
THOMAS ARAUJO MUYAL

OpenNPU: an open source platform for automatic
neural network synthesis for FPGAs

Thesis submitted for the degree of Master
in Science to the Escola Politécnica of
Universidade de São Paulo.

São Paulo
2023

THOMAS ARAUJO MUYAL

OpenNPU: an open source platform for automatic
neural network synthesis for FPGAs

Versão corrigida

Thesis submitted for the degree of Master
in Science to the Escola Politécnica of
Universidade de São Paulo.

Concentration field:

Systems Engineering

Advisor:

Prof. Dr. Marcelo Knörich Zuffo

São Paulo
2023

Muyal, Thomas Araujo
OpenNPU: an open source platform for automatic neural network

synthesis for FPGAs / T. A. Muyal -- versão corr. -- São Paulo, 2023.
118 p.

Dissertação (Mestrado) - Escola Politécnica da Universidade de São
Paulo. Departamento de Engenharia de Sistemas Eletrônicos.

1.Inteligência artificial 2.Eletrônica digital 3.Circuitos integrados VLSI
4.Redes neurais 5.Internet das coisas I.Universidade de São Paulo. Escola
Politécnica. Departamento de Engenharia de Sistemas Eletrônicos II.t.

Este exemplar foi revisado e corrigido em relação à versão original, sob
responsabilidade única do autor e com a anuência de seu orientador.

São Paulo, 16 de fevereiro de 2023

Assinatura do autor: ________________________

Assinatura do orientador: ________________________

Autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio
convencional ou eletrônico, para fins de estudo e pesquisa, desde que citada a fonte.

Catalogação-na-publicação

RESUMO

Redes neurais artificiais são técnicas de inteligência artificial amplamente uti-
lizadas na indústria atualmente, implementadas para a solução de uma grande var-
iedade de problemas. Sua recente popularidade é em parte explicada pelo avanço
de tecnologias de hardware, que fornecem recursos computacionais para o processa-
mento dos seus cálculos. Software geralmente é executado em Unidades de Proces-
samento Central (CPUs), de propósito geral, mas para a melhoria de métricas como
performance e eficiência energética, utilizam-se aceleradores em hardware especial-
izados. No contexto de computação de borda no âmbito da Internet das Coisas, estas
restrições de hardware são ainda mais rigorosas. Uma abordagem para resolver o
ambiente restritivo de computação de borda é a quantização de redes neurais, que
consiste na redução da precisão de representação dos seus parâmetros para que
consumam menos memória, e operações sejam mais rápidas e menos custosas. Um
dos dispositivos utilizados para este propósito são Field-Programmable Gate Arrays
(FPGAs), que oferecem circuitos integrados cuja funcionalidade pode ser programada
para a implementação especializada de algoritmos, fornecendo alto desempenho e
eficiência de execução, juntamente de benefícios como reconfigurabilidade, ciclos de
design e time-to-market mais curtos, e custo mais baixo que alternativas. Um dos
problemas para o uso de FPGAs é que sua programação é difícil e requer conheci-
mento especializado para aproveitamento de suas características, e nem toda equipe
de desenvolvimento de inteligência artificial o detêm. Assim, há interesse em sistemas
que automatizem a síntese de aceleradores de redes neurais em FPGAs, para trazer
a maiores públicos as vantagens desta técnica. Este trabalho estuda o estado da
arte deste tipo de software, estudando lacunas na área. O objetivo principal desta
pesquisa é a criação e validação de uma prova de conceito de geração automática de
aceleradores de hardware para redes neurais utilizando técnicas de quantização para
possibilitar sua síntese em FPGAs pequenas, feitas para computação de borda. Para
a validação deste sistema, aceleradores foram gerados e seus comportamentos foram
testados nas métricas de latência, vazão de resultados, eficiência energética e área
de circuito, e comparada com sua execução em uma CPU de computador pessoal. Os
resultados indicam que os aceleradores gerados são sintetizáveis, significativamente
mais rápidos e eficientes energéticamente que a implementação em CPU.

Palavras chave: Inteligência artificial, Aprendizagem de máquina, Redes neurais,
Aprendizagem profunda, Acelerador em hardware, Internet das Coisas, FPGA.

ABSTRACT

Artificial neural networks are a group of artificial intelligence algorithms widely used
contemporarily in the industry and research, implemented to solve a great variety of is-
sues. Its recent popularity is in part due to the advance of hardware technologies,
which provide computational resources for the resource-intensive processing neces-
sary for its implementation. Historically, neural network software is executed in Central
Processing Units (CPUs), which are general purpose devices. However, metrics such
as inference speed, energy efficiency and circuit area are improved with the use of
specialized hardware accelerators. In the context of edge computing, the processing
on location of data gathered by Internet of Things (IoT) devices, there are significant
restrictions as to those metrics. One of the devices frequently used for this purpose
are Field-Programmable Gate Arrays (FPGAs), which offer integrated circuits whose
functionality may be programmed for the synthesis of hardware specialized in specific
algorithms, offering high performance and execution efficiency, as well as other bene-
fits such as being able to be reconfigured after manufacturing, shorter design cycles,
faster time-to-market and lower cost than the alternatives. One of the issues for the use
of FPGAs is that its programming is difficult and requires specialist knowledge to fully
make use of these devices’ characteristics, and not every team of artificial intelligence
developers has such knowledge. Consequently, there is interest in systems that au-
tomatize the synthesis of neural network hardware accelerators in FPGAs, to bring the
benefits of this technique to a wider audience. Another approach to solve the high re-
striction environment of edge computing is neural network quantization, which means
reducing the precision of representation of parameters so they consume less memory,
and operations using these numbers are faster. This work studies the state of the art of
this manner of software, diagnosing existing gaps. The main objective of this research
is the creation and validation of a proof of concept of automatic generation of neural
network hardware accelerators that are using parameter quantization techniques to en-
able its synthesis on small FPGAs aimed towards edge computing. For the validation
of this system, an accelerator was generated and its behavior was measured in met-
rics of latency, end result throughput, energy efficiency, circuit area and compared to
the execution of the same neural network in a high-end personal computer CPU. The
results indicate that the generated hardware accelerator is synthesizeable, significantly
faster and consumes considerably less energy than the CPU implementation.

Keywords: Artificial intelligence, Machine learning, Neural networks, Deep learn-
ing, Hardware accelerator, Internet of Things, FPGA.

LIST OF FIGURES

1 Generator system structural diagram . 55

2 Accelerator architecture diagram . 63

3 Neural network parameters stored by the network data package 65

4 Functional block synchronization diagram 67

5 Graph showing the linearly inseparable nature of the Exclusive OR function 75

6 Graph showing the linearly separable nature of the AND function 75

7 Graph showing the topology of the implemented neural network that ex-

ecutes the Exclusive OR function . 76

8 Graph showing the topology of the implemented neural network that ex-

ecutes a classifier over the Iris dataset 77

9 Exclusive OR logical correctness Modelsim simulation waveform results 81

10 Exclusive OR time per inference in software, ran using Intel i7-8700k CPU 86

11 Exclusive OR logical correctness Modelsim simulation waveform results 88

12 Iris classifier time per inference in software, ran using Intel i7-8700k CPU 92

LIST OF TABLES

1 Exclusive OR Quartus Prime post-fitting hardware component report for

Cyclone IV FPGA target . 84

2 Exclusive OR Quartus Prime timing maximum clock frequency report for

Cyclone IV FPGA target . 84

3 Exclusive OR hardware accelerator timing parameters results 85

4 Exclusive OR software inference timing results for the personal com-

puter CPU . 86

5 Exclusive OR timing results comparison between hardware accelerator

and personal computer CPU . 87

6 Exclusive OR energy expenditure comparison between FPGA accelera-

tor and personal computer CPU . 87

7 Iris classifier Quartus Prime post-fitting hardware component report for

Cyclone IV FPGA target . 90

8 Iris classifier Quartus Prime timing maximum clock frequency report for

Cyclone IV FPGA target . 90

9 Iris classifier hardware accelerator timing parameters results 91

10 Iris classifier software inference timing results for the personal computer

CPU . 91

11 Iris classifier timing results comparison between hardware accelerator

and personal computer CPU . 91

12 Iris classifier energy expenditure comparison between FPGA accelerator

and personal computer CPU . 92

13 Iris classifier generated hardware accelerator quantized binary outputs

from the Modelsim logical correctness simulation. 107

14 Iris classifier generated hardware accelerator quantized decimal outputs

from the Modelsim logical correctness simulation. 109

15 Iris classifier generated neural network expected outputs. 111

16 Iris test dataset inputs. 113

17 Iris classifier generated hardware accelerator quantized decimal inputs

for the Modelsim logical correctness simulation. 115

18 Iris classifier generated hardware accelerator quantized binary inputs for

the Modelsim logical correctness simulation. 117

LIST OF ABBREVIATIONS

AI Artificial Intelligence

ASIC Application-Specific Integrated Circuit

CPU Central Processing Unit

FPGA Field-Programmable Gate Array

GPGPU General Purpose Graphics Processing Unit

GPU Graphics Processing Unit

HDL Hardware Description Language

ONNX Open Neural Network Exchange

USP Universidade de São Paulo

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

CONTENTS

1 Introduction 1

1.1 Objective . 2

1.2 Motivation . 3

1.3 Methodology . 5

1.4 Summary . 7

2 Literature Review 9

2.1 Context . 9

2.1.1 Artificial Intelligence and Machine Learning 9

2.1.2 Artificial Neural Networks . 10

2.1.3 Hardware accelerators . 13

2.1.4 Neural network quantization . 16

2.2 Related works . 18

3 Proposal 22

3.1 Context . 22

3.2 Objectives . 24

3.3 Scientific question . 25

3.4 System Architecture . 27

3.4.1 Subsystem 1: Generator . 27

3.4.2 Subsystem 2: Hardware Accelerator 29

3.5 Open source license . 31

4 Prototype and intermediary results 35

4.1 Neural network design and training . 35

4.2 Neural network data extraction . 37

4.3 Activation function programming in VHDL 38

4.4 Neural network topology programming in VHDL 39

4.5 Neural network accelerator generator programming in Python 40

4.6 Prototype discussion and conclusions 43

5 Accelerator Algorithms 46

5.1 Variable quantization . 46

5.2 Layer topology: Matrix Multiplication . 47

5.3 Activation function: Rectified Linear Unit 48

5.4 Layer quantization corrections . 49

5.4.1 Quantized matrix multiplication 50

5.4.2 Efficient handling of zero-points 51

5.4.3 Efficient handling of multiplication by M 52

6 Generator System 54

6.1 Neural network data import . 55

6.2 Neural network data extraction and interpretation 56

6.3 Neural network hardware module library 57

6.4 Hardware description language writer 58

6.5 Expanding the generator system . 59

6.5.1 Including new activation functions 59

6.5.2 Including new topologies . 60

6.5.3 Including new frameworks . 60

7 Accelerator Hardware Architecture 62

7.1 Functional block hardware architecture 66

7.1.1 Synchronization between functional blocks 67

7.1.2 Input and output data formats . 68

7.2 Matrix multiplication block architecture 69

7.3 Rectified linear unit block architecture 69

7.4 Quantization correction finite state machine states 69

7.4.1 state_ready . 69

7.4.2 state_zeropoint . 70

7.4.3 state_M0 . 71

7.4.4 state_bitshift . 71

7.4.5 state_overflow . 72

7.4.6 state_end . 72

8 Tests 74

9 Main results 81

9.1 Exclusive OR test results . 81

9.1.1 VHDL logical correctness . 81

9.1.2 VHDL implementation parameters for Cyclone IV FPGA 83

9.1.3 Execution speed tests . 84

9.1.4 Energy expenditure tests . 87

9.2 Iris classifier test results . 88

9.2.1 VHDL logical correctness . 88

9.2.2 VHDL implementation parameters for Cyclone IV FPGA 89

9.2.3 Execution speed tests . 90

9.2.4 Energy expenditure tests . 92

10 Conclusions 93

10.1 Threats to validity . 93

10.2 Conclusions . 95

10.2.1 Final conclusions and discussion 99

11 Further work 101

References 104

Appendix A -- Numerical data from simulations 107

1

1 INTRODUCTION

Presently, artificial neural networks have been successfully implemented in a vast

array of different issues. For its adequate use, its hardware demands must be consid-

ered to obtain adequate solutions for each problem. Hardware demands concerning

the computational needs to develop and implement artificial neural networks are di-

vided in two phases: first, there is the development and training of the neural network,

which consists in the design of its topology and algorithms, and training during which

the artificial intelligence learns to execute its task. This training phase can be signif-

icantly resource-intensive in computational resources, and there are many concerns

over accelerating and optimizing this step. Finally, once the network is considered suf-

ficiently trained, the system can be deployed to execute its task. This phase also has

considerations with its hardware implementation, as the final artificial neural network

system architecture can be significantly resource intensive.

This work focuses on the final implementation of artificial neural networks which

have already been trained.

The choice of architecture for their implementation is of crucial importance, as

they must consider parameters such as execution speed, energy efficiency, circuit

area usage, system reconfigurability, cost and design cycle complexity. This hardware

choice must balance and account for these metrics, according to each application’s

specific demands. In general, the hardware choice lies between Central Processing

Units (CPUs), Graphic Processing Units (GPUs), Application-Specific Integrated Cir-

cuits (ASICs) or Field-Programmable Gate Arrays (FPGAs).

Software in general is usually executed in either CPUs or GPUs, but for specific ap-

plications, their low energy efficiency discourages their use. ASICs, on the other hand,

offer high performance and efficiency through fully customized and specialized hard-

ware for its application. However, this alternative is also accompanied by difficulties in

its design cycles, having high initial cost and low reconfigurability. (MITTAL, 2020)

FPGAs, meanwhile, offer better low power energy efficiency than CPUs and GPUs

(MITTAL; VETTER, 2014). Thus, in specific contexts that value low power solutions,

Introduction 2

such as edge computing for Internet of Things (IoT) devices, FPGAs provide an in-

teresting balance between different hardware characteristics, combining better energy

efficiency, customizable hardware that results in high execution speeds, and other ad-

vantages. As such, they are good hardware choices for hardware accelerators for

artificial neural networks, but the necessary hardware design expertise and long devel-

opment time limit this use of FPGAs (MITTAL, 2020).

Consequently, there is interest in overcoming the design cycle difficulties of pro-

gramming artificial intelligence hardware accelerators for FPGAs. A possible approach

is the creation of an automatic hardware description code generation system. This

would compartmentalize the hardware design expertise, and it such knowledge would

no longer be necessary for teams that wish to implement a hardware accelerator for

their machine learning applications.

The automatic generation system would receive a trained neural network as in-

put and output code to synthesize a hardware accelerator that implements the trained

neural network.

The final system consists in a central interpreter core that would interpret whichever

network loaded, and with the help of a function library, write the necessary code. As

such, the main importance of this work is the generator and interpreter core that aims

to be as generic as possible and be capable of producing accelerators for different net-

works, as well as the resulting development and expansion methodology. Limitations

concerning the breadth of compatible neural network algorithms can be overcome by

implementing them and adding to the central generator and interpreter. Consequently,

the results obtained by generating and testing the hardware accelerators, in addition

to testing their functionality, also demonstrate the main core’s viability and potential to

be expanded to include more functions to tackle different and more complex neural

network problems.

1.1 Objective

This research aims to advance the area of automatic hardware description code

generation for artificial neural network hardware accelerators.

Introduction 3

Another goal is to define requirements for such a system to be successful, via the

study of previous works and surveys of the existing field of research.

The existing gaps in the current state of the art of this area are studied and eval-

uated in this work, and research concludes that there are areas of possible improve-

ments and that the current solutions do not satisfy the previously defined requisites.

Thus, the final objective is to propose a novel architecture and workflow, which will be

tested via the implementation of a functional proof of concept that meets the require-

ments, and whose presentation and further development brings significant advances

to the area.

1.2 Motivation

There are already well established and successful neural network compilers and

compilation flows for CPU and GPU target hardware, in general included with machine

learning libraries that also function to create, train and test the models.

However, the area of interpreting and automatically mapping neural networks to

hardware accelerators targeted at FPGAs is in its initial phases, with various ap-

proaches with different strategies with their respectives pros and cons.

In the context of devices for the Internet of Things, many demands arise from the

restrictive nature of such an environment. Embedded systems on small physical ob-

jects that intermingle with day-to-day life bring significant problems as to their imple-

mentation. More specifically, considering the nature of edge computing, where intense

computing is made in loco, such restrictions are fundamental to the design choices of

systems to be implemented. Restrictions such as limited power availability, for exam-

ple, a small device reliant on energy harvesting from a small solar panel, mandates

that the computing on such a device must be especially efficient. FPGAs strike an

interesting balance of providing customizable hardware which offers high execution

performance paired with better energy efficiency than CPUs and GPUs, as well as

smaller circuit area. As a consequence, FPGAs as accelerators for edge computing

are an appropriate and interesting hardware choice (PLAGWITZ et al., 2021; MITTAL,

2020; ELNAWAWY et al., 2019).

Introduction 4

Surveys of the current state of the area of automated neural network accelerator

design flows conclude that this area is not yet mature, a lot of work is still needed and

there is interest in further research and development of the field (PLAGWITZ et al.,

2021; MITTAL, 2020). Proposed solutions that feature open source code of the same

model of tools as the GNU Compiler Collection (GCC) are evaluated as of particular

interest(PLAGWITZ et al., 2021). Another conclusion is that apart from the functioning

and usefulness of the resulting hardware accelerators, the generator systems should

have high flexibility, and coverage of different neural network techniques, to ensure

good system usability (PLAGWITZ et al., 2021). Furthermore, it is crucial that the

resulting tool is easy to use (PLAGWITZ et al., 2021; MITTAL, 2020).

Even though many proposed systems and solutions of the field of research fulfill

part of the qualities desired in a complete automated neural network hardware design,

there is a significant gap between existing systems and one that promises to achieve all

necessary characteristics. Additionally, it is essential that the proposal is scalable for

the continuation of the system and its enduring usability and usefulness; the machine

learning and neural network fields are vast and ever-evolving, and as such a system

that aims to accompany their developments must be flexible and updatable.

Many solutions under development of the area consist in proprietary projects, many

times with code and resulting knowledge unaccessible to the public (KATHAIL, 2020).

The current model of open source development methodology is evaluated as having

high compatibility with the volatility, large scope and rapid evolution of machine learn-

ing techniques. Furthermore, the interest and demand of each specific neural network

or machine learning technology orients the development and its inclusion in an open

source hardware accelerator generator system. Surveys of the current state of the art

(PLAGWITZ et al., 2021) evaluate that proprietary, closed source systems are signifi-

cant obstacles to the flexibility of the resulting system, as it does not offer possibilities

of natural, interest-guided extension of their libraries and resulting coverage through

open research by the community.

As such, we conclude that the proposal of a system whose architecture fulfills si-

multaneously all of the desired qualities of performance, flexibility, open source code,

ease of usage, and scalable, upgradable and modular design.

Introduction 5

1.3 Methodology

Firstly, through reviewing the bibliography of already existing approaches in the field

of study of automatic systems for the design of neural network accelerators for FPGAs,

system requirements must be formally defined. These requirements must be defined in

a way that a resulting system that satisfies them all corresponds to a functional, useful

framework that fills the gap diagnosed in the area of study. Moreover, the requirements

must be written as being easily testable and its characteristics directly comparable to

other existing systems.

The first category of requirements pertain as to the resulting code being open, leg-

ible and well documented to promote the project’s longevity and scalability. Then, the

next category ensures that the system must be modular, flexible and must promote

ease of compatibility by design. As such, its expansion and use in different neural net-

work techniques may be facilitated, and increasing the project’s durability. Additionally,

the resulting system must be easy to use, since its central purpose is to facilitate the

accessibility of hardware accelerator programming to a wider public which detains less

specialized knowledge. Finally, the system must generate useful hardware accelera-

tors that must be tested and compared as to significant metrics that are important to

the context of edge computing. These metrics are FPGA size necessary for synthesis,

execution speed and latency, and energy efficiency.

The objective of this research will be considered to be accomplished once a system

architecture is proposed that satisfies simultaneously every requisite by design, and as

such, bridging the gap in the area. Furthermore, a minimal and functional proof of con-

cept of the system is also necessary beyond the system’s specification to demonstrate

its viability and future expansion into a more usable tool.

The hardware accelerator generator system was developed using the Python 3

programming language. The generator system imports trained neural networks and

generates VHDL code that can be synthesized to implement a hardware accelerator

for that specific neural network. This VHDL code is generated using functional block

libraries written in VHDL, tested and simulated using the Modelsim software. Then,

the generated accelerator was tested using the Intel Quartus Prime software, which

provides several reports about the viability of the hardware’s synthesis on FPGAs and

Introduction 6

performance metrics such as execution speed and energy expenditure.

The resulting system was published using the GitHub (GITHUB, 2020) internet

hosting system (MUYAL, 2022), under the GNU General Public License v3.0, which

can be downloaded and used by executing the main function under the qNPUInter-

preter file and importing the desired exported trained neural network file to be acceler-

ated. Once the generator is finished, it outputs the necessary VHDL files to synthesize

a hardware accelerator, which can be imported into an electronic design automation

software such as Intel Quartus Prime or Xilinx’s Vivado to synthesize the design into

an FPGA.

The Github repository has instructions that detail how to expand the system, which

can be done in 2 different diretions. First, to include new activation functions or neu-

ral network topologies, by developing new functional blocks in VHDL and changing

the base Python interpreter to acknowledge the new additions to the library. Lastly,

adding more compatible neural network development frameworks, which can be done

by including converters from the framework in question to the Open Neural Network

Exchange (ONNX) format to the Python Interpreter, and changing the import function

to expect the new format.

To generate the test results, artificial neural networks were programmed and trained

in the Python 3 language using the Tensorflow machine learning library, with Keras as

an interface library. Additionally, the final system uses the Tensorflow Lite quantized

neural networks. The networks used are more thoroughly described in the 8, but they

were chosen in order to offer clarity in the results, use and test all of the implemented

functions and topologies, and study the scalability of the synthesized final hardware.

The networks, once trained, are exported using the model export Keras functions,

which generates a .tflite file. To generate a hardware accelerator, run the qNPUIn-

terpreter.py file, use the graphical user interface to select the exported .tflite file to be

imported, and wait for the software to execute. Once done, the system outputs the .vhd

files which can be imported and synthesized to implement the accelerator.

Introduction 7

1.4 Summary

This document is divided in eleven chapters. Chapter 1, consists in the research

introduction.

Chapter 2, Literature Review, presents the context and theoretical foundations upon

which this research is based on. Furthermore, the chapter presents a study of the

automatic neural network hardware accelerator synthesis workflows field of study’s

current state of the art, reviewing multiple different projects, and drawing conclusions

as to gaps in the field. Bridging these gaps consist in this project’s motivation.

Chapter 3, Proposal, consists in a review of the context in which this project is

inserted, as well as the scientific question to be answered. From this emerges the

main objectives of the research, as well as architectural objectives and choices to fulfill

them. Furthermore, this chapter describes the considerations over the source code’s

publishing model and explains different software licenses, as well as the final license

choice made and its reasons.

Chapter 4, Prototype and intermediary results, presents a prototype made to guide

the final version of the proof of concept. In this chapter, the prototype’s objectives

are explained, the methodology and work done is shown, and the results obtained as

well as a discussion and conclusions drawn from them are presented. This prototype

served as a base for the final version, and served to explore the field of work as well

as design choices made.

Chapter 5, Accelerator Algorithms, begins the description of the final system by

explaining all the important algorithms used in the project. This chapter begins by

describing the variable quantization algorithm, which is not directly implemented in the

hardware, but explains the variable representation formats used by the accelerator.

These algorithms also include those implemented directly in hardware, namely the

algorithms corresponding to the neural network layer topology, the neuron activation

function, and the layer quantization corrections.

Chapter 6, Generator System, explains the generator system’s current architecture.

Furthermore, the chapter explains how the system is to be expanded in the future,

including design guidelines for the different modules.

Introduction 8

Chapter 7, Accelerator Hardware Architecture, shows the generated neural network

hardware accelerator architecture, explaining the hardware functional blocks pertaining

to neural network topologies, neuron activation functions, quantization corrections and

the top hierarchical level entity that organizes the blocks.

Chapter 8, Tests, explains the methodology used to conduct the tests to validate

the system.

Chapter 9, Main results, shows the generated hardware accelerator practical re-

sults obtained during simulations and compilation, as well as comparisons.

Chapter 10, Conclusions, reviews the entire project and comments over the ob-

jectives determined for this research, and whether the results obtained and presented

successfully fulfill those objectives. In addition, this chapter analyses potential threats

to the validity of the results, mentioning potential flaws of the testing process and the

current state of the system and identifies limitations of the conclusions that can be

drawn from these tests.

Finally, Chapter 11, Further work, takes reasoning from the Conclusions and

Threats to validity chapters, and propose potential avenues for further work in order

to expand and improve the project’s system and conduct more and more significant

tests over the existing system.

9

2 LITERATURE REVIEW

2.1 Context

2.1.1 Artificial Intelligence and Machine Learning

There are many different approaches to define Artificial Intelligence (AI). In the

book Russell e Norvig (2021), the authors present and discuss different ways to reach

a formal definition, with several approaches relating artificial systems and comparing

them to human thought processes. Whichever definition is better suited to formally

describe Artificial Intelligence and understand its meaning, the answer lies within the

philosophy of artificial intelligence, and does not particularly concern the scope of this

research.

What does concern this research, however, are the many possible and interesting

applications of artificial intelligence techniques such as the field of machine learning.

Machine learning has been defined as the field of study of artificial intelligence al-

gorithms that learn and improve without explicitly being programmed to do so. They

generally improve with experience and data, extract patterns and infer conclusions.

(MITCHELL, 1997)

Machine learning has several different applications in a vast array of different areas,

with useful, practical results and research has shown great promise. Examples for

areas of applications of machine learning are robotics (MA et al., 2020; BOJARSKI

et al., 2017; ENDSLEY, 2017), natural language processing and translation (WU et

al., 2016), recommendation systems (DAS; SAHOO; DATTA, 2017), computer vision

(RUSSAKOVSKY et al., 2015; HE et al., 2015), medicine (PICCIALLI et al., 2021;

DING et al., 2019), among others (RUSSELL; NORVIG, 2021).

Machine learning results in several areas show promise and already have good

practical implementations and results. Metrics such as accuracy, processing speed,

pattern recognition and cost are shown to have good results, many times surpassing

those of humans performing the tasks being automated. As such, there is consider-

able interest in expanding and developing these techniques, to better their results and

Literature Review 10

implement them in other settings.

2.1.2 Artificial Neural Networks

Of noteworthy mention among machine learning techniques are the artificial neural

networks (ANNs). ANNs are computing systems inspired by the topology of biological

brains, consisting of its basic unit, neurons, interconnected and organized in networks.

Each artificial neuron receives signals, executes a determinate operation, called an

activation function, and outputs a signal related to the result of this operation. The

neuron’s inputs can come from the output of other neurons, the network’s own inputs,

or be fixed values, such as a trained bias. Similarly, the neuron’s outputs can go to

other neurons, or become the entire network’s final outputs. Furthermore, each neuron

signal connection is usually multiplied by a weight, which is a numerical value obtained

during the neural network training. All of these parameters, including the network’s

topology, number of neurons, their topology and interconnectivity, weights and biases

are factors that the designers can control to fit each demand and problem to be solved.

(RUSSELL; NORVIG, 2021)

Artificial neural networks are typically organized into ordered layers of similar neu-

rons that pass signals from the first layer to the last. The first layer is the input layer,

which receives the whole network’s inputs, and the last layer is the output layer, whose

results are the network’s final outputs. The network may have other layers between the

input and output, called hidden layers. Usually, neurons within a single layer execute

the same activation function, and are interconnected to neurons of other layers follow-

ing the same rules. There is a great variety of different types of activation functions,

and the more commonly used are the following (RUSSELL; NORVIG, 2021):

1. The logistic or sigmoide function:

σ(x) = 1/(1 + e−x)

2. The ReLU, or Rectified Linear Unit:

ReLU(x) = max(0, x)

Literature Review 11

3. The softplus function:

so f tplus(x) = log(1 + ex)

4. The tanh, hyperbolic tangent:

tanh(x) =
e2x − 1
e2x + 1

Beyond the great variety in activation functions, there is also a diversity of different

topologies. For example, the simplest is the densely or fully-connected layer. This is

a layer whose individual neurons are connected to every single neuron in the previous

layer. However, there are many other topologies that are used in different applications;

one such example are convolutional layers, whose connections execute a convolution

over the database or outputs of the previous layer. For example, in image recognition,

a convolution can represent neurons that are specialized in specific parts of the image.

All of the aforementioned topologies are feedforward, meaning the processing flows

monotonically from the input layer to the output. However, there are also topologies

with loops, called recurrent neural networks. (RUSSELL; NORVIG, 2021)

Recently, ANNs have become significantly popular and successful in a variety of

different metrics, such as precision, processing speed, latency, data volume and scal-

ability. For example, every machine learning work cited in the previous section utilizes

some form of neural network. Notable ANN advantages come from the ease of use of

resulting trained models, besides the high result accuracy even when dealing with com-

plex systems and large inputs. Additionally, the generation of models through many

different and effective algorithms, which train models adaptively through self learn-

ing and actualization enable this technology’s use in a wide array of areas with great

potential and results. Furthermore, ANNs exhibit great potential of high speed pro-

cessing with its massively paralelized architectures (IZEBOUDJEN; LARBES; FARAH,

2014; ABIODUN et al., 2018). Rarely machine learning implementations use ANNs in

complete isolation, and they usually interact with many different subareas of artificial

intelligence and general software development, such as data science, statistics and

probability. Moreover, they also include different workflow tasks beyond training and

deploying ANNs, such as organizing and collecting relevant data or executing other

kinds of processing. However, ANNs still are the central processing algorithm of these

applications.

Literature Review 12

Artificial neural networks, when analysed through a black-box model, consists in

a system which receives data to be analysed by the AI as inputs, and its outputs are

results obtained through this analysis. The inputs can be extremely varied, and may

be conveniently chosen depending on the subject matter and information deemed im-

portant for the analysis. Examples of possible inputs are images, possibly represented

by their pixel numerical information, which can be medical exams or camera feeds,

or other types of sensor data, such as temperature or pressure. Possible outputs, for

example, can be classification results or regressions. In a classification neural net-

work, the AI classifies each input sample into a determinate class, such as classifying

whether an image shows a cat or a dog. In a regression, the network outputs a numer-

ical result, such as a probability or a numerical value prediction. (RUSSELL; NORVIG,

2021)

The first step in implementing a neural network consists in its design, where sev-

eral choices as to the architecture, layers, neurons and activation functions are made.

Once designed and before the network is implemented to do actual tasks, it must be

trained. Training consists in the use of an algorithm, which is executed over the net-

work, typically using a database relevant to the problem to be solved by the AI. This

database is made of possible inputs the system will eventually be exposed to, denomi-

nated a "training dataset". The training algorithm is iterative, and in every iteration the

network is subjected to the inputs, generates outputs, the algorithm calculates an error

function based on the correctness of the answers given, and modifies the network with

the objective of reducing these errors. Over many iterations the internal network pa-

rameters are modified as to minimize the error function. Once the network’s measured

accuracy is deemed sufficient, the training stops and the parameters are stored, and

the network with these trained parameters may be implemented in real applications.

It is worth noting that there are certain kinds of named layers such as pooling layers.

These are effectively convolution layers that act on the previous layer’s outputs execut-

ing activation functions such as max-pooling, that obtain the highest numerical value

in each convolution window. This can be implemented through normal convolutional

layers with activation functions that calculate maximum, without the use of weights or

bias in its inputs.

In conclusion, it is clear that there is a vast range of different technologies and tools

Literature Review 13

in the field of artificial neural networks, each with its own application domain, theory

and potential.

The basic neural network theory has its beginnings in the early 1940’s, but recently

it has experienced a significant resurgence of importance and practical use. This is

due in part to recent advances in hardware technology, which results in cheaper and

more accessible computational resources to execute training and application of neu-

ral networks, enabling its wider usage (PLAGWITZ et al., 2021). The training and

implementation of artificial neural networks strongly depend on the hardware devices

on which these processes are executed. As the neural networks and the problems

they solve become increasingly larger, more important and more complex, their com-

putational demands have increased significantly (MITTAL, 2020). As a consequence,

there is great interest in studying the specific hardware to implement neural networks,

including the creation of specialized hardware to accelerate such applications.

2.1.3 Hardware accelerators

A hardware accelerator is a specialized hardware that executes specific software

more efficiently in comparison with its code being executed in a general purpose cen-

tral processing unit (CPU). Hardware accelerators are usually employed alongside a

CPU as a peripheral, executing only their specialized task for the system, while a CPU

executes the rest of the more general tasks.

An example of such a system in the context of the Internet of Things could be an

embedded system deployed in a restrictive environment, such a small smart camera.

The device, among other components such as batteries or antennas, could consist

in the camera itself, providing input data to be processed, a CPU that executes and

processes data in general, and a hardware accelerator connected by hardware to the

CPU as a peripheral to execute a neural network over the collected data, and output

the results back to the CPU.

As such, hardware accelerators are physically connected to the CPU and are a

subcomponent of the larger Internet of Things system, and are otherwise isolated.

Consequently, concerns over data breaches or security of the Internet of Things are

issues to be handled by the design of the rest of the system, such as internet data

Literature Review 14

protocols used during communication between devices, not the underlying design of

the hardware subcomponents. This peripheral is subject to a physical connection with

a main/peripheral asymmetric control with the CPU, and apart from a physical breach

and connection to the FPGA electronics, the data between the two components is

secure.

Many different metrics can be used to evaluate what consists in a performance

improvement, such as processing speed, energy efficiency and integrated circuit area

used.

An important design choice to be made is the hardware on which to implement

a hardware accelerator. Historically, artificial neural networks were executed mainly

in CPUs and Graphics Processing Units (GPUs), but other possible options are

Field-Programmable Gate Arrays (FPGAs) and Application-Specific Integrated Circuits

(ASICs). The increasingly extensive use of GPUs for purposes other than graphics pro-

cessing, such as artificial intelligence, has coined the term General Purpose Graphics

Processing Unit (GPGPU)

FPGAs have several attractive features for designing hardware accelerators for ar-

tificial neural networks. These devices can be configured after their manufacturing by

a designer to implement hardware specialized in a specific algorithm, allowing its exe-

cution with a higher energy efficiency than GPGPUs and CPUs, and higher execution

speed than CPUs (MITTAL; VETTER, 2014) .

Another important characteristic is that FPGAs can be reconfigured indefinitely by

the end user after the circuit’s production. As a consequence, these devices are a good

fit for hardware accelerators for machine learning, as this allows prototyping of different

implementations and parameters, adapting the hardware in the field. This is especially

important for this area of study, as there is a wide array of different parameters and

configurations of machine learning applications, its implementation is often iterative in

nature, and allows the possibility of updating models in the field after their implemen-

tation. Furthermore, the field of machine learning technologies advances quickly, with

new and practical architectures being constantly released and improved. While ASICs

also provide significant hardware specialization, their long, complex and costly design

cycle along with the fixed nature of its final hardware hamper its use as a more flexible

Literature Review 15

hardware acceleration platform for AI (MITTAL, 2020).

Many libraries and frameworks are available for development of machine learning

solutions, and these often include tools to compile and implement the resulting soft-

ware to be executed in CPUs and GPGPUs (ABADI et al., 2015; JIA et al., 2014).

However, the design of hardware for FPGAs is still difficult and demands specialized

knowledge of hardware design from the developers, and machine learning program-

mers not necessarily have it. Additionally, the area of workflows and frameworks for

automated synthesis of AI accelerators for FPGAs is still in its early stages and much

work is still needed (PLAGWITZ et al., 2021) This combination hampers the use of

hardware accelerators for typical machine learning programmers, keeping away the

advantages of its use, whose difficulties demand specialized designers.

As such, there is an interesting gap to be filled in an partial or total automation of

synthesis of FPGA-based acceleration of machine learning algorithms. Such a system

would bring hardware accelerators to wider audiences, facilitating its use without spe-

cialized hardware design knowledge. Furthermore, even more experienced designers

can benefit from the use of such a tool, speeding up their work and helping workflows.

In Plagwitz et al. (2021), a wide-reaching survey is made in the scope of auto-

mated design flows and compilation of artificial neural networks in FPGAs. Several

different projects are studied and tested, and its fundamental paradigms were classi-

fied in two different groups: dedicated circuit designs and overlay-based co-designs.

Dedicated circuit designs correspond to the direct implementation of the algorithms

used, mirroring their architecture and topology directly in hardware. On the other hand,

overlay-based co-designs represent the implementation of common processing cores,

specialized in the execution of operations used in the computation of the neural net-

works. Then, the neural network behavior is translated into instructions for execution in

these specialized cores. These two different approaches are compared through test-

ing of several projects of both categories, measuring metrics such as energy efficiency

of the resulting systems, flexibility and compatibility, and comments on whether the

projects are open source or proprietary. The work then concludes that the available

solutions are insufficiently mature and do not address completely the existing demand

for such systems. Fundamental problems in the existing solutions lie in the lack of sys-

tem flexibility and compatibility with the diversity of neural network algorithms currently

Literature Review 16

in use. Additionally, it is diagnosed that the available tools are hard to use, without

firndly interfaces to the end user. Finally, the work acknowledges that in general, most

of the more advanced systems are closed source and of proprietary development. As

a consequence, even is these tools are more flexible, they may not be expanded by the

community and its use is often restricted to devices sold by the respective company. In

addition, the work concludes that there is a significant lack of solutions for the scope of

accelerators for edge computing. The only system found and studied was the Lattice

Semiconductor’s sensAI platform, which is also low flexibility, proprietary and closed

source. In conclusion, an open source solution is deemed to be more fitting for the de-

velopment of a more flexible and extensive automated workflow for the development of

FPGA hardware accelerators. The development by an active community would keep up

with the fast advancements in machine learning and neural network technologies, and

high compatibility with different algorithms and model representations is fundamental.

2.1.4 Neural network quantization

When considering the context of implementing artificial neural networks in Internet

of Things devices, there is a clear conflict between the high computational resource de-

mands from machine learning algorithms and heavy power and size limitations derived

from the environment’s restrictions. As a consequence, many different approaches

were created to balance these factors satisfactorily.

The first type of approach is to start the optimizations in the neural network’s model

design, exemplified by models such as the tiny version of the YOLO algorithm (RED-

MON; FARHADI, 2018), the Squeezenet architecture (IANDOLA et al., 2016), or Mo-

bileNets (HOWARD et al., 2017). These approaches are novel architectures that op-

timize their size and efficiency before its implementation by choosing efficient opera-

tions.

The other category of approach is to reduce model size and operation complexity

through the reduction of bit-depth representations of system variables. Applications

such as Binarized Neural Networks (HUBARA et al., 2016), XNOR-Net (RASTEGARI

et al., 2016) and Ternary Weight Networks (LI; ZHANG; LIU, 2016) all use significantly

reduced precision while preserving accuracy in complex applications. Within the cate-

Literature Review 17

gory of lower bit-depth representations, the TensorFlow Lite’s Integer-Arithmetic-Only

quantization (JACOB et al., 2017) stands out. TensorFlow Lite’s solution, differently

from the other’s, was tested beyond model size reduction, and arithmetic using the

lower representation sized also optimizes execution speed in real, mobile hardware,

while preserving model accuracy to nearly-identical levels to the initial model.

Within the category of model compression by reduction of bit-depth representa-

tions, there are several advantages to be considered. One such advantage is that any

original neural network that internally uses floating point parameters may be quantized,

preserving its overall architecture. As such, the model doesn’t need to be designed

from the beginning considering its compression. Furthermore, the level of compression

can be scaled according to the demands of the application using different bit-depths.

While the Binarized Neural Networks only use binary weights (HUBARA et al., 2016)

and are significantly compressed, TensorFlow Lite’s quantization use 8 bit and 16 bit

integer and fixed point precision (JACOB et al., 2017), which demonstrate significant

model accuracy preservation.

Another interesting consideration is that arithmetic computed using lower bit-depth

representations is also faster and more efficient, as the operations are simpler and

require less computations. Furthermore, if implemented in specialized hardware, this

also translates into smaller dedicated circuit area to implement these simpler opera-

tions.

In conclusion, for the implementation of a hardware accelerator in a restrictive en-

vironment such as Internet of Things edge computing, analyzing model complexity and

its representation bit depth should be considered in the trade-off between hardware

use and application performance. Hence, a more complex and precise model, when

quantized, can fit into a smaller FPGA with better results than a simpler model using un-

necessarily high bit precision. Furthermore, quantization can speed up neural network

inference speed and reduce energy costs in hardware by simplifying the operations

necessary for computation.

Literature Review 18

2.2 Related works

By researching recently published scientific articles, proprietary solutions from

competitive companies from the area, and promising projects cited in meta researches

such as Plagwitz et al. (2021), many examples of FPGA neural network hardware

accelerator compilation and automatic synthesis workflows were brought up and anal-

ysed.

One such example is the Vitis unified platform (KATHAIL, 2020), the Xilinx commer-

cial solution for a development workflow of artificial intelligence acceleration for FPGAs

sold by the company. It includes a closed source code compiler, and consists in an

overlay based co-design approach. Kernels are synthesized in the FPGA according

to the device’s size, and the neural networks are converted to instructions for these

kernels. A pre-trained, compatible network library is divulged, however, all of the nets

are convolutional. The platform is compatible with model representations in Tensorflow,

Caffe and Pytorch. Furthermore, the processor implements network approximations,

quantized to 8-bit representations. However, the co-design architecture has its down-

sides, the synthesis is limited to proprietary hardware, and the code is unmodifiable

and inaccessible.

The sensAI tool (LATTICE. . . ,), from the Lattice Semiconductor company, is a

commercial product developed for neural network accelerators focused on FPGAs with

low energy consumption, such as the iCE family of devices, sold by the same company.

This is also a closed source, proprietary solution, and, similarly, the synthesis targets

are exclusively the company’s FPGAs. Beyond that, the compatible function library and

available network topologies is relatively restricted, with support for only convolutional

nets, and restricted accessibility to the code prohibit the libraries’ expansion by the

community. The compatible representation formats are Tensorflow and Caffe. The

overlay-based co-design methodology was also chosen, as there is control over what

hardware is used, given that the tool is only compatible with proprietary hardware; as

such, kernels can be developed targeting these products. Furthermore, small devices

with high energy restrictions have high limitations and designing a small kernel that fits

the FPGA can enable bigger networks to be synthesized and executed. However, we

conclude that the limiting and closed source function library are significant gaps in this

Literature Review 19

solution.

The OpenVINO (INTEL, 2021) tool, from Intel, stands out as, even though it is a

commercial solution, makes a version of its code open to the public, through the use of

the Apache 2.0 license. However, it is just a part of the total project, and the target de-

vices are limited to Intel hardware. One other interesting characteristic is that FPGAs

are not the main focus, which has been discontinued recently, and instead favouring

heterogeneous execution between CPUs, GPUs, and proprietary specialized hardware

called Neural Compute Sticks, as long as they are Intel’s. Nevertheless, the company

published a series of auxiliary softwares that aid neural network design and optimiza-

tion, accelerator development, and offers compatibility to a wide variety of algorithms

and topologies. Furthermore, many network model representations are compatible,

such as Tensorflow, Caffe, ONNX and MXNet, along with a large layer library and pre-

trained networks. This approach also addresses network and data quantization by

featuring a quantization toolkit which supports arbitrary bit depth precision. This toolkit

was tested and 32 bit models quantized to 8 bits showed better execution performance

(GORBACHEV et al., 2019). In conclusion, this framework is useful for neural network

inference in heterogenous hardware systems employing various Intel devices. The di-

verse function library published and its compatibility with several representation formats

are clear strengths, possibly correlated with structured development by the corporation,

but also with the fact that the code is open source.

Another overlay-based implementation is the Versatile Tensor Accelerator (VTA)

(MOREAU et al., 2019), that is part of the TVM open source code compiler. As its

name indicates, the tool implements processing kernels that accelerate tensor opera-

tions, useful for neural network execution. However, originally specified for use as a

peripheral to process part of the computation as part of a heterogenous processing

system, alongside with CPUs and GPUs, there is little support and friendly interface for

the end user in relation to its use targeting exclusive use in FPGAs. Furthermore, its

flexibility is relatively low, being only compatible with residual neural networks. In con-

clusion, while this project is architecturally promising, being developed with an open

source code model, its flexibility and compatibility characteristics do not correspond

to the demands in the field. Even though, it is an interesting project, whose modular

design is noteworthy, which would facilitate its further expansion.

Literature Review 20

The DeepBurning system (WANG et al., 2016), also open source, is a recent and

more academic project based in specialized custom circuit design. Many types of

layers used in machine learning applications were deconstructed in functional blocks,

which had their implementation described in hardware, and through a model’s compi-

lation they are coordinated into a neural network implementation. Additionally, an inter-

esting strategy was utilized to overcome the circuit area and device usage restrictions

on the target FPGAs: the use of "spacial folds" and "temporal folds". These techniques

consist in the reuse of functional blocks during runtime by multiple different neurons.

In spatial folds, neurons in the same layer reutilize the functional blocks, effectively

“folding” the layer size, and in temporal folds, different layers reutilize hardware, folding

in different execution times. This creates a stack of data to be executed sequentially,

but the circuit hardware specialization is kept and there is still gains in performance.

However, the code’s publishing is made through many different incomplete reposito-

ries, whose last update was made in 2019, with empty folders, few documentation and

instructions for the reproduction of the results or the system’s expansion. Hence, while

the system is relatively flexible and has interesting strategies to overcome the contra-

diction between high hardware size restrictions and the scale of computation of neural

networks, its publication and project continuity efforts can be significantly improved.

Another interesting academic project is the Intellino processor (YOON et al., 2020),

also based in specialized custom circuit design and synthesis in FPGAs. This project

corresponds in the acceleration of two specific neural network algorithms: k-NN and

RBF-NN. Although their implementation is efficient and has good results, shown in

their article, it is a hard wired application whose alteration to other different algorithms

would be hard. The reason is that the system is itself the blocks that implement the

algorithms, without a reusable common core, and as such, other algorithms would

have to be implemented from zero. The code’s publishing, while open source, with

python scripts for the libraries’ installation, is scarcely documented, and the materials

available in the website do not completely correspond with the algorithms presented.

From this project, we conclude that their clear presentation of results and performance

tests is interesting and important to properly evaluate and compare such systems. This

work uses classic classification problems and datasets, recognized by pattern recog-

nition and neural network academia, and as such, their results are easily recognizable

Literature Review 21

and comparable to others in the area. However, it is worthy of note that the hard-

wired architecture design hampers the expansion of the system, and its modularization

could facilitate its expansion and longevity. Furthermore, legibility, clear publishing and

proper software license choices are similarly important.

In conclusion, through this analysis of related works, its possible to diagnose the

gaps in the state of the art of this field of study. One of the main results obtained

is that the open source development paradigm fits particularly well with workflows for

automatic accelerator synthesis. Furthermore, the different projects studied were di-

vided in two distinct categories concerning their main architectural choices, each with

its own advantages and disadvantages: dedicated circuit designs and overlay-based

co-designs. Finally, proper publication, legibility and ease of use are fundamental for

ample adoption of the system and its further development by the community.

22

3 PROPOSAL

3.1 Context

An important design choice lies in the type of hardware utilized for the implemen-

tation of a accelerator. In the field of neural network hardware accelerators for embed-

ded systems, the options are Application-Specific Integrated Circuits (ASICs), General

Purpose Graphics Processing Units (GPGPUs) and Field-Programmable Gate Arrays

(FPGAs).

ASICs circuits made specifically for a determinate use, and as such its circuit area

and energy usage overhead is kept to a minimum with the employment of specialized,

fully customized hardware. While this results in high performance and efficiency, there

are several problems associated with its design cycle. This design method has con-

siderably low flexibility, since the hardware’s configuration is fixed and defined in its

fabrication. As a consequence, if the design aims to be more generic to be compatible

with multiple machine learning algorithms, its advantages diminish proportionally. Con-

versely, when fully specialized and optimized, the resulting hardware only executes a

single algorithm. As such, this hardware choice does not address the demand for a

nonspecific platform for neural network acceleration. The rapid research and devel-

opment of new neural network algorithms, network topologies and activation functions

means that the field is in constant change; hence, the use of ASICs as the hardware

choice for a common platform for a variety of hardware accelerators, each targeted to

its specific algorithm, would cause significant efficiency and performance loss. This

is due to the distance and incompatibility between the specialized circuits of each fi-

nal hardware and the specific application being accelerated. Additionally, ASICs are

burdened with hard and costly development, and the high specialization of the result-

ing devices cause an expensive and time consuming design cycle with low prototyping

flexibility. (ESMAEILZADEH et al., 2012; WANG; LI; LI, 2016)

GPGPUs are another hardware option for the platform’s implementation. This type

of device also offers beneficial characteristics in relation to the neural network infer-

ence performance. Present-day machine learning algorithms exhibit intrinsically par-

Proposal 23

allel execution calculations, with many independent operations which can be executed

simultaneously for significant processing acceleration. GPGPUs, meanwhile, were ar-

chitecturally derived from Graphics Processing Units (GPUs), which were specifically

designed to efficiently calculate the similarly parallel operations necessary to render

computer graphics. This structural advantage can be exploited by configuring GPUs

with code to execute neural network operations. However, GPGPUs have a significant

energy and circuit area overhead, which is particularly harmful for the context of im-

plementing lightweight machine learning solutions for edge computing in IoT devices.

The hardware choice for such an accelerator must account for the demanding energy

and space restrictions which are intrinsic to this environment. (PLAGWITZ et al., 2021;

ESMAEILZADEH et al., 2012)

FPGAs, meanwhile, offer an interesting balance between several features of other

solutions, summed with its own unique structural advantages. This methodology pro-

vides more beneficial design cycles, which include ease of prototyping, updating and

modifying hardware due to the possibility of reconfiguring its layouts after the device’s

manufacturing. Additionally, FPGAs also offer the possibility of programming truly par-

allelized computation in its architecture in the implementation of a neural network al-

gorithm, resulting in significant performance and energy cost benefits. However, once

manufactured, each FPGA device has a fixed circuit area with a ser of internal com-

ponents, that, if not used in the final design, result in a circuit area overhead. Conse-

quently, while FPGAs don’t exhibit the very best performance in any of the aforemen-

tioned metrics, they do provide an attractive balance between noteworthy acceleration,

relatively low energy cost and area use, while being significantly more flexible, cheaper

and easier to design projects that target them in comparison with the other hardware

choices. FPGAs are also widely used in successful machine learning applications.

However, the design of hardware acceleration solutions for synthesis in FPGAs

have high design complexity, and most importantly, demand from the developers spe-

cialized hardware description language (HDL) technical knowledge. HDL programming

is a relatively uncommon proficiency, and machine learning programmers not neces-

sarily have it, reducing the availability of hardware acceleration for the majority of such

development teams (MITTAL, 2020).

Hardware accelerators act as a peripheral subcomponent which is part of a larger

Proposal 24

Internet of Things system, physically connected to a CPU and are otherwise isolated.

An example of an Internet of Things network of devices could be a network of con-

nected smart security cameras. These cameras could have circuit boards with CPUs

that process general data and are connected amongst themselves via bluetooth anten-

nas, for example. Each device’s circuit board with the CPU would include an FPGA,

physically connected to the CPU. The FPGA is completely isolated from the outside

world, and would communicate with the CPU via hardware using a master/slave dy-

namic, with the CPU sending neural network processing data requests, and the FPGA

sends the processed data results. Apart from a sophisticated physical internal elec-

tronic hardware interception security breach, Internet of Thing’s security issues con-

cern the system as a whole, communication between systems and data security. Such

a hardware interception attack would consist in physically modifying the circuits to in-

tercept electric communication signals between the CPU and the FPGA acting as hard-

ware accelerator, reading and interpreting them, which would be unrealistically difficult,

and if an attacker already has the kind of access needed to perform such an attack,

there are already worse problems. As a hardware peripheral, the only interaction the

accelerator has with the outside world is a physical circuit connection with the sys-

tem’s CPU, and is subject to a master/slave communication dynamic, being otherwise

isolated, with no other inputs or vulnerabilities, such as connection to internet. Conse-

quently, concerns over security are on the abstraction level of devices, and are outside

of this work’s scope.

3.2 Objectives

The literature review made in this work concludes that there is a significant gap in

the current state of the art of neural network hardware accelerator generators targeted

to edge computing devices. The first of which is lack of generality and flexibility of the

current systems. Many of the available systems only accelerate a single or small group

of similar algorithms, and are designed in such a way that they are difficult to adapt to

accelerate other techniques. They consist in hard wired systems whose architecture

targets specific types of algorithms, and as such significantly lack breadth of compati-

ble applications. This markedly limits their implementation to applications and contexts

different than their original targets, and hinders their expansion and longevity. Addition-

Proposal 25

ally, the compatibility in relation to different model representations is a notable obstacle

to the system’s generalization. If the system fundamentally depends on specific model

representations, its compatibility with other models is harder to implement. Another

existing gap is the partial or complete unavailability of the system’s source code, by

a variety of reasons. This significantly complicates or makes impossible to reproduce

the results obtained in such researches, to use the system as a tool in a project, or to

work on its expansion. Furthermore, another problem diagnosed in the state of the art

is the insuficient or inaccessible code documentation, additionally interfering with their

system’s use by others. Additionally, from preliminary testing of potential architectures

and intermediary results we conclude that the inclusion of neural network model quan-

tization brings significant advantages to the design. As such, another gap in current

solutions and potential advantage with the proposal of this system is the inclusion of

such quantization, which promises to increase the resulting system’s inference speed,

energy efficiency, reduce model size and preserve most of the original model’s preci-

sion.

Consequently, the main objective of this work is the development of an architecture

for a FPGA hardware accelerator generator which targets artificial neural network ap-

plications for the context of edge computing, with a proof of concept implementation

that sufficiently addresses the gaps diagnosed in the current state of the art. In ad-

dition, this proof of concept must sacrifice the minimum possible of performance and

efficiency as long as the resulting system still accomplishes its main purpose of ac-

celerating algorithms in a synthesizeable, adequate way considering the restrictions

imposed by the Internet of Things’ environment.

3.3 Scientific question

To properly define the objective for this work, the following scientific question is

raised:

Is it possible to create an edge computing neural network hardware acceleration

generation system architecture that bridges the gaps in the current state of the art?

For the successful and acceptable satisfaction of this question, the creation of a

proof of concept that fulfills every objective is necessary. As such, the system has the

Proposal 26

following requisites:

1. The system must generate a successful hardware accelerator.

This entails that when executed, an HDL code must be generated, that when

synthesized has clear performance gains in the execution of an artificial neural

network when compared with a similar CPU.

Since the target environment, Internet of Things devices, presupposes restric-

tions in energy consumption and small device sizes, the final hardware must be

measured in more metrics than solely execution speed in order to consider its

success.

As such, the hardware will be measured in regards to energy expenditure, circuit

area and execution speed. These metrics will be compared to similar solutions,

and an interesting balance between these results must be achieved for the accel-

erator to be considered successful.

2. The system must generate a hardware accelerator which is compatible with edge

computing restrictions.

The context of edge computing for embedded systems demands for low power,

small applications. Even if the system is efficient, it must fit in FPGAs with small

footprints and energy expenditure.

3. The system must be open source, with legible and well documented code.

As such, reproducing research results and implementing different hardware ac-

celerators by third parties to implement different algorithms and artificial neural

network applications will be significantly facilitated.

4. The system must be modular by design.

To facilitate the project’s expansion by the community, its architecture must allow

the independent programming and inclusion of modules which implement differ-

ent algorithms, but continue to be compatible with one another. The system will

then act as a hardware generation common core, used by the different modules,

with design guidelines for the inclusion of other techniques.

Proposal 27

5. The resulting tool must be easy to use by developers that do not have HDL hard-

ware design expertise.

As such, the interface with the end user must completely isolate the HDL knowl-

edge, only requiring well-defined inputs and outputs, accessible to artificial intel-

ligence software programmers.

3.4 System Architecture

The proposed system can be conceptually divided in two subsystems. The first

subsystem is a VHDL code generator which imports and interprets neural network

models to generate code. The second subsystem is the generated VHDL code itself.

Both subsystems must comply with the open source and ease of use by the end

user requirements. Additionally, the code must be legible and well documented, and

include a compatible open source code license. Furthermore, the end user must not

be required to have specific knowledge of hardware design to use the final tool.

3.4.1 Subsystem 1: Generator

The generator subsystem consists in a software which receives artificial neural net-

work models in compatible representations and algorithms used, interprets it and gen-

erates VHDL code. This code, when synthesized, implements a hardware accelerator

that executes the neural network received as input.

To ensure ease of use, the system only requires the model as input. The subse-

quent interpretation and hardware generation is made completely automatically, using

the data found in the model’s interpretation.

Furthermore, this subsystem has as its only output the VHDL code ready to be

synthesized, and the end user does not need to interact with HDL level programming.

The current system proposal is compatible with the Tensorflow neural network de-

velopment framework, widely used by several applications and researches with great

success (ABADI et al., 2015). However, the system is made in a way that input mod-

els are first converted to the Open Neural Network Exchange (ONNX) format (BAI et

Proposal 28

al., 2019), which is an open source artificial intelligence format that defines a common

set of operations for neural networks. As such, any format which is compatible with

the ONNX exchange representation is also compatible with this work’s core generator

system, and the only change necessary is the inclusion of each specific framework’s

converter. Since ONNX is focused on interoperability, the systems compatibility in-

cludes several popular frameworks with readily available open source converters, such

as Caffe, Keras, Matlab, PyTorch, SciKit Learn and many others.

The system’s execution begins with the import of an artificial neural network. The

network must already be trained. Then, the software extracts the network topologies

and activation functions used. The network topology consists in the amount of net-

work’s inputs and outputs, number of layers and neurons in each layer, and connectiv-

ity pattern between neurons. The activation functions consist in the function executed

internally to each neuron. Then, the software extracts the trained parameters from the

network, such as weights and biases, and matches them with each layer in a specific

class data structure.

Once all the necessary data is obtained from the model’s interpretation, the genera-

tor subsystem accesses a functional block library which contains neural network VHDL

hardware implementations. This library contains both activation functions and topology

configurations used to generate the final VHDL code. This architectural decision is part

of the effort to modularize the system’s design. The consequence of this design deci-

sion is that each algorithm and topology is isolated and organized in a library, has clear

design standards, and for the inclusion of new techniques a developer can implement

a functional block following compatibility standards and include it in this library without

editing the surrounding code. Furthermore, the modular and standardized design pat-

tern facilitates the system’s legibility and documentation, helping further development

by multiple independent developers such as it is in an open source context. Another

consequence of the modular system is ease of testing, as each component can be

isolated and tested before its inclusion in a larger, more complex system.

Finally, the generator subsystem writes a VHDL program using the code found in

the activation function and topology functional block library, and configures the blocks

according to parameters extracted from the model’s interpretation. The final code is

ready to be synthesized.

Proposal 29

3.4.2 Subsystem 2: Hardware Accelerator

The second subsystem is the final VHDL code generated by the generator system.

The hardware accelerator must fulfill the system requirements pertaining to execution

performance and energy efficiency, demonstrating a significant gain in the inference

throughput and energy expenditure balance. Furthermore, the resulting hardware must

be synthesizeable and fit in a suitably-sized FPGA, which in the edge computing for

Internet of Things devices means a small, low-power device.

The subsystem’s architecture can be divided in layers and network topology.

Firstly, the network is organized in layers of neurons, which in turn are the basic

units in neural networks. Each layer has data inputs, which can come from previous

layers or the network’s own inputs, and has its data outputs, which can go to other

layers or the network’s final output. To write the code related to each layer, the gen-

erator subsystem uses a sample VHDL functional block of the same type of layer, and

configures its parameters according to the network. The parameters to be configured

are number of neurons in each layer, number of inputs, number of outputs, amount and

value of weights and biases, variable data types and functional internal parameters.

Then, the code corresponding to the activation function requested is obtained in the

library and written in the layer.

Note that this manner of dedicated circuit design, with specific, specialized hard-

ware that mirrors the neural network topology, corresponds to a design decision made

to fulfill performance and energy efficiency requirements. As discussed in the literature

review and context of hardware accelerators, dedicated circuit design optimizes execu-

tion speed and efficiency, allows truly parallelized computation of independent opera-

tions in neurons on each layer. Furthermore, hardware pipeline techniques are imple-

mented for clock frequency speedup and increase in performance as each hardware

component can be more fully utilized, minimizing waiting times for previous results.

The pipelining techniques utilized in the layer topology of the neural network hardware

consist in registers between each layer, which store the layer’s output values. As a

consequence, when one layer is done processing a request, it can begin processing

data related to the next request instead of waiting for the entire system to finish. As

such, with enough requests, every layer can be working simultaneously on different

Proposal 30

requests, whose results are held in properly identified buffers. This results in signifi-

cant performance optimization, with the hardware being more fully utilized. Meanwhile,

the dedicated circuit design helps with the system’s modularization, as each specific

function consists in its own specific dedicated circuit that can be separately developed

and tested. This aids the project’s scalability and its open source organization, as dif-

ferent developers can independently follow design parameters and program different

functions.

In addition, as discussed previously, the optimizations related to the quantization

of the variables and parameters used in the neural network are also included as sep-

arate layers, adjacent to the corresponding quantized layer. This is done in order to

also pipeline the calculations executed to properly utilize the data represented in the

quantized format and more fully optimize the hardware. As such, after each functional

block that uses quantized data types, there is another functional block which utilized

the corresponding variable’s, weight’s and biases’ quantization parameters to calculate

correction factors to the layer’s outputs. Note that this architecture also follows the ded-

icated circuit design approach, and is also fully modularized and present in the neural

network functional block library.

The second part of the subsystem is the network’s topology. The topology is rep-

resented by a VHDL component which configures the neuronal interconnectivity, map-

ping inputs and outputs according to the imported neural network model for its correct

execution. Similarly to the layer’s activation functions, the generator subsystem im-

ports connectivity components from the functional block library. Once configured, the

network topology component acts as the network’s interface, receiving the input data

to be processed by the neural network, receiving and emitting control signals, and

outputting the final results obtained by the artificial intelligence.

This design is similar to the layer’s architecture, as the topology’s component also

corresponds to a dedicated circuit design, fully exploiting FPGA’s custom hardware

synthesis to optimize execution speed and efficiency. The topology component also

instantiates the registers that act as buffer between layers, enabling their pipelining.

Additionally, the topology component is also modularized, as it draws from the func-

tional block library and can be compatible with multiple possible topologies once they

are included in the library.

Proposal 31

3.5 Open source license

In this work, we have addressed many facets of the current state of the art of

automated workflows for generation of hardware accelerators for neural networks.

In the literature review, we studied many different approaches to machine learn-

ing design automation flows. One of the main considerations made while analysing

other projects was whether or not the source code was freely published under an open

source license, or it was a proprietary, closed source project. While studying the exist-

ing solutions, there were many different perspectives used in this regard. There were

both academic and corporate projects with the code fully published, and that accepted

contributions from the open source community;

It is worthy of note that even though some solutions, such as Intel’s OpenVINO (IN-

TEL, 2021) is proprietary, the corporation judged that it was positive for the project and

the company to divulge a version of the code under the Apache 2.0 license. Since the

synthesis part of the software is closed and only targets Intel’s proprietary hardware,

the open source, machine learning part of the software draws attention and directs

the public towards purchasing their hardware and other solutions. Another consider-

ation is that the vast and ever-changing nature of the machine learning and neural

network state of the art is compatible with the open source development paradigms, as

it confers the library more flexibility and agility to keep up with new developments and

technologies, powered by the demand of the implementation of such algorithms.

On the other hand, academic solutions such as the DeepBurning system (WANG et

al., 2016), also open source, has the disclosure of its code as one of its main objectives,

as is the publication of papers over their updates and achievements. However, while

proprietary solutions often disclose only a subsection of their code, motivated by the

profit from retaining the remaining intellectual property and control over the source

code, academic solutions not particularly concerned with the continuity of their projects

by the community often have many issues with the code publication. For example,

publishing in different, incomplete repositories, with empty folders, poorly documented

code and tools, and few instructions for the reproduction of the results cited in the

papers or for the system’s continuity.

Proposal 32

From this analysis of the code development model, we concluded that the open

source methodology shows a better fit with the field of study. Open source devel-

opment allows for greater expansibility through research and development from the

community; the project’s development direction benefits from the guidance provided

by the developers, as they naturally gravitate towards algorithms and technologies of

interest due to their own demand; the field of study of machine learning and artificial

neural networks changes rapidly and the system must be constantly updated and new

technologies included for it to stay relevant, and open source development allows for

this agility; and ultimately, the project’s goal to provide an useful, open source system

to divulge artificial neural network hardware can only be achieved by publishing the

source code produced.

To this end, the entire source code of the project was published using a GitHub

(GITHUB, 2020) repository. GitHub is an internet hosting service for software develop-

ment whose use as an open source host for open source projects is popular. According

to statistics provided by GitHub, over 94 million developers and over 4 million organi-

zations use the service, and over 330 million repositories are hosted in this platform,

and as such, is a good environment to host our open source system. Using such a

popular platform will encourage contributions from the community and its tools, such

as distributed version control and data integrity using Git will encourage the project’s

longevity.

Another consideration with the source code publication is the open source license

chosen and used. Among popular choices are the Apache license 2.0, the MIT li-

cense, and the GNU General Public license v3.0. These three licenses are similar,

with many of the same permissions, conditions and limitations provided, but they also

have key differences. Firstly, all of these three licenses provide permissions for private

and commercial use. This is deemed important for this project, even as it begins as

an academic work with non-profit goals, because to be usable in commercial purposes

and applications increases how useful the final tool is, and may bring more interest

and another demographic of final users. Then, the licenses allow for distribution and

modification of the source code, which is key to propagate the project make it avail-

able for the public, allow for contributions and for developers to adapt and implement

the product as needed. All of these licenses also provide limitations of warranty and

Proposal 33

liability, which is standard in such licenses. This is important to protect the developers

of the system, as the code is provided "as is", and places responsibility on those that

use and implement the tool at their own risk without punishing the project. As a con-

sequence, by following standard practices in open source development and protecting

the community, we encourage more contributions to be made.

However, these licenses differ in relation to the conditions under which the software

may be used, modified and distributed.

The MIT license is the most permissive of the three, requiring simply the preserva-

tion of its own copyright and MIT license notices. As such, the MIT license propagates

itself along the code that uses it, and guarantees that the source code remains open.

The Apache license, on the other hand, requires state changes to be documented

by those who change the licensed material, as well as the Apache license and copy-

right notice preservation. The documentation of state changes is another protection of

developers and authors, as problems of new, modified versions will not be erroneously

attributed to the main versions, and also aids in the troubleshooting of those versions.

Another permission granted by the Apache license is its express grant of patent rights

from contributors. This entails that each contributor grants a perpetual, worldwide,

non-exclusive, no-charge, royalty-free, irrevocable patent license, guaranteeing that

the source code protected by this terms will remain free and will not be threatened by

patents.

The GNU General Public License (GPL) v3.0 includes the conditions of the other

two, being the documentation state changes to the licensed material and preservation

of its license and copyright notices, the express grant of patent rights from the Apache

license, as well as other interesting conditions. Differently from the other two, while the

other licenses merely allow for distribution and modification of its source code, the GNU

General Public License v3.0 has as one of its conditions the obligation to disclose the

source code of the modified versions. As such, modified versions of the software are to

be published under the same license, with the source code available, while the others

allow for the distribution of closed source versions of the project. This means that the

GNU GPU v3.0 is a strong "copyleft" license that is focused in sharing improvements

and keeping the software and all its future versions free and open, while a project

Proposal 34

protected by the other licenses may be superseded by a closed source version of itself,

defeating the purpose of the code being open source.

In conclusion, by imposing conditions and rules to regulate the use, distribution

and modification of the source code, the GNU General Public License v3.0 offers more

guarantees of the continuity of the project and ensures that improvements to the system

are kept open and free.

As such, the license chosen for this project is the GNU General Public License

v3.0, and the source code has been published in a GitHub repository under this li-

cense. The limitations in warranty and liability provided by the license reasonably pro-

tect the authors and developers; the license is highly permissive, allowing for private

and commercial use, provides a patent and allows the code’s distribution and modifi-

cation; and the conditions provided keep the source code free, preserves the license

and copyright, and protects the versions of the code by obligating the documentation

of state changes.

All of these characteristics adhere to the project’s goals of being free, not hardware

dependant, ensure the projects longevity and continuity, and being an useful tool for

academic, private and commercial use.

35

4 PROTOTYPE AND INTERMEDIARY RESULTS

As part of the iterative development process, an intermediary proof of concept sys-

tem was created to evaluate design choices and possible changes. This prototype

was designed such a way to include all the steps necessary to a complete system,

and as such, highlight potential weaknesses and difficulties to solve. The prototype’s

architecture is divided in four segments:

1. The design and training of a functional artificial neural network model, with mea-

surable performance and which is compatible with the following steps;

2. A data extraction method which includes all the necessary information to recon-

struct this neural netowrk model;

3. The creation of a prototype library, which includes hardware description language

code corresponding to the implementation of the necessary activation functions

and topologies used by the neural network;

4. The development of a system which uses the extracted data and library from

previous steps and generates files corresponding to the neural network being

interpreted.

Furthermore, it’s necessary to create tests to validate correct function, to diagnose

potential problems and evaluate performance.

4.1 Neural network design and training

To create a prototype which covers all of the fundamental phases of the project,

it is necessary to design an artificial neural network to be used as an input which is

compatible with the rest of the system. Since the system, in its initial form, will have

a limited topology and activation function library, the neural network compatibility will

be restricted. To represent the neural network field of study with as much brevity as

possible, it was chosen to include the ReLU (Rectified Linear Unit) activation function

and the fully connected, dense layer. These are among the most simple technologies

Prototype and intermediary results 36

used presently, and still present good results in regards to accuracy and model com-

plexity (RUSSELL; NORVIG, 2021). Consequently, the neural network designed to be

used as example for the prototype must use only the ReLU function and dense, fully

connected layers.

To more easily test further components, a configurable program was created to

generate and train compatible artificial neural networks, using only the ReLU function

and dense layers. The implementation was made using the Python 3 programming

language, the Tensorflow framework, employing the neural network library Keras. The

code implements a simple sequential, feed-forward neural network with a customiz-

able number of dense layers, each with a customizable number of neurons. Then,

the program imports and reads two datasets in the CSV (Comma-Separated Values)

format, corresponding to the training and test sets. The model is trained through the

Keras lirary’s Adam optimization algorithm. With this implementation, the dataset can

be changed to test cases with different complexities.

To use as an input for the prototype’s next stages, a neural network was designed

to implement a classifier for the Iris dataset (DUA; GRAFF, 2017). This dataset is rel-

atively simple, suitable for testing proof of concept systems, with only four numerical

variables, but it is well recognized in the pattern recognition scientific community and

literature, cited by several articles, with a shortened list available in the dataset’s web-

site (DUA; GRAFF, 2017), and represents a more realistic and practical dataset. This

database has 150 samples, each with 4 input variables, which are real numbers, and

an output, which is a classification in one of 3 different classes.

Then, the dataset output variable was converted into the one-hot encoding repre-

sentation. The resulting dataset has 3 binary outputs, one for each possible classifi-

cation result. This method increases classification precision and distinction between

the different results, and is compatible with the low number of possible output values.

The database then had the order of its samples randomized and divided in two groups,

with 50 and 100 items, corresponding to the test and training sets. The sample order

is randomized in an attempt to homogenize the two data subsets in order to preserve

the original dataset proportions.

Finally, the neural network has an input layer with 4 inputs, corresponding to the 4

Prototype and intermediary results 37

dataset inputs, a hidden layer with 3 neurons, followed by 3 hidden layers with 5 neu-

rons, and an output layer with 3 neurons, corresponding to the one-hot outputs. Every

neuron implements the ReLU activation function, and every layer is fully connected.

The training was executed until a 90% inference accuracy in the test dataset was ob-

tained (5 classification errors in 50 test samples). This accuracy was deemed rea-

sonable, since it demonstrates basic network functionality. While more optimizations

are possible to further increase precision, these are not necessary to demonstrate the

execution of the prototype’s following stages. Additionally, these optimizations can in-

crease the complexity of the neural network model, or include different technologies,

which is against the rule to use only the ReLU function and dense layers.

4.2 Neural network data extraction

It is necessary to extract several neural network parameters to implement its in-

ference in a customized hardware accelerator. As such, part of the prototype is the

extraction of this data.

Since the artificial neural network used as input for the prototype was impmle-

mented using the Tensorflow framework and the Keras artificial intelligence library, the

most standard and direct solution is to use the libraries’ own export functions. Conse-

quently, the model data was exported and saved via the SavedModel format, using the

Keras’ methods Model.save and models.load_model.

To export the model, the program that generates and trains the neural network

uses the method Model.save to export the network’s data. Note that this simulates the

behavior of the accelerator generator’s final user. Then, the generator system uses the

Models.load_model method to import the necessary data from the user’s network.

As such, the network’s data corresponding to the topology, inter-neuron connec-

tions, number of layers and neurons in each layer, weights, biases and activation func-

tions are available to the system. This information is sufficient to mirror the neural

network’s behavior and implementation, preserving the same results.

This step was executed and tested through the Microsoft’s integrated development

environment Visual Studio 2019 Community Edition’s debug tool. During testing it was

Prototype and intermediary results 38

possible to inspect the imported Model objects and ascertain that all of the necessary

data was present, correct and accessible.

4.3 Activation function programming in VHDL

A crucial part of the final system is its function library, which consists in functional

blocks of HDL code corresponding to different activation functions and neural network

topologies. This library is accessed by the interpreter, which, after importing and read-

ing the model data, samples and modifies the blocks in order to implement the neces-

sary behavior to mirror the original neural network. An ideal library should contain as

many different functions and topologies as possible, to be compatible with a wider array

of models. However, as a prototype to examine the workflow to create the system and

to diagnose possible problems with the current approach and demonstrate its viability,

a proof of concept consisting in a single activation function and one network topology

was considered sufficient, as long as the methodology supports the implementation of

more functions in the future. The activation function chosen to be implemented is the

Rectified Linear Unit (ReLU), which matches the function used by the neural network

generated and trained previously. Another consideration is that this implementation tar-

gets each neuron individually, and in a higher hierarchy block, a separate component

corresponding to every neuron in the network must be instantiated.

The HDL language chosen was VHDL. The ReLU function was implemented us-

ing the 32 bits floating point arithmetic functions and representation formats from the

IEEE.float_pkg package, included in the VHDL-2008 version. This choice was made

in order to completely preserve the original neural network behavior, as in software the

bit-depth data representation format used is also 32 bit floating point numbers. Firstly,

the neuron behavior is implemented through the multiplication of each of its inputs by

its respective weights. Then, the results are summed and the layer’s bias is added.

Lastly, the resulting value is rectified, that is, if it is less than zero, the output becomes

0. Otherwise, the output is the addition’s result. Beyond the ReLU function’s imple-

mentation, the block also contains descriptions of input and output control signals. The

first is the binary input “reset” signal, which resets the block if its value is one, and does

nothing otherwise. The other control input is the “enable” signal, which is an 8 bit vector

Prototype and intermediary results 39

that corresponds to an address respective to the system’s data inputs. This signal is

propagated through the system’s pipeline to eventually match the resulting output to

its originating inputs. Furthermore, as output control, there is the “done” signal, which

corresponds to the “enable” value respective to the data output, that, when a non-zero

value is outputted, indicates that the result is ready and which address it corresponds

to.

The ReLU functional block was tested via its isolated simulation in the Intel’s Mod-

elSim software, using a range of possible input values and testing many different ex-

pected behaviors of the ReLU function. Examples are its overflow and underflow treat-

ment, the rectification of negative outputs and the correctness of positive results, as

well as testing the propagation of the “enable” signal through the “done” signal, and

the signal timings. The test was considered successful, since the control signals were

functioning correctly, propagating the input address and were correctly timed. Further-

more, the data resulting from the functional block was numerically correct.

4.4 Neural network topology programming in VHDL

The following step of the prototype is the functional block corresponding to the

neural network topology, also belonging to the system’s library. This block will be re-

sponsible for connecting the different neurons according to rules determined by the

trained input model. Furthermore, the code must be written in such a way as to en-

able its posterior modification to include different neuron connection rules, and to be

conveniently edited by the generator system to implement different neural networks.

For this prototype, a single network topology was implemented: the fully-connected or

dense layer. This corresponds to every neuron’s output from the previous layer being

connected to every neuron in the current layer. This choice also matches the topology

chosen by the neural network generated and trained in the previous steps.

This block was also programmed in VHDL. The topology was implemented im-

porting a generic ReLU neuron, which has multiple generic parameters that can be

edited in their instantiation. However, in this prototype, since each functional block

corresponds to a single neuron inside each layer, some parameters such as num-

ber of inputs are hardwired and cannot be edited during the component instantiation.

Prototype and intermediary results 40

As such, for each different layer, a modifiable ReLU neuron is implemented. While it

uses generic mapping functions to write necessary data, such as values correspond-

ing to the weights used, the number of inputs and outputs remains fixed for each layer.

Then, the neuron components corresponding to the neural network neurons are gen-

erated. Finally, using port mapping functions, the inputs and outputs of the neurons

are connected following the topology rules, the input layer’s inputs are connected to

the network’s inputs, and the output layer’s outputs, to the network’s outputs.

This functional block was tested using the previously programmed ReLU neuron

functional block as component, and using a testbench which provided sample inputs

as stimuli. Via simulation in the ModelSim software, it was possible to verify the correct-

ness of the neural network behavior and that the internal signals were being correctly

mapped.

4.5 Neural network accelerator generator programming in Python

The prototype’s final step is programming a software which generates the VHDL

code corresponding to the hardware accelerator which implements the artificial neural

network.

This step uses the neural network generated and trained in the first step; extracts

the relevant data from the model using the method described in the second step; and

finally, writes VHDL code using the functional block library that includes the blocks

programmed in the third and fourth steps.

The resulting prototype system, corresponding results and hardware accelerator

performance was analysed to provide insights of further development and diagnose

potential problems with the approach employed.

Many different metrics can be used to analyse the results, and these must be cho-

sen and evaluated according to the context in which the system resides: low-power

hardware accelerators for edge computing for Internet of Things (IoT) devices. As a

consequence, a crucial metric to be analysed is the energy expenditure of the resulting

hardware accelerator, as IoT devices usually have restricted power availability. Fur-

thermore, according to the chosen implementation platform, synthesis on an FPGA,

Prototype and intermediary results 41

the hardware must fit in a device compatible with the IoT environment. That is, the

amount of integrated circuit components required to synthesize the design must be

compatible with a small, low-power FPGA designed for this type of application. Then,

the hardware must be evaluated in regards to its execution performance, that in this

case can be assessed by measuring its inference result throughput. Finally, depending

on the technologies used, there may be model accuracy loss with its implementation in

hardware, and this loss should be measured and taken in consideration.

All of these metrics were considered to diagnose problems with the implementation

and approach used by the prototype, and the issues recognized were solved to develop

the functional proof-of-concept.

The VHDL hardware accelerator generator was implemented in the Python 3 pro-

gramming language. The generator begins by importing the neural network exported

model. Since the prototype’s neural network was developed using the Keras library

based on the Tensorflow framework, their import methods were used, generating a

Tensorflow model file. In this prototype, the file path must be directly referenced by

editing the program’s code, and while it imports the model successfully, it must be

addressed to increase ease of use by a final user.

Once the model is imported, it is read iteratively along the neural network layers,

and for each layer a function is invoked to write a VHDL file corresponding to the kind

of neuron used. In the network used by the prototype, this stands for three different

neuron VHDL files, with 4, 3 and 5 inputs, and all of them implementing the ReLU

activation function.

While the model is read to extract the neuron data, network parameters are also

stored, which are number of layers, neurons per layer, interconnectivity rules and num-

ber of network inputs and outputs. When the program finishes reading the model, an-

other function is invoked to write the VHDL file corresponding to the network’s topology

following the parameters extracted. The topology file imports the neuron’s previously

generated corresponding component files, generates the correct amount of each neu-

ron, and connects them following the specification.

Since every layer in this example is dense, the outputs from all neurons from a layer

are connected to the inputs of every neuron of the following layer. Finally, the network’s

Prototype and intermediary results 42

inputs are connected to the first layer, and the final layer’s outputs are connected to the

network’s outputs.

In the context of compiling the VHDL code, the topology file is hierarchically the the

top entity, representing the entire neural network.

The generator system’s operation was tested through the generation of the VHDL

code corresponding to the previously mentioned trained Iris dataset classifier neural

network. VHDL files for each neuron were properly generated, as well as a topology

file. A logic simulation test was executed using the ModelSim software, using a test-

bench file which provided the 50 samples from the dataset test input data as the 32 bit

floating point binary vectors used by network as stimuli. Furthermore, the stimuli file

included “enable” signals along each input data to label them, as well as “reset” and

“clock” signals for the device’s operation.

The system was then successfully simulated, and its behavior was as expected.

Since there is a single hardware pipeline in the accelerator, with each stage corre-

sponding to each network layer, each sample’s inference result is ready after 5 clock

cycles from its input, since there are 5 layers in this network. The results are correctly

labeled with the representing “enable” signal which accompanied its input being out-

putted in the “done” signal. The output data results were exactly the same as the results

obtained during the software tests, which means that the hardware implementation in-

curs no loss in accuracy when compared to the original network. This zero accuracy

loss was expected, since the floating point arithmetic used in software is mirrored in

the VHDL files, as well as using the same precision in the data representation.

Finally, the resulting VHDL files were tested in a synthesis and mapping context for

the implementation of the accelerator in an FPGA. The FPGA choice must be made

considering the projects requirements concerning the use of the hardware accelerator

in an edge computing for an Internet of Things device. As such, the chosen FPGA is an

ultra-low-power, with small circuit area and especially low number of internal compo-

nents, the Lattice Semiconductor’s iCE40UP5K-UWG30. To synthesize the hardware

in this FPGA, the Lattice Semiconductor’s iCEcube2 software was used, configured to

target the specified FPGA, with no other design and compilation restrictions.

While the compilation and synthesis process was concluded with no errors, the im-

Prototype and intermediary results 43

plementation and mapping was unsuccessful. The resulting reports from the software

pointed to two fundamental problems. The first of which was that the FPGA critical

path analysis diagnosed that the clock slack obtained was -69,212 ns when attempt-

ing to use a 1MHz clock. This means that in the worst circuit pathway in the resulting

hardware, the system could not deliver its results to the next step in the time given

by the 1MHz clock, being late by -69,212 ns and the hardware would not function as

intended. The resulting hardware implementation would only reach a 0.9MHz perfor-

mance. The second issue is that the use of internal components greatly exceeds the

available number of components available in the chosen FPGA, using more Lookup

Tables and adders as it would be possible.

4.6 Prototype discussion and conclusions

The artificial neural network used as sample input for the generator system was

considered to be successfully designed, generated and trained. The dataset used

has relevance and recognition in the pattern recognition and artificial intelligence fields

of research, had its classifier implemented adequately, with acceptable topology and

accuracy performance. Furthermore, the artificial neural network was generated ac-

cording to the prototype’s restrictions of topology and activation function choices. Note

that as the system’s libraries are expanded to include more functions, more complex

networks will also be necessary to test them.

The parameter extraction was successful, as the neural network model was ex-

ported and imported into the generator system with all of its necessary data. However,

the prototype is only compatible with the Tensorflow framework, using the Keras library.

Since increasing framework and library compatibility is a main concern of this system,

it would be important to the generator’s success to include more readable formats. An

efficient and effective way to include multiple different formats with minimal work would

be to program compatibility with the ONNX (Open Neural Network Exchange) format

(BAI et al., 2019). The ONNX project is an initiative whose objective is the common

representation of many different machine learning models among a variety of frame-

works, toolsets, libraries and compilers. It is also open source, and already boasts

several open converters from different, relevant formats into the ONNX exchange for-

Prototype and intermediary results 44

mat, such as Tensorflow, Caffe, scikit-learn and many others. As such, if the hardware

accelerator generator system is programmed to be compatible with ONNX, it will also

be indirectly compatible with every format that can be converted into ONNX using an

open converter.

The ReLU activation function was correctly implemented in VHDL considering its

logical behavior, as the results outputted when the accelerator is tested in simulations

are the same as when the network is tested in software. However, this initial implemen-

tation has its issues, namely in the complexity of the resulting circuit that is necessary

to synthesize this behavior in hardware. The consequence of this complexity is that

the final hardware requires a high number of integrated circuit components for its final

synthesis, and the resulting clock frequency is low.

Many characteristics of this implementation contribute to this. One of which is that

the floating point addition and multiplication functions used are implemented through a

VHDL library that synthesizes the arithmetic operations without considering pipelining

techniques. This results in a final circuit that executes the entire operation in a single

clock cycle, serializing the internal circuit components. This serialization reduces the

clock frequency, as the clock is required to wait for the entire operation to complete.

Furthermore, the internal circuits are poorly utilized, as each serial step is idle, waiting

for the previous component to complete its operation to begin computing. With the

resulting long serial line of components, there is low efficiency as many steps are left

waiting. Another issue with the prototype’s implementation is that all the arithmetic

operations in each neuron are sequential as well, also incurring in the aforementioned

problems.

To solve these issues, the final accelerator architecture include several pipelining

steps. The critical paths and complex operations were diagnosed, and separated into

stages, greatly speeding up clock frequency. In addition, the different stages can work

simultaneously, with results from different inputs being computed in parallel, increasing

the circuits efficiency, reducing idle times and speeding up inference results.

Furthermore, while we observe that, since the entire network’s topology and arith-

metic operations were mirrored in hardware using the same value representation pre-

cision, which result in zero inference accuracy loss, this also results in highly complex

Prototype and intermediary results 45

synthesized hardware. Working using 32 bit floating point accuracy greatly increases

FPGA resource use, and even while testing a simple network, this makes synthesis

impossible. As such, reducing value representation precision was chosen as a strat-

egy to reduce circuit complexity, and following Tensorflow Lite’s quantization algorithm

for integer-arithmetic-only inference (JACOB et al., 2017), the incurred precision loss is

minimal. As a result, the final accelerator generator uses quantized neural networks to

an 8 bit precision, which are trained taking the precision loss into account, with greatly

simplified and reduced resulting hardware and minimal accuracy loss, which enabled

hardware synthesis in devices compatible with the Internet of Things context.

46

5 ACCELERATOR ALGORITHMS

The final hardware accelerator is composed of several algorithm implementations

in hardware description language code that are stored in the generator library. For a

proof-of-concept implementation that would properly demonstrate the system’s func-

tionality and viability, a minimum viable set of algorithms was chosen to be imple-

mented.

The algorithm set to be implemented must include an activation function to be ex-

ecuted by the neurons and an algorithm to implement a neural network topology to

execute the basic functionality of a neural network.

Additionally, as diagnosed in the prototype’s intermediary results, considerations

must be made to solve the issue of high computational resource demand, and this was

tackled with the inclusion of variable quantization algorithms.

5.1 Variable quantization

As diagnosed in the prototype’s results and discussion, the 32 bit floating point

variable representation is significantly cumbersome and demanding of computational

resources, both in integrated circuit demand to implement the operations and time to

execute them. As such, we chose to implement a variable quantization scheme to re-

duce variable representation bit depth to simplify the resulting hardware and inference

operations at the cost of result accuracy. The quantization methodology chosen is the

Tensorflow Lite’s full integer quantization for integer-arithmetic-only inference (JACOB

et al., 2017).

As demonstrated in Jacob et al. (2017), when paired with quantization aware neu-

ral network training, the inference accuracy loss is minimal. This methodology was

chosen as the prototype concluded that full 32 bit precision was prohibitive to the ac-

celerator’s synthesis and implementation in small FPGAs compatible with Internet of

Things devices, and the accuracy loss is acceptable.

The 8 bit integer variable quantization uses the following formula (JACOB et al.,

Accelerator Algorithms 47

2017):

real_valueα = (quantized_valueα − zero_pointα) × scaleα (5.1)

which can be more conveniently rewritten to match the following matrix notations as:

r(i, j)
α = S α × (q(i, j)

α − Zα) (5.2)

Note that in 5.1, 5.2 each variable α is shifted by a zero point and scaled by a scale,

and these parameters are the same for all the elements in the same array. While the

zero point is an integer, corresponding to a shift in the new 8 bit representation, the

scale is a floating point number, as it converts the variable into a rounded integer via a

multiplication.

These parameters are obtained during the neural network quantization-aware train-

ing, during which they are trained along the other neural network weights to minimize

inference error. Once trained, the quantization parameters are fixed and are not modi-

fiable during neural network execution.

Each of the quantized weight, bias, input and output arrays of each of the layers

are quantized and have their own parameters.

Note that the result of the multiplication between the 8 bit weight and layer input

arrays result in a 32 bit integer array. Since biases are added after this multiplication,

they can be represented as 32 bit integers to benefit from the increased precision

before their result is cast down to 8 bit integers for the next layer.

5.2 Layer topology: Matrix Multiplication

The first of which consists in a matrix multiplication functional block. This functional

block is necessary as it represents the fundamental operation executed to perform the

fully-connected layer neural network topology, which was the layer topology chosen

to demonstrate the system. The fully-connected layer behavior consists in each of

the neuron’s inputs being multiplied by their respective weights stored in the layer and

these results are added together to form the layer’s activation function’s input. Each

neuron has its own individual weights for each of the inputs. Furthermore, the layer can

optionally include a bias value, which is also added to the input-weight multiplication

Accelerator Algorithms 48

result.

This behavior is implemented via a matrix multiplication hardware functional block.

In the functional block, each of the layer’s inputs are stored in an one-dimensional

input array. The layer’s weights are represented by a matrix, implemented as a two-

dimensional array. The entire layer’s weights are grouped together in this array, with

each neuron’s weights being represented as a column in the matrix, while the rows

represent the weights corresponding to each specific input.

The multiplication of the neural network’s inputs by each of the neuron’s weights

is then executed by the matrix multiplication of the input array by the weights matrix.

The result is a one-dimensional array, with each item corresponding to the activation

function input for each of the neurons in the neural network.

Note that the entire layer’s operation is grouped together in this multiplication, with

every neuron’s execution being represented by one of the dimensions in the weight

and output matrices. Another consideration to be made is that the inputs, weights and

results in this stage are quantized and must be corrected before being used, whether

in calculations in further layers or as neural network outputs.

The matrix multiplication is then implemented by first multiplying each weight matrix

row by the input array and summing the results, and iterating this operation over the

remaining weight matrix rows. Once the addition for each row is complete, if the layer

includes the optional bias, it is then added to the result and outputted.

5.3 Activation function: Rectified Linear Unit

To demonstrate a successful neural network implementation, an activation function

to be executed by the neurons must be implemented. As discussed previously, the

Rectified Linear Unit (ReLU) function was chosen to be implemented.

The ReLU function behaves as follows:

ReLU(x) =

x if x ≥ 0,

0 otherwise.
(5.3)

Accelerator Algorithms 49

As such, the activation function implementation receives an one-dimensional array

corresponding to the layer topology’s results. Then, a loop checking whether or not the

values in the array are positive, simply outputting the value if it is, and outputting zero

otherwise.

However, since the neurons are using the quantized arithmetic representation, a

zero-point correction of a variable may be in use. This means that zero may be rep-

resented as a different number depending on the quantization parameters being used

by each variable. As a consequence, the ReLU function’s threshold must be config-

urable to each variable’s quantization parameters. Since the quantization parameters

are fixed once the network is trained and deployed, and don’t change during inference

with different inputs, the ReLU threshold can be configured and hardwired at synthesis.

As such, the final ReLU implementation behaves as follows:

ThresholdedReLU(x) =

x if x ≥ zeropoint,

0 otherwise.
(5.4)

Note that in 5.4, zeropoint corresponds to the value that represents zero in the

activation function’s input variable.

5.4 Layer quantization corrections

Each layer in the neural network operates under its own variable quantization pa-

rameter criterion, with its inputs, outputs and intermediary variables having their own

quantization parameters. To properly implement the layer’s behavior in hardware, the

results of each layer must conform with the quantization rules of its output. As such,

once the quantized arithmetic operations are completed, quantization corrections must

be applied to the numerical results obtained to conform with the output parameters.

This guarantees that the values are readable by further layers and behave as expected.

As a consequence, we must determine the corrections necessary to maintain arith-

metic result correctness by following the operations executed with the quantized vari-

ables.

Accelerator Algorithms 50

5.4.1 Quantized matrix multiplication

Because of the way quantized values are represented in Equation (5.2), arithmetic

involving these values must be adapted to produce the expected results. From the

definition of matrix multiplication and the quantization representation specification (5.2),

we have:

S 3(q(i,k)
3 − Z3) =

N∑
j=1

S 1(q(i, j)
1 − Z1) × S 2(q(j,k)

2 − Z2) (5.5)

which can be rewritten as

q(i,k)
3 = Z3 + M

N∑
j=1

(q(i, j)
1 − Z1) × (q(j,k)

2 − Z2) (5.6)

M :=
S 1S 2

S 3
(5.7)

In the neural network context, q3 corresponds to the quantized layer’s outputs; q1

are the quantized layer’s inputs; and q2 are the quantized layer’s weights.

Furthermore, as the input array only has a single dimension, i = 1 and j is in the

interval [1, inputs], with inputs being the number of inputs in the neural network layer.

Similarly, k is in the interval [1, neurons], with neurons being the number of neurons in

the layer

In addition to the matrix multiplication between layer inputs and weights, the op-

tional bias is then added to the result:

q(i,k)
3 = Z3 + S bias(qbias − Zbias) + M

N∑
j=1

(q(i, j)
1 − Z1)(q(j,k)

2 − Z2) (5.8)

However, the bias’ quantization parameters in the Tensorflow Lite’s 8 bit quantiza-

tion are conveniently defined as:

S bias := M (5.9)

Accelerator Algorithms 51

Zbias := 0 (5.10)

and as such, Equation 5.8 can be simplified to:

q(i,k)
3 = Z3 + M(qbias +

N∑
j=1

(q(i, j)
1 − Z1)(q(j,k)

2 − Z2)) (5.11)

5.4.2 Efficient handling of zero-points

To efficiently implement the zero-point sums and subtractions(JACOB et al., 2017),

Equation (5.11) is rewritten as

q(i,k)
3 = Z3 + M

(
qbias + NZ1Z2 − Z1a(k)

2 − Z2a(i)
1 +

N∑
j=1

q(i, j)
1 q(j,k)

2

)
(5.12)

where

a(k)
2 :=

N∑
j=1

q(j,k)
2 , a(i)

1 :=
N∑

j=1

q(i, j)
1 (5.13)

Next, following TensorFlow Lite’s specification (JACOB et al., 2017), the zero-point

for the weights matrix on fully-connected layers, Z2, is always 0. As such, the terms

NZ1Z2 and −Z2a(i)
1 are also always equal to 0. Additionally, a(i)

1 doesn’t need to be com-

puted, and a(k)
2 can be computed offline during compilation, saving time and resources

during inference.

The final matrix multiplication equation is then:

q(i,k)
3 = Z3 + M

(
qbias − Z1a(k)

2 +

N∑
j=1

q(i, j)
1 q(j,k)

2

)
(5.14)

This final equation means that once the matrix multiplication and addition for each

of the output’s elements is complete and the quantized bias is added to the result, the

quantization corrections necessary are:

1. Add −Z1a(k)
2 , which is calculated offline during compilation;

2. Multiply by M;

Accelerator Algorithms 52

3. Add Z3.

5.4.3 Efficient handling of multiplication by M

As described in 5.1, the scale quantization parameters are floating point numbers.

As a consequence, the variable M, defined by 5.7, is also a floating point number.

While its computation can be done offline since the scale values do not change during

inference, floating point multiplications are significantly resource intensive.

However, we can rewrite M as follows:

M = 2−nM0 (5.15)

where instead of multiplying by a floating-point number, we multiply first by the

fixed-point normalized parameter M0, which is in the interval [0.5, 1), and by then multi-

plying by 2−n. n is defined as a positive integer.

The multiplication by a fixed-point parameter is significantly faster and less com-

putational resource intensive than floating-point arithmetic. Furthermore, multiplication

by a power of 2 can be efficiently implemented in hardware by a bit shift with round-to-

nearest behavior.

Depending on the exact instruction or implementation used for bit shifts, the re-

sulting algorithm can include an asymmetric bias in relation to zero, which has been

shown (JACOB et al., 2017) to cause significant loss of accuracy in neural network

inference. An example of bias would be with instructions that always round numbers

downwards, towards negative infinity. This incurs a downward bias that skews neu-

ral network training and inference. This loss is avoided when using a bit shift with a

symmetric round-to-nearest behavior. To implement this rounding rule, the following

correction to shift a signed value by n bits is used:

1. Add 2n−1 to the value being shifted;

2. Invoke the bit shift by n

To calculate M0 and n, we multiply M by 2n, starting from n = 0 and iteratively

Accelerator Algorithms 53

increase n by 1 until the result, M0, is in the interval [0.5, 1). This is done by the accel-

erator generator program and the result is stored in a hardware description language

data package. This calculation doesn’t impact inference performance as it is done

during the hardware generation.

54

6 GENERATOR SYSTEM

Following the conclusions drawn from the prototype and its intermediary results,

the final system design was made in order to solve issues detected and preserve its

strengths.

The final system still follows the same general structure as the prototype: it is di-

vided between the generator system and the generated accelerator. The generator

consists in a software program which is used by the final user to read and interpret an

artificial neural network and automatically generate code that can be synthesized to

implement a hardware accelerator that executes said network. The generated acceler-

ator, on the other hand, is the hardware description written by the previous system.

In this chapter, we discuss the generator system’s structure and relevant design

choices made.

The main objectives of the generator system’s design choices are maintained from

those of the prototype.

• The resulting software must be usable by end users that do not have specialized

hardware programming knowledge;

• The program must be modular and expansible to facilitate its longevity and conti-

nuity;

To accomplish the first design objective, the generator program does not need any

input from the user other than the trained neural network model, isolating specialized

knowledge. As for the second objective, the hardware code generation is based on

consulting and modifying a modular hardware functional block library. This library can

be expanded and is divided between activation functions and network topology, each

with a set of design rules to ensure compatibility.

The generator system consists in a Python application, developed and tested using

Microsoft’s Visual Studio integrated development environment.

As shown in figure 1, the generator can be divided in 4 main sections:

Generator System 55

1. Neural network data import;

2. Neural network data extraction and interpretation;

3. Neural network hardware module library;

4. Hardware description language writer.

Figure 1 - Generator system structural diagram

6.1 Neural network data import

The neural network data import section of the generator software consists in the

part that receives and reads the neural network model files. At the moment, the sys-

tem file import is only compatible with models developed and exported by Tensorflow

Lite’s framework for neural network development. Note however, that while the code

to import the files is simple and framework dependant, framework compatibility issues

are tackled by the next step in the generator system, which uses conversion into the

ONNX format.

Generator System 56

This step consists in a simple graphics user interface, made with Python’s native

GUI library, that asks for a compatible neural network file and loads it into the program.

6.2 Neural network data extraction and interpretation

The second step in the generator system is the neural network data extraction and

interpretation.

To maximize machine learning framework compatibility, before interpreting models,

we first convert the neural network into the Open Neural Network Exchange (ONNX)

format (BAI et al., 2019). ONNX is a project by Facebook, Microsoft and the Linux

Foundation to create an open-source artificial intelligence format to establish com-

mon standards and communication between different machine learning frameworks

and tools. The format resulting from this project is a readable graph that accurately

describes the topologies, functions and other training data from the neural network,

and can be used by the generator system to interpret the models received.

The main advantage in using the ONNX format is its vast library of open-source

converters available to use. Each of these converters can receive neural network mod-

els from a development framework and convert it into the ONNX format. As such, as

our generator system is compatible with ONNX, the system is indirectly compatible with

every other framework that can be converted into ONNX by one of the open-source

converters with minimal changes to the data extraction and interpretation software.

This greatly increases system compatibility with artificial intelligence frameworks and

technologies.

Once the model is converted, a graph is created in Python to store the neural

network elements, described by nodes in the ONNX format. Additionally, dictionaries

are created to store data pertaining to the operations executed by each node and to

what nodes the inputs and outputs of each node go to. The graph and dictionaries are

populated by iterating along the nodes in the ONNX graph.

Once this is completed, lists of every activation function and network topology used

are composed in order to be used by the next step in generation, to inform which

modules to sample from the module library. This list matches the operation names that

Generator System 57

follow ONNX’s naming conventions to the specific hardware models available in the

function library.

6.3 Neural network hardware module library

The hardware module library consists in a collection of .py package files that are

imported by the main Python program. These files are created by first programming

the function to be executed in VHDL, with every internal changeable variable being

editable and stored in VHDL generics. Generics are a form of local constant that can

be assigned values during the component instantiation. This means that another VHDL

configuration file higher in hierarchy can call a component file and configure it with

relevant data matching a neural network. For example, when synthesizing a densely

connected neural network layer, the layer parameters can be programmed as generics,

and as such, are easily editable by the generator program.

As a result, the hardware accelerator is modular and the generator system can

edit the component files with the data read from the imported model with little difficulty.

However, the VHDL components must be programmed with this design methodology

to ensure compatibility and facilitate the automatic generation.

The generator system uses the lists organized by the previous step and calls for

print functions imported from the python packages corresponding to the functions and

topologies used. Note that due to the design using generics, the files are printed as-

is, with its variables being edited during compilation using a configuration file. This

facilitates readability, as the Python program prints the files directly. This choice also

facilitates module testing, as sample values are configured into the generics, and while

not used during the actual hardware synthesis, they can be used to test the individual

components. Furthermore, this standardizes a pattern to be followed by contributors,

helping the system’s longevity as an open-source project and ensuring internal com-

patibility.

Generator System 58

6.4 Hardware description language writer

The writer section of the generator system invokes the print functions from the

required packages, imported following the lists composed by the model interpretation

step. Additionally, print functions related to core VHDL files are also called, such as a

clock frequency divider module, necessary to speed up clock frequency, and the top

hierarchical datapath file that organizes the entire accelerator.

Other than the files corresponding to the different topology and activation function

modules, there is also a network_data_package.py file corresponding to the network

data package file composition. This is the only file edited during the program’s runtime,

and it includes every neural network internal variable specific to the imported model.

This includes number of layers, neurons per layer, interconnectivity rules, variable bit

depth representation, quantization parameters, weights and biases. When called by

the writer section of the generator, this function also calculates parameters respective

to the quantization variables that are computed offline to save inference time. Namely,

the quantization parameters M0, n and a(k)
2 from the quantization correction modules of

each quantized layer are calculated in this step.

Furthermore, the network data package function also translates the variables read

in the ONNX format into signed binary arrays readable by the rest of the hardware.

Note that to maximize compatibility and due to VHDL’s incompatibility with jagged ar-

rays and difficulties with modifying port sizes during synthesis, weights and biases are

concatenated and vectorized, requiring special treatment to be accessed by the hard-

ware components. For example, an array of 5 8-bit values is represented by a single,

40-bit vector with the values concatenated. Furthermore, unused parts due to the re-

sulting vectorized array being jagged are filled with zeros, and should be automatically

optimized by the VHDL compiler during synthesis. Note that the arrays are jagged as

a single array stores information for multiple layers, and the number and size of the

values changes according to parameters such as amount of neurons in the layer.

Once the modifications are made, the .vhd files are written and outputted, ready to

be simulated to check for correctness, or synthesized to be implemented.

Generator System 59

6.5 Expanding the generator system

One of the project’s main objectives is that the resulting tool can be expandable.

This expansibility can take different forms: new neural network algorithms can be in-

cluded, such as new activation functions or topologies, or new machine learning frame-

works can be included in the system’s compatibility.

The first consideration in order to ensure expansibility is that the software is pub-

lished online under an appropriate open source license. This has been done by pub-

lishing the code and commentaries using GitHub’s internet hosting system for software

development, which allows for hosting and sharing code repositories for free, under a

chosen license (MUYAL, 2022). The system is briefly described in the GitHub reposi-

tory, with instructions for its use and the inclusion of new functions and topologies.

In turn, the open source license chosen is the GNU General Public License v3.0.

This license allows for third parties to do almost anything with the software, includ-

ing distributing, modifying, and using for private and commercial use. The conditions

are that when the software is distributed, the resulting source code must also be dis-

closed under the same license, documenting the changes made. This ensures the

open source project’s continuity, forbidding closed source versions and encouraging

contributions. Furthermore, the license provides limitations of liability and warranty,

with the software being provided "as is". As such, the license chosen is highly per-

missive, with limitations that protect the developers and forbids distribution of closed

source versions to encourage the system’s continuity as an open source project.

6.5.1 Including new activation functions

Conforming to the pattern used by the Rectified Linear Unit activation function im-

plemented, the following is necessary:

• A .py file that prints a VHDL file that implements the activation function;

• Modify the qNPUInterpreter.py file to include the new operation in the "synthesiz-

able_operations" list;

Generator System 60

• Modify the qNPUInterpreter.py to include the new print file, and to call the new

print file if the new operation is found in the interpreted model.

Note that the activation functions are used as components, being called by a VHDL

entity higher in hierarchy. Additionally, relevant internal variables, such as the rectifying

threshold in the Rectified Linear unit, are to be coded as generics, so they are easily

modifiable by the top-level entity, and configurable by the network data package file.

6.5.2 Including new topologies

The implemented neural network topology, the fully-connected or dense layer, is

calculated using the matrix multiplication to provide the weighted inputs to the layer’s

neuron’s activation functions. In order to include different topologies, such as convo-

lutional layers, different neural connectivity rules must be implemented instead of the

full matrix multiplication. For example, in the case of the convolutional layer, a shifting

window over the previous layer’s outputs is to be considered as inputs for each of the

layer’s neurons.

As such, to include new neural network topologies, the following is necessary:

• A .py file that prints a new .vhd file that corresponds to the new connectivity rules;

• The printDatapathv2.py file must be modified to include the new topology file;

• The qNPUInterpreter.py must be modified to detect the new topology and call

printDatapathv2.py accordingly.

6.5.3 Including new frameworks

As cited previously in 6.2, to maximize compatibility with machine learning frame-

works and technologies, the generator system converts the received neural network

models into the ONNX format (BAI et al., 2019). As such, by being compatible with

ONNX, the system is indirectly compatible with the frameworks that can be converted

into ONNX using one of the many open source converters available.

Consequently, to include new frameworks, first check ONNX’s website for the sup-

ported tools and available converters. If the framework to be included has a converter

Generator System 61

available, follow the instructions and include the steps necessary in the qNPUInter-

preter.py to import a model and convert it into ONNX. Once this is done, feed the

ONNX model into the rest of the software and the interpretation should work with few

minor changes.

If the framework is not supported by ONNX, a full converter must be implemented

for compatibility with the interpreter, and is not recommended.

62

7 ACCELERATOR HARDWARE ARCHITECTURE

As cited in the literature review and used by the prototype, there are two main neu-

ral network accelerator design paradigms (PLAGWITZ et al., 2021): dedicated circuit

design and overlay-based co-design. The prototype implemented an accelerator based

on dedicated circuit design, that is, the full and direct implementation of the entire neu-

ral network structure in hardware, mirroring its original architecture. Since the Internet

of Things edge computing environment is so restrictive, the best case scenario is fit-

ting dedicated circuits into small FPGAs and exploiting their better performance and

efficiency.

The prototype has a prohibitive overuse of available hardware resources, not allow-

ing the hardware’s synthesis in an adequately sized FPGA, and this conclusion could

call for a paradigm change into overlay-based co-design, which uses FPGA resources

more efficiently and predictably. However, the inclusion of the quantized arithmetic and

other hardware design techniques to be described in this chapter were deemed suf-

ficient and we chose to keep the better performance and efficiency provided by the

dedicated circuit design choice.

As such, the resulting hardware accelerator architecture closely mirrors the topol-

ogy of a neural network in software, as shown in figure 2.

Neural networks in software are divided by layers, connected sequentially, and

the accelerator hardware follows this structure. Each layer is connected either to the

previous layer’s outputs or the network’s inputs, and in turn sends its outputs to the

next layer or the network’s outputs.

The first optimization when compared to the hardware generated by the prototype

is the inclusion of a register bank that stores the layer’s inputs, as shown in figure 2.

This has many advantages, the first of which is to enable pipelining behavior in-

between layers, as the previous layer does not need to hold the output value as it is

stored near the hardware which requires this data. Without the register banks acting

as memory, the values necessary for calculating the following steps would be lost with

each clock cycle if they aren’t specifically held by the previous step, which means that

Accelerator Hardware Architecture 63

each block that has an output would need to wait until their results are not needed

anymore to continue execution. However, with the inclusion of memory, these values

are stored locally where they are needed, freeing the hardware that generated the

output. This means that, when processing multiple inferences for many sets of inputs,

the previous layer does not need to wait for the other layers and can begin calculating

the output for the next inference. As a consequence, the hardware spends less time

idling, speeding up execution speed and efficiency. Furthermore, by relieving each

layer of the responsibility of holding the output values, there is no longer the need to

synchronize inputs and outputs among different layers, as they store the necessary

data by themselves.

Figure 2 - Accelerator architecture diagram

Each neural network layer is composed by 3 different modules:

• A module corresponding to the neuronal interconnectivity rules;

• A module corresponding to the activation function to be executed by the layer’s

Accelerator Hardware Architecture 64

neurons;

• In the case of layers that implement quantized arithmetic, a module that executes

corrections related to the quantization.

Furthermore, there are register banks between each of these modules, further exploit-

ing the advantages of pipelining and easier synchronization between modules.

The network’s layers are organized by a top-level hierarchical entity represented by

the network’s topology. The first of the entity’s responsibilities is to call for each of the

necessary components to implement the neural network’s layers. This includes each of

the necessary models cited previously, the interconnectivity rules, activation functions

and quantization corrections. In the case of the neural network implemented to exem-

plify the system’s functioning, this corresponds to the matrix multiplication module for

the fully-connected layer, the rectified linear unit as activation function, and the correc-

tions pertaining to the full-integer-arithmetic quantized matrix multiplication. Note that

both the matrix multiplication and rectified linear unit use quantized arithmetic, greatly

increasing execution speed, and reducing operation complexity and hardware resource

demand.

The second top level entity’s task is to import the network data package. This is

the file that is written by the generator system after the neural network’s interpretation,

and has all of the network’s relevant variables. As shown in figure 3, the network data

package includes structural data, such as the number of layers, the number of neurons

of each layer and how many inputs each layer has, and the bit depth representation of

the values of each layer. Furthermore, the data package includes the neural network

trained values, the weights and biases used. In addition to the parameters shown by

figure 3, the data package also has every quantization parameter necessary for the

corrections and quantized arithmetic: the zero points for every array, the calculated M0

and n parameters corresponding to the scales, and the precalculated a(k)
2 arrays.

Lastly, the top level entity uses generation functions to instantiate the neural net-

work components and interconnects the inputs and outputs of these components via

port maps. Additionally, during the generation, the values stored in the network data

package are used to configure the generics used in the modules, ensuring the trained

parameters are used by the neural network accelerator.

Accelerator Hardware Architecture 65

Figure 3 - Neural network parameters stored by the network data package

Another functional block implemented to maximize hardware compatibility and

future-proof in relation to other different neural networks is the frequency divider used.

This block consists in a simple circuit that divides the system clock’s frequency de-

pending on the value of a variable that can be edited by the generator system. As

such, depending on the demands from different neural network designs and target

devices for synthesis, this block can be edited to provide an internal clock frequency

compatible with the operations necessary. For example, if the neural network to be

implemented is highly complex, it is possible that the worst critical path is too long to

be executed in a single clock cycle with the lowest frequency provided by the FPGA.

In this case, the frequency divider can decrease the internal clock frequency for the

worst critical path to be executed while relaxing demands to the device clock. As a

consequence, this counteracts the problems that arise from the minimum possible de-

vice clock frequency and worst critical paths in different neural network circuits. Also

note that the hardware implementation of a clock divider by a constant power of two

can be simply implemented by the synthesizer using a single flip-flop and an inverter

per power of two. This means that the implementation is simple and doesn’t require

many computational resources.

Another optimization included in the new version of the synthesized hardware ac-

celerator is the use of loop unrolling techniques. When a loop is described in VHDL

code using behavioral modelling, the compiler interprets the operations executed by

the loop and decides the hardware necessary to implement the loop. However, when

simply calling for a loop in the description, the required behavior from this description

Accelerator Hardware Architecture 66

is the execution of all of the loop’s steps during a single clock cycle. This can cause

a series of issues: the loop operations may be serialized, requiring a long critical path

of hardware whose operations are to be executed in a single clock cycle. As a conse-

quence, most of the hardware is idling, waiting for its turn in the sequence to execute

its task, reducing the circuit’s efficiency, and the system’s clock frequency must be

significantly decreased to allow for all of the operations to conclude.

This issue is avoided by unrolling the loops, that is, describing the hardware in a

way that each loop iteration is executed in its own clock cycle. When combined with

register banks and pipelining between important steps, loop unrolling greatly speeds

up execution and clock frequency, as well as decreasing clock period overheads for

the rest of the hardware that used to wait until the worst-case critical path concluded

its operations to resume inference.

Furthermore, the quantization corrections of the matrix multiplication are optimized

to include a pipeline with a finite state machine with multiple stages, each of which

with its loops unrolled. Each of the necessary corrections has its own unrolled loop

that takes its turn executing, and when done, progresses the finite state machine to the

following state, corresponding to the execution of the next quantization correction. The

stages correspond to the corrections detailed in the algorithms chapter, 5, with states

pertaining to zero point additions, the efficient handling and multiplication by M0 and

round-to-nearest bit shift, and overflow corrections. Once the corrections are done, the

data is ready to be outputted from the layer and either used by the following layers or

outputted from the neural network itself.

7.1 Functional block hardware architecture

Each of the functional blocks, whether they correspond to the implementation of

matrix multiplications for neural network topology, neuron activation functions or quan-

tization corrections, follow a similar design pattern. This pattern aids the system’s

expansibility. As long as new functional blocks are implemented following the same

pattern, they should be compatible amongst themselves. Namely, the compatibility is-

sues that could arise and are solved by following the design pattern are synchronization

issues between multiple blocks, and data formats expected as inputs and outputs.

Accelerator Hardware Architecture 67

7.1.1 Synchronization between functional blocks

Figure 4 - Functional block synchronization diagram

As shown in figure 4, each hardware block has several input and output signals,

however, they always follow this pattern:

• A clock signal, for the synchronous execution of the block’s operations;

• A binary reset input signal, to reset the entire system’s state and clear all data;

• An 8 bit pair of input and output enable and done signals for block synchroniza-

tion;

• The data input and output signals, which consist in vectors containing the data

to be processed in each block. The data of all inputs or neurons is concatenated

in a single vector and must be separated during execution.

To properly synchronize the operations executed by each hardware block, we first

use a pair of 8 bit integer signals, enable and done. The enable signal is an input

that non-zero values trigger the execution of the operations of the block that receives

it. On the other hand, done is an output signal that is sent by the block when it is done

processing and that the data outputs are ready to be sampled and used by further

blocks. When execution is triggered by a non-zero enable signal, this value and other

inputs are held in memory during execution and its value is outputted as the done

signal alongside the data outputs. As such, the enable value is propagated through

Accelerator Hardware Architecture 68

the execution of multiple components alongside its corresponding data and identifies

the results, so the neural network input can be matched with its corresponding output.

Another consideration cited is that the enable signal and other input data are held

in memory locally inside each functional block. This means that once the block’s ex-

ecution is activated by a non-zero enable, the previous block doesn’t need to hold its

output values during this block’s execution. Furthermore, this aids pipelining behav-

ior, as the necessary data is stored internally and the execution may be spread along

multiple clock cycles, and independent blocks can compute data in parallel. For ex-

ample, after a block outputs the result corresponding to an input, while the next block

processes this result, the first block can start computing the next input.

7.1.2 Input and output data formats

Another consideration to be made in relation to functional block compatibility are

the data formats used. They must follow the same rules among different blocks, and

the same pattern must be kept when developing new blocks to ensure compatibility.

The pattern, as shown in figure 4, is as follows:

• An input clk STD_LOGIC signal;

• An input reset STD_LOGIC signal;

• An input enable 8 bit STD_LOGIC_VECTOR signal;

• An input input STD_LOGIC_VECTOR signal, whose size in bits is the number

of inputs of the layer times the bit depth representation used. In this case, using

integer-only-quantization arithmetic, the bit depth is 8 bits.

• An output done 8 bit STD_LOGIC]_VECTOR signal;

• An output output STD_LOGIC_VECTOR signal, whose size in bits is the number

of neurons in the layer times the bit depth representation used. For example, in

the case of the matrix multiplication, since multiplying two 8 bit values result in a

16 bit value, we use 16 bit depth representation for intermediary calculations to

benefit from the temporary increased precision.

Accelerator Hardware Architecture 69

7.2 Matrix multiplication block architecture

This functional block follows the input and output pattern described in section 7.1.2.

Other than its ports, the differing bit depth representations along execution are worthy

of notice. While we use full integer quantization, that is, all the inputs and weights are

quantized and have their precision reduced to 8 bits, the bias and outputs have double

precision. This is caused by the fact that multiplying two 8 bit values result in a 16

bit value, and the addition by the bias and quantization corrections can profit from the

increased precision. Note that the last step in the quantization corrections is casting

down back to 8 bit precision, with the proper overflow treatment.

7.3 Rectified linear unit block architecture

Other than following the input and output pattern described in the section 7.1.2, the

rectified linear unit consists in a loop that executes a comparison and rectification. The

standard rectified linear unit checks if each input is larger than zero, simply outputting

the input if it is, and outputting zero otherwise. However, as stated in chapter 5, the

neurons use quantized value representation and zero may be represented as a differ-

ent number depending on the zero-point correction used. Note that the zero-point is a

constant, corresponding to the zero-point of the layer’s output. As such, this functional

block compares the inputs to this threshold instead, defined by a generic constant.

7.4 Quantization correction finite state machine states

The quantization corrections block consists of a finite-state machine of 6 states:

7.4.1 state_ready

During the state "Ready", the functional block is idle and awaits a non-zero value

in the input enable signal, which corresponds to a request from the previous block to

process data corresponding to the signal value’s identifier.

When the block does receive a non-zero enable value, it stores the values on

the inputs and enable signals. This is done as the matrix multiplication block does

Accelerator Hardware Architecture 70

not hold the output values stable during further processing; it only guarantees that

its output signal is correct on the same clock cycle during which the done signal is

outputted. As a consequence, the quantization corrections block must store the input

values, otherwise they may be lost during the previous block’s execution. This is the

storage of values that allows for pipelining behavior, that is, the previous block to run in

parallel with the quantization corrections block.

Once the values are stored, a change to the next state, state_zeropoint, is

queued for the next clock cycle.

7.4.2 state_zeropoint

During the "Zero-point" stage, the previous block’s result is subtracted by Z1a(k)
2 .

This is the first state during which the loop unrolling behaviour is present. The previous

block’s result corresponds to an array, whose elements are the results of each neuron i

in a Neural Network layer. As a consequence, there is a −Z1a(k)
2 correction for each ele-

ment. Instead of calling a loop and executing every subtraction in the same clock cycle,

a signal i is created and incremented every clock cycle, and only the corresponding ith

neuron’s correction is calculated. Since a single subtraction is calculated every cycle

during this stage, the worst-case circuit paths are shorter and faster, speeding up the

system’s clock frequency.

This also aids the system’s scalability: if a neural network layer has many neurons,

i can be arbitrarily high and if the loops were not unrolled, the clock frequency would be

greatly reduced. In this case, loop unrolling with a high number of neural network layer

neurons preserves a high clock frequency by spreading the execution along multiple

clock cycles.

Once the signal i’s value reaches the number of neurons in the layer minus one,

the finite-state machine process queues a change to the next state, state_M0, for the

next clock cycle. The signal i is also reset to 0, as it is also used in further states’ loop

unrollings.

Accelerator Hardware Architecture 71

7.4.3 state_M0

During the "M0" stage, following the efficient handling of the multiplication by M

using the normalization of Equation (5.15), the previous stage’s result is multiplied by

M0. Since this is a multiplication by a higher precision fixed-point value, a resource

intensive operation, it has its own dedicated stage. Note that similarly to the last step,

this operation is also done individually for each neuron’s result, it also corresponds to

a loop, which is also unrolled to preserve clock frequency. The loop unrolling is also

programmed iterating the signal i,

To properly compute the multiplication by a fixed-point number, a VHDL-2008 pack-

age, the IEEE.FIXED_PKG, is included and used during this stage. This implementa-

tion includes efficient algorithms for operations with fixed-point numbers and conve-

nient variable types to represent such numbers. Namely, M0 is stored as a ufixed(-1

downto -32) signal, which represents a unsigned fixed-point number of 0 bits for the

decimal part and 32 bits for the fractional part. This choice of bit representation corre-

sponds to the M0 definition which states that the parameter is in the interval [0.5, 1), as

such there is no need for bits to represent the decimal part of the number.

When all the multiplications by M0 are done, indicated again by the signal i’s value

reaching the number of neurons minus one, the finite-state machine queues the next

state, state_bitshift, for the next clock cycle, and resets the signal i to 0.

7.4.4 state_bitshift

During the "Bitshift" state, the second step of the efficient handling of the multipli-

cation by M following Equation (5.15) is executed.

Since in Equation (5.15) n is always a positive integer, the exponent is always

negative, corresponding to a right shift by n bits.

As specified in (JACOB et al., 2017) and described in the 5 chapter, the bit-shift

must have correct round-to-nearest behavior. This behavior must specifically round

away from zero, while the shift right instruction in VHDL truncates the result and cor-

responds to a biased round towards minus infinity. This biased rounding behavior was

observed to cause significant loss of accuracy in neural network inference (JACOB et

Accelerator Hardware Architecture 72

al., 2017), and must be avoided.

The hardware implementation to achieve rounding behavior away from zero first

adds a rounding parameter equal to 2(n−1), and only then executes the necessary shift

right correction corresponding to the multiplication by 2−n defined in Equation (5.15) to

the previous state’s result.

When the bitshifts are finished, the finite-state machine queues a state change to

the state_overflow state

7.4.5 state_overflow

During the "Overflow" state, the results of the previous state are type cast towards

signals of the desired precision. During the matrix multiplication and bias sum, the 8

bit signal was transformed into a 16 bit signal, and this extra precision was carried over

the quantization corrections. The layer outputs must be represented by 8 bit signals

to preserve the quantization benefits and so they can be used themselves as another

layer’s inputs.

This stage checks whether the results’ values overflow or underflow the 8 bit maxi-

mum and minimum values, truncates them as needed and cast them towards an output

storage signal. This output storage doesn’t yet correspond to the functional block out-

put.

Note that this must be done to every value in the quantification correction results

array, and consists in a loop, which is similarly unrolled.

Once the state finishes the type casting towards the output storage signal, the

finite-state machine queues a state change to state_end.

7.4.6 state_end

During the state "End", the output signal is outputted as the functional block output,

accompanied by a done signal corresponding to the enable value stored during the

state_ready state. The change in done signal with a non-zero value marks that the

output is ready to be used in another layer or network output, and the done value itself

identifies the result.

Accelerator Hardware Architecture 73

No correction operations are executed during this state.

After outputting the results, the finite-state machine queues a state change to

state_ready, and the block is ready to receive another set of inputs.

74

8 TESTS

To evaluate the system’s operation, a test that covers all the steps in generating a

hardware accelerator is necessary. As such, the following was decided:

1. An artificial neural network, compatible with the system, is to be designed and

trained;

2. The neural network is to be used as input in the generator system;

3. The generated hardware must be tested and evaluated.

First, since the chosen hardware accelerator architecture paradigm was dedicated

circuit design, each activation function and network topology must be programmed

separately in its own hardware functional block, which is a time consuming task. As a

consequence, the resulting proof of concept system is only compatible with the Rec-

tified Linear Unit (ReLU) function and the fully-connected network topology, chosen

by their popularity and simplicity. Usual popular neural network models available use

several functions and topologies, as they are at disposal in the software context, with

software libraries being easily imported and used. However, to test the functionality of

accelerator generation and performance, a neural network has to be programmed and

trained using only fully-connected layers and the ReLU function.

To facilitate testing, a neural network was implemented and trained to execute

the Exclusive OR (XOR) function. As a consequence, the intermediary data can be

checked manually more easily, and its linearly inseparable nature was important in neu-

ral network and machine learning history (HORNIK; STINCHCOMBE; WHITE, 1989).

Figure 5 demonstrates the linear inseparability of the XOR function. The colours of

the points indicate the output values of the functions, while the axis represent the in-

puts. The blue points represent the {0, 0} and {1, 1} inputs, resulting in 0, and the yellow

points represent the {1, 0} and {0, 1} inputs, resulting in 1. As the dotted lines show,

there is no line on the plane that can be drawn with all blue points on one side, and

all yellow points on the other, and as such, XOR is a linearly inseparable function. An

example of a linearly separable function is the AND function, shown in figure 6. The

Tests 75

dashed line shows a possible line that can separate the sets of points related to inputs

resulting in each output. The linear inseparability means that single-layer networks,

such as perceptrons, cannot achieve the non-linear behavior of its output. As such,

implementing an XOR function demonstrates that the neural network hardware accel-

erator generated by our system is capable of synthesizing deep learning networks with

hidden layers.

Figure 5 - Graph showing the linearly inseparable nature of the Exclusive OR function

Figure 6 - Graph showing the linearly separable nature of the AND function

To implement the Exclusive OR function, a neural network with the topology shown

in figure 7. This figure shows that the network receives two inputs, represented by the

two input layer nodes; the network outputs a single value, represented by the output

layer node; there is a single hidden layer, with 3 neurons; and both the hidden and out-

put layers use a bias, represented by the gray nodes. All of the neurons in the hidden

and output layer execute the Rectified Linear Unit activation function, as compatibility

Tests 76

with the hardware accelerator generator system demands. Furthermore, as shown by

the arrows connecting each node, the neuronal interconnectivity rules used by all the

layers is the fully connected layer, with every neuron of a layer outputting values to

every neuron of the following layer, also according to the generator’s compatibility.

Figure 7 - Graph showing the topology of the implemented neural network that executes
the Exclusive OR function

Additionally, the neural network used in the prototype described in Chapter 4 which

implements a classifier over the Iris dataset was also used to verify the generation

behavior.

As shown in figure 8, the neural network consists in 4 inputs, 4 hidden layers, and

3 outputs. Note that only the first hidden layer, with 3 neurons, uses a bias, while all

the other layers do not, and have 5 neurons each. Another important consideration

is the use of one-hot encoding, as described in the Chapter 4. This representation

means that while the classifier has 3 possible output classes, the dataset was con-

figured and the network trained considering 3 binary outputs, one for each possible

classification result, instead of a single output whose value determines the class. This

method increases classification precision and distinction between the different results,

and the value obtained can be used as a measure of certainty of the classifier in each

inference result.

Also note that the grayed-out neuron connections in figure 8 are merely an attempt

in visual clarity, as every neuron connection is shown to highlight the fully-connected

Tests 77

layer interconnectivity.

Figure 8 - Graph showing the topology of the implemented neural network that executes
a classifier over the Iris dataset

Both of these networks are programmed using Tensorflow Lite’s framework, with

the Keras machine learning library, and the resulting models are exported using the

corresponding libraries’ export functions.

The models were then imported into the generator system, which ran with no is-

sues and wrote files corresponding to the hardware accelerators that implement these

networks.

The generated hardware was tested by simulations using the Intel’s ModelSim soft-

ware in order to verify whether the behavior of the hardware matches the original neural

networks in software. Note that the expected result is the exact same as the neural net-

work implemented in software. This is due to the system mirroring the same algorithms

and execution of the neural network, including the same quantization representations,

quantization steps and corrections necessary. During simulation, we also obtain the

number of clock cycles until the first result is outputted, and the cycles per result once

the system’s pipeline stabilizes.

Then, the accelerators were compiled and synthesized using Intel Quartus Prime,

using the Altera Cyclone® IV EP4CE22F17C6N FPGA used by the DE0-Nano Tera-

sic board as the target. This device was chosen as it is relatively cheap, available

Tests 78

and specifically designed for low-power and small applications. The compilation and

synthesis in Intel Quartus Prime offers several results and reports, as well as tools for

further analysis of the generated system.

As previously mentioned in the Chapter 3.2, it is not sufficient to simply evalu-

ate the execution speed of neural network inference results to evaluate the hardware.

This is due to the nature of the target environment of the hardware accelerators, edge

computing in the Internet of Things. This environment often restricts energy availabil-

ity and device sizes, and as such, an otherwise fast and successful accelerator may

consume too much energy or not fit in specific devices for certain applications. As a

consequence, more data needs to be obtained during testing.

The information obtained from this execution were the following:

• Maximum system clock frequency achieved;

• Cyclone IV FPGA implementation integrated circuit demand, such as logic ele-

ments, registers and multipliers needed and the amount available in this device;

• Using the Power Analyzer tools, we can simulate energy expenditure during usual

use.

By combining the number of clock cycles until the first result outputted and the

number of cycles per result once the system’s pipeline stabilizes, and the maximum

system clock frequency achieved by the design compiled, we can calculate the latency

in seconds for these results.

Additionally, we can compare the Cyclone IV FPGA implementation integrated cir-

cuit demand with the amount available in the device, and evaluate if the design fits a

compatible FPGA. By evaluating the total number of logic elements of the Lattice Semi-

conductor’s iCE40UP5K-UWG30 and comparing it with the current device choice, the

Altera EP4CE22F17C6N Cyclone IV, we concluded that while the former has an espe-

cially low number of components and ultra-low-power consumption, these are unnec-

essarily low and significantly restrictive to usual neural network accelerators following

our architecture. As such, by choosing the Cyclone IV FPGA, which is also suitable

for Internet of Things applications, but is less restrictive, we can maintain the relevancy

Tests 79

and real life applicability of the tests executed while easing hardware restrictions on the

designs generated.

Then, we can evaluate the results obtained by the Intel’s Quartus Power Analyser

tools and compare with reasonable energy harvesting devices, such as mini solar pan-

els suitable for an Internet of Things application. With this comparison, we can assess

the compatibility of the resulting neural network hardware accelerator with the restric-

tive energy availability in edge computing contexts.

Once these results are obtained, they were compared to the neural network’s infer-

ence in software, using the original model’s implementation. The application was exe-

cuted using a personal computer Intel i7-8700k CPU, which was chosen for availability

and as it is a good example of a high-mid range full scale processor. This compari-

son was chosen to highlight the gainst in performance with the implementation of the

dedicated circuits used by the design methodology chosen for the generator system.

Additionally, it will help to evaluate the order of magnitude of power expenditure neces-

sary for both of the hardware choices, and highlight the accelerator’s compatibility with

the restrictive Internet of Things environment.

To test the software’s performance in inference execution using the personal com-

puter processor, a Python script was created to measure execution time. The script

begins by the loading the artificial neural network model into an Tensorflow Lite Inter-

preter object. The interpreter is the main interface for running Tensorflow Lite mod-

els, and include several methods for setting and reading tensors and configuring runs.

Then, once the model is imported and allocating the memory for the model’s tensors,

different compatible input arrays are created and stored. A timer then is started, using

the (perf_counter_ns()) function from Python’s time module. The reasons to use this

specific function as the timer are that the performance counter has the highest avail-

able resolution for measurement, includes time elapsed during sleep, is system-wide,

and avoids the precision loss caused by the float type as it counts in nanoseconds.

Next, a series of batches of inferences are run. Each inference consists in a call to

the set_tensor() method of the Tensorflow Lite Interpreter interface, which is config-

ured to set the input array of the neural network model, and a call to the invoke()

Interpreter method, that triggers the execution of the neural network. Each batch of

inferences consists in repetitions of this pair of input setting and invoking of inferences.

Tests 80

Several batches of inferences are made to attempt to avoid timing issues related to the

computer architecture of the hardware and programming language used. Furthermore,

the entire program is ran twice, and the timing results recorded are those of the second

run. This is done to reduce latencies related to memory caching, and once ran, the rel-

evant data are already stored in faster memory formats. This is evidenced by the fact

that the second execution runs are significantly faster than the first, without changing

any other test parameters.

One possible issue, for example, is the start of an inference batch with a cold

cache, that is, when the cache memory, the fastest and closest memory to the CPU

processing, is empty or has irrelevant data, requiring a slower read from the main

memory for execution. Once the execution of many steps is done, the cache may

speed up after a cold start, and as such the latency for each inference in batches with

a larger number of calls speeds up. By running several batches with different number

of inferences each, we try to isolate these issues and evaluate the neural network itself.

The personal computer’s CPU energy expenditure, on the other hand, was simply

determined by using the manufacturer’s divulged thermal design power during maxi-

mum theoretical load. Note that by using such estimates, we can only ascertain con-

clusions arising from the order of magnitude of the values obtained. However, given

the nature of the comparison between a full-scale personal computer’s CPU, unsuited

for the Internet of Things edge computing environment, and a compatible, small scale,

low power device with an FPGA, such conclusions are significant and adequate.

81

9 MAIN RESULTS

We executed the tests following the methodology described in Chapter 8 using the

neural networks generated for the Exclusive OR and Iris classification datasets, with

the following results.

9.1 Exclusive OR test results

9.1.1 VHDL logical correctness

Following the test methodology described in Chapter 8, the generated VHDL code’s

behavior was first simulated using Intel’s Modelsim software. Using this software, the

logical behavior of the hardware described by the VHDL language is simulated, includ-

ing a stimuli file that generates sample inputs to the system, and reads the outputs

generated. As such, we can evaluate the correctness of the neural network algorithm

implemented by the VHDL by comparing the resulting outputs with those expected,

which are the results generated by the original neural network when executed in soft-

ware.

Figure 9 - Exclusive OR logical correctness Modelsim simulation waveform results

In Figure 9, the simulated Exclusive OR hardware’s inputs and outputs are shown

in a waveform format. Each row corresponds to a signal being tracked by the simu-

lation, with the text on the left corresponding to the signal’s name and address inside

the hardware. For example, the signal labeled "/tb_top_datapath_fast/tb_input"

corresponds to a signal called "tb_input" located within the hardware entity

"tb_top_datapath_fast". The "tb" prefix represents a "testbench" entity, connected

Main results 82

to the top hierarchical hardware entity "top_datapath", used only in tests in order to

generate the simulation’s inputs and receive the system’s outputs. Note that the hard-

ware organization was described in Chapter 7. Then, the waves to the right of the

labels correspond to the signal’s values along the time of the simulation. For example,

we can see that the "/tb_top_datapath_fast/tb_enable" signal takes the following

values, in this order: 0, 1, 2, 3, 4.

The signals represented in this simulation are as follows:

• tb_reset, which corresponds to the reset signal;

• tb_input, which corresponds to the input data given to the neural network. In

this case, the Exclusive OR network receives two concatenated quantized 8 bit

variables corresponding to the two logic gate inputs;

– Note that the two 8 bit variables are separated into the signals input0 and

input1 for visual clarity.

• tb_enable, which corresponds to the enable signal, that triggers the neural net-

work execution and labels each input with a numerical value;

• tb_output, which corresponds to the output signal, that corresponds to the neu-

ral network’s quantized 8 bit output;

• tb_done, which corresponds to the done signal, that identifies the readiness of

the outputs, as well as identifying them, matching them with the enable values

paired with the respective inputs;

• tb_clk, which corresponds to the system’s clock signal.

From this simulation’s results in Figure 9, we can first analyse the input values. In

order, the network receives the inputs [−128,−128], [127,−128], [−128, 127], [127, 127],

respectively accompanied by the enable values 1, 2, 3, 4. Since the network has been

quantized into 8 bit representation precision, the input pairs correspond to the values

[0, 0], [1, 0], [0, 1], [1, 1]. The neural network implements the Exclusive OR function, and

as such, the expected output values for the outputs labeled by the done signal’s val-

ues 1, 2, 3, 4 are [0], [1], [1], [0]. The outputs labeled by done values 1, 2, 3, 4 are

Main results 83

[−79], [85], [85], [−79], that when dequantized, correspond to the expected output val-

ues [0], [1], [1], [0].

The input and output quantization rules were automatically determined by the neu-

ral network training, and are the following:

input : real_value = 0.0039215 ∗ (quantized_value + 128) (9.1)

output : real_value = 0.0060795 ∗ (quantized_value + 79) (9.2)

For example, (127 + 128) ∗ 0.0039215 = 0.9999825 and (−128 + 128) ∗ 0.0039215 = 0,

approximately corresponding to the expected binary 0, 1 input values.

In conclusion, the neural network successfully receives quantized inputs following

the quantization rules set by the network in software, labeled by enable signal values;

the network then processes these inputs and outputs the expected results, using the

correct quantization rules, and matches the outputs with the enable values outputting

them as the done signal.

9.1.2 VHDL implementation parameters for Cyclone IV FPGA

As described in Chapter 8, the generated VHDL code was compiled and synthe-

sized using Intel’s Quartus Prime software, which outputs several reports on different

parameters and results obtained during processing. One of these reports, the mapping

and fitter results, contain data related to the number of total logic elements, registers,

pins and multipliers requested by the current design to be synthesized in the compila-

tion’s configured targeted hardware. In this case, we targeted the Altera’s Cyclone IV

EP4CE22F17C6N FPGA, and the results and percentages are related to the available

integrated circuits in this device. This is an important result, as if the design demands

more components than there are available in the device, the accelerator would not be

synthesizable in this specific hardware. The implementation parameters, supply and

demand of logic components is shown in Table 1.

The data in Table 1 shows that the design fits successfully into the target FPGA, as

well as the report indicating that the fitter status was successful, and thus, is synthe-

sizable.

Main results 84

Table 1 - Exclusive OR Quartus Prime post-fitting hardware component report for Cy-
clone IV FPGA target

Components Demand/Availability

Logic Elements 896/22,320 (4%)a

Registers 483
Pins 42/154 (27%)a

Multipliers 8/132(6%)a

aPercentages correspond to hardware available
in the Altera Cyclone IV EP4CE22F17C6N FPGA

Furthermore, the compilation results in a timing report, which indicates the maxi-

mum clock frequency obtained with which the required design logic can be successfully

executed when ran using the target FPGA. This clock frequency is shown in Table 2,

and this result is used in further tests to evaluate the hardware’s execution speed.

Table 2 - Exclusive OR Quartus Prime timing maximum clock frequency report for Cy-
clone IV FPGA target

Parameter

Maximum clock frequency 100.61 MHz

9.1.3 Execution speed tests

As explained in Chapter 8, there are two different execution speed parameters to

be determined during this test, due to the use of pipelining behavior in the hardware

architecture: the latency measured between the first input and until the first result is

outputted; and the time taken between each subsequent result output once the system

has stabilized. Since the hardware is pipelined, that is, with multiple serial components

able to simultaneously and independently execute data pertaining to different inputs,

when the first inference is requested, the circuit is idle. However, during the execution

of this first input, other data is inputted and the pipelining behavior starts increasing

execution efficiency and speed. As such, there is a higher latency until the first input’s

results are done, but once the results begin flowing, the time taken between each result

is lower than the initial latency, resulting in an increase in throughput.

To obtain both of these time measurements for the generated hardware accelera-

tor, we first simulate the circuit’s behavior in a Intel’s Modelsim logical simulation. This

Main results 85

software will simulate inputs and the respective logic outputs with precision, however

the system clock generated for the simulation uses an artificially set frequency. We can

obtain the number of clock cycles necessary for both of the required timing results, and

by replacing the artificial clock frequency by the one obtained by the Intel Quartus’ de-

sign compilation timing results, we can obtain the time results in seconds. The results

in number of clock cycles are shown in Table 3. Furthermore, the timing report result-

ing from the design’s compilation in Quartus Prime, concluding the FPGA’s maximum

clock frequency for this hardware’s execution, is shown in Table 3.

By the definition of period, shown in Equation 9.3, we can obtain the system’s clock

period from the obtained maximum frequency results. Then, by multiplying the number

of clock cycles by the obtained period, we obtain the timing parameters in seconds.

period =
1

f requency
(9.3)

Table 3 - Exclusive OR hardware accelerator timing parameters results

Parameters

Clock delay until first result 23 Clock cycles
Stable clock delay per result 12 Clock cycles
Maximum clock frequency 100.61 MHz

Clock period 9.93 ns
Time until first result 228.60 ns
Stable time per result 119.27 ns

Then, also following the methodology described in Chapter 8, we tested the time

taken to execute the same Exclusive OR neural network inferences in software, using a

full-scale personal computer Intel i7-8700k CPU. Multiple runs with different numbers of

inferences were executed to help isolate interfering factors, such as pipelining behavior

and cold caches. The results obtained are shown in Table 4

Note that Table 4 and Figure 10 show that the CPU optimizes its running times and

takes significantly longer to run low number of inferences, as there are delays related

to starting the operations and optimizations in running large batches. Figure 10 shows

that in execution requests where the number of inferences requests was smaller, the

time elapsed per inference is longer, and vice versa. An example of an optimization

that CPUs employ is speedup related to data caching of relevant processing data so

Main results 86

Table 4 - Exclusive OR software inference timing results for the personal computer
CPU

Number of inferences in run Time taken to run Time per inference

1 83600 ns 83600 ns
2 94200 ns 41800 ns
4 137600 ns 20900 ns
12 221700 ns 6966.7ns
36 322700 ns 2322.2ns

108 806300 ns 774.1 ns

that further requests access data stored in memory with faster access times. When

a batch has a low number of inferences, the memory cache, the fastest memory in a

CPU, is empty or has irrelevant data, forcing the CPU to read from slower memories.

In the case of an execution batch with a high number of inferences, the cache memory

can be loaded more efficiently with relevant data, and the computations can read data

from a faster memory, resulting in faster times per inference.

Figure 10 - Exclusive OR time per inference in software, ran using Intel i7-8700k CPU

By comparing the data obtained in both tests, we can evaluate the performance

of the obtained hardware accelerator in optimizing the throughput of neural network

inference results. This comparison is shown in Table 5.

As shown in Table 5, there are significant gains in latency to first result when com-

Main results 87

Table 5 - Exclusive OR timing results comparison between hardware accelerator and
personal computer CPU

Hardware

Time delay FPGA Cyclone IV Intel i7-8700k PC CPU
Time until first result 228.60 ns 83600 ns
Stable time per result 119.27 ns 774.1 ns

paring the generated neural network accelerator to the personal computer Intel i7-

8700k CPU. Additionally, when stabilized, the time per result throughput is still faster in

the FPGA.

9.1.4 Energy expenditure tests

As explained in Chapter 8, the energy expenditure results for the synthesized hard-

ware accelerator were taken from the Power Analyzer tool from the Intel Quartus Prime

software. This tool was used once the hardware design was compiled, and it estimates

the power consumption of the FPGA device. Note that while this is an estimate, it

is precise enough for considerations over the efficiency gains when compared with a

personal computer CPU, and by evaluating its order of magnitude we can reasonably

draw conclusions as to the final hardware’s compatibility with the Internet of Things

edge computing energy availability.

Then, the result obtained in the Power Analyzer tool report is compared with the

CPU Thermal Design Power divulged by the personal computer CPU manufacturer,

Intel, to draw a comparison as to the order of magnitude of energy expended by both

hardware solutions. This comparison is shown in Table 6.

Table 6 - Exclusive OR energy expenditure comparison between FPGA accelerator
and personal computer CPU

Hardware

FPGA Cyclone IV Intel i7-8700k PC CPU
Total thermal power dissipation 126.45 mW 95 W

As shown in Table 6, there are significant energy efficiency gains while using the

generated neural network hardware accelerator when compared with a full-scale per-

sonal computer Intel i7-8700k CPU.

Main results 88

9.2 Iris classifier test results

The tests conducted using the Exclusive OR neural network, while significant in

demonstrating the basic functionality of each of the steps of the entire system, doesn’t

represent a realistic application, and therefore, the conclusions drawn from these re-

sults have their limitations in reach. As such, to help draw more significant conclusions,

this more complex problem, consisting of a more complicated and realistic dataset as

well as a bigger neural network, was tackled.

The test methodology used is the same as the Exclusive OR example, and as

such the results can be compared with greater significance, and rough conclusions

pertaining to the order of magnitude of the scalability of the system can be drawn. For

example, since the neural network to be used to generate the hardware accelerator

has more layers and neurons, it is interesting to observe what sort of consequences in

energy expenditure, FPGA component demands and execution speed this causes.

Similarly to the tests related to the Exclusive OR example, the neural network was

inputted into the generator system, which was ran and generated VHDL files corre-

sponding to the hardware accelerator. These files were used in a Modelsim logical

simulation, compiled and synthesized using Quartus Prime software, which outputted

several reports.

9.2.1 VHDL logical correctness

Following the same methodology as the simulation done for the Exclusive OR

example, we tested the logical correctness of the generated VHDL code for the Iris

dataset classifier. The resulting Modelsim waveform results are shown in Figure 11.

Figure 11 - Exclusive OR logical correctness Modelsim simulation waveform results

Main results 89

As the Exclusive OR network results, this waveform also contains signals corre-

sponding to the inputs, outputs, enable and done signals, as well as the system clock

and a reset signal, with their rows and waveforms labeled by the text on the left.

However, since the test data includes 50 classifier samples, only the first two out-

puts are shown in Figure 11. The rest of the simulation results are shown in the Ap-

pendix A. In this network, the input and output quantization rules are as follows:

input : real_value = 0.0301960 ∗ (quantized_value + 128) (9.4)

output : real_value = 0.0043238 ∗ (quantized_value + 125) (9.5)

For example, the first input values [70,−15, 21,−75], labeled by the enable value

1, correspond to the floating point values [6, 3.4, 4.5, 1.6], which correspond to the first

inputs in the Iris test samples dataset, shown in the Appendix A. As an output dequan-

tization example, on the other hand, could be the outputs [-125, 127, -125], labeled

by the done value 1, correspond to the values [0, 1, 0]. This value represents a classi-

fication in the second class. All the values were dequantized and compared with the

expected test dataset classification labels, obtained by running the original neural net-

work in software using the same inputs, and the results were correct as expected. Note

that there were small inconsistencies, possibly arising from rounding and truncating er-

rors during the manual input and output quantization, but that didn’t affect the system’s

overall classifying performance. The entire result comparison is shown in the Appendix

A.

In conclusion, the neural network hardware accelerator successfully receives the

quantized inputs and outputs the expected results.

9.2.2 VHDL implementation parameters for Cyclone IV FPGA

As the Exclusive OR example, the generated VHDL files were compiled and pro-

cessed by Quartus Prime, which generated a post-fitting analysis of the components

necessary to synthesize the design. These results are shown in Table 7.

Main results 90

Table 7 - Iris classifier Quartus Prime post-fitting hardware component report for Cy-
clone IV FPGA target

Components Demand/Availability

Logic Elements 7,117/22,320 (32%)a

Registers 2304
Pins 74/154 (48%)a

Multipliers 20/132(15%)a

aPercentages correspond to hardware available
in the Altera Cyclone IV EP4CE22F17C6N FPGA

The FPGA component demand and availability results of Table 7, as well as the

report indicating that the fitter status was successful, show that the design fits suc-

cessfully in the target Cyclone IV EP4CE22F17C6N FPGA, and thus is synthesizable.

Furthermore, when compiling the VHDL files, Quartus Prime also outputs a timing

report that shows the maximum clock frequency with which the target hardware can ex-

ecute the design with the expected behavior. This maximum clock frequency is shown

in Table 8, and this value is used in execution speed tests.

Table 8 - Iris classifier Quartus Prime timing maximum clock frequency report for Cy-
clone IV FPGA target

Parameter

Maximum clock frequency 18.35 MHz

9.2.3 Execution speed tests

The Iris classifier execution speed tests were conducted with the same methodol-

ogy as those of the Exclusive or example. As such, the VHDL code is simulated using

Intel’s Modelsim software and the number of clock cycles are counted for two sepa-

rate events: the latency between the first data input in the network and when its result

is outputted; and the number of clock cycles per result once the system is stabilized.

These results are shown in Table 9.

Then, following the methodology described in Chapter 8, we tested the inference

time in multiple runs in software with the personal computer Intel i7-8700k CPU, with

different numbers of inferences, done twice each and the fastest result recorded to

isolate interferences. The results are shown in table 10, and the graph in Figure 12

Main results 91

Table 9 - Iris classifier hardware accelerator timing parameters results

Parameters

Clock delay until first result 137 Clock cycles
Stable clock delay per result 80 Clock cycles
Maximum clock frequency 18.35 MHz

Clock period 54.49 ns
Time until first result 7 465.94 ns
Stable time per result 4 359.67 ns

highlights the effect of software optimizations and pipelining, speeding up time per in

bigger batches of inferences.

Furthermore, we can compare these results with those obtained during the Ex-

clusive OR tests. The bigger neural network’s computations are spread along more

hardware components, as shown in Table 7, the loop unrolling techniques and higher

number of sequential layers result in more clock cycles until the results are ready, and

the increased neural network complexity results in a lower maximum clock frequency.

Table 10 - Iris classifier software inference timing results for the personal computer
CPU

Number of inferences in run Time taken to run Time per inference

1 151 600 ns 151 600 ns
2 156 000 ns 78 000 ns
4 166 000 ns 41 500 ns
8 201 800 ns 25 225 ns
16 269 900 ns 16 868 ns
32 405 000 ns 12 656 ns
50 552 300 ns 11 046 ns

The results obtained during tests on the personal computer Intel i7-8700k CPU are

then compared with the final hardware accelerator execution time results in Table 11.

Table 11 - Iris classifier timing results comparison between hardware accelerator and
personal computer CPU

Hardware

Time delay FPGA Cyclone IV Intel i7-8700k PC CPU
Time until first result 7 465.94 ns 151 600 ns
Stable time per result 4 359.67 ns 11 046 ns

Similarly to the results obtained with the Exclusive OR example, Table 11’s results

Main results 92

Figure 12 - Iris classifier time per inference in software, ran using Intel i7-8700k CPU

indicate that the low-power FPGA hardware accelerator has significant latency until first

result and stabilized result throughput timing gains over the personal computer CPU.

9.2.4 Energy expenditure tests

Following the same methodology used in the previous energy expenditure test, we

ran the Intel Quartus Prime Power Analyzer tool, and extracted the estimated energy

expenditure data from the resulting report. This result is shown in Table 12, and also

compared with the personal computer CPU Thermal Design Power divulged by Intel.

Table 12 - Iris classifier energy expenditure comparison between FPGA accelerator
and personal computer CPU

Hardware

FPGA Cyclone IV Intel i7-8700k PC CPU
Total thermal power dissipation 121.72 mW 95 W

The order of magnitude of the energy expenditure results from the Power Analyzer

report displayed in Table 12 is comparable with that of the Exclusive OR example re-

sults, and both express a significant gain in energy efficiency for the execution of the

neural network in comparison with the personal computer CPU.

93

10 CONCLUSIONS

10.1 Threats to validity

Firstly, in order to properly evaluate the results of this work, we must assess the

limitations of its results. The first of the threats to the validity of this project is the

narrow breadth of compatible neural network topologies and activation functions. This

is a consequence of the dedicated circuit design paradigm chosen, as each of the

functions and topologies must be implemented directly in hardware. With the overlay-

based co-design methodology, the other main design paradigm, there would be a larger

overlap between the already-existent software implementations of these functions and

how they would be implemented in the hardware accelerator. The reason is that this

design implements processor cores that are programmed with instructions to execute

the neural networks, and the programming is more closely related to software. While

easier, the difficulty to implement a large library would remain, as the state of the art of

neural network and machine learning design uses a vast quantity of different functions

and layers.

As a consequence, since the system is in such a state with this proof of concept,

its utility and readiness to be used by end users as it is is limited. With a limited

usability, there is less incentive for the system to be expanded and to increase its

popularity. To properly address the objectives numbered in Chapter 3.2, the system

must be attractive to be expanded by the open source programming community, and

to ensure its longevity and usefulness. Consequently, more activation functions and

popular layer and network topologies must be implemented in order to encourage the

system’s use, and its current state is limited.

However, care has been taken in the system’s design, whether it be during the

generation steps of the actual generated hardware architecture to facilitate its expan-

sion. The modularity of the functional blocks used by the dedicated circuit design, as

well as the design rules and patterns pertaining to execution, synchronization and data

formats will help efforts to expand the system and ease this threat to the validity of the

project.

Conclusions 94

Furthermore, since the range of functions implemented is limited, the tests per-

formed to evaluate the operation of this system are less significant and noteworthy.

Ideally, to reinforce the system’s value and usability, a popular neural network model

such as the YOLO, You Only Look Once classifier (REDMON et al., 2015), should be

implemented and a hardware accelerator, generated. Then, a recognizable model, with

important consequences would represent a significant result for the generator system.

Even so, the YOLO classifier uses convolutional layers, which represent another

sort of neural network topology, with different neuronal interconnectivity rules, as well

as max pooling layers, that require a different kind of activation function. Although

these functional blocks are not yet programmed and the lack of significant results such

as the implementation of a famous model like YOLO, note that once these blocks are

implemented, a hardware accelerator for the YOLO classifier could be generated by

the system, highlighting its flexibility once the functional library is expanded.

Another consideration to be made in respect to the tests executed is that the com-

parisons of energy expenditure and execution speed were made between a small

device with an low-power FPGA and a full-scale high-mid range personal computer

processor. This comparison is noteworthy and relevant to highlight the gains in perfor-

mance and energy efficiency, and help characterize and establish the generated hard-

ware as an adequate hardware accelerator to be used in the context of edge computing

for Internet of Things devices. This is due to the high restriction nature of the Internet

of Things’ environment, that may restrict energy availability and device size. However,

an interesting comparison would be to showcase the hardware accelerator generated

by this system against similar accelerators, such as those cited in the literature review

of this work.

The gaps in research pertaining to the combination of the availability of source

code, expansibility of the system and compatibility with the Internet of Things environ-

ment are unique to the hardware generated by this system. Due to the specificity of

the niche of the kind of hardware generated by this system, the comparison with the

full scale personal computer processor is relevant and sufficient to demonstrate that

the generator produces synthesizable circuits, and the objective of this work is not to

produce the fastest or smallest possible accelerator, but one with acceptable trade-offs

and compatible with the Internet of Things.

Conclusions 95

However, a comparative performance test would be interesting to evaluate the

losses or gains in performance in different metrics, and draw inspiration from other

design choices, if their code is available at all.

10.2 Conclusions

To properly draw conclusions from this work, we must review the objectives pro-

posed to this research by Chapter 3. There are two different types of objectives set

for this work: first, the structural objectives of the entire project, regarding character-

istics such as usability of the final generator tool and how it is published; then, there

are engineering objectives of the generator system itself, as well those of the gener-

ated hardware accelerator. To draw the conclusions of this work, after reiterating each

of the main objectives of these two classes, we then state from the main results and

system characteristics how these objectives are accomplished, or how future works, in

Chapter 11, will be necessary to expand the system in order to do so.

First of all, the resulting tool must be usable by programmers without specific hard-

ware design expertise, and as such this knowledge must be completely isolated by

the system and unnecessary to properly use it. We consider that this objective has

been reasonably accomplished, but more work can always be done in order to further

increase the tool’s ease of use. To use the final tool and generate the corresponding

VHDL code that when synthesized implements the neural network in hardware, none

of the interactions needed from the final user require VHDL programming; all that is

needed is to execute the generator system’s software, navigate the graphical user in-

terface to select the exported neural network model, and if the system’s compatibilities

are respected, the code is generated automatically with no further interaction. Fur-

thermore, these restrictions in compatibility are legible by an neural network software

programmer, as they are related to machine learning frameworks, topologies, layers

and activation functions, which are under the domain of such a professional. However,

the limitations in this model of tool are that the generated VHDL code, while synthesiz-

able without modifications, in the case of implementing the accelerator in an FPGA, still

require interaction with hardware compilation and synthesis software. Operating this

kind of software can be considered specific knowledge, and has some considerations

Conclusions 96

in regards to configuration, compilation and interpreting the outputs. Still, compiling

the code and configuring an FPGA is unavoidable to use this kind of tool, and depend-

ing on the specific device and manufacturer, proprietary software is required. Possible

potential workarounds to this are discussed in Chapter 11.

Then, considerations involving the continuity and expansion of the project were re-

spected, and thus we consider this objective fulfilled. In the first place, we proposed

that the system should be fundamentally modular in order to be easily expandable

by the open source development community. Different, independent modules could

then be developed, tested and implemented, interacting as little as possible with other

separate systems, but still benefitting from a hardware generation common core. Addi-

tionally, the modules would be guided by guidelines and compatibility rules, facilitating

compatibility and further development. This objective was achieved, as the VHDL code

corresponding to neural network topologies, quantization algorithms and neuron acti-

vation functions are all modular, guided by design guidelines, and used by a common

hardware generation core interpreter. New blocks can be added by following these

guidelines and minimally editing the core to include the modifications. In addition, the

variables related to the neural network data are concentrated in a single, editable data

package file, isolating the other functional blocks from modification by the generator

core. This means that each of the functional blocks can be more easily read and under-

stood, and can be simulated and tested individually without modification. Furthermore,

the system’s expansibility in regards to machine learning frameworks is greatly aided

by the inclusion of compatibility with the Open Neural Network Exchange (ONNX) for-

mat, which itself is compatible with many other frameworks with several, free and open

converters available. As such, with little modifications in the neural network model inter-

pretation, if the framework used can be converted into ONNX, the system is indirectly

compatible with it.

Next, we consider that objectives related to the source code’s availability and pub-

lishing were successful. The system’s entire source code, as well as VHDL code re-

spective to all of the system’s modules were published in a GitHub repository, under a

compatible and popular open source license. Furthermore, the code itself is modular,

and the software functional blocks related to the VHDL blocks are isolated and thus

more legible. In addition, the GitHub repository includes a readme file, which presents

Conclusions 97

and explains the system, as well as indicating the design guidelines and instructions

for its use and expansion by other developers. The chosen open source license, the

GNU General Public License v3.0 was chosen for its limitations that protect the devel-

opers from warranties and liabilities; as it is permissible enough for private and com-

mercial use, modification and publication; but still offers important conditions over its

modification, requiring that all further versions are open and free, with state changes

documented and with copy of the same license included. This choice was made to en-

sure the continuity of the system as an open source system, with care taken to ensure

that improvements and further versions continue to be free and open, and limitations

to encourage contributions.

To test the neural network model interpreter and automatic hardware accelerator,

we need to provide the system with compatible neural networks. Since the system is

in its early stages, the activation function and network topology functional block library

only includes the Rectified Linear Unit function and the fully-connected neuronal inter-

connectivity rules. As such, the neural networks to test the system must be designed

with these limitations in mind. We consider that the sample networks were successfully

designed and trained, and they represented significant and relevant test examples for

the system as a whole. The two networks implemented the Exclusive OR logic function

and a classifier for the Iris dataset, and were designed and trained until a high accu-

racy was attained. The Exclusive OR example was considered significant as it outputs

linearly inseparable results, and as such, require a multi-layer neural network to be im-

plemented, which was the case. This highlighted the generator system’s capability to

implement deep learning neural networks. Furthermore, the Iris classifier represented

a more realistic example, with a more practical dataset that required a larger neural

network model, with more layers and neurons. This test is also significant, as it not

only highlights the system’s performance when implementing a more complex model,

but also we can draw conclusions as to the scalability of the system in regards to its

demand of integrated circuit components in the target device, and analyse changes in

inference speed and energy expenditure.

Now, concerning engineering requirements for the generated hardware accelerator,

we consider that the generated hardware is successful in its proposed objectives. First

of all, the generated hardware must fit and thus, be synthesizable in FPGA devices

Conclusions 98

compatible with the Internet of Things edge computing environment. This was deemed

achieved, as the final VHDL code, when compiled by Intel’s Quartus Prime software,

as shown in Chapter 9, outputted a post-fitting report which indicates that the design

fits in the chosen Altera Cyclone IV EP4CE22F17C6N FPGA. The design fits as the

compilation and fitting was successful, and the number of demanded integrated circuit

components was smaller than their availability in the chosen FPGA. Furthermore, we

consider this compatible with the Internet of Things environment as the chosen FPGA

is suited for these applications, as it is a small, low-power device specifically made

for these implementations. Then, results concerning the power expenditure obtained

by the Intel Quartus Prime Power Analyzer tool reports also indicate that the result-

ing hardware accelerator is compatible with the possible restrictive power availability

Internet of Things environment. The order of magnitude of the power expenditure is

compatible with lightweight applications using batteries or energy harvesting from small

sources, such as miniature solar panels.

Finally, concerning the hardware accelerator performance in regards to its data pro-

cessing, we also consider this objective to be fulfilled. The VHDL code, when simulated

in Modelsim software, shows that its expected logical behavior, when combined with

maximum system clock frequency obtained by compilation in Quartus Prime, has sig-

nificant performance gains when compared with a full-scale high mid range full-scale

personal computer Intel i7-8700k CPU. As shown in Chapter 9, the compilation resulted

in a system clock frequency, and the logical simulation can be analysed to extract num-

ber of clock cycles to certain events. Then, combining clock frequency and number of

clock cycles, we can derive time delays until those events. Finally, we conclude the time

latency between the first input and its result output by the hardware accelerator, and

the time per result once the system stabilized, and we compare these times with those

resulting from tests executed in the personal computer CPU. Comparing the results,

we conclude that in the tests performed, the FPGA hardware accelerator outperformed

the personal computer CPU, showing significant speedup gains, whose importance is

compounded by the fact that the full-scale CPU uses around 1000 times more power

than the accelerator. This conveys that the generated hardware accelerator is success-

ful in regards to performance throughput speedup and energy expenditure efficiency.

Furthermore, as shown in Chapter 9, the logical simulation results demonstrate

Conclusions 99

that the outputs obtained by the algorithms implemented in the hardware accelerator

closely match those of the model when executed in the original software programming.

While the reduction in representation precision due to the quantization of the variables

used in the implemented neural networks would pose a reduction in model accuracy,

the techniques with which this is done greatly reduce this loss. Firstly, since Tensorflow

Lite quantization-aware neural network training is used, the network itself considers the

loss in representation accuracy when choosing internal parameters such as weights

and biases. During the neural network’s training in software, 32 bit floating point vari-

ables are used, as training fully in 8 bit integers causes too much accuracy loss and

results in ineffective training. However, by including quantization and dequantization

steps in between layers, the rounding errors and loss of precision is accurately simu-

lated while preserving the training accuracy. When exported, the model is then fully

quantized and can be interpreted by the generator software to execute the arithmetic

in 8 bit integers, preserving the expected behavior and the model’s accuracy. Con-

sequently, when the network is implemented in hardware, the quantization is already

expected and the errors are already taken into account by the model. The quantization

algorithm also attempts to maximize representation precision by using zero points and

scale parameters, to map the expected variable ranges as precisely as possible into

the lower precision, as explained in Chapter 5. Furthermore, the quantization correc-

tions necessary to maintain logical correctness while using these quantized variables

in arithmetic operations during the neural network execution were also implemented in

their own VHDL functional block, as shown in Chapter 7.

10.2.1 Final conclusions and discussion

In conclusion, an interpreter and generation core system was created that can im-

port and interpret trained artificial neural network models, read their topology, activation

functions and trained data such as weights and biases, and by consulting a VHDL func-

tional block library, outputs VHDL code corresponding to a hardware accelerator that

implements the inputted model.

The system generated VHDL code that, when compiled and synthesized in an

FPGA corresponds to a hardware accelerator using only a trained neural network

model as input, without requiring any specialized hardware design knowledge by the

Conclusions 100

final user.

The resulting accelerator is compatible with restrictions common to Internet of

Things edge computing environment, as it can be synthesized using a small, low-power

FPGA as target device. In addition, the hardware was tested and compared against a

high mid range full-scale personal computer CPU, and showed significant performance

gains in regards to execution speed, latency until first result and energy efficiency.

The tests also demonstrated that the hardware’s expected behavior matches that

of the original neural network model in software, maintaining logical correctness and

inference accuracy.

The system is based on a modular function library that follows specific patterns and

design guidelines, which facilitates its expansion and maximizes compatibility, and a

common interpreter and generator central software core, which is compatible with the

Open Neural Network Exchange format, maximizing machine learning development

framework interoperability. Furthermore, the core and function library can interpret and

generate accelerators for any compatible network imported into the system.

The system then was published in a GitHub repository under the GNU General

Public License v3.0, ensuring the source code remains open and free to use, modify

and distribute for personal and commercial means, as long as further versions docu-

ment their state changes and remain open and free under the same license.

101

11 FURTHER WORK

In this chapter we discuss potential avenues for future work in order to expand the

project, whether it be increasing the significance of its tests and results or improving

the resulting system itself.

First, while the tests conducted to demonstrate the hardware generation system’s

functionality were deemed adequate, it would be interesting to include an example

which represents a solution that fits the Internet of Things topic, and solves a problem

in a realistic and practical way. While the complexity of such a problem could be similar

to the Iris classifier used in tests, since it is already a reasonable classification problem

with real data and that requires a relatively complex neural network, a real Internet of

Things problem would be even more significant.

Another consideration to be made concerns the source code legibility. While code

legibility is an abstract problem and difficult to solve and judge objectively, more com-

ments can be added to the system’s source code to improve the project’s potential

longevity and encourage contributions from the open source community.

Also in respect to the project’s attractiveness, another potential avenue to improve

the tool is to expand its function library. Modern neural network software development

uses several different activation functions, neuron interconnectivity rules and preset

layers, and including them would make the generator more useful. Then, a more useful

generator would further increase interest in using and improving the project, resulting

in a virtuous cycle. Furthermore, the system’s usability can be better represented by

being compatible with pretrained famous neural network models, such as the YOLO

classifier (REDMON et al., 2015). As such, an interesting path to improve the system

would be to include popular functions used by such systems. Examples are convolu-

tional neural network layers, pooling layers, and hyperbolic tangent activation functions.

Furthermore, hardware accelerators of famous neural network models can be included

in a pregenerated accelerator library to further facilitate usability and demonstrate the

system’s functionality.

Another path to increase the resulting system’s utility would be to expand its frame-

Further work 102

work compatibility. While the interpreter is compatible with the ONNX format, each

framework still needs to be considered individually and converted into ONNX so it can

be interpreted. Changes to the interpreter are expected to be minimal, however the

converters need to be manually included, and the system could need to be modified

to expect small changes in the resulting model caused by the different conversions.

Examples of potential framework candidates for inclusion are SciKit learn and Caffe.

One more interesting comment to be made is related to the hardware accelerator

scalability. While the tests show that the resulting systems fit in the target hardware

with a significant number of components remaining, modern neural network program-

ming often can result in massive networks with many layers and neurons. Since the

chosen hardware design architecture chosen was the dedicated circuit design and the

resulting hardware’s topology mirrors that of the implemented network, bigger networks

result in hardware with greater demands in device components. This characterizes a

problem in scalability. While in the Internet of Things context, large networks are not

expected, it would be interesting that the generator software could generate successful

accelerators sacrificing performance instead of generating hardware that is impossible

to implement in certain devices, which is the case presently. An interesting avenue to

correct this issue would be to draw inspiration from the Deepburning AI project (WANG

et al., 2016), that uses "folds" to reuse the same hardware components for different

layers or different neurons in the same layer. While this decreases performance lower-

ing inference speed and reducing the effectiveness of the pipelining behavior exploited

in our design, by "folding", the neural network operations are queued and thus the

behavior of a large network can be implemented in smaller hardware. For example, in-

stead of utilizing a separate generated component for each Rectified Linear Unit layer

used in the design, a single component can be generated and the requested oper-

ations coming from multiple layers can be queued and executed one after the other,

reducing the resulting demand in integrated circuit components. However, to preserve

as much performance as possible while still enabling the generation of accelerators for

large networks, it would be interesting to offer "folding" as an optional choice, whether

it be by asking the final user how many folds are to be made, or by including hardware

specifications so the generator can decide by itself to fold as many times as necessary

to fit the design in a target hardware.

Further work 103

A comment made while describing the system’s usability was that while the gener-

ator system outputs VHDL files corresponding to a hardware accelerator, the files still

need to be compiled and synthesized for an FPGA using specialized software. This

specialized software could be seen as hard to use, and can be considered specialized

knowledge, increasing the difficulty to use the system by programmers that do not have

FPGA hardware design knowledge. However, this is a hard problem to solve, as dif-

ferent FPGA manufacturers have their own compilation software, which generates files

specific for their FPGAs. To solve this issue would be to theoretically program a VHDL

compiler compatible with different devices, irrespective of manufacturer, and that would

be easier to use than the corresponding companies’ compilers. We conclude that this

issue would be too complex to solve satisfactorily with little reward, and a potential

workaround would be to include files that document simple step-by-step instructions to

use the resulting VHDL in an FPGA that could be followed by a programmer with no

prior knowledge.

104

REFERENCES

ABADI, M. et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. 2015. Software available from tensorflow.org. Disponível em: <https:
//www.tensorflow.org/>. Acesso em: 11/2022.

ABIODUN, O. I. et al. State-of-the-art in artificial neural network applications: A
survey. Heliyon, v. 4, n. 11, p. e00938, 2018. ISSN 2405-8440. Disponível em:
<https://www.sciencedirect.com/science/article/pii/S2405844018332067>. Acesso
em: 10/2022.

BAI, J. et al. ONNX: Open Neural Network Exchange. [S.l.]: GitHub, 2019.
<https://github.com/onnx/onnx>. Acesso em: 11/2022.

BOJARSKI, M. et al. Explaining How a Deep Neural Network Trained with
End-to-End Learning Steers a Car. 2017.

DAS, D.; SAHOO, L.; DATTA, S. A survey on recommendation system. International
Journal of Computer Applications, Foundation of Computer Science, v. 160, n. 7,
2017.

DING, Y. et al. A deep learning model to predict a diagnosis of alzheimer disease
by using 18f-fdg pet of the brain. Radiology, v. 290, n. 2, p. 456–464, 2019. PMID:
30398430. Disponível em: <https://doi.org/10.1148/radiol.2018180958>. Acesso em:
11/2022.

DUA, D.; GRAFF, C. UCI Machine Learning Repository. 2017. Disponível em:
<http://archive.ics.uci.edu/ml>. Acesso em: 10/2022.

ELNAWAWY, M. et al. Role of fpga in internet of things applications. In: IEEE
INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION
TECHNOLOGY (ISSPIT). Proceeding... [S.l.: s.n.], 2019. p. 1–6.

ENDSLEY, M. R. Autonomous driving systems: A preliminary naturalistic study of the
tesla model s. Journal of Cognitive Engineering and Decision Making, v. 11, n. 3,
p. 225–238, 2017. Disponível em: <https://doi.org/10.1177/1555343417695197>.
Acesso em: 11/2022.

ESMAEILZADEH, H. et al. What is happening to power, performance, and software?
IEEE Micro, v. 32, n. 3, p. 110–121, 2012.

GITHUB. GitHub. 2020. Disponível em: <https://github.com/>. Acesso em: 11/2022.

GORBACHEV, Y. et al. Openvino deep learning workbench: Comprehensive analysis
and tuning of neural networks inference. proceeding... In: IEEE/CVF INTERNATIONAL
CONFERENCE ON COMPUTER VISION (ICCV) WORKSHOPS. Procedings... [S.l.:
s.n.], 2019.

HE, K. et al. Deep Residual Learning for Image Recognition. 2015.

References 105

HORNIK, K.; STINCHCOMBE, M.; WHITE, H. Multilayer feedforward networks are
universal approximators. Neural Netw., Elsevier Science, GBR, v. 2, n. 5, p. 359–366,
jul 1989. ISSN 0893-6080.

HOWARD, A. G. et al. MobileNets: Efficient Convolutional Neural Networks for Mobile
Vision Applications. arXiv, 2017. Disponível em: <https://arxiv.org/abs/1704.04861>.
Acesso em: 11/2022.

HUBARA, I. et al. Binarized neural networks. In: INTERNATIONAL CONFERENCE ON
NEURAL INFORMATION PROCESSING SYSTEMS (NIPS’16), 30. Proceedings...
NY, USA: Curran Associates, 2016. p. 4114–4122. ISBN 9781510838819.

IANDOLA, F. N. et al. SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and lt;0.5MB model size. arXiv, 2016. Disponível em: <https:
//arxiv.org/abs/1602.07360>. Acesso em: 11/2022.

INTEL. Intel® Distribution of OpenVINO™ Toolkit. 2021. Disponível em:
<https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html>.
Acesso em: 07/2021.

IZEBOUDJEN, N.; LARBES, C.; FARAH, A. A new classification approach for
neural networks hardware: from standards chips to embedded systems on
chip. Artificial Intelligence Review, v. 41, p. 491–534, 2014. Disponível em:
<https://doi.org/10.1007/s10462-012-9321-7>. Acesso em: 11/2022.

JACOB, B. et al. Quantization and Training of Neural Networks for Efficient
Integer-Arithmetic-Only Inference. arXiv, 2017. Disponível em: <https://arxiv.org/
abs/1712.05877>. Acesso em: 03/2022.

JIA, Y. et al. Caffe: Convolutional architecture for fast feature embedding. arXiv
preprint arXiv:1408.5093, 2014.

KATHAIL, V. Xilinx vitis unified software platform. In: ACM/SIGDA INTERNATIONAL
SYMPOSIUM ON FIELD-PROGRAMMABLE GATE ARRAYS (FPGA’20). Proceed-
ings... New York, NY, USA: Association for Computing Machinery, 2020. p. 173–174.
ISBN 9781450370998. Disponível em: <https://doi.org/10.1145/3373087.3375887>.
Acesso em: 11/2022.

LATTICE sensAI Stack. Lattice Semiconductors. Disponível em: <https://www.
latticesemi.com/sensAI>. Acesso em: 11/2022.

LI, F.; ZHANG, B.; LIU, B. Ternary Weight Networks. arXiv, 2016. Disponível em:
<https://arxiv.org/abs/1605.04711>. Acesso em: 11/2022.

MA, Y. et al. Artificial intelligence applications in the development of autonomous
vehicles: a survey. IEEE/CAA Journal of Automatica Sinica, v. 7, n. 2, p. 315–329,
2020.

MITCHELL, T. M. Machine Learning. New York: McGraw-Hill, 1997. ISBN
978-0-07-042807-2.

MITTAL, S. A survey of fpga-based accelerators for convolutional neural networks.
Neural Computing and Applications, v. 32, 02 2020.

References 106

MITTAL, S.; VETTER, J. S. A survey of methods for analyzing and improving gpu
energy efficiency. ACM Comput. Surv., Association for Computing Machinery,
New York, NY, USA, v. 47, n. 2, ago. 2014. ISSN 0360-0300. Disponível em:
<https://doi.org/10.1145/2636342>. Acesso em: 11/2022.

MOREAU, T. et al. A Hardware-Software Blueprint for Flexible Deep Learning
Specialization. 2019.

MUYAL, T. OpenQNPU. [S.l.]: GitHub, 2022. <https://github.com/ThomasMuyal/
OpenQNPU>. Acesso em: 11/2022.

PICCIALLI, F. et al. A survey on deep learning in medicine: Why, how and when?
Information Fusion, v. 66, p. 111–137, 2021. ISSN 1566-2535. Disponível em:
<https://www.sciencedirect.com/science/article/pii/S1566253520303651>. Acesso
em: 11/2022.

PLAGWITZ, P. et al. A safari through fpga-based neural network compilation
and design automation flows. In: IEEE ANNUAL INTERNATIONAL SYMPOSIUM
ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES (FCCM), 29.
Proceedings... [S.l.: s.n.], 2021. p. 10–19.

RASTEGARI, M. et al. XNOR-Net: ImageNet Classification Using Binary
Convolutional Neural Networks. arXiv, 2016. Disponível em: <https://arxiv.org/abs/
1603.05279>. Acesso em: 11/2022.

REDMON, J. et al. You Only Look Once: Unified, Real-Time Object Detection.
arXiv, 2015. Disponível em: <https://arxiv.org/abs/1506.02640>. Acesso em: 11/2022.

REDMON, J.; FARHADI, A. YOLOv3: An Incremental Improvement. arXiv, 2018.
Disponível em: <https://arxiv.org/abs/1804.02767>. Acesso em: 11/2022.

RUSSAKOVSKY, O. et al. ImageNet Large Scale Visual Recognition Challenge.
2015.

RUSSELL, S. J.; NORVIG, P. Artificial Intelligence: A Modern Approach. Boston:
Pearson, 2021.

WANG, Y.; LI, H.; LI, X. Re-architecting the on-chip memory sub-system of machine-
learning accelerator for embedded devices. In: INTERNATIONAL CONFERENCE
ON COMPUTER-AIDED DESIGN. NEW YORK, NY, USA: ASSOCIATION FOR
COMPUTING MACHINERY (ICCAD ’16), 35. Proceedings..., 2016. ISBN
9781450344661. Disponível em: <https://doi.org/10.1145/2966986.2967068>.
Acesso em: 11/2022.

WANG, Y. et al. Deepburning: Automatic generation of fpga-based learning
accelerators for the neural network family. In: ACM/EDAC/IEEE DESIGN
AUTOMATION CONFERENCE (DAC), 53. Proceedings... [S.l.: s.n.], 2016. p. 1–6.

WU, Y. et al. Google’s neural machine translation system: Bridging the gap between
human and machine translation. 09 2016.

YOON, Y. H. et al. Intellino: Processor for embedded artificial intelligence. Electronics,
v. 9, n. 7, 2020. ISSN 2079-9292. Disponível em: <https://www.mdpi.com/2079-9292/
9/7/1169>. Acesso em: 11/2022.

107

APPENDIX A -- NUMERICAL DATA FROM
SIMULATIONS

Table 13: Iris classifier generated hardware accelera-

tor quantized binary outputs from the Modelsim logical

correctness simulation.

Time in picoseconds Output 0 Output 1 Output 2 Done

1487500 10000011 01111111 10000011 00000001

1907500 10000011 00010111 11011001 00000010

2327500 10000011 01111111 10000011 00000011

2817500 10000011 01111111 10000011 00000100

3097500 10000011 10000011 01110101 00000101

3587500 01111111 10000011 10000011 00000110

3867500 10000011 10000011 01101100 00000111

4357500 01100010 10000101 10000011 00001000

4637500 10000011 01111111 10000011 00001001

5127500 10000011 00010111 11011001 00001010

5547500 01110100 10000011 10000011 00001011

5897500 10000011 01111111 10000011 00001100

6317500 01110000 10000011 10000011 00001101

6737500 01110001 10000011 10000011 00001110

7087500 10000011 10000011 01100111 00001111

7507500 10000011 01111111 10000011 00010000

7997500 10000011 10000011 01101010 00010001

8417500 10000011 01111111 10000011 00010010

8767500 10000011 01111111 10000011 00010011

9187500 01100110 10010010 10000011 00010100

9537500 10000011 01111111 10000011 00010101

Continued on next page

108

Time in picoseconds Output 0 Output 1 Output 2 Done

9957500 10000011 10111100 00101110 00010110

10307500 01110010 10000011 10000011 00010111

10727500 10000011 10000011 01110111 00011000

11147500 10000011 10000011 01101100 00011001

11497500 01110010 10000011 10000011 00011010

11917500 01110001 10000011 10000011 00011011

12337500 10000011 10000011 01101011 00011100

12687500 01111010 10000011 10000011 00011101

13107500 10000011 01111111 10000011 00011110

13597500 10000011 10000011 01101011 00011111

13877500 10000011 10000011 01110101 00100000

14367500 10000011 10000011 01101100 00100001

14647500 10000011 10000011 01110001 00100010

15137500 10000011 01111111 10000011 00100011

15417500 10000011 00111011 10110111 00100100

15907500 10000011 10000011 01101100 00100101

16327500 01101110 10000011 10000011 00100110

16747500 10000011 10000011 01101100 00100111

17097500 01110110 10000011 10000011 00101000

17517500 10000011 01111111 10000011 00101001

18007500 01110001 10000011 10000011 00101010

18287500 01110111 10000011 10000011 00101011

18777500 01110110 10000011 10000011 00101100

19197500 01101010 10000011 10000011 00101101

19547500 10000011 10000011 01100111 00101110

19967500 01101111 10000011 10000011 00101111

20317500 01111010 10000011 10000011 00110000

20737500 01101100 10000011 10000011 00110001

21087500 10000011 10000011 01101100 00110010

109

Table 14: Iris classifier generated hardware accelerator

quantized decimal outputs from the Modelsim logical

correctness simulation.

Time in picoseconds Output 0 Output 1 Output 2 Enable

1487500 -125 127 -125 1

1907500 -125 23 -39 2

2327500 -125 127 -125 3

2817500 -125 127 -125 4

3097500 -125 -125 117 5

3587500 127 -125 -125 6

3867500 -125 -125 108 7

4357500 98 -123 -125 8

4637500 -125 127 -125 9

5127500 -125 23 -39 10

5547500 116 -125 -125 11

5897500 -125 127 -125 12

6317500 112 -125 -125 13

6737500 113 -125 -125 14

7087500 -125 -125 103 15

7507500 -125 127 -125 16

7997500 -125 -125 106 17

8417500 -125 127 -125 18

8767500 -125 127 -125 19

9187500 102 -110 -125 20

9537500 -125 127 -125 21

9957500 -125 -68 46 22

10307500 114 -125 -125 23

10727500 -125 -125 119 24

11147500 -125 -125 108 25

11497500 114 -125 -125 26

11917500 113 -125 -125 27

12337500 -125 -125 107 28

12687500 122 -125 -125 29

13107500 -125 127 -125 30

Continued on next page

110

Time in picoseconds Output 0 Output 1 Output 2 Enable

13597500 -125 -125 107 31

13877500 -125 -125 117 32

14367500 -125 -125 108 33

14647500 -125 -125 113 34

15137500 -125 127 -125 35

15417500 -125 59 -73 36

15907500 -125 -125 108 37

16327500 110 -125 -125 38

16747500 -125 -125 108 39

17097500 118 -125 -125 40

17517500 -125 127 -125 41

18007500 113 -125 -125 42

18287500 119 -125 -125 43

18777500 118 -125 -125 44

19197500 106 -125 -125 45

19547500 -125 -125 103 46

19967500 111 -125 -125 47

20317500 122 -125 -125 48

20737500 108 -125 -125 49

21087500 -125 -125 108 50

111

Table 15: Iris classifier generated neural network ex-

pected outputs.

Output 0 Output 1 Output 2

-125 127 -125

-125 23 -39

-125 127 -125

-125 127 -125

-125 -125 117

127 -125 -125

-125 -125 108

116 -125 -125

-125 127 -125

-125 23 -39

115 -125 -125

-125 127 -125

112 -125 -125

113 -125 -125

-125 -125 103

-125 127 -125

-125 -125 106

-125 127 -125

-125 127 -125

109 -122 -125

-125 127 -125

-125 -68 46

108 -125 -125

-125 -125 119

-125 -125 113

125 -125 -125

112 -125 -125

-125 -125 107

122 -125 -125

-125 127 -125

-125 -125 107

Continued on next page

112

Output 0 Output 1 Output 2

-125 -125 117

-125 -125 113

-125 -125 113

-125 127 -125

-125 68 -83

-125 -125 108

110 -125 -125

-125 -125 108

122 -125 -125

-125 127 -125

113 -125 -125

122 -125 -125

120 -125 -125

106 -125 -125

-125 -125 103

112 -125 -125

118 -125 -125

109 -125 -125

-125 -125 108

113

Table 16: Iris test dataset inputs.

Input 0 Input 1 Input 2 Input 3

6 3.4 4.5 1.6

5.9 3.2 4.8 1.8

6.3 2.3 4.4 1.3

6.2 2.9 4.3 1.3

6.2 3.4 5.4 2.3

4.4 3.2 1.3 0.2

6.9 3.2 5.7 2.3

5 3 1.6 0.2

5 2 3.5 1

6 3 4.8 1.8

5.8 4 1.2 0.2

5.5 2.6 4.4 1.2

5.2 3.5 1.5 0.2

5.7 4.4 1.5 0.4

5.9 3 5.1 1.8

5.6 3 4.5 1.5

7.7 2.6 6.9 2.3

6.6 3 4.4 1.4

5.6 2.5 3.9 1.1

5 3.5 1.6 0.6

7 3.2 4.7 1.4

6.3 2.8 5.1 1.5

4.4 2.9 1.4 0.2

6.3 2.5 5 1.9

6.7 2.5 5.8 1.8

4.4 3 1.3 0.2

5 3.4 1.6 0.4

7.7 3.8 6.7 2.2

4.9 3 1.4 0.2

5.9 3 4.2 1.5

7.7 3 6.1 2.3

6.8 3 5.5 2.1

Continued on next page

114

Input 0 Input 1 Input 2 Input 3

6.4 2.8 5.6 2.2

6.4 2.8 5.6 2.1

6.3 3.3 4.7 1.6

6.2 2.2 4.5 1.5

7.2 3.2 6 1.8

5.1 3.7 1.5 0.4

6.7 3.3 5.7 2.5

4.9 3.1 1.5 0.1

5.8 2.7 3.9 1.2

5.5 3.5 1.3 0.2

4.7 3.2 1.3 0.2

4.6 3.4 1.4 0.3

4.8 3 1.4 0.3

5.6 2.8 4.9 2

5.4 3.9 1.3 0.4

4.8 3 1.4 0.1

5.4 3.9 1.7 0.4

7.4 2.8 6.1 1.9

Source: Dua e Graff (2017)

115

Table 17: Iris classifier generated hardware accelerator

quantized decimal inputs for the Modelsim logical cor-

rectness simulation.

Input 0 Input 1 Input 2 Input 3 Enable

70 -15 21 -75 1

67 -22 30 -68 2

80 -51 17 -84 3

77 -31 14 -84 4

77 -15 50 -51 5

17 -22 -84 -121 6

100 -22 60 -51 7

37 -28 -75 -121 8

37 -61 -12 -94 9

70 -28 30 -68 10

64 4 -88 -121 11

54 -41 17 -88 12

44 -12 -78 -121 13

60 17 -78 -114 14

67 -28 40 -68 15

57 -28 21 -78 16

127 -41 100 -51 17

90 -28 17 -81 18

57 -45 1 -91 19

37 -12 -75 -108 20

103 -22 27 -81 21

80 -35 40 -78 22

17 -31 -81 -121 23

80 -45 37 -65 24

93 -45 64 -68 25

17 -28 -84 -121 26

37 -15 -75 -114 27

127 -2 93 -55 28

34 -28 -81 -121 29

67 -28 11 -78 30

Continued on next page

116

Input 0 Input 1 Input 2 Input 3 Enable

127 -28 74 -51 31

97 -28 54 -58 32

83 -35 57 -55 33

83 -35 57 -58 34

80 -18 27 -75 35

77 -55 21 -78 36

110 -22 70 -68 37

40 -5 -78 -114 38

93 -18 60 -45 39

34 -25 -78 -124 40

64 -38 1 -88 41

54 -12 -84 -121 42

27 -22 -84 -121 43

24 -15 -81 -118 44

30 -28 -81 -118 45

57 -35 34 -61 46

50 1 -84 -114 47

30 -28 -81 -124 48

50 1 -71 -114 49

117 -35 74 -65 50

117

Table 18: Iris classifier generated hardware accelerator

quantized binary inputs for the Modelsim logical cor-

rectness simulation.

Time in picoseconds Input 0 Input 1 Input 2 Input 3 Enable

800000 01000110 11110001 00010101 10110101 00000001

1200000 01000011 11101010 00011110 10111100 00000010

1600000 01010000 11001101 00010001 10101100 00000011

2000000 01001101 11100001 00001110 10101100 00000100

2400000 01001101 11110001 00110010 11001101 00000101

2800000 00010001 11101010 10101100 10000111 00000110

3200000 01100100 11101010 00111100 11001101 00000111

3600000 00100101 11100100 10110101 10000111 00001000

4000000 00100101 11000011 11110100 10100010 00001001

4400000 01000110 11100100 00011110 10111100 00001010

4800000 01000000 00000100 10101000 10000111 00001011

5200000 00110110 11010111 00010001 10101000 00001100

5600000 00101100 11110100 10110010 10000111 00001101

6000000 00111100 00010001 10110010 10001110 00001110

6400000 01000011 11100100 00101000 10111100 00001111

6800000 00111001 11100100 00010101 10110010 00010000

7200000 01111111 11010111 01100100 11001101 00010001

7600000 01011010 11100100 00010001 10101111 00010010

8000000 00111001 11010011 00000001 10100101 00010011

8400000 00100101 11110100 10110101 10010100 00010100

8800000 01100111 11101010 00011011 10101111 00010101

9200000 01010000 11011101 00101000 10110010 00010110

9600000 00010001 11100001 10101111 10000111 00010111

10000000 01010000 11010011 00100101 10111111 00011000

10400000 01011101 11010011 01000000 10111100 00011001

10800000 00010001 11100100 10101100 10000111 00011010

11200000 00100101 11110001 10110101 10001110 00011011

11600000 01111111 11111110 01011101 11001001 00011100

12000000 00100010 11100100 10101111 10000111 00011101

12400000 01000011 11100100 00001011 10110010 00011110

Continued on next page

118

Time in picoseconds Input 0 Input 1 Input 2 Input 3 Enable

12800000 01111111 11100100 01001010 11001101 00011111

13200000 01100001 11100100 00110110 11000110 00100000

13600000 01010011 11011101 00111001 11001001 00100001

14000000 01010011 11011101 00111001 11000110 00100010

14400000 01010000 11101110 00011011 10110101 00100011

14800000 01001101 11001001 00010101 10110010 00100100

15200000 01101110 11101010 01000110 10111100 00100101

15600000 00101000 11111011 10110010 10001110 00100110

16000000 01011101 11101110 00111100 11010011 00100111

16400000 00100010 11100111 10110010 10000100 00101000

16800000 01000000 11011010 00000001 10101000 00101001

17200000 00110110 11110100 10101100 10000111 00101010

17600000 00011011 11101010 10101100 10000111 00101011

18000000 00011000 11110001 10101111 10001010 00101100

18400000 00011110 11100100 10101111 10001010 00101101

18800000 00111001 11011101 00100010 11000011 00101110

19200000 00110010 00000001 10101100 10001110 00101111

19600000 00011110 11100100 10101111 10000100 00110000

20000000 00110010 00000001 10111001 10001110 00110001

20400000 01110101 11011101 01001010 10111111 00110010

