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“[...] the only people for me are the mad
ones, the ones who are mad to live, mad
to talk, mad to be saved, desirous of
everything at the same time, the ones
who never yawn or say a commonplace
thing, but burn, burn, burn like fabulous
yellow roman candles exploding like spi-
ders across the stars and in the middle
you see the blue centerlight pop and ev-
erybody goes “Awww!”

-- Jack Kerouac, On the Road



RESUMO

Métodos baseados em redes neurais profundas ganharam uma grande importância ao
se mostrarem alternativas viáveis e poderosas para diversas tarefas, em especial para tare-
fas de processamento da voz, como reconhecimento de fala, detecção de palavras-chaves
e reconhecimento de emoções. Entretanto esses métodos possuem alguns problemas in-
trínsecos, especialmente no que tange à robustez na presença de fatores deletérios, como
ruídos e reverberação. Neste trabalho abordamos o problema de realce da voz, que tem
como objetivo ser um sistema de pré-processamento capaz de realçar as características
da voz e suprimir ruídos. Algoritmos baseados em modelos estatísticos abordam isto
como um problema de maximização de verossimilhança. No entanto, não há garantias
de que melhorará características perceptivas, como a inteligibilidade. Estudamos o uso
de representações de fala extraídas do modelo wav2vec como função de custo perceptiva
para a tarefa de realce da voz. Nossos experimentos demonstram que o uso de modelos
de aprendizado contrastivo em funções de custo, para levar em conta características per-
ceptivas, pode melhorar o desempenho do aprimoramento de fala em ambientes 3D. Além
disso, discutimos o uso de modelos no domínio do tempo e do tempo-frequência. Nossos
melhores resultados são obtidos através de modelos tempo-frequência, em detrimento do
custo computacional.

Palavras-Chave – Processamento da Voz, Aprendizado de Representações, Aprendizado
não-supervisionado, Realce da voz, Áudio Espacial.



ABSTRACT

Methods based on deep neural networks have gained significant importance by show-
ing viable and robust alternatives for several tasks, especially for speech processing, such
as speech recognition, keyword spotting, and emotion recognition. However, these meth-
ods have inherent problems, especially regarding the robustness to detrimental factors,
such as noise and reverberation. In this work, we tackle the Speech Enhancement prob-
lem, a pre-processing system capable of emphasizing the speech signal while suppressing
noises. Statistical-model-based algorithms approach this as a likelihood maximization
problem. However, there are no guarantees that it will improve perceptual characteris-
tics such as intelligibility. We study the usage of speech representations extracted from
the wav2vec model as a perceptual loss function for the Speech Enhancement task. Our
experiments demonstrate that using contrastive learning models to consider high-level
perceptual features in loss functions can improve the performance of 3D Speech Enhance-
ment. Moreover, we discuss the usage of models in the time and time-frequency domain.
Our best results are obtained through time-frequency models, increasing the computa-
tional cost.

Keywords – Speech Processing, Representation Learning, Unsupervised Learning, Speech
Enhancement, Spatial Audio
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1 INTRODUCTION

We introduce in this chapter the main problems associated with deep learning-based

enhancement methods and the research questions derived from our observations. Next,

we present the structure of our work.

1.1 Overview and Motivation

Deep learning techniques achieve state-of-the-art results in several domains such as

automatic speech recognition, image classification, and emotion recognition. Usually,

those tasks rely on a large amount of labeled data to train supervised models that are

task-specific. However, this approach has some significant issues: It is data inefficient

(LAKE et al., 2017), not robust against adversarial attacks (GOODFELLOW; SHLENS;

SZEGEDY, 2014), and neither generalizes across domains (COBBE et al., 2019). Rep-

resentation Learning constitutes an alternative where those algorithms struggle and ex-

pand to a new frontier of learning algorithms. Learning intrinsic speech features directly

from the input distribution in a diverse set is key to ensuring generalization (BENGIO;

COURVILLE; VINCENT, 2013). Furthermore, the latent representation is fed to semi-

supervised algorithms that require fewer data to learn the patterns since the passed fea-

tures are already meaningful.

Generalization is an essential task in machine learning. However, unseen variations of

the data can lead to poor performance in systems, which is demonstrated in the OpenAI

paper (COBBE et al., 2019). Furthermore, using the same environments to train and

test a Reinforcement Learning agent can lead to overfitting. For instance, using the same

context (CoinRun Game), a slight variation in the background color from a level can

drastically increase the agent’s error. The same is true for speech recognition models.

A different channel or background noise can hurt the entire system’s performance. In

order to enable generalization, representation learning methods usually find independent

and disentangled subspaces. In this context, if something shifts in our input distribution,
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the other dimensions of our latent representation can still capture the other factors seen

during training. Altogether, unlabeled data are easy to collect, and mixed conditions are

usually presented in this type of data, helping our algorithm to capture a diverse set of

features.

On the side of speech processing algorithms, speech enhancement (SE) is concerned

with improving the intelligibility and quality of degraded speech (LOIZOU, 2013). Speech

enhancement algorithms focus on reducing or even suppressing the noise. Usually, we

apply SE algorithms for two objectives: (i) to improve the quality of sound that the final

users will hear and make it more pleasant for them (which is a subjective measurement);

(ii) or to improve the performance of a downstream speech processing system. There

are a wide variety of applications in which it is desired to enhance speech, for example,

communication and teleconferencing systems, where, in addition to the background noise,

the speech can be affected by the reverberation of the room, or by the noise over the

communication channel (BENESTY, 2018).

In general, when using statistical-model-based algorithms (e.g., Neural Networks),

the algorithm relies on the problem of maximum likelihood estimation (LOIZOU, 2013),

where the objective is to design a supervised estimator that receives as input a noisy

audio signal and outputs an enhanced speech signal as close as possible to the target

audio signal (clean speech signal). The problem is that this estimator usually relies on a

regression-based loss function that can introduce artifacts and hurt the intelligibility of

the final signal.

From the discussed issues, some modern SE algorithms attempt to introduce a percep-

tual component to the optimization problem to directly maximize the metric of interest

(e.g., intelligibility). In this work, we investigate the usage of SE models in the time

and time-frequency domains and how we can use speech representations extracted from

large self-supervised models to guide the optimization process toward an increase in the

perceptual metrics, especially those related to intelligibility.

1.2 Research Questions

First, we would like to introduce unsupervised representation learning techniques

through three pillars: generative modeling, self-supervision, and contrastive learning. To

objectively evaluate the performance of these representations, we use the learned repre-

sentations as the objective function of SE deep models. Moreover, Yang et al. created
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a unified performance benchmark called SUPERB to formalize Speech Representations

evaluation through a set of tasks (YANG et al., 2021). In their work, it is widely used the

definition of upstream model as a neural network responsible for learning useful repre-

sentations for speech data, and downstream model a small network that uses the learned

representations for domain-specific tasks, such as keyword spotting. A model with a

good performance on the SUPERB benchmark indicates that representations related to

high-level perceptual tasks, such as phonemes and emotions, should be extracted with the

upstream model.

Further, we investigate the usage of such representations for perceptual losses in speech

enhancement problems (minimize the distance between representations from the enhanced

and the ground truth signals). Particularly, in this work we look into 3D speech en-

hancement using the Learning 3D Audio Sources dataset and try to answer the following

questions:

Q1 Can we use Fully-Convolutional Networks (FCN) for noise suppression and derever-

beration? Can those models improve intelligibility metrics compared to the original

noisy audios?

Q2 How do FCN models on time or time-frequency domains handle spatial SE? Both

on performance and computational cost.

Q3 Does the choice of a loss function heavily impact on the final performance?

Q4 Can the usage of unsupervised models as perceptual losses improve the training of

speech enhancement systems?

Q5 What is the impact of different similarity metrics used to compare the latent space?

As referenced below, we had the opportunity to disclose some results as research

papers related to the speech enhancement problem.

1. H. R. Guimarães, W. Beccaro and M. A. Ramírez, “Optimizing Time Domain Fully

Convolutional Networks for 3D Speech Enhancement in a Reverberant Environment

Using Perceptual Losses”, IEEE 31st International Workshop on Machine Learning

for Signal Processing (MLSP). 2021. DOI: 10.1109/MLSP52302.2021.9596103

2. H. R. Guimarães, W. Beccaro and M. A. Ramírez, “A Perceptual Loss Based Com-

plex Neural Beamforming for AmbiX 3D Speech Enhancement”, ISCA Archive.

2022. DOI: 10.21437/L3DAS.2022-4
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1.3 Outline

This thesis is organized as follows. Chapter 2 delves into the theory of learning

machines and representation learning necessary to follow this work. Specifically, about

representation learning, we want to define it and describe how to develop an algorithm to

extract good representations. Hence, we discuss how to measure its effectiveness. Chap-

ter 3 describes the speech enhancement problem and discusses what loss functions can be

used to optimize our model and consider the perceptual components using unsupervised

representation learning models. Chapter 4 discusses the methodology of the experiments

related to our work, what datasets we use, software, infrastructure, and all its compo-

nents to replicate our analysis. Chapter 5 brings our results associated with our proposed

experiments on 3D speech enhancement. Finally, chapter 6 presents our conclusions,

summarizes our findings, and discusses the necessary steps to develop our work further.
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2 SPEECH REPRESENTATION LEARNING

Data representation is crucial for the success of modern machine learning systems. In

order to efficiently solve a task using machine learning, it is necessary to feed the algorithm

with disentangled explanatory factors extracted from data (BENGIO; COURVILLE; VIN-

CENT, 2013). Being able to learn these type of representations is an important step

towards artificial intelligence.

To illustrate how a representation can help to solve a task, consider the equations 2.1

and 2.2. In fact both equations lead to the same result, but the representation of the first

requires more efforts to solve it. Changing the representation from Cartesian to Polar

coordinate systems is useful for solving this problem.

Z =

∫ 1

−1

∫ √
1−x2

−
√
1−x2

√
x2 + y2 dy dx (2.1)

Z =

∫ 1

0

∫ 2π

0

r2 dθ dr (2.2)

A successful method to capture useful factors is handcrafted feature engineering, in

which an expert in the field could design features that represents the data (KUHN; JOHN-

SON, 2019), similar to what was done in the equations above. However, such a method

does not scale or generalise across domains (BENGIO; COURVILLE; VINCENT, 2013).

In the following sections, we will introduce what is unsupervised representation learn-

ing, why it is an important theme, define what can be considered a good representation

and discuss some methods to achieve such good representation.

2.1 An Overview on Learning Machines

Cognition is the process of extracting knowledge and understanding from sensors

(sense) and signals (experience) embedded into a context. We define learning as the
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process when knowledge entails a change of associations, also known as brain representa-

tions. This work lies in the field of machine learning, which aims to develop algorithms

that enable machines to learn from data.

Having intelligent machines is not a new aspiration in philosophy and science. Fur-

thermore, replicating the human process of cognition seemed the correct answer for years

to achieve this goal. One of the first models to try to explain cognition was Associationism,

introduced by Plato. In this theory, our ability to think and infer is based on associations.

For instance, a function is defined as the association of inputs to outputs, which could

be an object in the Associationism theory. However, when designing a model to emulate

the cognitive process, one of the fundamental problems related to Associationism is the

structure where associations are stored.

In 1873, Alexander Bain, in his work Mind and body (BAIN, 1873), introduced the

idea of Connectionism. In early 1800, humanity started to understand the brain as a mass

of interconnected neurons. On top of this, Bain assumed that information is stored in

the connections of the neuronal network. In his early studies, he speculated that a neural

grouping should exist where neurons excite and stimulate each other based on signals,

and different intensities of activation could provide different outputs in the same route.

When we think about modern machine learning techniques, we understand that Neural

Networks are essentially Connectionist Machines. With the recent progress in biology

today, we can estimate that our brain has 8 billion neurons and 100 trillion connections.

For comparison, at present, the GPT-3 (BROWN et al., 2020) is one of the largest neural

networks and has 175 billion connections.

In his book, Tom Mitchell gives a formal succinct definition for what machine learning

means (MITCHELL, 1997): “A computer program is said to learn from experience E with

respect to some class of tasks T and performance measure P, if its performance at tasks

in T, as measured by P, improves with experience E”.

To elucidate this definition, consider the task T of emotion recognition. The expe-

rience E is the labeled dataset containing speech utterances and a label annotated with

emotions. The performance P of the algorithm is usually a classification measurement in

this case. For example, it could be accuracy or the F-score. An effective learning machine

should extract patterns to estimate what should be the associated class, i.e., p(T |E).

When discussing types of learning, usually we find three concepts: Supervised Learn-

ing, Reinforcement Learning, and Unsupervised Learning. The main feature of supervised

learning is to have labels associated with our data. For example, let X and Y be a set
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of features and labels. The job of the supervised model is to construct a mapping from

X → Y to estimate the conditional probability p(Y |X = xxx; θ), where x ∈ X and θ are

the parameters of the model . Our objective is to minimize wrong estimations as much as

possible. To achieve this, we usually rely on the maximum likelihood estimation (MLE)

method to estimate the parameters θ of the model, based on a probability distribution

from the input data, maximizing the likelihood function.

On the other hand, we have a class of algorithms under the category of Reinforcement

Learning (RL). In this setting, we do not have labeled samples, but we do obtain those

as feedbacks from signals (Reward function) based on the interaction (Action) of our

algorithm (Agent) with the world (Simulation). The reward function is like a teacher

who can identify good behaviors without telling what actions the agent should take. The

agent generates his training data in the RL setup by interacting with the world.

In recent years, the usage of Neural Networks for image classification represented a

breakthrough in the field of computer vision, and artificial intelligence (KRIZHEVSKY;

SUTSKEVER; HINTON, 2012; SIMONYAN; ZISSERMAN, 2014; HE et al., 2016). On

the other hand, in academic and industrial applications, we can see a clear tendency to

reduce machine learning to a pipeline where we acquire large amounts of data, construct

deeper models, and acquire better hardware. However, this pipeline is counter-intuitive to

how a human learns. For instance, the performance of humans against Deep Q-Networks

(DQNs) in the Atari “Frostbite” game is quite similar. However, an average person learns

the rules to play the game in 2 hours, and the algorithm takes close to 1000 hours. Also,

small changes in the game, such as changing the color of the blocks, lead to an unuseful

algorithm (LAKE et al., 2017).

For the last, we have Unsupervised Learning. In this scenario, we do not have any

signals (i.e., additional information such as labels or rewards) related to our input as

optimization guidance. Unsupervised learning is all about data representation. The key

idea is to extract the underlying structure of data. Understanding the structure of data

means that we can group similar samples, density estimation, and perform operations

such as dimensionality reduction (find orthogonal spaces that express the features of our

data). Usually, the methods rely on transforming the input space to another where the

features are disentangled by using Kernel machines (DOMINGOS, 2020). Therefore, the

notion of similarity or distance in the given space is crucial for the success of our methods.

One of the first class of algorithms to introduce the idea of representation learning are

the Kernel methods. Those are algorithms that apply non-linear functions to data to
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learn meaningful representations through a basis expansion (HOFMANN; SCHÖLKOPF;

SMOLA, 2008). This new space derived from the mapping has a structure that uses linear

models to solve the tasks.

Let X ⊂ RD be a non-empty set representing our data (attributes) and the labels

(targets) are given by Y ⊂ {−1, 1}. We define a sample as {(xi, yi)}mi=0 ∈ X × Y . A

feature map ϕ is a function that maps the attribute space to a high dimensional dot-

product space H. A Kernel k : X × X 7→ R is a similarity measure between samples,

written as k(x, z) = ⟨x, z⟩. The kernel definition also lets us construct algorithms in the

dot-product space, as described by equation 2.3. This property is known as kernel trick.

k(x, z) ≜ ⟨ϕ(x), ϕ(z)⟩ (2.3)

In the context of machine learning it is helpful to restrict ourselves in the case of

positive definite kernels, which leads us to a function space called reproducing kernel

Hilbert space (RKHS). Hilbert spaces allow us to have infinite-dimensional kernel spaces.

However, the representer theorem lets us reduce this to a tractable finite-dimensional

problem.

Our interest in this work is on DNN-based models for Unsupervised Representation

Learning and how to use it these learnt representations for downstream tasks, such as

speech enhancement.

2.2 Approaches for Learning Meaningful Representa-
tions

At the core of this work, our goal is to use high-level features created from connection-

ist machines capable of learning explanatory and disentangled factors from audio data in

an unsupervised fashion. Later, we use those representations to train Speech Enhance-

ment algorithms that consider perceptual characteristics in their optimization process

and be more efficient. This section describes three training schemes for unsupervised

representation learning that can help us achieve our goal.

2.2.1 Generative Modeling

We describe generative modeling as the task of approximating the underlying data

distribution from a finite set of samples. Later the learned model can be used for down-
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stream inference tasks, such as sampling from the distribution to create new data points

(Hence the name generative).

Let D be our finite set of samples, and x(j) ∼ px, for j = 1, 2, ..., |D|, a sample from

this n-dimensional data set. Our goal is to design a learning machine for the parameters θ

from a model family M in such a way that pθ is as close as possible from px, as described

in the equation 2.4.

θ̂ = argmin
θ∈M

d(px, pθ), (2.4)

where d(·) is a distance between the probability distributions.

It is interesting to notice that we are handling probabilistic models on high-dimensional

data, and our model is trying to learn the joint distribution over D. Density estimation

and outlier detection are some of the tasks where generative models can be applied. In

this work, we are especially interested in the application of generative models for Repre-

sentation Learning.

We have different approaches to construct deep generative models. The first we will

talk about is autoregressive models. In this approach, we model the joint distribution

as the product of the conditional distributions obtained after applying the chain rule of

probability, as described in equation 2.5. This formula can also be viewed as a Bayesian

Network (ERMON; SONG, 2021).

p(xxx) =
n∏

i=1

p(xi|x1, x2, ..., xi−1) (2.5)

This approach has the benefit of being easy to model, and no sampling is required

during training time. However, the generation process for the next element in the sequence

is very slow, and this type of model is better at modeling local structure than global

structures (MNIH, 2020). In this setting the model is trained to maximize the likelihood.

In the context of speech processing, an example of generative autoregressive model in

the time-domain is the WaveNet (OORD; DIELEMAN, et al., 2016), a neural network

capable of synthesizing high-quality speech. The sampling procedure is conditioned on

all previous samples, and the model is trained on thousands of samples per second of

audio. The generated sample is fed back into the model to predict the next sample. To

implement this, the WaveNet relies on dilated causal convolutions, which means that no

future information is used to generate a sample at time t.
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The benefit of using a causal convolution instead of a recurrent connection such as

Recurrent Neural Networks (RNN), or Long short-term memory (LSTM), is that convo-

lutions are faster to train. On the other hand, to capture long-range information, it is

necessary to have multiple layers, increasing the complexity of the model. To solve this,

Oord et al. proposed the usage of dilated convolutions, where we apply the filters over

a larger receptive filter. For a more concrete understanding, the figure 1 illustrates the

WaveNet model as described here.

Figure 1: Autoregressive Generative Model: The WaveNet architecture. Adapted from
(OORD; DIELEMAN, et al., 2016).

It is also possible to create a conditional model based on some characteristics (e.g.,

speaker identity) as shown in equation 2.6. In this case, we are not anymore in an

unsupervised setting, and the WaveNet model conditioned on speaker identity is used to

generate samples from a specific individual, hhh.

p(xxx|hhh) =
n∏

i=1

p(xi|x1, x2, ..., xi−1,hhh) (2.6)

The second approach to train generative models is latent variable models (LVM).

The key idea is the introduction of a latent variable, zzz, that defines a distribution over the

observations and may be read as an explanation for the data sample, therefore as a carrier

of meaningful information (representation). In figure 2, we have the general schematics

for the LVM.
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Figure 2: Latent Variable Model: General Setting.

Now we need to introduce some notations for further development. We call p(zzz) the

prior distribution of the latent variable, and p(xxx|zzz) the likelihood that maps latent

variables to observations. It is interesting to notice that with these two distributions we

define the joint distribution p(xxx,zzz) as described in equation 2.7, and we have the model

fully characterized. The posterior distribution p(zzz|xxx) are the possible latent variables

that could generate the given observation. The last concept is the marginal likelihood

p(xxx), which describes the data distribution.

p(x, z) = p(z)p(x|z) (2.7)

The process to generate data is quite simple with this model: We sample latent

representations from the prior zzz ∼ p(zzz), and then generate from the likelihood as xxx ∼
p(xxx|zzz). In our work, we are concerned with inference, which is the inverse process of

mapping from the data to meaningful latent representations.

From the definition of conditional probability, we can derive how to compute p(zzz|xxx),
as described in equation 2.8. The problem associated with this process is how to efficiently

compute the p(xxx).

p(z|x) = p(x, z)
p(x)

=
p(x, z)∫
p(x, z) dz

(2.8)

To solve further the equation 2.8, as in autoregressive models, we rely on maximum

likelihood estimation (MLE) to learn a model that approximates the marginal likelihood.

Based on the hypothesis that our data is independent and identically distributed (i.i.d.),

we define the likelihood function as the product of probabilities of data points. For

computational efficiency, we use a log-transformation in this product and maximize the
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sum of log-probabilities, as described in equation 2.9. To solve this, we use iterative

approaches such as Gradient Descent or Expectation-Maximization (EM).

θ̂ = argmax
θ∈M

∑
x∈D

log pθ(x) (2.9)

An important step towards the optimization problem is how to compute the gradient

of log pθ(x). From the equation 2.10, we observe that it is necessary to solve the sub-

problem of computing the posterior distribution to estimate the gradient.

∇θ log pθ(x) =
∇θpθ(x)
pθ(x)

=

∫
∇θpθ(x, z) dz

pθ(x)

=

∫
pθ(x, z)∇θ log pθ(x, z) dz

pθ(x)

=

∫
pθ(z|x)∇θ log pθ(x, z) dz

= E
pθ(z|x)

[∇θ log pθ(x, z)]

(2.10)

That leads us to a trade-off between tractable models, in which we can make an exact

inference process, and intractable models, in which we need some approximate inference

to train the model. Tractable models (e.g., Mixture and Invertible models) usually have

a straightforward training process because it is easy to do inference, but they are less

powerful. Intractable models are more expressive but rely on hard assumptions about the

data or latent distributions. One of the most popular methods of intractable models is

the Variational Autoencoder (VAE) and more details can be found at appendix C.

The last approach is implicit models, where the most representative member of

this class is the Generative Adversarial Networks (GANs) (GOODFELLOW; POUGET-

ABADIE, et al., 2014). Unlike autoregressive or LVM, these models are not trained with

maximum likelihood, here instead we use adversarial training.

In this setting, we have two components that constitute the GANs: The Generator

Gθ, and the Discriminator Dϕ. The task of the Generator is to generate, from a random

variable zzz ∼ p(zzz), a realistic sample that is as similar as possible to xxx ∼ p(xxx). Determining

whether this sample came from the original dataset or is a fake example from the Generator

is the primary goal of the discriminator.
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Figure 3: Generative Adversarial Network: General Setting.

The described dynamic is a minimax game, where the Generator’s goal is to fool the

Discriminator. Statistically, we can see this objective as a two-sample test (ERMON;

SONG, 2021). Let S1 = D = {xxx ∼ p(xxx)} and S2 = {xxx ∼ pθ}. We accept the null

hypothesis (p(xxx) = pθ) when the difference between S1 and S2 is less than a threshold

α. Therefore, the Generator tries to minimize the test objective while the Discriminator

tries to maximize, as described by the operation 2.11 below.

min
θ

max
ϕ

E
x∼p(x)

[log (Dϕ(xxx))] + E
z∼p(z)

[log (1−Dϕ(Gθ(zzz))] (2.11)

Currently, GANs are successful in several domains where realistic synthesis is a must.

On the other hand, GANs are hard to set up the training procedure for a stable optimiza-

tion process, and this type of model suffers from mode collapse, in which the generator

repeatedly generates a sample from a class (e.g., generate speech samples from a single

speaker).

2.2.2 Self-Supervised Learning

Self-supervised learning (SSL) is the most popular method to learn good features from

unlabeled data. One of the critical aspects of SSL is that we obtain supervisory signals

from data itself by exploiting knowledge of the data modality. The most popular method

for supervision is to predict an unobserved part of the input. For instance, this is the

mechanism present in state-of-the-art models for natural language processing (NLP) such

as BERT (DEVLIN et al., 2018) and RoBERTa (LIU et al., 2019).

While generative modeling is interested in sampling diverse and high-quality samples

that resemble the original data distribution, SSL focuses on extracting meaningful repre-

sentations. For example, language models receive a short text with a few masked words
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as input. The task is to predict this masked word, and by doing this, the system learns

features related to the word context (DEVLIN et al., 2018).

It is interesting that generative models are self-supervised models, but usually with

different goals. For example, in the generative modeling setting, we are interested in the

model capability to generate high-quality and diverse samples, while SSL is concerned with

obtaining disentangled explanatory factors from data to later use on multiple downstream

tasks (LECUN; MISRA, 2021).

2.2.3 Contrastive Learning

Contrastive Representation Learning (CRL) is one of the most prominent techniques

for SSL. In this methodology, we use a dissimilarity metric to arrange related samples

close to each other in the latent space. All CRL models are SSL models but with special

loss functions.

𝒳

𝒵

𝒞

ℒ3ℒ2ℒ1

Figure 4: The wav2vec model. Adapted from (SCHNEIDER et al., 2019).

To further investigate the usage of CRL, in this section, we are going to discuss the

wav2vec (SCHNEIDER et al., 2019) and wav2vec2.0 (BAEVSKI et al., 2020) models.

The wav2vec model is an unsupervised pre-training technique to extract meaningful rep-

resentations from 16 kHz raw audio and feed these representations to acoustic models for

speech recognition systems instead of the usual filterbank features. In high-dimensional

signal modeling, predicting the next step is often a task associated with understanding
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the local smoothness of the signal. However, to model long-range temporal attributes, it

is necessary to infer more global features of the signal that are useful for more challenging

tasks (e.g., phonemes and intonation for ASR, and Emotion Recognition) (OORD; LI;

VINYALS, 2018). This idea combined with contrastive loss is the base of the wav2vec

model.

The wav2vec model consists of two fully convolutional neural networks stacked on top

of each other, as shown in diagram 4. The first one is the encoder network, a mapping f

from the raw waveform sample xi ∈ X to an intermediate representation zi ∈ Z , in the

form f : X 7→ Z. The encoder network comprises five blocks of causal convolutions with

512 feature maps, a group normalization, and a ReLU activation function, with kernel

and stride sizes varying per layer. The downsampling factor of the encoder network makes

each representation zi capture 10 ms of the speech signal.

The next important component is the context network, a mapping g : Z 7→ C. The

key idea of this network is to map different features (zi ... zi−v) into a single context

vector ci = g(zi...zi−v), considering a receptive field of size v. This network has nine

layers composed of the same blocks of the encoder network. The representations from C
are the input features for downstream tasks later.

The contrastive characteristic takes place in the loss function of the method. The

idea is to compare samples (hence the name contrastive), and distinguish between the

sample zi+k that is k steps into the future from ten distractors sampled from a uniform

distribution pn. Our goal is to minimize the loss Lk, as shown in equation 2.12. The final

loss function is the sum of all k = 1, ..., K steps. The λ factor is set to the relative number

of negative samples, and σ is the sigmoid function.

Lk = −
T−k∑
i=1

(
log σ(zzz⊤i+khk(ccci)) + λ E

z̃∼pn

[
log σ(−z̃̃z̃z⊤hk(ccci))

])
(2.12)

Using the representations from C, it is possible to train models for downstream tasks

using less labeled data while keeping good performance. This setup was one of the break-

throughs introduced by Schneider (SCHNEIDER et al., 2019).

The authors modify two significant components in wav2vec2.0 model. The model

uses the same encoder network of the wav2vec model, a convolutional network with five

layers. On top of those features, the authors proposed the usage of the Gumbel-Softmax

distribution (JANG; GU; POOLE, 2016) to extract discrete features, which we obtain

through a property, a “temperature parameter”, so that we smoothly anneal to reshape
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the continuous distribution to a categorical one.

In addition to this modification, the previous context network is replaced by a 12-

layer Transformer network for the base model and a 24-layer network for the large model.

Furthermore, the loss function in this new model is modified to include both the con-

trastive loss, similar to the previous work, and also a component related to the diversity

loss of the learned codebook of the quantization module. This is done using the entropy

maximization of the Gumbel-Softmax distribution, vital to encourage the model to use

as many as possible different codes from the codebook instead of collapsing into a small

subgroup.

2.3 How to evaluate the quality of a representation

There are different approaches to understanding if a latent representation is functional.

The most popular is semi-supervised learning, in which we feed the learned representation

to a set of downstream tasks related to the data modality. When using this approach, we

aim for data efficiency and generalization. Another important aspect of this methodology

is that we are now performing a finetuning process and therefore we need to feed the

algorithm with substantially less labeled data than a usual supervised learning pipeline.

For instance, the wav2vec 2.0 model (BAEVSKI et al., 2020) is trained as a contrastive

task using 960 h of unlabeled data from the LibriSpeech dataset (PANAYOTOV et al.,

2015) and learns to produce high-level latent representations which, among other factors,

capture rich phonetic information (HSIEH et al., 2020). The finetuning process is done on

labeled subsets of clean data with 100 hours, 10 hours, 1 hour, and may even be reduced

to 10 minutes of labeled data for an automatic speech recognition (ASR) task.

Another possible evaluation is model analysis, in which our focus is on interpretable

machine learning, in which we try to understand what the model learns. Depending on

the use case, this branch is critical due to regulatory policies, such as in the banking

industry.

2.3.1 A Performance Benchmark for SLR

In this work, we focus on semi-supervised learning. Even though this is a widespread

methodology, the challenge associated with it was the lack of a benchmark to compare

its methods against the literature. To handle it, the Speech processing Universal PERfor-

mance Benchmark (SUPERB) was proposed by Yang (YANG et al., 2021). The idea is
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to unify a set of experiments related to speech processing and compare multiple models,

developing a tool for other researches. For instance, based on this tool we describe in

more details five different downstream tasks that are considered the basis of SUPERB:

Content tasks (Phoneme Recognition and Keyword Spotting), Speaker task (Speaker

Identification), Semantic task (Intent Classification) and Paralinguistics task (Emo-

tion Recognition).

Phoneme recognition (PR) is a task of transcribing an utterance into phonemes.

Therefore, the SUPERB includes an alignment modeling to avoid inaccurate forced align-

ment. The Phone Error Rate (PER) metric is used to evaluate the model performance.

The other content-related task is keyword spotting (KS). It is a classification problem

where we detect preregistered keywords in a set of ten classes. For this task, the evalua-

tion metric is the standard accuracy. KS is also an essential task for on-device machine

learning, and model size can be another critical factor.

The speaker identification task (SID) is a multi-class classification problem where we

aim to identify the speaker in each utterance. We have a fixed set of speakers in the

SUPERB benchmark that appears for both training and test. To evaluate the model, we

use the accuracy metric.

We have the intent classification (IC) on the semantic task, which is the task of

assigning a label to an utterance into predefined classes. It is a multi-class classification

problem with three labels: action, object, and location. Again, this problem is evaluated

using the accuracy metric.

Emotion recognition (ER) is a paralinguistic classification problem with, in general,

four different classes: neutral, happy, sad, angry. Our predictors are the latent represen-

tations of each utterance, and our model’s evaluation metric is accuracy.

2.4 Review on Representation Learning Methods

SLR is currently a hot topic in the machine learning community. The early studies

of statistical methods for representation learning can be associated with Kernel Methods.

Kernel methods are algorithms that apply non-linear functions to data to learn meaningful

representations through a basis expansion (HOFMANN; SCHÖLKOPF; SMOLA, 2008).

This new space derived from the mapping has a structure that allows us to use linear

models to solve the tasks.

The usage of neural networks for representation learning defined a breakthrough in
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the field. Restricted Boltzmann Machines (RBM) is an energy-based model based on the

Boltzmann distribution, a key concept in statistical mechanics that allows us to compute

the probability of an energy-state given an initial condition. This method was used in

(HINTON; SALAKHUTDINOV, 2006) as a pretraining method.

Autoencoders are also popular unsupervised methods for representation learning in

which we learn continuous latent representations that capture the knowledge from the

original input. Gosh et al. (GHOSH et al., 2016) used Stacked Denoising Autoencoders

as a pretraining for categorical emotion recognition and achieved compatible results com-

pared with state-of-the-art models.

Different strategies were proposed to learn meaningful representations. Contrastive

learning is one of the most popular approaches in which similar samples are close to

each other in the latent space than dissimilar ones. As above mentioned, the wav2vec

(SCHNEIDER et al., 2019) is a self-supervised CNN-based model that takes raw audio

as input and computes a latent representation that can be input to a speech recognition

system.

Transformers and methods such as BERT (DEVLIN et al., 2018) have gained attention

in the NLP community. HuBERT (HSU et al., 2021) is a model that encodes unmasked

speech waveforms to continuous latent representations, which maps them to an acoustic

modeling problem. The next step in the algorithm is to learn how to capture long-

range temporal relations in order to reduce the prediction error. The second part of the

algorithm is related to a language model.

Continuous representation is not the only option. Oord et al. (OORD; VINYALS,

et al., 2017) demonstrated the usage of Vector Quantization on VAE (VQ-VAE) and in-

troduced the idea of using an embedding layer as a discrete latent space in the Variational

Autoencoder with the addition of a skip-connection like operation between the encoder

and decoder to allow the backpropagation mechanism to work even though a discrete

space introduces a non-differentiable operation.

Based on this concept, Chorowski, Oord et al. (CHOROWSKI et al., 2019) proposed

the usage of VQ-VAE with a WaveNet (OORD; DIELEMAN, et al., 2016) decoder.

The learned discrete representations can capture phonetic content and are later used for

phoneme recognition with a good performance.

Finally, Uncertainty Autoencoders (UAE) have been shown to be a promising tech-

nique against VAE. UAEs were introduced in the context of compressed sensing and in

their work, Grover and Ermon (GROVER; ERMON, 2019) demonstrated formal and ex-
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perimentally that UAE is also a generative model and can be a technique for unsupervised

representation learning where the compressed measurements are latent representations.

One of the biggest advantages of UAE against VAE is that UAE has no explicit prior

distribution over the latent space and therefore we do not need a KL divergence regular-

ization term in the loss function. This is an advantage because it ensures that the network

is learning a good representation even in the presence of powerful distribution decoders.
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3 PERCEPTUAL LOSSES FOR SPEECH
ENHANCEMENT

In this chapter, we formalize the speech enhancement problem, first for a general

case and then for the spatial scenario, discussing current methods to tackle 3D speech

enhancement. Finally, we describe the most popular loss functions for statistical-model-

based speech enhancement.

3.1 The Speech Enhancement Problem

When recording audio, it is usual that the information captured by the microphone

is corrupted by noises, environmental or artificial sounds, that degrade the quality and

intelligibility of speech. Similar to (LOIZOU, 2013), we define the speech enhancement

task as a system capable of isolating the speech signal , improving some perceptual metric,

while reducing noises to a minimum and including a minimum amount of processing

artifacts.

In this work we only consider additive noises. Let x be a clean speech signal, and s

the noise signal. We define the noisy waveform in equation 3.1.

y[n] = x[n] + s[n] (3.1)

There are multiple sources of noise signals that constitute s[n]. This signal can be

viewed as a stationary signal, whose characteristics do not change over time (e.g., a

mechanical fan), or as a non-stationary (e.g., typing or background speech). Figure 5

shows a spectrogram of a clean speech signal, the isolated noise of typing in a computer

keyboard, and both at a signal-to-noise ratio (SNR) of 5 dB.

From this spectrogram, in the middle image, we can observe a vertical pattern of high

energy across multiple frequencies when a person stroke the keyboard. There is also a

narrow band white noise around the 1 kHz frequency related to the recording procedure.
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Figure 5: Speech waveform (1034-121119-0042.wav) from L3DAS22 dataset corrupted by
an additive keyboard stroke noise from FSD50K development set (155910.wav)

When we add the noise with clean speech, we produce the image at the bottom, and it is

possible to observe the keystrokes and the speech with little effort.

Another detrimental factor for speech is a reverberant room. Reverberation is a

physical phenomenon related to multiple reflections of sound waves in the room. We

have a slight delay (less than 50 ms) when capturing the sound and its reflection in this

case. Therefore, the reverberation is perceived as a continuous and elongated sound for the

listener. In a scenario where we create an artificial dataset of reverberant speech and have

access to clean speech, we need to capture the room properties to understand its features

and how reflections will take place. One way to do this is by recording an impulsive signal

(e.g., a gunshot) in the desired room to obtain the room impulse response (RIR) h[n],

which later we convolve with a clean speech signal. If the clean speech is affected both

by noises and reverberation, the noisy signal is given by equation 3.2.

y[n] = x[n] ∗ h[n] + s[n] (3.2)
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In figure 6, we show the spectrogram of a clean speech signal and the reverberation

effect by using the RIR measurement of a church-like room called Aula Carolina. From

the spectrogram, it is possible to observe the effects of the wave reflections. The bottom

image is blurrier than the first one, especially in the low frequencies. More broadly, this

reflection effect scatters the sound in the time-axis.
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Figure 6: Speech waveform (1034-121119-0042.wav) from L3DAS22 dataset convolved
with a RIR from the Aachen AIR database 1.4 (Aula Carolina Room).

Our objective is to estimate a signal x̂ that is as close as possible to x, or x̂ ≈ x. Most

approaches consider this problem as the minimization of a distance on a metric space

ℓpn = (Rn, dp), where dp is a metric defined by the equation 3.3.

dp(x, x̂) =
n∑
k

|xk − x̂k|p (3.3)

It is essential to notice that some algorithms based on the minimization of a dp metric

may introduce some speech distortion while reducing background noises, which may de-

grade speech intelligibility. For this reason, recently, speech enhancement methods have

been tackling the problem of directly optimizing towards intelligibility or quality metrics.
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Different algorithms have been proposed for SE. In general, these algorithms can be

divided into (LOIZOU, 2013): spectral subtractive algorithms, statistical-model-based

algorithms (e.g., Minimum Mean Square Error (MMSE) algorithms, or Wiener filter),

subspace algorithms, and binary mask algorithms.

In the recent years, model-based approaches for SE have been widely adopted by

the speech processing community to develop powerful tools, especially methods based on

neural networks (VALENTINI-BOTINHAO et al., 2016; PARK; LEE, 2017; NIKZAD

et al., 2020; SANTOS; FALK, 2018). With this class of algorithm, we can design a non-

linear estimator to reconstruct the clean speech given the waveform from the noisy-speech

as input or its time-frequency representation.

Deep Neural Network (DNN) models have been proven to be a useful strategy for SE

(LU et al., 2013; XU et al., 2015). Macartney and Weyde (MACARTNEY; WEYDE,

2018) studied the use of the Wave-U-Net architecture, an end-to-end learning method

used originally for audio source separation. The authors achieved improvements in sev-

eral metrics, such as perceptual evaluation of speech quality (PESQ), evaluation of the

signal distortion (CSIG), background noise intrusiveness (CBAK), overall signal quality

(COVL), and segmental signal-to-noise ratio (SSNR). Nikzad et al. (NIKZAD et al.,

2020) proposed the residual-dense lattice network (RDL-Net), based on convolutional

neural networks (CNN) with residual links (ResNets) and causal dilated convolutional

units. The authors demonstrated good results in terms of mean opinion score (MOS)

predictors (CSIG, CBAK, and COVL), and also in PESQ and STOI.

3.2 Review on Speech Enhancement Methods

In this section, we describe some methodologies found in the literature to tackle the

problem of noise suppression and dereverberation. Approaches around noise removal

on monaural audio recordings are the most common problem and are the basis for 3D

SE. Methodologies using Convolutional Neural Networks (CNN) are among the most

prominent techniques to solve this problem. Some proposals were made in recent years

on time-domain SE techniques, where the model receives a one-dimensional waveform

as input. Initially, the Wave-U-Net model was developed for music source separation,

but quickly it was adapted for speech enhancement (MACARTNEY; WEYDE, 2018;

GUIMARÃES; NAGANO; SILVA, 2020). The Wave-U-Net is a fully 1D convolutional

with an architecture that we can understand as an encoder-decoder model with skip-

connection between the two components. In the contracting path, we have a layer that
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consists of a one-dimensional strided convolutional block and an activation function with

a LeakyReLU function. After each block, we increase the receptive field of our network

by a factor of 2 and repeat this layer pattern multiple times until we reach a bottleneck

layer.

On the other hand, the decoder path consists of an upsampling operation of the

learned feature map, restoring the initial input shape at the end of the process. Some

authors proposed the usage of linear-interpolation as an upsampling method instead of

Transposed convolutions, which reduced the computational cost of the model without a

significant performance degradation (GUIMARÃES; NAGANO; SILVA, 2020). Another

mechanism, the pre-training of the network as an autoencoder, was also a helpful weight

initialization technique. One of the advantages of this model compared to models that

work on the time-frequency domain is the simplicity and the low computational cost,

making it even more suitable for real-time scenarios.

More recently, approaches around 3D SE are gaining interest with the signal process-

ing community (GUIZZO; GRAMACCIONI, et al., 2021; GUIZZO; MARINONI, et al.,

2022). This scenario is more complex because both noises and reverberation must be

handled. A successful method based on STFT representation is the beamforming U-Net

for AmbiX audio recordings (REN et al., 2021). The network’s input is the STFT repre-

sentation without discarding the phase information. To use this information, the authors

concatenate the magnitude and phase along the frequency axis of the STFT and perform

a set of two-dimensional convolutional blocks, similar to the U-Net network. In the final

layer of the network, the estimated binary mask is multiplied by the original B-format

STFT from the noisy signal. We sum the results over the channel axis to get a monaural

audio representation. To obtain the signal back in the time domain, the ISTFT is applied

to the output.

To handle the reverberation component of the SE process, techniques based on Re-

current Neural Networks (RNN) are gaining attention. For the problem of 3D SE, where

the input is a multichannel audio signal, and the enhanced output should be monaural,

some authors proposed a two-stage pipeline based on Convolutional Recurrent Network

(CRN) in a U-Net scheme (LI et al., 2022).

The first component is a network responsible for noise removal and dereverberation

that receives as input a multichannel input that is transformed to the STFT represen-

tation. First, the real and imaginary components are concatenated along the channel

dimension. The expansive path of this network contains two separated decoders responsi-
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ble for estimating a binary mask for the real and imaginary parts, respectively. The next

step is to multiply the mask by the original input and obtain a multichannel output. This

component, that receives as input and returns as output a multichannel signal, is called

the MIMO Network (LI et al., 2022).

The second stage of the proposed model is the "Multiple-Input, Single Output", or

MISO Network (LI et al., 2022). In this component, the goal is to go from a multichannel

audio representation to a monaural one. For this, the authors use a two-layer LSTM

network. Again, the input is the STFT representation with the real and imaginary parts

concatenated along the channel axis. The output of this part is a feature map with

4-channels that will be fed into a second CRN network that will output a monaural

representation (i.e., a feature map with two channels representing the real and imaginary

components). Finally, the ISTFT is used to obtain the signal back in the time domain.

Other approaches combining signal processing techniques with DNN models showed

to be successful for 3D SE (LU et al., 2022; ZHANG et al., 2022). For example, the

linear acoustic echo canceller (LAEC) and time delay compensator (TDC) are used as a

pre-processing step before feeding the STFT representation to the DNN model (ZHANG

et al., 2022). The usage of Multichannel Wiener Filtering (MCWF) is proposed as an

intermediate step in the work of Lu et al. (LU et al., 2022). First, a neural network is

used to estimate the complex coefficients directly from the STFT representation. This

feature map is the input of the MCWF, and both the feature map and the output from

the MCWF are fed into a second DNN model to estimate the final output directly.

In the next section we discuss the most popular loss functions for neural networks

when tackling the SE problem. Most of the approaches rely on a regression loss that

consists of dp metric, but we will discuss some viable alternatives to optimize directly by

means of perceptual metrics.

3.3 On Loss Functions for Speech Enhancement

When designing a neural network for the SE task, our objective is to find a set of

parameters θ that composes an estimator x̂ = f(y; θ), that minimizes a distance metric

between x and x̂, or maximizes a perceptual metric, such as the Short-Time Objective

Intelligibility (STOI) measure. Most neural networks are optimized with the Gradient

Descent method, so our loss function must be differentiable. Similar to the work of

(GUSÓ et al., 2022), who studied the impacts of loss functions on the problem of music
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source separation, we further investigate losses for speech enhancement.

One of the most used functions for this objective is a reconstruction loss based on

the dp(·, ·) directly on the time domain. Considering a batch of N samples, we present

the equations for L1 (i.e., Mean Absolute Error) and L2 (i.e., Mean Squared Error) in

equations 3.4 and 3.5, respectively.

L1−time =
1

N

∑
k

|x̂k − xk| (3.4)

L2−time =
1

N

∑
k

|x̂k − xk|2 (3.5)

Another common technique is to use a regression loss on a time-frequency represen-

tation. Consider the magnitude of the Short-time Fourier Transform (STFT) of a signal

x given by equation 3.6, where n represents a discrete time-index, ω a continuous fre-

quency variable, x(m) is the input signal and w(n−m) is the analysis window shifted by

n samples. In this work we use a Hamming window to compute the STFT.

S(n, ω) = |X(n, ω)| =

∣∣∣∣∣
∞∑

m=−∞

x(m)w(n−m)e−jωm

∣∣∣∣∣ (3.6)

Similar to the previous approach, we apply a point-wise regression loss on top of this

representation, creating our time-frequency loss functions as represented by equations 3.7

and 3.8.

L1−freq =
1

N

∑
n,ω

|Ŝ(n, ω)− S(n, ω)| (3.7)

L2−freq =
1

N

∑
n,ω

|Ŝ(n, ω)− S(n, ω)|2 (3.8)

For the last, the usage of multi-resolution STFT (MRSTFT) is another popular choice

for a spectrogram-based loss function (YAMAMOTO; SONG; KIM, 2020). The key idea

behind this loss function is to use an STFT loss over a set O of different parameters,

namely the number of FFTs, window length and hop size, to generate the STFT repre-

sentation.

The STFT loss is composed of two parts: The first one is a spectral convergence
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method described on equation 3.9.

Lsc =

∥∥∥S − Ŝ
∥∥∥
F

∥S∥F
(3.9)

The second is a magnitude loss, very similar to the L1−freq but we apply the log10

operator in both inputs, as shown in equation 3.10.

Lmag =
∑
n,ω

| log10 Ŝ(n, ω)− log10 S(n, ω)| (3.10)

The final MRSTFT is the sample mean from the convex combination of both losses

over all possible configurations of O, as shown in 3.11. In this work we set both losses to

have the same importance into the final metric (λ1 = λ2 = 0.5). The hyperparameters

choose for this loss can be found at B.

LMRSTFT =
1

N |O|

|O|∑
i=1

(λ1Lsc + λ2Lmag) (3.11)

Both of the time and time-frequency domain approaches above consider a regression

problem. The first perceptual metric that we consider is the usage of the Lstoi, which

is obtained directly from the STOI metric (TAAL et al., 2010), with some adaptations

to improve computational performance, as proposed in (MANUEL, 2021). In this soft

version, we detect silent frames and store this information as a mask tensor. The mask

is applied before the mean operation in (3.13). An open source implementation can be

found in (MANUEL, 2021).

The STOI metric is calculated using (3.12) and (3.13). The variable Xj indicates the

jth one-third octave band from the discrete Fourier transform (DFT) of the noisy signal,

and Yj can be defined in a similar form for the clean audio. The Y ′
j represents the Yj

vector normalized and clipped. The µ represents the means of the representations.

dj(m) =

(
Xj − µXj

)T (
Y ′
j − µY ′

j

)
∥Xj − µXj

∥∥Y ′
j − µY ′

j
∥

(3.12)

The STOI metric is an average over all (M total time frames and J total one-third

octave bands) estimated linear correlation coefficients, as defined in equation 3.13.

Therefore, we construct the STOI metric as an average over the estimated linear
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correlation coefficient, as defined in equation (3.13).

dstoi =
1

JM

∑
j,m

dj(m) (3.13)

As a loss function, the STOI-LF can be described as the negative of the metric as

indicated in (3.14).

Lstoi(y, ŷ) = −dstoi (3.14)

It is important to notice that most of the operations required are differentiable and

it is possible to compute the gradients, except the Y ′, which relies on a min operation.

However, this application is possible due to subgradient operation that is no much more

expensive than a ReLU activation derivative. Hence it is possible to use this as loss

function without general performance degradation.

Deep Feature Loss is another technique to compare high-level features in a neural

network’s loss function instead of directly maximizing the likelihood in the reconstruction

process. In this methodology, we extract an embedding from the jth layer of the neu-

ral network (usually the last layer or a combination of all layers) and compute a distance

metric between the embeddings from the clean signal against the enhanced signal (JOHN-

SON; ALAHI; FEI-FEI, 2016). Usually, the chosen distance metric is the L2 loss and

has been used in simultaneousness with a reconstruction loss, such as the L2−freq on the

magnitude STFT (SAHAI; WEBER; MCWILLIAMS, 2019). The work of (GERMAIN;

CHEN; KOLTUN, 2018) shows us that this type of loss function has a superior objective

quality metrics for the speech enhancement task.

In this work, when referring to Deep Feature Loss (DFL), we will use an L2−freq

reconstruction loss and the MSE between the embeddings extracted from the last layer of

a model ϕm, as described by equation 3.15. Notice that ϕm is differentiable, and therefore

we can use it in the backpropagation mechanism. The λ is a weight parameter to control

how strong is the feature loss regularization.

LDFL = L2−freq +
λ

N

∑
k

(ϕj
m(x̂)− ϕj

m(x))
2 (3.15)

Based on the above losses, we propose a specific loss to optimize intelligibility based

on the earlier work of the Phone-Fortified Perceptual Loss (PFPL) (HSIEH et al., 2021),
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which we discuss in the next section. Our goal is to maximize the STOI metric and reduce

the Word-Error Rate (WER) from wav2vec2.0 based speech recognition systems. Also,

this loss function links our previous chapter on Speech Representation Learning with the

task of Speech Enhancement.

3.4 Compound Perceptual-Loss based on Speech Rep-
resentations

We propose using representation learning methods on speech enhancement tasks. In

our initial experiments, we evaluate the usage of the learned latent spaces as a guide

for the loss function in the enhancement tasks. Since similar samples should be close in

the feature space of an SRL model, we presume the distance from the latent vector of

the enhancement system’s output should be close to the vector generated from the clean

speech.

This is the basis for the Phone-Fortified Perceptual Loss (PFPL) (HSIEH et al., 2021).

As demonstrated, the PFPL is computed based on latent representations of the wav2vec

model (SCHNEIDER et al., 2019). The PFPL uses the Wasserstein distance during

training and is defined by the Kantorovich-Rubinstein dual form of Wasserstein distance

(3.16). The PFPL is given by the following equation:

LPFPL(y, ŷ) := ∥y − ŷ∥1 + sup
f∈F

[ Eu [f (c)]− Ev [f (ĉ)] ] , (3.16)

where f is a Lipschitz continuous function; c = Φwav2vec (y) and ĉ = Φwav2vec (ŷ) are the

outputs of the encoder wav2vec model, Φwav2vec, of the clean speech and the enhanced

speech, respectively; u and v are the densities of the c and ĉ features in the latent space.

The PFPL also includes a mean absolute error (MAE) loss applied to increase the CBAK

metric performance (HSIEH et al., 2021). In their work, other metrics are also used to

measure the distance between the vectors in the representation space (e.g., MAE).

In a different way, we propose an optimized objective function in equation (3.17). The

key idea was creating an approximation to directly optimize the intelligibility metrics of

STOI and the WER from the Speech Recognition system on top of the wav2vec2.0 model.

For this, we assume that similar latent representations for the clean and enhanced signals

should lead to the same transcriptions for both waveforms and therefore approximate the

WER, which is not differentiable.
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LCPL(y, ŷ) = Lstoi + α

[
sup
f∈F

[ Eµ [f (c)]− Eν [f (ĉ)] ]

]
, (3.17)

where c and ĉ are extracted using the wav2vec1.0 or wav2vec2.0 model, and α ∈ R is a

weight factor.
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4 METHODOLOGY

This chapter describes the methods and materials necessary to reproduce our exper-

iments. First, we briefly introduce the datasets used in this work and the infrastructure

necessary to run the experiments. Finally, we discuss our proposed methods to perform

3D speech enhancement.

4.1 Datasets

The following sections detail the datasets used in this work for speech representation

learning and speech enhancement in the monaural and tridimensional scenarios.

4.1.1 Librispeech Corpus

The Librispeech dataset (PANAYOTOV et al., 2015) is a set of utterances with ap-

proximately 1,000 hours of speech extracted from audiobooks and carefully designed. The

data consists of audios with a sampling rate of 16 kHz, and 16 bit resolution. The data

was split into train, development, test sets, and clean and noisy audio subsets. The train

set consists of 960 hours of utterances divided into subsets of 460 hours of clean audios

and 500 hours with audio with less quality (channel and environmental noises). The other

40 hours are divided between the development and test sets, with clean and noisy subsets.

Originally the dataset was proposed for automatic speech recognition (ASR) tasks,

and therefore has transcripts aligned with the audio to train supervised models. In this

corpus, we have approximately 977K unique words. Unsupervised models currently use

this same dataset but discard the associated transcripts.

In this work, we use the Librispeech dataset to train our custom SSL models. Training

models capable of capturing the underlying distribution of language itself is challenging,

and we need an extensive utterance corpus to discover patterns and fit large models. Also,

this dataset is used for training speech recognizers as can be found in the literature on
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robust models such as wav2vec (SCHNEIDER et al., 2019), wav2vec2.0 (BAEVSKI et al.,

2020), and the HuBERT (HSU et al., 2021).

4.1.2 3D Audio Sources

For the task of speech enhancement in a 3D environment, we use the datasets pro-

vided by the Learning 3D Audio Sources (L3DAS) project from the Sapienza University

of Rome. The data was made publicly available through a data competition (GUIZZO;

GRAMACCIONI, et al., 2021) in the IEEE International Workshop on Machine Learn-

ing for Signal Processing (MLSP). The L3DAS21 dataset contained multiple-source and

multiple-perspective B-format Ambisonics audio recordings, with 16 bit-AmbiX wav files

having a sampling rate of 16 kHz and was designed based on clean speech sounds ex-

tracted from the Librispeech. The noises are from the Freesound Dataset 50K (FSD50K)

(FONSECA et al., 2020) corpus, a public dataset with 100 hours of manually labeled

audio, consisting of 50 thousand clips distributed across 200 classes.

In the L3DAS21 dataset, the noises are drawn to represent fourteen transient noise

classes and four continuous noises: computer keyboard, drawer open/close, cupboard

open/close, finger-snapping, keys jangling, knock, laughter, scissors, telephone, writing,

chink and clink, printer, female speech, male speech, alarm, crackle, mechanical fan, and

microwave oven.

Those sounds are convolved with 252 room impulse responses (RIR) collected in dif-

ferent positions of an office-like environment, as shown in Figure 7. These synthetic

tridimensional sounds aim to create plausible 3D scenarios to produce possible real-life

situations in which sound and background noises coexist in the same 3D reverberant

environment.

More recently, the L3DAS project released a new enhanced version of the data chal-

lenge, called L3DAS22 (GUIZZO; MARINONI, et al., 2022). In this challenge, some

aspects of the dataset were improved for the speech enhancement task. The most promi-

nent one is on data collection: There are more data because the authors allowed signals

up to 12 seconds long from the clean subset of the Librispeech, reaching a total duration

of more than 80 hours and up to 40,000 utterances.

It is guaranteed that each file always presents a speech signal. Up to 3 background

noises from FSD50K can corrupt the signal (same noise categories from the previous

challenge), but with a 25% probability of being a continuous noise. Also, the signal-to-
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noise ratio is always greater than zero dB, which means that the voice is the prominent

signal. Finally, the presented subset is balanced with a similar proportion of male and

female speakers.

4.2 Infrastructure and Software

In this work, we use a desktop computer with 32 GB of RAM, an Intel i5 9th generation

processor with six cores, and a single NVIDIA RTX 2060 Super GPU card with 8 GB

to train our models. For the large models, we use pre-trained weights (e.g., wav2vec2.0 )

available at Huggingface’s Transformers (WOLF et al., 2019) open source library.

Our models are implemented using the Pytorch framework with the open-source

SpeechBrain toolkit (RAVANELLI et al., 2021), an easy-to-use tool for speech-related

tasks in research and development (R&D) environments, allowing us to spend more time

in research than boilerplate coding. SpeechBrain is built on top of Pytorch and allows us

to compare other model implementations. The source code and all the necessary param-

eters for reproducibility are available at:

1. https://github.com/Hguimaraes/SE3D

2. https://github.com/Hguimaraes/3Denoiser

4.3 Proposed methods for 3D Speech Enhancement

The following subsections describe the experiments associated with the Learning 3D

Audio Source (L3DAS) Challenges, using the 2021 and 2022 datasets. We participated in

each data challenge associated with IEEE signal processing conferences to train and test

our methodology as described below. In both experiments, we propose perceptual losses

to assess our model efficiency, but each methodology works with different input repre-

sentations, namely, the time domain and a time-frequency domain. We also performed

a third set of experiments on the L3DAS22 dataset to further investigate the impacts of

different loss functions.

4.3.1 IEEE MLSP 2021 Data Challenge

In this section we describe our initial approach for the 3D Speech Enhancement sce-

nario using the L3DAS21 dataset. Using the subset of 100 hours, we propose the training
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of a Fully Convolutional Network (FCN) for the SE task. Figure 8 shows the sequential

model with 7 FCN blocks, as indicated in Figure 8 (a), extended with 1 convolutional layer

at the end of the model. Each FCN block (FCN-B) consists of a 1-D convolution layer

with 55 filters, followed by a 1-D instance normalization, and a LeakyReLU activation

function with a slope of 0.1. Reflection paddings were used in order to preserve the audio

size. The choice of using reflection padding instead of a usual zero-padding is to avoid

the creation of border artifacts while using the convolution operator, as demonstrated in

(GUIMARÃES; NAGANO; SILVA, 2020).

Ambisonics

audio recording

(8-Channels) 

...

1-D instance

normalization
1-D Conv

Kernel size: 55

Padding: same

FCN Block (FCN-B)

1-D Conv

(40-Channels)

1-D instance

normalization

+ Leaky Relu

(0.1)

a) b)

Kernel size: 55

Padding: same

FCN-B
Mono channel

reconstructed

speech signal

Figure 8: The architecture of the FCN for 3D speech enhancement in a reverberant
environment: (a) FCN diagram block, and (b) the overall architecture.

The model input has eight channels, each containing the raw waveforms of the 8-

Ambisonics channels. The model output reconstructs only one channel, representing a

clean mono speech. We randomly select 2-s segments (32,000 samples) in each epoch

in the training phase. On the other hand, the audio is kept with the original size for

the validation and test phase. Being invariant to the waveform input size is one of the

advantages of the FCN strategy. The model was trained for 50 epochs, resulting in

approximately 10 hours of training.

The evaluation metric, M , for this task is a combination of STOI, which estimates

the intelligibility of the output speech signal, and WER, computed to assess the effects of

the enhancement for speech recognition purposes. The final metric for this task is given

by (4.1), which lies in the 0-1 range, with higher values indicating better performance.

This is the metric to evaluate the quality of the enhancement proposed by the authors of

the data challenge.
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M = [STOI + (1− WER)]/2 (4.1)

The design of the proposed loss functions is an approximation to directly optimize

the given metric. We rely on this scheme since the metric is not differentiable and could

not be used as a loss function directly.

In the first set of experiments, we would like to evaluate the importance of the loss

function with respect to our task. We investigate the usage of usual reconstruction losses

such as Mean Absolute Error (MAE) and Mean Squared Error (MSE), against perceptual

losses: The STOI-LF, PFPL, and ours.

Next, we study the behavior of different models against ours. We chose four ap-

proaches for the comparison: Noisy, Wiener, FaSNet, and SEWUNet. The Noisy ap-

proach consists of a simple average operation in all the channels of the input audio and

the direct comparison against the target. This approach can be used as a reference that

all models should improve upon.

The Filter and Sum Network (FaSNet) (LUO et al., 2019) is the proposed baseline

(GUIZZO; GRAMACCIONI, et al., 2021) for the challenge. The FaSNet is a time-domain

neural beamforming with high-performance for low-latency scenarios. The model works

on a two-stage approach, where first, it learns adaptive filters for a reference channel and

computes the filters for the remaining channels. Then, the filtered output is summed

across all channels to generate the final output. Compared to traditional beamformer

techniques, the authors improve the SNR for the reverberant speech enhancement task.

The SEWUNet is also used as an alternative time-domain model. We modified the

first layer of the architecture, compared with the original architecture (GUIMARÃES;

NAGANO; SILVA, 2020), to accept 8-channel input audio for the enhancement process.

We also did not use the weight initialization as proposed in the paper and our loss function

was used instead of the early L1 loss. This modification improved the results observed on

the development set metrics.

4.3.2 IEEE ICASSP 2022 Data Challenge

In this section, we describe our approach for the L3DAS22 data challenge. This work

shares some ideas from our previous work (compounded perceptual losses) (GUIMARÃES;

BECCARO; RAMÍREZ, 2021) and inspirations from the work that achieved first place

at the L3DAS21 challenge (REN et al., 2021) (e.g., using time-frequency representation
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as input of the network without discarding phase-information). To train our model, we

use the subset of 100 hours due to computational resources, and we propose the training

of a Fully Complex Convolutional Network (FC2N) for the SE task. Our approach is

based on a single microphone (mic A), similar to the work of Ren (REN et al., 2021).

The system’s input is a 16 bit AmbiX 16 kHz waveform transformed to a time-frequency

representation using a one-sided short-time Fourier transform (STFT) for each channel.

We arrange the tensors to be in the format B × N × T × 8, where B is the batch size,

N is the number of frequencies, T is the total number of frames, and 8 is the number

of channels. In this representation, the first four channels represent the real parts of our

STFT, and the others are the imaginary parts.
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Figure 9: The architecture of the FC2N for 3D speech enhancement in the L3DAS22
challenge: (a) Complex convolutional block, and (b) The overall architecture.

Figure 9 shows the proposed architecture that estimates a mask to multiply with the

input representation. The network has five blocks, consisting of a Complex 2D Convolu-

tion, a Complex Batch Normalization operator, and a Complex ReLU activation function,

except for the last block, which contains a Sigmoid activation function. The output also

has the shape B × N × T × 8 and is multiplied (point-wise) with the original STFT

representation. Then, we apply a single Complex 2D Convolution to transform it to a

monaural representation B × N × T × 2, and whose output is used to reconstruct the

waveform using the inverse short-time Fourier transform (ISTFT) function.

The components from FC2N are implemented as described in (TRABELSI et al.,

2017). In a similar fashion, we define a Complex filter matrix WWW = AAA + iBBB and a

complex vector hhh = xxx + iyyy. In the following items, we define the Complex convolution

and activations used by our network. More details on the batch normalization can be

found at (TRABELSI et al., 2017).

Definition 4.3.1 (Complex Convolution). We define the complex convolution as the dot
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product between the complex filter matrix WWW and the complex vector hhh as:

zzz =WWW ∗ hhh = (AAA+ iBBB) ∗ (xxx+ iyyy)

= (AAA ∗ xxx+ iAAA ∗ yyy) + (iBBB ∗ xxx+ i2BBB ∗ yyy)

= (AAA ∗ xxx−BBB ∗ yyy) + i(BBB ∗ xxx+AAA ∗ yyy)

It also can be describe as a matrix multiplication operation as shown in equation 4.2.

zzz =

[
R (WWW ∗ hhh)
I (WWW ∗ hhh)

]
=

[
AAA −BBB
BBB AAA

]
∗

[
xxx

yyy

]
(4.2)

Definition 4.3.2 (Complex ReLU). The CReLU is a holomorphic function, therefore can

be used in the backpropagation mechanism.

CReLU (zzz) = ReLU (R (zzz)) + iReLU (I (zzz)) (4.3)

Definition 4.3.3 (Complex Batch Normalization). It is an extension of the Batch Nor-

malization operation to accelerate the convergence of the learning method in the complex

domain and to avoid overfitting. The formulation is given by:

CBN(zzz) = ΓΓΓ(VVV )−
1
2 (zzz − E[zzz]) + βββ, (4.4)

where βββ is the shift parameter (Complex number), ΓΓΓ is a 2 × 2 positive semi-definite

matrix acting as a scale parameter, and VVV a covariance matrix defined as follow:

VVV =

[
Cov (ℜ{zzz} ,ℜ{zzz}) Cov (ℜ{zzz} ,ℑ{zzz})
Cov (ℑ{zzz} ,ℜ{zzz}) Cov (ℑ{zzz} ,ℑ{zzz})

]
(4.5)

Overall, in this set of experiments, our objective was to maximize the same metric pro-

vided in the first competition (Eq. 4.1). Currently, compared to the previous experiments,

we aim to experiment with different network architectures, use different representation

learning models for the perceptual loss (e.g., wav2vec2.0 ), and apply different distance

metrics in the feature space. We also study the impact of different loss functions on this

problem.
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5 RESULTS AND DISCUSSION

In this chapter we discuss the results associated with the experiments proposed in the

previous sections to tackle 3D Speech Enhancement.

5.1 IEEE MLSP 2021 Data Challenge

In our first set of experiments, we identified that the loss function has a fundamental

role in making the deep models improve the metric result. In fact, in our analysis, the

loss function was a more critical component than the network architecture itself when

using a time-domain model. In Table 1, we compare different losses and their impact on

the metrics. In this ablation study, we fixed the network architecture, as presented in

Figure 8, and the Adam optimizer.

Table 1: Ablation study on the effect of the loss functions to the metrics.

Loss STOI WER M

L1 0.49 0.98 0.26
L2 0.52 0.93 0.29

STOI-LF 0.82 0.36 0.73
PFPL 0.68 0.56 0.56

L1 + PFPL (HSIEH et al., 2021) 0.60 0.68 0.46
STOI-LF + PFPL (α = 5) 0.82 0.36 0.73

STOI-LF + PFPL (α = 1000) 0.83 0.35 0.74

In the first experiments, we investigated the usage of the regression losses L1 and L2.

The best results were obtained with L2 loss, achieving a value of STOI equal to 0.52,

WER equal to 0.93, and M equal to 0.29. These results suggest that Lp-norm functions

were not able to adequately train the model.

Table 1 also presents the comparison of three perceptual loss functions: STOI-LF,

L1 + PFPL (HSIEH et al., 2021), and STOI-LF + PFPL with α = 5 and α = 1000.
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For small values of α, the PFPL + STOI-LF and STOI-LF are almost identical since the

STOI-LF is predominant in the total value of the loss function. In both cases, the model

achieves a STOI score of 0.82, WER equal to 0.36, and M equal to 0.73.

The best results were obtained with STOI-LF + PFPL (α = 1000), achieving a value

of STOI equal to 0.83, WER equal to 0.35, and M equal to 0.74. The training with

PFPL has a faster convergence, which can be adequate to obtain trained models with few

epochs.

The model with STOI-LF + PFPL (α = 5) was the one submitted for the challenge

evaluation. The improvement achieved with the variation of the α value was studied after

the challenge deadline.

The next step was to compare how different models perform on this task. We chose

four approaches with the one here proposed: Noisy, Wiener, FaSNet, and SEWUNet. The

results on the development set are presented in Table 2.

The Noisy approach consists of a simple average operation in all the channels of the

input audio and the direct comparison against the target. This approach can be used as

a reference.

Table 2: Performance on the development set of the task. Comparison of different ap-
proaches: Noisy, Wiener, FaSNet, SEWUNet, STOI-LF + PFPL (α = 5), and STOI-LF
+ PFPL (α = 1000).

Approach STOI WER M

Noisy 0.57 0.43 0.57
Wiener 0.39 0.43 0.48
FaSNet 0.72 0.46 0.62

SEWUNet 0.79 0.40 0.69
Ours (loss with α = 5) 0.82 0.36 0.73

Ours (loss with α = 1000) 0.83 0.35 0.74

Our model using the FCN architecture and the proposed loss function achieved the

best results in our experiments. Compared to the SEWUNet, we proposed a simpler

model that also operates directly on the time domain, without re-sampling operations.

Moreover, the scores obtained in the test set of the challenge for STOI, WER, and the M

were {0.83, 0.31, 0.76}, respectively, placing us in the second position in the challenge.

Figure 10 illustrates the effectiveness of the speech enhancement model through a 7

s test utterance corrupted by a reverberant noise. The diagram shows the initial noisy
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speech log-frequency spectrogram, the enhanced speech spectrogram predicted by the

model, and the clean speech spectrogram (original file). The proposed model was able to

produce a smoothed version of the speech spectrogram.

One can observe the presence of noise components distributed all over the spectrogram

of the noisy speech signal, essentially in low frequencies, lower than 256 Hz. The enhanced

speech has had much of the noise removed, not affecting the harmonics.
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Figure 10: Log-frequency spectrogram of the 1993-147964-0008_A.wav audio file: (a)
noisy speech; (b) enhanced speech and (c) clean speech.
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5.2 IEEE ICASSP 2022 Data Challenge

These are the partial results on the first set of experiments in the L3DAS22 challenge,

presented in table 3. The usage of time-frequency representations achieves a considerable

improvement over our previous experiments. We also can observe an improvement on the

WER metric that will be investigated in further experiments, but we attribute it to the

usage of the wav2vec2.0 model.

Table 3: L3DAS22: Performance on the development set of the task. Comparison of
different models.

Approach STOI WER M

FaSNet 0.72 0.46 0.62
TD-FCN 0.83 0.35 0.74

Beamforming U-Net 0.87 0.25 0.81
STFT-FC2N 0.86 0.18 0.84

Another important aspect is the usage of complex networks, where we directly op-

timize our STFT representation’s real and imaginary components. In this approach, we

do not need to use the noisy phase components to invert the STFT representation in the

end. Instead, the Beamforming U-Net (REN et al., 2021) concatenates the real and imag-

inary components in the exact representation, similar to adding new frequencies to the

STFT, and uses regular two-dimensional convolutions. Our results indicate that Complex

networks are an adequate approach for this type of representation.

On the other hand, we have a tradeoff between metric and time performance compared

to our previous time-domain representation. Using the same hardware, we increased the

time to complete a single epoch from 12 minutes to 2 hours. This time can be prohibitive

in some scenarios, especially in competitions where we must quickly iterate.

In Figure 11(a)-(c), we show the wideband spectrogram of the utterance 1993-147964-

0008_A.wav audio file, spoken by a female speaker and transcribed as “by the time we

had placed the cold fresh-smelling little tree in a corner of the sitting room it was already

Christmas eve". In Figure 11(a), we can observe the presence of reverberation accompa-

nied by an additive noise of keystrokes produced by a computer keyboard. The keystrokes

(clicks) can be seen in noisy spectrogram by repetitive patterns (spaced approximately by

150 ms) with wide spectral distribution. Besides, a comparison of the noisy, Figure 11(a),

and the clean speech spectrogram, Figure 11(c), indicates that a large number of temporal
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gaps were filled due to the reverberation. The enhanced spectrogram obtained with the

reconstructed speech signal (i.e., the output of the FC2N model), shown in figure 11(b),

reveals clearer spectral characteristics that are an attenuation of the keyboard typing

sounds and also a dereverberation process by partially removing the reverberant artifacts

that appear as temporal smearing.
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Figure 11: Wideband spectrogram plotted with linear frequency scales: (a) noisy speech;
(b) enhanced speech by the FC2N (wav2vec 2.0), and (c) clean speech. In the noisy
spectrogram, the red block on the left side represents a temporal gap filled due to the
reverberation, and the red block on the right illustrates the sounds of two keystrokes.

5.3 Supplementary studies on the L3DAS22 dataset

After the ICASSP 2022 challenge, we further performed experiments on the L3DAS22

dataset to remark the impact of multiple loss functions on the intelligibility metrics.
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Bellow, in table 4, we report the performances obtained for time, time-frequency and

perceptual losses.

Table 4: Ablation study on Losses for 3D Speech Enhancement: We fixed all the compo-
nents (FC2N model) and studied the impact of different losses on multiple domains (time,
time-frequency and perceptual).

Loss STOI WER M

L1−time 0.45 0.99 0.23
L2−time 0.57 0.89 0.34

L1−freq 0.78 0.26 0.76
L2−freq 0.75 0.40 0.68
LMRSTFT 0.73 0.39 0.67

LDFL(wav2vec1.0) 0.78 0.31 0.73
LDFL(wav2vec2.0) 0.77 0.33 0.72

LPFPL 0.45 0.99 0.23
LSTOI 0.86 0.20 0.83

LCPL(wav2vec1.0) 0.84 0.22 0.81
LCPL(wav2vec2.0) 0.86 0.19 0.84

The experiments that compute regression losses directly on the clean and the recon-

structed signals in the time-domain did not improve the noisy baseline (i.e., not using any

algorithm). Moreover, it is interesting to notice that, even with the value loss function de-

creasing, many artifacts were introduced, harming the WER metric. We also hypothesize

that the small differences introduced by the distance metric induce a gradient vanishing

behavior, thus preventing the network from taking significant steps to find the minimum

and make fine-grained adjustments. Finally, it is essential to state that those time-domain

loss functions did not achieve great results with our proposed fully-convolutional archi-

tecture and optimization mechanism. However, it can be a viable alternative in other

configurations.

On the other hand, the time-frequency losses showed us a promising result for the

L3DAS22 dataset, especially the L1−freq loss, which is a consistent result with the speech

enhancement and source separation literature (GUSÓ et al., 2022; GUIMARÃES; NAGANO;

SILVA, 2020; PANDEY; WANG, 2018). Observing our three loss functions, we can see

that the STOI metric has a different but not significant as the WER metric. We com-

puted the LMRSTFT loss using five different STFT configurations, and more details on the

used parameter can be found in the appendix B. The usage of narrowband and wideband

spectrograms for the LMRSTFT loss seemed not to improve the final intelligibility metric
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but slightly enhanced the WER compared to the L2−freq loss.

Our experiments on perceptual losses showed us the best result in the final metric,

except for the LPFPL. For the PFPL, it is essential to remember that the Wasserstein

distance on the latent space acts as a regularization for the reconstruction loss L1−time.

Therefore, since the MAE on the time-domain did not show a reasonable performance, it

is expected that the LPFPL would not either.

In our experiments with the Deep Feature Loss (LDFL(·)), we observed a significant

improvement on the final metric compared to the pure regression loss L2−freq. To obtain

this result, we used the embedding from the last transformer layer of the SSL models and

set the hyperparameter λ = 10. By adding this comparison of high-level features of the

latent space, we observed an increase in both the STOI metric but more notable in the

WER, with a 22.5% and 17.5% improvement for the wav2vec1.0 and wav2vec2.0 model,

respectively.

The final metric M is strongly related to intelligibility rather than a quality metric.

The STOI loss function showed to be a robust objective function for both the L3DAS21

and L3DAS22 datasets. Our proposed compounded loss function (LCPL(·)) introduces

a penalty term based on the distance of the latent representations from the clean and

enhanced signals. Like the Deep Feature Loss, we used the MSE to compute the distance

between the representations and set the hyperparameter α = 10.

Both regularizers showed a similar metric M , but we expected that the wav2vec2.0

should lead to a better WER metric. In fact, we can observe a slight improvement over

the WER compared to only the LSTOI , but it is not significant compared to the compu-

tational cost introduced. Since the LSTOI loss function already compasses intelligibility

characteristics, we hypothesized that this term could obfuscate the WER approximation.

In future work, we would like to use a soft-attention mechanism to filter what are the

most important dimensions (i.e., a learnable weight to select features) from the latent

space from the wav2vec2.0 in order only to use the most important ones to compute the

distances and optimize for the metric M . In our current setup, we use all the features

from the wav2vec2.0 with the same importance, and some of them could not be relevant

to our enhancement task.

Next, we evaluate the impact of choosing the proper distance function to measure

similarity between two representations, and the results are presented in table 5. The

Kullback–Leibler divergence (KLD) was introduced earlier in the manuscript with the

VAE model, and an explanation can be found in the appendix A. Experimentally, we
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measured the mean and standard deviation within each sample. Then, we used the

analysis of variance (ANOVA) test with a 1% significance level to assess if the results were

statistically significant. Note that, for ANOVA, it is essential to test for normality; in this

work, we use the D’Agostino-Person test to assure that, also with 1% significance level.

Our results indicate no significant impact on using different distance metrics between

the representations. However, in the context of the challenges where the dataset is well-

defined, and the scores rank the teams, we observed that the MSE and KLD showed

better results for comparing the latent representations from the wav2vec2.0 model as

demonstrated in table 5.

Table 5: Ablation study on the distance metrics for the wav2vec2.0 representations in the
LCPL. The table shows the mean and standard deviation within samples. Fixed α = 10,
except for the Wasserstein distance where α = 1.

Distance STOI WER M

MAE 0.85± 0.054 0.20± 0.216 0.83± 0.123
MSE 0.86± 0.053 0.19± 0.211 0.84± 0.121
KLD 0.86± 0.054 0.19± 0.215 0.84± 0.125

Wasserstein 0.85± 0.054 0.20± 0.215 0.83± 0.123

In this part of the work, we did not extensively evaluate how the changes of the α

can impact the final metric M using this FC2N model. However, we speculate that the

previous studies on the L3DAS21 dataset should also hold here. Increasing the α value

is beneficial because more regularization is introduced into the loss functions, forcing the

model to improve the WER metric. However, large values can lead to a dominant term

in the loss function, making the STOI to have a negligible impact on the final value.
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6 CONCLUSION

In our set of experiments on 3D speech enhancement for the L3DAS21 data challenge,

we first proposed a new model of FCN using as input the time domain speech signal. This

strategy decreases the time of the training process and avoids phase problems during the

reconstruction of the signal as usual in models that map input to output spectrograms.

We also evaluated the influence of the loss function in the SE task. A simple yet

powerful model was capable of achieving a score of 0.73 in the competition metric (based

on STOI and WER combination) on the development set, which represents a 20% im-

provement on the provided baseline (FaSNet) for the first challenge. With this novel loss

function strategy, it is possible to improve the performance of DNN models for SE without

modifying the structure, only changing the optimization method. Based on this method,

the proposed model achieved second place in Task 1 of the L3DAS21 challenge.

On the experiments related to the second data challenge, we investigate the usage of

deep complex networks for speech enhancement directly on the STFT representation. Our

results show that this type of network represents a competitive alternative to traditional

methods on time-domain or spectral magnitude. Furthermore, we also investigate the

usage of the wav2vec2.0 as a feature extractor for our perceptual losses, as well as the

usage of L2 norm to compute the distance between the learned representations. With this

strategy, we can achieve a score of 0.843 in the proposed metric.

As expected by literature on speech enhancement methods, the usage of neural net-

works with both time or time-frequency domain inputs can improve the final intelligibility

metric. However, models with an STFT input seem to achieve the best results currently,

even though that models that directly operate on the waveform are gaining popularity,

primarily due to computational cost. Furthermore, compared to our time-domain ap-

proach, the model using STFT is four times slower due to the adjustments necessary to

make the model converges.

Lastly, we studied the impacts of different loss functions on the L3DAS22 dataset. In
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conclusion, we highlight the usage of perceptual loss functions to improve intelligibility

metrics, in order: first, the compounded loss function LCPL(wav2vec2.0) with the MSE

distance in the latent space; the LSTOI loss function; and the LDFL(wav2vec1.0). For

deep complex models estimating a mask for the STFT input, we do not recommend using

loss functions directly on the time domain because it may need a huge effort to make the

model converge towards an intelligibility improvement.

All the tested metrics (MAE, MSE, KLD, or Wasserstein) achieved good results with

your designed system in the ablation study of distance metrics. Although no significant

statistical discrepancies are found using different distance metrics between representa-

tions, in a restricted challenge scenario, where the number of samples is limited and the

importance of slight performance deviations, the MSE and KLD metrics are preferred in

this scenario.

For future work, for the 3D SE task, we would like to investigate the usage of a

soft-attention mask on the extracted representations from the wav2vec2.0 model. Also, it

would be interesting to experiment if our previous conclusions on the loss functions hold

for different types of models (e.g., spectral subtraction models) and more advanced deep

complex architectures.
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APPENDIX A – FUNDAMENTALS OF
INFORMATION THEORY

This section is a shallow introduction to some concepts related to information theory.

The concepts related to entropy, relative entropy, and mutual information are funda-

mental in communication systems (e.g., data compression and transmission) and deep

neural networks. Moreover, those concepts are deeply related to the theories developed

by Shannon.

In these notes, we define some connections to the definition of entropy in thermo-

dynamics and derive the definition axiomatically by properties that a random variable

satisfies (COVER, 1999).

Definition A.0.1 (Independence). I(A,B) = I(A) + I(B)

Definition A.0.2 (Monotonicity). A ≥ B =⇒ I(B) ≥ I(A)

Definition A.0.3 (Non-negativity). I(·) ≥ 0

Definition A.0.4 (Certainty). P (A) = 1 =⇒ I(A) = 0

Let X be a discrete random variable with a probability mass function (pmf) pX(xk)

with an alphabet X , where xk ∈ X , and |X | = K. We define self-information of the

symbol xk in the equation A.1. Note that this definition complies with all the previous

properties.

I(xk) = log2

(
1

p(xk)

)
= − log2 p(xk)

(A.1)

We define entropy as a measure of the uncertainty of a random variable, or the

expected-value of the self-information over its alphabet, as described by equation A.2,

where the entropy is measured in bits per symbol.
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H(X) = E [I(X)]

=
K∑
k=1

px(k)I(xk)

= −
K∑
k=1

p(k) log2 p(k)

(A.2)

Furthermore, we extend the entropy measurements for a pair of random variables X

and Y , with alphabets X and Y , respectively.

Definition A.0.5 (Joint Entropy).

H(X, Y ) = −E [log2 p(x, y)] (A.3)

Definition A.0.6 (Conditional Entropy).

H(Y |X) = −E [log2 p(y|x)]

= −
∑
x∈X

∑
yinY

p(x, y) log2 p(y|x)
(A.4)

Consequently, based on the previous definitions, we can now specify the relative

entropy, a measurement to define the similarity between two probability distributions

described as the expected value of the logarithm of the likelihood ratio, as shown in

equation A.5. Relative entropy is a fundamental concept to understand latent variable

models further since we introduce restraints over the distribution related to the latent

space of this type of model.

Definition A.0.7 (Relative Entropy or Kullback–Leibler divergence).

D(p||q) = E
p

[
p(x)

q(x)

]
=

∑
x∈X

p(x) log2

(
p(x)

q(x)

) (A.5)

Finally, we introduce our last definition, the mutual information. The mutual

information between two random variables is the information we obtain from one of them

about the other.
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Definition A.0.8 (Mutual Information).

I(X;Y ) = E
p(x,y)

[
log2

(
p(X, Y )

p(X)p(Y )

)]
= D( p(x, y) || p(x)p(y) )

(A.6)

Notice that when X and Y are independent, p(X, Y ) = p(X)p(Y ) =⇒ I(X;Y ) = 0.

To summarize, we show in figure 12 a Venn diagram summing up the discussions of the

above definitions about a pair of random variables.

Figure 12: Venn diagram for Mutual information and associated entropies. Adapted from
Prof. Arjona classes (PSI5813).

Another significant result from the mutual information related to supervised learning

is introduced by Naftali (TISHBY; ZASLAVSKY, 2015). Let a pair of random variables

X ∈ X and Y ∈ Y be our explanatory and exogenous variables, respectively. Their

relevant information is defined as the mutual information I(X;Y ), where a statistical

dependence exists between them. Y implicitly determines the relevant and irrelevant

features of X, which an optimal representation of X should capture while compressing

the irrelevant ones that are noises to predict Y .
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APPENDIX B – MULTI-RESOLUTION
STFT LOSS FUNCTION -
SETUP

To implement the LMRSTFT loss, we defined 5 sets of parameters related to the STFT

construction, defined as follow:

• STFT A: A FFT size of 512, a window size of 32 ms, and 50% hop (256 samples)

• STFT B: A FFT size of 512, a window size of 6 ms, and 10.4% hop (10 samples)

• STFT C: A FFT size of 1024, a window size of 60 ms, and 10% hop (96 samples)

• STFT D: A FFT size of 1024, a window size of 10 ms, and 10% hop (16 samples)

• STFT E: A FFT size of 2048, a window size of 30 ms, and 33.3% hop (160 samples)

All of the sets used an Hann window and λ1 = λ2 = 0.5. All the values were chose

empirically based on common configurations for STFT extraction.
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APPENDIX C – VARIATIONAL
AUTOENCODERS

In the chapter 2, we introduced the difference between tractable and intractable mod-

els. Intractable models are more expressive but rely on hard assumptions about the data

or latent distributions. In order to enable approximate inference, usually we rely on two

methods. The first one is the Markov Chain Monte Carlo (MCMC), which is the best

method for generate samples from the exact posterior. It is a general method that gives

the exact answer in the limit of infinite time. However, it is computationally expensive

and its convergence is hard to detect. On the other hand, we have Variational Inference,

which we approximate the posterior with a tractable distribution.

The main idea is to approximate the exact posterior pθ(z|x) with a variational pos-

terior that we can control qϕ(z|x), where ϕ are the variational parameters to be optimize

to get close as possible to the exact posterior (MNIH, 2020). On the variational posterior

qϕ(z|x), it is necessary:

1. To choose a distribution where we can sample from it

2. To be able to compute log (qϕ(z|x))

3. The derivatives with respect to ϕ exists

This is not a necessary condition, but usually we rely on a variational posterior that

can be factorized, i.e. qϕ(z|x) =
∏

i qϕ(zi|x).

The fundamental aspect about using a variational posterior is the induction of a

variational lower bound Lθ,ϕ on the marginal log-likelihood log pθ(xxx). In this setting,

we train a model to maximize Lθ,ϕ by optimizing both θ and ϕ (ERMON; SONG, 2021).

The name lower bound is because it is guaranted that is bellow the value of the marginal

log-likelihood, even though that we can not compute log pθ(xxx) directly. The derivation of

the marginal log-likelihood is described in equation C.1.
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log pθ(x) = log

∫
qϕ(z)

pθ(x, z)
qϕ(z)

dz

≥
∫

qϕ(z) log
pθ(x, z)
qϕ(z)

dz

= E
qϕ(z)

[
log

pθ(x, z)
qϕ(z)

] (C.1)

From the equation C.1, an important result is that

Lθ,ϕ = E
qϕ(z)

[
log

pθ(x, z)
qϕ(z)

]
≤ log pθ(x)

which means that, for an arbitrary qϕ(z), we have a lower-bound on the marginal

log-likelihood. Moreover, we can get a closer boundary by maximizing this expression

with respect to ϕ (MNIH, 2020).

Since qϕ(z) is an arbitrary distribution, the most popular choice for this is the varia-

tional posterior qϕ(z|x). This is called the Evidence Lower Bound. Using this distri-

bution, we can rewrite the variational lower bound Lθ,ϕ as:

Lθ,ϕ = E
qϕ(z)

[
log

pθ(x, z)
qϕ(z|x)

]
= E

qϕ(z)

[
log

pθ(x)pθ(z|x)
qϕ(z|x)

]
= log pθ(x)−D(qϕ(z|x) || pθ(z|x))

(C.2)

The Kullback–Leibler divergence between the two distributions is the variational gap

and represents the difference between the true and the variational posterior. Another

significant result from the above equation is that we are minimizing the variational gap

when maximizing the ELBO for ϕ.

Towards a more practical way of training models using variational inference, the

next step is to discuss how to compute the gradients for the ELBO. One of the possible

methods to compute the gradients it is through an operation called reparameterization

trick, where the main idea is to reparameterize a sample from qϕ(z|x) distribution as

function from a sample with a fixed distribution, usually a Gaussian, Laplace or Cauchy

distribution.

Variational Autoencoder (VAE) was introduced in 2014 (KINGMA; WELLING, 2013).



67

The idea is to use neural networks to learn the parameters θ and ϕ from the prior pθ(x|z)
and the variational posterior qϕ(z|x), using as principle the variational inference procedure

and the reparametrization trick.

The components of the VAE are (i) the prior p(z), which is follows the distribution

chose for the reparametrization trick; (ii) the encoder, which is responsible to compute

the variational posterior qϕ(z|x); (iii) and the decoder, which is related to the likelihood

pθ(x|z). Different types of neural networks (e.g., CNNs and RNNs) can be used as encoder

and decoder in the VAE framework.
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