
� (⇣(12))2

⇣(1) � 2⇣(12) + ⇣(2)

where ⇣
(1) = ⇣

o

LMS
, ⇣(2) = ⇣

o

RLS
and ⇣

(12) is given by [22]:

⇣
(12) = µ

o
�
o
�
2

vTr{⌃}+ Tr{Q⌃}, (2.4)

with ⌃ = (�oI+ µ
oR)�1R.
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2.3 Simulations

As shown in [22], when the LMS and RLS filters are combined, an interesting result

is obtained. Assuming the tracking model (2.2) and considering the optimum LMS and

RLS filters with adaptation parameters given by expressions described in (2.3) [32], LMS

will outperform RLS if Q is proportional to the autocorrelation matrix of the input signal,

R, and the opposite will occur when Q / R�1.

Consider an example where Q is a mixture of R and R�1 given by [32]:

Q = 10�5

⇢
↵

R

Tr{R}
+ (1� ↵)

R�1

Tr{R�1}

�
, (2.5)

where ↵ 2 (0, 1).

α
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Figure 4: Simulated steady-state EMSE for LMS, RLS, their convex combination and
KF, when Q smoothly changes between R and R�1.

As can be seen in Figure 4, the simulated steady-state EMSE that can be achieved

by combining both types of filters (LMS and RLS) with optimum settings, is within less

than 1dB from the optimum EMSE obtained via KF. However, the computational cost is

reduced from O(M2) to O(M) operations (if a lattice or DCD implementation is used for

RLS). Other settings considered for this simulation were: wo

i was initialized with random

values in the interval [�1, 1], M = 7, �2

v = 10�2, R a Toeplitz matrix with first row given

by
1

7

h
1 0.8 0.82 . . . 0.86

i
,
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Fi = Gi = I, Hi = uT
i , zi = d(i) and Vi = �

2

v . Regarding the adjustment for the com-

binations, we used convex combinations with fixed step-size µa = 0.25 and the auxiliary

variable a(i) restricted to the interval [�4, 4]. For this experiment, 500 simulations with

40.000 iterations each were performed in order to obtain ensemble average EMSE curves

for each filter. In this example, µ and � were chosen optimally according to (2.3).

Even if an M ⇥M positive-definite random perturbation (with spectral norm 10% of

the original Q) is added to the covariance matrix Q for each parameter ↵ (according to

Algorithm 4), the combination still has an EMSE close to that of the KF (see Figure 5).

For this simulation we kept the same settings used to obtain Figure 4.

Algorithm 4: Covariance matrix Q with random perturbation

1 for each ↵ do
2 Q = Equation (2.5);
3 {µ

o
,�

o
} = Equations (2.3);

4 � = randn(M) ⇤ 10�7; // Random perturbation
5 Qp = Q+�;
6 [U0

,S0
,V0] = svd(Qp); // Singular Value Decomp. of Qp

7 for each realization L do
8 wo

0
= randn(M, 1);

9 for each iteration i do
10 qi = U0

⇤
p
S0 ⇤ randn(M, 1);

11 wo

i = wo

i�1
+ qi;

12 Run LMS, RLS, Combination and KF;
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Figure 5: Simulated steady-state EMSE for LMS, RLS, their convex combination and
KF, when a random perturbation is added to Q.
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Note that the step-size and forgetting factor were still chosen according to (2.3), but

using the nominal value for Q, so the filters are not operating in the optimal condition

anymore. The KF was also designed using the nominal value of Q (without perturbation).

The analysis presented in this chapter assumed, as commonly used in the literature

due to its simplicity, a first order random walk model for wo

i . We extend this result to

a more general model in the next chapter. By introducing a gain factor in the model of

wo

i , we are able to study the performance of the filter under faster or slower variations in

the optimum parameter vector.

2.4 Conclusion

Combination approaches are an e↵ective way to improve the performance of adaptive

filters. In this chapter, proposed originally in [33], we have studied the tracking perfor-

mance of combinations of LMS and RLS filters and compared the resulting EMSE with

the optimal case obtained via Kalman filter.

As it was shown, by using a convex combination between an LMS and an RLS filters, it

is possible to achieve a steady-state EMSE performance close to the optimal case obtained

via Kalman filter, when a non-stationary environment is considered. The advantage arises

from the fact that the combination can be implemented with O(M) complexity, while it

takes at least O(M2) operations to compute the corresponding Kalman filter. Similar

performance was still obtained, even without precise knowledge of the true value of Q.
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3 ON THE TRACKING PERFORMANCE OF
ADAPTIVE FILTERS

3.1 Introduction

When the a priori knowledge about the filtering scenario is limited or imprecise,

selecting the most adequate filter and adjusting its parameters becomes a challenging

task, and erroneous choices can lead to a considerable loss in performance. The Kalman

filter (KF) has long been shown to be the optimal solution to many tracking and data

prediction tasks [28], in a wide variety of applications ranging from navigation [34, 35]

to image processing [36, 37]. This filter is optimal in the sense it minimizes the mean

square error of the estimated parameters when all noises involved are Gaussian and the

parameter vector to be estimated changes according to a linear model. Thus, consider a

state-space description of the form (1.38).

As we can see in equations (1.41b) and (1.41e), in general one needs O(M3) operations

to compute the Kalman gain and the covariance matrix P i or O(M2) operations for a

first-order random walk state-space model of the form

xi = xi�1 + ti. (3.1)

Depending on the application, this computational cost may be prohibitive. Variations

on the Kalman recursions were proposed to reduce the computational complexity. The

Schmidt-Kalman filter [38, Ch. 9] and the Chandrasekhar-Kailath-Morf-Sidhu (CKMS)

filter [39, Ch. 11 and 13] are able to reduce the total number of arithmetical operations,

but with complexity still O(M2). Although the hardware technology for embedded sys-

tems is quite powerful, a KF with reduced complexity is important to deal with real-time

systems that require high sampling rates and low latencies [40]. In the case of active

noise control (ANC) [40] and multi-channel linear-prediction (MCLP) for blind speech

dereverberation [41], the KF tends to outperform most adaptive algorithms in terms of

convergence speed and robustness. By enforcing a band-matrix structure for the covari-
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ance matrix P i in the case of [40] and block-diagonal matrix in the case of [41], the

authors developed low complexity, i.e O(M), approximations for the KF.

As was shown in chapter 2, through the convex combination between one LMS and one

RLS filters (implemented with lattice [42] or Dichotomous Coordinate Descent — DCD

[3] algorithms), it is possible to estimate the vector xi modeled according to (3.1) with

O(M) operations and with an excess mean-square error (EMSE) E{kHi(xi�1 � x̂i�1)k2}

less than 1dB from the solution obtained via KF. However, since the covariance matrix

of xi goes to infinity as i!1, this model is unstable and does not reflect most practical

situations. Given this scenario, this chapter studies the tracking behavior of combinations

of LMS and RLS filters using a more general model than (3.1) for the evolution of the

optimum parameter vector xi. Our goal is to describe how close the combination scheme

can get to the optimal excess mean-square error (EMSE) and mean-square deviation

(MSD) E{k(xi � x̂i)k2} obtained via Kalman filter while keeping the complexity linear

in the filter length. In doing so we are able to derive how fast the parameter vector can

change so that an adaptive filter can still track the variations.

The contributions of this chapter are:

• Derivation of a theoretical recursion to estimate the covariance matrix P i and the

corresponding steady-state EMSE and MSD of the Kalman filter considering the

data model used in adaptive filtering, in which Hi is random (an alternate model

for the steady-state MSD performance of the Kalman filter was given recently in

[43]);

• The derivation of the fastest speed of change of the optimum parameter vector (in a

sense to be described later in the text) that an adaptive filter can track. This result

enables us to answer when a model-free adaptive filter can be used, and in which

situations a model-dependent Kalman filter is necessary. We compare our bound

with the nonstationarity degree (NSD) from [44];

• The proposal of convex combinations of adaptive filters as a low-cost approximation

to the Kalman filter, and theoretical expressions to quantify the quality of the

approximation for the proposed model;

• Derivation of a theoretical model for RLS and the convex combination of one LMS

and one RLS filters under the autorregressive model (3.3) for the evolution of the

optimum weight vector.
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This chapter is organized as follows: in Section 3.2 we derive a general expression for

the covariance matrix (3.8) and cross-covariance matrix (3.10) considering algorithms of

the general class given by (3.5) and in Section 3.3 we derive the EMSE and MSD for the

LMS and RLS algorithms, as well as their respective combination and for the Kalman

filter, considering the proposed model (3.3). Section 3.4 compares the performance of

each algorithm under di↵erent conditions, and finally, section 3.5 concludes the chapter.

3.2 Tracking model

Consider a nonstationary data model relating the random sequences d(i) and ui

through a linear model of the form

d(i) = uT
i w

o

i�1
+ v(i), (3.2)

where v(i) is a zero-mean random variable with constant variance �
2

v = E{v(i)}2 and

uncorrelated with ui. The weight vector wo

i is assumed to evolve according to [45]

wo

i = ✓wo

i�1
+
p
1� ✓2qi, (3.3)

where ✓ is a scalar variable in the range 0 < ✓  1 and qi is a stationary random

perturbation independent of the (zero mean) initial conditions {wo

�1
,w�1}, of uj for all j

and of d(j) for all j < i. In order to keep the power of the output signal wo

i independent

of ✓ and be able to study the EMSE behavior of each filter according to the variation of ✓,

the model (3.3) was defined in such a way that the power of wo

i in the limit is independent

of ✓, i.e., limi!1 Ekwo

i k
2= Ekqik

2. The following assumptions are also considered for this

model:

• The sequence {ui} is real, zero-mean and such that ui is independent of uj for i 6= j

(i.e., the sequence is i.i.d. — independent and identically distributed).

• The noise sequence v(i) is i.i.d. (independent and identically distributed).

• The autocorrelation matrix R = E{uiuT
i } is positive-definite (R > 0).

• The random sequences ui and v(i) are jointly Gaussian.

• The sequence qi is i.i.d., zero-mean and with positive-definite autocorrelation matrix

equal to

E{qiq
T
i } = Q. (3.4)
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• The regressor vector ui is independent of the weight-error vector w̃i�1. This con-

dition is an approximation, part of the widely used independence assumptions in

adaptive filter theory [46,47].

We focus on the convex combination of two algorithms of the following general class

[13]:

w(n)
i = w(n)

i�1
+ ⇢

(n)M(n)
i uie

(n)(i), (3.5)

where the superscript n is associated to the first (n = 1) or second (n = 2) filter of the

combination, w(n)
i represents the length-M coe�cient vector, ⇢(n) is a step-size (which

is equal to µ
(n) for LMS or 1 for RLS), ui is the input regressor vector, e(n)(i) is the

estimation error given by d(i)� uT
i w

(n)
i�1

and M(n)
i is an M -by-M symmetric nonsingular

matrix equal to the identity matrix for LMS or, in the RLS case, equal to Pi

Pi = R�1

i =

 
�
i+1

⌫I+
iX

`=0

�
i�`u`u

T
`

!�1

, (3.6)

where I denotes the M ⇥M identity matrix, � is the forgetting factor and ⌫I is an initial

condition to guarantee invertibility.

It is common in the literature to evaluate the steady-state MSD (") and EMSE (⇣)

for one adaptive filter as

" = lim
i!1

Tr{Si}, ⇣ = lim
i!1

Tr{RSi}, (3.7)

where Tr{A} stands for the trace of matrix A and

Si = E{w̃iw̃
T
i }. (3.8)

Recall from chapter 2 that there are three possible situations that can occur in steady-

state for the combination: the combination will closely follow LMS or RLS if one of

these filters significantly outperforms the other, or, if both component filters have similar

performance, the combination may actually outperform both of them [14].

Tracking analyses of convex combinations of the algorithms of the form (3.5) depend

on analytical expressions of the cross-MSD and cross-EMSE, defined respectively as "(12)

and ⇣
(12). Using independence assumptions, such expressions can be obtained through

the evaluation of

"
(12) = lim

i!1
Tr{S(12)

i }, ⇣
(12) = lim

i!1
Tr{RS(12)

i }, (3.9)
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where

S(12)

i = E{w̃(1)

i (w̃(2)

i )T}. (3.10)

Using the MSD of each filter and the cross-MSD, it is possible to modify (1.32) to

obtain the value of the mixing parameter ⌘
o

MSD
that minimizes the MSD of the combi-

nation. Unfortunately, estimating ⌘
o

MSD
online is unrealizable since it requires knowledge

of wo

i to compute the MSD and cross-MSD. So we define the combination MSD using

⌘
o from (1.32), which is optimum for the MSE and EMSE and suboptimal for the MSD.

Subtracting (1.27) from wo

i , it can be shown that

"
COMB = ⌘

o2
"
(1) + (1� ⌘

o)2"(2) + 2⌘o(1� ⌘
o)"(12). (3.11)

The main focus of the following analysis is on the tracking behavior of the adaptive

filter in steady-state or, in other words, after initial convergence of the coe�cients w(n)
i .

Although the optimum weights are time-varying, under model (3.3), the MSD and EMSE

approach a steady-state value as seen in section 3.3.

We start the analysis by subtracting both sides of (3.5) from wo

i , to get

w̃(n)
i = wo

i �w(n)
i�1
� ⇢

(n)M(n)
i uie

(n)(i). (3.12)

Using the linear regression model of (3.2) for the desired response d(i) and the a priori

error signal e(n)a (i) given by (1.34), the error signal defined as e(n)(i) = d(i)�uT
i w

(n)
i�1

with

n = 1, 2, can be rewritten as:

e
(n)
i = e

(n)
a (i) + v(i). (3.13)

Replacing the model (3.3) and the error signal e(n)i given by (3.13) into equation (3.12),

we arrive at:

w̃(n)
i = ✓wo

i�1
+
p
1� ✓2qi �w(n)

i�1
� ⇢

(n)M(n)
i ui[e

(n)
a (i) + v(i)]. (3.14)

By adding and subtracting (1 � ✓)wo

i�1
in (3.14) and replacing e

(n)
a (i) by (1.34), we

get:

w̃(n)
i =

h
I� ⇢

(n)M(n)
i uiu

T
i

i
w̃(n)

i�1
� ⇢

(n)M(n)
i uiv(i)� (1� ✓)wo

i�1
+
p
1� ✓2qi. (3.15)

In order to compute the covariance matrices (3.8) and (3.10), multiply (3.15) with

n = ` by its transpose with n = m and take the expectation of both sides. Assuming that
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qi is independent of the initial conditions and of ui, after some algebra, we get

E{w̃(`)
i (w̃(m)

i )T} = E{w̃(`)
i�1

(w̃(m)

i�1
)T}

� ⇢
(`)E{M(`)

i uiu
T
i w̃

(`)
i�1

(w̃(m)

i�1
)T}� ⇢

(m)E{w̃(`)
i�1

(w̃(m)

i�1
)Tuiu

T
i M

(m)

i }

� (1� ✓)E{w̃(`)
i�1

(wo

i�1
)T}+ ⇢

(`)
⇢
(m)E{M(`)

i uiu
T
i w̃

(`)
i�1

(w̃(m)

i�1
)Tuiu

T
i M

(m)

i }

� (1� ✓)E{wo

i�1
(w̃(m)

i�1
)T}+ (1� ✓)⇢(`)E{M(`)

i uiu
T
i w̃

(`)
i�1

(wo

i�1
)T}

+ ⇢
(`)
⇢
(m)

�
2

vE{M
(`)
i uiu

T
i M

(m)

i }+ (1� ✓)⇢(m)E{wo

i�1
(w̃(m)

i�1
)Tuiu

T
i M

(m)

i }

+ (1� ✓)2E{wo

i�1
(wo

i�1
)T}+ (1� ✓

2)E{qiq
T
i }.

(3.16)

To simplify equation (3.16), we considered the following assumptions commonly used

in the literature as mentioned in [13]:

• Assumption 1: The regressor vector ui is independent of the weight-vector w̃(n)
i�1

for n = {`,m};

• Assumption 2: Matrix M(n)
i varies slowly in relation to w̃(n)

i�1
. Thus, when M(n)

i

appears inside the expectations of (3.16), we simply replace it by its mean M̄(n).

For LMS this assumption is not necessary, since M(n)
i = I. For RLS, considering

large enough i, we can approximate E{M(n)
i } by E{Pi} ⇡ P̄

�
= (1� �)R�1.

• Assumption 3: According to [13] and relation (3.10), the value of E{M(`)
i uiuT

i w̃
(`)
i�1

(w̃(m)

i�1
)TuiuT

i M
(m)

i } can be approximated by M̄(`)
n
RTr{RS(`m)

i�1
}+ 2RS(`m)

i�1
R
o
M̄(m)

when the input regressor vector ui is Gaussian and real.

By considering the above assumptions and the relation (3.10), equation (3.16) simpli-

fies to:

S(`m)

i ⇡ S(`m)

i�1
� ⇢

(m)S(`m)

i�1
RM̄(m)

� ⇢
(`)M̄(`)RS(`m)

i�1

+ ⇢
(`)
⇢
(m)M̄(`)

n
RTr{RS(`m)

i�1
}+ 2RS(`m)

i�1
R
o
M̄(m)

+ ⇢
(`)
⇢
(m)

�
2

vM̄
(`)RM̄(m)

+ (1� ✓)
⇥
⇢
(`)M̄(`)R� I

⇤
E{w̃(`)

i�1
(wo

i�1
)T}

+ (1� ✓)E{wo

i�1
(w̃(m)

i�1
)T}

⇥
⇢
(m)RM̄(m)

� I
⇤

+ (1� ✓)2E{wo

i�1
(wo

i�1
)T}+ (1� ✓

2)Q.

(3.17)

As required in (3.17), the terms E{wo

i�1
(wo

i�1
)T} and E{w̃(n)

i�1
(wo

i�1
)T} can be obtained
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as follows:

E{wo

i�1
(wo

i�1
)T} = E{(✓wo

i�2
+
p
1� ✓2qi�1)(✓w

o

i�2
+
p
1� ✓2qi�1)

T
}

= ✓
2E{wo

i�2
(wo

i�2
)T}+ (1� ✓

2)E{qi�1q
T
i�1

}

= ✓
2E{wo

i�2
(wo

i�2
)T}+ (1� ✓

2)Q.

(3.18)

Assuming that the adaptive filter is in steady-state, i.e.,

E{wo

i�1
(wo

i�1
)T} = E{wo

i�2
(wo

i�2
)T}, as i!1, (3.19)

equation (3.18) will converge to:

lim
i!1

E{wo

i�1
(wo

i�1
)T} = Q. (3.20)

The term E{w̃(n)
i�1

(wo

i�1
)T} can be obtained by taking the expectation of the product

between equation (3.15) and the model (3.3), both at time i� 1, i.e.,

E{w̃(n)
i�1

(wo

i�1
)T} = E{w̃(n)

i�1
(✓wo

i�2
+
p
1� ✓2qi�1)

T
}

= ✓E{w̃(n)
i�2

(wo

i�2
)T}� ⇢

(n)
✓E{M(n)

i�1
ui�1u

T
i�1

w̃(n)
i�2

(wo

i�2
)T}

� ⇢
(n)

✓E{v(i� 1)M(n)
i�1

ui�1(w
o

i�2
)T}

� ✓(1� ✓)E{wo

i�2
(wo

i�2
)T}+

p
1� ✓2

h
✓E{qi�1(w

o

i�2
)T}+ E{w̃(n)

i�2
qT
i�1

}

i

� ⇢
(n)
p
1� ✓2E{M(n)

i�1
ui�1u

T
i�1

w̃(n)
i�2

qT
i�1

}

� ⇢
(n)
p
1� ✓2E{v(i� 1)M(n)

i�1
ui�1q

T
i�1

}

� (1� ✓)
p
1� ✓2E{wo

i�2
qT
i�1

}+ (1� ✓
2)E{qi�1q

T
i�1

}.

Since qi�1 and v(i� 1) are zero-mean and ui�1 is independent of w̃
(n)
i�2

and wo

i�2
, then

E{w̃(n)
i�1

(wo

i�1
)T} = ✓E{w̃(n)

i�2
(wo

i�2
)T}

� ⇢
(n)

✓M̄(n)RE{w̃(n)
i�2

(wo

i�2
)T}� ✓(1� ✓)E{wo

i�2
(wo

i�2
)T}+ (1� ✓

2)Q.

(3.21)

Assuming that the filter is operating in steady-state, i.e.,

E{w̃(n)
i�1

(wo

i�1
)T} = E{w̃(n)

i�2
(wo

i�2
)T}, as i!1 (3.22)

considering that the eigenvalues of ✓(I�⇢(n)M̄(n)R) lie between (-1,1) and using the result
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of (3.20), equation (3.21) will converge to

lim
i!1

E{w̃(n)
i�1

(wo

i�1
)T} = (1� ✓) �1Q, (3.23)

where  = (1� ✓)I+ ⇢
(n)

✓M̄(n)R.

3.3 Theoretical steady-state analysis

Based on the previous results obtained from model (3.3), the next subsections 3.3.1

to 3.3.4 present the theoretical steady-state EMSE for four di↵erent situations, namely:

one individual LMS filter, one individual RLS filter, their convex combination and finally

for the Kalman filter.

3.3.1 Theoretical steady-state EMSE for LMS

To compute the EMSE for an individual LMS filter, substitute ` = m = 1 in (3.17),

considering M̄(1) = I and ⇢
(1) = µ and assuming that the filter is operating in steady-

state, i.e. i!1, we get the following recursion for S(11)

1 after replacing equations (3.20)

and (3.23) in (3.17):

S(11)

1 ⇡ S(11)

1 � µ[S(11)

1 R+RS(11)

1 ] + µ
2
�
RTr{RS(11)

1 }+ 2RS(11)

1 R
 
+ µ

2
�
2

vR

+ (1� ✓)2[µR� I][(1� ✓)I+ µ✓R]�1Q+ (1� ✓)2Q[(1� ✓)I+ µ✓R]�1 [µR� I]

+ 2(1� ✓)Q.

(3.24)

To simplify (3.24) and get an easier expression to deal with, we multiply and divide

by ✓ the second line of (3.24) and reorganize the terms to obtain

S(11)

1 ⇡ S(11)

1 � µ[S(11)

1 R+RS(11)

1 ] + µ
2
�
RTr{RS(11)

1 }+ 2RS(11)

1 R
 
+ µ

2
�
2

vR

+ ✓
�1(1� ✓)2[µ✓R� ✓I][I+ µ✓R� ✓I]�1Q

+ ✓
�1(1� ✓)2Q[I+ µ✓R� ✓I]�1 [µ✓R� ✓I]

+ 2(1� ✓)Q.

(3.25)

By using the push-through identity propertyA(I+A)�1 = (I+A)�1A = I�(I+A)�1,

where A = µ✓R � ✓I, after some algebra we obtain the following simplified version of
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equation (3.24)

S(11)

1 ⇡ S(11)

1 � µ[S(11)

1 R+RS(11)

1 ] + µ
2
�
RTr{RS(11)

1 }+ 2RS(11)

1 R
 

+ µ
2
�
2

vR� ✓
�1(1� ✓)2[(1� ✓)I+ µ✓R]�1Q� ✓

�1(1� ✓)2Q[(1� ✓)I+ µ✓R]�1

+ 2✓�1(1� ✓)Q.

(3.26)

Based on (3.26), instead of computing the steady-state EMSE for LMS in a direct way,

we follow the same steps of [13] and define the rotated matrix given by S̄(11)

1 = UTS(11)

1 U,

where U is an orthogonal matrix that diagonalizes R, that is

UTRU = diag(�i)
�
= ⇤ (3.27)

where diag(�i) is a diagonal matrix formed with the eigenvalues �1,�2, . . . ,�M of R.

A recursion for S̄(11)

1 can be obtained by multiplying (3.26) from the left by UT

and from the right by U. Defining the rotated matrix Q̄ = UTQU and recalling that

R = U⇤UT and I = UUT = UTU, we get after simplifications

S̄(11)

1 ⇡ S̄(11)

1 � µ{S̄(11)

1 ⇤+⇤S̄(11)

1 }+ µ
2
{⇤Tr{⇤S̄(11)

1 }+ 2⇤S̄(11)

1 ⇤}

+ µ
2
�
2

v⇤� ✓
�1(1� ✓)2[(1� ✓)I+ µ✓⇤]�1Q̄� ✓

�1(1� ✓)2Q̄[(1� ✓)I+ µ✓⇤]�1

+ 2✓�1(1� ✓)Q̄.

(3.28)

Using the rotated matrix S̄(11)

1 , the steady-state EMSE can be computed as Tr{⇤S̄(11)

1 }

and so, it depends only on the diagonal entries of S̄(11)

1 . We can work therefore only with

these diagonal entries and define the vectors

s̄(11)1 = diag{S̄(11)

1 } and ` = diag{⇤}, (3.29)

where diag{A} represents a column vector with the diagonal elements of A.

Given this, by applying the diagonal operator to both sides of equation (3.28) and

simplifying we obtain

s̄(11)1 =
⇥
2µ⇤� µ

2``T � 2µ2⇤2
⇤�1

(
µ
2
�
2

v`+
2(1� ✓)

✓

(
I�


I+

µ✓

1� ✓
⇤

��1
)
diag{Q̄}

)
.

(3.30)
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The steady-state EMSE and MSD can now be computed as

⇣
LMS = `T s̄(11)1 , "

LMS = T s̄(11)1 , (3.31)

where =
h
1 1 . . . 1

iT
.

Due to the complexity of (3.30), we present next an approximation valid for su�-

ciently small µ in order to better describe the qualitative behavior of the LMS filter.

We use the analysis below to show that there is a minimum value for ✓, ✓LMS

min
, below

which the filter is no longer able to track variations in wo

i . Assuming that the term

µ
2

n
RTr{RS(11)

1 }+ 2RS(11)

1 R
o
can be neglected with respect to the three first terms on

the right-hand side of (3.26) and applying the trace operator to both sides of this equation,

⇣
LMS reduces to

⇣
LMS = Tr{RS(11)

1 } ⇡
1

2µ

⇢
µ
2
�
2

vTr{R}� 2✓�1(1� ✓)2Tr
�
[(1� ✓)I+ µ✓R]�1Q

 

+ 2✓�1(1� ✓)Tr{Q}

�
,

(3.32)

where we used the property Tr{AB} = Tr{BA}.

Applying the matrix inversion lemma [2] to the term [(1 � ✓)I + µ✓R]�1 in (3.32),

after some algebra, we obtain the following approximate expression

⇣
LMS
⇡

µ�
2

vTr{R}

2
+ (1� ✓)Tr

�
[(1� ✓)I+ µ✓R]�1RQ

 
. (3.33)

The µ
o that minimizes (3.33) can be obtained by setting the first derivative of ⇣LMS

equal to zero. When ✓ = 1, ⇣LMS reduces to a linear function of µ given by

⇣
LMS
⇡

µ�
2

vTr{R}

2

����
✓=1

(3.34)

and so, the optimum step-size that minimizes (3.34) is µ
o = 0 with the corresponding

minimum EMSE ⇣
o

LMS
= 0. The reader may find this result puzzling, since the tracking

model usually seen in the literature includes a term proportional to µ
�1, resulting in a

positive optimum step size [2,13]. Our result stems from the factor
p
1� ✓2 in our model

(3.3), which we included to keep the power of wo

i independent of ✓. Note that for ✓ = 1,

the optimum step size is µ
o = 0 because model (3.3) implies that E{wo

i } = 0, and the

initial condition in our model also satisfies E{w�1} = 0..

In order to compute the first derivative of (3.33) for 0  ✓ < 1, we rewrite the terms

of (3.33) as a sum of scalars. To do this, we use the same decomposition for matrix R
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described in (3.27) and the same matrix Q̄ used in (3.28) to obtain

⇣
LMS
⇡

µ�
2

vTr{⇤}

2
+ (1� ✓)Tr

�
[(1� ✓)I+ µ✓⇤)]�1⇤Q̄)

 

=
MX

i=1

µ�
2

v�ii

2
+

MX

i=1

(1� ✓)�iiq̄ii

1� ✓ + µ✓�ii
,

(3.35)

where q̄ii are the diagonal elements of Q̄.

By taking the first derivative of (3.35) and setting it equal to 0, after simplifications,

we find the following expression to compute the optimum step-size µ = µ
o that minimizes

the steady-state EMSE for LMS

MX

i=1

⇢
✓(1� ✓)�2

iiq̄ii

(1� ✓ + µ✓�ii)2
�

�
2

v�ii

2

�
= 0. (3.36)

Since in general a closed solution for µ in (3.36) is not possible (if the �ii are distinct,

(3.36) would reduce to finding the roots of a 2M -degree polynomial in µ), we seek solutions

for ✓ 2 [0, 1[ numerically. Given this, let us start by naming f(µ) as the left-hand side of

(3.36), i.e.,

f(µ) =
MX

i=1

⇢
✓(1� ✓)�2

iiq̄ii

(1� ✓ + µ✓�ii)2
�

�
2

v�ii

2

�
.

Since we are seeking conditions under which f(µ) = 0 has a positive solution, we

may start our analysis by finding the corresponding boundaries of f(µ) when µ! 0 and

µ!1, which are:

lim
µ!0

f(µ) =
✓Tr{⇤2Q̄}

1� ✓
�

�
2

vTr{⇤}

2
and lim

µ!1
f(µ) = �

MX

i=1

�
2

v�ii

2
= �

�
2

vTr{⇤}

2
.

Since the lower bound limµ!1 f(µ) is always negative (R was assumed to be a

positive-definite matrix), the upper bound limµ!0 f(µ) must be greater than or equal

to 0 to ensure a solution for f(µ) = 0. In other words,

✓Tr{⇤2Q̄}

1� ✓
�

�
2

vTr{⇤}

2
� 0.

By rewriting Tr{⇤2Q̄} as Tr{R2Q} and Tr{⇤} as Tr{R}, and reorganizing the terms,

we get
✓

1� ✓
�

�
2

vTr{R}

2Tr{R2Q}
. (3.37)
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Multiplying both sides of (3.37) by 1� ✓ and solving the inequality for ✓, we obtain

an expression for the minimum ✓ of LMS — ✓
LMS

min
— that guarantees an intersection point

µ = µ
o
� 0 between f(µ) and the µ-axis. This expression is given by

✓
LMS

min
=

�

� + 2
, (3.38)

where � = �
2

vTr{R}/Tr{R2Q}. For ✓  ✓
LMS

min
, since limµ!0 f(µ)  0, it can be shown

that the smallest non negative step-size is µo = 0, otherwise µ
o
> 0.

This result can be interpreted as follows: since the steady-state power of wo

i is inde-

pendent of ✓, and (3.3) is a low-pass filter for 0 < ✓ < 1 with a bandwidth that increases as

✓ decreases, we conclude that for ✓  ✓
LMS

min
, the filter no longer can track the variations of

the weight vector. The optimum solution µ
o = 0 in this case results from the assumption

that E{wo

i } = E{w�1} = 0. Section 3.4.1 discusses the steady-state EMSE of the filter

when E{wo

i } 6= 0 and ✓  ✓
LMS

min
.

The nonstationarity degree (NSD) of [44] also provides a bound for the tracking

capabilities of an adaptive filter. Under our notation, a filter is unable to track a time-

varying vector if NSD = (1� ✓
2) Tr{RQ}/�

2

v > 1. We provide a comparison between our

result and the NSD in Section 3.4.

3.3.2 Theoretical steady-state EMSE for RLS

Similar to the LMS filter, to compute the steady-state EMSE and MSD for an indi-

vidual RLS filter, we use ` = m = 2, M̄(2) = P̄ = (1 � �)R�1, ⇢(2) = 1 and the same

orthogonal transformation U in (3.17), obtaining

s̄(22)1 ⇡
⇥
2�I� (1� �)`·�1`T

⇤�1

⇢
�
2

v(1� �)`·�1 +
2(1� ✓)

1� ✓�
diag{Q̄}

�
, (3.39)

where `·�1 denotes element-wise inversion. The RLS steady-state EMSE and MSD are

then

⇣
RLS = `T s̄(22)1 , "

RLS = T s̄(22)1 . (3.40)

The algebraic development used to obtain (3.39) is described in section A.1 of Appendix

A.

Similarly to the qualitative analysis of the LMS filter developed in Sec. 3.3.1, for �

close to 1, the term (1� �)`·�1`T can be disregarded with respect to 2�I in (3.39) and so
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the EMSE simplifies to

⇣
RLS
⇡

�
2

v(1� �)M

2
+

(1� ✓)Tr{RQ}

1� ✓�
. (3.41)

The �
o that minimizes (3.41) can be obtained by setting the first derivative of ⇣RLS

equal to zero. When ✓ = 1, ⇣RLS reduces to a linear function of (1� �) given by

⇣
RLS
⇡

�
2

v(1� �)M

2

����
✓=1

(3.42)

and so, the optimum forgetting factor that minimizes (3.42) is �
o = 1 with the corre-

sponding minimum EMSE ⇣
o

RLS
= 0 (see the footnote in the previous section).

When 0  ✓ < 1, the first derivative of (3.41) is equal to

@⇣
RLS

@�
⇡
��

2

vM

2
+

✓(1� ✓)Tr{RQ}

(1� ✓�)2
. (3.43)

Setting (3.43) equal to 0 and solving for � leads to the following expression for �o:

�
o
⇡ min

(
1�
p
�

✓
, 1

)
, (3.44)

where � = 2✓(1� ✓)Tr{RQ}/(�2

vM).

After simplification, the minimum ✓ for the RLS filter — ✓
RLS

min
— that guarantees

�
o
< 1 in (3.44) is given by

✓
RLS

min
=

1

2↵2 + 1
, (3.45)

where ↵ =
p

Tr{RQ}/(�2
vM). The comments at the end of the previous section also

apply here.

Remark: More precise values for ✓min than (3.38) and (3.45) can be obtained nu-

merically directly by minimizing the full expressions for ⇣LMS (3.31) and ⇣
RLS (3.40). We

discuss this further in Section 3.4.

3.3.3 Theoretical steady-state EMSE for combination between
LMS and RLS

To compute the steady-state EMSE of the convex combination between LMS and

RLS filters, we assume the LMS as ` = 1 and the RLS as m = 2, with the corresponding

parameters ⇢(1) = µ, M̄(1) = I, ⇢(2) = 1 and M̄(2) = P̄ = (1� �)R�1. Following the same

steps as for the LMS and RLS filters, we obtain the diagonal s̄(12)1 of the steady-state
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transformed cross-covariance matrix UTS(12)

1 U as

s̄(12)1 =

⇢
(1� �)I+ µ⇤� µ(1� �)

�
`T + 2⇤

���1

⇥

⇢
µ(1� �)�2

v �
(1� ✓)2

✓
[(1� ✓)I+ µ✓⇤]�1diag{Q̄}

+
(1� ✓)(1� 2✓�+ ✓)

✓(1� ✓�)
diag{Q̄}

�
,

(3.46)

and again

⇣
(12) = `T s̄(12)1 , "

(12) = T s̄(12)1 . (3.47)

The algebraic development used to obtain (3.46) is described in section A.2 of Appendix

A.

For su�ciently small µ and � close to 1, the term µ(1��)
�

`T + 2⇤
�
can be neglected

with respect to the three first terms on the right-hand side of (3.46), and the following

approximation is obtained for the cross-EMSE:

⇣
(12) = Tr{RS(12)

1 } ⇡ µ�
2

v(1� �)Tr{�}�
(1� ✓)2Tr {�[(1� ✓)I+ µ✓R]�1Q}

✓

+
(1� ✓)(1� 2✓�+ ✓)Tr{�Q}

✓(1� ✓�)
,

(3.48)

where � = R[µR+ (1� �)I]�1.

3.3.4 Theoretical steady-state EMSE for Kalman filter

The straightforward approach to develop a theoretical model for the steady-state

EMSE of the Kalman filter would be to use the nonstationary data model described in

(3.2). However, this results in a recursion for the covariance matrix that is costly to solve.

Instead, we define a modified data model (see (3.49) below) that can be put in a DARE

(Discrete-Time Algebraic Riccati Equation) format and therefore can be solved e�ciently

using iterative procedures (see [48, 49]).

Given this, assume that instead of the linear model for d(i) presented in (3.2), we

have access to the following nonstationary data model

uid(i) = uiu
T
i w

o

i�1
+ uiv(i), (3.49)

where the optimum solution wo

i is still given by (3.3).

Comparing the state-space model (1.38) with (3.3)–(3.49), the Kalman model corre-
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sponding to the nonstationary data model described in (3.3) and (3.49) is presented in

Table 3.

Table 3: Relation between the Kalman filter and the adaptive filter variables.

KF - AF KF - AF

xi $ wo

i x̂i $ wi

zi $ uid(i) Hi $ uiuT
i

Fi $ ✓I Gi $
p
1� ✓2I

vi $ uiv(i) ti $ qi

Vi $ �
2

vR Ti $ Q

Since the Kalman model assumes Hi to be deterministic and ui is random, using the

equivalences from Table 3 in (1.41a), (1.41b) and (1.41e), and defining w̃i = wo

i �wi, we

can write

⌦i = �
2

vR+ uiu
T
i P i�1uiu

T
i , (3.50a)

Ki = ✓P i�1uiu
T
i (�

2

vR+ uiu
T
i P i�1uiu

T
i )

�1
, (3.50b)

E{w̃iw̃
T
i |u0, . . . ,ui} = P i = ✓

2P i�1 + (1� ✓
2)Q�Ki⌦iK

T
i

= ✓
2P i�1 + (1� ✓

2)Q

� ✓
2P i�1uiu

T
i [�

2

vR+ uiu
T
i P i�1uiu

T
i ]

�1uiu
T
i P i�1,

(3.50c)

where the cross-covariance matrix Si = 0 since v(i) and qi are independent and zero

mean. Now take the expectation with respect to u0, . . . ,ui in (3.50c), assuming that

E{uiuT
i [�

2

vR+uiuT
i P i�1uiuT

i ]
�1uiuT

i } ⇡ R[�2

vR+RP̄ i�1R]�1R (an approximation that

tends to be better for long filters [13]), obtaining the Riccati recursion in DARE format

P̄ i = E{P i} ⇡ ✓
2P̄ i�1 + (1� ✓

2)Q� ✓
2P̄ i�1R

⇥
�
2

vR+RP̄ i�1R
⇤�1

RP̄ i�1. (3.51)

The steady-state EMSE and MSD for the Kalman filter are obtained using

⇣
KAL = Tr{RP̄1}, "

KAL = Tr{P̄1}, (3.52)

where P̄1 = limi!1 P̄ i�1 is the solution of the discrete-time algebraic Riccati equation

obtained by substituting P̄ i and P̄ i�1 by P̄1 in (3.51).

The analytical expressions of the steady-state ⇣-EMSE for LMS, RLS, their convex

combination and for the Kalman filter are summarized in Table 4 for the general case

µ > 0 and 0⌧ � < 1 and in Table 5 for su�ciently small µ and � close to 1. The results

for the MSD are summarized in Table 6.
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Table 4: Analytical expressions for the steady-state ⇣-EMSE considering LMS, RLS, their
convex combination and for the Kalman filter.

⇣-EMSE

⇣
LMS = `T

⇥
2µ⇤� µ

2``T � 2µ2⇤2
⇤�1

(
µ
2
�
2

v`

+
2(1� ✓)

✓

(
I�


I+

µ✓

1� ✓
⇤

��1
)
diag{Q̄}

)
,

with ⇤ = UTRU, Q̄ = UTQU and ` = diag{⇤}.

⇣
RLS = `T

⇥
2�I� (1� �)`·�1`T

⇤�1

⇢
�
2

v(1� �)`·�1 +
2(1� ✓)

1� ✓�
diag{Q̄}

�
,

with Q̄ = UTQU, ` = diag{⇤} and `·�1 = diag{⇤�1
}.

⇣
COMB =

⇣
LMS

⇣
RLS
� (⇣(12))2

⇣LMS � 2⇣(12) + ⇣RLS
, where

⇣
(12) = `T

⇢
(1� �)I+ µ⇤� µ(1� �)

�
`T + 2⇤

���1⇢

+ µ(1� �)�2

v �
(1� ✓)2

✓
[(1� ✓)I+ µ✓⇤]�1diag{Q̄}

+
(1� ✓)(1� 2✓�+ ✓)

✓(1� ✓�)
diag{Q̄}

�
,

with ⇤ = UTRU, Q̄ = UTQU and ` = diag{⇤}.

⇣
KAL = Tr{RP̄1}, where P̄1 is the solution of

P̄1 ⇡ ✓
2P̄1 + (1� ✓

2)Q� ✓
2P̄1R

⇥
�
2

vR+RP̄1R
⇤�1

RP̄1.

Table 5: Analytical expressions for the steady-state ⇣-EMSE considering LMS, RLS and
their convex combination for su�ciently small µ and � close to 1.

⇣-EMSE

⇣
LMS
⇡

µ�
2

vTr{R}

2
+ (1� ✓)Tr

�
[(1� ✓)I+ µ✓R]�1RQ

 

⇣
RLS
⇡

�
2

v(1� �)M

2
+

(1� ✓)Tr{RQ}

1� ✓�

⇣
COMB =

⇣
LMS

⇣
RLS
� (⇣(12))2

⇣LMS � 2⇣(12) + ⇣RLS
, where

⇣
(12)
⇡ µ�

2

v(1� �)Tr{�}�
(1� ✓)2Tr {�[(1� ✓)I+ µ✓R]�1Q}

✓

+
(1� ✓)(1� 2✓�+ ✓)Tr{�Q}

✓(1� ✓�)
,

with � = R[µR+ (1� �)I]�1
.
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Table 6: Analytical expressions for the steady-state "-MSD considering LMS, RLS, their
convex combination and for the Kalman filter.

"-MSD

"
LMS = T

⇥
2µ⇤� µ

2``T � 2µ2⇤2
⇤�1

(
µ
2
�
2

v`

+
2(1� ✓)

✓

(
I�


I+

µ✓

1� ✓
⇤

��1
)
diag{Q̄}

)
,

with ⇤ = UTRU, Q̄ = UTQU and ` = diag{⇤}.

"
RLS = T

⇥
2�I� (1� �)`·�1`T

⇤�1

⇢
�
2

v(1� �)`·�1 +
2(1� ✓)

1� ✓�
diag{Q̄}

�
,

with Q̄ = UTQU, ` = diag{⇤} and `·�1 = diag{⇤�1
}.

"
COMB = ⌘

o2
✏
(1) + (1� ⌘

o)2✏(2) + 2⌘o(1� ⌘
o)✏(12), where ⌘

o =
⇣
(2)
� ⇣

(12)

⇣(1) � 2⇣(12) + ⇣(2)
,

"
(12) = T

⇢
(1� �)I+ µ⇤� µ(1� �)

�
`T + 2⇤

���1⇢

+ µ(1� �)�2

v �
(1� ✓)2

✓
[(1� ✓)I+ µ✓⇤]�1diag{Q̄}

+
(1� ✓)(1� 2✓�+ ✓)

✓(1� ✓�)
diag{Q̄}

�
,

with ⇤ = UTRU, Q̄ = UTQU and ` = diag{⇤}.

"
KAL = Tr{P̄1}, where P̄1 is the solution of

P̄1 ⇡ ✓
2P̄1 + (1� ✓

2)Q� ✓
2P̄1R

⇥
�
2

vR+RP̄1R
⇤�1

RP̄1.

3.4 Simulations

In order to verify the tracking behavior of the proposed model, we consider a system

identification application to compare the performance of the well known LMS and RLS

filters and their convex combination with the corresponding optimum solution obtained

via Kalman filter.

The unknown plant wo

i , of length M = 7, was initialized with random values in the

interval [�1, 1]. The solution is then changed at each iteration according to the random-

walk model (3.3). Following [14], the covariance matrix for qi is given by

Q = �


�

R

Tr{R}
+ (1� �)

R�1

Tr{R�1}

�
, (3.53)

where constant � has been selected to be � = 5 · 10�2, so that Tr{Q} = �, and � 2 [0, 1] is
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a control parameter that allows to trade o↵ between a situation with Q / R (for � = 1,

this is the situation in which LMS outperforms RLS according to [50]) and Q / R�1

(� = 0, the case in which RLS outperforms LMS).

The regressor ui is obtained from a process u(i) as ui = [u(i) u(i�1) . . . u(i�M+1)]T ,

where u(i) is generated with a first-order autoregressive (AR) model, whose transfer

function is �u

p
(1� b2)/(1�bz

�1) with b = 0.8. This model is fed with an i.i.d. Gaussian

random process with variance �2

u = 1

7
, so that Tr{R} = 1. The output additive noise v(i)

is i.i.d. Gaussian with zero mean and variance �
2

v = 10�2.

Regarding the adjustment for the combinations, we used convex combinations with

fixed step-size µa = 0.25 and the auxiliary variable a(i) restricted to the interval [�4, 4],

while the optimum step-size and forgetting factor of the constituent filters were numer-

ically obtained through the theoretical steady-state EMSE general equations (3.31) and

(3.40) (that is, we find the optimum values without resorting to the approximations for

µ ⇡ 0 and � ⇡ 1).

To begin with, let us start the tracking analysis considering the parameter � = 0.05 in

(3.53). In this case, according to (3.38) and (3.45), the minimum ✓ that can be used for the

LMS and RLS filters in order to have an optimum step-size µo
> 0 and optimum forgetting

factor 0⌧ �
o
< 1 is ✓LMS

min
⇡ 0.84 and ✓

RLS

min
⇡ 0.92. The bounds obtained numerically from

the general equations (3.31) and (3.40) are ✓
LMS

min
⇡ 0.88 and ✓

RLS

min
⇡ 0.94. Figure 6 shows

the steady-state EMSEs estimated from the ensemble-average learning curve obtained

from 600 independent runs for 30.000 iterations of the algorithms µo
�LMS, �o

�RLS, their

combination and the corresponding Kalman filter when 0 < ✓ < 1. Figure 7 compares the

tracking performance between the simulated case and the theoretical steady-state EMSE

equations provided in table 4 when ✓ lies in the range [min{✓LMS

min
, ✓

RLS

min
}, 1].

As can be seen in Figures 6 and 7, for ✓ ⇡ 1, the steady-state EMSE achieved by

combining both LMS and RLS filters with optimum settings is close to the optimum EMSE

obtained via Kalman filter. As ✓ decreases, since the speed of change of wo

i is increased,

the di↵erence between the combination and the KF curves starts to increase, reaching

its maximum value of approximately 0.80 dB for ✓ ⇡ ✓
LMS

min
. For ✓ < min{✓LMS

min
, ✓

RLS

min
},

the adaptive filters LMS and RLS as well as their combination, are no longer tracking

the variations of wo

i since µ
o
⇡ 0 and �

o = 1. For ✓ < 0.2, the resulting performance

for all filters is approximately the same. The values of µo and �
o as ✓ changes from

min{✓LMS

min
, ✓

RLS

min
} to 1 are shown in Figure 8.

To see the e↵ect of assumptions of small step-sizes and � close to one, in Figure 8
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θRLSmin ≈ 0.94

θLMS
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Figure 6: Simulated steady-state EMSE curves for µ
o
� LMS, �o

� RLS, their convex
combination and the corresponding Kalman filter when 0 < ✓ < 1.
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Figure 7: Tracking comparison between the theoretical steady-state EMSE equations from
table 4 and the simulated case for min{✓LMS

min
, ✓

RLS

min
} < ✓ < 1.
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we also plot the approximated curves obtained through expressions (3.36) and (3.44). As

can be seen in this figure, for ✓ < 1, the error between the optimum parameters estimated

numerically from the general equations provided in table 4 and by using equations (3.36)

and (3.44) is at most �µo ⇡ 0.05 for µo and ��o ⇡ 0.01 for �o.

θ
0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

µ
o

0

0.02

0.04

0.06

0.08

1
−

λ
o

0

0.005

0.01

0.015

0.02

General condition - µ > 0

Small step-size - µ ≈ 0

General condition - 0 # λ < 1

λ ≈ 1

∆
µ

o
∆

λ
o

Figure 8: Variation of the optimum parameters for min{✓LMS

min
, ✓

RLS

min
} < ✓ < 1 considering

the general and the approximated equations provided in tables 4 and 5.

By computing the ratio ✓
LMS

min
/✓

RLS

min
, we are able to compare the ✓ range allowed for

each filter and see if they have the same range (✓LMS

min
= ✓

RLS

min
) or if one filter is more

restrictive than the other (✓LMS

min
> ✓

RLS

min
or ✓

LMS

min
< ✓

RLS

min
). The ratio between (3.38) and

(3.45) is given by
✓
LMS

min

✓
RLS

min

=
Tr{R}{2Tr{RQ}+ �

2

vM}

M{�2
vTr{R}+ 2Tr{R2Q}}

. (3.54)

With this expression, we can see that the value of ✓min for LMS can be smaller or

larger than that for RLS, depending on the values of R and Q. As a simple example,

consider �
2

v = 0.01, R = diag(1, 2). If Q = diag(0.01, 0.001), then ✓
LMS

min
/✓

RLS

min
= 1.14,

while, for Q = diag(0.001, 0.01) we have ✓
LMS

min
/✓

RLS

min
= 0.830.

By using the theoretical steady-state EMSE equations summarized in table 4, Figure

9 compares the tracking behavior between the LMS, RLS, their combination and the

Kalman filter when � 2 [0, 1] and ✓ = 0.99. For this simulation we kept the same

matrices R and Q as well as the parameters �2

v and M used to obtain figure 6.
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Figure 9: EMSE of µo-LMS, �o-RLS, their convex combination and the Kalman filter
when Q smoothly changes between R and R�1.

As shown in Figure 9, depending on the value of �, the optimal EMSE for RLS

filters can be larger or smaller than the optimal EMSE for LMS filters, but always lower

bounded by the optimal EMSE provided by the Kalman filter. For the general equations

in which µ > 0 and 0⌧ � < 1, the optimal steady-state EMSE curve for the combination

is approximately 1dB larger than the optimal KF. However, compared to the O(M2)

complexity of the KF, if lattice [42] or DCD [3] implementations are used for RLS, the

computational cost of the combination is reduced from O(M2) to O(M).

Figure 10 plots the MSD as a function of �, under the same conditions. Note that

we plotted two curves for the combination — one (green) using the value of the mixing

parameter that is optimal for the MSD, and the second (yellow) using the optimum mixing

parameter for the EMSE, which the filter can estimate in practice. It can be seen that

both are close, but the practical curve is slightly worse than the best filter at a few points.

In order to see the influence of the filter length M in the optimal steady-state EMSE

of each filter, Figure 11 shows the tracking behavior for the theoretical and simulated

µ
o-LMS, �o-RLS, their convex combination and for the KF when M changes from 1 to

200. For this simulation we used the general equations provided in Table 4 and compared

with the simulated case using the following parameters �
2

v = 10�2, Tr{Q} = 5 · 10�2,

� = 0.05, �2

u = 1

M to keep Tr{R} = 1 and ✓ = 0.9999 to cover all possible values of ✓LMS

min

and ✓
RLS

min
. In addition to the simulated case, we used convex combinations with fixed
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step-size µa = 0.25, the auxiliary variable a(i) restricted to the interval [�4, 4] and the

optimal steady-state EMSEs were estimated from the ensemble-average learning curve

obtained from 50 independent runs and 106 iterations for each algorithm. Due to the long

processing time, only a few points were plotted for the simulated curves.
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Figure 10: MSD of µo-LMS, �o-RLS, their convex combination and the Kalman filter
when Q smoothly changes between R and R�1.
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Figure 11: Theoretical and simulated steady-state EMSE for µo-LMS, �o-RLS, their con-
vex combination and the Kalman filter for 1 M  200.
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As depicted in Figure 11, for the defined range M , the optimal steady-state EMSE

for the KF is at most 0.6 dB smaller than the combination when M > 100, despite

the computational cost for the KF increasing at a rate of O(M2) while the combination

increases linearly with the filter length.

3.4.1 DC analysis of the steady-state EMSE

All simulations performed until now considered a zero mean plant wo

i , whose values

are updated at each iteration according to model (3.3), and the parameter ✓ was always

kept greater than min{✓LMS

min
, ✓

RLS

min
} since we were dealing with tracking problems. Let us

assume now that ✓ < min{✓LMS

min
, ✓

RLS

min
} and the model (3.3) has a DC component added

to the optimum vector wo

i , i.e.,

wo

i = ✓wo

i�1
+
p
1� ✓2qi + w̄o

, (3.55)

where w̄o = E{wo

i } is an M ⇥ 1 vector.

The simulation in Figure 12 compares the performance of the Kalman filter, RLS with

� = 1 and LMS with decreasing µ (see below) considering both a zero and a nonzero DC

component. We can see that the adaptive filters, although not able to track the variations

of wo

i (since µ
o = 0 and �

o = 1), are still able to converge to the DC component w̄o,

reaching the same optimum steady-state EMSE regardless of the value assumed for w̄o.

For this simulation we plot the EMSEs estimated from the ensemble-average learning

curve of 600 independent runs for 3000 iterations of the algorithms LMS, RLS, their

convex combination and the KF considering ✓ = 0.5 and the same matrices R and Q as

well as the parameters �2

v , � and M used to obtain figure 6.

The following assumptions had to be made in order to ensure convergence to the

optimum solution for both LMS algorithm and for the KF when w̄o
> 0:

• LMS: the required µ
o = 0 when ✓ < ✓

LMS

min
can not be used, since the filter will

not be able to adapt and converge to the mean value of wo

i . For this reason, we

assumed fixed step-size µ = 10�8 when w̄o = 0 and variable step-size µ(i) = 1/i for

nonzero w̄o to ensure equivalence to the RLS case with � = 1 [51]. To speed up the

convergence rate for nonzero w̄o, we used µ(i) = 1/
p
i for i < 1000.

• KF: we added the a priori information of the DC value to the estimate x̂i since the

KF equations assumes that xi is zero mean.
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Figure 12: Simulated EMSEs learning-curves for ✓ = 0.5 and considering two di↵erent
scenarios: a) w̄o = 0 and b) w̄o = 1. To have a better visualization of the result, we used
doted lines to represent the combination and the KF curves.

3.4.2 Comparison between ✓min and the nonstationarity degree

The nonstationarity degree (NSD), defined in [44], is another measure of when an

adaptive filter is able to track a time-varying weight vector. It compares the performance

(measured by the steady-state EMSE) of an adaptive filter to estimate uT
i w

o

i�1
with the es-

timate provided by d(i) itself. Let F = {wi�1 2 RM : wi�1 depends only on d(j),uj for j

< i} be the set of possible a-priori estimates. The NSD is defined as

NSD =
minwi�12F

�
[uT

i (wi�1 �wo

i�1
)]2
 

�2
v

. (3.56)

If NSD > 1, [44] argues that an adaptive filter is not able to track wo

i . Under our model

for wo

i (3.3), the NSD is given by

NSD = (1� ✓
2)
Tr{RQ}

�2
v

. (3.57)

Imposing the condition NSD = 1, we obtain

✓
NSD

min
=

s

max

⇢
0, 1�

�2
v

Tr{RQ}

�
. (3.58)
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If ✓ < ✓
NSD

min
, all a-priori estimates would have an EMSE larger than �

2

v , and therefore

if the goal of the adaptive filter were to estimate uT
i w

o

i�1
, no adaptive filter would do

better than simply using d(i) as an estimate (note that ✓NSD

min
tends to 1 as �2

v ! 0).

The minimum values for ✓ defined in this chapter complement the NSD in two ways:

(a) we can also define a condition for tracking based on the MSD, while the NSD considers

only the EMSE; (b) our estimates for ✓min take into account the DC part of the weight

vector, as described in Section 3.4.1 — that is, a situation in which an adaptive filter is

useful to estimate the DC part of the weight vector, but not to track variations around

that DC value.

Figure 13 compares the values of ✓min as derived in this chapter, for both EMSE and

MSD, with ✓
NSD

min
, considering the same case as in Figure 9, but with �

2

v = 10�3. It can

be seen on the left panel that the values of ✓min obtained in this chapter and through the

NSD are quite di↵erent: the condition we use to define when a filter is no longer able to

track is di↵erent than the condition used for the NSD.
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Figure 13: Values of ✓min considering the EMSE and NSD (a), and the MSD (b).
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3.5 Conclusion

Combination approaches are an e↵ective way to improve the performance of adaptive

filters. In this chapter we have studied the tracking performance of combinations between

LMS and RLS filters and compared the resulting EMSE with the optimal case obtained

via Kalman filter.

We have shown that, assuming a first order AR model with finite autocovariance

matrix to describe the time variation of the unknown parameter vector, it is possible to

achieve through convex combination between LMS and RLS filters a steady-state EMSE

and MSD performance close to the optimal case obtained via Kalman filter, as long as

the pole of the AR model is greater than a minimum value. This remains true even if the

unknown parameter vector has a DC component. The minimum value for the pole of the

AR model provides a model for how fast a plant can vary so that an adaptive filter can

still track it.

The advantage of our approach using combinations arises from the fact that the

combination can be implemented with complexity O(M), while it takes at least O(M2)

operations to compute the corresponding Kalman filter for the model considered here.
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4 LOW-COMPLEXITY APPROXIMATION TO
THE KALMAN FILTER USING THE
DICHOTOMOUS COORDINATE DESCENT
ALGORITHM

The Kalman filter (KF) is a simple and elegant algorithm formulated almost 60 years

ago [52], as an optimal recursive Bayesian estimator for a class of linear Gaussian problems

[53]. It is used in areas as diverse as aeronautics, signal processing, and futures trading

[28], [54]. On the other hand, we have also the class of adaptive filters, which does

not require any information about the model being estimated. For a filter of size M ,

the Recursive Least Squares (RLS) algorithm for example, converges significantly faster

than other filters such as the least mean squares (LMS) algorithm [2, 47], and requires

O(M2) operations per iteration to compute the solution, while the Kalman filter requires

O(M2.376) [31] operations per iteration. Given that the O(M2) RLS algorithm was shown

to be equivalent to the Kalman filter for a particular state-space model [2, Sec. 31.2], [55],

and that it is possible to reduce the complexity of RLS to O(M) operations per iteration

by using lattice or Dichotomous Coordinate Descent (DCD) techniques [2, 3, 47], in this

chapter we show that there exist other models for the evolution of the optimum weight

vector for which it is possible to derive fast (i.e., O(M)) versions of the Kalman filter,

extending the RLS-DCD algorithm of [3].

In the next section we describe briefly the connection between RLS and the Kalman

filter. In Section 4.2, we describe new conditions on the state transition matrix for the

Kalman model that allow the development of O(M) versions of the Kalman filter. Com-

parisons between the new low-complexity algorithms and both the Kalman filter and

the standard RLS algorithm are provided in Section 4.3, and Section 4.4 concludes the

chapter.
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4.1 Problem Formulation

Consider a state-space model (see (1.38)) of the form:

xi = Fixi�1 +Giti, (4.1a)

z(i) = hT
i xi�1 + '(i), (4.1b)

where xi is the M ⇥ 1 state vector, Fi is the M ⇥M state-transition matrix, Gi is an

M ⇥N matrix, ti is an N ⇥ 1 Gaussian random process noise vector with zero mean and

covariance matrix Ti. We assume here for simplicity that the observation variable z(i)

is scalar, hT
i is the 1⇥M measurement vector, and '(i) is Gaussian measurement noise

with zero mean and variance �
2(i).

In this case, given observations z(i) that satisfy the state-space model described in

(4.1), an estimate x̂i of xi can be recursively computed by using the following set of

Kalman filter equations [2]:

�(i) = �
2(i) + hT

i P i�1hi, (4.2a)

ki = (FiP i�1hi +GiSi)�
�1(i), (4.2b)

⌫(i) = z(i)� hT
i x̂i�1, (4.2c)

x̂i = Fix̂i�1 + ki⌫(i), (4.2d)

P i = FiP i�1F
T
i +GiTiG

T
i � �(i)kik

T
i , (4.2e)

whereP i�1 is theM⇥M error covariance matrix defined as E{(xi�1�x̂i�1)(xi�1�x̂i�1)T},

ki is the M ⇥ 1 Kalman gain, Si = E{ti'(i)} is the cross-covariance vector between the

noise processes and ⌫(i) is a scalar.

As we can see in equations (4.2b) and (4.2e), one needs O(M3) operations to compute

directly the covariance matrix P i (due to the matrix-matrix product FiP i�1FT
i ). There

are faster options, for example, the O(M2.376) algorithm of [31], and, for constant F, G,

H, �2 and T, the O(M2) array forms [2, p. 618]. However, even with these e�cient

algorithms, this computational cost may be prohibitive for applications in which M is

large (such as echo cancellation).

The RLS algorithm, on the other hand, assumes no model for the evolution of the

unknown vectors wo

i that it tries to estimate [1,2,47]. The only assumption is that wo

i is
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related to available observations d(i) and ui as follows

d(i) = uT
i w

o

i�1
+ v(i), (4.3)

where ui is an M ⇥1 regressor vector, d(i) is a scalar, and v(i) is an unknown scalar mea-

surement noise with zero mean and variance �
2

v uncorrelated to ui. The RLS recursions

are given by

�(i) =
1

1 + ��1uT
i Pi�1ui

, (4.4a)

gi = �
�1Pi�1ui�(i), (4.4b)

e(i) = d(i)� uT
i wi�1, (4.4c)

wi = wi�1 + gie(i), (4.4d)

Pi = �
�1Pi�1 � gig

T
i /�(i), (4.4e)

where 0⌧ � < 1 is a forgetting factor.

Given this, it can be verified by direct substitution that the RLS recursions (4.4) can

be obtained from the Kalman recursions (4.2) with the correspondence of Table 7 and for

the particular state-space model with [2, p. 513], [55]

Fi = I, Gi = 0, hT
i = uT

i , �
2(i) = �

i
, (4.5)

where I is the identity matrix. Table 7 lists the relations between Kalman and RLS

variables.

Description Kalman RLS Description
Measurement z(i) d(i) Reference Signal
State estimator x̂i wi Weight estimate
Error covariance P i �

iPi (Input cov. matrix)�1

Innovations ⌫(i) e(i) A priori error
Meas. noise variance �

2(i) �
2

v Noise variance

Table 7: Correspondence between Kalman and RLS variables.

As shown in [2, p. 506], there are other ways to derive the RLS recursions from the

KF equations. However, the formulation used next helps to understand and visualize the

connection between the RLS and the KF variables.

Although a direct implementation of (4.4) requiresO(M2) operations, several di↵erent

alternatives with O(M) complexity are available when the regressor vector ui follows a
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delay-line structure, i.e., if

ui =
h
u(i) u(i� 1) . . . u(i�M + 1)

iT
, (4.6)

where u(i) is a scalar sequence. RLS algorithms with linear complexity include the Fast

Transversal Filter (FTF) [2, 56], lattice-RLS filters [2, 57], and the RLS-DCD algorithm

[3,47]. Since the RLS-DCD algorithm is numerically stable (unlike FTF [2]), and provides

wi (unlike lattice filters, which do not compute wi explicitly), in the remainder of this

chapter we will concentrate on the RLS-DCD algorithm, and show that there are other,

more general state-space models for which linear-complexity versions of the Kalman filter

can be obtained, extending the RLS-DCD algorithm to a Kalman-DCD algorithm.

4.2 Kalman-DCD

Instead of solving directly the time and measurement-update equations (4.2) of the

Kalman filter, we follow [58] and use a di↵erent way to compute the state-vector x̂i by

using an alternative form of the filter which does not require the explicit calculation of

equations (4.2a), (4.2b) and (4.2e) in the way they appear in the standard Kalman filter

algorithm, which is

x̂i|i = Fi(x̂i�1|i�1 +↵i), (4.7)

where the notation x̂i|i is used to define the estimate of xi given the observations {z(0), z(1)

. . . , z(i� 1), z(i)} and ↵i is the solution to the following linear equation:

P�1

i|i ↵i = (1/�2(i))hi⌫(i). (4.8)

The di�culty in solving (4.8) is that a general solution involves a number of operations

of the order of O(M2.376) operations for a filter with M coe�cients as mentioned in [31].

This is usually too costly for practical applications, except perhaps for very short filters.

We show next that this complexity can be reduced to O(M) operations for a certain class

of matrices Fi, Gi and hi, by using DCD to solve (4.8), and by further generalizing the

recursion for P i in (4.2e).

In order to obtain this simplified recursion, we use instead of (4.2), the following

relation which holds when the required inverses exist [58]:

P�1

i|i = P�1

i|i�1
+ (1/�2(i))hih

T
i , (4.9)
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where matrix P i|i�1 is defined as:

P i|i�1 = FiP i�1|i�1F
T
i +GiTiG

T
i . (4.10)

By replacing equation (4.10) in (4.9) and restricting our state-space model to a prob-

lem where Fi is a constant diagonal matrix given by F and the random process noise is

zero (which means Ti = 0), we obtain the following expression:

P�1

i|i = F�TP�1

i�1|i�1
F�1 + (1/�2(i))hih

T
i , for i � 0. (4.11)

By setting P�1

�1|�1
= ✏I (with ✏ ⇡ 0) as the initial condition for the covariance matrix

P�1

i|i in equation (4.11) and assuming that the variables F�1 and hT
i are defined as:

F�1 =

2

666666664

f11 0 0 . . . 0

0 f22 0 . . . 0

0 0 f33 . . . 0
...

...
...

. . .
...

0 0 0 . . . fMM

3

777777775

and

hT
i =

h
x(i) x(i� 1) x(i� 2) . . . x(i�M + 1)

i
,

where x(i) is a scalar signal, we show below that if the elements of F�1 obey the relations

f
2

11
= f

2

22
= f

2

33
= . . . = f

2

MM , (4.12)

f``fmm = f(`+1)(`+1)f(m+1)(m+1), (4.13)

for 1  `  M � 2, 2  m  M � 1 and ` 6= m, the matrices P�1

i|i and P�1

i�1|i�1
share a

common structure as i increases. More specifically, we claim that for a tapped-delay line

measurement vector hT
i and if ✏ is su�ciently small so that the term related to the initial

condition can be disregarded, the computation of P�1

i|i follows the expression

[P�1

i|i ]`,m =
1

�2(i)

iX

j=0

f
j
``f

j
mmx(i� j � `+ 1)x(i� j �m+ 1), (4.14)

where the notation [·]`,m indicates the line ‘`’ and the column ‘m’ for 1  `  M ,

1  m  M . Using the conditions described in (4.12) and (4.13), the computation of

(4.14) can be replaced by an update of only its first column (denoted by [P�1

i|i ]`,1), that

is,

[P�1

i|i ]`,1 =
1

�2(i)

iX

j=0

f
j
``f

j
11
x(i� j � `+ 1)x(i� j), for i � 0. (4.15)
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Instead of (4.15), the first column of P�1

i|i can be e�ciently computed using the

recursion described next.

Let us first split (4.15) into the following two terms

[P�1

i|i ]`,1 =
1

�2(i)
x(i� `+ 1)x(i) +

1

�2(i)

iX

j=1

f
j
``f

j
11
x(i� j � `+ 1)x(i� j). (4.16)

By defining j = k + 1 for 0  k  i� 1, we get

[P�1

i|i ]`,1 =
1

�2(i)
x(i� `+ 1)x(i) +

1

�2(i)

i�1X

k=0

f
k+1

`` f
k+1

11
x(i� k � `)x(i� k � 1)

=
1

�2(i)
x(i� `+ 1)x(i) + f``f11

"
1

�2(i)

i�1X

k=0

f
k
``f

k
11
x(i� k � `)x(i� k � 1)

#

| {z }
=[P�1

i�1|i�1]`,1

,

(4.17)

and thus

[P�1

i|i ]`,1 =
1

�2(i)
x(i� `+ 1)x(i) + f``f11[P�1

i�1|i�1
]`,1, for i � 0. (4.18)

Since P�1

i|i is symmetric, its first row is the transpose of its first column, and does not

need to be evaluated again. As proved next, the other terms of P�1

i|i are just a copy of

the values computed in the previous iteration (and so the whole matrix can be obtained

using O(M) operations).

The structure we want to guarantee is such that, for 1  ` M�1 and 1  m M�1,

the element (`,m) of P�1

i|i at time i� 1 is the same as the element (`+ 1,m+ 1) at time

i. In other words, [P�1

i�1|i�1
]`,m = [P�1

i|i ]`+1,m+1.

In fact, by expanding the terms of the right hand side of (4.14) at time i � 1 and

supposing that �2(i) = �
2, we obtain:

[P�1

i�1|i�1
]`,m =

1

�2
[x(i� `)x(i�m)+

+ f``fmmx(i� `� 1)x(i�m� 1)+

+ f
2

``f
2

mmx(i� `� 2)x(i�m� 2)+

+ . . .+ f
i�1

`` f
i�1

mmx(1� `)x(1�m)].

(4.19)
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By using relation (4.14) to compute [P�1

i|i ]`+1,m+1 for �2(i) = �
2, we get:

[P�1

i|i ]`+1,m+1 =
1

�2
[x(i� `)x(i�m)+

+ f`+1`+1fm+1m+1x(i� `� 1)x(i�m� 1)+

+ f
2

`+1`+1
f
2

m+1m+1
x(i� `� 2)x(i�m� 2)+

+ . . .+ f
i�1

`+1`+1
f
i�1

m+1m+1
x(1� `)x(1�m)

+ f
i�`
`+1`+1

f
i�`
m+1m+1

x(�`)x(�m)
| {z }

=0

].

(4.20)

Under the conditions (4.12) and (4.13) and considering x(i) = 0 for i < 0, equations

(4.19) and (4.20) are the same for 1  `,m  M � 1. Using the symmetry of P�1

i|i , for

any instant i, the following pattern holds:

P�1

i|i =

2

64

h
P�1

i|i

i

1,1

h
P�1

i|i

iT
2:M,1h

P�1

i|i

i

2:M,1

h
P�1

i�1|i�1

i

(1:M�1,1:M�1)

3

75 ,

where we use the subscript (1 : M�1, 1 : M�1) to indicate the top-left (M�1)⇥(M�1)

block matrix of P�1

i|i .

By using this update structure to compute P�1

i|i and the DCD technique to compute

↵i in (4.8), it is possible to reduce the complexity of the Kalman filter to O(M).

The next section shows through simulations, how close the performance of the Kalman-

DCD algorithm can get to that of the standard Kalman filter.

4.3 Simulations

We use the standard Kalman filter and RLS algorithms, and their respective reduced

complexity versions Kalman-DCD and RLS-DCD to track a vector wo

i 2 R7 satisfying

wo

i = Fwo

i�1
, (4.21)

wherewo

0
is drawn from a zero mean Gaussian distribution with covariance matrix equal to

the identity, F = ✓I is a 7⇥7 diagonal matrix with ✓ = 0.995. The observed signals are d(i)

and ui, related by (4.3), with �
2

v = 0.01, and ui is a tap-delay line in which u(i) is generated

from a first-order Auto-Regressive (AR) process with parameter 0.8, so that the covariance

matrix R of ui is a Toeplitz matrix with first row given by 1

7
[1, 0.8, 0.82, . . . , 0.86]. The

algorithms are implemented with the following set of parameters:
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• Standard RLS: � = 0.995, P0 = I.

• Standard Kalman filter: F = ✓I with ✓ = 0.995, Gi = 0, hT
i = uT

i , �
2 = 0.01,

z(i) = d(i) and P�1 = I.

• RLS-DCD and Kalman-DCD: same as for RLS and the Kalman filters, but addi-

tionally with the number of updates Nu = 10, step-size H = 64, number of bits

B = 24 and P�1

�1|�1
= I (for Kalman-DCD).

Under these conditions, we obtain, after running 100 simulations to compute the

ensemble average Excess Mean Squared Error (EMSE) for each algorithm, the plots shown

in Figure 14 where the EMSE is defined as E{|uT
i (w

o

i�1
�wi�1)|2} for the RLS and RLS-

DCD algorithms, and E{|hT
i (w

o

i�1
�x̂i�1)|2} for the Kalman and Kalman-DCD algorithms.

As we can see in Figure 14, when F is multiple of the identity matrix (a condition that

satisfies (4.12) and (4.13)), the Kalman-DCD approximates closely the EMSE of the

standard Kalman filter even using a small number of updates (Nu = 10). The performance

of the RLS algorithm is reasonable, but with an EMSE saturating at around �37.5dB,

while the Kalman and Kalman-DCD EMSEs decrease to zero. Note that the performance

of the Kalman-DCD algorithm is very close to that of the Kalman filter, even though

we used ✏ = 1 in the initial condition for P�1

�1|�1
. Figure 15 shows a zoom of the first

iterations of the algorithms.
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Figure 14: Simulated EMSEs curves for RLS, RLS-DCD, Kalman and Kalman-DCD when
F = 0.995I.
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Figure 15: Zoom of the initial iterations in Figure 14.

Initially the EMSE of the Kalman-DCD algorithm is up to 5dB larger than that

of the full Kalman filter (due to the approximations used in solving (4.8) by the DCD

algorithm, and by using a nonzero value of ✏ for the initial condition of P�1

�1|�1
). The

algorithm however quickly converges to about 1dB of the Kalman filter.

By keeping the same set of parameters described before, and changing the matrix F to

another condition that also satisfies (4.12) and (4.13), in this case a diagonal matrix with

elements [1,�1, 1,�1, . . . , 1] (alternate sign numbers but with same module), we obtain

the curves shown in Figure 16, which show that the Kalman-DCD algorithm still follows

closely the performance of the standard Kalman filter, but with a smaller computational

complexity. The EMSEs of RLS and RLS-DCD now saturate at �2.9dB. A zoom of the

first iterations is shown in Figure 17.

Again, the Kalman-DCD algorithm quickly converges to a close approximation of the

full Kalman filter (after about 200 iterations the di↵erence between the algorithms is

negligible).
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Figure 16: Simulated EMSEs curves for RLS, RLS-DCD, Kalman and Kalman-DCD when
F is a 7⇥ 7 diagonal matrix composed of [1,�1, 1,�1, . . . , 1].
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Figure 17: Zoom of the first iterations in Figure 16.

In order to see the performance of the Kalman-DCD under a nonstationary environ-

ment, we add to model (4.21) a random process noise qi with covariance matrix Q = �
2

qI.
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Figure 18 shows the steady-state EMSEs estimated from the ensemble-average learning

curve obtained from 100 independent runs for 30.000 iterations of the algorithms Kalman

and Kalman-DCD when 10�10
 �

2

q  5 · 10�6. For this simulation we used G = I and

we kept the same matrices F and R, as well as the parameters M , �2, Nu, H and B used

to obtain Figure 14.
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Figure 18: Simulated steady-state EMSE for Kalman and Kalman-DCD algorithms for
di↵erent values of �2

q .

As we can see in Figure 18, the steady-state EMSE curve obtained via Kalman-DCD

is less than 1dB from the curve obtained via Kalman filter for �
2

q < 1 · 10�6. For �
2

q as

small as 10�7, the di↵erence between the curves is negligible.

4.4 Conclusion

In this chapter we have shown that it is possible to derive low-complexity approxima-

tions to the Kalman filter by extending the RLS-DCD algorithm to approximate a larger

class of Kalman models.

As it was shown, by using the DCD technique and taking advantage of the structure

of the covariance matrix P�1

i|i , it is possible to reduce the complexity of the Kalman filter

from O(M2) to O(M) for a certain class of diagonal matrices Fi. The procedure via DCD



74

has also shown similar behavior to the Kalman filter even for a first-order (AR) model

with small process noise.
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5 FUTURE RESEARCH

Adaptive filters are at the core of many signal processing applications, ranging from

array beamforming, echo cancellation, channel equalization, target localization and track-

ing. In the case of dynamical systems with additive Gaussian noises such as navigation

and control of vehicles, the Kalman filter provides optimal estimates for the unknown

parameter. In this case, to choose the best algorithm for a given application, one of the

important points to be considered is the algorithm’s ability to track variations in the

statistics of the signals of interest.

Based on this scenario, we compared in chapters 2 and 3 the steady-state performance

of the convex combination of two transversal adaptive filters, namely LMS and RLS, with

the optimal solution obtained via Kalman filter.

For a non-stationary environment such as the one used in chapter 2, we have shown

that it is possible to achieve an EMSE less than 1dB from the KF by using a convex

combination between an LMS and an RLS filters and still keep the complexity linear with

the filter length (i.e O(M)) if lattice or DCD algorithms are used.

Similar behavior was also obtained in chapter 3 for a first order AR model with finite

autocovariance matrix to describe the time variation of the unknown parameter vector wo

i .

As long as the parameter ✓ is kept greater than a minimum value, the convex combination

is able to track the variations in the statistics of the signals of interest even if the unknown

parameter vector has a DC component. Similarly to chapter 2, the resulting complexity

of the convex combination can be kept linear with the filter length if lattice or DCD

algorithms are used.

Finally in chapter 4, we derived a new DCD based Kalman filter under a model

with zero process noise. As it was shown, if the state-transition matrix Fi obeys some

conditions, the inverse of the covariance matrix P i|i can be e�ciently updated and the

resulting complexity can be kept O(M) if the DCD technique is used to estimate the state

vector xi. For a first-order (AR) model with a small process noise, the di↵erence between
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the Kalman-DCD and the original Kalman filter is negligible.

Based on the analysis of chapters 2 to 4, we propose the following topics to be explored

in future research:

• Generalyze the random-walk model by using wo

i = Awo

i�1
+ qi for general class of

matrices A in the convex combination between adaptive filters;

• Test the performance of the convex combination between the Kalman-DCD and

other adaptive filters to track more general models;

• Develop a Kalman-DCD procedure for nonzero process noise;

• Compare the steady-state analyses provided in chapter 3 with the energy conserva-

tion method.
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APPENDIX A

A.1 Diagonal elements of the covariance matrix S̄(22)
1

for RLS

Similar to the LMS filter, we begin the algebraic development of the covariance matrix

S̄(22)

1 = UTS(22)

1 U for the RLS filter by computing the covariance matrix S(22)

1 . Replacing

equations (3.20) and (3.23) in (3.17) and considering: ` = m = 2, M̄(2) = P̄ = (1��)R�1,

⇢
(2) = 1 and assuming that the filter is operating in steady-state, i.e. i!1, we get the

following recursion for S(22)

1 :

S(22)

1 ⇡ S(22)

1 � 2�(1� �)S(22)

1 + (1� �)2Tr{RS(22)

1 }R�1

+ �
2

v(1� �)2R�1 +
2(1� ✓)(1� �)

1� ✓�
Q.

(A.1)

A recursion for S̄(22)

1 can be obtained by multiplying (A.1) from the left by UT and

from the right by U. Defining the rotated matrix Q̄ = UTQU and recalling that R =

U⇤UT and I = UUT = UTU, we get after simplifications

S̄(22)

1 ⇡ S̄(22)

1 � 2�(1� �)S̄(22)

1 + (1� �)2Tr{⇤S̄(22)

1 }⇤�1

+ �
2

v(1� �)2⇤�1 +
2(1� ✓)(1� �)

1� ✓�
Q̄.

(A.2)

Using the rotated matrix S̄(22)

1 , the steady-state EMSE can be computed as Tr{⇤S̄(22)

1 }

and so, it depends only on the diagonal entries of S̄(22)

1 . We can work therefore only with

these diagonal entries and define the vectors

s̄(22)1 = diag{S̄(22)

1 } and ` = diag{⇤}, (A.3)

where diag{A} represents a column vector with the diagonal elements of A.

By applying the diagonal operator to both sides of equation (A.2) and using the
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definitions from (A.3), we obtain

s̄(22)1 ⇡ s̄(22)1 � 2�(1� �)s̄(22)1 + (1� �)2`·�1`T s̄(22)1

+ �
2

v(1� �)2`·�1 +
2(1� ✓)(1� �)

1� ✓�
diag{Q̄},

(A.4)

where `·�1 denotes the element-wise inversion.

Multiplying both sides of (A.4) by (1 � �)�1 and simplifying it leads to equation

(3.39), repeated below

s̄(22)1 ⇡
⇥
2�I� (1� �)`·�1`T

⇤�1

⇢
�
2

v(1� �)`·�1 +
2(1� ✓)

1� ✓�
diag{Q̄}

�
.

A.2 Diagonal elements of the cross-covariance matrix
S̄(12)
1 for combination between LMS and RLS

To compute the transformed cross-covariance matrix S̄(12)

1 = UTS(12)

1 U for the com-

bination between LMS and RLS filters, we followed similar algebraic development used in

the previous section A.1. Replacing equations (3.20) and (3.23) in (3.17) and considering:

LMS as ` = 1 and the RLS as m = 2, with the corresponding parameters ⇢
(1) = µ,

M̄(1) = I, ⇢(2) = 1 and M̄(2) = P̄ = (1� �)R�1, and assuming that the filter is operating

in steady-state, i.e. i!1, we get the following recursion for S(12)

1 :

S(12)

1 ⇡ S(12)

1 � (1� �)S(12)

1 � µRS(12)

1

+ µ(1� �)Tr{RS(12)

1 }I+ 2µ(1� �)RS(12)

1 + µ(1� �)�2

vI

+ (1� ✓)2 [µR� I] [(1� ✓)I+ µ✓R]�1 Q

+
(1� ✓)(2� �� ✓�)

(1� ✓�)
Q.

(A.5)

To simplify (A.5) and get an easier expression to deal with, we multiply and divide

by ✓ the third line of (A.5) and reorganize the terms to obtain

S(12)

1 ⇡ S(12)

1 � (1� �)S(12)

1 � µRS(12)

1

+ µ(1� �)Tr{RS(12)

1 }I+ 2µ(1� �)RS(12)

1 + µ(1� �)�2

vI

+ ✓
�1(1� ✓)2 [µ✓R� ✓I] [I+ µ✓R� ✓I]�1 Q

+
(1� ✓)(2� �� ✓�)

(1� ✓�)
Q.

(A.6)

By using the push-through identity propertyA(I+A)�1 = (I+A)�1A = I�(I+A)�1,
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where A = µ✓R � ✓I, after some algebra we obtain the following simplified version of

equation (A.6)

S(12)

1 ⇡ S(12)

1 � (1� �)S(12)

1 � µRS(12)

1

+ µ(1� �)Tr{RS(12)

1 }I+ 2µ(1� �)RS(12)

1 + µ(1� �)�2

vI

� ✓
�1(1� ✓)2 [(1� ✓)I+ µ✓R]�1 Q

+
(1� ✓)(1� 2✓�� ✓)

✓(1� ✓�)
Q.

(A.7)

By multiplying (A.7) from the left by UT and from the right by U and using the same

rotated matrix Q̄ and diagonal matrix ⇤, we get the following recursion for S̄(12)

1 after

simplifications

S̄(12)

1 ⇡ S̄(12)

1 � (1� �)S̄(12)

1 � µ⇤S̄(12)

1

+ µ(1� �)Tr{⇤S̄(12)

1 }I+ 2µ(1� �)⇤S̄(12)

1 + µ(1� �)�2

vI

� ✓
�1(1� ✓)2 [(1� ✓)I+ µ✓⇤]�1 Q̄

+
(1� ✓)(1� 2✓�� ✓)

✓(1� ✓�)
Q̄.

(A.8)

Using the rotated matrix S̄(12)

1 , the steady-state EMSE can be computed as Tr{⇤S̄(12)

1 }

and so, it depends only on the diagonal entries of S̄(12)

1 . We can work therefore only with

these diagonal entries and define the vector

s̄(12)1 = diag{S̄(12)

1 }. (A.9)

By applying the diagonal operator to both sides of equation (A.8) and using the

definition from (A.9), we obtain

s̄(12)1 ⇡ s̄(12)1 � (1� �)s̄(12)1 � µ⇤s̄(12)1

+ µ(1� �) `T s̄(12)1 + 2µ(1� �)⇤s̄(12)1 + µ(1� �)�2

v

� ✓
�1(1� ✓)2 [(1� ✓)I+ µ✓⇤]�1 diag{Q̄}

+
(1� ✓)(1� 2✓�� ✓)

✓(1� ✓�)
diag{Q̄},

(A.10)

where =
h
1 1 . . . 1

iT
.

Reorganizing the terms and simplifying equation (A.10) it leads to equation (3.46),
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repeated below

s̄(12)1 =

⇢
(1� �)I+ µ⇤� µ(1� �)

�
`T + 2⇤

���1

⇥

⇢
µ(1� �)�2

v �
(1� ✓)2

✓
[(1� ✓)I+ µ✓⇤]�1diag{Q̄}

+
(1� ✓)(1� 2✓�+ ✓)

✓(1� ✓�)
diag{Q̄}

�
.


