
GEOVANE FEDRECHESKI

Protecting interactions in IoT Swarms: a
self-sovereign and attribute-based approach

Corrected Version

São Paulo
2022

GEOVANE FEDRECHESKI

Protecting interactions in IoT Swarms: a
self-sovereign and attribute-based approach

Corrected Version

Doctoral dissertation presented to the

Escola Politécnica da Universidade de São

Paulo to obtain the title of Doctor in

Sciences.

São Paulo
2022

GEOVANE FEDRECHESKI

Protecting interactions in IoT Swarms: a
self-sovereign and attribute-based approach

Corrected Version

Doctoral dissertation presented to the

Escola Politécnica da Universidade de São

Paulo to obtain the title of Doctor in

Sciences.

Program:

Electronic Systems Engineering

Advisor:

Marcelo K. Zuffo

Co-advisor:

Laisa C. C. De Biase

São Paulo
2022

 Autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio
convencional ou eletrônico, para fins de estudo e pesquisa, desde que citada a fonte.

Este exemplar foi revisado e corrigido em relação à versão original, sob
responsabilidade única do autor e com a anuência de seu orientador.

São Paulo, ______ de ____________________ de __________

Assinatura do autor: ________________________

Assinatura do orientador: ________________________

Catalogação-na-publicação

Fedrecheski, Geovane
 Protecting interactions in IoT Swarms: a self-sovereign and attribute
based approach / G. Fedrecheski -- versão corr. -- São Paulo, 2022.
 108 p.

 Tese (Doutorado) - Escola Politécnica da Universidade de São Paulo.
Departamento de Engenharia de Sistemas Eletrônicos.

 1.Internet das Coisas 2.Computação em Enxames 3.Controle de Acesso
Baseado em Atributos 4.Identidade Auto-Soberana 5.Segurança
Descentralizada I.Universidade de São Paulo. Escola Politécnica.
Departamento de Engenharia de Sistemas Eletrônicos II.t.

Aos meus pais.

ACKNOWLEDGMENTS

Many are the persons who deserve my gratitude for helping me during the development
of this work.

I would like to begin by acknowledging my parents, Elcio Fedrecheski and Lucia J.
Fedrecheski. Even though my career choice implied being physically distant and working
on things they were hardly familiar with, they always encouraged me to aim high and
work towards my goals. For being there, and for being examples of work ethic to follow,
I thank my parents.

My acknowledgements surely cannot miss my advisors, Marcelo K. Zuffo and Laisa
C. C. De Biase. I still remember my first talk with prof. Marcelo, and his advice to seek
the path of highest return, as work is work anyway. Similarly, it is impossible to forget
the countless times when prof. Laisa sat by my side to help me develop the manuscript
of my very first research article. For providing a thought-provoking environment and for
teaching me resilience, I thank my advisors.

My gratitude is also extended to my advisor during the period I was abroad, professor
Jan Rabaey, who received me at his lab (BWRC) and was available to discuss new ideas
during a turning point of my research.

I would also like to thank all family members, friends, and colleagues who supported
me during the development of this dissertation: Alexandre Yip, Arthur A. Miyazaki,
Augusto R. Machado, Fábio do Vale, Jorge Jucoski, Leandro Bueno, Lucas R. Mata,
Pablo C. C. Ccori, Rafael Costa, Samira Afzal and William Takeshi.

Finally, my acknowledgements to the Swarm Team and all who I have interacted with
at Universidade de São Paulo and UC Berkeley.

I also thank LSI-TEC for supporting funding for the development of this research,
and CAPES for providing the funding for my visit scholarship at Berkeley.

“O futuro está ali, é só ir pegar.”

ABSTRACT

FEDRECHESKI, G. Protecting interactions in IoT Swarms: a self-sovereign and attribute-
based approach. 101p. Dissertation (Doctor in Sciences) - Escola Politécnica. Universi-
dade de São Paulo. São Paulo. 2022.

This dissertation presents contributions to enable autonomous agents in the Internet
of Things (IoT) to securely interact with minimal support from third parties. While ex-
isting works present security solutions for IoT scenarios, they either use centralized archi-
tectures or present only partial solutions for decentralized identification, authentication,
confidentiality, and authorization. To solve this gap, we integrate techniques of decentral-
ized identity to authenticate IoT agents, improve a transport-independent protocol for
secure communications, and develop a new attribute-based access control model that is
suitable for embedded devices. We further consolidate these techniques into a reference
architecture and implementation that is integrated within the SwarmOS, a framework for
creation of decentralized IoT systems.

Results show that the framework achieves the goal of enabling fully self-protecting
agents, while being able to run on embedded devices. Specifically, we tested the whole
framework running on a single board computer, demonstrated that the attribute-based
access control model can run on a 32MHz microprocessor, and showed that devices can
use self-sovereign primitives even on highly constrained networks.

Thus, the key contribution of this dissertation is demonstrating that IoT devices can
provide controlled resource sharing while also being fully self-protecting, thus satisfy-
ing two crucial requirements (collaboration and autonomy) for the establishment of IoT
Swarms in the age of privacy and cybersecurity risks.

Keywords – Internet of Things, Swarm Computing, Attribute-Based Access Control,
Self-Sovereign Identity, Decentralized Security.

RESUMO

FEDRECHESKI, G. Protegendo interações em IoT Swarms: uma abordagem auto-soberana
e baseada em atributos. 101p. Tese (Doutor em Ciências) - Escola Politécnica. Universi-
dade de São Paulo. São Paulo. 2022.

Esta tese apresenta contribuições para permitir que agentes autônomos na Internet das
Coisas (IoT) interajam de forma segura com o mı́nimo de suporte de terceiros. Embora os
trabalhos existentes apresentem soluções de segurança para cenários de IoT, eles usam ar-
quiteturas centralizadas ou apresentam apenas soluções parciais para identificação, auten-
ticação, confidencialidade e autorização descentralizadas. Para resolver essa lacuna, inte-
gramos técnicas de identidade descentralizada para autenticar agentes de IoT, otimizamos
um protocolo para comunicações seguras independente da camada de transporte e desen-
volvemos um novo modelo de controle de acesso baseado em atributos adequado para
dispositivos embarcados. Consolidamos essas técnicas em uma arquitetura de referência
e implementação integrada ao SwarmOS, um framework para criação de sistemas IoT
descentralizados.

Os resultados mostram que o framework atinge o objetivo de habilitar agentes to-
talmente auto-soberanos, ao mesmo tempo em que pode ser executado em dispositivos
embarcados. Especificamente, testamos todo o framework rodando em um computador
de placa única, demonstramos que o modelo de controle de acesso baseado em atributos
pode rodar em um microprocessador de 32MHz e mostramos que os dispositivos podem
usar primitivas auto-soberanas mesmo em redes altamente restritas.

Assim, a principal contribuição desta tese é demonstrar que os dispositivos IoT podem
fornecer compartilhamento de recursos de forma controlada ao mesmo tempo em que
são totalmente auto-soberanos, satisfazendo assim dois requisitos cruciais (colaboração e
autonomia) para o estabelecimento de enxames IoT na era dos riscos de privacidade e da
segurança cibernética.

Palavras-chave – Internet das Coisas, Computação em Enxames, Controle de Acesso
Baseado em Atributos, Identidade Auto-Soberana, Segurança Descentralizada.

LIST OF FIGURES

1 The ABAC approach in this work vs. existing works. 30

2 The proposed framework is divided in four layers. 34

3 ABAC architecture proposed by NIST. 36

4 ABAC Architecture adapted and incorporated into the Swarm. 37

5 An overview of the DIoTComm protocol. 47

6 DID resolution and usage along with DIoTComm. 50

7 Example of Swarm DID Document serialized in JSON and CBOR-DI. . . . 53

8 Agent description data model. 55

9 Setup of a secure spontaneous interaction between self-sovereign Swarm

agents. 59

10 Secure interaction execution. 60

11 Steps of attribute-based authorization flow. 61

12 Example capability token. 62

13 The SwarmOS framework organization. 65

14 Contributions to the SwarmOS framework, highlighted in blue. 66

15 Example hierarchy for the “type” attribute. 73

16 Size and overhead for DID Documents sent within a signed message (step

2 of Figure 6). 84

17 Size and overhead for regular messages sent within a signed and encrypted

message (step 3 of Figure 6). 84

18 The agent “Bob” interacts with a “Lamp” agent. 88

19 The use case devices and agents. 88

20 Results. 91

LIST OF TABLES

1 Related work. 20

2 Comparison of standardized data models for digital identity. 25

3 Comparison of data models for key distribution. 27

4 Comparison of data models for attribute distribution. 28

5 The SmartABAC model expressed in first-order logic. 41

6 Software repositories created or modified as a result of this work. 64

7 Use case actors and associated attributes. 72

8 SmartABAC policies that satisfy the given use case. 72

9 Comparison of ABAC models for IoT environments. 74

10 Comparison of open-source ABAC implementations. 77

11 Description of the platforms used during evaluation of SmartABAC. 79

12 Performance of SmartABAC on different platforms. 79

13 Mitigations of DIoTComm against the STRIDE threat model. 81

14 Comparison of DID Swarm with existing DID Methods. 83

15 DID Document (de)serialization mean time (ms). 85

16 Runtime to (un)protect 100-byte payload (ms). 86

17 Packet sizes in the “Bob toggles Lamp” use case. 90

18 Execution time for main cryptographic operations used by the proposed

framework, considering 240 MHz IoT CPU. All values based on Lachner &

Dustdar (2019), except the last line which was measured in this work. . . . 93

19 Estimated time (ms) to execute each step on a constrained IoT node. . . . 93

CONTENTS

1 Introduction 13

1.1 Problem Definition . 13

1.2 Approach . 15

1.3 Hypothesis . 15

1.4 Contributions . 16

1.5 Document structure . 17

2 Literature Review 18

2.1 Security in IoT environments . 18

2.2 Data models for digital identity . 23

2.2.1 Accounts . 23

2.2.2 Models based on public key cryptography 24

2.2.2.1 High-level comparison . 25

2.2.2.2 Public key distribution . 26

2.2.2.3 Attribute distribution . 27

2.3 Models for attribute-based access control 29

2.3.1 ABAC Models . 29

2.3.2 ABAC in IoT . 31

3 A decentralized framework to protect Swarm agents 33

3.1 Framework Blocks . 33

3.1.1 Authorization . 35

3.1.1.1 ABAC Architecture . 36

3.1.1.2 ABAC Model . 38

3.1.2 Authentication . 43

3.1.3 Confidentiality . 46

3.1.4 Identification . 48

3.1.4.1 The Swarm DID Method 50

3.1.4.2 Optimized DDo Serialization with CBOR-DI 52

3.2 Operation Flow . 54

3.2.1 Self-sovereign IoT agents . 54

3.2.2 Controlling interactions using attributes 57

3.2.3 Confidentiality and pseudonymous Authentication 60

3.2.4 Attribute-based authorization . 60

3.2.5 Capability token generation . 61

3.2.6 Interaction Execution . 62

3.3 Concluding remarks . 63

4 Framework implementation 64

4.1 The SwarmOS Framework . 65

4.2 Authorization . 67

4.3 Authentication . 67

4.4 Confidentiality . 68

4.5 Identification . 68

4.6 Example: creating a camera agent using the

SwarmLib . 69

4.7 Concluding remarks . 70

5 Evaluation and Results 71

5.1 Evaluation of the SmartABAC model . 71

5.1.1 Smart Home Use Case . 71

5.1.2 Comparison with existing models 73

5.1.2.1 Model Features . 73

5.1.2.2 Expressiveness . 74

5.1.2.3 Policies From Use Case 75

5.1.2.4 Implementation . 76

5.1.2.5 Architecture . 76

5.1.3 Performance comparison with open-source models 76

5.1.4 Performance of SmartABAC on different platforms 78

5.1.5 Discussion . 79

5.2 Evaluation of the Swarm DID Method and DIoTComm 80

5.2.1 Security Analysis . 81

5.2.2 DID and DDo sizes . 83

5.2.3 Secure Envelope Overhead . 83

5.2.4 Runtime . 84

5.2.5 Discussion . 86

5.3 Evaluation of a complete interaction . 87

5.3.1 Defining and Preparing a Use Case 88

5.3.2 Methods . 89

5.3.3 Results . 90

5.4 Considerations about constrained devices 92

5.5 Concluding remarks . 94

6 Conclusion 96

References 99

Appendix A – Additional Publications 107

13

1 INTRODUCTION

As the Internet of Things becomes pervasive, the increasing number of computational

agents that operate independently of human assistance opens way to two possible scenar-

ios. On one side, a large cohort of devices that are always connected to (and dependent

on) management servers, collecting data and receiving commands under centralized ar-

chitectures. On the other, a distributed collection of heterogeneous things that interact

spontaneously, sharing data and services on demand, and self-organizing to better serve

their human controllers. In this dissertation, we adopt the latter as a likely future scenario,

and investigate what are the necessary means to implement security in such a dynamic

environment.

1.1 Problem Definition

An important but easy to overlook difference between the Internet of Things and

the Internet is the set of requirements to implement security. This is natural since the

concepts have an overlap: both consider the existence of a global communication system,

which must be protected from threats.

On the other hand, the most obvious difference between the IoT and the Internet is

that the former includes computer-equipped physical objects that are capable of sensing,

actuating, and processing information. These objects, or things, often feature resource

constraints and network limitations, thus imposing certain requirements on the design of

security mechanisms.

Furthermore, internet security mechanisms were conceived considering one user per

computer interacting with other users, a model we call the 1:1 model, where security

procedures can be fully configured and controlled by users and third parties (system

administrators, for example). The advent of IoT brought as a legacy these security mech-

anisms configured by humans, however, unlike few personal computers on the internet,

in the case of IoT users and system administrators face the problem of configuring tens,

14

hundreds or even thousands of devices. This context presents several challenges related

to the possibility of autonomous or semi-autonomous security configuration mechanisms.

The IETF Internet Security Glossary (SHIREY, 2007) defines security as “a system

condition that results from the establishment and maintenance of measures to protect

the system”. While Internet protection measures can be mainly derived from security

principles, such as bit-level protection (DAEMEN; RIJMEN, 2001), IoT security mech-

anisms must also consider the trade-offs imposed by the limitations of its devices and

networks. For example, some IoT networking protocols have severely limited bandwidth,

which imposes a lean design on the security layer. Another difference is that the Internet

is composed of IP-based networks, while the IoT tends to use heterogeneous networks,

i.e., a mix of IP and non-IP environments. Implementing end-to-end security across these

heterogeneous IoT networks is a considerable challenge.

Even if the challenges of device capabilities and heterogeneous networks were removed,

commonly used measures to protect the Internet are not enough to protect more advanced

IoT approaches, such the Swarm (LEE et al., 2014). Swarm is a distributed collection of

cooperating IoT devices (COSTA et al., 2015), which act together to achieve a common

goal. In its fullest form, a Swarm is expected to feature the emergence of a collective

intelligence. In order to enable the creation of IoT Swarms, Costa et al. (2015) proposed

an architecture for the SwarmOS control plane. It proposes that each IoT device runs

one or more agents, where one of these agents, called the Broker, has the special role

of providing common resources to regular agents, such as registration, discovery, and

contracting (COSTA et al., 2015; CALCINA-CCORI et al., 2018; BIASE et al., 2018b).

For example, a smartphone-based agent might use its local Broker to discover a nearby

lamp, and then send the lamp a message to turn it on.

Current solutions to protect the Internet and the IoT do not suffice to protect the

Swarm. For example, Transport Layer Security (TLS) (RESCORLA, 2018), and its vari-

ant DTLS (RESCORLA; MODADUGU, 2012), used to protect packets at the transport

layer, rely on a centralized Public Key Infrastructure (PKI) (FEDRECHESKI et al.,

2020), which is incompatible with the decentralization of swarm-based systems. In ad-

dition, typical IoT systems are managed by cloud-based frameworks that orchestrates

fleets, manages identities, and specifies access control policies (KOVATSCH et al., 2022;

OCF. . . , 2022; CHEHAB; MOURAD, 2020; GABILLON; GALLIER; BRUNO, 2020).

In this context, this work investigates and proposes solutions to the problem of how

to enable secure interactions in IoT Swarms. That is, considering that the Swarm

15

is a distributed collection of cooperative IoT agents (COSTA et al., 2015), our challenge

is to investigate a security framework that (1) protects Swarms according to known threat

models and (2) does not violate properties of the Swarm architecture.

1.2 Approach

Since Swarms can neither be centrally managed, nor can rely on centralized roots

of trust, a significant amount of common IoT and Internet security infrastructure must

be rethought. This approach is not isolated, though, as evidenced by the movements

to (re-)decentralize the web (BARABAS; NARULA; ZUCKERMAN, 2017) and present

decentralized solutions for identity management.

Two emerging approaches that could be employed to solve this problem are Self-

sovereign Identity (SSI) and Attribute-Based Access Control (ABAC). The SSI approach

proposes that entities should be in full control of their digital identities (ALLEN, 2016),

which improves ownership, privacy, and fosters decentralization (FEDRECHESKI et al.,

2020). Emerging standards such as Decentralized Identifiers (DIDs) and Verifiable Cre-

dentials (VCs) (SPORNY et al., 2019a; SPORNY et al., 2019b) are being proposed to

enable creation of self-sovereign digital entities. Although SSI still faces challenges in the

IoT space, such as communication and processing overhead, its alignment with the Swarm

decentralization makes it an attractive option to securely identify Swarm agents.

Conversely, the Attribute-Based Access Control approach can enable flexible autho-

rization in the Swarm, which is needed to enable cooperation between Swarm agents.

ABAC is a system in which attributes of interacting agents (including their cyber-physical

context) are used to compute an access decision (HU et al., 2013). The use of generic

attributes in ABAC provide flexibility at the cost of complexity for policy evaluation.

Thus, the main challenge to adopt ABAC in IoT Swarms consists in leveraging its

flexibility while keeping compatibility with constrained devices. In fact, existing solu-

tions employing ABAC consider its use only in resource-abundant servers and gateways

(CHEHAB; MOURAD, 2020; GABILLON; GALLIER; BRUNO, 2020; OUADDAH et

al., 2017; RAVIDAS et al., 2019).

1.3 Hypothesis

The hypothesis of this work is:

16

Interactions among very large fleets of computer devices, even the constrained

ones, can be secured without directly assigned interactions and without cen-

tralized management.

1.4 Contributions

The main contribution in this dissertation is the research, development, and evalu-

ation of a framework that enables Swarm agents to protect their own interactions. The

framework enables confidential, authenticated, and authorized interactions, without vi-

olating key principles of the Swarm, such as autonomy, decentralization, heterogeneity,

and scalability.

Additional contributions include:

• An attribute-based access control architecture incorporated into the Swarm.

• An attribute-based access control model that supports expressive and lightweight

policies, i.e., can be evaluated on constrained devices.

• A lightweight method for self-sovereign identification of IoT agents, which satisfies

the requirements of Swarms.

• A network-agnostic protocol for end-to-end secure communications that can be au-

thenticated by decentralized identifiers.

Work towards this dissertation has also directly generated two journal articles, and two

conference papers, as listed below:

• FEDRECHESKI, G. et al. Attribute-based access control for the swarm with dis-

tributed policy management. IEEE Transactions on Consumer Electronics, IEEE,

v. 65, n. 1, p. 90–98, 2019.

• FEDRECHESKI, G. et al. Self-sovereign identity for iot environments: a perspective.

In: IEEE. 2020 Global Internet of Things Summit (GIoTS). [S.l.], 2020. p. 1–6.

• FEDRECHESKI, G. et al. SmartABAC: enabling constrained iot devices to make

complex policy-based access control decisions. IEEE Internet of Things Journal,

IEEE, 2021.

17

• FEDRECHESKI, G. et al. A low-overhead approach for self-sovereign identity in

iot. In: IEEE. 2022 Global Internet of Things Summit (GIoTS). [S.l.], 2022. p. (in

press).

1.5 Document structure

The text of this doctoral dissertation is organized into six chapters. Chapter 1, the

current one, presented the problem to be solved, as well as the hypothesis and the con-

tributions that were achieved. Next, Chapter 2 presents a literature review regarding

protection of IoT device interactions, which is further divided into data models for digital

identity and models for attribute-based access control. After having identified the gaps

in the literature, Chapter 3 presents our proposed framework to address the problem

of secure interactions in IoT Swarms. The framework is presented using a layered and

top-down approach, starting with authorization, going through authentication, confiden-

tiality, and identity; at the end, a combined operational flow is described. Chapter 4

presents relevant details of how the proposed framework was implemented, and Chapter 5

evaluates the framework and discuss its results. Again, the evaluation starts top-down by

layers, then ends with a overall evaluation. Finally, Chapter 5 concludes the manuscript,

presenting the key findings of this work as well as recommendations for continuing the

research.

18

2 LITERATURE REVIEW

Several works have addressed the issue of security in IoT environments. The main gap

lies in attempting to create completely self-sovereign IoT devices capable of interacting in

an unsupervised manner. The following paragraphs provide an overview of related works,

some of which partially fulfill this gap.

Note: Parts of the review presented in this section have been extracted from previous

works. Specifically, Section 2.2 is derived from Fedrecheski et al. (2020), and Section

2.3 uses tables and text from Fedrecheski et al. (2021).

2.1 Security in IoT environments

This section presents and discusses the literature for IoT security from the point of

view of trying to provide fully autonomous secure devices. Table 1 consolidates how

related works compare to the solution proposed in this dissertation.

A number of standards have proposed security solutions for interactions of IoT devices.

The Web of Things (KOVATSCH et al., 2022) proposes specifications and recommenda-

tions for interoperable and secure IoT platforms compatible with Web standards. To

uniquely identify things, WoT relies on Universal Resource Names (URNs). For authenti-

cation of things interactions, WoT recommends using one or a combination of symmetric

keys, raw public keys, or certificates. For encryption, it recommends different schemes

based on the target layer, such as DTLS for transport layer and COSE for application

layer. In cases where more complex authorization is required, it recommends using OAuth

2.0, which uses the CapBAC approach, where an authorization server issues capability

tokens to things. The WoT does not cover the specification of authorization policies

nor the use of attributes for authentication and authorization. Furthermore, concepts of

decentralized identity are also not explored in the WoT architecture.

OneM2M (oneM2M. . . , 2022) proposes a set of specifications for development of IoT

19

and M2M solutions. It uses a custom identifier format named Application Entity Iden-

tifier (AE-ID) which may be locally or globally unique. Authentication in OneM2M is

provided either via raw symmetric or public keys, or via certificates. For authorization, it

defines a format of access control policies that must be enforced during each request. In

addition, it supports generation of an access token that can be serialized in JWT notation.

Communication security is provided by either TLS or DTLS. OneM2M differs from our

work in that it does not consider decentralized identity mechanisms, nor attribute-based

authentication and authorization. Finally, transport-independent secure communications,

an important requirement in heterogeneous Swarms, is not considered as well.

The Open Connectivity Foundation (OCF. . . , 2022) proposes a set of specifications

with the aim of enabling interoperability in the Internet of Things. To identify devices,

it uses UUIDs. To authenticate interactions, either raw keys or certificates are used.

Finally, authorization is provided via either identity or role-based policies that can be

enforced by either the device or a proxy. One difference from our work to OCF is that

their use of UUIDs does not imply on an implicit link to public keys and endpoints (as

is the case with DIDs). Moreover, our proposal uses attribute-based policies and creden-

tials, which enhances flexibility for spontaneous environments. Finally, although OCF

considers RESTful communications, it does not consider transport-independent security

mechanisms.

Some works focused on identity management, for example, by proposing a smart city

system that leverages two blockchains to manage identities and access policies, respectively

(ASAMOAH et al., 2020)*. The identity blockchain is public and stores hashes of device

identifiers, while the authorization blockchain is private and stores and evaluates access

policies. The public one resembles our proposal in which we use a blockchain to store

identifiers and related metadata, with the difference that in our work the blockchain use

is optional. The approach to access control differs from our work since we perform the

access decisions locally. This work also does not mention the end-to-end protection of IoT

interactions.

Others also used a secure hardware module to generate an identifier locally on the

IoT device (SU et al., 2020). Associated metadata and credentials are then recorded,

respectively, on a blockchain and on IPFS, a distributed file system. The system is

evaluated through an electric charging station use case, in which a vehicle presents a

signed credential to the station to authenticate the charging transaction. This proposal

is not ideal for protecting Swarms since it does not provide fine-grained authorization

nor message security. Moreover, having all device credentials always public may lead to

20

Table 1: Related work.

Work / Features Identification Credentials Authorization Confidentiality Integrity Authentication
Non-
Repudiation

This work DID VC
ABAC +
CapBAC

DIoTComm DIoTComm DIoTComm DIoTComm

Kovatsch et al. (2022) URN
RPK,
Certificate

RBAC, CapBAC DTLS DTLS DTLS

oneM2M. . . (2022) AE-ID
RPK,
Certificate

IBAC,
RBAC, CapBAC

DTLS DTLS DTLS

OCF. . . (2022)
RPK,
Certificate

DTLS DTLS DTLS

Seitz et al. (2021) Flexible PoP Token CapBAC
Fotiou et al. (2019) DID DID IBAC
Lagutin et al. (2019) DID VC * TLS TLS TLS
Antonino et al. (2019) DID VC IBAC
Siris et al. (2020) DID VC CapBAC TLS TLS TLS
Su et al. (2020) DID VC
Asamoah et al. (2020) Derived Vector IBAC
Novak, Tang & Li (2018) Audio F. * IBAC Audio F. Audio F.
Ghosh et al. (2019) * Trust Level IBAC, CapBAC

Sharma et al. (2021) *
RPK,
Trust Level

IBAC,
Trust-based

Trust-based Trust-based Trust-based

Din et al. (2021)
Certificates,
Trust Level

Trust-based

Pérez et al. (2019) * RPK IBAC
EDHOC +
OSCORE

EDHOC +
OSCORE

EDHOC +
OSCORE

Grande & Beltrán (2020)
Soft
Fingerprint

Token CapBAC DTLS DTLS DTLS

Legend: RPK - Raw Public Key; *Unclear.

privacy issues.

Some works also proposed the use of self-sovereign identity concepts, such such as

using ephemeral DIDs for electric vehicle charging (ANTONINO et al., 2019). This

approach creates a new DID for every new interaction, therefore the vehicle mobility

cannot be tracked by the charging stations. Although this approach improves privacy,

it did not address the costs associated with issuing and managing ephemeral DIDs, as

well as how to link these DIDs to credentials. This proposal also does not satisfy the

requirements of secure communications and flexible authorization.

Fotiou et al. (2019) proposed using decentralized identifiers along with permissioned

blockchains to enable opportunistic user access in IoT systems. In their work, guests

entering a network are assigned a DID which is then also inserted in an access control

list on an IoT gateway. They also consider the case where multiple decision points are

used to compute an authorization decision which is then used as input to a pre-defined

consensus algorithm. This work is similar to ours in that it uses DIDs to identify entities

in IoT systems. It differs from ours since DIDs may be generated by third-parties and

authorization is primarily based on unique identifiers (not attributes). In addition, this

work do not provide a layer for secure communications.

Lagutin et al. (2019) consider the case of constrained IoT devices that cannot handle

DIDs or VCs. The authors propose using a DID and VC -aware OAuth server to generate

authorization decisions to highly constrained IoT devices. They illustrate the solution

21

through a printer use case in a university setting, where a guest user gets a token from

the authorization server and uses it to print a document. An implementation based on

Hyperledger Indy is also provided, however no resource usage evaluation is performed.

This work differs from ours in its fundamental assumption, since we seek to develop IoT

agents that can fully handle their own security.

Other works have focused on providing opportunistic, or spontaneous, interactions

between IoT agents. Fernando et al. (2019) explored the benefits and challenges of op-

portunistic selection and use of fog services in IoT contexts. Among the benefits of this

approach, are the support for scalable real-time interactions as well as optimized geograph-

ical resource distribution. On the other hand, some challenges hinder the deployment of

such flexible fogs, including the lack of more dynamic and scalable simulators, the sus-

tainability of business models, and the security and privacy of these systems. Indeed,

establishing trust over spontaneous links consists of a significant challenge that spans

many areas.

Others yet leverage ultrasound to create spontaneous interactions between physically

close devices, such as laptops and displays in the same room (NOVAK; TANG; LI, 2018).

To authenticate devices, it relies on audio fingerprinting, which yielded good results in

the operational phase, albeit it requires preparing a significant training set beforehand.

This approach enables indoor positioning and transmission of very small packets, however

it suffers from scalability and throughput limitations.

Yet another approach for obtaining flexible interactions is to rely on trust scores

based on the history of past interactions. Ghosh et al. (2019) proposed a context-aware

and behavior-based authorization system that takes into account the history of past inter-

actions to compute an access decision for smart homes. While this approach is interesting

to enable flexible authentication and authorization, its proposed mechanisms for behavior

analysis and authorization are performed on a centralized gateway, which is incompatible

with the requirements of IoT Swarms.

Sharma et al. (2021) modeled and simulated Sec-IoT, a privacy-preserving and trust-

aware framework for cloud-assisted data routing between IoT nodes. Privacy is achieved

by encrypting public keys with the aid of a central cloud server, while trust is derived

from multiple direct and indirect sources, such as delivery capability and neighbor trust.

This work differs from ours, firstly, because it focuses on network routing, while we focus

on secure interactions. Moreover, it relies on a central server and does not consider the

issues of decentralized identification and flexible authorization.

22

Din et al. (2021) uses a centralized trust agent to emit trust certificates to IoT nodes.

It considers both direct trust from observed parameters and indirect trust inferred from

other nodes as well as historical data. This work differs from ours in that it relies on a

centralized party and does not comprise identification, secure messaging, and authoriza-

tion.

Grande & Beltrán (2020) proposes an edge-centric authorization mechanism to sup-

port constrained devices that lack cryptographic capabilities. In this system, IoT devices

ask an edge device for an access token, which in turn forwards the requests to a cloud

server. If the request is valid, a token is generated by the server and returned to the device

to be used in future interactions. It differs from our work since it relies on a centralized

server to compute authorization decisions and issue an access token. Also, this work does

not consider the issues of decentralized identity and secure communications.

Another work (SIRIS et al., 2020) presents different models for decentralized autho-

rization based on smart contracts and multiple blockchains. To enhance performance, it

proposes a public blockchain to store payment information and a private blockchain, to

store and execute access control policies. This approach is not suitable for Swarms, which

should enable computation of access decisions by the IoT devices themselves.

Pérez et al. (2019) proposed an end-to-end application-level secure key derivation

scheme based on the EDHOC standard and applied it to OSCORE, a method for pro-

tection of RESTful messages in constrained environments. More specifically, the authors

implemented EDHOC in a constrained device, and included an optimization to simplify

the negotiation of security parameters. This approach is promising to reduce the overhead

of end-to-end secure channels in IoT. Nevertheless, this work does not consider the topics

topics of identity, authorization, and autonomous IoT devices.

Another effort specified Authentication and Authorization for Constrained Environ-

ments using the OAuth 2.0 Framework (ACE-OAuth) (SEITZ et al., 2021). The proposal

consists in leveraging the existing OAuth token-based approach, with Proof-of-Possession

(PoP) tokens, and combining it with more lightweight building blocks, such as CBOR

and CoAP. Similarly to our proposal, in ACE-OAuth a binary token is obtained for use

during resource requests. Still, these approaches differ in three main aspects. First, our

system supports application-level authentication via Verifiable Credentials, which enables

flexible and decentralized attribute-based authentication. Second, we include evaluation

of ABAC policies in the scope of our solution, making it complete with respect to autho-

rization. Third, we propose to execute all operations on devices themselves, instead of

23

relying on an authorization server.

Mahalle, Shinde & Shafi (2020) discusses the use of DIDs and VCs for identity man-

agement in IoT environments. The authors highlight the expected benefits of DIDs, such

as being cryptographically verifiable, and raise questions regarding potential privacy is-

sues due to reuse of identifiers. This study argues that DIDs and private keys should be

controlled by third parties, such as device owners. While we agree that mechanisms for

ownership and guardianship of IoT devices are necessary, our position is that it can be

done via VCs, thus without exposing sensitive information such as private keys.

In a previous work (FEDRECHESKI et al., 2020) we discussed the benefits and chal-

lenges of self-sovereign identity for IoT environments. We have identified privacy, own-

ership, and decentralization as the most attractive features of this approach. We also

provided a detailed comparison with existing models for identity, such as X.509 certifi-

cates and PGP Keys. Still, we identified many challenges for adoption of SSI in IoT

environments, including the heterogeneity of devices and networks and the lack of open

source tools to support development of SSI solutions in the IoT realm.

As highlighted in the previous paragraphs, there are many gaps to the development

of self-sovereign agents capable of secure and spontaneous interactions in IoT Swarms. In

the following sections, we present basic definitions and specific challenges to solve these

gaps, and then proceed to present our system design.

2.2 Data models for digital identity

This section provides analysis and comparisons of existing data models for digital

identity. We start by discussing the limitations of password-based accounts, and then

proceed to compare data models based on public key cryptography. The main conclusion

is that recent standards for SSI improve privacy and decentralize identification of users

and IoT devices.

2.2.1 Accounts

The most basic way to identify subjects in computer systems is through accounts.

Accounts are digital records that include a user name and password, and they identify a

user. Accounts are typically stored on a server that is controlled by the service provider.

Many IoT vendors require that device owners have an account with the cloud in order to

configure their devices.

24

Account-based authentication is one of the most primitive solutions for digital iden-

tities, and although it has been used for decades in the computing industry, it has a

number of drawbacks. Among these are the need for manual configuration, the lack of

privacy, and the risks associated with using passwords. Since the IoT is expected to reach

thousands of devices per person, it is not feasible to manually configure accounts for each

one. Additionally, storing plaintext PII in a third-party system raises privacy concerns.

With respect to the use of passwords, there are two main problems: password reuse and

difficulty enforcing strong passwords. The most common solution is to provide recom-

mendations on how to choose strong passwords, but this relies on people following the

recommendations, which can be difficult to enforce. (TANESKI; HERIČKO; BRUMEN,

2019).

2.2.2 Models based on public key cryptography

Pretty Good Privacy (PGP) (CALLAS et al., 2007) is a system that allows individuals

to prove that a public key is associated with a particular identifier, which typically includes

a real name and email address. This binding, as well as any additional attributes or

signatures, is stored in a document called a PGP key. PGP keys can be signed by other

individuals in the PGP system in order to endorse that the key holder is who they claim

to be, providing a level of trust between peers.

The X.509 certificate standard defines a format for public key certificates (PKC)

that binds public keys to qualified names (COOPER et al., 2008). Although technically

nothing prevents peer-to-peer signature of X.509 certificates, the vast majority of its

usage is under centralized architectures, in which a trusted authority signs the certificate

to make it trustworthy. In certain cases, it is useful to have a separate document that,

instead of having a public key, contains only a name associated with signed attributes.

To meet this demand, X.509 proposed a new standard called Attribute Certificate (AC),

which contains no public key, but links to a PKC through its subject field (FARRELL;

HOUSLEY; TURNER, 2010).

Finally, Self-Sovereign Identity is a novel approach that uses Decentralized Identifiers

(SPORNY et al., 2019a) and Verifiable Credentials (SPORNY et al., 2019b) to prove

possession of identifiers and attributes.

25

2.2.2.1 High-level comparison

The following paragraphs compares models used by the PGP, X.509, and SSI stan-

dards, according to Table 2.

Table 2: Comparison of standardized data models for digital identity.

PGP X.509 Self-Sovereign Identity

Item PGP Key
Public Key Certificate

(PKC)
Attribute Certificate

(AC)
DID Document

(DDo)
Verifiable Credential

(VC)

Goal

Prove control of public
keys and identifier
(plus optional attributes)
Publish public keys

Prove control of public
keys and identifier
(plus optional attributes)
Publish public keys

Prove possession of
attributes

Prove control of identifier
Publish public keys and
service endpoints

Prove possession of
attributes

Identifier Name and Email Qualified Name Same as PKC Method-specific DID Same as DDo
Uniqueness
of identifier

Global
authority (DNS)

Global authority (CA) Same as PKC
Ledger consensus /
Random number gen.

Same as DDo

Public Key(s) 1 primary, N subkeys 1 n/a (points to PKC) N n/a (points to DDo)
Attribute(s) Attributes field Extensions field Attributes field - subjectCredential field

Endorsement Signature of many peers Signature of a CA Signature of a CA
Self-signed (optional)
Indirect through VC

Signature of an Issuer

Service
endpoints

- - n/a Yes n/a

Semantic
schemas

- - - Yes Yes

Source: Fedrecheski et al. (2020).

Goal The main goal of PGP Keys and PKCs is to publish and prove control of public

keys that are tied to identifiers. Also, in these approaches, attributes can be provided

either in the same document as the public keys (PGP Key and PKC), or, in the case of

X.509, in a separate document (AC). On the other hand, documents in the SSI paradigm

have decoupled goals: DDos are be used to prove control of an identifier and to provide

a means for establishing a secure communication; and VCs are used to prove possession

of attributes.

Identifier SSI uses decentralized identifiers that can be generated automatically, for

example by using strong random number generators. This enables global uniqueness and

enhances privacy, when compared to PGP and X.509, which use real names and email

addresses, respectively. Pseudonymous identifiers are also more suited for IoT, since

devices do not have names or email addresses.

Public Key(s) PKC keys can only be used for one public key, while PGP and DDos

keys can be used for multiple keys. PGP uses a primary key that is linked to an identifier,

while DDos allows different types of public keys to be used.

Attribute(s) In self-sovereign identity, a DDo does not support attributes to preserve

pseudonymity. Instead, all PII is handled only by VCs, which are private by default.

26

PGP Keys and X.509 certificates support arbitrary attributes, either via PKC extensions

or dedicated ACs.

Endorsement(s) PGP Keys can be signed by one or more peers, but X.509 certificates

and VCs can only be signed by a single issuer. DDos are not signed by external entities,

and may be self-signed. When a DDo is written to a ledger, however, the transaction will

be signed, which can be used to attest the validity of the DDo. Another way of proving

endorsement over a DID is to check the signature of a VC associated with that DID. If the

VC is signed by a trusted issuer, the DID can be trusted. Furthermore, with respect to

who can sign the endorsements, technically it can be anyone, but there are philosophical

differences. X.509, for example, was devised to work within a centralized architecture,

where only trusted authorities can sign certificates. On the other end of the spectrum,

PGP expects peer-to-peer signatures, which ultimately creates a Web of Trust. Finally,

VCs does not make strong assumptions on the network structure, although decentralized

approaches may be favorable.

Service endpoints A key feature of DDos is that it allows for secure interactions

between different devices and systems, by providing a way to easily reach the owner of DID

through web-based endpoints. This makes it ideal for use in web and IoT applications.

Semantic schemas only SSI-based data models allow extensibility through semantic

annotations over JSON documents. The main reason for this is that these technologies

only became popular after X.509 and PGP were developed.

2.2.2.2 Public key distribution

In the following, we compare three approaches for key distribution, as shown in Table

3: Raw Public Key (RPK), Public Key Certificates, and DID Document.

Raw public key In this approach, an entity would share their public key as a raw

array of bytes. This is decentralized and does not disclose any personal information,

however it does not allow associated metadata.

Public Key Certificate X.509 PKCs are not ideal for privacy purposes because they

typically include PII in the main identifier and other attributes. Other drawbacks include

27

Table 3: Comparison of data models for key distribution.

Feature RPK PKC DDo
Associates key material to metadata X X
Privacy: no PII disclosed X X
Key rotation does not requires re-signing n/a X

Serialization formats
Binary
Base64

DER
PEM

JSON-LD
JWT

Semantic schemas X
Decentralized: user generates the artifact X X
Decentralized: user carries the artifact X X X
Service endpoint X

Source: Fedrecheski et al. (2020).

the imposition of specialized serialization formats, tight coupling of keys and data, and a

centralized architecture.

DID Document The main advantage of DDos is that they allow public keys to be

associated with pseudonymous metadata, while also allowing key rotation without having

to re-sign any associated metadata. This is possible because all signed metadata actually

only exists in associated VCs. DDos also support JSON-based serialization formats, which

are available in most programming languages and platforms, and can benefit from publicly

available semantic schemas. As each user auto-generates their own DIDs and DDos, the

management of the identifier is decentralized.

2.2.2.3 Attribute distribution

Four out of the five previously described formats can be used to prove control over

attributes: PGP Keys, Public Key Certificates, Attribute Certificates, and Verifiable

Credentials. Since PGP Keys are less widely used, we only compare the latter, as shown

in Table 4.

Public Key Certificates The X.509 certificate standard defines a format for public

key certificates (PKC) that can be used to bind public keys to qualified names (COOPER

et al., 2008). PKCs are commonly used in the Internet to authenticate domain names

and protect communications. Attributes can be embedded in PKCs through the use of an

extension field. However, this approach has the drawback of requiring the whole certificate

to be re-signed whenever a key is rotated or selective attribute disclosure is necessary.

28

Table 4: Comparison of data models for attribute distribution.

Feature PKC AC VC
Signed attributes about a subject X X X
Key rotation does not requires re-signing X X
Identifier differs from key material X X X
Attributes decoupled from key material X X
Selective disclosure X
Zero-knowledge proofs X
Delegation X
Revocation X X X

Serialization formats
DER
PEM

DER
PEM

JSON-LD
JWT

Semantic schemas X
Decentralized: user carries the artifact X X X
Decentralized: Verifier decoupled from Issuer X

Source: Fedrecheski et al. (2020).

Attribute Certificates The X.500 working group has proposed a new standard

called Attribute Certificate (AC) to meet the need for signing attributes instead of public

keys. ACs differ from PKCs in that they contain a name (that references a PKC) and

a list of attributes, but no public key, which simplifies key rotation (FARRELL; HOUS-

LEY; TURNER, 2010). However, ACs are not compatible with decentralized verification,

semantic attributes, and selective attribute disclosure.

Verifiable Credentials VCs are a type of digital credential that focus on binding

identifiers to attributes, which enables simpler key rotation when compared to ACs. VCs

are serialized in JSON, which is both human readable and lightweight to parse. VCs

can be further specialized into two formats: JSON Linked Data (JSON-LD)1, a format

to serialize linked data; and JSON Web Token (JWT)2, a widely used format to express

security claims. Finally, as opposed to previous approaches, VCs are specified to be used in

decentralized environments, and considers decoupled verification and compatibility with

Decentralized Identifiers (DIDs).

1https://json-ld.org/
2https://jwt.io/

29

2.3 Models for attribute-based access control

Attribute-Based Access Control (ABAC) 3 is a system in which attributes from users,

objects, and their context, are used to create access policies, thus enhancing flexibility and

scalability, at the cost of increased complexity (HU et al., 2013). It emerged in the last

two decades to solve scalability issues faced by previous systems, such as Access Control

List (ACL) and Role-Based Access Control (RBAC) (HU et al., 2013). ABAC is capable

not only of representing many traditional access control systems but also of offering new

dimensions for policy creation, such as the use of context attributes in the access rules

(HU et al., 2013).

Unlike previous access control systems (SANDHU et al., 1996), however, there is still

no consensus about the best way to represent attributes and policies in ABAC. For exam-

ple, while some models construct policies using logic statements, others use an attribute-

enumeration approach. Also, while some works emerged from the industry (PARDUCCI;

LOCKHART; RISSANEN, 2013), recent academic works are shifted towards formally

specified models (FERRAIOLO; ATLURI; GAVRILA, 2011; SERVOS; OSBORN, 2014;

BISWAS, 2017).

Moreover, current ABAC models are primarily focused on cloud scenarios, leaving a

gap for an ABAC model optimized for constrained IoT devices. Specifically, considering

that device A wants to communicate with device B, most works use an external actor C

to compute access decisions. For example, the actor C could be a server, a gateway, or a

blockchain, as shown in Figure 1. In the following subsections, we discuss existing ABAC

models and related work using ABAC in IoT.

2.3.1 ABAC Models

A widely used ABAC model in the industry is the eXtensible Access Control Markup

Language (XACML) (PARDUCCI; LOCKHART; RISSANEN, 2013), which enables ex-

pressive logic-based policies through a rich data model. XACML has been explored on

different scenarios, such as protecting applications based on the Fiware IoT framework

(ESPOSITO; FICCO; GUPTA, 2021) and those based on publish-subscribe architectures

(KIM; KIM; ALAERJAN, 2021). One drawback of XACML is that it is based on XML,

a format known to be highly verbose, making it inappropriate to use in constrained IoT

3Not to be confused with Attribute-Based Encryption (ABE). While ABAC is used to control access
to resources by intercepting access requests, ABE uses attributes to encrypt plain text data (SAHAI;
WATERS, 2005).

30

(a) existing works

Server,
Gateway, or
Blockchain

Access
Request

 Forward
 Access
 Request

Access
Request

(b) our work

SmartABAC

Other
ABAC
Models

Evaluate complex
attribute-based
policies Evaluate complex

attribute-based
policies

Decision
1

2

3

4

1

2

Source: Fedrecheski et al. (2021).

Figure 1: The ABAC approach in this work vs. existing works.

devices and networks. Moreover, its use of logical language to define policies leads to

monolithic policies that are complex to process and NP-complete to audit (BISWAS;

SANDHU; KRISHNAN, 2016b; BISWAS, 2017).

Hierarchical Group and Attribute-Based Access Control (HGABAC) proposes a for-

mal model for implementing Hierarchical ABAC along with a logic-based acccess policy

(LAP) language (SERVOS; OSBORN, 2014). For attribute inheritance, HGABAC uses

Group Hierarchies, in which users assigned to a child group can inherit the attributes

of their parents. Another work (BHATT; PATWA; SANDHU, 2017) showed that it is

possible to represent Group Hierarchies through attribute containment, a more straight-

forward approach. HGABAC uses typed attributes, which give useful information for

policy building and evaluation. Finally, as it uses the LAP aproach, it faces similar

complexity challenges as XACML to evaluate and audit polices.

In contrast with LAP models, other works have explored enumerated access policies

(EAP). Enumerated models tend to create micro-policies, and are bound to polynomial-

time algorithms (BISWAS; SANDHU; KRISHNAN, 2016a), which are simpler to process.

The main drawback is that current EAP models have limited expressiveness, e.g., due to

lack of context attributes and data types.

Policy Machine (PM) (FERRAIOLO; ATLURI; GAVRILA, 2011) was the first formal

EAP model for access control and it is capable of representing different access control

systems, such as ACL and ABAC. PM introduced the concept of attribute hierarchies

via attribute containment, which is equivalent to partial ordering and allows attributes

“lower” in the hierarchy to be considered contained within the “greater” attributes. On

the other hand, the PM is a single-attribute EAP, and thus it does not allow creating

conjunctive policies without adding more complexity, such as policy classes. The PM also

31

lacks support for numerical and contextual attributes. Even though more recent proposals

used the Policy Machine to develop new models (BISWAS; SANDHU; KRISHNAN, 2016b;

BHATT; PATWA; SANDHU, 2017), the mentioned limitations were not addressed.

A more recent model is EAP -ABACm,n, the first EAP model to use multi-attribute

policies (BISWAS, 2017). While it provides a simple way to represent conjunctive policies,

this model lacks support for hierarchies and data types, which decreases its scalability and

expressiveness.

In the Cyberspace-Oriented Access Control (CoAC) model (LI et al., 2018), enumer-

ated policies are modeled using general subjects, access scenes, and general objects. In

particular, access scenes enable a comprehensive description of the context around inter-

acting agents, including location, time ranges, and network paths. Still, this work does

not consider attribute types and does not evaluate the model in real IoT environments.

Finally, others also defined new ABAC models that were based on EAP, and applied

them to the use case of automatic policy generation (JABAL et al., 2020; KARIMI et al.,

2021). These works, however, did not investigate the expressiveness of the models, nor

considered execution on constrained IoT devices.

2.3.2 ABAC in IoT

Although the flexibility of ABAC makes it a great candidate for the IoT, the ap-

plication of the latest advances in ABAC models to IoT systems, with few exceptions

(BEZAWADA; HAEFNER; RAY, 2018; GABILLON; GALLIER; BRUNO, 2020), has

been largely unexplored. In general, related works either adapt existing solutions initially

designed for different use cases, such as XACML (PARDUCCI; LOCKHART; RISSANEN,

2013), or implement ad-hoc solutions (ZHANG et al., 2021), which hinders interoperabil-

ity. We believe that this gap occurs mainly because a standard for ABAC has not been

achieved yet (SERVOS; OSBORN, 2017); most solutions are ad-hoc, too specific, or adap-

tations of existing systems (PARDUCCI; LOCKHART; RISSANEN, 2013; CHEHAB;

MOURAD, 2020; ALKHRESHEH; ELGAZZAR; HASSANEIN, 2020). In these con-

ditions, we could identify ABAC being used in different domains, such as healthcare

(ALNEFAIE; CHERIF; ALSHEHRI, 2019) and smart home (BEZAWADA; HAEFNER;

RAY, 2018).

Recent works have also explored ABAC with blockchain for IoT, an interesting ap-

proach that enables decentralized trust. In some systems, blockchains are used for identity

32

management (TAN et al., 2021) and decentralized verification of attribute authenticity

(GILANI et al., 2020). This approach is scalable since the ledgers act only as distributed

trust anchors for verification keys (KUPERBERG, 2019; SPORNY et al., 2019b), thus

requiring low storage and computational costs. It does not provide, however, a solution

for local access control decisions, which is the main goal of this paper.

Others have used blockchains to store access control policies and compute access

decisions (DRAMÉ-MAIGNÉ; LAURENT; CASTILLO, 2019; PAL et al., 2019), thus

guaranteeing that policies and decisions are trusted. This approach, however, requires

that devices query the blockchain to ask for an authorization decision. Furthermore, it

may expose private attributes since the blockchains are public. Even though recent works

(ZHANG et al., 2021) tackled the problem of protecting attributes by using a permissioned

blockchain, it still imposes transaction costs, latency, and overhead for access decision

computation that is often measured in seconds (PAL et al., 2019).

Several works have used ABAC to protect applications using the Message Queuing

Telemetry Protocol (MQTT). Among them is MQTT ABAC (GABILLON; GALLIER;

BRUNO, 2020), one of the first models in the literature to propose an ABAC model

specifically tailored for IoT. It is optimized towards expressiveness and can express various

kinds of contextual rules, such as frequency of messages. One limitation of this work is

that its logical language can only protect entities that use the MQTT protocol. A different

approach proposed a protocol-agnostic ABAC model focused on intelligent transportation

system (ITS), and applied it to a scenario that uses MQTT (GUPTA et al., 2021). Named

ITS-ABACG, this model uses group hierarchies to assign attributes to entities, and relies

on a logic language to specify access policies. Others have also used existing ABAC

models for MQTT environments, and focused on enabling decentralized authorization by

using an MQTT broker proxy (COLOMBO; FERRARI; TÜMER, 2021). An important

difference from these approaches to ours is that, due to the broker-oriented architecture

of MQTT, the authorization is computed by an intermediary device.

Another work proposed to execute access control decisions within constrained devices

and combining it with AI-assisted context inference (CHEHAB; MOURAD, 2020). Ac-

knowledging the overhead of XACML, they adopt a more lightweight approach based on

set-based algebra. However, this solution does not work on highly constrained devices,

since it was only demonstrated on a smartphone with a 1.4 GHz CPU and 1 GB of RAM,

which acts as a gateway for more limited IoT devices.

33

3 A DECENTRALIZED FRAMEWORK TO

PROTECT SWARM AGENTS

Resource sharing in open environments is a key component of the Swarm Computing

approach, since it enables cooperation among IoT agents (COSTA et al., 2015; BIASE et

al., 2018b). A pressing challenge in this scenario consists in creating a flexible security

layer, capable of protecting resource sharing in the Swarm, while at the same time keeping

it open for cooperative interactions. In other words, building a secure Swarm implies in

building a system that concurrently supports the properties of openness, cooperation,

decentralization, and security. This chapter presents our efforts towards the development

of such a system.

Note: A significant portion of the solutions presented in this section has been pre-

viously published in the following works:

• Fedrecheski et al. (2019): Attribute-Based Access Control for the Swarm With

Distributed Policy Management.

• Fedrecheski et al. (2020): Self-sovereign identity for IoT environments: a per-

spective.

• Fedrecheski et al. (2021): SmartABAC: enabling constrained IoT devices to

make complex policy-based access control decisions.

• Fedrecheski et al. (2022): A low-overhead approach for self-sovereign identity

in IoT.

3.1 Framework Blocks

Security is primarily concerned with mitigating threats towards computer systems

(SHIREY, 2007). Threats are often modeled considering a threat model, such as the

STRIDE threat model (HERNAN et al., 2019), which stands as an acronym to the

34

threats of spoofing, tampering, repudiation, information disclosure, denial of service,

and elevation of privilege. Different techniques can be used to mitigate each of these

threats, ranging from packet filtering, to access control enforcement and cryptography-

based mechanisms. In this work, we investigate and propose methods related to the latter

techniques.

Specifically, we propose a layered framework to protect the Swarm, encompassing au-

thorization, authentication, confidentiality, and identification. On each layer, we propose

secure mechanisms that satisfy requirements of the Swarm approach, such as openness,

decentralization, and support for heterogeneous devices and networks.

Authentication

Confidentiality

Identification

Authorization

Architecture Model

Figure 2: The proposed framework is divided in four layers.

At the top, lies the Authorization layer, which deals with high-level permissions for

resource sharing. This layer has two main components. The first one specifies the ar-

chitectural elements, and the second defines the model, i.e., the relations (i.e. policies

and requests) and algorithms used to compute access control decisions. We propose an

attribute-based access control (ABAC) approach, since it enable creation of expressive

and scalable authorization policies. This layer aims to mitigate the threat of elevation of

privilege, in which an agent performs an action it is not supposed to perform.

The next layer comprises authentication and confidentiality. The Authentication layer

consists of a model for credentials as well as a set of cryptographic algorithms to create

and validate them. This is required to ensure that access requests do not use spoofed

credentials, which in turn could be used to bypass authorization policies. Another way

to break authorization would be through an eavesdropping attack, in which an unautho-

rized party gains access to sensitive data. To mitigate this, we employ cryptographic

35

algorithms to encrypt data, which happens at the Confidentiality layer. As shown in Fig-

ure 2, authentication does not necessarily depends on confidentiality, however, encrypting

credentials is useful since it improves privacy.

Finally, there is the Identification layer, which defines how to manage identities in the

context of the Swarm. Specifically, we propose a self-sovereign identification mechanism

that enables agents to automatically generate and manage their own identifiers. This is

a fundamental layer, on top of which all other entities in our framework are built upon,

therefore it is placed at the bottom of the stack.

The next sections describe each layer in detail, and the latest section in this chapter

presents how these layers work together as a whole to secure Swarm systems.

3.1.1 Authorization

Authorization consists in “the problem of determining the operations (e.g., read and

write) that subjects (e.g., users and services) can perform on objects (e.g., files and

network connections)” (JAEGER; ZHANG; EDWARDS, 2003). In the context of the

Swarm, this means that only authorized entities shall have permission to interact with a

given agent. The authorization layer for the Swarm must satisfy the Swarm requirements,

such as device heterogeneity and openness for resource sharing.

In this work we provide authorization by combining Attribute-Based Access Control

(ABAC) and Capability-based Access Control (CapBAC). The main characteristic of

ABAC is the use of attributes assigned to subjects and objects, as well as attributes that

can be extracted from the environment. The structure that defines the access control rules

in ABAC systems is the policy, which consists of a collection of permissions built in terms

of attributes. Since ABAC uses attributes rather than identifiers, it scales and enables

authorization flexibility, at the cost of increased complexity. To authorize interactions

between Swarm agents using ABAC, an architecture is needed to specify the building

blocks and the authorization flow (HU et al., 2013).

In the Capability-Based Access Control approach, computing entities carry a token

which encode the permissions possessed by the entity itself (DENNIS; HORN, 1966). For

example, a camera might carry a token that specifies its right to toggle an IoT lamp. This

token is then presented to the target of the interaction, which verifies the validity of the

token before accepting it.

The CapBAC approach enables decentralized authorization (HERNÁNDEZ-RAMOS

36

et al., 2016), however it depends on a way to decide how to handle to authorization to-

kens. Since the latter can be provided by ABAC, in this work we combine the ABAC and

CapBAC approaches, thus providing a decentralized and expressive authorization mech-

anism for IoT devices. Our contributions to achieve decentralized ABAC are presented

in the next two subsections, and the integration with CapBAC tokens is described along

with the operation flow (Section 3.2).

3.1.1.1 ABAC Architecture

In this sub-section we present the ABAC architecture. First, we show the architecture

as defined by the National Institute of Standards and Technology (NIST) (HU et al., 2013).

Next, we present how we adapted it to the Swarm context.

Authorization Services

Policy Enforcement Point
(PEP)

Policy Decision Point
(PDP)

Policy Information Point
(PIP)

Policy Administration Point
(PAP)

Subject Object

Policy
Repository

Environment
Conditions

Attribute
Repository

Figure 3: ABAC architecture proposed by NIST.

The ABAC architecture, shown in Figure 3, involves a subject, an object, data sources

and separate functional blocks referred to as points (HU et al., 2013). The subject is the

entity trying to perform a given operation, and the object is either a resource to be

accessed or an entity that will handle the operation. The functional points determine

whether the operation execution should be authorized. The Policy Enforcement Point

(PEP) is responsible for intercepting a message from a subject to an object, and for

forwarding an access request to the Policy Decision Point (PDP). The PDP, then, reads

the policies from the repository, fetches attributes and environmental conditions from

the Policy Information Point (PIP), and uses that information to make a decision, i.e.,

compute whether the access request shall be allowed or denied. This decision will be

returned to the PEP, which will forward the message to the object, in case the request

is “allowed”, or otherwise return an “unauthorized” message to the subject. Finally,

37

the Policy Administration Point (PAP) is responsible for presenting a user interface that

allows an administrator to create, view, and edit policies.

The incorporation of the ABAC architecture in the Swarm must consider the char-

acteristics of the latter, particularly decentralization and scalability. To achieve that, we

propose a re-organization of the elements from the original ABAC architecture in order

to fit it within the Swarm architecture, as shown in Figure 4.

Device A

Consumer
Agent

(Subject)

Provider Agent
(Object)

PEP

1. Resource
 Request

4a. Unauthorized

Swarm Broker

4b. Continue

5. Response

Device B

Owner

Subject
Attributes

Registry

Object
Attributes

Access Control

Policies

3. Access
 Decision

2. Access
 Request

PAP

PDP PIP

0. Setup
 Policies

Env.
Conditions

Figure 4: ABAC Architecture adapted and incorporated into the Swarm.

The subject and object entities are represented by two Swarm Agents, the initiator

and the responder. Thus, the responder agent implements the PEP to intercept requests

and forward them to the PDP. The PDP runs in the broker, and it is responsible for

evaluating the access policies and returning an access response to the PEP. If the access

is denied, the responder immediately returns an unauthorized status to the initiator;

otherwise, it allows the resource access to continue. Another modification to the original

ABAC architecture is the location of the attributes. Since the responder always registers

itself in its associated broker, the broker has all of the object attributes, therefore they

can be loaded normally by the PIP. The subject attributes, on the other hand, cannot be

loaded locally since they come from an external agent, therefore they must be presented

by the responder as part of the resource request message. Finally, an administrator could

update access policies for Swarm devices by accessing a user interface made available by

the PAP.

The proposed architecture offloads much of the authorization complexity to the Swarm

Broker. This is aligned with the Swarm proposal, in which the Broker is expected to

provide platform services that can be reused by other Swarm Agents (COSTA et al.,

2015), e.g., Device B could have more agents, all of which would be able to use the same

PDP. Consequently, this simplifies the receiver code, which only needs to implement a

PEP in order to leverage the Swarm authorization layer. The PEP is simpler than the

38

PDP since the former just intercepts requests, whereas the latter must implement a policy

evaluation engine.

3.1.1.2 ABAC Model

An access control model describes the entities, relations, and algorithms needed to

express access requests and policies, and compute access decisions (HU et al., 2013). In

this sub-section we propose SmartABAC: a fast, concise, and expressive ABAC model

that can be executed in constrained IoT devices, and can therefore be used to protect

resource sharing in the Swarm. The design of the SmartABAC model was subject to a

set of requirements, summarized below:

• Expressiveness: allows creating policies that can represent a wide variety of sce-

narios. Since Swarm systems include Smart Homes, Smart Cities, Industrial IoT,

and many more, the underlying structure of the access policies must be flexible and

allow the expression of reasonably complex rules. Furthermore, it should comprise

contextual attributes, as it is crucial for cyber-physical systems to use environment

characteristics, such as geolocation and timestamp, to make an access decision.

• Performance: runs inside constrained devices. The ideal ABAC system for the IoT

must use efficient algorithms to evaluate and manage policies to be embedded into

devices with limited processing and power resources.

• Conciseness: low policy footprint. While policies are required to be expressive, the

number of bytes necessary for representing policies must be as low as possible due

to low storage and bandwidth resources in IoT devices.

• Scalability: supports large numbers of devices. A model for access control in IoT

systems must pose a minimal overhead as the network grows, potentially, to a global

scale of trillions of devices. A generic approach that uses attributes as parameters

for expressing access rules is necessary so that a growing number of devices does

not map directly to a similar growth in the number of policies.

In the following paragraphs we present the constructs and trade-offs considered in our

model proposal.

ABAC policies can be represented in two distinct ways, Logic-based Access Poli-

cies (LAP) or Enumeration-based Access Policies (EAP) (BISWAS; SANDHU; KRISH-

NAN, 2016a). In LAP, the format most commonly adopted, policies are expressed as

39

logic statements that evaluate to true or false. In EAP, policies are defined by enumer-

ating the accepted values. For example, a policy that “allows family members to ac-

cess security appliances” would be represented as subject.role == FamilyMember and

object.type == SecurityAppliance in LAP, and as {(role, FamilyMember), (type,

SecurityAppliance)} in EAP. When compared to LAP, EAP presents the following ben-

efits: forms micro-policies that are easy to share and to update, has a canonical policy

structure that facilitates automated manipulation, and can be parsed in polynomial time

(as opposed to LAP, in which some operations are NP-complete) (BISWAS; SANDHU;

KRISHNAN, 2016a; BISWAS; SANDHU; KRISHNAN, 2016b). The drawbacks of EAP

are well documented and include: policy creation may be more laborious, policies can grow

larger in size, and it may become complex to implement conjunctive policies, i.e., those

having the effect of a logical and operator (BISWAS; SANDHU; KRISHNAN, 2016a).

A useful concept to model attributes is data types, which prevents ambiguity and

enhances policy expressiveness. Although some LAP models use data types, no EAP

model has considered the concept so far. Among the benefits of a typed EAP model

is the expression of numerical ranges, which mitigate the problem of huge enumerated

policies. For example, to express the rule “age must be greater than 18”, instead of

writing {(age, 18), (age, 19), ..., (age, 100)}, one could write {(range, age,

(min, 18))}. Note that the use of the attribute type range allows for an expressive-

ness gain in the policy, avoiding the drawback of EAP, which is the enumeration of all

possible values. Another benefit of typed attributes is that attributes can be nested by

using an associative array type, which allows compatibility with widely used standards,

such as JavaScript Object Notation (JSON)1 and Concise Binary Object Representation

(CBOR)2. For example, a policy can use the following set of nested attributes to specify

a device manufacturer: (manufacturer: (id: m1, name: pear)).

Thus, we introduce this new concept that can be viewed as a hybrid of logic and

enumerated policies, whereby the benefits of EAPs, such as canonical form and micro-

policy, are maintained, while the flexibility of type-based conditionals increases policy

expressiveness, improves readability, and reduces policy size, contributing to the system

scalability. Moreover, another contribution is the introduction of nested attributes in

an ABAC model, which makes it directly compatible with existing standards for signed

attributes, such as the Verifiable Credentials data model (SPORNY et al., 2019b).

A common drawback of adopting enumerated policies is that they require complex

1https://tools.ietf.org/html/rfc7159
2https://tools.ietf.org/html/rfc7049

40

mechanisms to represent conjunctive policies. Although previous works showed that single

and multiple-attribute EAPs are equally expressive in their theoretical power (BISWAS;

SANDHU; KRISHNAN, 2016a), the expression of conjunctive policies in a single attribute

model leads to an attribute explosion, making it less useful in practice. We identified

that a possible solution to alleviate this issue is to use multiple attributes in the poli-

cies. In a single-attribute model, a single attribute is used in each field of a policy rule,

e.g., in (hvac, read, temperature), each attribute is atomic. In a multiple-attribute

model, many attributes can be listed in each field, e.g., in ({hvac, kitchen}, {read},
{temperature}), each attribute is a set. In other words, EAP models require multiple

attributes to be able to efficiently express conjunctions. For example, the single-attribute

policy above cannot express the rule “devices of type hvac that are in the kitchen can read

the temperature”, while the multi-attribute policy can. Since our model uses EAP, we

adopt multiple attributes to support conjunctions.

As the number of attributes grows in large systems, attribute hierarchies can be used

to simplify policy management. For example, instead of specifying duplicate policies for

father, mother, and uncle, hierarchical relationships among the attributes can be created

to enable the creation of a single policy that addresses adulFamilyMembers. Different

ways to express hierarchies have been proposed, from simple solutions, such as attribute

containment (FERRAIOLO; ATLURI; GAVRILA, 2011), to more complex constructs

that use hierarchical groups to assign attributes to users (SERVOS; OSBORN, 2014).

Combining these techniques has also been explored, showing that attribute containment

can be used to represent hierarchical groups (BHATT; PATWA; SANDHU, 2017). Thus,

policy scalability can be enhanced by delegating part of the complexity of the domain to

attribute hierarchies, which reduces the number of policies to be managed in each IoT

device.

This way, we propose SmartABAC, an Attribute-Based Access Control model with

the following features: typed, nested, and hierarchical attributes, as well as enumerated

and multi-attribute policies.

Our model is specified in first-order logic as shown in Table 5. It is divided in five

segments with definitions for attributes, policies, requests, hierarchical relationships, and

an authorization function.

Segment I presents general definitions of SmartABAC. An access control model dic-

tates how the rules for a subject to access a given object are defined. In SmartABAC,

access is defined by the operations (Op) that can be executed by a subject on an object.

41

Table 5: The SmartABAC model expressed in first-order logic.

I. General definitions

- SA, OA, and CA – set of subject, object, and context attributes, respectively.

- A = SA ∪OA ∪ CA – the set of all possible attributes.

- Op – the set of all operations.

- type : A → {string, number, range, assoc array} – denotes the type of an attribute.

- name : A → N – denotes the name of an attribute, where N is a non-bounded set of names.

- value : A → V – denotes the value of an attribute, where V is a non-bounded set of values.

II. Policy definition

- P = 2Op × 2SA × 2OA × 2CA – the set of all possible policies.

III. Request definition

- Ar = {areq ∈ A | type(areq) ∈ {string, number, assoc array}} – set of attributes of requests.

- SAr = SA ∩ Ar – the set of subject attributes allowed in a request.

- OAr = OA ∩ Ar – idem, for object attributes.

- CAr = CA ∩ Ar – idem, for context attributes.

- R = 2Op × 2SAr × 2OAr × 2CAr – the set of all possible requests.

IV. Hierarchy definition

- Astr = {a ∈ A | type(a) = string} – set of attributes with type string, that have hierarchical relationships.

- expand : 2Astr → 2Astr , defined as

expand(A) : {a} ∪ {asucc ∈ Astr | a ≺ asucc}∀a ∈ Astr – where ≺ denotes a partial order.

V. Authorization function

- matchAttrs : 2Ar × 2A → {true, false} – checks whether all request attributes match the policy attributes, according to their types.

matchAttrs(Ar, A) :


ar = ap, for type(ar) = type(ap) ∧ type(ap) ∈ {number, string}, ∀ar ∈ Ar, ap ∈ A

ar ∈ ap, for type(ar) = number ∧ type(ap) = range,∀ar ∈ Ar, ap ∈ A

name(ar) = name(ap)∧

matchAttrs(value(ar), value(ap)), for type(ar) = object ∧ type(ap) = object, ∀ar ∈ Ar, ap ∈ A

- isAuthorized : R× 2P → {true, false}, defined as

isAuthorized(r, P) : (p ∈ P)[r1 ⊆ p1 ∧matchAttrs(expand(r2), p2) ∧matchAttrs(expand(r3), p3) ∧matchAttrs(expand(r4), p4)],

where pi and ri correspond to the i-th element of the respective tuple in P and R,

i.e., (operations, subject, object, and context attributes)

Source: Fedrecheski et al. (2021).

Subjects and objects are defined by their attributes (respectively, SA and OA). Since in

the IoT the surrounding context may be relevant during the access decision, SmartABAC

also considers context attributes (CA).

Each attribute has an associated name, value, and data type. The valid types for

attributes are string, number, range, and assoc array. The use of data types is a novel

element in SmartABAC, as it enhances expressiveness and reduces policy size. Strings

are interpreted as character lists, and numbers can be either integers or real. Ranges

are applied over numbers and represent an inclusive interval between a minimum and a

maximum value. Finally, the assoc array (associative array) type enables the creation of

key-value pairs, effectively allowing attribute nesting. The use of this data type in ABAC

models is a novel contribution of our work, and it is useful for compatibility with popular

serialization formats and standards for signed attributes (SPORNY et al., 2019b).

Segment II, Policy Definition, specifies the domain of access policies in SmartABAC.

42

The policies determine which subjects (SA) can perform which operations (Op) over

which objects (OA) under which context (CA). Thus, a policy is a set comprising the

enumeration of operations and attributes.

Segment III, Request Definition, defines the domain of possible requests. In SmartABAC,

an access request is evaluated against a set of policies. The structure of a request is similar

to that of the policy, i.e., an enumeration of attributes and operations. The main differ-

ence from the policy definition is an attribute type restriction, as requests in SmartABAC

only support the following types: number, string, and assoc array, i.e. they do not

support the range type. The reason is that, while it is common for policies to use ranges,

e.g., “age between 18 and 60”, requests tend to use concrete values, such as “age equal to

25”.

Segment IV, Hierarchy Definition, presents the method to expand the attributes of

a given request, mapping associated attributes from an attribute hierarchy defined as a

partial order relation. In other words, a more generalized attribute may be mapped to a

set of more specific attributes. The partial order is defined over attributes of type string

in the expand function, which allows the retrieval of all attributes that succeed a given

attribute, i.e., expand(aprev) will return a set containing all the attributes higher in the

hierarchy, along with aprev itself. For example, a partial order can be defined between

attributes camera and appliance. When applying the function expand over the attribute

camera, the result will be (camera, appliance). This way, policies can be specified using

attributes higher in the hierarchy, e.g., appliance, which reduces the number of policies

and simplifies policy management.

Finally, Segment V, Authorization Function, describes functions for evaluating a re-

quest and deciding whether or not it should be allowed. The decision is computed by

checking whether all the request operations and attributes satisfy at least one of the

available access policies. Regarding operations, a request satisfies a policy if its opera-

tions are a subset or equal to those of the policies. With respect to attributes, a request

satisfies a policy if the result of calling the function matchAttrs is true for all attributes

in the policy. The matchAttrs function works by applying the correct operator based on

attribute name and data type. Specifically, number and string attributes are compared

using an equality operator, while a membership operator is used to verify ranges. When an

attribute is of type associative array, the matchAttrs function is called recursively3. Thus,

the isAuthorized function takes a request and a list of policies and uses matchAttrs to

3Attributes in real-world applications tend to have only a few levels of nesting. That said, if necessary,
a threshold value can be set in the implementation to limit the depth of recursive calls.

43

check whether at least one policy satisfies that request. Note that isAuthorized also

uses expand to obtain attributes considered “higher” in a hierarchy of attributes. The

result of isAuthorized is true if at least one of the policies satisfies the request or false

otherwise.

By combining elements of enumerated access policies, data types, and hierarchies,

SmartABAC enables constrained IoT devices to run complex access policies.

3.1.2 Authentication

The next layer in our proposed framework, following from Authorization, is Authen-

tication. According to the Internet Security Glossary, authentication consists in having

an entity proving the validity of certain attributes about itself (SHIREY, 2007). In the

Swarm, these entities are Swarm agents, and their attributes can range from specific

identity-based claims, to generalized fields linked to an agent. For example, an agent

that implements the functionality of a security camera might have an unique identi-

fier, along with a few more generic attributes, e.g., type: securityCamera, location:

outdoor. In this section, we focus on authentication of attributes, leaving unique identity

authentication to the other layers.

As shown in Figure 4, an initiator agent presents its attributes to the responder

during an interaction. The challenge that authentication must solve, then, consists in

enabling the responder to trust these attributes. For example, an attacker could create

a Swarm agent that presents spoofed attributes that would in turn make it pass through

the authorization mechanism.

A widely used mechanism to enable attribute authentication is the digital signature,

which enables a recipient to validate data origin and integrity (SHIREY, 2007). Among

the different digital signing algorithms available, in this work we selected the Edwards-

curve Digital Signature Algorithm (EdDSA), along with the Ed25519 curve (BERNSTEIN

et al., 2011; JOSEFSSON; LIUSVAARA, 2017). This selection is justified (BERNSTEIN

et al., 2011) due to the following properties:

• It is considered infeasible to break, since it requires around 10128 operations to forge

a signature.

• It requires small public and private keys, i.e. 32 bytes for each key part, as opposed

to larger keys from different curves or those that use different cryptographic schemes,

such as the RSA (RIVEST; SHAMIR; ADLEMAN, 1978).

44

• The generated signature is small, requiring only 64 bytes. Signature and key sizes

are important since bandwidth may be scarce in IoT networks.

• It generates deterministic signatures, which are not subject to repeated nonce at-

tacks (JOSEFSSON; LIUSVAARA, 2017).

In addition to a signature, authentication of attributes generally require a data struc-

ture to hold a few elements that enable a verifier to check authenticity. The elements that

need to be present in this structure include:

• Subject identifier: a unique identifier of the entity described by the signed attributes.

• Issuer identifier: a unique identifier of the entity that signed the attributes.

• Expiration: a point in time after which the signature ceases to be valid, effectively

revocating the attributes.

• Issuance date: a point in time when the attributes were created.

• Attributes: the actual set of application-specific attributes, usually represented by

a key-value mapping.

These elements are present in standardized approaches for secure serialization and pre-

sentation of attributes, as discussed in Section 2.2.2.3. Thus, we adopted the Verifiable

Credentials data model for attribute representation in the Swarm, with two modifications.

First, we serialize the credentials using Concise Binary Object Representation (CBOR)

(BORMANN; HOFFMAN, 2020) instead of using JSON-LD, in order to optimize cre-

dential size. CBOR was developed to be a JSON alternative for IoT applications, since

it provides similar semantics with smaller serialization footprint. Second, we only adopt

signing algorithms based on elliptic-curves and do not adopt algorithms based on zero-

knowledge proofs, since they are too expensive to run on IoT devices. This approach

enables the use of authenticated attributes while having a smaller footprint and leverag-

ing the advantages of the VC data model, such as flexible key rotation and decentralized

verification.

Our VC-based credential is wrapped as a CBOR Object Signing and Encryption

(COSE) envelope (SCHAAD, 2017). The COSE specification defines how to create signed

and encrypted objects that can be serialized in CBOR. Specifically, a signed COSE object

is defined as an array containing (1) an integrity-protected header, (2) an unprotected

45

header, (3) the signed content (payload), and (4) the signature. The goal of the COSE

headers is to provide information regarding the type of algorithm used to perform the

signature.

An example VC that adopts the COSE envelope format is shown in Listing 3.1. Since

the actual COSE object is a binary blob, we use the CBOR diagnostic notation (BOR-

MANN; HOFFMAN, 2020), which is loosely based on JSON and enable blobs to be

displayed in a human readable way. Thus, Listing 3.1 must be interpreted as a regular

JSON document, with the exception of the grey items between slashes, which are com-

ments about the meaning of each key or value. For example, line 3 could be read as “the

signature algorithm, specified by code 1, is EdDSA, specified by code -8”.

1 [

2 / protected header / {

3 / algorithm / 1: -8 / EdDSA /

4 },

5 / unprotected header / {},

6 / payload / {

7 / issuer / 1: "did:sw:ShbRLB6VsoNAizbwYw9Qz5",

8 / subject / 2: "did:sw:PwnqEmgnJ4V8qfVEnd7w16",

9 / issued at / 6: 1640362938,

10 / expiration / 4: 1671898938,

11 / credential subject / 21: {

12 "owner": "did:sw:PwnqEmgnJ4V8qfVEnd7w16",

13 "type": "camera",

14 "household": {"id": "home-1"}

15 }

16 },

17 / signature / "bc12491f ... truncated ... a684ad03"

18]

Listing 3.1: Example of Verifiable Credential enveloped using CBOR and COSE.

The protected header of the VC specifies the signing algorithm, while the unprotected

header is empty. The signed payload include the issuer, subject, relevant timestamps, and

a set of attributes. The issuer and subject of a VC are represented by their respective

DIDs, and the timestamps follow the Unix format. Finally, the attributes, presented in the

credential subject field inside the payload, represent application-specific information

46

about the subject. In the example of Listing 3.1, these include the type of a Swarm agent,

its owner, and an identification of the household it is installed in. A Swarm agent verifies

a credential by checking if the signature in the VC matches the public key of the issuer.

The lifecycle of a credential begins when an issuer signs the VC and delivers it to

the holder agent, which can then use it to authenticate in Swarm environments. The

end of life of a credential occurs when its expiration time is passed. It is expected that

additional mechanisms for credential revocations may be implemented, such as revocation

lists, however they are out of scope of this document.

3.1.3 Confidentiality

The next layer for securing the Swarm is confidentiality, and it serves to counter

the threat of information disclosure, in which an attacker gets access to data exchanged

between two entities.

Confidentiality is most commonly achieved by encrypting data using an established

symmetric encryption algorithm, such as the Advanced Encryption Standard (AES) (DAE-

MEN; RIJMEN, 2001). It is also common to use asymmetric cryptography to facilitate

management of cryptographic keys, such as the Diffie-Hellman (DH) key exchange and

its elliptic-curve version, ECDH. These algorithms, in turn, are wrapped in a protocol

which usually provides mechanisms for key distribution, binding to network protocols,

and protection against common attacks, such as message replay.

Transport Layer Security (TLS) is a widely used protocol in internet applications that

provides both encryption and authentication (RESCORLA, 2018). The encryption part is

carried over the payload of TCP segments, thus guaranteeing confidentiality between two

TCP/IP network nodes. An alternative to TLS is also defined for UDP communications,

named Datagram TLS (DTLS). Although TLS and DTLS are mature and widely used,

one drawback of both is the lack of support for end-to-end security over multiple network

hops. Additionally, both protocols were designed to authenticate entities using public key

certificates. As we discuss in more detail in the next section, this works adopts DIDs for

agent identification, and therefore is not directly compatible with TLS nor DTLS.

To enable confidential and authenticated communications based on DIDs, the DID-

Comm protocol has been proposed (HARDMAN, 2020). It allows agents to use the keys

referenced in their DID Documents to encrypt and sign messages, so that they can be

securely transmitted and verified by the responder. To do so, DIDComm adopts the

47

Agent A Agent B

DIoTComm Message

authentication,
agreement

authentication,
agreement

B_D A_D

Create DIoTComm message

Open DIoTComm message

DID DocumentPrivate keys DID Document Private keys

Agent B's DID
Document

Agent A's DID
Document

did:sw:123
auth. key
agr. key A_D

did:sw:456
auth. key
agr. key B_D

kid: did:sw:123

Ciphertext

signed = Sign(plaintext, A_auPrivK)
sym_key = ECDH(A_agPrivK, B_agPubK)
ciphertext = Encrypt(signed, sym_key) sym_key = ECDH(B_agPrivK, A_agPubK)

signed = Decrypt(ciphertext, sym_key)
plaintext = Verify(signed, A_AuPubK)

Source: Adapted from Fedrecheski et al. (2022).

Figure 5: An overview of the DIoTComm protocol.

structure and algorithms defined in the JSON Object Signing and Encryption (JOSE)

standard (JONES, 2015), which allows use of existing schemes for message encryption

and authentication. Furthermore, it is agnostic of both DID method and transport pro-

tocol. DIDComm also defines a set of message headers to identify a message sender and

responder, as well as a message type, a unique message identifier, and other optional meta-

data. A significant downside of DIDComm, however, is the use of JSON which causes

unnecessary overhead in constrained networks, common in IoT scenarios.

Thus we propose DID-based IoT Communication (DIoTComm), an alternative

to DIDComm that is tailored for IoT networks, i.e., it uses a more concise serialization

method and simpler message headers. While in DIDComm a JSON-based format is used

for message protection, DIoTComm uses COSE, which defines both a message format and

a set of lightweight security algorithms, leading to small-footprint protected messages.

Another difference is that, while DIDComm supports a few types of message headers,

DIoTComm has only a single header, the key id, which contains the DID of the initiator,

as shown in Figure 5. We are able to omit the responder id since the decryption by a

responder other than the intended one will fail. We also consider that other fields such

as message type and message id, if needed, can be handled at the payload layer, e.g., if

the payload is a CoAP message, its header would include a method, a path, and a unique

message identifier.

DIoTComm leverages the structure defined by COSE messages which consists of: an

integrity-protected header, an unprotected header, a payload, and optional extra fields.

We define that the sender id in DIoTComm must be the binary-encoded DID of the

message sender. To save space, the sender may choose to omit the fixed part of the DID

48

prefix, i.e. did:, and encode only the method and the random part of the DID. This id

must be carried within the “key id” field of the COSE protected header. If the message

must be encrypted, the payload will contain the cipher-text. If it must be signed, the

payload will contain the plain-text, and the message will have the signature as a fourth

parameter. In cases where a message must be protected both for non-repudiability and

confidentiality, the plain-text is first signed then encrypted. Creation of such protected

envelopes is described in the following paragraphs.

For message signature, the sending agent signs the message with its private authenti-

cation key. The receiving agent can verify the signature using the public key available in

the sender’s DDo. The COSE algorithm used is EDDSA, i.e., the Edwards Curve Digital

Signature Algorithm applied over curve Ed25519 keys (SCHAAD, 2017). This enables

short and fast signatures that do not depend on strong random number generators.

Regarding encryption, the sending agent will derive an encryption key using its private

agreement key, along with the public agreement key available in the receiving agent’s

DDo. A similar process is then executed by the receiving agent to decrypt the message,

wherein the receiving agent uses its private agreement key and the sending agent’s public

agreement key to obtain the decryption key. The COSE algorithm used for key derivation

is the ECDH-SS-HKDF-256, which uses an elliptic curve Diffie-Hellman with two static

keys (the private key of one party and the public key of another), along with a key

derivation function based on SHA-256 (SCHAAD, 2017). The COSE algorithm used for

content encryption is AES-CCM-16-64-128, that is the Advanced Encryption Standard in

CCM mode with a 64-bit tag and a 13-bytes nonce.

3.1.4 Identification

The final layer for security in the Swarm consists in how to uniquely identify agents

in a decentralized and scalable way. In this work we use the Self-Sovereign Identity

approach to identify Swarm agents. In SSI, each entity has full control of its own identity.

Informally, this approach can be compared with a physical wallet, in which a subject

carries all of his documents with himself. Formally, the self-sovereign identity of an agent

is the union of all of its identifiers and attributes across different domains, which are

managed in a decentralized way (FERDOUS; CHOWDHURY; ALASSAFI, 2019).

The Decentralized Identifiers (DID) specification (SPORNY et al., 2019a) defines

a standardized format for self-sovereign identifiers and associated metadata. A DID is

49

composed of a DID method4 prefix and a namespace-specific identifier (NSI) (SPORNY et

al., 2019a). The prefix always start with the string did: and is followed by a method name

and a colon, e.g., the prefix for the Tangle DID method is did:tangle: (TANGLEID,

2019). The NSI is a globally unique identifier, usually randomly generated, whose size

and other parameters are specified by the DID method. A truncated example of a DID

is: did:tangle:WILTZRG...Q99NA9999. The primary use for DIDs is to uniquely identify

an entity in a decentralized way.

Each DID is usually associated to a DID Document (DDo), which contains related

metadata such as public keys and service endpoints (SPORNY et al., 2019a). DDos are

usually serialized in JSON, and although a CBOR serialization is specified (SPORNY et

al., 2019a), none of the currently registered DID methods uses it. A typical JSON-based

DDo occupies 500 bytes or more.

We propose agent identification as a fully self-sovereign procedure. Each agent gen-

erates its own identifier, in the format of a DID, as well as its own identity metadata, in

the format of a DDo, which contains service endpoints and public keys. This approach

allows devices to fully own and control their identity without depending on third parties

(FEDRECHESKI et al., 2020). To enable discoverability, though, agents may choose to

anchor their DDos on an Identity Blockchain, which acts as a decentralized source of truth

for identity metadata. This allows agents to dynamically resolve the DDo associated with

a specific agent, given that its DID is known. For example, if Agent 1 knows the DID of

Agent 2, the DDo of Agent 2 can be obtained by querying the blockchain.

Once agents are identified, i.e. with locally generated DIDs and a way to share DDos,

they are ready to securely communicate, as described in Section 3.1.3. While that section

focused on the encryption and signatures, this section presents how agents can obtain

each other’s DID Document.

We consider interactions to involve an initiator agent and a responder agent, and

optionally the Identity Blockchain. If initiator and responder are pre-provisioned with

each other’s DDo, communication can begin immediately, without the need to contact a

third party, as shown Figure 5. If, on the other hand, an agent is only given the DID

of another agent (for example, when verifying the signature in a Verifiable Credential),

it needs to contact the blockchain to retrieve its respective DDo5, as shown in Figure 6.

Then, once the initiator has the DDo of the responder, it can extract the endpoint to

find out where to send the messages and use the public key to protect the messages, i.e.,

4A “DID method” is an extension of the DID specification;
5Note that the DDo can be cached after the first use.

50

derive a session key for encryption.

 Reduced
 overhead

 Identity Blockchain

Id of Agent 2
(did2)

DDo2.

Secure Channel
POST /endpoint2

DDo1 = {did1, auth_key1,
agr_key1, endpoint1}

DDo2 = {did2, auth_key2,
agr_key2, endpoint2}

1

2

3

DDo1, DDo2, ...

IoT
Agent 1
(initiator)

IoT
Agent 2
(receiver)

Binary
Serialization

Binary
Serialization

Establish a
secure channelManual or

dynamic input

Obtain metadata
for did2

Source: Adapted from Fedrecheski et al. (2022).

Figure 6: DID resolution and usage along with DIoTComm.

These procedures, however, may be of limited use in constrained IoT networks due

to the overhead of DID resolution. The identified related work adopting Self-Sovereign

Identity in IoT either do not consider the limitations of constrained networks, or address

it by creating a centralized adaptation layer.

In this section we propose a set of extensions and optimizations to reduce the overhead

of transmitting DDos and protecting interactions between self-sovereign IoT agents. First,

we propose a lean DID method that specifies the minimum needed metadata for DDos

in the IoT. Then, we propose an alternative serialization mechanism for DDos, named

CBOR-based DID Documents for IoT (CBOR-DI), that can reduce DDo size up to four

times.

3.1.4.1 The Swarm DID Method

A DID method consists of a set of definitions about the format of DIDs and DDos,

as well as on how to perform management operations (SPORNY et al., 2019a). In this

section, we propose the Swarm DID Method (did:sw:), which will enable self-sovereign

identification of IoT agents. Although it was motivated by the Swarm architecture, it is

sufficiently generic to be used in general IoT architectures.

Requirements Previously, we established that the self-sovereign approach can satisfy

the requirements of privacy and decentralization for IoT devices (FEDRECHESKI et al.,

2020). We now specify the remaining requirements that need to be tackled in order to

enable self-sovereign identification of devices in heterogeneous networks. First, both the

DID and the DDo must be short since they may be carried over constrained networks.

51

Second, the DID should carry enough randomness to be able to identify a very large

number of devices, e.g., if considering one thousand devices per person, the target address

space would be in the order of trillions. And third, the DDo should support at least one

service URL, needed to allow remote service invocations. The next sections specify the

DID and DDo according to these requirements.

Decentralized Identifier (DID) In the Swarm DID method, each device is re-

sponsible for autonomously generating its own DID. A DID is composed of a prefix

and a namespace-specific identifier (NSI). For the part of the prefix that identifies the

DID method in use, we chose the two-letter string sw. Thus the full prefix is did:sw:.

Next, we define the NSI as a short byte array of size 16, that must be generated using

a strong random number generator. The address space is 2128, what leaves more than

288 unique identifiers for each device, considering 240 devices (around 1 trillion) and a

uniform distribution. A full example of a Swarm DID with a Base58-encoded NSI is

did:sw:TTbs19FJKYf6jXzS1dbnqe.

DID Document (DDo) Additional metadata about a DID can be stored in a DID

Document. In a generic way, the DDo usually carries the DID itself, one ore more public

keys, and zero or more endpoints (SPORNY et al., 2019a). Existing DID methods define

that the DDo will contain the DID itself and at least one authentication key (SOVRIN. . . ,

) (OCKAM. . . ,). We adopt this design for the Swarm DID method, since it provides

identification and authentication. Next, unlike most DID methods, we propose the use of

at least one static agreement key, since it enables the creation of a secure channel without

transmission of ephemeral keys, thus saving bandwidth in constrained networks.

One consideration we take in order to shorten the DDo is that both the authentication

and the agreement keys must use an optimized cipher suite with respect to public key

sizes. While many elliptic curves satisfy this requirement, we adopt the curves X25519

and Ed25519, which have the smallest public keys among those defined in the COSE

specification (SCHAAD, 2017), i.e., 32 bytes.

Next, to allow referencing specific keys within a DDo, keys may have an arbitrary

identifier that is unique in the scope of the DDo. We define the following automated way

to generate a short key id: compute the hash (SHA-2) of the public key, and truncate it

to the first eight bytes. The resulting entropy is enough to avoid collisions since a DDo is

expected to have only a few public keys (usually only two).

52

Finally, a DDo in the Swarm must support at least one service endpoint to allow

remote service invocations. The main parameter for each endpoint is an URL, which

enables remote agents to message the owner of the DDo. Optionally, endpoints can also

have a type tag and an id that shall be unique within the DDo. Both the service type and

the id are application-dependent, and if used, they should be short. Figure 7 (a) shows

an example DID Document according to the Swarm DID Method, serialized in JSON.

3.1.4.2 Optimized DDo Serialization with CBOR-DI

Serialization mechanisms have direct impact on the size of messages transferred across

a network, and range from simple raw bytes encoding to complex structured data, such

as the eXtensible Markup Language (XML)6. While the binary approach has the benefit

of conciseness, a structured approach facilitates arbitrary manipulation. Formats such as

the JavaScript Object Notation (JSON) have provided a reasonable trade-off, with the

benefit of being human-readable. The general specification for DIDs (SPORNY et al.,

2019a) uses JSON as its main format, and most existing DID methods rely on JSON as

well.

We provide a JSON-based serialization for the Swarm DID method, as shown in

Figure 7 (a). It contains an identifier (DID), two public keys, and a service endpoint.

The random part of the DID is serialized in Base58, since JSON does not allow encoding

of raw bytes. The keys have each an id and a value, both encoded in Base58, and a type

indicating its format and usage. Similarly, the service contains an id, a type, and an

endpoint URL. After trimming white spaces, the JSON document occupies 497 bytes.

Although human-readable and relatively short, the JSON-based DDo still cannot

be transmitted over low-power IoT networks, e.g., LoRaWAN (ALLIANCE, 2017) only

supports packets of up to 242 bytes. Fragmentation could be used, at the expense of

increased spectrum usage and latency. What is needed is a more concise representation

for DDos that allow transmission on constrained networks.

The Concise Binary Object Representation (CBOR) is a JSON-compatible serializa-

tion mechanism that uses a binary encoding. Although the DID specification considers

direct conversion from JSON to CBOR (SPORNY et al., 2019a), our tests have shown

that on average this approach only reduces document size in 20%, i.e., achieving 415

bytes.

Considering this limitation, we present a novel serialization method named CBOR-

6https://www.w3.org/TR/2008/REC-xml-20081126/

53

{
 ' i d' : ' di d: sw: QmH8UDyHoWFYunt spvkLuZ' ,
 ' @cont ext ' : [' ht t ps: / / www. w3. or g/ ns/ di d/ v1'] ,
 ' aut hent i cat i on' : [{
 ' i d' : ' #MvR5AocE' ,
 ' t ype' : ' Ed25519Ver i f i cat i onKey2018' ,
 ' publ i cKeyBase58' : ' 7c4. . . 5uQ'
 }] ,
 ' keyAgr eement ' : [{
 ' i d' : ' #r USavwkN' ,
 ' t ype' : ' X25519KeyAgr eement Key2019' ,
 ' publ i cKeyBase58' : ' Fph. . . Ti w'
 }] ,
 ' ser vi ce' : [{
 ' i d' : ' #mai n' ,
 ' ser vi ceEndpoi nt ' : ' ht t p: / / 192. 168. 0. 107/ ' ,
 ' t ype' : ' swar mSer vi ce'
 }]
}

(a) JSON serialization (497 bytes)

[
 ' 73773a4b13. . . 19cf 4f d5f 4' ,
 [{ - 2: ' 3c0. . . b87' , - 1: 6}] ,
 [{ - 2: ' c48. . . b4c' , - 1: 4}] ,
 [' ht t p: / / 192. 168. 0. 107/ ']
]

(b) CBOR-DI serialization (128 bytes)

Source: Adapted from Fedrecheski et al. (2022).

Figure 7: Example of Swarm DID Document serialized in JSON and CBOR-DI.

based DID Documents for IoT (CBOR-DI) that reduces size of DDos in up to 75%. We

do so by adopting a binary approach and transmitting only the strictly necessary parts of

a DID Document, as exemplified in Figure 7 (b). Specifically, we implement the following

modifications when comparing to the JSON serialization:

• Use CBOR as serialization mechanism.

• Use an array instead of a key-value mapping so that the elements have a fixed order:

DID, verification keys, agreement keys, and service endpoints.

• Remove the did: prefix of the DID, and only use the method designator, e.g., use

sw: instead of did:sw:.

• Encode the DID and the key values as raw bytes instead of Base587. Note that the

average overhead of Base58 is close to 30%.

• Use the key format defined in the CBOR Object Signing and Encryption (COSE)

specification (SCHAAD, 2017), which uses integers instead of strings to reduce size.

For example, the mapping “type: Ed25519VerificationKey2019” is translated into

“-1: 6”. Similarly, note that in Figure 7 (b), the integer -2 points to the public part

of the key. The full table with rules for key representation is available in the Key

Objects section of COSE (SCHAAD, 2017).

• Finally, ignore optional fields in service endpoints and only include the URL.

7https://tools.ietf.org/id/draft-msporny-base58-01.html

54

As shown in Figure 7 (b), CBOR-DI achieves a DDo size of only 128 bytes, enabling

DDo transmission in constrained networks, while losing no essential information. Also,

by leveraging existing standards, such as CBOR and COSE, it fosters interoperability.

Furthermore, the conversion process between JSON and CBOR-DI can be automated by

applying a small set of mapping rules, e.g., convert between JSON and CBOR, Base58

and binary, and JSON keys and COSE keys. Finally, although we proposed CBOR-DI

in the context of the Swarm DID method, the technique is generic and could be easily

extended to reduce DDo size in other methods as well.

3.2 Operation Flow

This section assembles together the blocks presented in the previous parts of this chap-

ter, and show how they work together to provide secure and decentralized communications

in the Swarm. We start by presenting a data model that enables fully self-sovereign IoT

agents, as well as a mechanism for establishing and executing a secure interaction using

that data model. Figure 9 presents the interaction setup along with an instance of the

agent configuration, while Figure 10 presents the interaction execution. More details are

provided in the next subsections.

3.2.1 Self-sovereign IoT agents

In the Swarm approach, IoT agents are expected to be independent and to interact

autonomously. In this section we present our approach to enable such behavior. It consists

in embedding an Autonomous Agent Description (AAD) document that an agent can use

to interact, authenticate, and make access decisions. We refer to this configuration as

the agent data model. This data model is designed to enable IoT agents to be completely

self-sovereign with respect to identity, cryptographic keys, attributes, and access policies.

The elements that constitute the Agent Data Model and their relationship are pre-

sented in Figure 8. We explain each element in detail as follows:

• Agent: an autonomous Swarm entity capable of providing or consuming resources.

The agent stores the full data model locally and may publish parts of it to the appro-

priate registries. For example, the DID Document may be published to an Identity

Blockchain, and public credentials may be sent to Swarm registries to facilitate

device discovery.

55

Public

DID
DID
Doc.

Public
VCs

ABAC
Policies

1..N 1 1 1

1

0..N
1..N

1

Private

Local or
Public
Ledger

Agent or
Broker or
Registry

Agent
Local
Wallet

Private
VCs

Agent

Trust
Anchors

Agent or
Broker

Agent or
Broker

Key-
store

Agent
Local
Wallet

Public keys

Attributes

Figure 8: Agent description data model.

• DID: a public and unique Decentralized Identifier that is generated by the agent

itself. The agent uses the DID to distinguish itself from other agents in the Swarm.

DIDs may also be used to authenticate and authorize interactions, and can serve as

addresses in payment transactions during resource sharing (BIASE et al., 2018b).

The format of the DID follows the rules defined in the Swarm DID Method, i.e., a

random 16-byte sequence preceded by the did:sw: prefix. An example DID in the

Swarm is did:sw:Jp1tXfv3XfQE8DRHJeXuDL.

• DID Document (DDo): A structured document that contains the DID that identifies

an agent, public keys, and service endpoints. The endpoints in a DDo are Uniform

Resource Locators (URLs) used to interact with an agent. The public keys can

be used for establishment of a secure channel via a key agreement algorithm, and

also for verification of digital signatures. As defined in the Swarm DID method,

the keys are based on Edwards Curves which have short public keys (32 bytes)

and whose security does not depend on secure random number generators. In this

work we extend the Swarm DID method, and add a broker reference, which is a

DID that points to the broker to which its agent is associated. This reference is

useful to perform management operations such as the establishment of service level

agreements between agents, which is mediated by their respective brokers (BIASE

et al., 2018b). DDos can be serialized in a number of formats, including JSON,

CBOR, and (as proposed in Section 3.1.4.2) CBOR-based DID Documents for IoT

(CBOR-DI), the latter being particularly useful in constrained networks due to its

reduced size.

• Cryptographic Keys: a set of asymmetric keys used by the agent, including both

public and private parts. These keys are used to digitally sign messages and to

56

derive symmetric session keys used for encryption. The private part of the keys must

never leave the agent storage and should be stored in a secure storage medium, e.g.

a trusted platform module. The public parts of these keys can be openly shared,

and thus they are present in the DID Document.

• Verifiable Credentials: signed attributes associated to a DID. Its format is based

on the Verifiable Credentials (VCs) specification (SPORNY et al., 2019b), which

presents a data model for signed attributes. A credential states that a specific set of

attributes about a subject has been signed by an issuer at a specific point in time,

and it is valid until a certain expiration time. Credentials can be used to establish

ownership and authenticate agents during interactions. For example, ownership can

be established by having the device owner issue a credential stating that it is owner

of the device, referencing the device’s DID in the credential’s subject field, and

storing the credential in the device. Authentication is performed by verifying the

credential signature, as described in Section 3.1.2. Although originally VCs use a

JSON-based serialization, we use a binary serialization based on COSE (SCHAAD,

2017) since the latter is more compact and thus more appropriate for constrained

IoT networks. A credential is composed of an issuer, a subject, a set of attributes, a

timestamp, an expiration date, and a signature. Keys from an agent’s keystore are

used to sign new credentials, and the respective public keys from a DDo are used

to verify the validity of a credential. We assume the existence of private and public

credentials, where the former are stored only locally on the device, while the latter

may be stored on brokers and aid in the Swarm discovery mechanism.

• Trust Anchors: a private list of agents that are considered valid credential issuers.

That is, when evaluating a credential, an agent should first verify if the credential

issuer is legitimate, and it does so by checking if it is in the list of trust anchors.

For example, there could be two valid credentials stating the type of an agent, one

issued by the agent’s owner and another by an unknown agent. Only the credential

signed by the owner would be trusted. As a special case, the trust anchor could

correspond to the DID of a Reputation Blockchain, as described in a previous work

(BIASE et al., 2018b). In this case, the trust anchor would serve as an indirect trust

layer to enable a more flexible authentication scheme. More specifically, a reputa-

tion threshold can be defined, where only credentials from agents whose reputation

satisfy the threshold would be considered trusted.

• ABAC Policies: a private list of attribute-based policies used to authorize agent

interactions, specified according to the SmartABAC model (FEDRECHESKI et al.,

57

2021). These policies are locally enforced by agents that share resources, and dic-

tate which subjects are allowed to execute which operations on which objects, under

specific context restrictions. Subjects, operations, objects, and contexts are defined

in terms of attributes, which can be extracted from agent credentials or from the en-

vironment. For example, a policy can state that an agent of type persona can access

devices of type lamp during daytime. As shown in previous works (FEDRECHESKI

et al., 2021), evaluation of access policies using the SmartABAC model has negli-

gible execution time and can be embedded in IoT devices, which improves privacy,

latency, and reliability.

Figure 9 exemplifies what this configuration look like for two agents: a persona,

meaning the virtual representation of a user; and a lamp. Each agent has a keystore, a

DID Document, and a set of Verifiable Credentials. Thus, the persona agent in Figure

9 has private keys, a DID Document, and one credential that contains the attribute

“friendOf: did:alice”. If an agent will act as a responder, as is the case of the lamp agent,

it must also have a list of trust anchors and a list of attribute-based policies. The trust

anchors enable the lamp to know which credentials to trust, and the policies specify what

interactions are allowed.

The Swarm agent data model enables full autonomy for Swarm agents to interact se-

curely. It allows identification using DIDs, and agent description using public credentials.

It enables confidentiality, integrity, and non-repudiation via the keys available in the Key-

store and in the DID Document. Credentials can be used to authenticate an agent using

attributes whose validity is ensured by the trust anchors. Finally, ABAC policies regulate

agent interactions in a flexible way. We will now detail the mechanisms that leverage the

data model to protect interactions.

3.2.2 Controlling interactions using attributes

An interaction is composed of an initiator agent, or subject, a responder agent, or

object, and an arbitrary communication channel. This includes how to to get the agents

to know about each other in the first place, what has already been solved by the Swarm

Broker (COSTA et al., 2015), which provides a Discovery service, enabling agents to dy-

namically find each other based on semantic queries (CALCINA-CCORI et al., 2018).

Thus, when an initiator finds a potential responder in the Swarm, a spontaneous interac-

tion can take place.

In this dynamic scenario, in which an initiator contacts a responder, possibly for the

58

first time, how can the responder decide whether a given interaction should

be allowed (or denied)? In other words, there must be a way for the responder to

characterize the initiator either as an authorized or unauthorized party.

At a high level, our proposed solution relies on attribute-based authentication and

authorization, as described in Sections 3.1.2 and 3.1.1. It works by authenticating the

initiator with its attributes, and by having the responder evaluating access policies to

check whether they match the attributes of the involved parties. The attributes of the

initiator are stored and presented in the form of Verifiable Credentials, an open format

for signed attributes in decentralized environments (SPORNY et al., 2019b). The access

policies are defined using the SmartABAC model (FEDRECHESKI et al., 2021), which

enables expressive and lightweight ABAC policies, suitable for being embedded in IoT

devices.

Even though we have developed an efficient ABAC model (SmartABAC), comput-

ing an attribute-based authorization involves other costs, such as the transmission of the

attributes of the initiator. To address this, we combine ABAC with the CapBAC ap-

proach, which uses tokens to encode authorization decisions. We do so by caching the

attribute-based authorization response into a signed capability token, which can be used

by the initiator multiple times. Such token encodes the initiator and responder identi-

ties, what kind of interaction is allowed, and for how long it is valid. The benefits of

the token-based approach include smaller size when compared to credentials, faster ver-

ification when comparing to access policies, and improved privacy since it only discloses

pseudonymous identifiers (DIDs).

Thus, in summary, an initiator proves its right to interact with a responder by us-

ing a capability token, which was programmatically generated by the responder after

locally evaluating ABAC policies. This way, the system retains the flexibility of the de-

centralized attribute-based approach, while keeping the reduced overhead of token-based

authorization. That is, since the token can be re-used, computation and network re-

sources are saved, as the token is smaller than Verifiable Credentials and simpler to parse

than SmartABAC policies. Our approach also enables decentralized processing by using

a lightweight ABAC model that can be embedded in IoT devices, and by employing self-

sovereign identity. The latter includes use of DIDs and VCs to identify and authenticate

devices, and will be discussed further in the next subsection.

The process of obtaining an access token is presented in Figure 9. The first step

consists in the establishment of an end-to-end secure channel by using DIoTComm (FE-

59

DRECHESKI et al., 2022), a DID-aware application-layer security protocol, proposed in

Section 3.1.3. After creating the secure channel, the initiator requests an authorization

token by presenting its credentials, i.e., signed attributes. The responder’s Broker verify

the credentials signatures considering the list of trust anchors, and compares the creden-

tial’s attributes with the ones defined in the ABAC policies. If the policies are satisfied, a

token is generated, and then returned to the initiator (not shown in the diagram). Finally,

note that as per the Swarm architecture (COSTA et al., 2015), the Broker usually runs in

the same device as the responder agent, therefore the access decision is computed locally.

The whole process will be explained with more details in the next subsections.

Device A

Device B

Bob's persona
agent (initiator)

id: did:bob
pub-keys: [...]

friendOf: did:alice
issuer: did:alice

proof: ? ? ?

1b. DID Document *
Contains a DID linked to

endpoints and public keys.
id: did:lamp

pub-keys: [...]
service: [...]

user: friendOf did:alice
operations: read, update
object: owner did:alice

Alice's lamp
agent

did:alice, did:MIT, ...

2. Verifiable Credentials *
Signed attributes about

a DID holder.

4. ABAC policies +
High-level attribute-based rules

defining the allowed interactions.

3. Trust anchors
List of trusted

credential issuers.

Ask Authorization

1 Secure Channel (DIoTComm)

2 4 Evaluate Policies (ABAC)

5 Generate Token (CapBAC)

3 Verify Credentials
Swarm Broker

(responder)

Registers at

The AAD enables agents
to securely interact in a

self-sovereign way.

1a. Keystore
Secure local storage

for private keys.
private keysprivate keys

Autonomous Agent Description - AAD

owner: did:alice
issuer: did:alice

proof: ? ? ?

issuer: did:broker
subject: did:bob

audience: did:alice
operation: update
expiration: 1 hour

proof: ? ? ?

5. Capability Token
Dynamically generated

according to request attributes.
Short-lived and identity-based.

Identity Blockchain

Store and Resolve
DID Documents (optional)

Secure spontaneous interactions
are established using a combination

of Verifiable Credentials, ABAC
policies, and Capability Tokens. Interaction Setup

Figure 9: Setup of a secure spontaneous interaction between self-sovereign Swarm agents.

Next, as shown in Figure 10, the initiator can use the token to prove its right to

interact with the responder. It does so by establishing a secure channel using DIoTComm,

and sending a message along with the capability token. The responder agent, then,

verifies whether the token satisfies the attempted interaction, and if the token is valid,

the interaction is allowed to proceed.

Finally, note that in both the setup and execution phases, an identity blockchain

may be involved. It serves as a decentralized source of truth for DID Documents, which

primarily map DIDs to public keys and endpoints. As explained in section 3.1.4.1, this

feature enables spontaneous secure communications between peers.

60

Device BDevice A

Message + Token

1 Secure Channel

2 3
Verify
Token

Bob's
persona
agent

Alice's
lamp
agent

Interaction Execution

Identity Blockchain

Figure 10: Secure interaction execution.

3.2.3 Confidentiality and pseudonymous Authentication

When two agents interact, the first level of security consists in providing confidential-

ity and pseudonymous authentication. The proposed framework does so by establishing

a secure channel for communication (Step 1 of the interaction setup, shown in Figure

9). Confidentiality is implemented through message encryption using strong algorithms.

Pseudonymous authentication relies on DIDs, enabling agents to verify their respective

identifiers. Since DIDs are linked to DID Documents, and therefore to their respective

keys, DID-based authentication enable agents to verify the origin of a confidential mes-

sage.

The specific workings of this layer are provided by the DIoTComm protocol, described

in Section 3.1.3. In DIoTComm, the initiator creates a confidential and authenticated bi-

nary message based on the data available in the Agent Description. That is, the message

is encrypted with private part of the keys stated in the DID document, and it is authen-

ticated based on the DID of the sender. Since DIoTComm messages are built at the

application layer, they enable establishment of end-to-end security over heterogeneous

protocols. Moreover, its use of binary encoding reduces overhead when comparing to

existing alternatives for DID-based secure messaging (FEDRECHESKI et al., 2022).

3.2.4 Attribute-based authorization

After a secure channel is established, application-specific attributes and policies are

used to verify whether an initiator agent can perform a specific operation on a respon-

der agent – steps 2, 3, and 4 of Figure 9. Figure 11 details the steps involved in the

authorization decision.

Upon receiving an authorization request that contains the attributes of the initiator,

61

Verify
Credentials

Initiator Credentials
(Subject)

friendOf: did:alice
issuer: did:alice

proof: ? ? ?

did:alice,
did:pear,

...

Trusted
Issuers

Create
Access
Request

Evaluate
Access
Policies

subj ect : { f r i endOf : di d: al i ce}
oper at i ons: [updat e]
obj ect : { owner : di d: al i ce, t ype: l amp}

. . .
{
 subj ect : { f r i endOf : di d: al i ce}
 oper at i ons: [r ead, updat e]
 obj ect : { owner : di d: al i ce,
 t ype: l amp}
} ,
. . .

SmartABAC Policies

Generate
Capability

Token

owner: did:alice
issuer: did:alice

proof: ? ? ?

type: lamp
issuer: did:pear

proof: ? ? ?

Responder Credentials
(Object)

Access Request

Figure 11: Steps of attribute-based authorization flow.

a responder agent will verify whether these attributes were signed by a trusted issuer.

If that is the case, the next step is to create an access request to serve as input for the

authorization function. The access request contains all the attributes from the initiator

(subject), the intended operation, and all attributes of the responder (object). It might

also include context attributes, such as current time and location. The access request is

then compared to a set of attribute-based policies.

In this work we adopt the SmartABAC model for the authorization policies, since

it allows creation of complex access policies that are fast to evaluate. If the access re-

quest matches at least one of the policies, the request is authorized. In SmartABAC, the

matching rules consider the data type of each attribute to achieve flexibility in the access

policies while maintaining a fast execution time. The matching of attribute-based creden-

tials and high-level access policies is an important feature to enable secure spontaneous

interactions in the Swarm.

3.2.5 Capability token generation

After a request is authorized, a short-lived capability token is generated, as per step

5 of Figure 9. It binds the identities (DIDs) of the initiator, responder, and token issuer

(usually the responder’s broker), as well as the authorized operation and an expiration

time. The latter can be extracted from the policy that authorized the request, in case

it contains a time restriction. For example, if the policy states that requests are allowed

62

between 1pm and 6pm, and the access request happens at 4pm, the token will be valid

for two hours. If the access policy does not specify a time restriction, a sensible default

should be used, ideally less than 24 hours.

Figure 12 shows an example token. It contains the DIDs of the initiator (subject), the

responder (audience), and the broker (issuer). It also contains the operation, encoded in

terms of Representational State Transfer (REST) methods, therefore they can be easily

mapped to protocols such as HTTP or CoAP. The token body also holds an expiration

time and a context restriction. Finally, the token has a digital signature computed by the

issuer, which can be later verified by the responder, i.e. the token’s audience.

{
 " subj ect " : " di d: sw: BaPShMy4Uh1f DgM61gPDMD" ,
 " audi ence" : " di d: sw: 2WV5BUwcwQbw5TWQby835T" ,
 " i ssuer " : " di d: sw: 9gc8hYeRD1D3vqBCZZ1CWc" ,
 " oper at i on" : {
 " met hod" : " PUT" ,
 " ent r y" : " / br i ght ness"
 } ,
 " expi r at i on" : 1629330172,
 " cont ext " : { } ,
}

<di gi t al s i gnat ur e by " i ssuer " >

Figure 12: Example capability token.

The token in Figure 12 is shown in JSON for display purposes only, as in practice

the token is serialized using COSE and relies on abbreviations to further reduce token

size. We reuse the abbreviations defined in the CBOR Web Token (CWT) specification

(JONES et al., 2018), and add new Swarm-specific abbreviations for the newly added

operation and context keys.

3.2.6 Interaction Execution

The execution of an interaction between two Swarm agents is the final step and

ultimate goal of the interaction setup process that was described in the previous section.

In this step, shown in Figure 10, two agents interact with reasonable guarantees that their

exchanged messages are confidential, integrity-protected, authenticated, and authorized.

The execution starts with the initiator agent, which assembles a DIoTComm message

whose payload contains a capability token and an application-specific message. Upon

reception and decryption of the message, the responder verifies the token by checking

its fields as follows. The subject, audience, and issuer fields of the token must be equal,

respectively, to the initiator, the receiver, and the Broker where the receiver is registered

63

at. Next, the token operation must match both the request method and path, and the

token expiration date must not be in the past. If and only if all of the previous conditions

holds true, the signature is verified, and if it is valid, the interaction is accepted by the

responder. After it is finished, a response, protected by DIoTComm, is sent back to the

initiator. This procedure can be run many times with the same token, as long as the

token is not expired. To renew a token, an initiator must re-run the previously defined

interaction setup procedure.

3.3 Concluding remarks

This chapter presented a framework for protection of interactions between Swarm

agents. It presented solutions using a layered approach, from attribute-based authoriza-

tion down to self-sovereign agent identification. Then, it described the operational flow for

the establishment of a secure interaction, as well as the data model required for configura-

tion of each agent. Next, we will present how this architecture was actually implemented

to demonstrate that the solution is viable.

64

4 FRAMEWORK IMPLEMENTATION

This chapter describes the implementation of the proposed framework and its integra-

tion with pre-existing Swarm infrastructure, such as the Swarm Broker and the SwarmLib.

Table 6 presents a summary of the software projects created or significantly modified to

support the implementation of the proposed framework. These include five libraries and

three Swarm Agents that are part of the Swarm infrastructure, which have some level

of interdependency. Most of the libraries were created from scratch, and all the agents

but the did-chain already existed and were updated to support the new security layer.

A few example agents were also created, which are not directly shown in the table, but

are discussed later in the text. Documentation on how to use each software described

in Table 6 can be found in its respective repository link. The remainder of this chapter

describes the implementations for each layer in detail.

Table 6: Software repositories created or modified as a result of this work.
Name Layer Type Description Contribution Depends on

Swarm Broker1 All
Specialized
Agent

Control plane services
for IoT Swarms

Heavily modified
SmartABAC,
cose-elixir

did-chain2 Identification
Specialized
Agent

Storage of DID Documents Created from scratch
SwarmLib,
swarm-sec

economy-miner-
python3 N/A

Specialized
Agent

Economy and Reputation
blockchains

Slightly modified
SwarmLib,
swarm-sec

SwarmLib4 All Library
Enables the creation of
Swarm Agents

Heavily modified swarm-sec

swarm-sec5
Authentication,
Confidentiality

Library
Abstracts the handling of
COSE messages

Created from scratch -

smart-abac-elixir6 Authorization Library
SmartABAC authorization
and storage functions

Created from scratch -

smart-abac-c7 Authorization Library
SmartABAC authorization
functions

Created from scratch -

cose-elixir8
Authentication,
Confidentiality

Library
Partial implementation of
the COSE standard

Created from scratch -

1 ⟨https://github.com/swarm-citi-usp/iot-broker-elixir⟩ 2 ⟨https://github.com/swarm-citi-usp/did-chain⟩
3 ⟨https://github.com/swarm-citi-usp/economy-miner-python⟩
4 ⟨https://github.com/swarm-citi-usp/swarm-lib-python⟩ 5 ⟨https://github.com/swarm-citi-usp/swarm-sec⟩
6 ⟨https://github.com/swarm-citi-usp/smart-abac-elixir⟩ 7 ⟨https://github.com/swarm-citi-usp/smart-abac-c⟩
8 ⟨https://github.com/geonnave/cose-elixir⟩

https://github.com/swarm-citi-usp/iot-broker-elixir
https://github.com/swarm-citi-usp/did-chain
https://github.com/swarm-citi-usp/economy-miner-python
https://github.com/swarm-citi-usp/swarm-lib-python
https://github.com/swarm-citi-usp/swarm-sec
https://github.com/swarm-citi-usp/smart-abac-elixir
https://github.com/swarm-citi-usp/smart-abac-c
https://github.com/geonnave/cose-elixir

65

4.1 The SwarmOS Framework

The Swarm (also referred to as SwarmOS) is a bio-inspired framework constituted by

autonomous smart objects (RABAEY, 2011). In a parallel with swarms of bees, with spe-

cialized bees contributing to a common goal; the Swarm is composed of specialized devices

whose interaction solves a common problem. The Swarm network behaves like an organ-

ism and shows an organized behavior that results in an emergent collective intelligence

(COSTA et al., 2015). Analogously to specialized honeybees, heterogeneous devices in the

Swarm might range from high-power processing servers to low-power wearable devices.

Human participation in the Swarm network is also of crucial importance.

The SwarmOS framework is composed of networked IoT devices, with no dependencies

on the network topology. As shown in Figure 13, IoT device runs one or more Swarm

agents. A Swarm agent is a uniquely identifiable logical entity that is able to interact with

the Swarm, and there are two main types of agents. One type is the Broker agent, which

implements services such as registry, discovery, and reputation, which enable other agents

to find, establish cooperating relations, and trust each other. The second type of agent

is the application agent, which implement specific functionalities that vary according to

each application. Such agents register themselves on Brokers, which in turn enables other

agents to perform discovery operations through a network of connected Brokers.

Blockchain Node 1

SwarmLib Agent X
SwarmLib Agent X

SwarmLib Agent X

IoT Device 1

SwarmLib Economy Chain

SwarmLib Reputation Chain SwarmLib DID Chain

Swarm Broker

SwarmLib Agent X
SwarmLib Agent X

SwarmLib Agent Y

IoT Device 2

Swarm Broker

Swarm Broker

Blockchain Node N

SwarmLib Economy Chain

SwarmLib Reputation Chain SwarmLib DID Chain

Swarm Broker

SwarmLib Agent X
SwarmLib Agent X

SwarmLib Agent Z

IoT Device 3

Swarm Broker

SwarmLib Agent X
SwarmLib Agent X

SwarmLib Agent N

IoT Device N

Swarm Broker

...

...

Figure 13: The SwarmOS framework organization.

Since much of the functionality implemented by application agents is shared, it was

extracted to a library called SwarmLib. Figure 13 shows an example with many IoT

devices, each of which runs one Broker, a few application agents (or simply, agents).

As described in previous works, the SwarmOS framework has economic mechanisms for

66

incentivising resource sharing, as well as a reputation scheme to improve trust in the

network (BIASE et al., 2018b). These mechanisms are implemented through blockchains,

which in turn are modeled as Swarm agents as well. Finally, as proposed in the current

work, a third blockchain was added, the DID Chain, whose objective is to serve as a

decentralized and secure layer for DID Document storage.

In this thesis, significant contributions were made to both the Broker and the Swarm-

Lib. Figure 14 illustrate the added contributions contributions highlighted in blue; on

the bottom-right side of the blue boxes, libraries developed in this thesis (shown in Table

6) are also shown. For example, implementing the Authorization module in the Bro-

ker required the development and use of the cose-elixir and smart-abac-elixir libraries.

Regarding the Broker, three main modules have been added. The first implements se-

cure communication channels using DIoTComm, the probocol described in Section 3.1.3.

Another module implements authentication of attributes, as described in Section 3.1.2

and step 3 of Figure 9. Finally, the authorization module evaluates attribute-based poli-

cies, based on the SmartABAC model (Section 3.1.1.2), and generates capability tokens

according to Section 3.2.5.

Discovery
Authorization

- Evaluate policies
- Generate Cap. Token

Negotiation

Reputation

Localization

Authentication
Verify credentials

Registry
Swarm Broker

cose-elixir

Semantic Matching

smart-abac-elixir
cose-elixir

Classes for:
Agent Creation,

Registration, Discovery,
Contract, Security

SwarmLib

Secure Comm.
DIoTComm

cose-elixir

Authorization +
Authentication

Verify Cap. Token

swarm-sec

Management CLI
Manage Keys, DDos,

VCs, and Policies

swarm-sec

Secure Comm.
DIoTComm

swarm-sec

Figure 14: Contributions to the SwarmOS framework, highlighted in blue.

In the SwarmLib, analogous security modules have been added as well. Confidentiality

was achieved by adding a module that implements DIoTComm; and Authentication and

Authorization were achieved by implementing a module that verifies capability tokens,

as described in Section 3.2.6. In addition, the SwarmLib was also integrated with a

command-line interface (CLI) tool that enable several management operations, including:

creation of a full agent data model instance, issuance and inclusion of verifiable credentials,

registration of DID Documents in the DID Chain, and the definition of SmartABAC

policies.

67

4.2 Authorization

The authorization layer was implemented partly in separated libraries, and partly as

additions to the Swarm Broker and the SwarmLib. The SmartABAC model, described

in Section 3.1.1.2, was implemented as the smart-abac-elixir and smart-abac-c stand-

alone libraries. The Elixir version was created to facilitate integration with the Swarm

Broker, which is written in Elixir, and the C version is meant to allow execution on highly

constrained devices. In both implementations, all functions of the SmartABAC model

were implemented, while the Elixir implementation featured additional utilities, such

as storage and JSON and CBOR serialization functions. In order to realize the expand

function described in Table 5, both versions feature a breadth-first search algorithm which

can traverse the graph of hierarchical attributes. This approach works since the hierarchy

is a directed acyclic graph.

The Broker also received modifications to handle authorization. It used smart-abac-

elixir as a library in order to store and evaluate SmartABAC policies, and was updated

to handle the remaining of the attribute-based authorization flow (Figure 11). These

include attribute extraction from credentials, credential verification, construction of access

requests, calling of the policy evaluation functions, and generation of the capability token.

To generate the token, it relied in the provided cose-elixir library, which implements the

CBOR Web Token standard (JONES et al., 2018).

The main changes to the SwarmLib regarding authorization include the ability to in-

tercept requests and to verify authorization tokens. The purpose of request interception is

to verify whether whether an initiator is authorized to perform a given request. This was

achieved by adding a Python decorator on each endpoint that should be authorization-

protected, a flexible design that makes it simple for implementers to choose which parts of

the agent should be public, and which should be protected. For such protected endpoints,

the presence of a valid capability token would be checked via the provided library swarm-

sec, which implemented verification of CBOR Web Tokens; swarmsec, in turn, delegated

the handling of COSE objects to the external library pycose1.

4.3 Authentication

In the context of our framework, both messages and agents can be authenticated.

Message authentication is specified in DIoTComm, whose implementation builds upon

1https://github.com/TimothyClaeys/pycose

68

cose-elixir and swarm-sec in the Broker and in the SwarmLib, respectively. It works based

on the fact that AES-CCM provides authenticated encryption, therefore all messages that

are successfully decrypted, are also authentic.

Agent authentication refer to the presentation of signed attributes, in the form of

verifiable credentials, during an interaction setup. The implementation in the SwarmLib

leverages swarmsec and pycose to generate such credentials, in the format of CBOR Web

Tokens. The verification of VCs by the Broker is implemented using the cose-elixir library,

during the authorization flow.

4.4 Confidentiality

The confidentiality of messages is provided by DIoTComm, which was implemented

in both the Broker and the SwarmLib. In the SwarmLib, the construction of COSE

(DIoTComm) messages is delegated to swarm-sec, which in turn uses the pycose library.

Specifically, the function enc encrypt ecdh ss in swarm-sec takes a payload, a sender (pri-

vate) key, and a receiver (public) key, and returns an encrypted COSE object. In doing

so, it specifies the key derivation function (ECDH with HKDF of 256 bits), the AES-CCM

algorithm, and generates a nonce that combines timestamp and a random part. Both the

Broker and the SwarmLib leverage DIoTComm to ensure that their incoming and out-

going messages are confidential. For incoming traffic, messages are intercepted at early

stages (usually an extension of the server library) to enable decryption. For outgoing

messages, functions implemented in the SwarmLib and in the Broker construct secure

messages before they are sent through the network.

4.5 Identification

Agent identification was implemented by providing capabilities to handle Decentral-

ized Identifiers in both the SwarmLib and the Broker. Specifically, the SwarmLib now

provides functions for creation, storage, and serialization of DIDs and DID Documents,

as well as registration and updates of DID Documents at the Identity Blockchain. To

facilitate creation of new identities, a command line program named swarm manager was

created as part of the SwarmLib. The Broker was modified to read and handle DIDs and

DID Documents, and to be able to resolve DDos from the Identity Blockchain.

The Identity Blockchain is an important part of the identification layer. Due to the

69

complexity of implementing a full blockchain, we considered it out of scope of this work,

and provided instead a mock implementation, which we refer to as did-chain. The mock

provides an API for creation and updates of DID Documents, and uses a nosql database

(MongoDB) to store the DDos. Nevertheless, the mocked did-chain is secure in that it

only accepts creation and updates of DDos that have been signed by the owner of the

DID contained in that DDo. Read operations, on the other hand, can be performed by

anyone in the network, since DIDs are public and pseudonymous by design. In addition,

updates can only update the endpoints, which usually change due to the agent acquiring

new IP addresses as it roams through different networks.

4.6 Example: creating a camera agent using the

SwarmLib

The framework described so far deals with a broad set of security principles, and it

would be unwise to let their implementation to the discretion of the user. For this reason,

the functionality that is common for all Swarm agents is abstracted by the SwarmLib. In

order to illustrate how the SwarmLib can be actually used, this section presents the full

implementation of an example Swarm agent. It consists in less than 30 lines of Python

code, while providing all of the security mechanisms presented in Chapter 3. The chosen

agent is a camera agent, which has one authorization-protected endpoint for returning

frames, as shown in Listing 1.

First, the necessary libraries are imported, including the Agent and Wallet classes

of the SwarmLib. Next, the Wallet is initialized with a storage location, and the cam-

era object is loaded with the information of the agent data model, which contains the

agent’s Keys, DID Document, Credentials, and Access Policies (see Section 3.2.1). Since

the camera will act as a provider, it enables the use of a server, which uses the flask

library2. It also initializes the actual camera device.

Next, from lines 11 to 20, an endpoint that accepts the GET method on the /frame

method is defined and implemented. Since line 11 calls flask through the camera agent ob-

ject, only requests that have valid DIoTComm messages will be accepted, thus providing

identification, confidentiality, and authentication. Next, line 12 specified that authoriza-

tion tokens must be enforce for this route, thus asserting that only authorized initiators

will have access to the frame. Lines 13 to 19 implement aquisition of the camera image,

and line 20 creates and send a DIoTComm response to the initiator.

2https://flask.palletsprojects.com/en/2.1.x/

70

1 from flask import request

2 from swarm_lib import Agent, Wallet

3 from labrador_camera import LabradorWebcam

4 import cbor2, logging, os, cv2

5

6 Wallet.init(os.environ.get("SWARM_BASE_DIR"))

7 camera_agent = Agent.from_config(os.environ.get("SWARM_AGENT") or "camera")

8 camera_agent.enable_flask_app(__name__)

9 webcam_device = LabradorWebcam(device=os.environ.get("WEBCAM_DEVICE") or 0)

10

11 @camera_agent.flask_app.route('/frame', methods=["GET"])

12 @camera_agent.enforce_authorization_token

13 def frame():

14 ok, frame = webcam_device.read()

15 if ok:

16 frame_jpg = cv2.imencode('.jpg', frame)[1].tobytes()

17 resp_data = cbor2.dumps({"result": "ok", "value": frame_jpg})

18 else:

19 resp_data = cbor2.dumps({"result": "error", "value": ok})

20 return camera_agent.flask_app.secure_response(request.remote, resp_data, 200)

21

22 if __name__ == "__main__":

23 camera_agent.register_identity()

24 camera_agent.register_at_broker()

25 camera_agent.serve_with_flask(debug=False)

Listing 1: Example of a Swarm camera agent implemented using the SwarmLib.

Finally, the last three lines are executed once whenever the script is executed. First,

the agent registers (or updates) its DID Document a the Identity Blockchain; next, it

registers its full agent data model (except private keys) at its broker of trust; and at last

it enables the server to make the endpoint available to the Swarm network.

4.7 Concluding remarks

This chapter presented how the proposed framework was implemented and integrated

within the Swarm. Relevant details of the implementation of each layer were discussed,

and a real example of a Swarm agent was presented. The next chapter will provide an

evaluation of each layer, as well as the full integrated work, to demonstrate its feasibility

to run in real IoT hardware and actually protect Swarm agents.

71

5 EVALUATION AND RESULTS

So far we have proposed and implemented a solution for protecting interactions be-

tween IoT devices in Swarm environments. This chapter presents a comprehensive eval-

uation of such solution. First, we evaluate the mechanisms for authorization, then we

measure the overhead of the identification and protection mechanisms. Finally, we present

an evaluation of the complete solution.

Note: A significant portion of the evaluation and results presented in this section

has been previously published in the following works:

• Fedrecheski et al. (2021): A low-overhead approach for self-sovereign identity

in IoT.

• Fedrecheski et al. (2022): SmartABAC: enabling constrained IoT devices to

make complex policy-based access control decisions.

5.1 Evaluation of the SmartABAC model

This section presents an evaluation of the SmartABAC model, including a use case, a

comparison with existing ABAC models, and a performance analysis on constrained and

non-constrained platforms.

5.1.1 Smart Home Use Case

We provide a Smart Home use case to demonstrate the application of our model

in a realistic situation. It is worth mentioning that SmartABAC improves availability

and privacy, specially relevant in this scenario. First, it involves personal devices whose

usage patterns represent highly sensitive information, therefore it is essential, from a

user perspective, to keep access control decisions private. Second, having home devices

72

depending on external authorization services exposes owners to availability issues if these

services fail temporarily or permanently. Table 7 shows the use case participants and

their respective attributes, which are discussed below:

1. Alice, Bob, and Carl: users that live in the household “home-1”. Carl is Alice and

Bob’s son. Alice is the owner of most devices in this household, except for the other

two user devices (Bob and Carl). Their respective attributes will determine their

access to different devices in the house.

2. Lamp1 and Lamp2: smart lamps whose status can be queried and updated. Note

that, while their “type” and “manufacturer” attributes have distinct values, both

lamps have similar functionality.

3. Camera1: a security camera located outside the house from which frames can be

read.

Table 7: Use case actors and associated attributes.
Alice Bob Carl Lamp1 Lamp2 Camera1
id: alice id: bob id: carl id: lamp1 id: lamp2 id: camera1
owner: alice owner: bob owner: carl owner: alice owner: alice owner: alice
type: user type: user type: user type: lamp type: lightBulb type: securityCamera
manufacturer: pear manufacturer: pear manufacturer: sberry manufacturer: pear manufacturer: sberry manufacturer: pear
household:
(id: home-1,
role: mother)

household:
(id: home-1,
role: father)

household:
(id: home-1,
role: child)

household:
(id: home-1)

household:
(id: home-1)

household:
(id: home-1)

lastName: smith lastName: smith lastName: smith location: outdoor
age: 34 age: 36 age: 10

Source: Fedrecheski et al. (2021).

Table 8: SmartABAC policies that satisfy the given use case.
Id Description Subject Attributes Operations Object Attributes Context Attributes

p1
Alice can do anything
with her own devices

id: alice
create, read,
update, delete

owner: alice

p2
Adults can use
security appliances

age: (min: 18)
household: (id: home-1)

read, update
type: securityAppliance
household: (id: home-1)

p3
Children can check
and update any lamp
when it is dark outside

household:
(id: home-1,
role: child)

read, update
type: lightingAppliance
household: (id: home-1)

outdoorLuminosity: (max: 33)

p4
Camera1 can read
and toggle Lamp1

id: camera1 read, update id: lamp1

p5

Users with reputation
of at least 4 can contract
outdoor cameras
during the day

reputation: (min: 4) contract
type: securityCamera
household: (id: home-1)
location: outdoor

hour: (min: 8, max: 18)

p6

A specific device can
read frames from
Camera1 during a
5-minute time window

id: some-device-x read id: camera1
year: 2020, month: 6
day: 30, hour: 17
minute: (min: 20, max: 25)

Source: Fedrecheski et al. (2021).

Given the described participants and their attributes, Table 8 presents six policies,

identified by column “Id” to facilitate future reference, and whose purpose is written in

plain English in column “Description”. For example, policy p2 regulates the interaction

73

securityCamera surveillanceCamera

securityAppliance

appliance

lightingAppliance

lamp lightBulb

" type"
hierarchy

Source: Fedrecheski et al. (2021).

Figure 15: Example hierarchy for the “type” attribute.

between adult users and security appliances. The remaining columns contain the policy

itself, expressed in terms of the allowed operations and the subject, object, and context

attributes. Returning to the policy p2 example, the subject attributes contain a range-

typed attribute for age (that must not be less than 18) and a nested attribute that

identifies a specific household. It further specifies that read and update access will be

given only to security appliances in the same household. Note also that some object

attributes in the policies refer to “type” attributes that are not present in Table 7. The

link between these attributes is expressed by the hierarchy in Figure 15. For example, both

lamp and lightBulb have lightingAppliance as a successor in the hierarchy. This allows

creating higher-level rules, reducing the number of required policies, and simplifying policy

administration.

5.1.2 Comparison with existing models

Table 9 presents a comparison of SmartABAC and related work. The criteria used in

the comparison are discussed below.

5.1.2.1 Model Features

In Section 3.1.1.2, we highlighted the advantages of using a particular set of features

(nested, typed, and hierarchical attributes, and enumerated and multi-attribute policies)

to design an ABAC model that is both lightweight and expressive. When comparing to the

works in Table 9, it first comes to attention that none of the enumeration-based models

supports typed attributes, limiting their expressiveness. Moreover, PM and CoAC fully

support hierarchies, while other models do not support. Also, note that hierarchy support

for MQTT ABAC is limited, since it is fixed to MQTT protocol entities. Finally, all the

models but PM support multi-attribute policies, a feature that facilitates the expression

of logical conjunctions. None of the existing models concurrently supported the features

74

Table 9: Comparison of ABAC models for IoT environments.

Criteria
Smart-
ABAC

PM
1 EAP-

ABACm,n
2

HG-

ABAC
3 XACML

4 MQTT

ABAC
5 CoAC

6 Block.

ABAC
7

ITS-

ABACG
8

Auto.

ABAC
9

Pol.

ABAC
10

Model
features

Typed ✓ ✓ ✓ ✓*

Hierarchical ✓ ✓ ✓ ✓* ✓ ✓
Enumerated ✓ ✓ ✓ ✓ ✓ ✓
Multi-attribute ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Expressi-
veness

Context-aware ✓ ✓ ✓ ✓ ✓ ✓* ✓* ✓*

Numeric ranges ✓ ✓ ✓ ✓ ✓ ✓*

Nested attributes ✓
Protocol-agnostic ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Supports
policies
from
use case

p1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
p2 ✓
p3 ✓
p4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
p5 ✓
p6 ✓ ✓ ✓ ✓ ✓

Implementation
Evaluation ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Open source ✓ ✓ ✓ ✓

Architecture
Designed for
constrained devices

✓

Standalone
access decision

✓

1
Ferraiolo, Atluri & Gavrila (2011).

2
Biswas (2017).

3
Servos & Osborn (2014).

4
Chehab & Mourad (2020), Parducci, Lockhart & Rissanen (2013), Esposito, Ficco & Gupta (2021), Kim, Kim & Alaerjan (2021).

5
Gabillon, Gallier & Bruno (2020).

6
Li et al. (2018).

7
Zhang et al. (2021).

8
Gupta et al. (2021).

9
Karimi et al. (2021).

10
Jabal et al. (2020).

* Limited support.

Source: Adapted from Fedrecheski et al. (2021).

proposed in the SmartABAC model.

5.1.2.2 Expressiveness

This criterion refers to a qualitative evaluation regarding the capabilities of ABAC

models.

• Context-awareness: in the Internet of Things, a common requirement is to have

authorization decisions linked to contextual factors, such as time of day or geoloca-

tion. Among the compared works, the PM and EAP-ABACm,n do not support this

feature. Blockchain ABAC and ITS-ABACG support it but have limitations, since

the former only supports time and the latter only considers location.

• Numeric ranges: comparison among numbers is essential in a rule-based system to

avoid extensive enumeration of all the possible values. While most existing models

support ranges, the PM and EAP-ABACm,n models do not, and the ABAC model

by (ZHANG et al., 2021) has limited support since it only works with time ranges.

• Nested attributes: attributes either have atomic values, such as role=adult, or have

nested values, such as degree=(year=2020, level=phd). This is common, for ex-

ample, in the Verifiable Credentials specification for portable identity (SPORNY et

al., 2019b), which can be applied to IoT environments to encode attributes (FE-

75

DRECHESKI et al., 2020). None of the previous ABAC models had support for

nested attributes.

• Protocol-agnostic: since IoT applications tend to span over heterogeneous networks

and protocols, we consider an essential feature for an ABAC model not to be tied

to a specific protocol. The MQTT ABAC model, as the name implies, does not

support this capability.

5.1.2.3 Policies From Use Case

As mentioned, all of the example policies in Table 8 are expressed using SmartABAC.

This section evaluates whether other models could be used to create the same policies.

• PM: the only policies fully supported by the PM are p1 and p4. Other policies are

not supported because PM supports neither typed attributes nor context attributes.

• EAP-ABACm,n: similarly to the PM, this model only supports p1 and p4.

• HGABAC: since this model uses a rich policy language, it fully supports policies

p1, p4, and p6. However, it does not support nested attributes, rendering it unable

to encode policies p2, p3, and p6 directly.

• XACML: this model supports p1, p4, and p6, but cannot express other policies due

to the lack of nested attributes.

• MQTT ABAC: since it only supports operations from the MQTT protocol (publish,

subscribe, and deliver), it cannot encode any of the policies from Table 8.

• CoAC: this is an expressive model, however, it also does not support nested at-

tributes. Therefore it is unable to directly represent policies p2, p3, and p5.

• Blockchain ABAC: this model has support for basic attributes, including support

for time-based context. Still, it is not able to express policies p2, p3, and p5.

• ITS-ABACG: this model supports policies p1 and p4, however it cannot express

policies p2, p3, p5, and p6 dues to lack of the range type.

• Automatic ABAC: although this model supports policies p1 and p4, it cannot ex-

press other policies due to lack of the range type.

• Polisma ABAC: similarly, this model can only express policies p1 and p4 due to lack

of the range type.

76

5.1.2.4 Implementation

Implementing an ABAC model helps to validate the feasibility of the system. Most

works evaluated their implementation and considered factors such as policy evaluation

time, policy size, and others. Unfortunately, although many did implement their models,

only a subset of them feature open-source implementations, i.e., PM, HGABAC, and

XACML. This hinders the possibilities of comparison, since in the absence of the source

code, it is not possible to craft similar policies and execute tests under an homogeneous

environment. Regarding our model, we implemented SmartABAC in two programming

languages, Elixir for faster prototyping and C for integration in embedded systems. The

source code is available and linked on Table 10.

5.1.2.5 Architecture

Among the compared works, all but one (CHEHAB; MOURAD, 2020) aimed to run

within constrained devices. Their solution, however, was only tested in a smartphone

with a 1.4 GHz CPU and 1 GB RAM, which cannot be considered a constrained device

(BORMANN; ERSUE; KERANEN, 2014). On the other hand, SmartABAC was designed

to run even on microcontrollers with just a few MHz of clock and less than 512 KB of

RAM. Henceforth, SmartABAC allows standalone access decision since no remote server

is needed to evaluate the policies.

5.1.3 Performance comparison with open-source models

To compare the execution time among different models, we first selected the models

that had available open-source implementations, i.e., PM, HGABAC, and XACML. Then,

we selected the policies from our use case that are supported by these models, i.e., p1,

p4, and p6. Even though the PM does not support context attributes, as required by

p6, we built a partial p6 policy (without context information) and included PM in the

experiment. Results are available in Table 10.

Time to evaluate policies We measured the time, in milliseconds, to evaluate 1

request against policies p1, p4, and p6, repeatedly for 3000 times. These tests were run on

a laptop with a 1.8 GHz quad-core CPU and 8 GB of RAM, since it was a platform capable

of running all the available implementations. Even though our Elixir implementation of

SmartABAC was almost twice as slow as that of XACML, it is still more than 10 times

77

Table 10: Comparison of open-source ABAC implementations.

Criteria
Smart-
ABAC

PM HGABAC XACML

Time (ms) to
run 1 request
against policies
p1, p4, and p6,
3000 times

0,18
(Ca)

70
(Elixirb)

1112
(Rubyc)

840
(Pythond)

46
(Javae)

Average policy
size (bytes)

85 52 111 3433

Lines of code 449 616 1277 1854 19269
a ⟨https://github.com/swarm-citi-usp/smart-abac-c⟩
b ⟨https://github.com/swarm-citi-usp/smart-abac-elixir⟩
c ⟨https://github.com/mdsol/the policy machine⟩
d ⟨https://github.com/dservos/HGABAC⟩
e ⟨https://github.com/authzforce/core⟩

Source: Adapted from Fedrecheski et al. (2021).

faster than PM and HGABAC. On the other hand, our C implementation of SmartABAC

was 255 times faster than its closest competitor, a Java implementation of XACML.

It is worth mentioning that we were unable to directly compare the performance of

SmartABAC to works that did not share their software as open source. Still, we can

provide a discussion on apparent performance considering their respective results. For

instance, the ITS-ABACG work took 0.08 milliseconds to evaluate 10 requests against a

single policy in a cloud server; and Blockchain ABAC mentions that their authorization

flow is limited to the throughput of the underlying blockchain, which in the case of

Ethereum 1.0 supports only 15 transactions per second. Therefore, although more work

is needed to provide direct comparisons, our proposal seem to be more efficient than

existing works.

Policy Size Since IoT devices may be constrained in storage and bandwidth, em-

bedded access policies must have a compact size. To compare the policy size among

models, we measured the size of policies p1, p4, and p6 for each model and computed

the average. Some models already have a serialization format for policies. For example,

XACML uses the eXtensible Markup Language (XML) and HGABAC uses the HGABAC

Policy Language (HGPL), so we expressed and measured the policies in these formats.

For SmartABAC, we used CBOR, a compact and extensible data format commonly used

in IoT applications. We also used CBOR to represent the Policy Machine graph as an

adjacency list since it originally did not provide a serialization mechanism.

https://github.com/swarm-citi-usp/smart-abac-c
https://github.com/swarm-citi-usp/smart-abac-elixir
https://github.com/mdsol/the_policy_machine
https://github.com/dservos/HGABAC
https://github.com/authzforce/core

78

The line “Policy size” in Table 10 contains the results. The larger policy is that from

XACML, which is about 40 times larger than SmartABAC policies. This is mainly due

to the verbosity of XML encoding. SmartABAC is also more compact than HGABAC,

while it uses more bytes than PM. Still, the small footprint of SmartABAC policies allows

it to store up to 3000 policies in a device with 255 kB of memory.

Lines of Code Besides performance, the size of a codebase in storage-constrained

platforms should be considered. Even though we acknowledge that such a comparison

depends on the programming language and features implemented, we include it for ref-

erence. We used the Linux utility wc1 to count lines, which ignores comments and blank

lines. Moreover, observing that the PM repository provided different storage adapters, we

only included the in-memory adapter in the count. Table 10 shows the results, wherein

source lines of code sizes vary from almost twenty thousand for XACML, to well under

one thousand for SmartABAC.

5.1.4 Performance of SmartABAC on different platforms

In this section, we measure the performance of two SmartABAC implementations

on different platforms, as shown in Table 11. Laptop and Labrador are non-constrained

devices running Debian 10, while ESP32 and Pulga consist of MCUs that run bare-metal

software. A C-based implementation was tested in all platforms, while an Elixir-based

implementation was tested only on the Laptop and Labrador platforms.

Recall that, as shown in Table 7, the same attribute may be shared by many entities.

For example, many thousands of cameras could have the type: camera attribute. More-

over, this effect is increased when considering hierarchies, as shown in Figure 15. Thus,

a single SmartABAC policy could regulate access between many IoT devices. Aiming

to emulate large scale scenarios, we measured policy evaluation time in two configura-

tions: thousands of authorization requests against a few policies; and one request against

thousands of policies.

Table 12 shows the test descriptions and results. In the first test, we evaluated one

request against the six policies defined in Table 8, repeated it 3000 times, and measured

the total time. This scenario mimics an IoT device receiving thousands of authorization

requests in a short period. The C implementation showed a negligible delay on Laptop and

Labrador platforms and an acceptable delay on the two resource-constrained platforms.

1https://linux.die.net/man/1/wc

79

Table 11: Description of the platforms used during evaluation of SmartABAC.

Platform Description
Laptop Intel i7 quad-core 1.8GHz, 8 GB RAM
Labrador ARM Cortex A9 quad-core 1.3GHz, 2 GB RAM
ESP32 Xtensa LX6 dual-core 240MHz, 520 KB RAM
Pulga ARM Cortex-M4F single-core 32MHz, 256 KB RAM

Source: Fedrecheski et al. (2021).

Table 12: Performance of SmartABAC on different platforms.

Test Description Platform
SmartABAC

(C)
SmartABAC

(Elixir)

Time (ms) to run
1 request against
6 policies, 3000 times

Laptop 0,5 76
Labrador 5,5 830
ESP32 88 n/a
Pulga 176 n/a

Time (ms) to run
1 request against
3000 policies

Laptop 0,04 1
Labrador 0,12 6
ESP32 1 n/a
Pulga 4,8 n/a

Source: Fedrecheski et al. (2021).

The delay of using Elixir in Laptop was also acceptable, while its evaluation delay in

Labrador could imply a noticeable delay in response time.

In the second test, we considered a device in a highly dense network, containing

thousands of policies. Hence, we measured the time needed to evaluate one request against

3000 policies. The evaluation time in this scenario was negligible for all the platforms and

implementations tested. Even for the most resource-constrained device, a 32 MHz MCU,

less than five milliseconds were necessary to process 3000 policies.

5.1.5 Discussion

In this section, we compared SmartABAC with existing works to demonstrate its

expressiveness and ran tests on different platforms to show its ability to run even on

constrained devices. Next, we discuss some of the implications and limitations of our

work.

Contributions to ABAC in IoT In previous work, the use of ABAC in IoT has

been considered useful for its flexibility and granularity, however, it has been pointed as

lacking features such as heterogeneity and offline mode (OUADDAH et al., 2017). With

SmartABAC, we hope to have broadened the applicability of ABAC to IoT systems in

80

general. By testing it on embedded devices, we have shown that our model is lightweight,

has potential for offline mode, is distributed across devices, and can be executed in het-

erogeneous platforms.

Enabling embedded policy evaluation As shown, most existing works rely on

a third party to evaluate policies, as it has been considered impractical for devices to

compute their own decisions (RAVIDAS et al., 2019). With our work, we hope to have

proposed a counterexample in which policy evaluation algorithms run within constrained

devices with no significant overhead.

Benefits of device autonomy SmartABAC allows the creation of IoT access control

systems that have enhanced privacy and reliability, and reduced latency. Regarding pri-

vacy, by keeping access control decisions within IoT devices, external servers are prevented

from logging or monitoring the interactions of other IoT agents. Reliability is also im-

proved since reducing dependency on third parties implies that outages in remote servers

will not affect policy decisions, and network issues are less likely to interfere. Moreover,

latency is reduced. As shown, evaluating a single request against thousands of policies

can take as little as 5 milliseconds on a constrained device. Even for optimized edge

applications, a round-trip to an IoT gateway rarely takes less than 10 ms (NIKAEIN;

VASILAKOS; HUANG, 2018).

Limitations In this work we focused on providing an authorization layer and policy

model for constrained devices in the Internet of Things. We intentionally do not provide

mechanisms to authenticate attributes or to protect messages against eavesdropping and

other attacks, as we consider those out of the scope of our work. Similarly, we also do

not include a formal security analysis, as we consider that it would more appropriate

over the authentication and encryption layers. Thus, we leave topics such as attribute

authentication, message protection, and security analysis to future work.

5.2 Evaluation of the Swarm DID Method and DIoT-

Comm

We evaluate our system in three steps. First, we use a widely known threat model

to check the security of our system. Then, we compare the size of DIDs, DDos, and

81

Table 13: Mitigations of DIoTComm against the STRIDE threat model.
Threat Element under threat Attack mitigation Technique

Spoofing of identity
Blockchain identity,
IoT agent identity

Authentication via Authenticated Encryption
and/or Digital Signature

AES-CCM with tag,
EDDSA

Tampering of data
Message to register or query DDo,
Message between IoT agents

Data integrity via Authenticated Encryption AES-CCM with tag

Repudiation of messages
Message to register or query DDo,
Message between IoT agents

Non-repudiation via Digital Signature EDDSA

Information disclosure Message between IoT agents Confidentiality via Authenticated Encryption AES-CCM with tag

Denial of service
Blockchain node
IoT agent

Network analysis and other techniques
(out of scope)

(out of scope)

Elevation of Privilege
Update blockchain operation
IoT agent

Only a DID owner can update a DDo’s keys
Policy list (upper layer, out of scope)

(out of scope)

DIoTCommmessages with existing mechanisms. And finally, we measure the performance

of our proposal.

5.2.1 Security Analysis

In this section, we analyse possible threats to our system and explain how they can be

mitigated. To do so, we use the STRIDE threat model, an acronym for Spoofing, Tam-

pering, Repudiation, Information disclosure, Denial of service, and Elevation of privilege

(HERNAN et al., 2019). Table 13 summarizes how these threats might affect different

elements of our system, along with our approach to mitigate them. The term message in

the table should be interpreted as a DIoTComm message. Similarly, identity refers to the

DID, DID Document, and associated private keys of a given agent.

The first threat we consider is identity spoofing, which happens when a malicious

entity pretends to be someone else. In our system, the worst case would happen if the

Identity Blockchain is targeted by such an entity, which would cause the identity of all

IoT agents to be fundamentally insecure. Another way this threat could be explored is if

an attacker pretended to be an existing IoT agent, for example, by forging its sender id.

DIoTComm mitigates these threats at two levels. In the first layer, it uses an authenti-

cated encryption algorithm (AES-CCM), which not only encrypts data, but also appends

a one-time message authentication code to the ciphertext. This enable the data origin

to be authenticated. The second layer of mitigation uses digital signatures to further

ensure authentication of IoT agents. This is provided by the EDDSA algorithm, which

uses agents’ private and public key pairs to, respectively, sign and verify signatures.

When receiving a message, an agent must ensure it has not been tampered along the

way. This should be checked not only by IoT agents, but also by the Identity Blockchain,

which must check that new DID Document registrations arrived without modifications.

This threat can be mitigated by having messages protected with either authenticated

82

encryption, digital signatures, or both. As mentioned, DIoTComm already provides such

protection.

Some IoT applications may impose legal penalties to agents that cause harm to its

surrounding environment. Such agents may try to masquerade their malicious activities

by simply alleging that they did not execute any malicious command, what is known as

message repudiation. Agents using DIoTComm mitigate this threat by digitally signing

exchanged messages. Since only the private key holder is able to produce a valid signature,

agents can be made accountable against malicious behavior.

A basic and important requirement of secure systems consists in preventing infor-

mation disclosure threats, wherein unauthorized parties might get access to confidential

data. Thus, messages exchanged between IoT agents, or between agents and the Identity

Blockchain, should be encrypted using state-of-the art algorithms. Our system provides

such protection by employing the AES-CCM symmetric encryption algorithm with keys

of 128 bits.

While some threats can be mitigated by employing cryptographic algorithms, others

require techniques of broader scope. That is the case with the denial of service threat,

which may vary in its sophistication and can cause availability issues. At the protocol

level, DIoTComm mitigates this threat by using nonces, which enable agents to efficiently

discard repeated messages. Additional techniques to counter denial of service threats can

be employed, however they are out of the scope of our proposal.

Another threat that does not depend exclusively on the secure communications layer is

elevation of privilege, in which a party gains access to unauthorized operations. For exam-

ple, an attacker could try to update a DID Document of another agent in the blockchain.

An identity-based access control scheme enables the Identity Blockchain to mitigate this

threat: every time a DID Document is registered or updated, it must match the identity

of the request initiator. On the other hand, elevation of privilege between IoT agents may

follow different rules depending on each use case, and thus are considered out of scope.

Nevertheless, it is recommended that appropriate access control policies are configured

and enforced during agent interactions.

In addition to the mentioned threats, DIoTComm also prevents replay attacks by

using a sliding window with previously received nonces. Thus, we conclude that our

system is prepared to resist against common threats in IoT environments.

83

Table 14: Comparison of DID Swarm with existing DID Methods.

Prefix
Focus
on IoT?

DID
serialization

DID size DDo ser. DDo size

did:sw: Yes binary 19 CBOR-DI 128
did:sov: No text 30 JSON 499
did:ockam: Yes text 39 JSON 779
did:io: Yes text 49 JSON 1112
did:v1: No text 54 JSON 1182
did:tangle: Yes text 92 JSON 853

Source: Fedrecheski et al. (2021).

5.2.2 DID and DDo sizes

In this section we measure the size of our proposed DID and DID Document, and

compare it to five existing DID methods, as shown in Table 14. The methods did:ockam

(OCKAM. . . ,), did:io (IOTEX. . . ,), and did:tangle (TANGLEID, 2019) were se-

lected since they are specifically tailored for IoT applications. The other two, did:sov

(SOVRIN. . . ,) and did:v1 (VERES. . . ,), were selected as references since they provide

both a complete specification and a mature open source implementation.

As shown in Table 14, our proposed method, did:sw, has the smaller DID size,

occupying only 19 bytes when using the binary serialization described in Section 3.1.4.2.

Among the methods tailored for IoT, did:ockam has the second smaller DID, requiring

39 bytes. In order to compare DID Documents, we built documents with equivalent

configurations, i.e., having two public keys and, when applicable, one service endpoint2.

The measured DDos were extracted from the specification of each DID method, and

a second public key was added when the example contained only one. As shown in

Table 14, the did:sw method has the smallest DDo size, which represents a reduction of

almost 75% when comparing to the second smallest DDo. These results confirm that the

methods proposed in sections 3.1.4.1 and 3.1.4.2 indeed reduced DID and DDo sizes when

comparing to previous works.

5.2.3 Secure Envelope Overhead

In this section, we compare the overhead of using DIDComm and DIoTComm to pro-

tect DID Documents and application messages for transmission in constrained networks.

We start by measuring the size of a signed message containing a DID Document, using

both DIDComm and DIoTComm. In doing this, we use different DDo serializations:

2Some DID methods do not use endpoints.

84

Source: Fedrecheski et al. (2022).

Figure 16: Size and overhead for DID Doc-
uments sent within a signed message (step
2 of Figure 6).

Source: Fedrecheski et al. (2022).

Figure 17: Size and overhead for regular
messages sent within a signed and encrypted
message (step 3 of Figure 6).

JSON, CBOR, and CBOR-DI. Figure 16 shows the results. The three leftmost bars

use the DIDComm message envelope3, while the three rightmost bars use DIoTComm.

We also highlight the threshold for transmission of LoRa packets when considering Data

Rate 6, which allows packets of up to 242 bytes. Note that, although the overhead is

significantly reduced when adopting DIoTComm, the only scenario in which a DDo can

be transmitted over a LoRa network is when DIoTComm and CBOR-DI are combined.

In the next chart, shown in Figure 17, we consider a 21-bytes application message

serialized in CBOR and sent over DIDComm and then over DIoTComm. Differently from

the previous chart, this message is not only signed, but also encrypted, i.e. the messages

are nested with two layers of headers. This confers the DIoTComm version an even higher

compression rate, with an overhead at least five times smaller.

5.2.4 Runtime

In this section we measure the runtime of our proposed operations to enable self-

sovereign identification of IoT agents. We start by measuring the time needed to encode

a Swarm DID Document in three different formats: JSON, CBOR, and CBOR-DI. Next,

we measure the time to generate non-repudiable DIoTComm messages, and compare to

the time needed for DIDCommmessages. The tests were conducted on two platforms. The

first, nicknamed “Laptop”, is a Quad-core Intel i7 1.8 GHz laptop with 20 GB of RAM.

The second, nicknamed “SBC”, is a Quad-core ARM 1.3 GHz Single Board Computer with

2 GB RAM. The software used was the SwarmLib, which uses the Python programming

3The size of DIDComm with CBOR is larger than DIDComm with JSON due to overhead of Base64
encoding.

85

Table 15: DID Document (de)serialization mean time (ms).

Operation Device JSON CBOR CBOR-DI

Serialization
Laptop 0.3 (±0.0) 0.3 (±0.0) 0.2 (±0.0)
SBC 4.9 (±0.1) 4.9 (±0.1) 2.3 (±0.1)

Deserialization
Laptop 0.4 (±0.0) 0.4 (±0.0) 0.1 (±0.0)
SBC 6.1 (±0.5) 6.1 (±0.1) 1.5 (±0.1)

Source: Fedrecheski et al. (2022).

language.

Runtime to (de)serialize DID Document In this test we seek to evaluate whether

there are performance differences among three distinct methods to serialize and deserialize

a DID Document: the existing JSON and CBOR approaches, and our proposed CBOR-

DI. We used our Python implementation of the SwarmLib to generate an in-memory DID

Document containing two public keys and one service endpoint, similar to the one shown

in Figure 7(a). We then measured the time to (de)serialize it using the three methods

mentioned.

As shown in Table 15, CBOR-DI takes slightly less time than JSON and CBOR

to serialize on the Laptop, and approximately half of the time on the SBC. Regarding

deserialization, CBOR-DI uses one third of the time when compared to JSON and CBOR

on both platforms. We believe that the speedup in processing is mostly due to the smaller

amount of data that goes into CBOR-DI.

Runtime to (un)protect messages In this test we seek to understand what are the

performance impacts of our proposed DIoTComm versus the existing DIDComm protocol.

To do so, we created an 100-byte message and then measured the time necessary to

protected it, i.e., sign, encrypt, and serialize to the appropriate format. We also did the

inverse operation, that is to deserialize and decrypt the message, and verify its signature.

Each operation was performed 100 times, from which we extracted the mean and standard

deviation. The encryption, decryption, serialization, and deserialization functions were

implemented as part as the SwarmLib.

Results, shown in Table 16, show that DIoTComm is slightly faster than DIDComm in

both platforms tested, i.e., a laptop and a single-board computer. Since the cryptographic

algorithms are very similar, the differences mainly amounts to serialization, which requires

slightly less data processing in the case of DIoTComm.

86

Table 16: Runtime to (un)protect 100-byte payload (ms).

Operation Device DIDComm DIoTComm
Encryption and
Serialization

Laptop 0.7 (±0.1) 0.6 (±0.0)
SBC 9.3 (±0.1) 7.0 (±0.1)

Decryption and
Deserialization

Laptop 0.6 (±0.0) 0.5 (±0.0)
SBC 7.9 (±0.1) 6.5 (±0.1)

Source: Fedrecheski et al. (2022).

5.2.5 Discussion

This subsection present topics that capture the main impacts and limitations of our

work.

Security An important question to address is whether our proposal could affect

security or introduce new vulnerabilities. The operations applied to reduce DDo size, i.e.,

the Swarm DID method and CBOR-DI, have no impact on security, since only the data

serialization is changed. In other words, the data model is different, but the cryptographic

keys and algorithms used are standardized (SCHAAD, 2017). Moreover, DDos are always

protected when transmitted using the DIoTComm protocol. We have also shown that

that DIoTComm prevent the threats of spoofing, tampering, repudiation, and information

disclosure.

Differences to DIDComm Although DIoTComm can be seen as a binary version

of DIDComm, some simplifications have been made to our protocol. First, it does not

incorporate routing, since we assume that it could be implemented on top of it, for example

by using CoAP messages with proxy options as the DIoTComm payload. The second main

difference is that, since DIoTComm uses static keys to derive a symmetric key, it does

not provide forward secrecy. This approach is required to avoid the transmission of an

ephemeral public key, which would increase payload size by more than 32 bytes. Future

work should address a solution that considers forward secrecy into DIoTComm.

Asynchronous messages It is worth to highlight that, just as DIDComm, DIoT-

Comm works asynchronously, e.g. similar to email messages. This approach enables

communication even when one of the end parties is temporarily offline (provided it can

be buffered in-transit), and it also does not require a session establishment phase. On the

other hand, this approach requires key agreement to be performed before every message,

so it may be more processing intensive than session-based protocols. A possible solu-

87

tion, which we leave for future works, would be to support the option to choose among

synchronous and asynchronous messaging modes.

Size of identity metadata We achieved significant reduction of DIDs and DDo

sizes when comparing to existing solutions. Note that this reduction did not require

information loss nor the use of pre-configured static parameters. Moreover, it relied on

standardized serialization guidelines provided by the COSE specification, which facilitates

interoperability (SCHAAD, 2017). Overall, it represents a significant improvement to

allow use of self-sovereign identification in constrained IoT networks.

Size of protected messages By using a binary serialization based on the COSE

standard (SCHAAD, 2017), we were able to greatly reduce the size of security overhead

for signed and encrypted messages, when compared to DIDComm, the current solution

for message protection in SSI communication.

Performance impacts A valid question regarding the improvements on message

sizes concerns the impacts on performance. In our evaluation, we demonstrated that our

message size optimizations did not cause performance penalties. On the contrary, since

the messages demand less bytes to be processed, serialization and deserialization becomes

faster than the original alternatives.

Self-sovereign identity in constrained networks A fundamental question with

respect to adoption of SSI in IoT environments consists in how to support it in constrained

environments. By reducing the overhead involved in transmission of identity metadata and

message protection, we have shown that IoT devices could use self-sovereign identity even

when their communication link is constrained to only a few hundred bytes per message.

5.3 Evaluation of a complete interaction

Whereas previous sections evaluated specific parts of the proposed system, such as

SmartABAC and DID Swarm, this section evaluates a complete interaction between two

Swarm agents running in real IoT hardware.

88

5.3.1 Defining and Preparing a Use Case

The evaluation is focused on a specific interaction: Bob tries to toggle a Lamp (Figure

18). Each agent embeds all of its identity information, as described in the Agent Data

Model (Section 3.2.1). This includes their DIDs, credentials, and ABAC policies. In the

case of the Lamp, one of its policies states that “friends of the Lamp’s owner are allowed

to toggle the Lamp”.

Bob Lamp

Toggle
(update)

id: did:8G1fs...
pub-keys: [...]

friendOf: did:alice
issuer: did:alice

proof: ? ? ?

id: did:fi3kg...
pub-keys: [...]
service: [...]

user: friendOf did:alice
operations: update

object: owner did:alice

owner: did:alice
issuer: did:alice

proof: ? ? ?

DID Doc.

Credentials

DID Doc.

Credentials

Policies

Figure 18: The agent “Bob” interacts with a “Lamp” agent.

The agents were setup in a laboratory environment, using the Labrador Single Board

Computer (SBC), as it has both hardware and software support for running the Swarm

Broker and the SwarmLib. The Labrador has the following CPU and memory: ARM

Cortex A9 quad-core 1.3GHz; 2 GB of RAM. An LED connected to the Labrador GPIO

was used to simulate the lamp.

The implementation of the use case involves the creation of five agents across three

devices, being two single board computers (Labrador) and one Laptop. The first Labrador

runs one broker and the bob agent; the second one runs another broker and the lamp agent;

finally, the laptop runs the alice agent. The setup is shown in Figure 19.

Laptop

Broker Alice's
Persona

agent

Labrador

Broker Lamp
agent

Labrador

Broker Bob's
Persona

agent

Figure 19: The use case devices and agents.

To prepare the agents for the use case, we use the swarm manager tool to execute the

following steps:

• Create five agents: broker lab1, bob, broker lab2, lamp, broker laptop and alice.

89

• Store the DID Document of the DID Chain.

• Register the DDos of the new agents at the DID Chain.

• Since the lamp is a provider, we configure it with its supported operations: update

(on/off) and read current status.

• Emit credentials to the participants, following the attributes assignment defined in

Table 7. For example, Bob has attributes such as “friendOf: alice”, and Lamp has

attributes “purpose: lighting” and “owner: alice”.

• Create access control policies, according to the definitions in Table 8. Thus, the

“Lamp” got one policy stating that it could be used by friends of Alice.

5.3.2 Methods

The evaluation is focused on packet sizes and latency over the setup and use steps.

To briefly recall, in the setup step, the initiator asks the responder for an authorization

token, which is generated in case the attributes of the initiator match the policies of

the responder; next, the initiator uses the token to interact directly with the responder

(see Chapter 3). We executed the interaction using Bob and Lamp as initiator and

responder, respectively, and collected metrics regarding packet sizes and count for each

request/response. Next, we repeated the interaction 50 times to measure the time spent

at each phase of the interaction.

The packet size and count were obtained using Wireshark, a tool for network analysis.

All communications taken during the setup and use steps were measured, which implies

recording the packets sent not only, e.g., between Bob and Broker, but also the packets

sent between the agents and the Identity Blockchain.

To measure latency, the swarm lib and the Broker were modified with the addition of

a flag-enabled metrics module that records how much time each function took to execute.

The functions selected for measurement include the time to close and open a message

(using DIoTComm), resolve a DID Document, verify credentials, evaluate SmartABAC

policies, as well as build and verify the access token. After the data is collected, the

participants would send their collected logs to a server which would aggregate them into

a single file. The results were then analysed using the Jupyter Notebook data analysis

tool, and graphics were generated using the matplotlib Python library.

90

During preliminary tests we identified latency bottlenecks that could be fixed with

the use of a cache, so we added a bounded cache and repeated the latency measurements.

5.3.3 Results

Results of measuring packet sizes are shown in Table 17, and latency is shown in

Figure 20.

Table 17: Packet sizes in the “Bob toggles Lamp” use case.
Step Setup Use

Network call
Bob to Chain Bob to Broker

Broker to Chain
(3x, avg)

Bob to Lamp Lamp to Chain

Req Res Req Res Req Res Req Res Req Res
Packet sizes (bytes) 269 380 928 735 202 725 454 228 269 300
Total bytes 5093 1251
Packet Count 10 4
Average pkt size 509,3 312,75

Packet sizes are divided by interaction step and sub-divided into specific network

calls, the latter being needed since interactions usually comprise networks calls between

two agents plus the identity blockchain. Note that some measurements happen more than

once, e.g., the Broker resolves three DIDs at the Blockchain, for which the average size is

shown. Looking at individual packet sizes, it is clear that the most expensive network call

is between Bob and the Lamp’s Broker, the reason being that Bob must present all of its

credentials so that the Broker can use them to evaluate the ABAC policies. Nevertheless,

it is also worth noting that the Broker has to consult the blockchain three times to resolve

the DIDs of the initiator and of the credential issuers. The latter may be alleviated,

however, by the use of caching mechanisms.

In general, the use step requires less network resources when compared to the interac-

tion setup. The total amount of bytes sent in the use step was about 25% of the amount

sent in the setup step; the former also required less than half the number of packets.

When aggregating these numbers, we find that, on average, the use step required 38.7%

smaller packets when compared to the setup step, which is expected since the setup steps

involve the transference of all the public attributes of the initiator over the network.

Latency results are summarized in Figure 20, where items a, b, c, and d show the

average time taken at each step, with a per-function-per-request granularity. For example,

the leftmost bar in item 20a shows that the first request from Bob to Broker took almost

500 milliseconds, of which around 200 ms account for Network and Broker processing

combined; similarly, item 20b shows that most requests were served in less than 70 ms,

with the costliest operations being to DIoTComm encryption and decryption (open and

91

0 10 20 30 40 50
0

100

200

300

400

500
Ti

m
e

(m
s)

Time metrics for Setup phase - Bob
Close Box
Newtork
Broker Processing
Open Box
Resolve DID
Others

0 10 20 30 40 50
0

20

40

60

80

100

Ti
m

e
(m

s)

Time metrics for Setup phase - Broker
Open Box
Verify Credentials
Authorize Policies
Build Tokens
Close Box
Resolve DID
Others

Mean, excluding outliers
0

50

100

150

200

250

300

Ti
m

e
(m

s)

Time metrics for Setup phase - Bob
Close Box
Newtork
Broker Processing
Open Box
Resolve DID
Others

Mean, excluding outliers
0

10

20

30

40

50

60

Ti
m

e
(m

s)

Mean time metrics for Setup phase - Broker
Open Box
Verify Credentials
Evaluate Policies
Build Tokens
Close Box
Resolve DID
Others

0 10 20 30 40 50
0

50

100

150

200

250

300

350

400

Ti
m

e
(m

s)

Time metrics for Use phase - Bob
Close Box
Newtork
Lamp Processing
Open Box
Others

0 10 20 30 40 50
0

25

50

75

100

125

150

175

200

Ti
m

e
(m

s)

Time metrics for Use phase - Lamp
Open Box
Verify Credentials
Close Box
Resolve DID
Others

Mean, excluding outliers
0

50

100

150

200

250

300

350

Ti
m

e
(m

s)

Mean time for Use phase - Bob
Close Box
Newtork
Lamp Processing
Open Box
Others

Mean, excluding outliers
0

20

40

60

80

100

120

140

160

Ti
m

e
(m

s)

Mean time for Use phase - Lamp
Open Box
Verify Credentials
Close Box
Resolve DID
Others

Figure 20: Results.

close, respectively).

Overall, interactions take around 300 milliseconds on average, with the most expensive

operations depending on the specific step and actor involved.

92

5.4 Considerations about constrained devices

The implementation of the proposed framework, with the exception of the SmartABAC

model, used high-level and garbage-collected languages, i.e. Python and Elixir. On one

hand, this approach enabled faster prototyping of the framework and full integration with

the existing SwarmOS infrastructure, i.e. the Broker and the SwarmLib. On the other

hand, it prevents tests on many smaller and more constrained IoT devices.

The latest version of the terminology for constrained node-networks (BORMANN

et al., 2022) defines a set of classes for IoT devices, ranging from Class 0 (the most

constrained, with 10 KiB of RAM and 100 KiB of flash memory) to Class 19 (the least

constrained, such as a server). The full version of the SwarmOS was tested on a Single

Board Computer, which corresponds to Class 15. The SmartABAC model was tested on

a microcontroller that corresponds to Class 3, i.e, about 100 KiB of RAM and up to 1000

KiB of ROM.

Nevertheless, it is possible to analyse the suitability of the framework to devices of

Class 3 or less, by obtaining estimates about the execution of certain operations. The

most CPU-intensive operations in the framework are those that involve performing cryp-

tographic algorithms, such as signing, deriving keys, and encrypting data. According to

Lachner & Dustdar (2019), who evaluated several cryptographic algorithms on typical

off-the-shell IoT hardware, the most expensive algorithms involve signature verification

and generation (ECDSA), and key derivation (ECDH). The authors provide measure-

ments on an 240 MHz Xtensa microprocessor, showing that the execution times for these

operations are, respectively, 78, 50, and 26 milliseconds. The signatures were performed

on a payload of 700 bytes (similar to the size of an interaction setup payload, as seen in

Table 17). The authors also show that operations involving data encryption (AES) and

hashing (SHA256) are much faster, in the order of 1 MB/s. Detailed execution times are

shown in Table 18, which also correlates the algorithms to specific parts of our proposed

framework.

It is then possible to estimate the minimum amount of time needed to execute the steps

of the framework, considering its cryptographic operations, as shown in Table 19. Note

that the execution times are adjusted to how many times each operation is executed. For

example in the setup step, we assume that the responder has to verify three credentials.

Since this means resolving the DID Documents of three issuers, it implies in performing

DIoTComm three times, which is then added to the DIoTComm interaction with the

initiator, completing four DIoTComm interactions. Thus, the total time spent deriving

93

Table 18: Execution time for main cryptographic operations used by the proposed frame-
work, considering 240 MHz IoT CPU. All values based on Lachner & Dustdar (2019),
except the last line which was measured in this work.

Technology Operation Algorithm Time (ms)
CapBAC Verify token
DIoTComm Verify message
Verifiable Credentials Verify credential

EDDSA verification 78

Verifiable Credentials Sign credential
DIoTComm Sign message
CapBAC Sign token

EDDSA signing 50

DIoTComm Derive keys EDDH 26
DIoTComm Derive keys SHA256 (HKDF) 0,001
Decentralized Identifiers Generate DDo Ed25519 key generation 49
DIoTComm Encrypt / decrypt AES 128 CTR 0,0003
SmartABAC Evaluate policies SmartABAC authorize 1

keys is 26∗4 = 104 milliseconds. Similar reasoning applies to all computed times in Table

19.

Table 19: Estimated time (ms) to execute each step on a constrained IoT node.

Setup Execution
Initiator Time Responder Time Initiator Time Responder Time
Verify message 78,0 Verify message 312,0 Verify message 78,0 Verify token 78,0
Sign message 50,0 Verify credential 234,0 Sign message 50,0 Verify message 78,0
Derive keys 26,0 Sign message 200,0 Derive keys 26,0 Sign message 50,0
Encrypt /
decrypt msg

0,0 Derive keys 104,0
Encrypt /
decrypt msg

0,0 Derive keys 26,0

Generate token 50,0
Encrypt /
decrypt msg

0,0

Encrypt /
decrypt msg

0,0

Evaluate policies 1,0
154,0 901,0 154,0 232,0

It is clear, then, that the setup step takes at least 1 second, and the execute step takes

close to 400 milliseconds. Taken alone these times may be reasonable for certain applica-

tions, however they could be improved, especially when considering energy consumption

and availability issues. The easiest part to improve is to simply remove message signature

from DIoTComm, since AES-CCM already provides authentication (signatures could be

used only in applications that need non-repudiability), which would save 78 + 50 = 128

milliseconds on all interactions. Another possible improvement is to use a MAC-based

token, instead of one based on digital signatures. Since MACs use hashing and symmetric

cryptography, token creation and verification time would decrease to just a few microsec-

onds. This would require an architectural change, however, since the responder of the

execution step (a regular agent) would have to somehow obtain the MAC secret key from

94

the responder of the setup step (the Broker).

Yet another possible improvement would be to adapt DIoTComm to use a three-way

handshake, which would reduce key derivation step to only once per agent. One alterna-

tive would be to integrate it with Ephemeral Diffie-Hellman Over COSE (EDHOC) (SE-

LANDER; MATTSSON; PALOMBINI, 2022), which provides a secure application-layer

key establishment mechanism. This approach would also bring the benefit of providing

forward-secrecy to all interactions. On the other hand, it would spend some time during

the key establishment phase, which in turn might be problematic in highly constrained

networks, such as LoRaWAN, which has a severely restricted downlink channel.

5.5 Concluding remarks

When developing the framework, two key questions were whether it could actually

protect Swarm agents, and whether it could run in constrained devices. To answer these

questions, this chapter presented evaluations of each of the framework layers.

The authorization layer was first evaluated to demonstrate its capability to protect

Swarm agents in a smart home use case. Next, its capabilities were compared to the exist-

ing models in the literature, and its performance was assessed in heterogeneous computing

platforms. This enabled us to confirm that the hybrid approach used in SmartABAC could

indeed provide expressive access policies while offering a negligible performance overhead,

even when run on highly constrained devices.

For the authentication and confidentiality layers, we first analysed DIoTComm under

STRIDE threat model, showing that they employ the needed primitives to protect agent

interactions. For instance, we pointed how identity spoofing is prevented by using authen-

ticated encryption at the protocol level, and how confidentiality is achieved by encrypting

messages between IoT agents using AES-CCM. We further analysed DIoTComm in terms

of its overhead, and showed that it can work even on bandwidth-constrained networks.

Nevertheless, there is still room for improvement on the messaging protocol overhead,

which we leave for future works.

Finally, the identity layer was evaluated with respect to raw size and serialization time.

The size evaluation demonstrated that the proposed DID Swarm method is leaner than

pre-existing DID methods, which justifies its proposal as a new method. In addition,

the newly proposed serialization mechanism, CBOR-DI, was shown to be faster than

regular serialization methods (JSON and CBOR), taking at most 2.3 milliseconds on a

95

single-board computer.

In conclusion, the evaluation of the authorization, authentication, confidentiality, and

identity layers demonstrated that the proposed framework can (1) protect Swarm agents

using various techniques applicable at each layer, and (2) is sufficiently lightweight to run

at least on single-board computers.

96

6 CONCLUSION

This dissertation investigated and developed a mechanism to enable secure interac-

tions in IoT Swarms. One key challenge was that many existing security approaches for

the Internet and the IoT rely on centralized architectures, such as authorization and nam-

ing servers. Thus, we investigated whether we could provide alternatives that were both

secure and could minimize dependency on third parties, i.e., make devices autonomous

with respect to their own security.

The chosen approach was to specify a full-stack framework for security in IoT Swarms,

following two main principles. First, to ensure autonomy from centralized parties, Swarm

agents should be self-sovereign, which means that they should handle as much as possible

of the security mechanisms by themselves, going from identification up to the authoriza-

tion layer. The second principle was to use attribute-based access control, which enable

creation of flexible and high-level policies necessary to specify authorization rules consid-

ering the dynamic and cyber-physical nature of Swarm systems.

The framework was presented in layers, following a top-down approach. First, the

authorization layer was described, adapting best-practices from ABAC guidelines to create

a decentralized ABAC architecture. The layer also included a hybrid approach for building

access policies, by means of the SmartABAC model, which enables embedded evaluation

of policies even on highly constrained devices.

Next, the authentication layer was presented, which included both message authen-

tication via the DIoTComm protocol, and agent authentication by sharing of Verifiable

Credentials. The DIoTComm protocol was also instrumental for the confidentiality layer,

responsible for protecting interactions from eavesdroppers. Since it works at the applica-

tion level, DIoTComm also work across heterogeneous networks, a common scenario in

both traditional IoT and Swarms.

Finally, a layer for lean and self-sovereign identification of IoT agents was proposed.

It consists of the Swarm DID Method, a concrete instantiation of the Decentralized Iden-

97

tifiers specification, and a new serialization mechanism that enables use of DIDs on con-

strained networks. A mock Identity Blockchain was created to enable implementation

and tests of real Swarm agents.

The implementation consisted in major updates to the Swarm Broker and the Swarm-

Lib, as well as the development of new libraries and updates to existing Swarm Agents.

Among the libraries created from scratch to support this work, we highlight an Elixir and

a C implementation of the SmartABAC model. A new agent was also created to provide

the Identity Blockchain functionality.

The evaluation first measured different aspects of SmartABAC, DIoTComm, and

the Swarm DID Method, then assessed the fully integrated system on a use case on

real hardware. One key implication of the SmartABAC evaluation was that it refuted

the previously held notion of ABAC being inherently unsuitable for constrained devices

(RAVIDAS et al., 2019), as we were able to run it on a 35MHz ARM microcontroller with

negligible latency.

The evaluation of DIoTComm has shown that it addresses the STRIDE threat model

by re-using well-knonwn algorihtms for ciphering, authenticating, and signing messages.

It also demonstrated that the effort to reduce its size enabled packets to fit in constrained

networks. The size reduction is, in fact, best achieved when coupled with another proposal

of this work, the Swarm DID method, which provides lean DID Documents with a new

approach for serialization, named CBOR DID Documents for IoT (CBOR-DI). Compared

to prior methods, it achieves documents more than four times smaller.

Finally, the integrated system was evaluated on a use case with real IoT hardware

consisting of two single-board computers. Metrics show that the average packet size is

less than 500 bytes per request, with latency on the range of 300 to 350 milliseconds.

In conclusion: This dissertation achieved the goal of researching a framework for

protecting interactions between agents in IoT Swarms. It demonstrated that (1) the self-

sovereign approach is possible, not only to identify agents, but to fully describe their

operation, up to the authorization layer; and that (2) attribute-based access control can

be leveraged to offer expressive policies for dynamic IoT environments while imposing

negligible performance and storage overhead.

Regarding future work, a number of paths can be explored. The Swarm DID Method

can be ported to constrained IoT hardware, and tested on real networks. The DIoTComm

protocol can be improved considering emerging standards that enable smaller security

98

overhead. And finally, the integrated framework can be ported to and tested on more

constrained devices, as well as deployed on larger networks to prove its scalability.

99

REFERENCES

AFZAL, S. et al. Analysis of web-based iot through heterogeneous networks: Swarm
computing over lorawan. Sensors, MDPI, v. 22, n. 2, p. 664, 2022.

ALKHRESHEH, A.; ELGAZZAR, K.; HASSANEIN, H. S. Daciot: Dynamic access
control framework for iot deployments. IEEE Internet of Things Journal, IEEE, v. 7,
n. 12, p. 11401–11419, 2020.

ALLEN, C. The path for self-sovereign identity. 2016. ⟨http://www.lifewithalacrity.com/
2016/04/the-path-to-self-soverereign-identity.html⟩. Accessed: 2020-02-13.

ALLIANCE, L. LoRaWAN®Specification v1.1. 2017. Dispońıvel em: ⟨https:
//lora-alliance.org/resource\ hub/lorawan-specification-v1-1/⟩.

ALNEFAIE, S.; CHERIF, A.; ALSHEHRI, S. Towards a distributed access control
model for iot in healthcare. In: IEEE. 2019 2nd International Conference on Computer
Applications & Information Security (ICCAIS). [S.l.], 2019. p. 1–6.

ANTONINO, A. et al. A privacy-preserving approach to grid balancing using scheduled
electric vehicle charging. Tese (Doutorado) — Aalto University, 2019.

ASAMOAH, K. O. et al. Zero-chain: A blockchain-based identity for digital city
operating system. IEEE Internet of Things Journal, IEEE, v. 7, n. 10, p. 10336–10346,
2020.

BARABAS, C.; NARULA, N.; ZUCKERMAN, E. Defending internet freedom through
decentralization: back to the future. The Center for Civic Media & The Digital Currency
Initiative MIT Media Lab, 2017.

BERNSTEIN, D. J. et al. High-speed high-security signatures. In: SPRINGER.
International Workshop on Cryptographic Hardware and Embedded Systems. [S.l.], 2011.
p. 124–142.

BEZAWADA, B.; HAEFNER, K.; RAY, I. Securing home iot environments with
attribute-based access control. In: ACM. Proceedings of the Third ACM Workshop on
Attribute-Based Access Control. [S.l.], 2018. p. 43–53.

BHATT, S.; PATWA, F.; SANDHU, R. Abac with group attributes and attribute
hierarchies utilizing the policy machine. In: ACM. Proceedings of the 2nd ACM Workshop
on Attribute-Based Access Control. [S.l.], 2017. p. 17–28.

BIASE, C. L. D. et al. Swarm minimum broker: an approach to deal with the internet of
things heterogeneity. In: IEEE. 2018 Global Internet of Things Summit (GIoTS). [S.l.],
2018. p. 1–6.

BIASE, L. C. D. et al. Swarm economy: a model for transactions in a distributed and
organic iot platform. IEEE Internet of Things Journal, IEEE, 2018.

http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
https://lora-alliance.org/resource_hub/lorawan-specification-v1-1/
https://lora-alliance.org/resource_hub/lorawan-specification-v1-1/

100

BIASE, L. C. D. et al. Swarm assistant: an intelligent personal assistant for the swarm.
In: IEEE. 2019 IEEE International Conference on Consumer Electronics (ICCE). [S.l.],
2019. p. 1–2.

BIASE, L. C. D. et al. Surveillance swarm: Gathering resources for finding targets
in a distributed global network of smart devices. In: IEEE. 2020 IEEE International
Conference on Consumer Electronics (ICCE). [S.l.], 2020. p. 1–2.

BISWAS, P. Enumerated Authorization Policy ABAC Models: Expressive Power and
Enforcement. Tese (Doutorado) — The University of Texas at San Antonio, 2017.

BISWAS, P.; SANDHU, R.; KRISHNAN, R. A comparison of logical-formula and
enumerated authorization policy abac models. In: SPRINGER. IFIP Annual Conference
on Data and Applications Security and Privacy. [S.l.], 2016. p. 122–129.

BISWAS, P.; SANDHU, R.; KRISHNAN, R. Label-based access control: An abac
model with enumerated authorization policy. In: ACM. Proceedings of the 2016 ACM
International Workshop on Attribute Based Access Control. [S.l.], 2016. p. 1–12.

BORMANN, C.; ERSUE, M.; KERANEN, A. Terminology for Constrained-Node
Networks. [S.l.], 2014. Dispońıvel em: ⟨https://tools.ietf.org/html/rfc7228⟩.

BORMANN, C. et al. Terminology for Constrained-Node Networks. [S.l.], 2022.
Dispońıvel em: ⟨https://www.ietf.org/id/draft-ietf-lwig-7228bis-00.html⟩.

BORMANN, C.; HOFFMAN, P. E. Concise Binary Object Representation (CBOR).
RFC Editor, 2020. RFC 8949. (Request for Comments, 8949). Dispońıvel em:
⟨https://rfc-editor.org/rfc/rfc8949.txt⟩.

CALCINA-CCORI, P. et al. Swarmgen: a framework for automatic generation of
semantic services in an iot network. In: IEEE. 2020 IEEE International Conference on
Consumer Electronics (ICCE). [S.l.], 2020. p. 1–5.

CALCINA-CCORI, P. et al. Agile servient integration with the swarm: Automatic
code generation for nodes in the internet of things. In: Proceedings of the International
Conference on Future Networks and Distributed Systems. [S.l.: s.n.], 2017. p. 1–6.

CALCINA-CCORI, P. C. et al. Enabling semantic discovery in the swarm. IEEE
Transactions on Consumer Electronics, IEEE, v. 65, n. 1, p. 57–63, 2018.

CALCINA-CCORI, P. C. et al. Describing services geolocation in iot context. In: IEEE.
2019 IEEE International Conference on Consumer Electronics (ICCE). [S.l.], 2019.
p. 1–2.

CALCINA-CCORI, P. C. et al. Location-aware discovery of services in the iot: a swarm
approach. In: IEEE. 2019 Global IoT Summit (GIoTS). [S.l.], 2019. p. 1–6.

CALLAS, J. et al. OpenPGP Message Format. [S.l.], 2007. ⟨http://www.rfc-editor.org/
rfc/rfc4880.txt⟩. Dispońıvel em: ⟨http://www.rfc-editor.org/rfc/rfc4880.txt⟩.

CHEHAB, M.; MOURAD, A. Lp-sba-xacml: Lightweight semantics based scheme
enabling intelligent behavior-aware privacy for iot. IEEE Transactions on Dependable
and Secure Computing, IEEE, 2020.

https://tools.ietf.org/html/rfc7228
https://www.ietf.org/id/draft-ietf-lwig-7228bis-00.html
https://rfc-editor.org/rfc/rfc8949.txt
http://www.rfc-editor.org/rfc/rfc4880.txt
http://www.rfc-editor.org/rfc/rfc4880.txt
http://www.rfc-editor.org/rfc/rfc4880.txt

101

COLOMBO, P.; FERRARI, E.; TÜMER, E. D. Regulating data sharing across mqtt
environments. Journal of Network and Computer Applications, Elsevier, v. 174, p.
102907, 2021.

COOPER, D. et al. Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile. [S.l.], 2008. ⟨http://www.rfc-editor.org/rfc/rfc5280.txt⟩.
Dispońıvel em: ⟨http://www.rfc-editor.org/rfc/rfc5280.txt⟩.

COSTA, L. C. et al. Swarm os control plane: an architecture proposal for heterogeneous
and organic networks. IEEE Transactions on Consumer Electronics, IEEE, v. 61, n. 4,
p. 454–462, 2015.

DAEMEN, J.; RIJMEN, V. Reijndael: The advanced encryption standard. Dr. Dobb’s
Journal: Software Tools for the Professional Programmer, Miller Freeman Inc., v. 26,
n. 3, p. 137–139, 2001.

DENNIS, J. B.; HORN, E. C. V. Programming semantics for multiprogrammed
computations. Communications of the ACM, ACM New York, NY, USA, v. 9, n. 3, p.
143–155, 1966.

DIN, I. U. et al. Lighttrust: lightweight trust management for edge devices in industrial
internet of things. IEEE Internet of Things Journal, IEEE, 2021.

DRAMÉ-MAIGNÉ, S.; LAURENT, M.; CASTILLO, L. Distributed access control
solution for the iot based on multi-endorsed attributes and smart contracts. In: IEEE.
2019 15th International Wireless Communications & Mobile Computing Conference
(IWCMC). [S.l.], 2019. p. 1582–1587.

ESPOSITO, C.; FICCO, M.; GUPTA, B. B. Blockchain-based authentication and
authorization for smart city applications. Information Processing & Management,
Elsevier, v. 58, n. 2, p. 102468, 2021.

ESQUIAGOLA, J. et al. Performance testing of an internet of things platform. In:
IoTBDS. [S.l.: s.n.], 2017. p. 309–314.

FARRELL, S.; HOUSLEY, R.; TURNER, S. An Internet Attribute Certificate Profile
for Authorization. [S.l.], 2010.

FEDRECHESKI, G. et al. Attribute-based access control for the swarm with distributed
policy management. IEEE Transactions on Consumer Electronics, IEEE, v. 65, n. 1, p.
90–98, 2019.

FEDRECHESKI, G. et al. SmartABAC: enabling constrained iot devices to make
complex policy-based access control decisions. IEEE Internet of Things Journal, IEEE,
2021.

FEDRECHESKI, G. et al. A low-overhead approach for self-sovereign identity in iot. In:
IEEE. 2022 Global Internet of Things Summit (GIoTS). [S.l.], 2022. p. (in press).

FEDRECHESKI, G.; COSTA, L. C.; ZUFFO, M. K. Elixir programming language
evaluation for iot. In: IEEE. Consumer Electronics (ISCE), 2016 IEEE International
Symposium on. [S.l.], 2016. p. 105–106.

http://www.rfc-editor.org/rfc/rfc5280.txt
http://www.rfc-editor.org/rfc/rfc5280.txt

102

FEDRECHESKI, G. et al. Self-sovereign identity for iot environments: a perspective. In:
IEEE. 2020 Global Internet of Things Summit (GIoTS). [S.l.], 2020. p. 1–6.

FERDOUS, M. S.; CHOWDHURY, F.; ALASSAFI, M. O. In search of self-sovereign
identity leveraging blockchain technology. IEEE Access, IEEE, v. 7, p. 103059–103079,
2019.

FERNANDO, N. et al. Opportunistic fog for iot: challenges and opportunities. IEEE
Internet of Things Journal, IEEE, v. 6, n. 5, p. 8897–8910, 2019.

FERRAIOLO, D.; ATLURI, V.; GAVRILA, S. The policy machine: A novel architecture
and framework for access control policy specification and enforcement. Journal of
Systems Architecture, Elsevier, v. 57, n. 4, p. 412–424, 2011.

FOTIOU, N. et al. Enabling opportunistic users in multi-tenant iot systems using
decentralized identifiers and permissioned blockchains. In: Proceedings of the 2nd
International ACM Workshop on Security and Privacy for the Internet-of-Things. [S.l.:
s.n.], 2019. p. 22–23.

GABILLON, A.; GALLIER, R.; BRUNO, E. Access controls for iot networks. SN
Computer Science, Springer, v. 1, n. 1, p. 24, 2020.

GHOSH, N. et al. Softauthz: A context-aware, behavior-based authorization framework
for home iot. IEEE Internet of Things Journal, IEEE, v. 6, n. 6, p. 10773–10785, 2019.

GILANI, K. et al. A survey on blockchain-based identity management and decentralized
privacy for personal data. In: IEEE. 2020 2nd Conference on Blockchain Research &
Applications for Innovative Networks and Services (BRAINS). [S.l.], 2020. p. 97–101.

GRANDE, E.; BELTRÁN, M. Edge-centric delegation of authorization for constrained
devices in the internet of things. Computer Communications, Elsevier, v. 160, p. 464–474,
2020.

GUPTA, M. et al. An attribute-based access control for cloud enabled industrial smart
vehicles. IEEE Transactions on Industrial Informatics, IEEE, v. 17, n. 6, p. 4288–4297,
2021.

HARDMAN, D. DIDComm Messaging. [S.l.], 2020.
Https://identity.foundation/didcomm-messaging/spec/.

HERNAN, S. et al. Uncover Security Design Flaws Using The STRIDE Approach.
2019. Dispońıvel em: ⟨https://docs.microsoft.com/en-us/archive/msdn-magazine/2006/
november/uncover-security-design-flaws-using-the-stride-approach⟩.

HERNÁNDEZ-RAMOS, J. L. et al. Dcapbac: embedding authorization logic into smart
things through ecc optimizations. International Journal of Computer Mathematics,
Taylor & Francis, v. 93, n. 2, p. 345–366, 2016.

HU, V. C. et al. Guide to attribute based access control (abac) definition and
considerations (draft). NIST special publication, Citeseer, v. 800, n. 162, 2013.

IOTEX DID Method Specification. Dispońıvel em: ⟨https://github.com/iotexproject/
iotex-did/blob/master/README.md⟩.

https://docs.microsoft.com/en-us/archive/msdn-magazine/2006/november/uncover-security-design-flaws-using-the-stride-approach
https://docs.microsoft.com/en-us/archive/msdn-magazine/2006/november/uncover-security-design-flaws-using-the-stride-approach
https://github.com/iotexproject/iotex-did/blob/master/README.md
https://github.com/iotexproject/iotex-did/blob/master/README.md

103

JABAL, A. A. et al. Polisma-a framework for learning attribute-based access control
policies. In: SPRINGER. European Symposium on Research in Computer Security. [S.l.],
2020. p. 523–544.

JAEGER, T.; ZHANG, X.; EDWARDS, A. Policy management using access control
spaces. ACM Transactions on Information and System Security (TISSEC), ACM, v. 6,
n. 3, p. 327–364, 2003.

JONES, M. JSON Web Algorithms (JWA). RFC Editor, 2015. RFC 7518. (Request for
Comments, 7518). Dispońıvel em: ⟨https://www.rfc-editor.org/info/rfc7518⟩.

JONES, M. et al. CBOR Web Token (CWT). RFC Editor, 2018. RFC 8392. (Request
for Comments, 8392). Dispońıvel em: ⟨https://www.rfc-editor.org/info/rfc8392⟩.

JOSEFSSON, S.; LIUSVAARA, I. Edwards-Curve Digital Signature Algorithm
(EdDSA). RFC Editor, 2017. RFC 8032. (Request for Comments, 8032). Dispońıvel em:
⟨https://rfc-editor.org/rfc/rfc8032.txt⟩.

KARIMI, L. et al. An automatic attribute based access control policy extraction from
access logs. IEEE Transactions on Dependable and Secure Computing, IEEE, 2021.

KIM, H.; KIM, D.-K.; ALAERJAN, A. Abac-based security model for dds. IEEE
Transactions on Dependable and Secure Computing, IEEE, 2021.

KOVATSCH, M. et al. Web of Things (WoT) Architecture. 2022. Dispońıvel em:
⟨https://www.w3.org/TR/wot-architecture/⟩.

KUPERBERG, M. Blockchain-based identity management: A survey from the enterprise
and ecosystem perspective. IEEE Transactions on Engineering Management, IEEE,
v. 67, n. 4, p. 1008–1027, 2019.

LACHNER, C.; DUSTDAR, S. A performance evaluation of data protection mechanisms
for resource constrained iot devices. In: IEEE. 2019 IEEE International Conference on
Fog Computing (ICFC). [S.l.], 2019. p. 47–52.

LAGUTIN, D. et al. Enabling decentralised identifiers and verifiable credentials for
constrained internet-of-things devices using oauth-based delegation. In: Workshop on
Decentralized IoT Systems and Security (DISS). [S.l.: s.n.], 2019.

LEE, E. A. et al. The swarm at the edge of the cloud. IEEE Design & Test of Computers,
IEEE, n. 3, p. 8–20, 2014.

LI, F. et al. Cyberspace-oriented access control: A cyberspace characteristics-based
model and its policies. IEEE Internet of Things Journal, IEEE, v. 6, n. 2, p. 1471–1483,
2018.

MAHALLE, P. N.; SHINDE, G.; SHAFI, P. M. Rethinking decentralised identifiers and
verifiable credentials for the internet of things. In: Internet of Things, Smart Computing
and Technology: A Roadmap Ahead. [S.l.]: Springer, 2020. p. 361–374.

NIKAEIN, N.; VASILAKOS, X.; HUANG, A. Ll-mec: Enabling low latency edge
applications. In: IEEE. 2018 IEEE 7th International Conference on Cloud Networking
(CloudNet). [S.l.], 2018. p. 1–7.

https://www.rfc-editor.org/info/rfc7518
https://www.rfc-editor.org/info/rfc8392
https://rfc-editor.org/rfc/rfc8032.txt
https://www.w3.org/TR/wot-architecture/

104

NOVAK, E.; TANG, Z.; LI, Q. Ultrasound proximity networking on smart mobile devices
for iot applications. IEEE Internet of Things Journal, IEEE, v. 6, n. 1, p. 399–409, 2018.

OCF - Specifications. 2022. Dispońıvel em: ⟨https://openconnectivity.org/developer/
specifications/⟩.

OCKAM DID Method Specification. Dispońıvel em: ⟨https://github.com/
ockam-network/did-method-spec/blob/master/README.md⟩.

oneM2M - Release 3. 2022. Dispońıvel em: ⟨https://www.onem2m.org/technical/
published-drafts/release-3⟩.

OUADDAH, A. et al. Access control in the internet of things: Big challenges and new
opportunities. Computer Networks, Elsevier, v. 112, p. 237–262, 2017.

PAL, S. et al. On the integration of blockchain to the internet of things for enabling
access right delegation. IEEE Internet of Things Journal, IEEE, v. 7, n. 4, p. 2630–2639,
2019.

PARDUCCI, B.; LOCKHART, H.; RISSANEN, E. Extensible access control markup
language (xacml) version 3.0. OASIS Standard, p. 1–154, 2013.

PÉREZ, S. et al. Application layer key establishment for end-to-end security in iot.
IEEE Internet of Things Journal, IEEE, v. 7, n. 3, p. 2117–2128, 2019.

RABAEY, J. M. The swarm at the edge of the cloud-a new perspective on wireless. In:
IEEE. VLSI Circuits (VLSIC), 2011 Symposium on. [S.l.], 2011. p. 6–8.

RAVIDAS, S. et al. Access control in internet-of-things: A survey. Journal of Network
and Computer Applications, Elsevier, 2019.

RESCORLA, E. The Transport Layer Security (TLS) Protocol Version 1.3.
RFC Editor, 2018. RFC 8446. (Request for Comments, 8446). Dispońıvel em:
⟨https://rfc-editor.org/rfc/rfc8446.txt⟩.

RESCORLA, E.; MODADUGU, N. Datagram Transport Layer Security Version
1.2. RFC Editor, 2012. RFC 6347. (Request for Comments, 6347). Dispońıvel em:
⟨https://rfc-editor.org/rfc/rfc6347.txt⟩.

RIVEST, R. L.; SHAMIR, A.; ADLEMAN, L. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, ACM New York, NY, USA,
v. 21, n. 2, p. 120–126, 1978.

SAHAI, A.; WATERS, B. Fuzzy identity-based encryption. In: SPRINGER. Annual
International Conference on the Theory and Applications of Cryptographic Techniques.
[S.l.], 2005. p. 457–473.

SANDHU, R. S. et al. Role-based access control models. Computer, IEEE, v. 29, n. 2, p.
38–47, 1996.

SCHAAD, J. CBOR Object Signing and Encryption (COSE). RFC Editor, 2017. RFC
8152. (Request for Comments, 8152). Dispońıvel em: ⟨https://rfc-editor.org/rfc/rfc8152.
txt⟩.

https://openconnectivity.org/developer/specifications/
https://openconnectivity.org/developer/specifications/
https://github.com/ockam-network/did-method-spec/blob/master/README.md
https://github.com/ockam-network/did-method-spec/blob/master/README.md
https://www.onem2m.org/technical/published-drafts/release-3
https://www.onem2m.org/technical/published-drafts/release-3
https://rfc-editor.org/rfc/rfc8446.txt
https://rfc-editor.org/rfc/rfc6347.txt
https://rfc-editor.org/rfc/rfc8152.txt
https://rfc-editor.org/rfc/rfc8152.txt

105

SEITZ, L. et al. Authentication and Authorization for Constrained Environments (ACE)
using the OAuth 2.0 Framework (ACE-OAuth). [S.l.], 2021. Work in Progress. Dispońıvel
em: ⟨https://datatracker.ietf.org/doc/draft-ietf-ace-oauth-authz/46/⟩.

SELANDER, G.; MATTSSON, J. P.; PALOMBINI, F. Ephemeral Diffie-Hellman
Over COSE (EDHOC). [S.l.], 2022. Work in Progress. Dispońıvel em: ⟨https:
//www.ietf.org/archive/id/draft-ietf-lake-edhoc-17.html⟩.

SERVOS, D.; OSBORN, S. L. Hgabac: Towards a formal model of hierarchical attribute-
based access control. In: SPRINGER. International Symposium on Foundations and
Practice of Security. [S.l.], 2014. p. 187–204.

SERVOS, D.; OSBORN, S. L. Current research and open problems in attribute-based
access control. ACM Computing Surveys (CSUR), ACM, v. 49, n. 4, p. 65, 2017.

SHARMA, D. K. et al. An opportunistic approach for cloud service based iot routing
framework administering data, transaction, and identity security. IEEE Internet of
Things Journal, IEEE, 2021.

SHIREY, R. W. Internet Security Glossary, Version 2. RFC Editor, 2007. RFC
4949. (Request for Comments, 4949). Accessed: 2021-10-13. Dispońıvel em:
⟨https://rfc-editor.org/rfc/rfc4949.txt⟩.

SIRIS, V. A. et al. Decentralized authorization in constrained iot environments exploiting
interledger mechanisms. Computer Communications, Elsevier, v. 152, p. 243–251, 2020.

SOVRIN DID Method Specification. Dispońıvel em: ⟨https://sovrin-foundation.github.
io/sovrin/spec/did-method-spec-template.html⟩.

SPORNY, M. et al. Decentralized Identifiers (DIDs) v1.0. [S.l.], 2019.
Https://www.w3.org/TR/did-core//.

SPORNY, M. et al. Verifiable Credentials Data Model 1.0. [S.l.], 2019.
Https://www.w3.org/TR/2019/REC-vc-data-model-20191119/.

SU, Y. et al. Secure decentralized machine identifiers for internet of things. In:
Proceedings of the 2020 The 2nd International Conference on Blockchain Technology.
[S.l.: s.n.], 2020. p. 57–62.

TAN, L. et al. A blockchain-empowered access control framework for smart devices in
green internet of things. ACM Transactions on Internet Technology (TOIT), ACM New
York, NY, v. 21, n. 3, p. 1–20, 2021.

TANESKI, V.; HERIČKO, M.; BRUMEN, B. Systematic overview of password security
problems. Acta Polytechnica Hungarica, v. 16, n. 3, 2019.

TANGLEID. TangleID DID Method Specification. 2019. Dispońıvel em: ⟨https:
//github.com/TangleID/TangleID/blob/develop/did-method-spec.md⟩.

VERES One DID Method Specification. Dispońıvel em: ⟨https://w3c-ccg.github.io/
did-method-v1/⟩.

ZHANG, Y. et al. Attribute-based access control for smart cities: A smart contract-driven
framework. IEEE Internet of Things Journal, IEEE, 2021.

https://datatracker.ietf.org/doc/draft-ietf-ace-oauth-authz/46/
https://www.ietf.org/archive/id/draft-ietf-lake-edhoc-17.html
https://www.ietf.org/archive/id/draft-ietf-lake-edhoc-17.html
https://rfc-editor.org/rfc/rfc4949.txt
https://sovrin-foundation.github.io/sovrin/spec/did-method-spec-template.html
https://sovrin-foundation.github.io/sovrin/spec/did-method-spec-template.html
https://github.com/TangleID/TangleID/blob/develop/did-method-spec.md
https://github.com/TangleID/TangleID/blob/develop/did-method-spec.md
https://w3c-ccg.github.io/did-method-v1/
https://w3c-ccg.github.io/did-method-v1/

106

ZUFFO, M. et al. IoT in Brazil: An Overview From the Edge Computing Perspective.
[S.l.]: IERC Cluster Book, 2020.

107

APPENDIX A – ADDITIONAL

PUBLICATIONS

This chapter lists the research articles co-authored by the author during the develop-

ment of this dissertation, and represent indirect results of this research.

BIASE, L. C. D. et al. Swarm economy: a model for transactions in a distributed and

organic iot platform. IEEE Internet of Things Journal, IEEE, 2018.

AFZAL, S. et al. Analysis of web-based iot through heterogeneous networks: Swarm

computing over lorawan. Sensors, MDPI, v. 22, n. 2, p. 664, 2022.

BIASE, C. L. D. et al. Swarm minimum broker: an approach to deal with the internet

of things heterogeneity. In: IEEE. 2018 Global Internet of Things Summit (GIoTS). [S.l.],

2018. p. 1–6.

ZUFFO, M. et al. IoT in Brazil: An Overview From the Edge Computing Perspective.

[S.l.]: IERC Cluster Book, 2020.

CALCINA-CCORI, P. C. et al. Enabling semantic discovery in the swarm. IEEE

Transactions on Consumer Electronics, IEEE, v. 65, n. 1, p. 57–63, 2018.

BIASE, L. C. D. et al. Swarm assistant: an intelligent personal assistant for the swarm.

In: IEEE. 2019 IEEE International Conference on Consumer Electronics (ICCE). [S.l.],

2019. p. 1–2.

CALCINA-CCORI, P. C. et al. Location-aware discovery of services in the iot: a

swarm approach. In: IEEE. 2019 Global IoT Summit (GIoTS). [S.l.], 2019. p. 1–6.

BIASE, L. C. D. et al. Surveillance swarm: Gathering resources for finding targets

in a distributed global network of smart devices. In: IEEE. 2020 IEEE International

Conference on Consumer Electronics (ICCE). [S.l.], 2020. p. 1–2.

CALCINA-CCORI, P. et al. Swarmgen: a framework for automatic generation of

semantic services in an iot network. In: IEEE. 2020 IEEE International Conference on

108

Consumer Electronics (ICCE). [S.l.], 2020. p. 1–5.

CALCINA-CCORI, P. C. et al. Describing services geolocation in iot context. In:

IEEE. 2019 IEEE International Conference on Consumer Electronics (ICCE). [S.l.], 2019.

p. 1–2.

CALCINA-CCORI, P. et al. Agile servient integration with the swarm: Automatic

code generation for nodes in the internet of things. In: Proceedings of the International

Conference on Future Networks and Distributed Systems. [S.l.: s.n.], 2017. p. 1–6.

FEDRECHESKI, G.; COSTA, L. C.; ZUFFO, M. K. Elixir programming language

evaluation for iot. In: IEEE. Consumer Electronics (ISCE), 2016 IEEE International

Symposium on. [S.l.], 2016. p. 105–106.

ESQUIAGOLA, J. et al. Performance testing of an internet of things platform. In:

IoTBDS. [S.l.: s.n.], 2017. p. 309–314.

