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RESUMO

Esta tese investiga e propõe novos modelos para a compensação digital de imperfeições de
rádio frequência (RF - radio frequency) em transmissores sem fio de banda larga, mais
especificamente para amplificadores de potência (PA - power amplifiers) não-lineares e
sujeitos a descasamento de impedância de carga (LMM - load mismatch). Tais imperfeições
em transmissores de RF, juntamente com o desbalanceamento entre as componentes em
fase e quadratura (IQ - in-phase and quadrature) em moduladores digitais, são responsáveis
por degradar o desempenho do transmissor, tanto em termos de pureza espectral, quanto
em qualidade da modulação e taxa de erro de bit (BER - bit error rate).

Diversos cenários práticos em que PAs estão sujeitos a LMM motivam a pesquisa por
modelos comportamentais não-lineares e com memória voltados a predistorção digital
(DPD - digital pre-distortion) mais avançados, capazes de superar as limitações relatadas
na literatura de modelos tradicionais e que sejam menos complexos do que as abordagens
existentes para PA LMM.

Nesta tese é proposta a aplicação do modelo polinomial Wiener-Hammerstein com reali-
mentação (WHFB - Wiener-Hammerstein with feedback) como modelo comportamental
simplificado para DPD no contexto de PAs sujeitos a LMM.

A elevada dimensionalidade da estrutura WHFB proposta pode ser reduzida através de
técnicas esparsas de estimação, tais como o operador de encolhimento e seleção absoluto
mínimo (LASSO - least absolute shrinkage and selection operator) e extensões de LASSO em
blocos, que são capazes de diminuir significativamente o número de coeficientes necessário,
reduzindo, assim, o comprimento do filtro de DPD e, proporcionalmente, o custo da
filtragem.

Além disso, extensões de LASSO voltadas a blocos, como Group-LASSO e Sparse-group
LASSO, são aplicadas no contexto de dimensionamento do modelo, ou seja, na tarefa de
determinar valores adequados para seus parâmetros, o que, tradicionalmente, requer uma
busca exaustiva.

Os modelos WHFB denso e esparso são validados experimentalmente através de medições
em um set-up de testes experimental e também comparados a outros, incluindo modelos
baseados na decomposição em fatores paralelos (PARAFAC - parallel factors) e na expansão
de Laguerre, demonstrando, assim, sua capacidade de compensar adequadamente PAs
sujeitos a LMM.



Finalmente, é proposta uma nova estratégia de redução do modelo de Volterra, que resulta
em um polinômio de memória mais flexível e modular, em que os parâmetros são escolhidos
independentemente para cada ordem de não linearidade. Esta abordagem flexível é capaz
de descrever com precisão uma gama ampla de condições operacionais/ ambientais de PAs.

Palavras-chave: Amplificador de potência. Descasamento de impedância de carga. Modelo
comportamental. Modelo de Volterra. Pré-distorção digital. LASSO.



ABSTRACT

This thesis investigates and proposes new models for the digital compensation of radio
frequency (RF) imperfections in broadband wireless transmitters, more specifically for
non-linear power amplifiers (PA) subject to load impedance mismatch (LMM). Such
imperfections in RF transmitters, together with the in-phase and quadrature (IQ) imbalance
in digital modulators, are responsible for degrading the transmitter’s performance, in
terms of spectral purity, modulation quality and bit error rate (BER).

Several practical scenarios in which PAs are subject to LMM motivate the research for
more advanced non-linear behavioral models with memory for digital predistortion (DPD),
capable of overcoming the limitations reported in the literature of traditional polynomial
models, while being less complex than existing approaches to PA LMM.

This thesis proposes the application of the Wiener-Hammerstein with feedback (WHFB)
polynomial model as a simplified behavioral model for DPD in the context of PAs subject
to LMM.

The high dimensionality of the proposed WHFB structure can be reduced through sparse
estimation techniques, such as the least absolute shrinkage and selection operator (LASSO)
and group LASSO extensions, which are able to significantly decrease the number of
coefficients needed, thus reducing the length of the DPD filter and, proportionally, the
cost of filtering.

In addition, block-oriented LASSO extensions, such as Group-LASSO and Sparse-group
LASSO, are applied in the context of model sizing, that is, in the task of determining
appropriate values for the model parameters, which traditionally requires an exhaustive
search.

Dense and sparse WHFB models are experimentally validated through measurements from
an experimental test set-up and also compared to others, including models based on parallel
factors (PARAFAC) decomposition and on Laguerre expansion, thus demonstrating their
ability to adequately compensate for subject PAs the LMM.

Finally, a new strategy for reducing the Volterra model is proposed, which results in
a more flexible and modular memory polynomial, in which the parameters are chosen
independently for each order of nonlinearity. This flexible approach is able to accurately
describe a wide range of operating/environmental conditions of PAs.



Keywords: Power amplifier. Load impedance mismatch. Behavioural model. Volterra
model. Digital pre-distortion. LASSO.
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1 INTRODUCTION

This chapter introduces the context of modern wireless communications transceivers
and the importance of mitigating radio frequency (RF) analog impairments that compro-
mise the system performance. A summary of state-of-the-art research on major sources
of impairments, as well as on digital compensation techniques, is briefly presented. This
chapter also motivates for the use of digital signal processing (DSP) techniques for combat-
ing the major sources of RF impairments, specially the effective compensation for power
amplifiers under load impedance mismatch.

1.1 CONTEXT AND MOTIVATION

Modern wireless communications systems need to handle wideband signals carrying
high data-rates with elevated spectral efficiency. Therefore, the majority of them employs
digital modulation formats with non-constant envelope and high peak to average power
ratio (PAPR), such as high-order quadrature amplitude modulation (QAM), wideband
code division multiple access (WCDMA) and orthogonal frequency-division multiplexing
(OFDM). These systems also need to guarantee high linearity and power efficiency, limiting
in-band and out-of-band distortions and, at the same time, avoiding the waste of supply
power and environmental resources (LEUNG; ZHU, 2014).

The radio transceivers for such systems need to be low cost and support multi-band
and multi-standard operation, according to the software defined radio (SDR) architecture,
in which the RF front-end is reconfigured through software (ZHU; LEUNG; HUANG,
2013). In addition, their designs should also foresee the evolution to cognitive radio (CR)
(MITOLA; MAGUIRE, 1999) architecture and monolithic integration, in a system-on-a-
chip (SoC). In this challenging context, the direct conversion transceiver topology, also
known as zero-intermediate frequency (IF) or homodyne (MAK; U; MARTINS, 2007),
shown in Figure 1.1, is considered the most promising architecture, due to its single stage
of frequency conversion from baseband to RF. Figure 1.1 shows the direct conversion
transmitter (TX), including the in-phase (I) and quadrature-phase (Q) signal paths with
the digital-to-analog converter (DAC), lowpass filter (LPF) and the IQ modulator (IQM)
mixer pair, fed by the high-frequency local oscillator (LO). The signals at the output of the
IQM mixers are combined and sent to the RF power amplifier (PA), bandpass filter (BPF)
and load antenna. Note that using this topology, fewer analog components are needed,
such as mixing and filtering stages, as compared to the conventional dual- or multi-stage
heterodyne transceivers (ABIDI, 1995), (MAK; U; MARTINS, 2007).

Analog components in the RF front-end always introduce circuit imperfections or
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non-idealities, limiting the system performance (FETTWEIS et al., 2007), (VALKAMA;
RENFORS; KOIVUNEN, 2001a). The major sources of RF impairments in the transmitter
side are the non-linear (NL) distortions caused by the PA (PEDRO; MAAS, 2005), (GHAN-
NOUCHI; HAMMI, 2009), gain and phase imbalance caused by the IQM (VALKAMA;
RENFORS; KOIVUNEN, 2001a), (HUANG; CARON, 2002), PA load impedance mis-
match (BEZOOIJEN; MAHMOUDI; ROERMUND, 2005), frequency-dependent gain and
group delay of analog BPFs (MYOUNG; KIM; YOOK, 2005) and carrier frequency offset
and phase noise of the LOs (ARMADA, 2001). These impairments inevitably introduce
distortions to the envelope signal to be transmitted and, as the operating frequency and
data bandwidth increase – for example, in 4th generation (4G) or 5th generation (5G)
wireless communications standards from the 3rd generation Partnership Project (3GPP) –
more stringent constraints should be met on the imperfections of transceiver circuits.

This thesis focuses on DSP techniques for combating the following sources of
impairments on wireless transmitters (SMAINI, 2012):

• The PA non-linearity that introduces NL distortions to the output signal, degrading
both the in-band performance, measured by the error vector magnitude (EVM)
and bit error rate (BER), as well as the out-of-band performance, measured by the
adjacent channel power ratio (ACPR). Moreover, NL distortions may also cause
adjacent channel interference, also known as spectrum regrowth, so ACPR levels
are strictly limited by spectrum emission masks imposed by the regulatory bodies
(HORLIN; BOURDOUX, 2008), (CRIPPS, 2006).

• The PA load impedance mismatch, or load mismatch (LMM), in which the PA is not
perfectly terminated, so only part of the outgoing power is delivered to the load and
signal reflections return back to the PA. This RF impairment reduces the maximum
achievable output power, causes voltage clipping and additional signal distortions,
worsening the performance metrics mentioned above, as well as reinforcing PA
memory effects (ZENTENO; ISAKSSON; HANDEL, 2015).

• The gain and phase imbalance between the I and Q paths of the IQM, which breaks the
orthogonality between the two components and reduces the attenuation of the image
signals at mirror frequencies, resulting in signal constellation errors that degrade
the EVM and BER performance (HORLIN; BOURDOUX, 2008), (VALKAMA;
RENFORS; KOIVUNEN, 2001b), (ANTTILA; VALKAMA; RENFORS, 2008b).

In the next sections, we discuss in further details these non-idealities and their
compensation techniques.
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Figure 1.1 – Block diagram of the direct conversion TX.

1.2 TRANSCEIVER RF IMPAIRMENTS

This section presents a summary of state-of-the-art approaches for modelling
major sources of RF impairments in wireless transmitters, as well as motivates for their
compensation using digital pre-distortion (DPD) techniques.

1.2.1 Power Amplifier Non-linearity

Ideally, amplification is a purely linear operation, described by a linear power gain.
However, in practice, typical PAs achieve their highest power efficiency when operating well
beyond the maximum linear output power, thus exhibiting a trade-off between efficiency
and linearity. In this analysis, the PA power efficiency is defined by η = PRF

PDC
, in which

PRF is the RF output power at the fundamental band and PDC is the power drawn from
the direct-current (DC) source. PA non-linearity distorts the complex envelope of the
transmitted signal, creating constellation distortion and inter-symbol interference (ISI),
whereas low PA efficiency leads to short battery life in mobile devices and high operating
costs in base stations. PAs in wireless communications are classified by their quiescent (or
DC biasing) point of operation (CRIPPS, 2006) into the classic Class A, AB, B, C, etc.
(CRIPPS, 2006), ranging from highly linear, but inefficient, towards non-linear, highly
efficient PA operation. Indeed, the Class A quiescent point is high enough so that the PA
conducts current during the entire excursion of the input signal, whereas PDC is reduced
in the classes AB, B and C and the PA only conducts during a portion of the input
signal. Traditionally, constant envelope modulation schemes, such as frequency-shift keying
(FSK), allow the linear PA to be biased more efficiently. However, wideband signals require
bandwidth efficient amplitude and phase modulation schemes, such as QAM, WCDMA
and OFDM, which produce non-constant envelopes and high PAPR that are specially
vulnerable to PA non-linearities. Back-off strategies could be used to reduce the dynamic
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range of the input signals and avoid severe output distortions, but at the expense of
reducing the power efficiency. In fact, there is a considerable effort in the literature to
achieve linear transmitters with high efficiency by compensating for PA non-linearities in
wideband wireless communication systems.

In order to better understand and mitigate the PA NL distortions discussed so far,
models have been developed following two major approaches: physical-based (also known
as circuit-based) models and behavioural (also known as empirical or black-box) models. In
the physical-based models, analytical expressions are derived from the so-called PA equiva-
lent circuit, based on circuit theory and physical knowledge of the transistor (active device),
biasing and matching conditions (COLANTONIO; GIANNINI; LIMITI, 2009), (PEDRO;
PEREZ, 1994). Behavioural models, on their turn, are black-box descriptions of the PA’s
NL input to output relation, in which no physical knowledge is required, being entirely
based on fitting mathematical functions to sampled input/output data (PEDRO; MAAS,
2005) and (ISAKSSON; WISELL; RONNOW, 2006). The ever increasing bandwidth of
wireless communications systems makes the modelling and compensation of non-linear PAs
with memory effects a relevant topic and leads to sophisticated PA and DPD modelling
frameworks, such as the Volterra series model (SCHETZEN, 2006) and artificial neural
networks (ANN) (NASKAS; PAPANANOS, 2004), (ISAKSSON; WISELL; RONNOW,
2005), (LIU; BOUMAIZA; GHANNOUCHI, 2004), (XU et al., 2002). Comparing these
two approaches, one important aspect is that Volterra-based models are often linear in
the coefficients, whereas ANNs are not (PEDRO; MAAS, 2005), (ISAKSSON; WISELL;
RONNOW, 2006). Because Volterra-based models are linear in the coefficients, linear least
squares estimation methods are applicable. These methods are very desirable for DPD;
for this reason, this thesis focuses on Volterra-based behavioural models (DING et al., 2004).

1.2.2 PA Load Impedance Mismatch (LMM)

The PA load comprises the external impedances associated to the transistor’s
output impedance through the output matching network (MN) and DC biasing network
(BN). Thus, in this work, we consider LMM as the combined effect of impedance variations
that occur at baseband (modulation band), fundamental and harmonic frequencies and
appear at the interface between the transistor output port and the external networks
above (VUOLEVI; RAHKONEN, 2003), (CARVALHO; PEDRO, 2002), (GHANNOUCHI;
HAMMI, 2009). These variations may occur due to several reasons, such as when the PA
is subject to load antenna impedance deviations, antenna crosstalk, DC power supply and
temperature fluctuations, MN and BN transfer function that depend on the PA operating
conditions, for example, power and frequency (BEZOOIJEN; MAHMOUDI; ROERMUND,
2011). The PA LMM creates multiple signal reflections at the PA output port, generating
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frequency-dependent interactions between the forward and reflected RF waves, responsible
for worsening the PA’s linearity and memory effects (VUOLEVI; RAHKONEN, 2003). As
described in (CRIPPS, 2006), LMM reduces the maximum PA output power, as well as
the PA power efficiency (BEZOOIJEN; MAHMOUDI; ROERMUND, 2005), (SANCHEZ-
PEREZ et al., 2011). Moreover, LMM at the fundamental band accentuates the PA output
signal distortions (YE et al., 2010), whereas load impedance fluctuations at baseband
and harmonics are the main responsible for the so-called NL memory effects (MOON;
KIM, 2011), i.e., PA memory effects that only manifest under the NL regime. Finally,
the impedance mismatch of the BN accounts for most of the NL memory effects, due to
operational conditions, such as battery de-charging, temperature, power and frequency
variations (BEZOOIJEN; MAHMOUDI; ROERMUND, 2011).

The operation of radiating devices, i.e., antennas, may be affected by nearby objects,
such as the user body and metallic structures (BOYLE; YUAN; LIGTHART, 2007),
(BERG; SONKKI; SALONEN, 2009). These proximity (or body) effects are responsible
for degrading the performance of some types of antennas, as discussed in the literature
(KESHMIRI; CRAEYE, 2009), (MORISHITA; KIM; FUJIMOTO, 2001), (ILVONEN et
al., 2011) which includes antenna gain reduction, center frequency detuning and input
impedance fluctuations. Depending on the magnitude and phase of the antenna input
impedance deviations, the PA load-line and biasing point are displaced, so the output
signal becomes subject to voltage clipping (CRIPPS, 2006), an effect that is known to
generate odd-order NL distortion terms that degrade the linearity and the performance of
the transmitter.

In several practical cases, the PAs are expected to suffer from LMM, thus justifying
the research for more robust DPD solutions, such as in:

• Portable/ mobile devices in the presence of obstacles and proximity-effects that induce
time-varying antenna input impedance fluctuations (BEZOOIJEN; MAHMOUDI;
ROERMUND, 2011), (MESSAOUDI et al., 2007),

• Wideband RF transmitters, in which the design of the MN and BN are subject to
technical limitations that prevent a perfect impedance matching both at RF and
baseband (AKMAL et al., 2010), (BRINKHOFF; PARKER, 2003),

• Multi-band, multi-mode transmitters, such as SDRs, where the MN are expected to
operate in multiple frequency bands, signal bandwidths and power levels (RAWAT;
HASHMI; GHANNOUCHI, 2012),

• Multi-antenna transceivers, such as multi-input multi-output (MIMO) in 4G and 5G
wireless standards and phased-arrays in radar applications, due to mutual coupling
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and crosstalk between the antenna elements (HAUSMAIR et al., 2017), (KORPI;
ANTTILA; VALKAMA, 2017),

• Millimeter-wave compact transceivers in 5G wireless standards, where frequency-
dependent transistor parasitics become extremely difficult to eliminate (ALSHARIF;
NORDIN, 2017), as well as the electromagnetic coupling inside the chip (BARRADAS
et al., 2017).

This thesis addresses the digital compensation of NL PAs subject to LMM by
proposing the application of a Volterra-based behavioural model, namely, the Wiener-
Hammerstein with feedback (WHFB) model (MKADEM et al., 2014), that offers a good
trade-off between model performance and complexity.

1.2.3 IQ Modulator Imbalance

In the ideal IQM case, the local oscillators feeding the I and Q signal components
have identical amplitude and exactly 90◦ of phase shift, as well as the frequency responses
of the two independent I and Q branches are identical. The IQM imbalance occurs
when at least one of these conditions is not met. In general, IQM are subject to both
the frequency-independent amplitude and phase imbalance and the frequency-dependent
imbalance. This last impairment may arise due to the frequency responses of LPFs, DACs
and mixing stages at the I and Q branches (RAZAVI, 1997). Any IQM amplitude or phase
imbalance degrades the transmitter mirror-image suppression capability and, consequently,
the system performance (ANTTILA; VALKAMA; RENFORS, 2008b). Depending on
the transmitter architecture, the residual mirror-image produces either self-interference
(zero-IF TX) or adjacent channel interference (low-IF TX) (MAK; U; MARTINS, 2007).
The major part of the models in the literature address the narrowband case, in which
only the frequency-independent IQM imbalance is considered. Wideband IQM imbalance
models, also accounting for the frequency-dependent effects, can be found in some papers
(VALKAMA; RENFORS; KOIVUNEN, 2001b), (TUTHILL; CANTONI, 2005).

The DPD model proposed in this thesis for NL PAs subject to LMM is extended
to the joint compensation of IQM imbalance, including frequency-dependent effects.

In the next section, we describe some important compensation techniques targeted
to the RF impairments discussed so far.

1.3 DIGITAL COMPENSATION OF RF IMPAIRMENTS

Modern wireless communication systems face the challenge of implementing low cost
analog RF front-ends that are capable of operating with high performance in compliance
with strict spectral regulations. Conceptually, the most straightforward approach would



1.3. Digital Compensation of RF Impairments 7

be to optimize the quality of the analog components in the front-end, such that the RF
impairments are made by design at an acceptable level. However, it is very expensive to
improve the processes of design, fabrication and calibration of RF analog components
(NAGATA, 1989). Besides, this can limit the transceiver flexibility, since optimal designs
are often frequency specific and cannot track changes over time, such as temperature
variations and component ageing. An alternative approach is to model the RF analog
front-end hardware limitations and apply DSP techniques in the digital baseband domain
to improve the key performance metrics, such as the in-band and out-of-band spectral
quality and the system BER (FETTWEIS et al., 2007). Therefore, DSP compensation
techniques are a consolidated approach for mitigating RF analog front-end impairments,
being one of the most cost-effective solutions and providing significant accuracy and
flexibility (HORLIN; BOURDOUX, 2008).

The next subsections briefly discusses existing DSP techniques to compensate for
the impairments described in the previous section.

1.3.1 PA Digital Pre-distortion

DPD is a well-known technique for compensating for NL PAs. This technique
allows the linearized PA to be utilized up to its saturation point, while still providing
linear amplification, thus allowing the PA power efficiency to increase. As shown in Figure
1.2, DPD is applied in the digital baseband domain, since the DPD predistorter precedes
the “Digital to RF” conversion block. The predistorter is responsible for applying to the
incoming baseband signal a NL function with memory that is approximately the inverse of
the normalized NL characteristic of the PA, assuming that a DPD NL model is properly
chosen and that its coefficients are effectively estimated. The process of identifying or
estimating the NL model coefficients from measured input/output data is performed by
the so-called DPD training function and is presented in more details in section 2.5.

The first DPD technique was proposed by (NAGATA, 1989), (CAVERS, 1990) for
memoryless PAs, using a two-dimensional look-up table (LUT) (MUHONEN; KAVEHRAD;
KRISHNAMOORTHY, 2000), (BARRADAS et al., 2014) that provided a complex gain
correction based on the real and imaginary parts of the input signal. When considering
wideband signals, memory effects cannot be neglected, so the complex gain corrections
should also vary with frequency for an effective compensation. Among the NL modelling
approaches proposed in the literature for wideband PA and DPD modelling, we focus on
behavioural models derived from the Volterra series (SCHETZEN, 2006), such as memory
polynomials and block-oriented models (PEDRO; MAAS, 2005), (ISAKSSON; WISELL;
RONNOW, 2006), because most of them are linear in the coefficients, allowing linear least
squares estimation (DING et al., 2004), very advantageous for DPD.
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The high dimensionality of the Volterra series model has motivated sparse, par-
simonious approximate solutions (STANKOVIC et al., 2018), (BRAITHWAITE, 2017),
also used in the context of compressed sensing (CS), to the original model. The more
prominent ones have been applied to PA and DPD, such as the least absolute shrinkage
and selection operator (LASSO) (ZENTENO et al., 2015), (KEKATOS; GIANNAKIS,
2011), (WISELL; JALDEN; HANDEL, 2008), ridge regression (GUAN; ZHU, 2012) and
orthogonal matching pursuit (OMP) (ABDELHAFIZ et al., 2014), (TOSINA et al., 2015),
(YAO et al., 2014). In this thesis, firstly, the LASSO technique is applied to the WHFB
DPD model in chapter 6 and to pruned-Volterra models in chapter 7. In both cases, the
DPD performance of the sparse models is superior than with more traditional models,
such as the generalized memory polynomial (GMP) (MORGAN et al., 2006), for the same
running complexity. Moreover, this thesis proposes a block-wise modular structure for
the WHFB and pruned-Volterra models, which allows group LASSO techniques to be
applied to select the most relevant model blocks. Based on this, we propose the sparse
sizing of the models, i.e., setting appropriate values for the model parameters. Finally, also
based on group-wise LASSO, we propose an approximate technique in which, first, the
most relevant model blocks are selected, then, LASSO is run only over them, reducing the
model estimation cost.

1.3.2 PA LMM Compensation

A traditional way to prevent power reflections caused by LMM from reaching
the PA is to place an isolator at the PA’s output port that absorbs the reflected power.
This approach, however, is not power efficient and is very bulky for integrated trans-
mitters. One widely employed, hardware-based compensation technique uses a tunable
matching network (TMN) to adaptively adjust the PA load impedance (BEZOOIJEN;
MAHMOUDI; ROERMUND, 2011), employing switchable or tunable circuit elements
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such as micro-electromechanical systems (MEMS) components or switchable capacitors
(MINGO; CRESPO; VALDOVINOS, 2002), (FU; MORTAZAWI, 2008). Some other
hardware-based techniques have been proposed in the literature for compensating for PA
LMM. The technique presented in (BEZOOIJEN; MAHMOUDI; ROERMUND, 2005)
adaptively decreases the PA input power, depending on the measured output reflection
coefficient, i.e. applies a variable input power back-off (IBO) to avoid the output voltage
clipping. However, this technique also significantly reduces the transmitted power and the
PA power efficiency. In (KEERTI; PHAM, 2007), it was experimentally observed that the
PA distortion levels reached a minimum at a specific load impedance phase, thus, the
authors proposed an adaptive circuit that only adjusts the phase seen by the PA. Still some
other hardware-based compensation techniques employ adaptive analog pre-equalizers,
such as in (PAVAN; SHIVAPPA, 2006).

Although a TMN could be employed for the load impedance adjustment (JI; JEON;
KIM, 2015), (MINGO et al., 2004), some recent papers, as for example, (DHAR et al.,
2018), (DUNN et al., 2017), (CAI; GONÇALVES; PEDRO, 2017), suppress the TMN and
propose sophisticated load-aware DPD approaches, to be discussed in section 2.3. The main
advantages of the digital approach, comparing to TMN, are the cost, size and flexibility.
Furthermore, DPD can simultaneously account for RF and baseband load mismatch
(BRINKHOFF; PARKER; LEUNG, 2003) and extend the linear range of the PA. However,
the load-aware DPD approaches mentioned above require additional measurements, such
as the knowledge of the load reflection coefficient, are prone to numerical instabilities and
suffer from high estimation complexity (QI; BENEDIKT; TASKER, 2009), (ZARGAR;
BANAI; PEDRO, 2015a). This thesis proposes the WHFB model as a simplified DPD
behavioural model for LMM PAs. We justify this choice using the Volterra series analysis.
Also, the performance of the model is verified experimentally. Moreover, the implementation
of the proposed model is less complex than with DPD models for PA LMM proposed in
the literature and discussed in section 5.2.

1.3.3 IQM Imbalance Compensation

When applying DPD to compensate for NL PAs, one difficulty is that IQM im-
balance might compromise the performance of the DPD methods (DING et al., 2008),
(CAVERS, 1997), thus motivating the joint compensation of IQM and PA imperfections
(ANTTILA; HANDEL; VALKAMA, 2010), (KIM; JEONG; LEE, 2007). In fact, the sepa-
rate compensation of them is typically an inefficient solution, because both impairments
interact to each other. Furthermore, extra hardware, such as an additional coupler and
RF switch, is required to sample both the IQM and the PA output signals (ANTTILA;
VALKAMA; RENFORS, 2008b). (ANTTILA; HANDEL; VALKAMA, 2010) proposes the
joint compensation of wideband NL PA and frequency-dependent IQM imbalance, using the
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parallel Hammerstein DPD model, discussed in section 2.2, and simultaneously estimating
all the joint DPD model coefficients through least squares regression. In turn, (CAO et al.,
2008) uses the dual-input NL model based on two real-valued Volterra series models to
jointly compensate for the IQM imbalance and NL PA. However, the complexity of the
full-Volterra model limited the practical implementation of this proposal; in (SAFFAR et
al., 2013), the dual-input Volterra model is replaced by the dual-input memory polynomial
(MP) model. These models are presented and discussed in more details in the appendix A,
where we also extend the DPD behavioural model proposed for PA LMM for the joint and
simultaneous compensation of IQM imbalance and PA LMM.

1.4 THESIS CONTRIBUTIONS

The following are the main contributions of this thesis to the state-of-the-art PA
and DPD modelling:

• In chapter 4, two reduced-complexity representations of the baseband full-Volterra
model, using the PARAllel FACtors (PARAFAC) decomposition and the Laguerre
expansion, are discussed and compared. The corresponding Volterra-PARAFAC (VP)
and Laguerre-Volterra (LV) models are also compared to the WHFB and sparse
WHFB models, to be discussed in chapters 5 and 6, and to the pruned-Volterra
structure proposed in chapter 7.

• In chapter 5, the application of a physically-inspired pruned-Volterra model, namely,
the WHFB model (MKADEM et al., 2014), is proposed as a simplified DPD be-
havioural model for PAs subject to LMM. This chapter combines the behavioural
modelling approach with some prior knowledge about the operational/ environmental
conditions of the PA, as discussed therein, to derive a simplified DPD model that is
linear in the coefficients. The application of the WHFB DPD model for PA LMM is
justified using the Volterra series analysis in this chapter and is also experimentally
validated in chapter 6. Besides, the WHFB model is extended in the appendix A to
an unified approach that simultaneously compensates for IQM imbalance and PA
LMM, although it is not experimentally validated in this thesis.

• In chapter 6, the parsimonious, sparse estimation of the WHFB model is proposed,
using LASSO and group-wise LASSO techniques. This additional step of CS-based
unstructured pruning is able to further reduce the required number of degrees of
freedom of the model, thus reducing the DPD filter length and, proportionally, the
DPD running cost. This chapter also proposes a block-wise structure for the WHFB
model, enabling its sparse estimation in blocks using group-LASSO (KRONVALL et
al., 2016), (MEIER; GEER; BUHLMANN, 2008), (YUAN; LIN, 2006) and sparse-
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group LASSO (SIMON et al., 2013) to obtain the sparse sizing of the model. Finally,
this chapter also develops a simplified, approximate technique in which the most
relevant WHFB blocks are selected prior to the LASSO estimation, resulting in
lower estimation cost than with LASSO. The sparse WHFB model is compared to
its dense counterpart from chapter 5, as well as to the VP and LV models.

• Finally, in chapter 7, a Volterra pruning strategy is proposed that leads to a flexible
and modular memory polynomial, whose model parameters can be controlled indepen-
dently for each NL order, thus avoiding the curse of dimensionality, while exploring
higher polynomial dimensions than the MP and GMP models. The Group-wise
LASSO technique is then applied to select the most relevant regressor blocks in the
model and obtain its model sizing. This flexible approach is expected to accurately
describe a wide range of PA operational/ environmental conditions.

1.5 PUBLICATIONS

The following papers were published during the doctorate:

• C. S. Hemsi, C. M. Panazio, “Adaptive baseband frequency-equalization for RF
impedance matching correction”, IEEE International Symposium on Circuits and
Systems (ISCAS), May, 2017, Baltimore, MD, USA.

• C. S. Hemsi, C. M. Panazio, “Sparse Estimation Technique for Digital Pre-distortion
of Impedance-Mismatched Power Amplifiers” Circuits, Systems, and Signal Process-
ing, p. 1-29, 02-2021.

1.6 TEXT OUTLINE

The thesis is organized as follows. Chapter 2 presents state-of-the-art discrete-time
baseband models to describe the major sources of RF impairments and their digital
compensation. Chapter 3 introduces the figures of merit for evaluating the performance
of PA and DPD models, also presenting a brief simulation study and the experimental
test set-up employed in this thesis. Chapter 4 investigates the Volterra-PARAFAC and
Laguerre-Volterra techniques for reducing the complexity of the baseband FV model.
Chapter 5 proposes the use of the WHFB DPD model for PAs under LMM, including
an extension to the joint compensation of PA LMM and IQM imbalance in the appendix
A. In chapter 6, the WHFB model complexity is reduced using the parsimonious, sparse
estimation of the model coefficients through LASSO and block-wise LASSO. Finally, in
chapter 7, a flexible Volterra pruning technique is proposed and evaluated against other
Volterra-based models. Chapter 8 presents the conclusions and perspectives.
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2 SYSTEM MODEL

This chapter presents state-of-the-art discrete-time baseband models used in the
literature for describing major sources of RF analog impairments in wireless communi-
cations transmitters, including the NL PA with memory effects, the PA LMM and IQM
imbalance. In chapters 4 to 7, the models presented here are considered on the formulation
of DPD approaches. In the next sections, we present baseband models for NL PAs, PA
LMM and imbalanced IQMs.

2.1 BACKGROUND

Behavioural models (also known as black-box models) relate sampled input and
output signals extracted from the system to be modelled. One advantage of such models is
that they can be used for describing systems that are too complex for physical or circuit
level modelling. Theoretically, in low-power and/or narrowband wireless communications
systems, the PA output only depends on its instantaneous input signal, thus memoryless
black-box PA models provide a precise description. A PA is strictly memoryless (BOSCH;
GATTI, 1989), (RAICH; ZHOU, 2002), if it can be characterized by a real gain versus
the input signal level, i.e. the PA does not exhibit any frequency response or phase
variation inside its operating band. In practice, low-power and/or narrowband PAs are
quasi-memoryless (BOSCH; GATTI, 1989), (RAICH; ZHOU, 2002), i.e., characterized
by a complex gain versus the input signal level, or equivalently, by their amplitude-to-
amplitude (AM/AM) and amplitude-to-phase (AM/PM) conversion functions. Well known
quasi-memoryless PA models have been proposed for different types of PAs, e.g., the Saleh
model (SALEH, 1981), for travelling-wave tube amplifiers, the Rapp model (RAPP, 1991),
for solid state power amplifiers (SSPAs) and the Ghorbani model, for field-effect transistor
SSPAs (CRIPPS, 2006). As communications systems evolve towards wideband and/or
high-power, the PA models should include memory effects (KU; MCKINLEY; KENNEY,
2002), i.e. the PA output not only depends on the instantaneous input, but also on its
history. The so-called electrical memory effects are mainly attributed to the PA’s MN
and BN and their impedance variations over the baseband, fundamental and harmonic
frequency ranges. On the other hand, the thermal memory effects are mainly attributed
to temperature changes in the transistor junction, as a function of present and past
input signal levels (VUOLEVI; RAHKONEN, 2003). Memory effects are experimentally
observable as dispersion around the AM/AM and AM/PM curves.

In this work, we consider polynomial behavioural models based on the full-Volterra
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(FV) series, a very powerful modelling framework for NL systems with memory in general
(SCHETZEN, 2006). Although PAs are passband devices, low-pass equivalent (LPE)
polynomials, derived from the baseband version of the FV model, are widely used as
approximate models for PAs and DPD, due to major advantages comparing to passband
counterparts, as shown in the literature (NGOYA; MONS, 2014), (FEHRI; BOUMAIZA,
2014). The disadvantage of the FV series model is the large number of coefficients that
need to be estimated, making this model not very useful in many practical cases. To
overcome this problem, reduced complexity models are preferred, as discussed in (PEDRO;
MAAS, 2005), (ISAKSSON; WISELL; RONNOW, 2006) and (RAAB et al., 2002), such
as the memory polynomial (MP), (KIM; KONSTANTINOU, 2001), (DING et al., 2004),
where only the diagonal terms of the FV series model are kept, the generalized memory
polynomial (GMP) (MORGAN et al., 2006), where some cross-product terms of the
input samples are allowed, and block-oriented models, which represent the NL model by
interconnections of dynamic linear and static (memoryless) NL building blocks. The major
advantage of such models is that they are easy to implement and estimate, using linear
least squares.

Throughout this chapter, up to section 2.3, the PA notation is adopted for describing
the models, e.g., ŷ(n) = f {x̃(n), x̃(n− 1), . . . }, where x̃(n) and ŷ(n) are, respectively, the
PA input and modelled output signals. In section 2.4, the IQM notation is adopted, i.e.,
x̂(n) = f {s̃(n)}, where s̃(n) is the IQM input signal. Starting from section 2.5, the DPD
training notation is adopted, e.g., x̂(n) = f −1{ũ(n), ũ(n− 1), . . . }, where ũ(n) and x̂(n)
are, respectively, the DPD training input and modelled output signals; unless the contrary
is expressly stated.

2.2 VOLTERRA SERIES MODELS

This section presents the FV series model (SCHETZEN, 2006) and pruned-Volterra,
polynomial models with memory, developed in the literature, that are very useful for
wideband PA and DPD modelling. Major advantages of the Volterra-based polynomial
models, comparing to other modelling frameworks, are a solid theoretical foundation
and, in general, NL models that are linear in the parameters, thus allowing the model
coefficients to be recovered by ordinary least squares (OLS) estimation. Figure 2.1 shows
the direct-conversion transmitter block diagram, including the digital and analog signals
used on the model expressions.

The NL, time-invariant, passband FV series model, truncated to NL order K, is
given by a linear combination of NL, multidimensional basis functions:

(2.1)yRF (t) =
K∑
k=1

∫ ∞
−∞

. . .
∫ ∞
−∞

hk(τ1:k)
k∏
i=1

xRF (t− τi) dτ1 . . . dτk,
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Figure 2.1 – Block diagram of the TX for impairment modelling.

where xRF (t) is the RF input signal and hk(τ1:k), denoting (τ1:k) = (τ1, . . . , τk), is the
k-dimensional Volterra kernel.

2.2.1 Baseband Full-Volterra Models

The corresponding discrete-time baseband FV series model, truncated to memory
M + 1 and NL order K, is given by (FEHRI; BOUMAIZA, 2014) and references therein:

(2.2)
ŷFV (n) =

K∑
k=1
k odd

ỹk(n)

=
K∑
k=1
k odd

M∑
m1=0

. . .
M∑

mk=0
h̃k(m1:k)

k+1
2∏
i=1

x̃(n−mi)
k∏

i= k+3
2

x̃∗(n−mi),

where x̃(n) and ŷFV (n) are, respectively, the complex-valued, discrete-time, LPE PA input
and modelled output signals at sample n, (·)∗ is the conjugate operator, the time lags τi
in eq. (2.1) are replaced by the sample lags mi and h̃k(m1:k) is the kth-order full-Volterra
kernel, denoting (m1:k) = (m1, . . . ,mk). Note that the RF signals and their LPE complex
envelopes are related by xRF (t) = <{x̃(t)ejωct}, where ωc is the RF carrier frequency. In
LPE models, we are interested in frequency components close to ωc, implying that k is
odd, i.e., even-order NL kernels can be omitted (ISAKSSON; WISELL; RONNOW, 2006),
and the number of x̃ terms in eq. (2.2) differs from the number of x̃∗ terms by exactly
one. For example, for k = 3, eq. (2.2) is composed of the product of two x̃ terms and one
x̃∗ term. Also note that in LPE models, a sampling frequency equal to a multiple of the
envelope bandwidth is adopted (BONFIM; LIMA, 2016). Finally, note that a truncated
Volterra series (finite dimensional), such as in eq. (2.2), is obtained by limiting the infinite
Volterra series both up to NL order K and memory depthM+1 and assuming that beyond



16 Chapter 2. System Model

these limits the series is null. From the Stone–Weierstrass theorem (BISHOP, 1961) the
truncated Volterra model is able to approximate any continuous non-linearity, by choosing
appropriate values for K and M . The model output is linear in the parameters and its
total number of coefficients is given by:

(2.3)NFV =
K∑
k=1
k odd

(M + 1)k.

In eq. (2.2), the baseband Volterra kernels for k ≥ 3 present doubly-symmetry, i.e.,
all permutations of indexes in each of the products ∏ k+1

2
i=1 x̃(n−mi) and ∏k

i= k+3
2
x̃∗(n−mi)

correspond to the same polynomials. Let S k+1
2

be the finite group of permutations of k+1
2

elements. Then, if any arbitrary permutation π ∈ S k+1
2

is applied to the sample delays of
the non-conjugate terms in eq. (2.2), i.e., x̃(n −mi) → x̃(n −mπ(i)), the output signal
ŷFV (n) is unchanged. Likewise, the same applies for any arbitrary permutation π∗ ∈ S k−1

2

of the time delays of the conjugate terms. Thus, the triangular baseband Volterra model
(FV4), more economical in its number of coefficients, can be obtained by exploiting the
symmetry of the permutations and adjusting the sample delay indexes, as follows:

(2.4)
ŷFV4(n) =

K∑
k=1
k odd

M∑
m1=0

M∑
m2=m1

. . .
M∑

m k+1
2

=m k−1
2

. . .
M∑

m k+3
2

=0
. . .

M∑
mk=mk−1

h̃k,4(m1:k)

k+1
2∏
i=1

x̃(n−mi)
k∏

i= k+3
2

x̃∗(n−mi).

The kth-order triangular kernel h̃k,4(m1:k) in eq. (2.4) relates to the double-
symmetric kernel h̃k(m1:k) in eq. (2.2) by:

(2.5)h̃k,4(m1:k) = nπnπ∗h̃k(m1:k),

for m1 ≤ m2 ≤ . . . ≤ m k+1
2

and m k+3
2
≤ m k+5

2
≤ . . . ≤ mk, otherwise h̃k,4(m1:k) is

zero. In the expression, nπ and nπ∗ are the numbers of index permutations in the sets
{m1, . . . ,m k+1

2
} and {m k+3

2
, . . . ,mk}, respectively.

The number of model coefficients in the FV4 model reduces to:

(2.6)NFV4 =
K∑
k=1
k odd

(
M + k+1

2
k+1

2

)(
M + k−1

2
k−1

2

)
,

which still grows fast with the NL order and memory length.
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(a) Passband symmetry (b) Baseband doubly-symmetry

Figure 2.2 – 3rd-order full-Volterra triangular kernels.

Figure 2.2 shows the elements in the 3rd-order kernels of the passband and baseband
triangular Volterra models. The kernels are represented in a cubic space of the indexes m1,
m2 and m3 ranging from −5 to 5. The diagonal elements of each kernel (m1 = m2 = m3)
are highlighted in blue, whereas the remaining are in red. The symmetry in the passband
case implies that the 3rd-order triangular kernel elements are such that m1 ≤ m2 ≤ m3.
In the baseband case, the dual-symmetry only implies m1 ≤ m2, allowing all m3. The
distinct subsets of points in the cubic space illustrate the difference between symmetry
and doubly-symmetry in this context.

In (STAUDINGER; NANAN; WOOD, 2010), the modified triangular Volterra
(MV4) model is proposed, in which the memory depth for each NL order is chosen
independently. In this way, the model dimensionality can be controlled, by setting larger
memory spans for the lower non-linear orders of the model, as for example applied in
(ZENTENO et al., 2015). The MV4 model is given by:

(2.7)
ŷMV4(n) =

K∑
k=1
k odd

Mk∑
m1 =0

Mk∑
m2 =m1

. . .
Mk∑

m k+1
2

=m k−1
2

. . .
Mk∑

m k+3
2

=0
. . .

Mk∑
mk =mk−1

h̃k,4(m1:k)

k+1
2∏

i =1
x̃(n−mi)

k∏
i = k+3

2

x̃∗(n−mi),

where K is the NL order and Mk + 1 is the memory depth of the kth order polynomials
and also denoting (m1:k) = (m1, . . . ,mk). The required number of coefficients is given by:

(2.8)NMV4 =
K∑
k=1
k odd

(
Mk + k+1

2
k+1

2

)(
Mk + k−1

2
k−1

2

)
.
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However, the number of MV4 coefficients in eq. (2.8) is still given by a doubly-
combinatorial expression, resulting in large numbers of coefficients to be estimated and
high computational cost, as increase the NL order K and the memory depths in the set
{Mk}, k = 1, . . . , K.

2.2.2 Memory Polynomial Models

Compact versions of the FV models, with lower computational complexity, have
been widely applied to behavioural modelling and DPD. In this subsection, we present the
baseband MP (KIM; KONSTANTINOU, 2001), (DING et al., 2004), GMP (MORGAN
et al., 2006) and dynamic deviation reduction (DDR)(ZHU; DOOLEY; BRAZIL, 2006)
models, all of them are very well accepted reduced-complexity versions of the FV model.
The MP model corresponds to retaining only the diagonal terms of the Volterra model,
while ignoring the off-diagonal terms (PEDRO; MAAS, 2005), as follows:

ŷMP (n) =
M∑
m=0

K∑
k=1
k odd

αm,kx̃ (n−m) |x̃ (n−m)|k−1 , (2.9)

where x̃(n) and ŷMP (n) are, respectively, the discrete-time baseband PA input and
modelled output signals, M is the memory depth, K is the NL polynomial order and the
vector α is the model coefficients vector with size (M + 1)K+1

2 × 1. From eq. (2.9), the PA
coefficients vector has the following elements:

α =
[
α0,1 . . . α0,K . . . αM,1 . . . αM,K

]T
. (2.10)

Note that the baseband model in eq. (2.9) only considers the terms that model the
PA output at the fundamental frequency band (FEHRI; BOUMAIZA, 2014). As depicted
in Figure 2.3, the MP model can also be seen as the summation of memoryless polynomials
fm(n) = ∑K

k=1 αm,kx̃ (n−m) |x̃ (n−m)|k−1, where m = 0, . . . ,M is the sample delay, also
represented by z−1 (DING et al., 2004). Besides, the MP model structure corresponds to
the reduced parallel Hammerstein model, to be described in the next subsection.

In order to compute the MP model output signal, ŷMP (n), at sample n, we assemble
the vector of powered delayed input samples, x̃(n), as follows:
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x̃(n) =



x̃(n)
...

x̃(n) |x̃(n)|K−1

...
x̃(n−M)

...
x̃(n−M) |x̃(n−M)|K−1



T

, (2.11)

where (·)T is the transpose operator, M is the memory depth, K is the NL order and
the vector x̃(n) has size 1× (M + 1)K+1

2 . Thus, given the PA coefficients vector α, the
modelled output signal is calculated as:

ŷMP (n) = x̃(n)α. (2.12)

Alternatively, the MP model coefficients can be identified by OLS from a batch of N
samples of the PA input and output signals. First, the regression matrix of the measured
PA input samples is assembled, for n = 0, . . . , N − 1, as follows:

X̃ =


x̃(0)
...

x̃(N − 1)

 , (2.13)

where x̃(n) is a row vector defined by eq.(2.11) and the matrix X̃ has size N× (M+1)K+1
2 .

Each column of X̃ is a regressor of the model.

Also, the measured PA output samples are collected in the following vector:

(2.14)ỹ =


ỹ(0)
...

ỹ(N − 1)

.

The OLS estimation of the coefficients is performed by minimizing the cost function
J(α) that is the mean squared error ẽ of approximating the observed PA output signal ỹ
by the modelled output signal ŷMP = X̃α, for N samples, as defined below:

(2.15)J(α) =
N−1∑
n=0
|ẽ(n)|2

= ‖ỹ − ŷMP‖2
2

= ‖ỹ − X̃α‖2
2,
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where ‖·‖2 is the Euclidean `2 norm. Then, the OLS solution is given by:

α̂ = (X̃HX̃)−1X̃H ỹ, (2.16)

where (·)H denotes the complex conjugate transpose, α̂ is the estimated coefficients vector
and X̃† = (X̃HX̃)−1X̃H is the Moore-Penrose pseudo-inverse of the matrix X̃, assuming
X̃HX̃ is invertible. This is discussed in more details in section 2.6.

In the GMP model (MORGAN et al., 2006), some cross-product terms of the signal
and lagging/leading even-order envelope powers from the FV model are preserved, as
follows:

(2.17)

ŷGMP (n) =
M1∑
m=0

K1∑
k=1
k odd

α
(1)
m,kx̃ (n−m) |x̃ (n−m)|k−1

+
M2∑
m=0

K2∑
k=3
k odd

L2∑
l=1

α
(2)
m,k,lx̃ (n−m) |x̃ (n−m− l)|k−1

+
M3∑
m=0

K3∑
k=3
k odd

L3∑
l=1

α
(3)
m,k,lx̃ (n−m) |x̃ (n−m+ l)|k−1 ,

where parameters M1 and K1 are, respectively, the memory depth and power order of
the terms between signal and aligned powered envelope, M2, L2 and K2 are, respectively,
the memory depth, envelope time-shift and power order for the terms between signal
and lagging powered envelope and M3, L3 and K3 are, respectively, the memory depth,
envelope time-shift and power order for the terms between signal and leading powered
envelope. Note that the GMP model reduces to the MP when the cross-terms are discarded.

In the DDR model (ZHU; DOOLEY; BRAZIL, 2006), (ZHU; PEDRO; BRAZIL,
2006), first, the passband FV model is separated into its static and dynamic parts, as

∑K
k=1

k odd
α0kx̃(n) |x̃(n)|k−1

∑K
k=1

k odd
α1kx̃(n− 1) |x̃(n− 1)|k−1

z−1

z−1

∑K
k=1

k odd
αMkx̃(n−M) |x̃(n−M)|k−1

x̃(n)

ŷMP (n)

...

Figure 2.3 – PA baseband MP model.
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follows:

ŷRF (n) = y
(S)
RF (n) + y

(D)
RF (n) =

K∑
k=1
k odd

hkx
k
RF (n) +

K∑
k=1
k odd

k∑
r=1

xk−rRF (n)
M∑

m1=1
. . .

M∑
mr=mr−1

hk,r(m1:r)

r∏
i=1

xRF (n−mi),

(2.18)

where y(S)
RF (n) and y(D)

RF (n) are, respectively, the static and dynamic model polynomials.
Next, assuming that the dynamic effects tend to fade with increasing NL orders, the
higher orders of dynamics are removed from the model (ZHU; PEDRO; BRAZIL, 2006).
Therefore, the pruned-Volterra DDR model is obtained by limiting r on the y(D)

RF (n) term.
In LPE notation, the first order DDR model (r = 1) is given by:

(2.19)

ŷDDR−1(n) =
K∑
k=1
k odd

M∑
m =0

α
(1)
k (m)x̃(n−m)|x̃(n)|k−1 +

K∑
k=3
k odd

M∑
m=1

α
(2)
k (m)x̃2(n−m)x̃∗(n−m)|x̃(n)|k−3.

Even more sophisticated PA models have been proposed by pruning the FV model,
such as in (CHEANG; MAK; MARTINS, 2018), (LANDIN et al., 2015), (DU et al.,
2013), (RAHATI; MOTAMEDI; SHARIFIAN, 2017), (PEDRO; MAAS, 2005). One such
approach, block-oriented models, is described next.

2.2.3 Block-oriented Models

Block-oriented NL models are constructed by the series, parallel and feedback
interconnections of two basic building blocks: a dynamic linear time-invariant (LTI) block

Dynamic
Linear

Static
Nonlinear

Wiener Hammerstein

Wiener-
Hammerstein

Dynamic
Linear

Figure 2.4 – PA Baseband block-oriented models.
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and a static (memoryless) non-linear (SNL) block. The series (or cascade) Wiener and
Hammerstein models are the simplest structures (PEDRO; MAAS, 2005), (ISAKSSON;
WISELL; RONNOW, 2006). A Wiener model is composed of the cascade connection of an
LTI block followed by an SNL block, as in Figure 2.4, and describes memory effects at the
input of a NL system. Popular choices are power series for the SNL block and digital filters,
mostly finite impulse response (FIR) filters, for the LTI block. Similarly, a Hammerstein
model is composed of the cascade connection of an SNL block followed by an LTI block
(also in Figure 2.4) and describes memory effects at the output of the system. The parallel
Wiener and parallel Hammerstein models are obtained by connecting, respectively, several
Wiener and Hammerstein branches in parallel.

The Wiener series model is described by the cascade connection of the two subsys-
tems below:

(2.20)w̃(n) =
M∑
m=0

g̃W (m)x̃ (n−m) ,

where g̃W (0), . . . , g̃W (M) are the the impulse response coefficients of the LTI subsystem,
and

(2.21)ŷ(n) =
K∑
k=1
k odd

αkw̃(n) |w̃(n)|k−1 ,

where x̃(n), w̃(n) and ŷ(n) are, respectively, the discrete-time baseband input, intermediate
and modelled output signals of the Wiener series model and αk are the memoryless non-
linearity coefficients. Note that the chosen non-linear expression includes only odd-order
NL terms, known to be largely responsible for in-band and adjacent channel distortions
(ISAKSSON; WISELL; RONNOW, 2006). The resulting expression is given by:

ŷW (n) =
K∑
k=1
k odd

αk
M∑
m=0

g̃W (m)x̃ (n−m)
∣∣∣∣∣
M∑
m=0

g̃W (m)x̃ (n−m)
∣∣∣∣∣
k−1

, (2.22)

where the powered term above is equivalent to:
∣∣∣∣∣
M∑
m=0

g̃W (m)x̃ (n−m)
∣∣∣∣∣
k−1

≡

∣∣∣∣∣∣
M∑

m1=0
. . .

M∑
mk−1=0

g̃W (m1) . . . g̃W (mk−1)x̃ (n−m1) . . . x̃ (n−mk−1)
∣∣∣∣∣∣ .

(2.23)

The Wiener model is a special case of the Volterra model, in which:

(2.24)h̃k(m1:k) = αk
k∏
i=1
k odd

g̃W (mi),
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where each mi = 0, . . . ,M . Note that this model depends non-linearly on the coefficients
g̃W .

In the parallel Wiener model, the overall output is the sum of the parallel outputs,
resulting in:

ŷPW (n) =
P∑
p=1

{ K∑
k=1
k odd

α
(p)
k

Mp∑
m=0

g̃
(p)
W (m)x̃ (n−m)

∣∣∣∣∣∣
Mp∑
m=0

g̃
(p)
W (m)x̃ (n−m)

∣∣∣∣∣∣
k−1 }

, (2.25)

where P is the number of distinct branches. The parallel Wiener model is a special case of
the Volterra model, in which: h̃k(m1:k) = ∑P

p=1 α
(p)
k

∏k
i=1
k odd

g̃
(p)
W (mi).

Likewise, the Hammerstein model is described by the cascade connection of the
two subsystems below:

(2.26)w̃(n) =
K∑
k=1
k odd

αkx̃(n) |x̃(n)|k−1 ,

where αk are the memoryless non-linearity coefficients, and

(2.27)ŷ(n) =
M∑
m=0

g̃H(m)w̃ (n−m) ,

where x̃(n), w̃(n) and ŷ(n) are, respectively, the discrete-time baseband input, intermediate
and modelled output signals of the Hammerstein series model and g̃H(0), . . . , g̃H(M) are
the the impulse response coefficients of the LTI subsystem. The resulting expression is
given by:

ŷH (n) =
M∑
m=0

g̃H(m)
K∑
k=1
k odd

αkx̃ (n−m) |x̃ (n−m)|k−1 . (2.28)

The Hammerstein model is a special case of the Volterra model, in which:

h̃k(m1:k) =

αkg̃H(m), if m1 = m2 =, . . . ,= mk = m,

0, otherwise.
(2.29)

In this case, only the diagonal elements of the Volterra kernels are non-zero.

In the parallel Hammerstein (PH) model, the overall output is the sum of the
parallel outputs, resulting in:

ŷPH (n) =
P∑
p=1

{ Mp∑
m=0

g̃
(p)
H (m)

K∑
k=1
k odd

α
(p)
k x̃ (n−m) |x̃ (n−m)|k−1

}
, (2.30)
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where P is the number of distinct branches. The parallel Hammerstein model is a special
case of the Volterra model, in which: h̃k(m1:k) = ∑P

p=1 α
(p)
k g̃

(p)
H (m), if m1 = m2 =, . . . ,=

mk = m and zero, otherwise.

To avoid any redundancy that results from considering all NL orders in each of the
branches, a reduced parallel Hammerstein model can be also defined by:

ŷPH (n) =
K∑
k=1
k odd

Mk∑
m=0

αkg̃
(k)
H (m)x̃ (n−m) |x̃ (n−m)|k−1 , (2.31)

i.e., in this case the (k+1
2 )th-branch only has the kth-order non-linearity and the model is

linear in the coefficients αkg̃(k)
H (m), for m = 0, . . . ,Mk.

Another common block structure is the Wiener-Hammerstein (LTI-SNL-LTI), whose
model output is given by:

ŷWH (n) =
Mg∑
l=0

g̃H(l)
K∑
k=1
k odd

αk

Mh∑
m=0

g̃W (m)x̃ (n−m− l)
∣∣∣∣∣∣
Mh∑
m=0

g̃W (m)x̃ (n−m− l)
∣∣∣∣∣∣
k−1

.

(2.32)

The Wiener-Hammerstein model is a special case of the Volterra model with:

h̃k(m1:k) = αk

Mg∑
l=0

g̃H(l)
k∏
k=1
k odd

g̃W (mi − l). (2.33)

2.2.4 The Wiener-Hammerstein with Feedback (WHFB) Model

Finally, another way to increase the model capabilities is by introducing feedback
to the block-oriented model structure, as in the physically-inspired feedback topology
proposed in (PEDRO; CARVALHO; LAVRADOR, 2003), (ZHU; PEDRO; CUNHA, 2007).
The Wiener-Hammerstein with feedback (WHFB) model, developed in (MKADEM et
al., 2014), is obtained by simplifying the feedback structure presented in Figure 2.5. In
the figure, the discrete-time low-pass equivalent model is composed of two FIR filters in
series with the static (memoryless) NL block and a feedback FIR filter around the NL
block. The two FIR filters in series model the linear memory effects, whereas the feedback
FIR filter models nonlinear memory effects. The simplification adopted in the following
model development is proposed by (MKADEM et al., 2014) and leads to the simplified
block diagram shown in Figure 2.6. Comparing to the MP and GMP models, the WHFB
includes important interactions of the input signal, envelope powers and lagging/leading
envelope powers that are based on physical characteristics of the PA.
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Dynamic
Linear

Static
Nonlinear

Dynamic
Linear

Dynamic
Linear

x̃(n) ŷ(n)w̃(n)

Figure 2.5 – PA baseband WHFB model.

Memory
Polynomial

Dynamic
Linear

x̃(n) ŷ(n)w̃(n)

f {·}

Figure 2.6 – PA simplified baseband WHFB model.

Thus, we define the transistor polynomial dynamic non-linearity, f {·}, based on
the MP model, as:

f {w̃(n)} =
M∑
m=0

K∑
k=1
k odd

αm,kw̃
k (n−m) , (2.34)

where M + 1 and K are the transistor block memory depth and NL order and α is the
MP model coefficients vector. From Figure 2.6, the output signal ỹ(n) can be expressed as:

ỹ(n) = f
{
x̃(n) +

L∑
l=1

γ̃(l)ỹ (n− l)
}
, (2.35)

where γ̃(l) is the impulse response of the FIR filter that models the feedback mechanism,
whose length is L. Notice that the summation terms in eq. (2.35) are output samples
passing through the feedback block i.e., being transferred back to input. These output
samples are then remixed with input samples in the transistor’s NL block.

Thus, the output signal ỹ(n) can be written as:

(2.36)ỹ (n) =
M∑
m=0

K∑
k=1
k odd

αm,k

(
x̃(n−m) +

L∑
l=1

γ̃(l)ỹ (n−m− l)
)k
.

Firstly, in order to simplify this equation, we approximate the reflected (delayed)
output signal terms γ̃(l)ỹ (n−m− l). Using eqs. (2.34) and (2.35), we express the term
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γ̃(l0)ỹ (n− j0) for any particular delay index j0 = m0 + l0, such that 0 ≤ m0 ≤ M and
1 ≤ l0 ≤ L, as:

(2.37)
γ̃(l0)ỹ (n− j0) =

M∑
m=0

K∑
k=1
k odd

αm,kγ̃(l0)
(
x̃(n− j0 −m) +

L∑
l=1

γ̃(l)ỹ (n− j0 −m− l)
)k
.

In eq. (2.37), all the terms containing γ̃i(l) for i = 2, . . . , k represent multiple cycles
through the feedback path and are assumed negligible for power orders higher than one,
since |γ̃(l)| < 1, for l = 1, . . . , L, given that the LTI filter emulates a passive network.
Thus, such terms can be omitted from eq. (2.37), which simplifies to:

(2.38)γ̃(l0)ỹ (n− j0) ≈ γ̃(l0)
M∑
m=0

K∑
k=1
k odd

αm,kx̃
k(n− j0 −m)

= γ̃(l0)f
{
x̃(n− j0)

}
.

Next, in order to simplify eq. (2.36), we develop the following binomial expansion,
using the result from eq. (2.38):

(
x̃(n−m) +

L∑
l=1

γ̃(l)ỹ (n−m− l)
)k

=
k∑
i=0

(
k

i

)
x̃k−i(n−m)(

L∑
l=1

γ̃(l)f {x̃(n−m− l)})i

= x̃k(n−m) + (k − 1)x̃k−1(n−m)
L∑
l=1

γ̃(l)f {x̃(n−m− l)}

+
k∑
i=2

(
k

i

)
x̃k−i(n−m)(

L∑
l=1

γ̃(l)f {x̃(n−m− l)})i,

(2.39)

where the terms containing γ̃i(l) are assumed as negligible for i = 2, . . . , q. Thus, eq. (2.36)
can be simplified to:

ỹ(n) ≈
M∑
m=0

K∑
k=1
k odd

α
(1)
m,kx̃

k(n−m) +
M∑
m=0

K∑
k=1
k odd

(k− 1)α(2)
m,kx̃

k−1(n−m)
L∑
l=1

γ̃(l)f {x̃(n−m− l)}.

(2.40)

Eq. (2.40) can also be written as:
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(2.41)

ỹ(n) ≈
M∑
m=0

K∑
k=1
k odd

α
(1)
m,kx̃

k(n−m)

+
M∑

m1=0

K∑
k1=1
k1 odd

(k1 − 1)α(2,1)
m1,k1x̃

k1−1(n−m1)
L∑
l=1

γ̃(l)
M∑

m2=0

K∑
k2=1
k2 odd

α
(2,2)
m2,k2

x̃k2(n−m1 −m2 − l).

By limiting the cross-term memory span to L, removing redundant cross-terms
and limiting the NL order, eq. (2.41) simplifies to:

(2.42)ỹ(n) =
M∑
m=0

K∑
k=1
k odd

α
(1)
m,kx̃

k(n−m) +
M∑
m=0

K∑
k=1
k odd

L∑
l=1

Q∑
q=1
q odd

(k − 1)α(2,1)
m,k α

(2,2)
m,q γ̃(l)x̃k(n−m)

x̃q(n−m− l).

Finally, we keep only terms that contribute to the in-band (fundamental) response
(LIMA; CUNHA; PEDRO, 2011) and collect the parameters into the coefficients vectors
α(1), α(2) and α(3). The resulting discrete-time baseband WHFB expression is given by:

ŷWHFB (n) =
M1∑
m=0

K1∑
k=1
k odd

α
(1)
m,kx̃ (n−m) |x̃ (n−m)|k−1 +

M2∑
m=0

L2∑
l=1

K2∑
k=1
k odd

Q2∑
q=2
q even

α
(2)
m,l,k,qx̃ (n−m)

|x̃ (n−m)|k−1 |x̃ (n−m− l)|q +
M3∑
m=0

L3∑
l=1

K3∑
k=0
k even

Q3∑
q=1
q odd

α
(3)
m,l,k,qx̃ (n−m− l)

|x̃ (n−m− l)|q−1 |x̃ (n−m)|k ,
(2.43)

where ŷWHFB(n) is the modelled baseband PA output signal, x̃(n) is the input PA signal,
parameters M1 and K1 are, respectively, memory depth and power order for the terms in
the first summation. M2, L2, K2 and Q2 are, respectively, the memory depth, envelope
time-shift, aligned envelope power order and time-shifted envelope power order for the
terms in the second summation. M3, L3, K3 and Q3 are, respectively, the memory depth,
envelope time-shift, time-shifted envelope power order and aligned envelope power order
for the terms in the third summation. α(1), α(2) and α(3) are the PA model coefficients
vectors. Note that a similar model is also derived in (BONFIM; LIMA, 2016).

2.2.5 Discussion

NL PA and DPD models based on the FV4 model in eq. (2.4) require a large
number of coefficients to be estimated. In reality, practical PA and DPD systems can be
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described by only a subset of the Volterra regressors (ENZINGER, 2018), (TOSINA et
al., 2015). However, choosing the pruned-Volterra structure that accurately describes an
unknown PA or DPD is not an easy problem. There is no guarantee that any of the memory
polynomial or block-oriented alternatives presented in section 2.2 accurately models an
unknown NL system, especially when no physical knowledge is available (ISAKSSON;
WISELL; RONNOW, 2006). In addition, several other models have also been proposed,
each taking into account some additional non-linearities (GHANNOUCHI; HAMMI, 2009),
(CRESPO-CADENAS et al., 2010). In fact, the search for the best regression basis set
is a combinatorial optimization task. This is the major disadvantage of models such as
the MP, GMP and DDR, compared to those developed based on physical knowledge of a
specific system. In contrast, models that take into account physical knowledge of the PA,
such as the operating/ environmental conditions, are difficult to obtain, more complex
and less general (ISAKSSON; WISELL; RONNOW, 2006).

Sections 2.3 and 2.4 present pruned-Volterra models developed in the literature
specifically for the PA LMM and IQ imbalance conditions, respectively.

2.3 PA LMM MODELS

As described in (PEDRO; MAAS, 2005), (SCHREURS et al., 2008), the PA’s
transistor generates at its output an amplified version of the input signal that contains NL
distortions whose spectra spans from baseband to harmonics of the operating frequency.
The MN and BN placed at the PA output, as shown in Figure 2.7, are designed to provide
an appropriate impedance termination for each component of the output signal at the
envelope, fundamental and harmonic frequency bands. At the fundamental band, deviations
on the load impedance produce a non-constant frequency response of the output MN,
which causes frequency-dependent gain and phase responses, i.e., memory effects. At the
baseband and harmonic bands, MN and BN not properly terminated due to deviations
in the load impedance, DC supply voltage, temperature and other operating conditions,
such as the instantaneous power and frequency (CRIPPS, 2006) contribute to NL memory
effects. In both cases, distortion terms of the output signal not properly terminated reflect
back and remix with the input signal inside the transistor, increasing the transistor memory
effects (VUOLEVI; RAHKONEN, 2003), (CARVALHO; PEDRO, 2002), (MAZIERE et
al., 2005), (NIELSEN et al., 2005), (MESSAOUDI et al., 2007), (ZHU; PEDRO; CUNHA,
2007), (LANDIN; BENGTSSON; ISAKSSON, 2009), (ZENTENO; ISAKSSON; HANDEL,
2015). The increased memory effects caused by LMM were experimentally verified by
(WILLIAMS; LECKEY; TASKER, 2002), (CABRAL; PEDRO; CARVALHO, 2006) and
others. The BN impedance mismatch (CARVALHO; PEDRO, 2000) also manifests as
asymmetry between the two sides of the 3rd order intermodulation distortion (IMD)
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spectrum, as experimentally verified in (BOSCH; GATTI, 1989), (SEVIC; BURGER;
STEER, 1998). Several works have concluded that the MN and BN frequency dependencies
are the main sources of gain and phase non-linearities and electrical memory effects in
PAs (PEDRO; MAAS, 2005).

The major load impedance dependent PA models proposed in the literature can be
grouped into:

• Physically-inspired models, such as in (LANDIN et al., 2015), (PEDRO; CARVALHO;
LAVRADOR, 2003), (ZHU; PEDRO; CUNHA, 2007).

• Models based on non-linear vector network analyzer (NVNA) measurements, such
as X-Parameters (VERSPECHT et al., 2005), (SIMPSON et al., 2008), S-functions
(VERBEYST; BOSSCHE, 2005), the Cardiff (WOODINGTON et al., 2008) models
and load-pull models (PEDRO; NUNES; CABRAL, 2015).

• Double input double output (DIDO) behavioural models that rely on measuring the
transmitted and reflected signals at both PA ports, such as in (CAI; GONÇALVES;
PEDRO, 2017), (ZARGAR; BANAI; PEDRO, 2015b), (GIBIINO et al., 2018). When
the PA is not perfectly matched at the output port due to small deviations in the
load impedance, there are reflections at the baseband, fundamental and harmonics
back into the PA, as shown in Figure 2.8. A general DIDO model is proposed in
(ZARGAR; BANAI; PEDRO, 2015b):

Bias circuit

Input
Matching
Network Nonlinear Transistor

Supply voltage

Output
Matching
Network

Load Antenna

PA
Output
signalPA

Input
signal

Figure 2.7 – Simplified PA block-diagram.
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Bias circuit

Input
Matching
Network Nonlinear Transistor

Supply voltage

Output
Matching
Network

Load
x̃1(n)

ỹ1(n)

ŷ2(n)

x̃2(n)
Source

Γ

Figure 2.8 – Simplified PA block-diagram with DIDO signals.

(2.44)
ŷ2 (n) =

K∑
k=1
k odd

M∑
m=0

k+1
2∑

p=0

k−1
2∑

q=0
αkpq,mx̃

k+1
2 −p

1 (n−m) x̃∗
k−1

2 −q

1 (n−m)

x̃p2 (n−m) x̃∗q2 (n−m) ,

where K is odd, x̃1(n) is the input signal, x̃2(n) is the reflected signal at the output
port, ỹ1(n) is the reflected signal at the input port and ỹ2(n) is the output signal.
This formulation considers k+1

2 products of the complex envelope signals times k−1
2

products of the complex conjugate of the same signals. In the DIDO approach, the
reflected signal x̃2(n) is considered as important as the input signal, x̃1(n), increasing
the model capabilities, but at the expense of a high complexity that increases fast
with the NL order and memory depth.

• PHD-based behavioural models, such as in (FAGER et al., 2014), (CAI; GONÇALVES;
PEDRO, 2017). The PHD assumes that the reflections are small enough, such that
their contributions appear only as linear perturbations. The dual-PHD model pro-
posed in (FAGER et al., 2014), considering only odd-order terms, is given by:
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ŷ2 (n) =
M1∑
m=0

K1∑
k=1
k odd

α
(1)
m,kx̃1 (n−m) |x̃1 (n−m)|k−1

+
M2∑
m2=0

M1∑
m1=0

K2∑
k=1
k odd

α
(2)
m1,m2,kx̃2 (n−m2) |x̃1 (n−m1)|k−1

+
M2∑
m2=0

M1∑
m1=0

K2−2∑
k=1
k odd

α
(3)
m1,m2,kx̃

2
1 (n−m1) x̃∗2 (n−m2) |x̃1 (n−m1)|k−1 .

(2.45)

Note that only the first order of x̃2(n) is included. To overcome this limitation, a
so-called dual-PHD model is also proposed in (CAI; GONÇALVES; PEDRO, 2017):

ŷ2 (n) =
M1∑
m=0

K1∑
k=1
k odd

α
(1)
m,kx̃1 (n−m) |x̃1 (n−m)|k−1

+
M2∑
m2=0

M1∑
m1=0

K2∑
k=1
k odd

α
(2)
m1,m2,kx̃2 (n−m2) |x̃1 (n−m1)|k−1

+
M2∑
m2=0

M1∑
m1=0

K2−2∑
k=1
k odd

α
(3)
m1,m2,kx̃

2
1 (n−m1) x̃∗2 (n−m2) |x̃1 (n−m1)|k−1

+
M2∑
m2=0

M1∑
m1=0

K2−2∑
k=1
k odd

α
(4)
m1,m2,kx̃

∗
1 (n−m1) x̃2

2 (n−m2) |x̃1 (n−m1)|k−1

+
M2∑
m2=0

M1∑
m1=0

K2−2∑
k=1
k odd

α
(5)
m1,m2,kx̃1 (n−m1) |x̃2 (n−m2)|2 |x̃1 (n−m1)|k−1

+
M2∑
m2=0

M1∑
m1=0

K2−4∑
k=1
k odd

α
(6)
m1,m2,kx̃

∗2

2 (n−m2) x̃3
1 (n−m1) |x̃1 (n−m1)|k−1 .

(2.46)

Comparing to the DIDO model in eq. (2.44), the dual-PHD model suppresses the
terms of x̃2(n) whose NL orders are higher than two, thus reducing the model
complexity.

• Load-dependent behavioural models, such as in (CAI et al., 2015), (DHAR et al.,
2018), (DUNN et al., 2017), in which the model coefficients are parametrized by the
complex-valued load reflection coefficient, Γ. In such models, the model coefficients
are previously estimated for a batch of Γ values, then are interpolated during the
DPD training phase, based on the reflection coefficient that is actually measured at
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the PA/ antenna interface. In (DHAR et al., 2018), the model is given by:

ŷ2 (n,Γ) =
M2∑
m2=0

M1∑
m1=0

K1∑
k=1
k odd

α
(1)
m1,m2,k(Γ)x̃1 (n−m1) |x̃1 (n−m1)|

k−1
2 |x̃2 (n−m2)|

k−1
2

+
M2∑
m2=0

M1∑
m1=0

K2∑
k=1
k odd

α
(2)
m1,m2,k(Γ)x̃2 (n−m2) |x̃1 (n−m1)|

k−1
2

|x̃2 (n−m2)|
k−1

2 ,
(2.47)

where x̃1(n) and x̃2(n) are, respectively, the PA input signal and the reflected signal
at the PA output. α(1)

m1,m2,k(Γ) and α
(2)
m1,m2,k(Γ) are the interpolated Γ-dependent

coefficients.

Alternatively, (DUNN et al., 2017) proposed a load-dependent model that includes a
polynomial expression of Γ in the model, as follows:

ŷ2 (n,Γ) =
M∑
m=0

K∑
k=1
k odd

Q∑
q=0

αm,k,qx̃1 (n−m) |x̃1 (n−m)|k−1 Γ |Γ|q , (2.48)

where αm,k,q are the model coefficients, Γ is the measured reflection coefficient and
Q+ 1 is the order of the load impedance mismatch dependency.

2.4 IQM IMBALANCE MODELS

In the frequency-independent IQM imbalance case, the LO is the main responsible
for the IQM imbalance. The LO imbalance model takes the I branch LO signal as the
reference and models the Q branch LO signal with deviations in amplitude µ and phase ρ
(in radians) from its nominal values. The IQM RF bandpass output signal is given by:

(2.49)x̂RF (t) = s̃I(t) cos(2πf0t)− µs̃Q(t) sin(2πf0t− ρ)
= [s̃I(t) + µ sin(ρ)s̃Q(t)] cos(2πf0t)− µ cos(ρ)s̃Q(t) sin(2πf0t),

where x̂RF (t) is the bandpass IQM output signal at RF center frequency f0, s̃I(t) and
s̃Q(t) are, respectively, the real and imaginary parts of the IQM complex-valued baseband
input signal, µ and ρ are, respectively, the LO amplitude and phase deviations. In complex
baseband, the equivalent IQM output signal, x̂(t), has real and imaginary parts given by:

(2.50)x̂I(t) = s̃I(t) + µ sin(ρ)s̃Q(t),



2.4. IQM Imbalance Models 33

and
(2.51)x̂Q(t) = −µ cos(ρ)s̃Q(t).

Alternatively, the IQM baseband output signal can be written in terms of the input
complex baseband signal and its complex conjugate, as:

(2.52)x̂(t) = 1 + µejρ

2 s̃(t) + 1− µejρ
2 s̃∗(t),

where s̃(t) and x̂(t) are, respectively, the IQM complex baseband input and modelled
output signals and (·)∗ is the complex conjugate operator. Since the spectrum of s̃∗(t) is a
conjugated and mirrored-image version of the spectrum of s̃(t), eq. (2.52) explicitly shows
that IQM imbalance adds mirror-image interference to the original complex-valued signal
(VALKAMA, 2010), (ANTTILA; VALKAMA; RENFORS, 2008b).

In wideband applications, the IQM imbalance model should also include frequency-
dependent effects, i.e., the imbalance between the frequency responses of LPFs and mixers
on the I and Q branches. The IQM RF bandpass output signal is then given by:

(2.53)x̂RF (t) = s̃I(t) cos(2πf0t)− µs̃Q(t) ∗ h̃(t) sin(2πf0t− ρ)
= [s̃I(t) + µ sin(ρ)s̃Q(t) ∗ h̃(t)] cos(2πf0t)− µ cos(ρ)s̃Q(t) ∗ h̃(t) sin(2πf0t),

where x̂RF (t) is the bandpass IQM output signal at RF frequency f0, s̃I(t) and s̃Q(t) are,
respectively, the real and imaginary parts of the IQM complex-valued baseband input
signal, ∗ is the convolution operator and h̃(t) is the impulse response of the baseband filter
that models the frequency-dependent IQM imbalance between I and Q paths. In this case,
the equivalent complex baseband IQM output signal, x̂(t), can be written in terms of the
baseband input signal, h̃(t), and its complex conjugate, as:

(2.54)x̂(t) = δ(t) + h̃(t)µejρ
2 ∗ s̃(t) + δ(t)− h̃(t)µejρ

2 ∗ s̃∗(t),

where s̃(t) and x̂(t) are, respectively, the IQM complex baseband input and modelled
output signals, δ(t) is the Dirac delta function, ∗ is the convolution operator and (·)∗

is the complex conjugate operator. Figure 2.9 represents the frequency-dependent IQM
imbalance in eq. (2.54) with h̃1(t) = δ(t)+h̃(t)µejρ

2 and h̃2(t) = δ(t)−h̃(t)µejρ
2 .

Equation (2.54) captures the widely-linear mechanism of IQM imbalance and can
also be equivalently represented by Figure 2.10 (ANTTILA; HANDEL; VALKAMA, 2010).
This symmetrical discrete-time baseband IQM imbalance model has four finite impulse
response (FIR) filters to model the IQ impairments in the general frequency-dependent
case (SAFFAR et al., 2013), (DING et al., 2003), (DING et al., 2008).
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s̃(t)

(·)∗

x̂(t)
h̃1(t)

h̃2(t)

Figure 2.9 – IQM imbalance model with two complex filters.
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Figure 2.10 – IQM imbalance model with four real filters.

In Figure 2.10, the FIR filters h̃II , h̃IQ, h̃QI and h̃QQ are linear time-invariant
(LTI) with real-valued coefficients and memory length L, scaling and delaying the I and
Q components of the complex baseband input signal. In order to compute the modelled
output signal x̂(n) at sample n, we collect the vectors of delayed input samples, s̃I(n) and
s̃Q(n) that are given by:

s̃I(n) =


<{s̃(n)}

...
<{s̃(n− L)}


T

(2.55)

and

s̃Q(n) =


={s̃(n)}

...
={s̃(n− L)}


T

, (2.56)

where (·)T is the transpose operator and L is the length of the FIR filters h̃II , h̃IQ, h̃QI
and h̃QQ. The modelled output complex baseband signal at time instant n can be written
as:

(2.57)x̂(n) = s̃I(n)h̃II + s̃Q(n)h̃IQ + j{s̃Q(n)h̃QQ + s̃I(n)h̃QI},

where h̃II , h̃IQ, h̃QI and h̃QQ are column vectors, x̂(n) is the modelled IQM output signal
at time instant n, s̃I(n) and s̃Q(n) are, respectively, the real and imaginary parts of the
input vector with length L. Equivalently, by representing the four FIR filters by two
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complex filters:
h̃I = h̃II + jh̃QI (2.58)

and
h̃Q = h̃IQ + jh̃QQ. (2.59)

Finally, eq. (2.57) can also be expressed as:

(2.60)x̂(n) = s̃I(n)h̃I + s̃Q(n)h̃Q.

In the frequency-independent case, the h̃I and h̃Q filters are reduced to complex scalars,
corresponding to amplitude and phase imbalances between the LO signals in the I and Q
branches.

2.5 DPD LEARNING ARCHITECTURES

Having introduced a number of PA models, the next objective is to apply these
models to DPD. As shown in (SCHETZEN, 2006), inverse models can also be implemented
using the same structures presented in the previous sections. Therefore, DPD models in
this thesis are also based on the Volterra series models. DPD is one of the most cost-
effective techniques for improving the performance of NL PAs, by both enhancing its
linearity and enabling its operation at higher power levels. Significant improvements have
been achieved, (KIM; KONSTANTINOU, 2001), (MORGAN et al., 2006), (DING et al.,
2004), (LEE; FIGUEIREDO, 2006), including for mobile device PAs (PRESTI; KIMBALL;
ASBECK, 2012), (NORRIS et al., 2007). Moreover, DPD is entirely implemented in the
digital baseband domain, being more flexible and robust than hardware compensation
counterparts. The DPD predistorter is the functional block that precedes the PA in the
forward path and, typically, produces an expanding NL output, assuming that the PA
has an amplitude compressing behaviour. During the DPD training phase, in which the
DPD model is estimated, the predistorter is bypassed and the PA input and output
signals are measured, down-converted and converted to the discrete domain, if required.
Two different schemes exist for estimating the DPD inverse model coefficients, namely,
the direct and the indirect learning architectures, as shown in Figures 2.11 and 2.12,
respectively. The DPD model is estimated using N samples of the discrete-time baseband
signals x̃ = {x̃(n)}N−1

n=0 and ũ = {ũ(n)}N−1
n=0 , respectively the PA input and normalized

output signals, i.e., ũ = ỹ/
√
G and G is the PA intended linear power gain.

In the direct learning architecture (DLA), firstly the coefficients of the PA NL
model are estimated from measured PA input/output data; next, an approximate inverse
model is derived for the DPD, using the pth-order inverse technique (SCHETZEN, 2006), as
shown in the DLA block diagram in Figure 2.11. During the training phase, the coefficients
of the PA model are estimated using the (undistorted) input signal x̃(n) as the model
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Figure 2.11 – DLA DPD block-diagram.
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ẽ(n)
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Figure 2.12 – ILA DPD block-diagram.

input and minimizing the error between the modelled output û(n) and the PA normalized
output signal ũ(n), in the least squares sense. Next, the pth-order inverse technique is
used to invert the estimated model. Since this step is not always accurate and is highly
demanding in terms of computational cost, the DLA becomes unattractive for wideband
applications.

In turn, in the indirect learning architecture (ILA) (EUN; POWERS, 1997), a post-
distorter NL model, placed after the PA, is estimated directly, bypassing the predistorter,
by inverting the roles of the PA input and output signals. Then, the estimated postdistorter
inverse model is copied to the DPD predistorter block (SCHETZEN, 2006). Figure 2.12
shows a simplified block diagram of the ILA DPD scheme, including the signals considered
for the DPD formulation. During the training phase, the NL PA is fed with the original
(undistorted) input signal, i.e., x̃(n) = z̃(n). The DPD training phase is carried out by
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the blocks in the feedback path, responsible for estimating/updating the inverse model
coefficients, using the PA normalized output ũ(n) as the post-inverse input and minimizing
the error ẽ(n) between the modelled post-inverse output x̂(n) and the (undistorted) PA
input signal x̃(n). The inverse model is typically linear with respect to the coefficients,
thus linear least squares is employed, either using a batch of input/output samples, as
detailed in the next section, or adaptively. Once the post-inverse coefficients have been
estimated and the training phase is complete, the estimated coefficients are copied to the
predistorter block in the forward path and the DPD system is run in open loop.

DPD PA

DPD
Training

1
G

PA

PA
input signal PA output

signal

linearized PA
output signal

normalized PA
output signal

DPD training
output signal

(ILA)

Figure 2.13 – Equivalence of the DPD training and linearized PA output signals.

Comparing to the DLA, the main advantage of the ILA is to avoid the explicit
inversion of the PA model (DING et al., 2002), i.e., the DPD coefficients are extracted
directly. Therefore, ILA DPD is more popular due to its estimation simplicity and lower
computational complexity. Nevertheless, the ILA approach assumes that the estimated
post-inverse and the pre-inverse models (EUN; POWERS, 1997) are equivalent, which
allows the DPD (predistorter) to be a copy of the estimated DPD training postdistorter.
In this thesis, the identification of the DPD coefficients is performed through the ILA
approach, assuming a perfect feedback path (DING et al., 2002). In this case, as shown in
Figure 2.13, the DPD training output signal, in the feedback path, and the linearized PA
output signal (normalized) are equal, both correspond to the PA output signal compensated
for PA non-linearities and memory effects.
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2.6 LEAST SQUARES ESTIMATION

The terms estimation and identification are used in general for the task of obtaining
the kernels or coefficients of a model from measured input/output data. The behavioural
modelling of a dynamic NL system consists, first, in selecting an appropriate model
structure to describe the system, then, setting the model parameters, e.g., memory depth
and NL order, and, finally, applying an identification method to estimate the model
coefficients, by processing noisy input/output data from measurements. Volterra-based
models are widely used in various fields of applications for representing dynamic NL systems
and their coefficients can be identified using various methods. This section presents the
OLS estimation technique. In chapter 4, non-linear extensions of the OLS estimation
are required for the estimation of Volterra-PARAFAC and Laguerre-Volterra models. In
chapter 6, CS-based least squares techniques are employed in the context of sparse models.

Recalling from the previous section, under the ILA framework shown in Figure 2.12,
the DPD training block estimates the DPD model coefficients directly by interchanging
the roles of the measured, length N , PA input x̃ = {x̃(n)}N−1

n=0 and normalized output
ũ = {ũ(n)}N−1

n=0 signals (NGOYA; MONS, 2014).

Let us consider the baseband FV4 model in eq. (2.4) as the DPD model, with
parameters M and K. Given measured input/output training data {ũ, x̃}N−1

n=0 , the N ×R
regression matrix of the model is composed of the regressors φr, with r = 1, . . . , R, i.e.,
polynomial functions of the input signal, as follows:

(2.61)Φ(ũ) = {φr(ũ)}Rr=1

where φr ∈ C(N×1) are polynomial regressors and R, the number of regressors in the
model. In practice, the triangular Volterra regression matrix Φ can be computed using
the truncated Kronecker operator (FERNANDES; MOTA; FAVIER, 2010) and (FAVIER;
KIBANGOU; CAMPELLO, 2003), as follows. Firstly, the regression matrix is expressed
as the concatenation of the sub-matrices Φ(k), for k = 1, . . . , K (k odd):

(2.62)Φ =
[
Φ(1) Φ(3) . . . Φ(k) . . . Φ(K)

]
,

where the kth-order sub-matrix Φ(k) is expressed as:

Φ(k) =


φ(k)(0)

...
φ(k)(N − 1)

 . (2.63)

The row vectors φ(k)(n) in eq. (2.63), for n = 0, . . . , N − 1, i.e., the rows of the
sub-matrix Φ(k), can be computed as:
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(2.64)φ(k)(n) = (� k+1
2 ũ(n))⊗ (� k−1

2 ũ∗(n)),

where ⊗ is the Kronecker product and �q is the qth-order truncated Kronecker product,
such that �qũ(n) ≡ ũ(n)� . . .� ũ(n)︸ ︷︷ ︸

q

, that is obtained recursively, as follows:

(2.65)�qũ(n) =


ũ(n)�q−1 ũ(n)

ũ(n− 1)�q−1 ũ(n− 1)
...

ũ(n−M)�q−1 ũ(n−M)


with �1ũ(n) = ũ(n) and:

(2.66)ũ(n− i) =[
ũ(n− i) ũ(n− i− 1) . . . ũ(n−M)

]
.

The Kronecker products are also described in the Appendix A. Note that in eq.(2.64)
any redundant cross-terms are suppressed.

The triangular Volterra models are linear with respect to the coefficients; thus, the
unknown model coefficients can be found by solving a system of linear equations:

(2.67)x̃ = Φβ + ε,

where the R × 1 coefficients vector β corresponds to the Volterra kernels h̃k,4(m1:k),
stacked for k = 1, 3, . . . , K, and x̃ is the N × 1 vector of measured DPD reference outputs.
As discussed above, the regression matrix Φ is composed of the sub-matrices Φ(k), with
k = 1, 3, . . . , K, whose columns are the kth-order model-specific regressors (also known as
features or predictors) computed using ũ, the input signal (explanatory or independent
variable). The vector ε accounts for un-modelled contributions and additive white Gaussian
(AWG) measurement noise.

Linear regression techniques allow to express the output of the model x̂ (also known
as response, or dependent variable), as a linear combination of polynomial functions of the
input signal. The linear combination is learnt from the training data, parametrized by a
vector of coefficients β ∈ CR×1 (sometimes, also an intercept β0) and is used for accurately
predicting future outputs.

In order to find the coefficients vector β, the OLS batch estimator can be formulated
as the following optimization problem:

β̂OLS = arg min
β∈CR×1

1
2NRSS(β) = arg min

β∈CR×1

1
2N ‖x̃−Φβ‖2

2, (2.68)
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where the cost function RSS is the residual sum of squares, given by RSS(β) = ‖x̃−Φβ‖2
2,

whose squared Euclidean norm is minimized between the noisy x̃ and Φβ. Differentiating
(x̃ − Φβ)H(x̃ − Φβ) with respect to β and equating to zero, leads to the well-known
normal equations:

ΦHΦβ = ΦHx̃. (2.69)

Note that, under the assumption of AWG output error, it can be proved that the OLS
estimate is equal to the maximum likelihood estimate and that the OLS estimate is
unbiased.

Considering the existence and uniqueness of solutions for Φβ = x̃:

• A unique solution exists if rank(Φ) = rank(Φ|x̃) = R, where the augmented matrix
(Φ|x̃) is obtained by appending the column vector x̃ to the matrix Φ. This means
that both Φ is full column rank and x̃ ∈ colspace(Φ) (x̃ is in the span of the
columns of Φ). In this case, the least squares solution for each x̃ is exact and
given by β̂OLS = (ΦHΦ)−1ΦHx̃, where ΦHΦ is non-singular. The Moore-Penrose
pseudo-inverse of Φ is defined as Φ† = (ΦHΦ)−1ΦH and, when Φ is square (N = R)
and invertible (det(Φ) 6= 0), Φ† = Φ−1 (Φ−1 is the inverse matrix of Φ). Note
that in practice Φ† is computed using either the QR factorization or singular value
decomposition (SVD).

• Infinitely many solutions exist if rank(Φ) = rank(Φ|x̃) < R, i.e., the number of
coefficients is larger than the rank of the matrix. In this case, Φ is rank-deficient
and, if Φ is a square matrix, it is singular. Most likely, Φ is a short and wide matrix
(N < R), the system is under-determined (or over-complete), ΦHΦ is singular and
the problem is ill-posed. This means that the N×1 measurement vector x̃ is unable to
uniquely determine the higher-dimensional R× 1 vector β and the under-determined
system is likely to have infinitely many solutions β̂ for each x̃. Considering that
x̃ ∈ colspace(Φ), among an infinite number of exact least squares solutions, often the
minimum `2-norm of β solution is chosen. The minimum ‖β‖2

2 least squares solution
(exact) is given by: β̂LN = ΦH(ΦΦH)−1x̃ and is always unique. Note that, in this
case, ΦΦH is non-singular. Alternatively, one can search for sparse solutions for the
system, in many cases the sparse solution is unique, as discussed latter.

• No exact solution exists if the system of equations is inconsistent , i.e., rank(Φ) <
rank(Φ|x̃), corresponding to x̃ /∈ colspace(Φ). Most likely, Φ is a tall and thin matrix
(N > R), the system is over-determined and ΦHΦ is non-singular. This way, there are
too many measurements in the N × 1 vector x̃ to determine a solution for the given
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R×1 vector β and the over-determined system is likely to have no exact solution. An
inconsistent system of equations also arises due to the noisy or stochastic nature of
measured data x̃. If the system is over-determined, the least squares (approximate)
solution is given by the orthogonal projection of the higher dimensional x̃ into the
lower dimensional column space of Φ, i.e., Φβ̂ = projcolspace(Φ)x̃ and corresponds to
β̂OLS = (ΦHΦ)−1ΦHx̃ for each x̃.

In practice, however, as the model dimensions increase, frequently the problems
above become ill-posed, due to the high correlation among the columns of the rank-deficient
regression matrix Φ and given that rank(ΦHΦ) = rank(ΦΦH) = rank(Φ). In this case, the
accuracy and stability of the estimation is compromised, as indicated by the exponential
growth of the condition number cond(Φ), i.e., the ratio of largest to smallest singular values
of Φ (RAICH; QIAN; ZHOU, 2004). The concept of regularization has been introduced
by Tikhonov to stabilize ill-posed problems (FRANKLIN, 1974), leading to the ridge
regression estimation, as follows:

minimize
β∈CR×1

1
2N ‖x̃−Φβ‖2

2 subject to ‖β‖2
2 ≤ t, (2.70)

where ‖β‖2
2 = ∑R

i=1|βi|2. Without loss of generality, assume that the matrix Φ is stan-
dardized, such that each of its columns φj is centered, i.e., 1

N

∑N
i=1(φj)i = 0 and nor-

malized, i.e., 1
N
φHj φj = 1, for all j = 1, . . . , R. Also x̃ is centered, i.e., 1

N

∑N
i=1 x̃i = 0.

In this case the cost function is the penalized residual sum of squares (PRSS), given by
PRSS(β) = ‖Φβ − x̃‖2

2 + λ‖β‖2
2, leading to the following closed-form solution:

(2.71)β̂RR(λ) = (ΦHΦ + λIR)−1ΦHx̃

= ΦH(ΦΦH + λIN)−1x̃,

where λ ≥ 0 is the tuning or regularization parameter that controls the shrinkage of
coefficients. In this case, the biased estimator β̂RR allows the OLS variance to be reduced,
often achieving better prediction accuracy. Also note that both regularized matrices
(ΦHΦ + λIR) and (ΦΦH + λIN ) are non-singular. Note that the ridge regression does not
shrink any of the coefficients to zero and, hence, does not generate sparse solutions.

2.7 CONCLUSIONS

This chapter presented several state-of-the-art Volterra-based models from the liter-
ature for modelling and compensating for RF analog impairments in wireless transmitters.
Firstly, the FV, triangular FV and MV models were introduced, then reduced-complexity
models obtained in the literature by imposing pruning strategies to the FV series were
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also discussed. In the next chapters, these models are applied in the context of DPD as
benchmarks for the ones to be derived in the thesis.
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3 EXPERIMENTAL TEST SET-UP AND
PRELIMINARY STUDY

In this chapter, the experimental test set-up used in this thesis for the experimental
validation of the proposed DPD models and estimation techniques is presented. Moreover,
the figures of merit considered for evaluating the performance achieved by each of the
proposed techniques are defined. Finally, this chapter also presents a preliminary simulation
study, in which RF impairments and their compensation are modelled and simulated, and
the corresponding figures of merit are evaluated.

The identification and experimental validation of behavioural models for PAs and
DPD depend on the availability of high-quality data. Captured datasets must provide a
highly dynamic description of the PA signals over the whole operating bandwidth, in order
to allow the DPD training phase to be completed satisfactorily.

As discussed in (FAVIER, 2010), Figure 3.1 illustrates the behavioural modelling
methodology, consisting of an experimental test set-up that enables the extraction of
input-output (I/O) data from the non-linear system, followed by the choice of the model
structure, often based on try-and-error or a priori information about the system, then the
sizing of model parameters and the estimation of the model coefficients. After choosing a
set of candidate DPD models and sizing the corresponding model parameters, the DPD
training block, responsible for identification, estimates the coefficients of each model from
training data. Next, the best among the candidate models is chosen, based on information
criteria, such as the Akaike’s information criterion (AIC), or cross-validation, as discussed
in subsection 6.1.4. The predictive performance of the model is accessed using new measured
data, i.e., not used to build any of the models. Deciding which DPD behavioural model to
use implies a compromise among different aspects, such as model accuracy, DPD running
cost and estimation complexity. Note that this procedure is generally iterative, i.e., the
sub-problems in the figure are iteratively addressed, with the need to revise some choices
until the procedure is complete.
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Figure 3.1 – Overview of behavioural system modelling.

3.1 EXPERIMENTAL TEST SET-UP

On the experimental phase, to validate the proposed DPD estimation techniques,
a 10 W Gallium Arsenide (GaAs) metal–semiconductor field-effect transistor (MESFET)
RF PA with 44 dB of nominal (linear) gain, designed at LME/EPUSP, is measured in
Class AB configuration, with the test set-up shown in Figures 3.2 and 3.3. As detailed in
the block diagram in Figure 3.3, an N5182B (MXG) vector signal generator from Keysight
Technologies is used to synthesize, at the carrier frequency of 5.9 GHz, the PA input signal
for this experiment, an orthogonal frequency division multiplexing (OFDM) waveform with
1,024 sub-carriers modulated with 64-quadrature amplitude modulation (64-QAM) and
total bandwidth of 20 MHz. An 8045D load tuner from Maury Microwaves is used to vary
the load impedance at the PA output, causing reflections back to the (isolator-free) PA
output port. Load impedance values are manually adjusted at the 8045D to obtain VSWR
of 4:1, a typical value considered in (BEZOOIJEN; MAHMOUDI; ROERMUND, 2011)
and (ZARGAR; BANAI; PEDRO, 2015b). The complex impedance values are confirmed
using a network analyzer. Table 3.1 summarizes the test set-up parameters. An N9020B
(MXA) vector signal analyzer from Keysight Technologies is used to digitize and capture
the complex I/Q data streams of the PA input and output waveforms. Both the MXG and
MXA are connected to the PC via LAN. DPD training is processed off-line by MATLAB
running in the PC.
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Table 3.1 – Test set-up parameters.

PA

Transistor: GaAs MESFET
Biasing: Class AB

Max. power: 10 W
Lin. gain: 44 dB

Center frequency: 5.9 GHz

VSWR: 1:1 (Matched)
4:1 (Mismatched)

Input signal

Waveform: OFDM
Sub-carriers: 1024

Modulation format: 64-QAM
Bandwidth: 20MHz

Input power: -8 dBm

Figure 3.2 – Picture of test set-up during experimental measurements.

For each of the behavioural models and estimation techniques in this thesis, the
experimental PA input and output signals, captured with the test set-up described above,
are processed by the ILA DPD training block implemented in MATLAB. Following the
ILA approach, the feedback path composed by the “PA” and “DPD training” blocks
is equivalent to the forward path (“DPD” and “PA” blocks) (EUN; POWERS, 1997).
Therefore, after completing the steps in Figure 3.1, the DPD training output signal and
the linearized PA output signal (normalized) are equal, as shown in Figure 2.13.

In order to choose the input signal power level for the validation of the DPD
techniques, firstly, the PA was driven with modulated input signal at four average power
levels, Pin(Avg) = −17, −12, −8 and −5 dBm and the corresponding PA output complex
envelopes were captured with the PA load impedance matched. The AM-AM and AM-PM
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Figure 3.3 – Block diagram of the experimental test set-up.

plots were obtained by comparing the amplitudes and phases of the PA input and output
waveforms on a sample-by-sample basis. Note that to compare the PA input and output
data, proper time alignment between the waveforms is required. In Fig. 3.4a, the AM/AM
plot shows that the PA output levels increase linearly with the input signal voltage until
the PA reaches its gain compression region, where the output signal level saturates and
only slightly increases with the input. This effect is observed specially for input powers
of Pin(Avg) = −8 and −5 dBm, as shown in the figure. For input powers of −17 and
−12 dBm, the PA is not in the non-linear region and very limited amplitude distortions
occur, only at the extreme peak envelope excursions. In Fig. 3.4b, the AM/PM plot shows
that the PA insertion phase remains constant until the PA reaches gain compression,
where phase distortion is observable, specially for Pin(Avg) = −8 and −5 dBm. In both
figures, the dispersion of the AM/AM and AM/PM data points is caused by PA memory
effects. The PA increasingly exhibits non-linear behaviour and memory effects, as the
input average power level increases and, based on these results, the OFDM input signal
is set to average power Pin(Avg) = −8 dBm. This power level is able to drive the PA
into non-linear operation and cause spectral regrowth and distortion and is chosen for
both matched and mismatched conditions. Next, Figs. 3.5 and 3.6 illustrate, respectively,
the PA gain versus the instantaneous input signal power and the power spectral density
(PSD), for the average power levels of the input signal defined above. These figures also
validate the choice of the input average power level for evaluating PA non-linear behaviour
compensation techniques.

For Pin(Avg) = −8 dBm, the input and output signals are digitized, captured
and processed off-line by the DPD training function in MATLAB. The ability of the
behavioural models and estimation techniques to compensate for spectral regrowth and
distortion is evaluated by computing the DPD training output signal, as discussed in
section 2.5, and the figures of merit discussed in the next section.
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(a) AM/AM (b) AM/PM

Figure 3.4 – PA measurements versus Pin(Avg) (AM/AM and AM/PM).

Figure 3.5 – PA measurements versus Pin(Avg) (gain).



48 Chapter 3. Experimental Test Set-up and Preliminary Study

Figure 3.6 – Spectral regrowth versus Pin(Avg).
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3.2 FIGURES OF MERIT

The following figures of merit are required for evaluating the DPD performance.

The linearization accuracy evaluates how close the inverse model modelled and
measured output signals are, being computed by the normalized mean square error (NMSE),
in dB, given as follows:

(3.1)NMSE(dB) = 10 log ‖x̃− x̂‖
2
2

‖x̂‖2
2

,

where x̂(n) and x̃(n) are, respectively, the modelled and the measured output signals.

The out-of-band DPD performance is evaluated by the adjacent channel power
ratio (ACPR), which is defined, in the frequency domain, as follows:

(3.2)ACPR(dBc) = max
i=1,2

{
10 log

∫
(adj)i PSD(ω)dω∫
ch. PSD(ω)dω

}
,

where PSD(ω) is the power spectral density of the DPD training output signal x̂(n) and
ch. and (adj.)i correspond to, respectively, the central and the (lower and upper) adjacent
channels.

The in-band performance after demodulation is addressed by the error-vector
magnitude (EVM), which is calculated in percentage by the following expression:

(3.3)EVMRMS(%) =

√√√√ 1
N

∑N
n=1 (Ĩ2

err(n) + Q̃2
err(n))

1
N

∑N
n=1 (Ĩ2

ref (n) + Q̃2
ref (n))

× 100%,

where N is the sample size, Ĩerr(n) = Ĩref (n)− Ĩmea(n) and Q̃err(n) = Q̃ref (n)− Q̃mea(n).
The signals Ĩref (n) and Q̃ref (n) are, respectively, the I and Q components of the nth refer-
ence (ideal) symbol and Ĩmea(n) and Q̃mea(n) are, respectively, the I and Q components
of the nth measured (received) symbol.

In eq. (3.5), the NMSE does not take into account the number of coefficients required
in the model, i.e., its running complexity. When the intention is to compare distinct models
that fit a measured dataset, it is desirable to consider not only the performance, but
also the running cost (in terms of number of coefficients), in this case, a mean squared
error criterion that adds a penalty term can be used, e.g. Akaike’s information criterion
(AIC)(AKAIKE, 1974):

(3.4)AIC = N ln
(‖x̃− x̂‖2

2
N

)
+ 2‖β̂‖0,
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where β̂ is the candidate model coefficients vector and ‖·‖0 is the `0 norm of the vector.
The AIC is a widely used selection criterion for choosing the best among several competing
models, not only by its fitting capability, but also based on the number of model parameters
required. Note that the AIC trades-off between the residual sum-of-squares and the number
of estimated coefficients (BANKS; JOYNER, 2017). As the model accuracy increases, the
logarithmic term becomes more negative.

3.3 PRELIMINARY SIMULATION STUDY

The objective of this preliminary simulation study is to briefly illustrate the impacts
of some major sources of RF impairments on the TX output signal, then address their
compensation by running the PA and DPD models described hereafter. MATLAB is used
to implement the block diagrams in Figures 1.1 and 1.2, as well as the input signal with
16-QAM modulation and the RF impairments described below. The simulated PA in this
study is described by the well-known MP model, with odd-order terms, as given in eq.
(2.9). The MP model parameters are NL order K = 5, memory depth M = 2 and model
coefficients provided in (DING et al., 2004) and (RAICH; ZHOU, 2002), as follows:

(3.5)

c10 = 1.0513 + 0.0904j c30 = −0.0542− 0.2900j
c50 = −0.9657− 0.7028j c11 = −0.0680− 0.0023j
c31 = 0.2234 + 0.2317j c51 = −0.2451− 0.3735j
c12 = 0.0289− 0.0054j c32 = −0.0621− 0.0932j
c52 = 0.1229 + 0.1508j

Figure 3.7 shows the PSD plots of the PA input and output signals, highlighting
the spectral regrowth on the adjacent channels, due to the PA NL distortions. Figure 3.8
shows the 16-QAM constellation diagram at the output of the NL PA, where we observe
the amplitude compression of some demodulated symbols, specially those with larger
amplitudes. This is caused by the PA gain saturation and deteriorates the TX modulation
quality. In the plot, the red circles denote the ideal symbol grid.

Additionally, the IQM imbalance is included in the simulation, by extending the MP
model with the inclusion of an IQM imbalance filter (CRIPPS, 2006). Figure 3.9 illustrates
the impact of IQM imbalance on the constellation diagram at the IQM output, considering
the frequency-independent and frequency-dependent cases. In the frequency-dependent
case, the memory effects are observable as dispersion around each symbol.

Finally, PA LMM is also included in the simulation, by adding a feedback FIR
filter around the MP model, to describe in a simplified the reflections of the output signal
(CRIPPS, 2006). The next figures present the simulated BER vs. SNR curves, obtained for
the system under AWGN channel and PA NL, IQM imbalance and PA LMM impairments.
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Figure 3.7 – Simulation of PA input and output signals.

(a) Ideal TX (b) NL PA

Figure 3.8 – Simulation of constellation diagram at PA output.

Using the extended MP models above, Figures 3.10 and 3.11 show the impact, respectively,
of a frequency-dependent IQM imbalance and of PA LMM. We observe from Figures 3.10
and 3.11 that, at low SNR, the system performance is dominated by the channel noise
level. As the SNR increases, RF impairments contribute more significantly to degradation
of BER, becoming the dominant factors at high SNR levels. Note that, due to the NL PA,
the system BER improves more slowly with the signal power increase, because the PA
becomes more NL.

Next, we apply the DPD technique to compensate for the RF impairments. First,
the MP model is employed with parameters K = 5 and M = 3 and its coefficients are
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(a) Frequency-independent imbalance (b) Frequency-dependent imbalance

Figure 3.9 – Simulation of constellation diagram at IQM output.

estimated using OLS during the DPD training phase, as presented in section 2.6. We
observe that the MP model is able to adequately compensate for the NL PA, but its
performance drastically deteriorates in the presence of PA LMM or IQM imbalance, as
shown in Figures 3.10 and 3.11. Finally, a more sophisticated DPD model, the dual-input
MP in eq. (A.2), to be discussed in the appendix A, with parameters K = 5 and M = 3, is
able to jointly compensate for the NL PA and IQM imbalance, as shown in Figure 3.12. We
conclude from these results that specialized models are required for the joint compensation
of NL PA, IQM imbalance and/or PA LMM distortions, as will be discussed in the thesis.
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Figure 3.10 – Simulated BER vs. SNR with PA NL and IQM imbalance.

Figure 3.11 – Simulated BER vs. SNR with PA NL and LMM.
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Figure 3.12 – Simulated residual spectral regrowth with NL PA and IQM imbalance.

3.4 CONCLUSIONS

This chapter presented the experimental test set-up used for the validation of the
proposed DPD models and estimation techniques in this thesis. In addition, the figures of
merit that used throughout this work were also defined. Finally, this chapter provided a
preliminary simulation study to illustrate the detrimental impact of PA LMM and IQM
imbalance on the performance of conventional DPD models, such as the MP, both in terms
of simulated ACPR and BER.
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4 VOLTERRA-PARAFAC AND LAGUERRE-
VOLTERRA TECHNIQUES

The triangular FV model in eq. (2.4) requires a large number of coefficients to be
estimated, being avoided in practice. In turn, as discussed in subsection 2.2.5, pruned-
Volterra models have the disadvantage of not guaranteeing that a given structure is a good
choice for an unknown PA or DPD, especially when physical knowledge is not available
(ISAKSSON; WISELL; RONNOW, 2006). This is the motivation of this chapter, that is, to
investigate alternative techniques proposed in the literature that avoid a priori prunning
the Volterra model, but are able to reduce the complexity of the original model. The
PARAFAC decomposition and the Laguerre expansion are the focus of this chapter, leading
to the reduced complexity Volterra-PARAFAC (VP) and Laguerre-Volterra (LV) models,
whose performances are then compared to those of the FV models. Also, in chapters 6 and
7, the VP and LV models are compared to the WHFB, sparse WHFB and the proposed
pruned-Volterra models.

Sections 4.1 and 4.2 address, respectively, the doubly symmetric PARAFAC decom-
position of Volterra kernels (BOUILLOC; FAVIER, 2012) and (CRESPO-CADENAS et
al., 2014) and the expansion of Volterra kernels using Laguerre orthonormal basis functions
(OLIVEIRA et al., 2011), (OLIVEIRA et al., 2012). The resulting VP and LV models are
both capable of significantly reduce the complexity of the Volterra models, as analysed in
section 4.3.

4.1 VOLTERRA-PARAFAC TECHNIQUE

This section investigates a new class of baseband Volterra models, developed in
(BOUILLOC; FAVIER, 2012) and (CRESPO-CADENAS et al., 2014), called baseband
Volterra–PARAFAC models, obtained using a doubly symmetric PARAFAC decomposition
of high order Volterra kernels, treated as tensors. In order to explain how the VP technique
works, first, we have to review, in the following subsection, a few concepts.

4.1.1 Tensor Definitions

A tensor is a multidimensional array. The number of ways or modes is called
the order of a tensor. For example, a matrix is a tensor of order two. Tensors of or-
der three or greater are called higher-order tensors. Let n1 × n2 × . . . × nm denote the
size of an m-way tensor. The tensor is cubic if all the modes have the same size, i.e.,
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n = n1 = n2 = · · · = nm and n is said to be the tensor dimension. Thus, the order of a
tensor refers to the number of indices, while the dimension of a tensor, to the maximal
value of each index. A tensor is symmetric if its elements do not change under any per-
mutation of the indices. For example, a cubic three-way tensor X ∈ Rn×n×n is symmetric
if xijk = xikj = xjik = xjki = xkij = xkji,∀i, j, k = 1, . . . , n. The fibers of a tensor result
from holding all but one index constant. In the mode-i fiber, i refers to the index that
is not held constant. For a 3rd-order tensor, the three possible fibers are X (ij·), X (i · k)
and X (·jk). Tensors can be partially symmetric, for example, a cubic three-way tensor
X ∈ Rn×n×n is symmetric in modes one and two if xijk = xjik, ∀i, j, k = 1, . . . , n. The
rank of a tensor is defined as the minimal number of rank-one tensors that approximately
generates the tensor as their sum. These definitions are explored in the next subsection.

4.1.2 PARAFAC Decomposition

In the PARAFAC decomposition (KOLDA; BADER, 2009), (MARTÍ; BALDRICH,
2015), the general kth-order tensor H is approximately decomposed into a sum of R
rank-one tensors, i.e., a sum of R outer products of k vectors:

(4.1)H =
R∑
r=1

λra(1),r ◦ a(2),r ◦ . . . ◦ a(k),r + ε,

where a(i),r is the rth-column of the factor matrix A(i), λr are scalar weights, ◦ is the
vector outer product and ε are residuals. The minimal R required in eq. (4.1) that allows
ε to be neglected is called the rank of H.

Assuming the scalars λr can be absorbed into the vectors and neglecting ε, a
3rd-order tensor H3 of rank R3 is decomposed into a sum of R3 rank-one tensors:

(4.2)H(3) =
R3∑
r=1
ar ◦ br ◦ cr,

where A , B and C are the factor matrices. Note that in the element-wise notation, the
PARAFAC decomposition can be given as:

(4.3)h
(3)
ijk =

R3∑
r=1

airbjrckr

and, equivalently, in the matricized format, as:
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H(1) =A(C �B)T , (4.4a)
H(2) =B(C �A)T , (4.4b)
H(3) =C(B �A)T , (4.4c)

where H(i), with i = 1, 2, 3, is the mode-i matricization of the tensor H(3) and � is the
Khatri-Rao product (KOLDA; BADER, 2009), which is defined below. Matricization is the
process of reordering the elements of a tensor into a matrix. The mode-i matricization of
a tensor H ∈ RI1×...×IN is denoted by H(i) and arranges the mode-i fibers as the columns
of the resulting matrix. The Khatri-Rao (column-wise Kronecker) product of matrices
A ∈ RI×K and B ∈ RJ×K is given by the matrix of size IJ ×K:

(4.5)A�B =
[
a1 ⊗ b1 a2 ⊗ b2 . . . aL ⊗ bL

]
,

where A and B have the same number of columns, al and bl (1 ≤ l ≤ L) denote the
lth columns of A and B, respectively. The Khatri-Rao product of A and B can also be
expressed as:

(4.6)A�B =


B diag1(A)

...
B diagL(A)

 ,

where diagl(A) denotes the diagonal matrix formed from the lth row of A.

4.1.3 Baseband Volterra-PARAFAC Model

The tensor decomposition of complex-valued baseband Volterra kernels was first
investigated in (KIBANGOU; FAVIER, 2008). In the triangular baseband Volterra model,
each kth-order kernel is represented as a kth-order tensor H ∈ C(M+1)×...×(M+1), symmetric
both with respect to the first k+1

2 indices and to the last k−1
2 ones as well, thus doubly-

symmetric.

From (BOUILLOC; FAVIER, 2012), each doubly-symmetric tensor can be decom-
posed into two factor matrices of size (M + 1) × Rk, where Rk denotes the rank of the
kth-order tensor. Using this property, we have that the baseband Volterra-PARAFAC DPD
model for each NL order is given by a sum of rank-1 tensors, as follows:

(4.7)x̂V P (n) =
K∑
k=1
k odd

Rk∑
r=1

(
ũT (n)a(k)

r

) k+1
2
(
ũH(n)b(k)

r

) k−1
2
,
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where ũ(n) is the input vector
[
ũ(n) . . . ũ(n−M)

]T
, a(k)

r and b(k)
r are the rth columns

of the kth-order factor matrices A(k) ∈ C(M+1)×Rk and B(k) ∈ C(M+1)×Rk , respectively.
Also note that R1=1 and a(1) = h1(m1).

In (CRESPO-CADENAS et al., 2014), additional symmetry properties of real PAs
led to further simplifying the model. Thus, the factor matrices A(k) and B(k) in eq. (4.7)
are related by (CRESPO-CADENAS et al., 2014):

(4.8)b(k)
r = a(k)

r

∗
,

i.e., they are complex conjugate. Finally, the baseband Volterra-PARAFAC model is
expressed as:

(4.9)x̂V P (n) =
K∑
k=1
k odd

Rk∑
r=1
|ũT (n)a(k)

r |k−1ũT (n)a(k)
r ,

which corresponds to Wiener models in parallel, as illustrated in Figure 4.1.

The number of model coefficients in this, reduced complexity, baseband Volterra-
PARAFAC model is:

(4.10)NV P =
K∑
k=1
k odd

(M + 1)Rk,

i.e., the sum of the numbers of elements of the factor matrices A(k).

... ...

... ...

... ...

ũT (n)a(1)
1

ũT (n)a(3)
1

ũT (n)a(3)
R3

ũT (n)a(5)
R5

ũT (n)a(5)
1

ũ(n) x̂V P (n)

(·)|·|2

(·)|·|2

(·)|·|4

(·)|·|4

Figure 4.1 – Block diagram of the baseband Volterra-PARAFAC model.
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4.1.4 Volterra-PARAFAC Estimation

This subsection discusses the estimation techniques proposed in the literature
for the baseband Volterra-PARAFAC model. First, the alternating least squares (ALS)
algorithm is considered. This algorithm has the disadvantage of requiring that the original
full-Volterra kernels are first estimated, which is very expensive. Then, adaptive methods
are presented that allow the Volterra-PARAFAC parameters to be estimated directly from
input/output data. Two approaches, the adaptive complex least mean squares (CLMS)
(BOUILLOC; FAVIER, 2012), (FAVIER; KIBANGOU; BOUILLOC, 2012) and non-linear
least squares (NLS) algorithm using Levenberg-Marquardt (LM) (TOMASI; BRO, 2006),
are capable of estimating Volterra-PARAFAC factor matrices directly from measured input
and output datasets.

Alternating Least Squares - ALS

Fitting PARAFAC factor matrices to a given 3rd-order tensor, in the least squares
sense, corresponds to finding the factor entries that minimise the following loss function:

(4.11)J(a11, a12, . . . , cKR) =
I∑
i=1

J∑
j=1

K∑
k=1

(
hijk −

R∑
r=1

airbjrckr

)2

.

Using eq. (4.4a), the loss function is written as:

(4.12)J(A,B,C) = ‖H(1) −A(C �B)T‖2
F ,

where ‖·‖F is the Frobenius norm, defined as ‖X‖F = ‖vec(X)‖2, in which vec(·) is the
operator that stacks the matrix columns into a vector. Note that the Frobenius norm is
also equal to 〈X,X〉 1

2 and 〈 , 〉 is the inner product (also called dot product). In the ALS
algorithm, each of the factor matrices is evaluated separately, as follows:

A(t) =H(1)

(
(C(t−1) �B(t−1))†

)T
, (4.13a)

B(t) =H(2)

(
(C(t−1) �A(t))†

)T
, (4.13b)

C(t) =H(3)

(
(B(t) �A(t))†

)T
, (4.13c)

where † denotes the Moore–Penrose pseudo-inverse. Firstly the matrices B and C are
randomly initialized and the ALS sub-problems above are solved for each factor matrix in
its turn, by solving a linear least squares problem. Then, t is incremented and the steps
are repeated until a predefined convergence criterion is met. Note that these expressions
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could be generalized for higher tensor orders. Also note that the ALS algorithm does
not guarantee that the global minimum is attained since it is an initialization-dependent
iterative algorithm (BOQUÉ; FERRÉ, 2015).

In the case of a kth-order doubly-symmetric tensorH, the PARAFAC decomposition
is given by:

(4.14)H =
Rk∑
r=1

(a(k)
r )

k+1
2 (a(k)

r
∗)

k−1
2 ,

where the minimal value Rk is said to be the symmetric rank of H. The kth-order tensor
H is written as a summation of Rk outer products of k+1

2 and k−1
2 identical vectors,

respectively, a(k)
r and a(k)

r
∗.

In this case, recalling from eq. (4.12), the ALS loss function of a 3rd-order doubly-
symmetric tensor H3 can be expressed as:

(4.15)J(A) = ‖H(1) −A(A�A∗)T ‖2
F .

Note that in this case the ALS sub-problems in eqs.(4.13a)-(4.13c) lead to repeated
equations and become non-linear least squares (NLS) problems in the factor matrix A.
One approach discussed in the literature (KOLDA, 2014) is to use the standard ALS
algorithm ignoring the symmetry, with the idea that it often converges to the symmetric
solution (up to diagonal scaling). A simplification, proposed in (FAVIER; BOUILLOC,
2009) for single-symmetric Volterra kernels, is to randomly initialize A and iteratively
compute B(t) = A(t−1) �A(t−1)∗ and estimate A(t) = H(1)((B(t))†)T , until convergence.

To use the ALS algorithm, a set of Volterra kernels must first be estimated from
the measured input/output data. Then, the ALS algorithm adjusts the PARAFAC model
to the known Volterra kernels. In some cases, such as DPD, this procedure becomes very
expensive, therefore, alternative adaptive approaches in the literature directly estimate
approximate symmetric polyadic decompositions, instead of the symmetric Volterra kernels
(FAVIER; KIBANGOU; BOUILLOC, 2012). Two popular approaches are the adaptive
CLMS algorithm (BOUILLOC; FAVIER, 2012), (FAVIER; KIBANGOU; BOUILLOC,
2012), (CRESPO-CADENAS et al., 2014) and the NLS using the LM algorithm (TOMASI;
BRO, 2006). Their main advantage is the ability to estimate the Volterra-PARAFAC
factor matrices directly from the measured input/output data.
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Complex Least Mean Squares - CLMS

The baseband Volterra-PARAFAC model is expressed as:

(4.16)x̂V P (n) =
K∑
k=1
k odd

Rk∑
r=1
|ũT (n)a(k)

r |k−1ũT (n)a(k)
r ,

where R1 = 1 and a(1) = h̃1(m).

Defining the parameter vector:

(4.17)θT =
[
θ(1)T . . . θ(K)T

]
T ,

with θ(1) = a(1) and
(4.18)θ(k) = vec(

[
a

(k)
1 . . . a

(k)
Rk

]
),

where the vectorization operator stacks the column vectors of its argument.

The CLMS algorithm minimizes the cost function:

(4.19)J(n,θ) = 1
2 |ẽ(n)|2

= 1
2 ẽ(n)ẽ∗(n),

where the error is the difference between the measured and modelled outputs ẽ(n) =
x̃(n)− f(n,θ) and f(n,θ) = x̂V P (n).

Applying the steepest-descent algorithm, the update equation for the estimated
parameters is (FAVIER; KIBANGOU; BOUILLOC, 2012):

(4.20)θ̂(k)(n) = θ̂(k)(n− 1) + 1
2µkẽ

∗(n)∂f(n,θ)
∂θ(k)∗ |θ̂(k)(n−1) +

1
2µkẽ(n)∂f

∗(n,θ)
∂θ(k)∗ |θ̂(k)(n−1) ,

where µk are the step-size parameters that trade-off the speed of adaptation and the noise
in steady-state.

The gradients of the NL functions f(n,θ) and f ∗(n,θ) with respect to the conju-
gated parameter vector θ(k)∗ can be calculated by:
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∂f ∗(n,θ)
∂θ(k)∗ |θ̂(k)(n−1) = (k + 1)

2 v̂(k)(n)⊗ ũ∗(n), (4.21a)

∂f(n,θ)
∂θ(k)∗ |θ̂(k)(n−1) = (k − 1)

2 ŵ(k)(n)⊗ ũ∗(n), (4.21b)

where ⊗ is the Kronecker product, with:

(4.22)v̂(k)(n) =
[
α̂(k),1(n) . . . α̂(k),Rk(n)

]
,

where α̂(k),r(n) = |uT (n)a(k)
r (n− 1)|k−1 and

(4.23)ŵ(k)(n) =
[
β̂(k),1(n) . . . β̂(k),Rk(n)

]
,

where β̂(k),r(n) = |ũT (n)a(k)
r (n− 1)|k−3(ũT (n)a(k)

r (n− 1))2.

Non-linear Least Squares using Levenberg-Marquardt - NLS-LM

The LM is a robust algorithm for minimizing the NLS cost function in a numerically
stable way and is proposed in (TOMASI; BRO, 2006) for fitting the Volterra-PARAFAC
model. In this approach, the update equation of the estimated parameters becomes:

θ̂(k)(n) = θ̂(k)(n− 1) +
[
Ĵ (k)T (n)Ĵ (k)(n) + λk diag(Ĵ (k)T (n)Ĵ (k)(n))

]−1
Ĵ (k)T (n)ẽ(n) ,

(4.24)

where λk is a non-negative damping parameter and J (k)(n) is the Jacobian matrix of the
NL function f(n,θ) with respect to the coefficients vector θ̂(k) calculated at the point
θ̂(k)(n− 1). Note that this algorithm converges to a local minimum of the cost function.
Hence, good initial values of the parameters are very important to ensure the convergence
of the estimates to the global minimum.

In section 4.3, simulation and experimental results of the baseband VP model are
presented and discussed.

4.2 LAGUERRE-VOLTERRA TECHNIQUE

This section investigates the expansion of baseband Volterra kernels using orthonor-
mal base functions (OBF), in particular Laguerre functions. The objective is to arrive at
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the equivalent Laguerre-Volterra model, with reduced complexity. This technique, proposed
for the first time by (WIENER, 1958), and is well covered, for example in (OLIVEIRA
et al., 2011), (OLIVEIRA et al., 2012). The main idea is that, by choosing the OBF
dynamics (i.e., poles) close to the real poles of the system to be modelled, the model’s
performance improve quickly with the number of coefficients. This leads to a model of
reduced complexity, comparing to the Volterra model (KIBANGOU; FAVIER, 2005).

Several PA and DPD modelling papers expand the full-Volterra kernels using a
truncated OBF series, in a technique known as the fixed pole expansion technique (FPET)
(WILLIAMSON; HACIOGLU, 2001). The Kautz functions, i.e., a set of orthonormal
functions with one complex-valued pole per NL order, have been applied in PA modelling
(TEHRANI et al., 2008), (ISAKSSON; RONNOW, 2007) and DPD (ISAKSSON; WISELL;
RONNOW, 2006). The Laguerre functions, with a single real pole per NL order, have been
also applied in PA modelling (ZHU; BRAZIL, 2005). A generalized OBF, the Takenaka-
Malmquist, having several complex poles per NL order, is applied in (SCHUMACHER;
LIMA; OLIVEIRA, 2015). In (AMIN; HANDEL; RONNOW, 2017), fixed-pole MP and
GMP models are developed using Laguerre functions. Also, OBF expansion has been
applied to various other fields, such as control (ZHENG; ZAFIRIOU, 1995), (ROSA;
CAMPELLO; AMARAL, 2007) and biological systems (MARMARELIS, 1993).

4.2.1 Laguerre Expansion

We focus on the Laguerre expansion, where the model is completely determined
by a single real pole for each NL order. This makes the search for the unknown optimal
poles faster than with the Kautz and generalized OBF functions. As illustrated in Figure
4.2, in the LV model, the input signal is first filtered by a linear filter bank composed
of infinite impulse response (IIR) filters. The impulse responses of these filters follow a
set of Laguerre functions, with pre-defined real poles. Next, the outputs of the filters are
combined in a multiple-input static non-linearity. Assuming that the kth-order Volterra
kernel has fading memory with a given memory length Mk, i.e., h̃k(m1, . . . ,mk)=0 for
mi > Mk (∀i ∈ 1, . . . , k), the kernel is absolutely summable and can be approximated by
a combination of terms from a truncated series of Fk+1 Laguerre functions (FAVIER;
CAMPELLO; AMARAL, 2004):

h̃k(m1, . . . ,mk)

=
Fk∑
l1=0

Fk∑
l2=l1

. . .
Fk∑

l k+1
2

=l k−1
2

. . .
Fk∑

l k+3
2

=0
. . .

Fk∑
lk=lk−1

c̃k(l1, . . . , lk)
k+1

2∏
i=1

φk,li(mi)
k∏

i= k+3
2

φ∗k,li(mi),

(4.25)
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where φk,l are the impulse responses of the Laguerre functions expanding the kth-order kernel
and c̃k(l1, . . . , lk) are the triangular kth-order expansion coefficients. The lth orthonormal
Laguerre function is given by (ZHU; BRAZIL, 2005):

(4.26)φk,l(m) = λ
m−l

2
k (1− λk)

1
2

l∑
q=0

(−1)q
(
m

q

)(
l

q

)
λl−kk (1− λk)k,

for l = 0, . . . , Fk and m ≥ 0. The parameters λk, for k = 1, 3, . . . , are the real Laguerre
poles, such that |λk|< 1. As mentioned, the parsimony of the resulting LV model depends
on the choice of the Laguerre poles. Finally, note that the orthonormality property implies
that:

∞∑
m=0

φk,li(m)φk,lj(m) =

1, if i = j.

0, otherwise.
(4.27)

As shown in Figure 4.2, in the z-domain, the Laguerre transfer functions correspond
to:

(4.28)Φk,l(z, λk) =

√
1− λ2

k

1− z−1λk

(−λk + z−1

1− z−1λk

)l
,

where the term
√

1− λ2
k is a normalization factor, 1

1−z−1λk
is an IIR filter and each term

...

...
. . .

ũ(n)

x̂LV,k(n)

c1

c2

w̃k,0(n)

w̃k,1(n)

w̃k,Fk(n)

kthorder
Nonlinear
Combiner

Filter Bank
Φk

(Fk, λk)

√
1−λ2

k

1−z−1λk

−λk+z−1

1−z−1λk

−λk+z−1

1−z−1λk

−λk+z−1

1−z−1λk

Figure 4.2 – Block diagram of the kth-order Laguerre-Volterra model.
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−λk+z−1

1−z−1λk
is an all-pass section.

4.2.2 Baseband Laguerre-Volterra Model

The LV DPD model is given by:

(4.29)

x̂LV (n) =
K∑
k=1
k odd

x̂LV,k(n) =

K∑
k=1
k odd

Fk∑
l1 =0

Fk∑
l2 =l1

. . .
Fk∑

l k+1
2

=l k−1
2

. . .
Fk∑

l k+3
2

=0
. . .

Fk∑
lk =lk−1

c̃k(l1, . . . , lk)

k+1
2∏

i =1
w̃k,li(n)

k∏
i = k+3

2

w̃∗k,li(n),

where w̃k,l(n) corresponds to the input signal
[
ũ(n) . . . ũ(n−Mk)

]T
filtered by the lth

Laguerre function in the memory span [0,Mk], i.e.:

(4.30)w̃k,l(n) =
Mk∑
m=0

φk,l(m)ũ(n−m)

= Φk,l(z, λk)ũ(n).

The terms of the LV model output in eq. (4.29) follow the topology in Figure 4.2,
which is known as the Wiener-Bose topology (MARMARELIS, 1993). Also note that, if
λk=0, Φk,l(z) = z−l, l = 0, . . . , Fk, i.e., Volterra basis functions are obtained.

Figure 4.3 shows the first four Laguerre impulse response functions, given by eq.
(4.26), with parameter λ=0.7, and also the Volterra impulse train. We observe that the
Laguerre basis functions spread over time, thus the LV model is expected to require a
reduced number of coefficients. As per eq. (4.26), the Laguerre poles λk determine the
Laguerre dynamics, i.e., the rate of exponential asymptotic decline. The poles have to
be decided a priori, based on any physical knowledge, or the pole selection is obtained
by a NL optimization algorithm. Also, an analytical approach is developed in (FAVIER;
CAMPELLO; AMARAL, 2004). Once the poles λk, for k = 1, 3, . . . , are selected, the
model is linear in the parameters and the coefficients vectors ck(l1, . . . , lk) are estimated
by OLS, as follows:

(4.31)
θ̂(λk) = arg min

θ

N∑
n=0
|x̃(n)−ψ(n,λk)T θ̂(λk)|2,
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where θ is a parameter vector containing all coefficients ck(l1, . . . , lk) and ψ(n) contains
all the products w̃k,l1(n)w̃k,l2(n) . . . w̃∗k,lk(n) from eq. (4.29).

The number of coefficients in the LV model is given by:

(4.32)NLV =
K∑
k=1
k odd

(
Fk + k+1

2
k+1

2

)(
Fk + k−1

2
k−1

2

)
.

i.e., it is independent of the system memory, but depends on the number of Laguerre basis
functions Fk, for k = 1, 3, . . . .

4.2.3 Laguerre-Volterra Estimation

The Laguerre poles in this study were obtained by a constrained NL least squares
optimization, in which each pole position is optimized within the range −1 ≤ λ ≤ 1 based
on minimizing the squared norm of the residual signal:

(4.33)min
λ

N∑
n =0
|x̃(n)−ψ(n,λk)T θ̂(λk)|2,

where θ is a parameter vector containing all coefficients ck(l1, . . . , lk) and ψ(n) contains
all the products w̃k,l1(n)w̃k,l2(n) . . . w̃∗k,lk(n) from eq. (4.29).

In the next section, simulation and experimental results of the baseband LV model
are presented and discussed.

(a) Volterra (M=10) (b) Laguerre (λ=0.7)

Figure 4.3 – Volterra and Laguerre impulse response functions.
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4.3 SIMULATION AND EXPERIMENTAL VALIDATION

The experimental validation presented in this section is based on measured input
and output data from the LMM PA described in section 3.1 with VSWR 4:1 and the
experimental test set-up described therein. The baseband VP and LV DPD models studied
in this chapter are compared to the triangular FV and MV models. Afterwards, in chapters
6 and 7, the VP and LV models are also compared to the WHFB and to the proposed
pruned-Volterra models.

4.3.1 Baseband Volterra-PARAFAC Results

The PARAFAC decomposition of the tensors is performed using the Tensorlab 3.0
package (VERVLIET et al., 2016). First, the coefficients of the baseband triangular FV
DPD model are estimated by LS regression using input and output samples. Then, the
coefficients are expressed as doubly-symmetric kernels and, for each NL order, converted to
tensors. Note that the PARAFAC decomposition requires an estimate of the tensor rank,
which is often a difficult problem, involving trial and error (VERVLIET et al., 2016); the
rankest tool from the Tensorlab package provides an estimate of the tensor rank. Finally,
the Volterra-PARAFAC model is fitted in the LS sense using the ALS technique.

Figure 4.4 shows the 3rd- and 5th-order tensors rank estimations obtained from
the rankest tool, for memory depth M , respectively, equal to 5 and 4. This tool evaluates
the relative error between the tensor and its PARAFAC decomposition approximations
(VERVLIET et al., 2016), ‖ε‖2

F/‖H‖2
F , where ε is the residual in eq. (4.1), for increasing

rank values, until ε is negligible. In our work, the L-curve and further analysis of results
are used to find the optimal trade-off between model accuracy and complexity reduction,
thus arriving to the tensor rank estimation. Figure 4.5 compares the residual spectral
regrowth after DPD obtained by the triangular full-Volterra (FV4) and the VP model
(ALS estimation), with NL orders K=3 and K=5, memory length M=5, R3=11, R5=45
and N =50,000 samples. As shown in the figure, the VP (ALS) model achieved ACPR and
NMSE very close to the FV4, with much less coefficients, as detailed in the following tables.

Tables 4.1 and 4.2 summarize the numbers of coefficients, ACPR and NMSE
obtained, respectively, with K=3 and K=5, including the VP ALS, CLMS and NLS
estimation approaches, discussed in section 4.1. The CLMS and NLS approaches do not
require that the FV4 kernels are first estimated, thus being advantageous in terms of
computational cost and scalability. Note that the NLS LM algorithm uses the MATLAB
optimization tool lsqnonlin (MATHWORKS, 2017) and that a local minimum may be
reached, depending on the initialization. As shown on the tables, in this study, both the



68 Chapter 4. Volterra-PARAFAC and Laguerre-Volterra Techniques

CLMS and NLS-LM algorithms did not achieve the performance level of the ALS algorithm.
Note that the tables also present results for the LV model, to be discussed in the next
subsection. Finally, Figure 4.6 shows the convergence of the NLS LM algorithm, in terms
of the norm of the residuals for the first 30 iterations.

(a) 3rd-order tensor rank (b) 5th-order tensor rank

Figure 4.4 – Tensor rank estimation, k=3 and k=5.

Figure 4.5 – Residual spectral regrowth for LMM PA with FV and VP DPD models (K=3 and K=5).

Now, we extend the VP ALS estimation applied above to higher NL orders K=7
and K=9. Due to the high computational cost of high order PARAFAC decompositions,
however, instead of starting from the FV4 model, we apply the PARAFAC decomposition
to the triangular modified Volterra (MV4) model from eq. (2.7), in which shorter memory
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Table 4.1 – DPD performance for LMM PA with FV, VP and LV models (K=3, M=5 and N=50,000).

Num. coeffs. Max. ACPR
(dBc)

NMSE
(dB)

No DPD N/A -23.2 3.3
FV4 132 -37.5 -26.3
VP (ALS) (Rk = [1, 11]) 66 -37.5 -25.3
VP (CLMS alg.)
(Rk = [1, 11], µ1=0.1, µ3=0.07)

66 -37.1 -25.1

VP (NLS LM alg.)
(Rk = [1, 11])

66 -38.1 -24.8

LV (Fk = [5, 4]) 81 -37.7 -26.0

Table 4.2 – DPD performance for LMM PA with FV, VP and LV models (K=5, M=5, N=50,000).

Num. coeffs. Max. ACPR
(dBc)

NMSE
(dB)

No DPD N/A -23.2 3.3
FV4 1,308 -42.5 -32.5
VP (ALS) (Rk = [1, 11, 45]) 336 -41.7 -31.0
VP (CLMS alg.)
(Rk = [1, 11, 45], µ1=0.1, µ3=0.07, µ5=0.07)

336 -39.5 -29.3

VP (NLS LM alg.)
(Rk = [1, 11, 45])

336 -39.7 -29.3

LV (Fk = [5, 4, 3]) 281 -41.6 -31.5

Figure 4.6 – NLS LM algorithm norm of residuals versus iterations.

lengths are configured for higher NL orders. Figure 4.7 shows the 7th- and 9th-order tensors
rank estimation forM=2 obtained from the rankest tool. Tables 4.3 and 4.4 summarize the
numbers of coefficients, ACPR and NMSE obtained, respectively, withK=7 andK=9, with
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the VP ALS model. Figure 4.8 compares the residual spectral regrowth after DPD obtained
by the MV4 and the VP model (ALS), with NL orders K=7 and K=9, memory length
Mk = [5, 5, 4, 3, 2], Rk = [1, 11, 45, 42, 32] and N =50,000 samples. Also results for the LV
model are presented, to be discussed in the next subsection. As can be seen from the tables,
the PARAFAC decomposition is able to significantly reduce the number of coefficients in
the FV and MV DPD models, being a general approach for running complexity reduction.
The ALS algorithm shows the disadvantage of fitting the PARAFAC model to a priori
known Volterra kernels, thus requiring that the FV model is first estimated, which may be
very costly. On the other hand, the adaptive CLMS and NLS LM algorithms approximate
the VP model directly from input/output data, but, in this study, had to be run several
times to avoid local minima and did not achieve the ALS performance. The results with the
CLMS and NLS-LM algorithms were only presented forK=3 andK=5 (Tables 4.1 and 4.2).

(a) 7th-order tensor rank (b) 9th-order tensor rank

Figure 4.7 – Tensor rank estimation, k=7 and k=9.

Table 4.3 – DPD performance for LMM PA with MV, VP and LV models (K=7, M=5 and N=50,000).

Num. coeffs. Max. ACPR
(dBc)

NMSE
(dB)

No DPD N/A -23.2 3.3
FV4 8,364 -46.3 -35.0
MV4 (Mk = [5, 5, 4, 2]) 807 -43.4 -33.6
VP (ALS) (Mk = [5, 5, 4, 2])
(Rk = [1, 13, 45, 32])

405 -43.3 -33.5

LV (Fk = [5, 4, 3, 2]) 431 -43.1 -33.5
MV4 (Mk = [5, 5, 3, 2]) 482 -42.4 -32.9
VP (ALS) (Mk = [5, 5, 3, 2])
(Rk = [1, 13, 30, 32])

300 -42.4 -32.9

LV (Fk = [5, 4, 3, 1]) 301 -42.8 -33.0
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Table 4.4 – DPD performance for LMM PA with FV, VP and LV models (K=9, M=5 and N=50,000).

Num. coeffs. Max. ACPR
(dBc)

NMSE
(dB)

No DPD N/A -23.2 3.3
FV4 11,875 -46.5 -35.3
MV4 (Mk = [5, 5, 4, 3, 2]) 1672 -44.0 -34.5
VP (ALS) (Mk = [5, 5, 4, 3, 2])
(Rk = [1, 13, 45, 42, 30])

567 -43.8 -34.0

LV (Fk = [5, 4, 3, 2, 2]) 746 -43.7 -34.2
MV4 (Mk = [5, 5, 4, 2, 2]) 1122 -43.5 -33.9
VP (ALS) (Mk = [5, 5, 4, 2, 2])
(Rk = [1, 13, 45, 32, 30])

501 -43.5 -33.6

LV (Fk = [5, 4, 3, 2, 1]) 461 -43.3 -33.8

Figure 4.8 – Residual spectral regrowth for LMM PA with MV and VP DPD models (K=7 and K=9).

4.3.2 Baseband Laguerre-Volterra Results

First, the optimal poles of the Laguerre functions, one real-valued pole per NL order,
have to be obtained. The search for the optimal Laguerre poles is costly, but independent
of the memory length. In this study, we used the MATLAB optimization tool lsqnonlin
(MATHWORKS, 2017), running the algorithm for several initializations in order to avoid
local minima. Figure 4.9 shows the pole optimization path of the LV model for K=5, with
Fk = [4, 3, 2] and initialization at λini = [0.5, 0.5, 0.5]. The figure also shows the objective
function surface, i.e., the squared norm of the residual signal, illustrated for a grid of λ1

and λ3 values, while keeping λ5 at its optimal value, previously obtained. Note that the
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objective function shows several points of local minimum, thus the optimization solution
depends on the initialization. The same optimization was also run for K=3. As shown in
the figure, the Laguerre pole selection is a non-convex NL optimization problem, highly
dependent on the initialization and subject to local minima. In this study, the optimization
had to be run several times. Returning to Tables 4.1 and 4.2, they present the results for
the LV model with the optimized poles, respectively, for K=3 and K=5, comparing them
to the FV4 and VP models in terms of numbers of coefficients, ACPR and NMSE. As
shown on the tables, the LV model also achieved ACPR and NMSE very close to the FV4,
with much less coefficients. Note from the block diagram in Figure 4.2 that the number of
coefficients in a LV model is independent of the system memory, thus being advantageous
over the FV model for systems with low frequency characteristics, e.g., an RF PA with
long-term memory effects.

The LV model results for NL orders K=7 and K=9 are presented, respectively, in
Tables 4.3 and 4.4, comparing them to the FV4 and VP models. Moreover, in Figures 4.10
and 4.11, the residual spectral regrowth after DPD obtained with the MV4 and the LV
models are compared for K=7 and K=9, respectively. As observed from the tables, the
LV model is, similarly to the VP model, a general approach for significantly reducing
the number of FV4 and MV4 DPD coefficients and, therefore, their running complexity.
Finally, the LV model does not require the FV4 model coefficients to be first estimated;
this aspect increases its scalability comparing to the VP (ALS) model.
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(a) Optimization path.

(b) Objective function surface.

Figure 4.9 – Optimization of the LV poles for K=5.
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Figure 4.10 – Residual spectral regrowth for LMM PA with FV and LV DPD models (K=3 and K=5).

Figure 4.11 – Residual spectral regrowth for LMM PA with MV and LV DPD models (K=7 and K=9).

4.4 CONCLUSIONS

In this chapter, the PARAFAC decomposition and Laguerre expansion were applied
to the triangular FV model, leading, respectively, to the baseband Volterra-PARAFAC
and Laguerre-Volterra models. Without a priori enforcing a Volterra pruning strategy,
these techniques were able to significantly reduce the numbers of coefficients and the
running complexity of the original models. On the other hand, both techniques rely on NL
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optimizations and tend to become very costly as the model dimensions increase. In the
next chapter, a simplified DPD behavioural model, linear in the coefficients, is derived
based on the FV model and prior physical knowledge of PA LMM.
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5 PROPOSED WHFB MODEL FOR THE
COMPENSATION OF LMM PA

This chapter is motivated by several practical cases in which PAs are expected to
suffer from LMM, as discussed in subsection 1.2.2, and also by the fact that conventional
DPD polynomial models, such as the GMP model, are satisfactory when the PA is perfectly
matched (CRIPPS, 2006), but have their performance degraded under LMM conditions,
even after re-estimating the model coefficients, as studied in (SANCHEZ-PEREZ et al.,
2011), (ZENTENO; ISAKSSON; HANDEL, 2015), (LANDIN; BENGTSSON; ISAKSSON,
2009). The contribution of this chapter is to propose the application of the physically-
inspired WHFB model (MKADEM et al., 2014) as a simplified DPD behavioural model
for PAs under LMM. To the authors’ knowledge, such approach has not been applied in
the LMM scenario. Besides, the implementation of this approach is less complex than
those of the DPD models presented in section 2.3, as discussed therein and in section
5.2. The choice of the WHFB model is justified in this chapter using the Volterra series
analysis, from which the DPD closed-form expression is derived. The ability of the proposed
model to compensate for PA LMM is experimentally verified in chapter 6. This chapter
follows the ILA DPD topology from Figure 2.12, assuming that the components in the
feedback path are ideal, including the directional coupler, IQ down-converter and a pair of
analog-to-digital converters (ADC).

The main results from chapters 5 and 6 were published in (HEMSI; PANAZIO,
2021).

5.1 JUSTIFICATION OF THE WHFB DPD MODEL FOR LMM PA

The Volterra framework (SCHETZEN, 2006) plays an important role in DPD of
high-power and wideband PAs subject to NL behaviour and memory effects. In practice,
the FV model is avoided, due to the exponential growth on its number of coefficients, as
the model parameters increase; thus, pruned-Volterra polynomial models are preferred.
DPD techniques for amplifiers linearisation are widely covered in the literature, although
the major part of the works, e.g. for general applications (KIM; KONSTANTINOU, 2001),
(MORGAN et al., 2006), (DING et al., 2004), (LEE; FIGUEIREDO, 2006) and for mobile
terminals (PRESTI; KIMBALL; ASBECK, 2012), (NORRIS et al., 2007), assumes that
the PA is perfectly terminated, i.e., the load absorbs all the incoming power, and zero
reflections are returned to the amplifier. In this context, the MP and GMP models are
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commonly used as DPD inverse models. As shown in (ZENTENO; ISAKSSON; HANDEL,
2015), (LANDIN; BENGTSSON; ISAKSSON, 2009), (VUOLEVI; RAHKONEN, 2003),
the MP and GMP DPD models have their performance degraded when the PA suffers
from LMM, due to frequency dependencies at the baseband, fundamental and harmonic
frequency bands (PEDRO; MAAS, 2005).

This section justifies the use of the physically-inspired, Volterra-based WHFB
model (MKADEM et al., 2014), as a simplified DPD behavioural model for PA LMM,
seeking for a trade-off between model accuracy and complexity.

Figure 5.1 shows a simplified equivalent circuit of a typical Class B or Class AB
PA circuit with a field-effect transistor (FET). In the figure, the impact of PA LMM is
considered by applying the Volterra series analysis NL currents method (MAAS, 2003),
between xRF (t) to yRF (t), the RF PA input and output voltage signals, respectively. In
order to obtain simplified expressions for the input-to-output NL transfer functions (TF),
the following assumptions are made:

• The single active device is a FET in single-ended common-source mode,

• The device internal reactances are negligible at the operating band,

• Mildly NL behaviour in absence of hard clipping and cut-off,

• The (input) gate current is linear,

• The PA is stable, i.e., low internal feedback,

• The active device self-heating is not considered.

These assumptions lead to the simplified PA equivalent circuit in Figure 5.1, as in (ZHU;
PEDRO; CUNHA, 2007) and (PEDRO; CARVALHO; LAVRADOR, 2003), where the
elements in dashed line are neglected. As in (PEDRO; CARVALHO; LAVRADOR, 2003)
and (FAGER et al., 2004), this analysis is based on recognizing the (output) drain current
ids(t) as the major contributor to the FET’s non-linear behaviour. The current ids(t) is
assumed a memoryless mildly NL function of both the gate and drain voltages, vgs(t) and
vds(t), approximated by a bi-dimensional Taylor series expansion around the quiescent
point:

(5.1)
ids (t) ' Ids + gmvgs (t) +K2gmv

2
gs (t) +K3gmv

3
gs (t)

+ govds (t) +K2gov
2
ds (t) +K3gov

3
ds (t) +K2gmgovgsvds (t)

+K3gm2gov
2
gsvds (t) +K3gmgo2vgsv

2
ds (t) + . . . ,

where Ids is the output DC current, the coefficients gm, K2gm, K3gm, · · · are non-linear
transconductance and go, K2go, K3go, · · ·, the non-linear output conductances. The
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Figure 5.1 – Simplified equivalent circuit of the FET-based PA.

coefficients are calculated by partial derivatives, such as gm = ∂ids(t)/∂vgs(t), go =
∂ids(t)/∂vds(t), etc.

The output impedance Zo(ω), in the frequency domain, at the transistor (out-
put) drain node, neglecting package parasitics, is the association of the intrinsic output
conductance and extrinsic output MN, BN and load impedances:

Zo(ω) ' go ‖ ZBo(ω) ‖ (ZMo(ω) + ZL(ω)), (5.2)

where ‖ represents the parallel association in this expression. The impact of the output
impedance to the PA NL behaviour involves the following feedback (ZHU; PEDRO;
CUNHA, 2007):

• The drain (output) voltage vds(t) is the negative of the drain current ids(t) times
the output impedance, Zo(ω),

• In turn, the drain current ids(t) is a NL function of both the gate and drain voltages,
vgs(t) and vds(t), as per eq. (5.1).

The Volterra series analysis allows the extrinsic PA voltage TFs to be obtained,
by accounting for the embedding circuitry in Figure 5.1. In order to obtain simplified
expressions for the input-to-output NL TF, the NL current source ids(t) is linearised
and associated in parallel with NL current sources, one for each NL order under analysis
(MAAS, 2003). The resulting first-order linear input-to-output TF is given by:

H1(ω1) = −Mi(ω1)gmZo(ω1)Mo(ω1), (5.3)

where ω1 is a fundamental band frequency and Mi(ω) and Mo(ω) are the voltage TFs of
the input and output MNs, respectively. Note that the PA linear voltage TF H1(ω) at the
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fundamental band depends on the output impedance function Zo(ω) that is expected to be
flat under nominal conditions. Load mismatch conditions may cause frequency-dependencies
in eq. (5.2) and linear distortions on the TF in eq. (5.3).

Recursively, H2(ω1, ω2) and H3(ω1, ω2, ω3), i.e., the second- and third-order non-
linear TFs, respectively, are given by:

(5.4)H2(ω1, ω2) = −Mo(ω1 + ω2)Zo(ω1 + ω2)
{
K2gmMi(ω1)Mi(ω2)

+ 1
2K2gmgo[H1(ω1) +H1(ω2)] +K2goH1(ω1)H1(ω2)

}

and

H3(ω1, ω2, ω3) = −Mo(ω1 + ω2 + ω3)Zo(ω1 + ω2 + ω3)
{
K3gmMi(ω1)Mi(ω2)Mi(ω3)

+ 1
3K3gm2go[H1(ω1) +H1(ω2) +H1(ω3)] + 1

3K3gmgo2[H1(ω1)H1(ω2)
+H1(ω1)H1(ω3) +H1(ω2)H1(ω3)] +K3goH1(ω1)H1(ω2)H1(ω3)

+ 1
3K2gmgo[H2(ω1, ω2) +H2(ω1, ω3) +H2(ω2, ω3)]

+ 2
3K2go[H1(ω1)H2(ω2, ω3) +H1(ω2)H2(ω1, ω3) +H1(ω3)H2(ω1, ω2)]

}
,

(5.5)

where ω1, ω2 and ω3 are fundamental band frequencies.

Now, the NL PA RF output signal yRF (t) is approximated by the truncated Volterra
series:

(5.6)yRF (t) =
K∑
k=1

yRFk(t),

assuming that the DC term is zero and K is the truncation NL order. Each kth-order
output term, yRFk(t), is obtained by the k-dimensional convolution integral:

(5.7)yRFk(t) =
∫ ∞
−∞

. . .
∫ ∞
−∞

hk(τ1:k)
k∏
i=1

xRF (t− τi) dτ1 . . . dτk,

where xRF (t) is the RF input signal and hk(τ1:k), denoting (τ1:k) = (τ1, . . . , τk), is the
k-dimensional Volterra kernel. In the frequency domain, the kth-order output term YRFk(ω)
is given by:

(5.8)YRFk(ω) = Hk(ω1:k)
k∏
i=1

XRF (ωi),

with (ω1:k) = (ω1, . . . , ωk). The input XRF (ω) is the Fourier transform of xRF (t), i.e.,
XRF (ω) =

∫∞
−∞ xRF (τ)e−jωτdτ , and Hk(ω1:k) is the k-dimensional Fourier transform of
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hk(t1:k), defined as follows:

(5.9)Hk(ω1:k) =
∫ ∞
−∞

. . .
∫ ∞
−∞

hk(τ1:k)e−j(ω1τ1+···+ωkτk) dτ1 . . . dτk.

The NL functions YRFk(ω) in eq. (5.8) contain several frequency components at
baseband, fundamental and harmonic bands, but only the output signal components at
the fundamental zone (PEDRO; MAAS, 2005) are of interest for behavioural models and
DPD, thus are considered hereafter. Moreover, these models are typically expressed in
the LPE notation, by using the complex envelopes of the RF signals. For example, the
complex envelope x̃(t) of the RF input signal is extracted from xRF (t) = <{x̃(t)ejωct},
where ωc is the carrier frequency. Retaining only the components at the fundamental zone,
the LPE of the output signal in eq. (5.6), ỹ(t), is composed of:

• The linear term Ỹ1(ω):
Ỹ1(ω) = H̃1(ω)X̃(ω), (5.10)

where the LPE kernel H̃1(ω) is a function of the non-ideal frequency responses of
the MN and the load impedance ZL(ω), as per eqs. (5.2) and (5.3). Note that Ỹ1(ω)
represents the fundamental zone linear parcel, shifted in frequency around DC. In
the time-domain, this corresponds to the linear convolution:

ỹ1(t) =
∫ ∞
−∞

h̃1(τ1)x̃(t− τ1)dτ1, (5.11)

where ỹ1(t) and h̃1(t) are the LPE of yRF1(t) and h1(t). Next, the ỹ1(t) expression is
converted to discrete time, assuming a finite memory length M , resulting in linear
memory effects, as follows:

ỹ1(n) =
M∑
m=0

α1,mx̃ (n−m) , (5.12)

where α1,m are the linear coefficients.

• Odd-order intermodulation (IM) distortions produced by Ỹk(ω), with k odd, given
by:

Ỹk(ω) = H̃k(ω1:k)
(k+1)

2∏
i=1

X̃(ωi)
k∏

i= (k+3)
2

X̃∗(ωi), (5.13)

where H̃k(ω1:k) is proportional to the frequency responses of the MN and the load
impedance ZL(ω) at the IM frequencies, as per eqs. (5.2) and (5.5). In the time-
domain, this corresponds to the k-dimensional convolution:

ỹk(t) =
∫ ∞
−∞

. . .
∫ ∞
−∞

h̃k(τ1:k)
(k+1)

2∏
i=1

x̃(t− τi)
k∏

i= (k+3)
2

x̃∗(t− τi) dτ1 . . . dτk. (5.14)
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Next, converting to discrete time, with a finite memory length M , and retaining only
the diagonal terms (KIM; KONSTANTINOU, 2001), i.e., sample delays m1 = · · · =
mk = m, kernels h̃k(τ1:k) reduce to αm,k and the odd-order distortion leads to:

ỹk(n) =
M∑
m=0

αm,kx̃ (n−m) |x̃ (n−m)|k−1 , (5.15)

where αm,k are the model coefficients. Note that eq. (5.15) produces the MP model,
in which all kernels are reduced to dimensionality one. By allowing a sample de-
lay between the signal and its powered envelope, the GMP model is obtained:∑M
m=0

∑L
l=−L αm,l,kx̃ (n−m) |x̃ (n−m− l)|k−1, in which the kernels have one extra

dimension and αm,l,k are the corresponding GMP model coefficients.

• Baseband IM distortions produced by Ỹk(ω), with k even, converted to the fun-
damental zone by mixing with odd-order terms, as per eq. (5.5). The even-order
distortion components are given by:

Ỹk(ω) = H̃k(ω1:k)
k
2∏
i=1

X̃(ωi)
k∏

i= k
2 +1

X̃∗(ωi), (5.16)

where H̃k(ω1:k) is proportional to the baseband output impedance, such as Zo(ω1−ω2),
as in eq. (5.4). In the time-domain, eq. (5.16) corresponds to:

ỹk(t) =
∫ ∞
−∞

. . .
∫ ∞
−∞

h̃k(τ1:k)
k
2∏
i=1

x̃(t− τi)
k∏

i= k
2 +1

x̃∗(t− τi)dτ1 . . . dτk. (5.17)

Next, converting to discrete time, with a finite memory length L, and retaining only
the diagonal terms, i.e., l1 = · · · = lk = l, the baseband distortion leads to:

ỹk(n) =
L∑
l=0

αl,k |x̃ (n− l)|k , (5.18)

where αl,k are the model coefficients. Finally, the remix of baseband terms with the
odd-order terms is modelled by enlarging the previous structure in eq. (5.15) with
an additional dimension with different sample delays, as follows:

ỹk+q(n) =
M∑
m=0

Q∑
q=0
q even

L∑
l=0

αm,q,l,kx̃ (n−m) |x̃ (n−m)|k−1 |x̃ (n−m− l)|q , (5.19)

where αm,q,l,k are the corresponding model coefficients, with k odd.

The resulting polynomial justifies the choice of the WHFB model from eq. (2.43)
for PA LMM. Comparing to the MP and GMP models, the added terms enhance the PA
modelling capabilities, by capturing NL interactions among the output signal reflections
and the non-linearity, caused by in-band frequency dependencies.
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5.1.1 Measurement-based Model Extraction

A measurement-based model extraction approach for the WHFB model is briefly
discussed here. The objective is to extract the frequency response of the feedback LTI
filter, which models the impact of LMM on the PA model. The simplified PA equivalent
circuit shown in Figure 5.1 is converted into the physically-inspired bandpass feedback
topology in Figure 5.2, proposed in (PEDRO; CARVALHO; LAVRADOR, 2003), (ZHU;
PEDRO; CUNHA, 2007). In this block diagram, the PA transistor is represented by a
(memoryless) SNL block and the MN and BN in-band frequency responses, by three LTI
filters. The input and output linear filters Mi(ω) and Mo(ω), in series with the transistor,
correspond to linear memory effects that model non-constant frequency responses of the
MN and BN at the fundamental band. The NL memory effects, mainly caused by load
mismatch (LANDIN; BENGTSSON; ISAKSSON, 2009), (ZHU; PEDRO; CUNHA, 2007),
i.e., the reflection and re-ingress of delayed output samples into the SNL block input
(PEDRO; MAAS, 2005), (VUOLEVI; RAHKONEN, 2003), (CARVALHO; PEDRO, 2002),
are modelled by the LTI filter in the feedback loop, Mf (ω). In order to simplify the model,
the next step is to replace the recursive WHFB model in Figure 5.2 by the truncated
feed-forward structure in Figure 5.3, (MAZIERE et al., 2005), (BOLSTAD et al., 2011),
(CUNHA et al., 2007), (CUNHA; PEDRO; CABRAL, 2007) . This simplification assumes
that each signal sample at the output of the NL block only enters the feedback loop once,
as explained in (ZHU; PEDRO; CUNHA, 2007).

In the simplified feed-forward model, Mi(ω) and Mo(ω) are bandpass filters at the
fundamental band, whereas the frequency response of the Mf (ω) filter accounts for LMM
effects, such as signal reflections, at baseband, fundamental and harmonic frequency bands.
The approximate output signal from the feed-forward model, in the frequency domain, is
given by:

(5.20)Y (ω) = Mo(ω) f
{
Mi(ω)X(ω) +Mf(ω)Y (ω)M−1

o (ω)
}

'Mo(ω) f {Mi(ω)X(ω)}+Mo(ω) f
{
Mi(ω)X(ω)+Mf(ω) f {Mi(ω)X(ω)}

}
,

xRF (t) yRF (t)wRF (t)

Mi(ω) Mo(ω)

Mf (ω)

∑K

k=1 αkw
k
RF (t)

Figure 5.2 – Block diagram of the equivalent WHFB model.
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xRF (t) yRF (t)
Mi(ω) Mo(ω)

Mf (ω)

∑K

k=1 αkw
k
RF1 (t)

∑K

k=1 αkw
k
RF2 (t)

wRF1(t)

wRF2(t)

Figure 5.3 – Block diagram of the approximate feed-forward model.

where f {}̇ is the transistor (memoryless) SNL function. X(ω) and Y (ω) are the PA input
and output signals, respectively, in the frequency-domain.

Next, the objective is to extract a model for the PA under a given LMM condition,
i.e., to extract the frequency response of the feedback LTI filter. This way, it is assumed
that the transistor NL function is known, including the model coefficients α, and that the
frequency responses of the filters Mi(ω) and Mo(ω), with source and load terminations,
are also known, either by measurement or simulation. In this case, the measurement-based
procedure for finding the frequency response of the feedback LTI filter, Mf (ω), and, thus,
the impact of LMM on the PA, is to apply a two-tone probing (excitation) signal at the
PA input and measure the output distortion levels at some specific frequency points in the
fundamental band, such as at third-order inter-modulation (IM3) points. The measured
distortion levels are, then, mapped into the parcels (or contributions) that are expected
from the remix of distortion terms originated at baseband and harmonics with the input
signal, as illustrated in Table 5.1. The table presents some of these distortion terms that
remix with the input signal, due to LMM, and sum up at IM3 frequencies. The two-tone
input signal has center frequency ωc, with tone spacing ∆ω and tone amplitude A. By
running an automated program that sweeps ωc and ∆ω and maps the measured distortion
levels to the expected IM3 levels from the table, the frequency response of Mf (ω) can be
approximately extracted. Note that this frequency response corresponds to the reflection
responses of the BN and MN at baseband and 2nd-harmonic bands.

Table 5.1 – IM3 caused by NL remix of distortion terms.

ω1 ω2
Non-linear

order
IM3 distortion

(ωc ± 3∆ω/2) Level

ωc ±∆ω/2 ωc ∓∆ω/2 3rd 2ω1 − ω2
3
4A

3α3

±∆ω ωc ±∆ω/2 2nd ω1 + ω2 A3Mf (∆ω)α2
2

±∆ω ωc ∓∆ω/2 3rd 2ω1 + ω2
3
4A

5Mf (∆ω)α2α3

2ωc ±∆ω ωc ∓∆ω/2 2nd ω1 − ω2
1
2A

3Mf (2ω)α2
2
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5.2 PROPOSED WHFB DPD MODEL FOR LMM PA

In the previous section, the WHFB polynomial model is proposed as a simplified
behavioural model for PA under LMM. As shown in (SCHETZEN, 2006), (LJUNG;
FORSSELL, 1999), the DPD inverse model can also be implemented using the same
structure. Therefore, the proposed DPD model is expressed as follows:

(5.21)

x̂ (n) =
M1∑
m=0

K1∑
k=1
k odd

β
(1)
m,kũ (n−m) |ũ (n−m)|k−1 +

M2∑
m=0

L2∑
l=1

K2∑
k=1
k odd

Q2∑
q=2
q even

β
(2)
m,l,k,qũ (n−m)

|ũ (n−m)|k−1 |ũ (n−m− l)|q +
M3∑
m=0

L3∑
l=1

K3∑
k=0
k even

Q3∑
q=1
q odd

β
(3)
m,l,k,qũ (n−m− l)

|ũ (n−m− l)|q−1 |ũ (n−m)|k ,

where ũ(n) and x̂(n) are, respectively, the inverse model normalized input and the output
signals. The parameters M1 and K1 are, respectively, the memory depth and power order
on the first summation. Likewise, M2, L2, K2 and Q2 are, respectively, the memory depth,
envelope time-shift, aligned envelope power order and time-shifted envelope power order
on the second summation. Finally, M3, L3, K3 and Q3 are, respectively, the memory
depth, envelope time-shift, time-shifted envelope power order and aligned envelope power
order on the third summation. This way, the model has NL order given by K + Q =
max{K1, K2 +Q2, K3 +Q3} and memory length M + L = max{M1,M2 + L2,M3 + L3}.
Finally, in the appendix A, the WHFB model is extended to an unified approach that
simultaneously compensates for PA LMM and IQM imbalance.

Advantages of the proposed WHFB DPD model, comparing to other Volterra-based
models:

• The proposed structure includes cross-terms not accounted for with the GMP model,
but is less complex than the triangular FV models, thus becoming computationally
more affordable.

• All model coefficients in eq. (5.21) can be estimated by OLS, since the expression is
linear in the coefficients.

• The proposed model is only based on four parameters, M , L, K and Q, assuming
that all summations in eq. (5.21) have the same parameters.

• The proposed DPD structure reduces to the GMP model when the additional
coefficients become negligible.
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Now, we consider the PA LMM DPD models, from the literature, presented in
section 2.3. Firstly, the WHFB model is compared to load-dependent behavioural models
parametrized by the load reflection coefficient in (CAI et al., 2015), (DHAR et al., 2018),
(DUNN et al., 2017). The proposed DPD approach shows the following advantages:

• No special training procedures are required, i.e., model estimation is performed during
the TX transmission, using the actual modulated signals, without any interruptions.

• The reflection coefficient is implicitly considered in the DPD coefficients, thus its
measurement is not required.

• The proposed model is able to compensate for LMM at the envelope and harmonic
frequency bands as well.

• An extended version of the proposed model can be applied to the joint compensation
of IQM imbalance and PA LMM.

Next, comparing the WHFB model to the DIDO models from the literature (CAI;
GONÇALVES; PEDRO, 2017), (ZARGAR; BANAI; PEDRO, 2015b):

• The reflected signals are implicitly considered in the DPD structure, not requiring
to be individually measured.

• The proposed model shows lower complexity, both in terms of estimation and running
costs.

Given that operational/ environmental conditions, such as LMM, might be intermit-
tent, Figure 5.4 proposes a scheme in which the actual DPD model can be switched between
a baseline and an advanced mode, respectively the MP/GMP and the WHFB models.
While the baseline mode is running in the predistorter, its NMSE is being computed and
compared against a target. Whenever the baseline mode is unable to reach the pre-defined
NMSE level, due to operational conditions, such as LMM, supply voltage drift, temperature
variations, etc., firstly the DPD training block tries to re-estimate the model coefficients,
keeping the same parameters. Secondly, the training block sets new model parameters,
re-estimate and re-compute the NMSE, until no significant improvements are obtained
using the baseline model (LANDIN; ISAKSSON; HANDEL, 2008). Finally, when required,
the algorithm switches to the advanced mode and adjusts the WHFB model parameters.
Once the WHFB model is running, the MP/GMP model performance is periodically
re-evaluated, allowing the DPD scheme to switch back to its less computationally intensive
mode.
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Figure 5.4 – Block diagram of the switching DPD model technique.

5.2.1 WHFB Least Squares Estimation

As described in section 2.6, the WHFB model coefficients are estimated by OLS
regression from measured input/output data. The WHFB PA model in eq. (5.21) consists
of three polynomial functions, thus the coefficient vector to be estimated is built by
concatenation, as follows:

β =


β(1)

β(2)

β(3)

 , (5.22)

where:

β(1) =
[
β

(1)
01 . . . β

(1)
M1K1

]T
, (5.23)

β(2) =
[
β

(2)
0110 . . . β

(2)
M2L2K2Q2

]T
(5.24)

and

β(3) =
[
β

(3)
0101 . . . β

(3)
M3L3K3Q3

]T
. (5.25)
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In order to estimate the DPD coefficients, we collect N samples of the PA input
and normalized output signals. Accordingly, the inverse model regression matrix Φ(ũ),
computed from the PA normalized output samples, is given as:

Φ =
[
Φ(1) Φ(2) Φ(3)

]
, (5.26)

where Φ(i) is the sub-matrix of regressors produced using the ith polynomial term in eq.
(5.21), with i = 1, 2, 3, and given by:

Φ(i) =


Φ(i)(0)

...
Φ(i)(N − 1)

 , (5.27)

where:

Φ(1)(n) =



ũ(n)
...

ũ(n) |ũ(n)|K1−1

...
ũ(n−M1)

...
ũ(n−M1) |ũ(n−M1)|K1−1



T

, (5.28)

Φ(2)(n) =



ũ(n) |ũ(n− 1)|2
...

ũ(n) |ũ(n)|K2−1 |ũ(n− L2)|Q2

...
ũ(n−M2) |ũ(n−M2 − 1)|2

...
ũ(n−M2) |ũ(n−M2)|K2−1 |ũ(n−M2 − L2)|Q2



T

(5.29)

and
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Φ(3)(n) =



ũ(n− 1) |ũ(n)|
...

ũ(n− L3) |ũ(n− L3)|K3−1 |ũ(n)|Q3

...
ũ(n−M3 − 1) |ũ(n−M3)|

...
ũ(n−M3 − L3) |ũ(n−M3 − L3)|K3−1 |ũ(n−M3)|Q3



T

. (5.30)

Finally, the DPD training reference output signal is given by:

x̃ =


x̃(0)
...

x̃(N − 1)

 , (5.31)

whose elements are delayed samples of x̃. Given that the model is linear in the parameters,
OLS minimizes the corresponding error between the modelled and the measured output
signals, leading to the following estimated coefficients vector:

β̂OLS = (ΦHΦ)−1ΦHx̃, (5.32)

where ΦHΦ is assumed as non-singular.

5.3 CONCLUSIONS

This chapter combined both the behavioural modelling framework and prior physical
knowledge about the PA LMM condition to derive a simplified DPD model to compensate
for PA LMM. Besides, the model is linear in the coefficients, which is an important aspect
for DPD. In the next chapter, the large number of coefficients of the WHFB polynomial
model is reduced by applying parsimonious, sparse estimation techniques (DAVENPORT
et al., 2012). Additionally, it is experimentally verified the ability of the proposed model
to compensate for PA LMM.
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6 SPARSE ESTIMATION TECHNIQUES

The inherently large number of degrees of freedom of the WHFB model moti-
vates, in this chapter, the parsimonious, sparse estimation of the model, using least
absolute shrinkage and selection operator (LASSO) and group-wise LASSO, also applied
in compressed-sensing. With these techniques, the number of coefficients of the original
model is significantly reduced, thus reducing the DPD running complexity. Additionally,
this chapter proposes the use of block-oriented LASSO extensions, such as group-LASSO
and sparse-group LASSO, for model dimensioning, i.e., for setting parameters values.
The LASSO is chosen due to its sparsity-inducing properties, convexity, robustness and
strong theoretical guarantees compared to other CS techniques, such as the OMP (ELAD,
2010), (DAVIES; RILLING; BLUMENSATH, 2012). Finally, this chapter also proposes
a simplified, approximate technique, in which the most relevant blocks in the model are
selected prior to running LASSO, resulting in lower estimation cost. Experimental results
demonstrate the ability of the models to adequately linearize PAs subject to LMM.

6.1 SPARSE LEAST SQUARES ESTIMATION

From eq. (2.67), the modelled output signal x̂ can be expressed as a commonly
noisy linear combination of the model regressors, i.e., x̂(β̂) = Φβ̂ + ε, where Φ ∈ CN×R is
the regression matrix, whose columns are polynomial regressors {φr}Rr=1, N is the number
of samples and R, the number of regressors. In section 2.6, the coefficients vector was
found by OLS. In practice, however, as the model dimensions increase, the regression
matrix tends to become ill-conditioned, due to the high correlation among regressors in the
polynomial model, e.g., ũ (n−m), ũ (n−m) |ũ (n−m)|, etc., and among data samples,
e.g., ũ (n−m), ũ (n−m− l), etc. Thus, the accuracy and stability of the OLS estimation
are compromised, as indicated by an exponential growth on the correlation (Gram) matrix
condition number, cond(ΦHΦ) (RAICH; QIAN; ZHOU, 2004). This issue can be alleviated
by reducing the model dimensionality. Sparse estimation seeks an approximation of the
original model, by eliminating the less relevant or redundant model regressors, thus reducing
the initial model dimensionality (DAVENPORT et al., 2012).

The coefficients vector β ∈ CR×1 is said to be k-sparse if ‖β‖0 ≤ k, with k � R,
i.e., having at most k nonzero entries. In this definition, ‖β‖0 is the `0 pseudo-norm, given
by card ( supp(β)).

A sparse approximate model assumes that the measured signal x̃ can be well
approximated by x̂, whose values are generated as linear combination of, at most, k � R
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columns of Φ, i.e.:

(6.1)x̃ ≈ Φβ(k) + εk,

where β(k) belongs to the set of k-sparse vectors from CR×1, and εk is the small error
of the k-sparse approximation, such that ‖εk‖2

2 � ‖x̃‖2
2. The support set supp(β(k)) =

{i : |βi|6= 0, i = 1, . . . , R} is also referred to as the active set of the sparse model.

In practice, subset selection and the resulting sparse models are important due to
the following advantages:

• Find a solution for under-determined systems (section 2.6).

• Avoid the less accurate OLS estimation when the matrix Φ becomes ill-conditioned.

• Reduce the required DSP memory and running computational cost.

• Avoid model over-fitting and improve prediction accuracy.

• Avoid multicollinearity, by eliminating regressors that correspond to linear combina-
tions.

• Improve model interpretation, by only retaining a small subset of regressors that are
more explanatory.

As introduced in section 2.6, high dimensionality is a major challenge for the OLS
estimation of Volterra-based models, leading to the ridge regression estimation. Meanwhile,
several cases admit parsimonious, sparse approximations, in which only a few of the
original coefficients are non-zero, because either the physical system is sparse or the initial
model was over-parametrized. Indeed, usually PA and DPD NL systems admit sparse
approximations (KEKATOS; GIANNAKIS, 2011), since the Volterra kernels do not play
an equally important role in the models. However, it is very difficult to estimate a priori
which terms to be kept, since their contribution to the model is inherently associated
to physical knowledge of the system, such as dynamic characteristics of the PA to be
modelled. Therefore, we resort to the subset selection and sparse techniques described in
this section to derive sparse models for DPD systems. As presented in section 2.6, the
ridge regression, which is based on the minimization of the `2 norm of β, is not able to
induce sparsity. A first approach to explore sparsity among polynomial regressors is to
solve, instead, the `0 pseudo-norm constrained optimization problem, as follows:

minimize
β∈CR×1

1
2N ‖x̃−Φβ‖2

2 subject to ‖β‖0 ≤ t. (6.2)



6.1. Sparse Least Squares Estimation 93

In this case, however, the optimal recovery of the sparse support of β is a non-convex and
combinatorial problem, that usually involves searching over all the

(
R
k

)
possible support

sets, leading to non-deterministic polynomial time (NP-hard) complexity.

For R large, eq. (6.2) is computationally infeasible and most of the attention has
been focused on feasible methods that approximate the optimal solution, such as the
matching pursuit and LASSO regularized regression approaches. Matching pursuit and
orthogonal matching pursuit (OMP) are greedy subset selection methods that iteratively
update one entry of β̂ at a time, until a sparsity constraint is reached, arriving to an
approximate solution to the `0 norm minimization problem (ELAD, 2010), (DAVIES;
RILLING; BLUMENSATH, 2012).

In turn, LASSO penalizes the high dimensionality of the model and induces
sparsity, by efficiently and accurately solving the convex relaxation problem that trades-off
between a quadratic error measure and the `1 norm of coefficients. In this chapter, we
pursue parsimonious, sparse approximations of the WHFB model, by applying the LASSO
technique to the original regression matrix. LASSO is chosen due to its sparsity-inducing
properties, convexity, robustness and strong theoretical guarantees compared to other CS
techniques. As discussed in (ELAD, 2010), (DAVIES; RILLING; BLUMENSATH, 2012),
the greedy pursuit performance guarantees are typically weaker than LASSO, both in
terms of variable selection consistency and accuracy. Also note that CS-based techniques
has the additional advantage of reducing the DPD running complexity, whereas techniques
that carry out a regression basis change, such as the principal component analysis (PCA)
in (LOPEZ–BUENO et al., 2018), (GILABERT et al., 2013) imply an increase in DPD
running cost (SCHUARTZ et al., 2019). Examples in the literature that have applied
LASSO to reduce the dimensionality of PA and DPD models are (ZENTENO et al., 2015),
(KEKATOS; GIANNAKIS, 2011), (WISELL; JALDEN; HANDEL, 2008).

6.1.1 LASSO

In the LASSO approach (TIBSHIRANI, 1996), (HASTIE; TIBSHIRANI; WAIN-
WRIGHT, 2015), a convex relaxation of the problem in eq. (6.2) replaces the intractable
`0 norm constraint by the `1 norm. The LASSO batch estimator minimizes the sum of
squared errors subject to the sum of the absolute value of the coefficients being less than
a constant:

minimize
β∈CR×1

1
2N ‖x̃−Φβ‖2

2 subject to ‖β‖1≤t (6.3)

which can be equivalently expressed in Lagrangian form as:

β̂(λ) = arg min
β∈CR×1

( 1
2N ‖x̃−Φβ‖2

2 + λ‖β‖1), (6.4)
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i.e., as an augmented objective function with a weighted sum of constraints. In this equa-
tion, `1 norm is ‖β‖1 = ∑R

i=1|βi|=
∑R
i=1

√
<{βi}2 + ={βi}2. Without loss of generality,

assume that the matrix Φ is standardized, such that each of its columns φj is centered,
i.e., 1

N

∑N
i=1(φj)i = 0 and normalized, i.e., 1

N
φHj φj = 1, for all j = 1, . . . , R. Also x̃ is

centered, i.e., 1
N

∑N
i=1 x̃i = 0. These centering conditions allow to omit the intercept term

β0. The LASSO regression induces sparsity through a `1 norm penalty function, in which
λ ≥ 0 is the sparsity parameter that trades-off between sparsity and prediction accuracy.
The optimization problem in eqs. (6.3) and (6.4) is also known as basis pursuit denoising
and combines convexity and sparsity. Solving for β̂(λ) is a quadratic programming problem
with linear inequality constraint and efficient and stable convex optimization techniques
can be used.

Figure 6.1 – Least squares regularization using `1- (left) and `2-norm (right).

Figure 6.1, from (FRIEDMAN; HASTIE; TIBSHIRANI, 2010), illustrates the
sparsity inducing property of LASSO, comparing it to the ridge regression solution from
eq. (2.70). For a two-dimensional solution space, the figure represents the elliptical least
squares error contours, centered at the optimal least squares solution β̂OLS, approaching
the `1 regularization diamond and `2 regularization ball (ridge regression), respectively,
given by |β1|+|β2|≤ t and β2

1 + β2
2 ≤ t. The error contours often touch the `1 diamond at

a corner, where one (or more) parameters are zero, whereas the `2 constraint region is
spherical.

One important result is that β̂(λ) is the problem solution if and only if it satisfies
the Karush-Kuhn-Tucker (KKT) conditions (TIBSHIRANI, 1996). This implies that the
correlation between each regressor φi to be included in the model and the residual must
exceed the threshold value λ, otherwise β̂(λ)

i is set to zero, i.e.:
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(6.5)1
N
|φHi (x̃−Φβ̂(λ))|> λ,

with i = 1, . . . , R. The idea is that if β̂(λ)
i cannot move in any direction away from zero

without increasing the penalty more than improving the fit, then β̂(λ)
i = 0 is its global

minimum. Note that the solution of one β̂(λ)
i is dependent upon all the other components

of β̂(λ), therefore there is no closed form solution.

6.1.2 Group-wise LASSO

The LASSO subset selection is based on the importance of each regressor, individu-
ally, to the model. Group sparsity can also be introduced in the model, taking advantage of
prior knowledge of the physical system. In this work, block-wise LASSO extensions, such as
group-LASSO (KRONVALL et al., 2016), (MEIER; GEER; BUHLMANN, 2008), (YUAN;
LIN, 2006) and sparse-group LASSO (SIMON et al., 2013), are applied for selecting the
dominant blocks of regressors from the initial model. Consider a linear regression model
with R regressors divided into G non-overlapping groups, such that the model is written
as, (YUAN; LIN, 2006):

(6.6)x̃ =
G∑
g=1

Φgβg + ε,

where Φg contains the gth group of regressors from Φ and βg is the corresponding coefficients
vector. Without loss of generality, assume that the sub-matrices Φg are standardized and x̃
is centered. In this case, a single-level selection decides which groups to be chosen, whereas
a bi-level selection allows to decide which variables are more relevant within each of the
groups.

The following group-wise LASSO techniques are considered:

• To explore the model block-wise sparsity, the group-LASSO criterion divides the R
regressors of the model into G disjoint groups (YUAN; LIN, 2006). Group sparsity
is achieved by minimizing the following cost function:

1
2N ‖x̃−

G∑
g=1

Φgβg‖2
2 + λ

G∑
g=1

√
dg‖βg‖2, (6.7)

where dg is the length of the corresponding coefficients vector, βg, and λ is the
group-LASSO sparsity parameter.

From KKT, a condition similar to eq. (6.5) is valid for group-LASSO:
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1
N
‖ΦH

g (x̃−
G∑
j=1

Φjβ̂
(λ)
j )‖2 > λ

√
dg. (6.8)

The penalty function is comprised of the `2 norm of the groups. The grouping of
variables is useful, e.g., in cases when variables are highly correlated with each other.
Group LASSO focuses on groups of variables instead of on individual variables. This
way, group-LASSO is unable to perform variable selection at the individual level:

– Group LASSO sets all coefficients within a group either to zero or non-zero
values, i.e., is not able to achieve sparsity within the group.

– The groups need to be predefined, i.e., the regression model does not provide a
direct mechanism to obtain the grouping.

• To explore both the model block-wise sparsity and the regressors sparsity within
each block, the sparse-group LASSO (SGL) criterion minimizes the following cost
function (SIMON et al., 2013):

(6.9)
1

2N ‖x̃−
G∑
g=1

Φgβg‖2
2 + (1− α)λ

G∑
g=1

√
dg‖βg‖2

+ αλ
G∑
g=1
‖βg‖1,

where the sparse group LASSO uses a weight parameter α ∈ [0, 1] for combining the
LASSO and group LASSO penalties. Equivalently, the parameters λ1 = (1−α)λ and
λ2 = αλ could be defined. A similar method is the elastic net regularization, proposed
in (ZOU; HASTIE, 2005). In both cases, the `1/`2 regularization is desirable in many
applications of regression and classification.

6.1.3 Coordinate-descent Algorithm

The LASSO objective function in eq. (6.3) can be split into a differentiable squared
error function 1

2N ‖x̃−Φβ‖2
2 and a non-differentiable regularization term, λ‖β‖1, which is

strictly convex in each coordinate. Thus, the LASSO objective function can be minimized
coordinate-wise, converging to the global minimum, under relatively mild conditions. The
coordinate-descent (CD) algorithm, represented in Figure 6.2, iteratively cycle through
the regressors of Φ, while minimizing the objective function with respect to the coefficient
βi, all other coefficients are holding fixed at their most recent values. Let φi denote the ith

column of Φ and Φ−i denote all the remaining columns, except φi. Then the problem is
expressed as:
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β̂
(λ)
i = arg min

βi∈C
( 1
2N ‖ri − φiβi‖

2
2 + λ|βi|+λ‖β−i‖1), (6.10)

where ri = x̃−Φ−iβ−i is the residual between the response x̃ and the current fit using
fixed β−i and Φ−i. The solution is found by computing the sub-differential and equating
to zero, leading to the soft-threshold function, as follows:

(6.11)β̂
(λ)
i = sgn(β̂OLSi )

(
|β̂OLSi |−λ2

)
+
,

where β̂OLSi = 1
2N r

H
i φi, sgn is the complex signum function and

(
|β̂OLSi |−λ

2

)
+
corresponds

to max(|β̂OLSi |−λ
2 , 0).

The algorithm applies the soft-threshold update to each element of β at a time,
then updating the residual and the OLS estimates, until converge is achieved.

Coordinate-descent algorithm
Input Φ, x̃, λ
Output β̂

1: Initialize β = 0
2: repeat
3: for i = 1, . . . , R do
4: Compute the residual: ri = x̃−Φ−iβ−i
5: Compute the OLS coefficient: βOLSi = 1

2N r
H
i φi

6: Update β(λ)
i = sgn(βOLSi )

(
|βOLSi |−λ

2

)
+

7: end for
8: until convergence
9: β̂ = β

10: return β̂

Figure 6.2 – Coordinate-descent algorithm.

Similarly to the LASSO coordinate-descent algorithm, the group coordinate-descent
algorithm optimizes the objective function with respect to a single group at a time, and
cycles through the groups until convergence:

β̂(λ)
g = arg min

βg∈Cdg×1
( 1
2N ‖rg −Φgβg‖2

2 + λ
√
dg‖βg‖2 + λ

G∑
k=1
k 6=g

√
dk‖βk‖2), (6.12)

where rg = x̃−∑G
k=1,k 6=g Φkβk is the residual between the response x̃ and the current fit

using ∑G
k=1,k 6=g Φkβk.
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The solution is given by the multivariate soft-threshold function, as follows:

(6.13)β̂(λ)
g =

β̂OLSg

‖β̂OLSg ‖2

(
‖β̂OLSg ‖2 −

λ
√
dg

2
)

+
,

where
(
‖β̂OLSg ‖2−

λ
√
dg

2

)
+
corresponds to max(‖β̂OLSg ‖2−

λ
√
dg

2 , 0) and β̂OLSg = 1
2N r

H
g Φg.

The algorithm applies the multivariate soft-threshold update repeatedly, updating the
residual and the OLS estimates, until converge is achieved.

6.1.4 Choice of the Regularization Parameter

Choosing the parameter λ is fundamental to the performance of LASSO, since it
controls the shrinkage and variable selection. There are two major approaches for choosing
the regularization parameter: the minimization of some information criterion, e.g., AIC,
and cross validation, as described next.

• Cross validation: the regularization parameter is chosen by fitting the model to a
subset of the data (known as training set) and validating the choice through the
remaining of the data (test set). The most common approach uses the K-fold cross
validation, in which the data set is partitioned into K sub-sets, one of them is retained
as test set and the remaining as training sets (ARLOT; CELISSE, 2010), (HASTIE;
TIBSHIRANI; WAINWRIGHT, 2015).

• Information criteria: using the AIC score (AKAIKE, 1974), each candidate solution
is evaluated using eq. (3.4), such as, for example, in (TOSINA et al., 2015) and
(BANKS; JOYNER, 2017). The AIC is a widely used selection criterion for choosing
the best approximating model from several competing models fitted to a dataset.
Note that the AIC trades-off between the residual sum-of-squares and the number of
estimated coefficients (BANKS; JOYNER, 2017). As the model accuracy increases,
the logarithmic term becomes more negative. The best λ value, denoted by λo,
corresponds to the smallest AIC score. Observe that, for sample size N small
compared to the number of regressors, it is recommended instead to use the corrected
AIC (HURVICH; TSAI, 1989) score.

Finally, the alternative L-curve method traces a parametric curve of the residual
error versus the solution norm on a log-log plot. The residual error norm, log

(
1

2N ‖x̃−Φβ‖2
2

)
,

is placed on the horizontal axis, whereas the solution norm, log‖β‖1, is on the vertical
axis. Their values are computed for predefined values of the regularization parameter
λ. For lower λ values, the solution norm significantly decreases as λ is increased, while
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the residual error is kept almost the same. For higher λ values, the solution norm is not
significantly reduced as λ is increased, but the residual error rapidly increases. At the
corner of the curve, the regularization value minimizes the norm of the solution, subject
to the smallest possible residual error.

6.2 PA/DPD BEHAVIOURAL MODEL SIZING

Besides determining the best pruned-Volterra model structure that accurately
describes an unknown NL PA or DPD system, another challenging task involving a
Volterra-based behavioural model is its model sizing, or dimensioning, i.e., setting suitable
values for the parameters of a given model structure.

Typically, model sizing is a very costly multi-dimensional combinatorial problem,
performed by exhaustive search (try-and-error) (GOTTHANS; BAUDOIN; MBAYE, 2013),
(HANZALA; SHARAWI; HAMMI, 2015). This section briefly presents some of the major
state-of-the-art model sizing approaches, classified into heuristic search, orthogonalization
and approximate techniques. The aim is to contextualize the CS-based model sizing
technique that is proposed in the next sections of this chapter for the WHFB model. The
proposed CS-based (sparse) sizing approach takes advantage of the block-wise modular
structure proposed for the model to select the most relevant model blocks, using Group-
LASSO (KRONVALL et al., 2016), (MEIER; GEER; BUHLMANN, 2008), (YUAN; LIN,
2006) and Sparse-group LASSO (SIMON et al., 2013). This sparse sizing approach is
presented and evaluated in details in sections 6.3 and 6.4.

6.2.1 Heuristic Search

A variety of heuristic search techniques have been proposed in the literature, in
the context of Volterra series model sizing, such as hill-climbing (WANG et al., 2018),
particle swarm optimization (PSO)(MALHOTRA; SAPPAL, 2019), (ABDELHAFIZ et
al., 2013) and evolutionary algorithms (LI et al., 2016). Although these techniques reduce
the computational cost that is required by the exhaustive search approach, the main
disadvantage in the context of DPD of heuristic techniques is still their high computational
cost. In fact, due to the re-estimation of the residual sum of squares (RSS) of the model
for each point in the search grid, these approaches become very costly and suffer from
scalability issues (WANG et al., 2016).

6.2.2 Orthogonalization

Another approach for model sizing is based on an orthogonal regression matrix,
which implies that the model estimation is separable (and also more robust). Using an
orthogonal regression matrix, it is possible to separate the effect (or contribution) of
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each regressor/ block of regressors to the performance of the model, thus, gradually
add regressors/ blocks and incrementally run the least squares estimation of the model
coefficients until arriving to the most desirable model sizing. In some particular cases,
(QUINDROIT et al., 2013), (YANG et al., 2013), (MKADEM; WU; BOUMAIZA, 2012),
(SCHUMACHER; LIMA; OLIVEIRA, 2015), the models are developed in terms of an
orthogonal set of polynomials, but this applies only to certain probability distributions of
the input signal and is not assumed in the thesis. A more general approach is to have a
closed-form model expression that is not based on orthogonal polynomials and use the
QR or SVD decompositions to orthogonalize the original regression matrix, eliminating
the correlation among its regressors. Firstly, let us consider the QR decomposition of the
regression matrix in eq. (2.68). The modified Gram-Schmidt procedure (BJORCK, 1967)
decomposes the original N ×R matrix Φ, as follows:

Φ = ΘR, (6.14)

where the N × R matrix Θ has orthonormal columns and the R × R transition matrix
R is upper triangular. The transformed model R× 1 coefficients vector, β̂′OLS, is related
to the original one from eq. (2.69) by: β̂OLS = R β̂

′
OLS. The least squares estimation of

the transformed model is separable, since the correlation matrix ΘHΘ equals the R×R
identity matrix.

Also note that the QR decomposition allows a more robust LS estimation of the
model coefficients, because Θ is well-conditioned. In the context of PA modelling and
DPD, the QR decomposition is applied for model sizing in (TARVER et al., 2017), (DEVI;
KURUP, 2017), (FAIG et al., 2019), (YU; JIANG, 2013). (QIAN et al., 2014), (PIAZZA;
RAO; OTTERSTEN, 2013). The following steps illustrate the procedure:

Initialization: Initial values for NL order K and memory depth M are chosen. The
N ×R1 regression matrix block Φ(1) is assembled and ortho-normalized, producing
Θ(1).

Step 1) For initial model sizing K and M

β̂
′

OLS(1) = ΘH
(1)x̃, (6.15)

x̂(1) = Θ(1)β̂
′

OLS(1), (6.16)

ê(1) = x̃− x̂(1), (6.17)
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where Θ(1) is the orthonormal matrix with the initial model sizing, β̂′OLS(1) is the
transformed model coefficients vector at step 1 and ê(1) is the residual error signal.
Regressors can be removed or added from/to Θ(1), since the residual errors are
orthogonal to each other. Note that in eq. (6.15) the coefficients are decoupled, i.e.,
can be obtained individually by β̂ ′OLS(i) = θHi x̃.

Step 2) Until the residual error is above a given target, assemble a new N ×R2 regression
matrix block Φ(2), ortho-normalize it with respect to the previous ones and estimate
the corresponding incremental coefficients, as follows:

β̂
′

OLS(2) = ΘH
(2)ê(1), (6.18)

x̂(2) =
[
Θ(1) Θ(2)

] β̂′OLS(1)

β̂
′

OLS(2)

 , (6.19)

ê(2) = x̃− x̂(2). (6.20)

Next, let us discuss the SVD decomposition of the regression matrix Φ. The SVD
procedure decomposes the original N ×R matrix Φ, as follows:

Φ = UΣV H , (6.21)

where U and V are square and unitary (complex-valued orthogonal) matrices of size,
respectively, N ×N and R×R, and Σ is a N ×R diagonal matrix. Similarly, the R×R
correlation matrix ΦHΦ can be written as ΦHΦ = V Σ2V H , where the columns of
V contain the eigenvectors of ΦHΦ and the R × R matrix Σ2 = diag(λ1, . . . , λR), the
corresponding eigenvalues.

This way, the most significant regressors correspond to the largest singular values.
Using the matrices V and Σ2, sort the regressors by their importance to the model and
finally arrive to an appropriate model sizing, by only keeping the most relevant regressors
(dimension grading) (LOPEZ–BUENO et al., 2018), (GILABERT et al., 2013).

Although orthogonalizing the regression matrix Φ simplifies the estimation and
model sizing tasks associated to the model in eq. (6.1), in the context of DPD the transfor-
mation of the original, observable regression basis, Φ, into an orthogonal basis Θ severely
impacts the running cost of the model, since a matrix-to-matrix multiplication is required
before the DPD filtering of the input signal (SCHUARTZ et al., 2019).
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6.2.3 Approximate Techniques

The techniques presented so far are computationally very intensive. There are
also some alternative, approximate methods proposed in the literature that attempt to
arrive to a model sizing estimate in less costly ways. Firstly, the NL order K of the model
can be approximated by assuming that the static non-linearity parcel dominates the NL
behaviour (FEHRI; BOUMAIZA, 2013). Thus, setting the memory indexes to zero, the
Volterra-based models are reduced to the static power series:

(6.22)x̂S(n) =
K∑
k=1
k odd

βkũ(n) |ũ(n)|k−1 ,

where βk corresponds to the Volterra coefficients with all m = 0. The power series model
output x̂S(n) is used to estimate the NL order, by computing the RSS with increasing
orders, until only marginal improvements are achieved or a given threshold is reached.

Likewise, the memory depth of the model can be approximated directly from the
input/output dataset, therefore avoiding try-and-error or several model estimations. The
major approximate approaches in this case are the Lipschitz quotients (HE; ASADA,
1993), (O’BRIEN et al., 2006), (DOOLEY et al., 2015), z-score technique (LI; ZHU,
2020) and other empirical methods (CHOUCHANE; BOUZRARA; MESSAOUD, 2018),
(MURILLO; YAGUE-JIMENEZ, 2017),(LIU et al., 2007). Next, we describe the estimation
of the required input sample delays using the Lipschitz quotients (HE; ASADA, 1993).
Let us consider that the Lipschitz quotients are computed for a range of values of the
parameter l, from zero to a maximum predefined value. For each value of l, the Lipschitz
quotients q(l)

ij are computed using samples i and j, distant to each other up to l samples,

Figure 6.3 – Lipschitz quotients versus input delay.
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for i, j = 1, . . . , N , by the expression:

(6.23)q
(l)
ij = |x(i)− x(j)|

|u(i)− u(j)| , i 6= j; i, j = 1, . . . , N

where |u(i)− u(j)| is the distance between two samples u(i) and u(j) of the input signal
and |x(i)− x(j)|, the distance between two output samples. Next, keep only the p largest
quotients among all q(l)

ij for each l, with p a small fraction of N , and calculate for l the
average Lipschitz quotient, by:

(6.24)q̄(l) =
( p∏
k=1

√
lq

(l)
k

)1/p

where q(l)
k ∈ {p largest quotients q(l)

ij }. Repeating this process for the range of values of l
and plotting q̄(l) versus l provides a knee on the curve that corresponds to the maximum
lag of the input variable that should be chosen. In short, if l is the optimal lag then q̄(l+1)

is very close to q̄(l), and q̄(l−1) is much larger than q̄(l).

As a numerical example, Figure 6.3 shows the Lipschitz quotients versus the memory
depth of the input signal, computed using a measured PA input/output dataset. The
higher the number of relevant input delays that are missing, the larger the Lipschitz
quotient, while the addition of redundant input delays does not change significantly the
Lipschitz quotient value.

6.3 PROPOSED WHFB BLOCK STRUCTURE

In addition to LASSO, block-wise LASSO extensions (such as group-LASSO and
SGL) are also considered for selecting the dominant blocks of regressors from the initial
WHFB model and discarding unnecessary blocks. This procedure gives a set of the most
relevant model blocks, leading to a systematic model sizing approach.

To this end, the model in eq. (5.21) has to be re-arranged into a block-wise modular
structure. The WHFB regression matrix is firstly divided into the MP, GMP and WHFB-
type disjoint sub-matrices. To simplify the notation, the same parameters M , K, L, Q
are assumed in the sub-matrices. Next, each of the sub-matrices is further divided into
non-overlapping blocks of regressors. The procedure is described in more details as follows:

Step 1) The regression matrix Φ corresponding to eq. (6.1) is partitioned into sub-
matrices that contain, respectively, the MP, GMP and WHFB-type regressors nested
into Φ, avoiding any repetition of regressors:



104 Chapter 6. Sparse Estimation Techniques

Φ =
[
Φmp Φgmp Φwhfb

]
. (6.25)

The sub-matrix Φmp is given by eq. (5.28), whereas Φgmp corresponds to eq. (5.29),
with K2 = 1 and eq. (5.30), with Q3 = 0. Φwhfb corresponds to eqs. (5.29)-(5.30),
otherwise. Note that this approach reduces to the MP or GMP models, when the
additional WHFB terms become negligible.

Step 2) Each of the sub-matrices is further partitioned into disjoint blocks. Each block
is defined by a fixed value of one or more parameters in the polynomial model. In
this work, the parameter that is chosen to be fixed is the sample delay between the
input and output signals. This choice is based on the reasonable assumption that the
correlation between regressors, such as ũ(n −m)|ũ(n −m)|(k−1) and the response
signal x̃(n) is less significant as the sample delay between them increases, which is
based on the physical characteristics of the PA (STAUDINGER; NANAN; WOOD,
2010) and is also verified experimentally. Therefore, the sub-matrices are divided in
blocks, as follows:

- The MP sub-matrix is given by:

Φmp = {Φ(i)
mp}M+1

i=1 , (6.26)

where i is the block index for m = 0, . . . ,M and Φ(i)
mp contains the ith group of

regressors of Φmp. Inside each MP block, regressors are ũ (n−m) |ũ (n−m)|(k−1),
where k = 1, . . . , K, with k odd, n = 1, . . . , N and block size is N × (K + 1)/2.

- The GMP sub-matrix is given by:

Φgmp = {Φ(i)
gmp}M+1

i=1 , (6.27)

where i is the block index for m = 0, . . . ,M and Φ(i)
gmp contains the ith group of re-

gressors of Φgmp. Inside each GMP block, regressors are ũ (n−m) |ũ (n−m− l)|q,
where q = 2, . . . , Q, with q even, l = −L, . . . L, l 6= 0, n = 1, . . . , N and block size
is N ×QL. Note that if k = 1 or l = 0 the corresponding terms would reduce to
MP terms, so these values are neglected.

- In the WHFB sub-matrix Φwhfb, the sample delays m and l in eq. (5.21) are
replaced by v = m+ l, in order to avoid the repetition of terms. The WHFB blocks
are defined as:
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Φwhfb = {Φ(i)
whfb}M+2L+1

i=1 , (6.28)

where i is the block index for v = −L, . . . ,M + L and Φ(i)
whfb contains the ith

group of regressors of Φwhfb. Inside each WHFB block, the regressors are given by
ũ (n− v) |ũ (n− w)|k |ũ (n− v)|(q−1), where w = max(0, v−L), . . . ,min(M, v+L),
k = 2, . . . , K, with k even, q = 1, . . . , Q, with q odd, n = 1, . . . , N and block size
is N × (min(M, v + L)−max(0, v − L))(K − 1)(Q+ 1)/4. Note that if k = 0 the
corresponding terms would reduce to MP terms.

The procedure proposed in eqs. (6.26)-(6.28) leads to a WHFB modular structure
that is suitable for the Group-LASSO and SGL sparse estimation. These techniques take
advantage of the modular structure of the WHFB model, but become computationally
expensive for large data sets. In the next section, a simplified, approximate technique is
developed, in which the most relevant WHFB blocks are selected prior to running the
LASSO estimation, resulting in lower estimation cost than other techniques.

6.4 PROPOSED SPARSE BLOCK SELECTION ALGORITHM

The proposed technique follows a divide-and-conquer (CHEN; XIE, 2014) approxi-
mate approach, firstly selecting the most relevant blocks of the WHFB regression matrix
Φ. In order to select the most relevant blocks, the proposed technique computes, for each
WHFB block, the norm of the correlation vector, which contains the correlations of the
regressors in the block to the response signal. Then, LASSO is applied only to the blocks
that are mostly correlated with the response signal, as detailed in the algorithm described
next. By performing the model dimensioning prior to LASSO, a more affordable regression
matrix is achieved and the estimation cost is reduced.

The following inputs are required by the algorithm:

• The N-length complex sample training datasets {ũ(n), x̃(n)}N−1
n=0 ,

• The WHFB initial model size M , K, L and Q,

• The initial model block structure, for example: M +1 MP blocks, M +1 GMP blocks
and M + 2L+ 1 WHFB blocks,

• The block correlation thresholds Tmp, Tgmp and Twhfb for the MP, GMP and WHFB
sub-matrices,

• The LASSO sparsity parameter vector λ,
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Figure 6.4 – Proposed sparse block selection algorithm.
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• The target ACPR, ACPRo.

As shown in Figure 6.4, the algorithm comprises the following steps:

Initialization: The proposed algorithm computes the WHFB regression matrix Φ from
eqs. (6.26)-(6.28), where each sub-matrix is partitioned into blocks, as described in
the previous section.

Step 1) The norm of the correlation vector of each block Φ(g) of each sub-matrix and
the response signal x̃ is computed as ‖ΦH

(g)x̃/N‖2/dg, where dg is the number of
regressors in block g;

Step 2) A threshold function selects the block Φ(g) of each sub-matrix in the model
only if its correlation vector norm is larger than the corresponding threshold value,
i.e., Tmp, Tgmp or Twhfb, otherwise the block is discarded. For each sub-matrix, the
indexes of the selected blocks are stored in the support set G;

Step 3) The LASSO technique is applied to ΦG containing the groups in the solution
set in G and the best value of the sparse parameter, λo, is obtained using the AIC
score in eq. (3.4);

Step 4) The support set R of active regressors is obtained from the LASSO selection,
i.e., for which β̂(λo) 6= 0. The selected coefficients are then re-estimated using OLS, as
recommended in (MEINSHAUSEN, 2007). After the algorithm is complete, R, and
β̂(λo) are copied to the predistorter function. The algorithm compares the resulting
ACPR with its target and decides whether to adjust initial parameters and repeat,
or terminate. The out-of-band ACPR metric is defined in eq. (3.2). Additionally, the
DPD performance is also evaluated in terms of the in-band NMSE metric, defined in
eq. (3.5).

As described in this section, LASSO and its extensions achieve a sparse, parsimo-
nious WHFB model estimation that reduces the DPD running cost and alleviates the
regression matrix ill-conditioning.

The next section presents the experimental results.
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6.5 EXPERIMENTAL VALIDATION

Measured data for PA LMM, obtained with the experimental test set-up described
in section 3.1, is used to validate the DPD techniques proposed in chapters 5 and 6.
The WHFB model from chapter 5, as well as sparse WHFB models from chapter 6, are
compared in terms of numbers of coefficients, ACPR and NMSE, to well-known DPD
models, such as the MP and GMP, and to the Volterra-PARAFAC and Laguerre-Volterra
models from chapter 4. Also, the block selection sparse algorithm proposed in section 6.4
is validated in this section.

6.5.1 DPD Model Comparison

This subsection compares the ability of the MP, GMP and WHFB polynomial
models, based in eqs. (2.9), (2.17) and (5.21), to linearize the PA under load mismatch.
The results are based in experimental data measured as described in section 3.1 , with
input power Pin= −8 dBm, signal bandwidth BW= 20 MHz and load mismatch VSWR
of 4:1. The original dense MP, GMP and WHFB models are considered in this item,
i.e., sparsity is not explored, and the model coefficients are estimated by OLS using the
Gram-Schmidt factorization, to avoid the ill-conditioned inversion of the matrix ΦHΦ.
Figure 6.5 presents the residual ACPR values after linearization versus the numbers of
regressors, comparing PA perfectly matched and VSWR=4:1 load mismatched conditions.
The model parameters are determined as follows. The best combinations of MP parameters
M and K, in terms of the residual out-of-band distortion, is chosen for each number of
regressors (M + 1)× (K + 1)/2. Both parameters are swept from 1 to 10. The ACPR is
gradually reduced, until a region of diminishing improvements, i.e., a MP plateau region is
reached. At this point, no further significant enhancements are provided by the MP model,
thus, the GMP model is introduced, by keeping M=7, K=9 and varying the parameter L
from 1 to 6. A GMP plateau region is reached for L=5 and the WHFB model is introduced,
keeping L=5 and sweeping the parameter Q from 1 to 6. As illustrated in the figure, lower
values of L lead to a compromised performance of the WHFB model and, finally, Q=5 is
chosen.

As shown in Figure 6.5, in order to comply with an ACPR level ranging from −45
to −50 dBc, imposed by wireless standards (SESIA; TOUFIK; BAKER, 2009), the MP
and/or GMP models suffice in the perfectly matched PA case, whereas, only the WHFB
model is enough under load mismatch conditions. In Figure 6.6, the residual spectral
regrowth obtained with the MP, GMP and WHFB DPD models under load mismatch
are compared, assuming model parameters M= 7, K= 9, L= 5 and Q= 5. The ACPR
with the MP and GMP models are as high as −42.0 and −44.7 dBc, respectively, while
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Figure 6.5 – Comparison of DPD model performance for load matched and LMM PA.

the WHFB achieves −53.3 dBc. The NMSE with the MP, GMP and WHFB models are,
respectively, −29.5, −32.7 and −33.9 dB and the numbers of coefficients are 40, 360 and
1320, respectively. Figure 6.7 shows the constellation diagrams, after demodulating the
OFDM symbols, of the MP, GMP and WHFB DPD output signals. The corresponding
EVMs of the output signals without DPD and with the MP, GMP and WHFB DPD models
are, respectively, 16.8%, 3.5%, 2.4% and 1.7%. Comparing the ACPR, NMSE and EVM
values of the models, we can see that both in-band and out-of-band distortions are reduced
with the WHFB model. Out-of-band distortions are reduced even more significantly, which
is important, since the system must obey spectral emission masks. The following sub-
sections analyse the linearization performance versus the numbers of coefficients for sparse
estimation techniques, with initial model parameters M= 7, K= 9, L= 5, Q= 5 and N=
30,000 training samples.

6.5.2 LASSO Results

The large size of the WHFB model implies increased DPD running cost and the
risk of ill-conditioning of the regression matrix during the estimation, thus motivating
sparse selection techniques. The LASSO optimization problem in eq. (6.3) is applied to
Φ in eq. (5.21), with the model parameter values defined above. First, Φ is standardized
and the output signal is centered, then the LASSO algorithm is run for sparse parameter
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Figure 6.6 – Residual spectral regrowth for LMM PA with WHFB model.

Figure 6.7 – Constellation diagram for LMM PA with WHFB model.

values defined in the vector λ. The DPD models were implemented using MATLAB
and the LASSO, using the SLEP 4.1 tool (LIU; JI; YE, 2009), although other methods
could be used (EFRON et al., 2004), (FRIEDMAN; HASTIE; TIBSHIRANI, 2010). In
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Figure 6.8 – NMSE (dB) and AIC versus number of coefficients (sweep λ).

Figure 6.8, the knee in the NMSE curve indicates sparse solutions for which very small
degradations of the model performance are observed. This is confirmed using the AIC
curve in the same figure, i.e., a good trade-off between accuracy and complexity is achieved
close to the minimum AIC value. Note that a value of λ that is too large can prevent
the LASSO from capturing the signal behaviour, while too small, can lead to over-fitting.
The best sparsity parameter λo is determined by the AIC score from eq. (3.4). Figure 6.9
illustrates the residual spectral regrowth achieved with the GMP, WHFB LASSO, WHFB
group-wise LASSO and the proposed algorithm, all for approximately the same number
of coefficients. Firstly considering LASSO, for the selected value λo=1, LASSO is able to
reduce the number of coefficients in the WHFB model from 1320 to 356, thus reducing
the DPD running cost, while yielding a ACPR performance of −49.4 dBc and NMSE
of −33.5 dB. Note that λo=1 for LASSO is chosen by the AIC criterion and resulted in
approximately the same number of coefficients as the GMP model. Figure 6.10 shows the
constellation diagrams of the WHFB and WHFB LASSO DPD output signals. As can be
seen, their constellation diagrams are very similar; thus, the in-band performance of the
sparse WHFB model is very close to the WHFB model. The EVM of the WHFB LASSO
output signal is 1.9%. The LASSO sparsity effect, i.e., the reduction in the number of
coefficients, is approximately 4:1 in this case. Note that the model coefficients selected by
LASSO are post-estimated using OLS, as recommended in the literature. The GMP is
known as providing a good trade-off between model complexity and performance in the
load matched case (TEHRANI et al., 2010), but showed performance degradation under
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load mismatch.

6.5.3 Group-LASSO and Sparse group-LASSO Results

In the next two subsections, group-wise LASSO extensions are considered. For this,
the modular WHFB structure in eqs. (6.26)-(6.28) is obtained by partitioning Φ into MP,
GMP and WHFB sub-matrices and then into M + 1, M + 1 and M + 2L + 1 blocks,
respectively. In this subsection, group-LASSO and SGL techniques from eqs. (6.7) and
(6.9) are applied to the WHFB model, the corresponding sparsity parameters are optimized
using the AIC score and finally adjusted to result in approximately the same number
of coefficients as with LASSO. Returning to Figure 6.9, the residual spectral regrowth
obtained with group-LASSO and SGL can be also visualized. Group-LASSO and SGL are
able to reduce the number of coefficients in the WHFB model from 1320 to 414 and 380,
respectively, while yielding an ACPR performance of −45.5 and −49.2 dBc and NMSE of
−33.2 and −33.6 dB, respectively. Note that using group-LASSO only the sparsity among
blocks is explored, i.e., once a block is selected, all regressors within the block are selected,
thus the benefit is expected to be less attractive than with SGL. The results show that
SGL provides a better solution than group-LASSO, both in terms of accuracy and sparsity,
but this is at the expense of a higher estimation cost, needed for optimizing both the
group and regressor sparsity parameters λ and α in a two-dimensional grid. In the next
subsection, the proposed algorithm is considered.

6.5.4 Proposed Block Selection Sparse Algorithm Results

This item illustrates the algorithm proposed in section 6.4. As described therein,
the norms of the block correlation vectors are compared to the thresholds Tmp, Tgmp or
Twhfb, in order to find the interval of blocks in each sub-matrix that is highly correlated
to the output signal and neglect the tails in the initial model. The selected blocks in each
sub-matrix are shown in gray in Figure 6.11, corresponding to a simple model dimensioning
approach. The initial assumption that the correlations with the output signal become less
important as the block lagging/leading increases (STAUDINGER; NANAN; WOOD, 2010)
is verified, although the blocks in Φ are correlated to each other. Note that the algorithm
can refine the threshold values, after the correlation norms are calculated, in order to adjust
the selection to the interval of dominant blocks. Also note that the algorithm can further
sub-divide each selected block, allowing the dimensioning of other model parameters, such
as the model power order. For simplicity, this is not explored here. In Figure 6.11, the
threshold values are set to 0.15 and the initial model size is shrunk from 1320 to 715
regressors, thus LASSO is run over a more affordable regression matrix. In the LASSO
step, several values of the sparse parameter are considered and, in this subsection, λo=0.7
is chosen based on AIC. Finally, back to Figure 6.9, the residual spectral regrowth obtained
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Figure 6.9 – Residual spectral regrowth for LMM PA with sparse WHFB.

Figure 6.10 – Constellation diagram for LMM PA with WHFB LASSO.

with the proposed algorithm is illustrated. After completing the proposed algorithm, the
number of coefficients in the WHFB model is reduced from 1320 to 350, while achieving
an ACPR performance of −48.6 dBc and NMSE of −33.5 dB. The summary of the ACPR
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and NMSE results achieved with the techniques from subsections 6.5.1 to 6.5.4 is provided
in Table 6.1. Note that in the table, LASSO with λ=2 is also provided for comparison.
This value of lambda reduces the number of coefficients, but also the model performance,
not being optimal in terms of AIC. The table also includes the VP and LV models from
chapter 4, showing that the sparse WHFB model adequately compensate the LMM PA
under study, resulting in lower numbers of coefficients than with VP and LV models. The
computational cost of the LASSO and group-wise LASSO solutions is considered in the
next subsection.

Table 6.1 – DPD performance for LMM PA with WHFB and sparse estimation (M= 7, K= 9, L= 5, Q=
5, N= 30,000).

Num. coeffs. Max. ACPR
(dBc)

NMSE
(dB)

No DPD - -23.2 3.3
MP OLS 40 -42.0 -29.5
GMP OLS 360 -44.7 -32.7
WHFB OLS 1320 -53.3 -33.9
WHFB LASSO (λo=1) 356 -49.4 -33.5
WHFB LASSO (λ=2) 202 -47.4 -33.3
WHFB Group-LASSO 414 -45.5 -33.2
WHFB SGL 380 -49.2 -33.6
WHFB Prop. alg. (λo=0.7) 350 -48.6 -33.5
VP (ALS) (Mk = [5, 5, 4, 2, 2])
(Rk = [1, 13, 45, 32, 30])

501 -43.5 -33.6

LV (Mk = [5, 5, 4, 3, 2])
(Fk = [5, 4, 3, 1, 1])

331 -43.2 -33.6

6.5.5 Computational Cost

The DPD computational complexity can be classified into estimation, adaptation
and running complexity (TEHRANI et al., 2010). The estimation complexity refers to the
DPD training, while the adaptation part refers to additional training required to adapt
to new operating and/or environmental conditions. Finally, the running (or execution)
complexity mainly involves real-time pre-distortion filtering. From (TEHRANI et al., 2010),
the running cost of Volterra-based models in floating point operations (FLOPs) per sample
can be approximated by 8R− 2, where R is the number of regressors in the given model.

The estimation cost for OLS, including the Gram-Schmidt factorization, is assessed
by O(2NR2) FLOPs, where N is the sample size and R, the number of regressors. For
LASSO and extensions, it is assumed that the convex minimization is solved by the
coordinate descent algorithm (FRIEDMAN; HASTIE; TIBSHIRANI, 2010) over the range
of sparsity parameters defined for each problem. Note that one cycle of coordinate descent
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Figure 6.11 – Selected MP, GMP and WHFB blocks using the proposed algorithm.

costs O(NR) operations. The resulting estimation cost is approximated by O(spNR),
where s is the number of λ values and p is the number of iterations until convergence,
both depending on the cost function (TIBSHIRANI; HASTIE; FRIEDMAN, 2010) under
consideration. Typically, the DPD training is computed off-line and holds valid for a large
amount of running data. In scenarios where the PA is subject to impedance mismatch,
due to operational and/or environmental changes more frequent adaptations are expected,
making the proposed algorithm even more advantageous. The resulting values for running
and estimation complexities are presented in Table 6.2.

Table 6.2 – DPD complexity with WHFB and sparse estimation (M= 7, K= 9, L= 5, Q= 5, N= 30,000).

Num. coeffs. Estimation
cost (FLOPs)

Running
cost (FLOPs/sample)

No DPD - - -
MP OLS 40 3×103 318
GMP OLS 360 2×105 2880
WHFB OLS 1320 3×106 10560
WHFB LASSO (λo=1) 356 3×108 2846
WHFB LASSO (λ=2) 202 3×108 1614
WHFB Group-LASSO 414 108 3310
WHFB SGL 380 5×108 3038
WHFB Prop. alg. (λo=0.7) 350 3×107 2798

6.6 CONCLUSIONS

This chapter tackled the high dimensionality of the WHFB model employing sparse
techniques, such as LASSO and block-wise LASSO. Then, this chapter demonstrated the
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in-band and out-of-band performance improvements provided by the WHFB and sparse
WHFB models, comparing to the more traditional MP and GMP DPD models. Finally,
the chapter proposed an algorithm that partially alleviates the estimation cost of LASSO,
while maintaining the DPD model performance. This algorithm is a more affordable sparse
selection alternative for high-dimensional polynomial models.
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7 FLEXIBLE BASEBAND VOLTERRA
MODEL PRUNING TECHNIQUE

The Volterra framework (SCHETZEN, 2006) plays an important role in DPD
modelling for high-power and wideband PAs, but, in practice, the FV4 model in eq.
(2.4) is avoided, due to the curse of dimensionality, i.e., the large number of coefficients
to be estimated, the corresponding length of the DPD filter and its running cost. As
presented in section 2.2, this has motivated several Volterra pruning techniques in the
literature, the most prominent of them are the MP, GMP, DDR and block-oriented models.
However, choosing the pruned-Volterra structure that, for a given model complexity, best
describes an unknown PA or DPD is not an easy problem. This chapter is motivated by
the challenging task of a priori choosing a pruned-Volterra model, among a wide range of
candidate solutions, that is able to accurately describe an unknown PA or DPD, specially
when no physical knowledge about the system is available.

The objective of this chapter is to propose a flexible yet economical pruned-Volterra
structure from the FV4 model that generates a combination of MP/GMP, WHFB and
DDR regressors, thus being able to describe a wide range of NL systems. The parame-
ters of the flexible model, such as the polynomial dimension (i.e., the number of input
cross-terms in the regressors), the exponents of the input terms and the memory depths,
are adjusted separately for each NL order. Model sizing, i.e., finding appropriate values
for the model parameters, is performed through block-oriented LASSO techniques, such
as group-LASSO and sparse-group LASSO, also applied in the previous chapter. The
contribution in this chapter is that the proposed models present a significantly reduced
DPD running complexity, compared to the triangular FV models, while are more flexible
than pruning approaches in the literature, such as MP/GMP and DDR models.

7.1 CONTEXT OF PRUNED-VOLTERRA MODELS

The triangular FV4 and MV4 baseband models are given, respectively, in eqs.
(2.4) and (2.7). The major advantage of the MV4 model is that its dimensionality can be
controlled by setting shorter memory spans for the higher NL orders. However, the number
of MV4 coefficients in eq. (2.8) still is given by a doubly-combinatorial expression, which
makes the model computationally costly as increase the NL order K and a set of memory
depths {Mk}. Therefore, additional Volterra pruning techniques have been developed in
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the literature, among them, the most prominent are described as follows:

- The MP model (KIM; KONSTANTINOU, 2001), expressed in eq. (2.9), only considers
one-dimensional terms, i.e., regressors that only depend on a single sample of the input
signal (SCHUARTZ et al., 2019), such as ũ(n −m1) |ũ(n−m1)|2. By avoiding input
cross-terms, the MP model largely reduces its size, so kth-dimensional FV kernels with
length Mk are replaced by a one-dimensional, length M , coefficients vector.

- Likewise, the GMP model (MORGAN et al., 2006), in eq. (2.17), also limits the number
of input cross-terms, but allowing up to two-dimensional terms. Thus, GMP regressors
are given by up to two distinct input samples, apart from each other by up to l ≤ L

samples, as for example ũ(n−m1) |ũ(n−m1 ± l)|2.

- The DDR model (ZHU; DOOLEY; BRAZIL, 2006), in eq. (2.18), whose strategy
first splits the FV model into its static and dynamic parts, then limits the power
orders of the delayed input samples (on the dynamic part) to the 1st, 2nd or higher
order. For example, ũ(n − m1)|ũ(n)|2 belongs to the 1st-order DDR model, whereas
ũ(n−m1)ũ(n−m2)ũ∗(n)|ũ(n)|2, to the 2nd-order DDR model.

Comparing the MP/GMP and DDR pruning strategies above, the former limits
the polynomial dimensions in the model, while the last restricts the power orders of the
delayed input samples; the polynomial dimension is not directly controlled. Also note
that the baseband DDR model requires the input signal and its complex conjugate, which
increases rapidly the number of required coefficients and the implementation cost with the
DDR order (GUAN; ZHU, 2011).

Starting from eq. (2.7), a more flexible Volterra pruning strategy is proposed in
section 7.3. Firstly, the multi-index notation is introduced.

7.2 MULTI-INDEX STRUCTURE

A mathematical concept known as multiset (mset or bag) (GIRISH; JOHN, 2012),
(ALBERT, 1991) is introduced to represent the collections of memory multi-indexes in the
triangular Volterra models in eqs. (2.4) and (2.7). The concept of msets have been used
in multiple applications (SINGH et al., 2007), including in some recent signal processing
papers, e.g., (DAVIS et al., 2018), (ZAKARIA; JOHN; GIRISH, 2019). An mset is an
unordered collection of objects where repetitions are admitted. An mset differs from a set
in the sense that each object has a multiplicity, i.e., a natural number, not necessarily one,
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that indicates how many times it is an element of the mset.

Definition 1. Multiset (mset or bag). An mset A drawn from the underlying
set S = {s1, s2, . . . , sn} is a collection of elements from S where duplicates are allowed.
The multiplicity (number of occurrences) of each object si from the set S in the multiset
A is given by the counting function C(S) : S → N0, where N0 is the set of the natural
numbers including zero. For example, let S = {0, 1, 2, 3} and C(S) = {3, 0, 0, 1}, then the
mset A = [0, 0, 0, 3].

Definition 2. Cardinality. The cardinality of an mset A drawn from S is given
by card(A) = ∑

S C(S). From the previous example, card(A) = 4.

This way, for each NL order k in eq. (2.7), let the collection of memory delay
multi-indexes drawn from the finite set of integers S = {0, 1, . . . ,Mk} be represented by
the following set:

(7.1)M(k) = {[m1], [m2,m3, . . . ,m k+1
2

]︸ ︷︷ ︸
M(k)

1

, [m k+3
2
,m k+5

2
, . . . ,mk]︸ ︷︷ ︸

M(k)
1∗

},

in which the first element is the index m1 for one non-conjugated input and, next, msets
M(k)

1 = [m2,m3, . . . ,m k+1
2

] and M(k)
1∗ = [m k+3

2
,m k+5

2
, . . . ,mk], each with cardinality k−1

2 ,
contain, respectively, the memory indexes for the remaining non-conjugated and the
conjugated inputs. Additionally, the MV4 model in eq. (2.7) imposes that m k+1

2
≥ m k−1

2
≥

. . . ≥ m2 and mmk ≥ mk−1 ≥ . . . ≥ m k+3
2
. LetM(k) be a class containing all distinct sets

M(k). Table 7.1 illustrates a few of the sets inM(5) for k=5 and Mk=3. Eq. (2.8) gives the
total number of 200 sets in this case.

Definition 3. Mset membership. Let A be an mset drawn from the set S.
The support of A is supp(A) := {si ∈ S | C(si) > 0}. Thus, mset membership si ∈ A
is defined as si ∈ supp(A), otherwise si is not a member of A. In the previous example,
supp(A) = {0, 3}.

Definition 4. Equal msets. Two msets A and B drawn from the set S are equal,
written as A = B, if and only if: supp(A) = supp(B) and for any object si ∈ supp(A),
CA(si) = CB(si) (every element in A is also in B and conversely).
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Table 7.1 – Doubly-combinatorial multisetsM(5) (k=5 and Mk=3).

count M(5)

1 0 | 0 0 | 0 0
2 0 | 0 0 | 0 1
3 0 | 0 0 | 0 2
4 0 | 0 0 | 0 3
5 0 | 0 0 | 1 1
6 0 | 0 0 | 1 2
7 0 | 0 0 | 1 3
8 0 | 0 0 | 2 2
9 0 | 0 0 | 2 3
10 0 | 0 0 | 3 3
11 0 | 0 1 | 0 0
... ... | ... ... | ... ...
100 0 | 3 3 | 3 3
101 1 | 1 1 | 0 0
102 1 | 1 1 | 0 1
... ... | ... ... | ... ...
198 3 | 3 3 | 2 2
199 3 | 3 3 | 2 3
200 3 | 3 3 | 3 3

7.3 PROPOSED MODEL STRUCTURE

This section proposes a generalized pruned-Volterra model structure, able to include
regressors from the MP/GMP, WHFB and DDR models. Besides, the proposed pruned-
Volterra model avoids complex-conjugate input terms and is linear in the coefficients. It
also provides a good trade-off between model size and accuracy.

The proposed model has a block-wise modular structure that allows the sizing of
its initial dimensions through group sparse LASSO (SIMON et al., 2013). This sparse
estimation technique selects the dominant blocks of regressors in the model and discards un-
necessary ones. To this end, the model’s regression matrix is generated as the concatenation
of non-overlapping matrix blocks, as detailed in this section.

The pruning strategy is described next in two steps. Step 1 replaces the doubly-
combinatorial structure in eq. (2.7) by a generalized MP/GMP expression, whose structure
is single combinatorial, by only retaining the polynomials that have non-conjugated and
conjugated sample pairs with the same memory delays. This corresponds to impose in eq.
(7.1) that, for each k:

(7.2)M(k)
1∗ = M(k)

1 ,

i.e., the two msets are equal. In this case, the set M(k) at step 1 is reduced to the following
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reduced memory delay multi-indexes:

(7.3)M(k) = {m1, [m2,m3, . . . ,m k+1
2

]︸ ︷︷ ︸
M(k)

1

},

where, now, the mset M(k)
1 = [m2,m3, . . . ,m k+1

2
] contains the memory indexes of squared

amplitude terms.

The pruned-Volterra model is given by:

(7.4)

x̂RV1(n) =
K∑
k=1
k odd

Mk∑
m1 =0

Mk∑
m2 =0

. . .
Mk∑

m k+1
2

=m k−1
2

h̃k(m1: k+1
2

)ũ(n−m1)

k+1
2∏

i =2
ũ(n−mi) ũ∗(n−mi)

=
K∑
k=1
k odd

Mk∑
m1=0

Mk∑
m2=0

. . .
Mk∑

m k+1
2

=m k−1
2

h̃k(m1: k+1
2

)ũ(n−m1)

k+1
2∏
i=2
|ũ(n−mi)|2 ,

where RV1 stands for the reduced-Volterra model in step 1.

Eq. (7.4) corresponds to a generalized memory polynomial model and requires,
for each NL order, only k+1

2 summations. In fact, it is inspired by the MP and GMP
models. Note that its triangular structure imposes that m k+1

2
≥ m k−1

2
≥ . . . ≥ m2. The

total number of coefficients is:

(7.5)NRV1 =
K∑
k=1
k odd

(Mk + 1)
((
Mk + 1
k−1

2

))
,

where
((
Mk+1
k−1

2

))
is the multiset binomial coefficient, given by

(
Mk+ k−1

2
k−1

2

)
.

Let M(k) be a class containing all distinct sets M(k) using eq. (7.3). Table 7.2
illustrates a few of theM(5) sets for k=5 and Mk=3. Using eq. (7.5), the total number of
40 sets is obtained.

Next, step 2 keeps only the terms in eq. (7.4) that have polynomial dimensions up
to a parameter Lk plus one, where Lk is chosen for each k, in the range [1, k−1

2 ], and is
later dimensioned through model sizing. The definition of polynomial dimension is given
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Table 7.2 – MultisetsM(5) (k=5 and Mk=3).

count M(5)

1 0 | 0 0
2 0 | 0 1
3 0 | 0 2
4 0 | 0 3
5 0 | 1 1
6 0 | 1 2
7 0 | 1 3
8 0 | 2 2
9 0 | 2 3
10 0 | 3 3
11 1 | 0 0
... ... | ... ...
20 1 | 3 3
21 2 | 0 0
... ... | ... ...
30 2 | 3 3
31 3 | 0 0
... ... | ... ...
40 3 | 3 3

in (SCHUARTZ et al., 2019) as the maximum number of distinct cross-terms allowed in
the memory polynomial. This way, in step 2, the maximum number of distinct squared
amplitude cross-terms is limited, similarly to the MP/GMP and WHFB models. This
corresponds to selecting only the multi-indexes from M(k) in which the same delays appear
repeatedly. Let M(k,l), for l = 1, . . . , Lk, represent the multi-indexes in which (k+1

2 − l)
indexes assume the same value, as follows:

(7.6)M(k,l) = {m1, [m2, . . . ,m k+1
2 −l+1︸ ︷︷ ︸

same value

,m k+1
2 −l+2, . . . ,m k+1

2
]}.

Equivalently, M(k,l) can be more economically expressed assigning multiplicity
(k+1

2 − l) to the delay value in m2:

(7.7)M(k,l) = {m1, [m2,m3, . . . ,ml+1]︸ ︷︷ ︸
M(k,l)

1

},

where ml+1 > ml > · · · > m3 > m2. The multiplicity in eq. (7.7) and other multiplicities
assigned to indexes are considered by the polynomial exponents, as presented next. The
pruned-Volterra model is given by:
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(7.8)
x̂RV2(n) =

K∑
k=1
k odd

Mk∑
m1 =0

Lk∑
l =1

Mk∑
m2 =0

Mk∑
m3 >m2

. . .
Mk∑

ml+1 >ml

ηk∑
j =1

h̃k(m1:l+1, j)

ũ(n−m1)
l+1∏
i =2
|ũ(n−mi)|vj(i−1) ,

where RV2 stands for the reduced-Volterra model in step 2, Lk+1 is the maximum kth-order
polynomial dimension in the model and vj ∈ V(k,l). The set V(k,l) contains the exponent
vectors vj for the polynomials (k, l), i.e., of order k with l distinct squared amplitude
terms. Additionally, the parameter ηk limits the maximum number of exponent vectors
from each V(k,l) allowed for the kth-order terms in the model. The following expressions
are proposed for calculating the vectors vj:

- For l = 1:
V(k,1) = {[k + 1− 2l]}, (7.9)

- For l = 2:

V(k,2) = {[k + 1− 2l, 2], (7.10a)
[k − 1− 2l, 4], (7.10b)
[k − 3− 2l, 6]}, (7.10c)

- For l = 3:

V(k,3) = {[k + 1− 2l, 2, 2], (7.11a)
[k − 1− 2l, 4, 2], (7.11b)
[k − 3− 2l, 6, 2], (7.11c)
[k − 3− 2l, 4, 4], (7.11d)
[k − 3− 2l, 6, 2]} (7.11e)

and so on.

The sets of exponent vectors vj for various (k, l), with 1 ≤ l ≤ k−1
2 , are given

in Table 7.3. For l=3, eqs. (7.11a)-(7.11b) result in very unequal exponents, e.g. with
k=15, result in [10,2,2] and [8,4,2]. Additionally, eqs. (7.11c)-(7.11e) can also be used,
for better distributed exponent values, as long as they are positive. In the example, the
latter equations result in exponents [6,6,2] and [6,4,4]. However, we adopt a simplification
inspired by the DDR model strategy that only assign low exponents to the more delayed



124 Chapter 7. Flexible Baseband Volterra Model Pruning Technique

input samples, therefore just the first equations are used and the latter are disregarded.
In the example above, only using eq. (7.11a), just exponents 2 are assigned to the more
delayed input samples, resulting in a more economical model. This way, for each V(k,l), only
the first ηk vectors are included in the model, i.e., ηk is the number of exponent vectors
allowed for kth-order terms. As presented so far, the set of parameters {Lk} controls the
polynomial dimensions in each order of the model, similarly to the MP/GMP and WHFB
strategy, whereas the sets of memory depths {Mk} and exponent vector lengths {ηk} limit
the exponents assigned to delayed input samples, similarly to the DDR strategy.

Table 7.3 – Exponent vectors in the proposed pruning method.

k
Lk l V(k,l)

1 0 0 ∅

3 1 1 {[2]}

5 2 1 {[4]}
2 {[2,2]}

7 3 1 {[6]}
2 {[4,2]}
3 {[2,2,2]}

9 4 1 {[8]}
2 {[6,2], [4,4]}
3 {[4,2,2]}
4 {[2,2,2,2]}

11 5 1 {[10]}
2 {[8,2], [6,4]}
3 {[6,2,2], [4,4,2]}
4 {[4,2,2,2]}
5 {[2,2,2,2,2]}

13 6 1 {[12]}
2 {[10,2], [8,4], [6,6]}
3 {[8,2,2], [6,4,2], [4,4,4]}
4 {[6,2,2,2], [4,4,2,2]}
5 {[4,2,2,2,2]}
6 {[2,2,2,2,2,2]}



7.3. Proposed Model Structure 125

Table 7.3 – Exponent vectors in the proposed pruning method (cont.).

k Lk l V(k,l)

15 7 1 {[14]}
2 {[12,2], [10,4], [8,6]}
3 {[10,2,2], [8,4,2], [6,6,2], [6,4,4]}
4 {[8,2,2,2], [6,4,2,2], [4,4,4,2]}
5 {[6,2,2,2,2], [4,4,2,2,2]}
6 {[4,2,2,2,2,2]}
7 {[2,2,2,2,2,2,2]}

The total number of coefficients assuming η(k) = 1 is given by:

(7.12)NRV2 =
K∑
k=1
k odd

(Mk + 1)
((
Mk + 1
Lk

))
,

where
((
Mk+1
Lk

))
=
(
Mk+Lk
Lk

)
, further reducing the model size when Lk < k−1

2 .

Let Φ be the regression matrix of the model RV2 in eq. (7.8). Let us express Φ as
the concatenation of the kth-order sub-matrices Φ(k), with k = 1, . . . , K:

(7.13)Φ = [Φ(1) Φ(3) . . . Φ(k) . . . Φ(K)].

Moreover, each of the sub-matrices is composed of disjoint blocks Φ(k,l)
j , each of which

has a fixed value of polynomial dimension l (1 ≤ l ≤ Lk) and of exponent index j in
V(k,l). This choice of partitioning each Φ(k) into blocks Φ(k,l)

j is based on the reasonable
assumption that higher polynomial dimensions l are only included to the model if required,
by either manual selection of the initial parameters or a block-oriented sparse regression
technique. Thus, the initial model parameter choices K, Mk, Lk and ηk are refined by
sparse techniques, such as SGL.

The regression matrix Φ and its blocks Φ(k,l)
j are implemented as follows:

Initialize: Given an initial choice of K, {Mk}, {Lk} and {ηk}, for k = 1, . . . , K (k odd):

Step 1) For each k:

Step 2) For each l, from 1 to Lk:

a) Create the classM(k,l) containing all distinct sets M(k,l) of memory indexes
{m1, [m2,m3, . . . ,ml+1]} from eq. (7.7) , with indexes ranging from zero to Mk

and also ml+1 > ml > · · · > m3 > m2.
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Step 3) For each j, from 1 to min(card(V(k,l)), ηk):

a) Use exponent vector vj ∈ V(k,l) from Table 7.3.

Step 4) For n = 0, . . . , N − 1:

a) The input vector is given by:

ũ(n) =
[
ũ(n) ũ(n− 1) . . . ũ(n−Mk)

]
. (7.14)

b) Compute the elements ũ(n −m1)∏l+1
i=2 |ũ(n−mi)|vj(i−1) of the row vector

φ
(k,l)
j (n), using ũ(n) and the memory indexes M(k,l) ∈M(k,l). The block Φ(k,l)

j

of the regression matrix is given by:

Φ(k,l)
j =


φ

(k,l)
j (0)
...

φ
(k,l)
j (N − 1)

 . (7.15)

Step 5) The complete regression matrix Φ is the concatenation of the kth-order matrices
obtained by cycling the previous steps.

Step 6) Finally, SGL is applied to the initial regression matrix Φ, retaining only the
most relevant sub-blocks in each block Φ(k,l)

j , as detailed in section 7.4.

Table 7.4 shows examples of the proposed model terms with m1 = 0, m2 = 1 and
1 ≤ l ≤ Lk, for Lk = k−1

2 for each order k. Also note that all vj ∈ V(k,l) are included in
the example.

Table 7.4 – Examples of polynomials in the proposed pruning method.

Examples

k l
Memory

(m1|m2 . . .ml+1)
Polynomials

1 0 0 u(n)

3 1 0|1 u(n) |u(n− 1)|2

5
1 0|1 1 u(n) |u(n− 1)|4

2 0|1 2 u(n) |u(n− 1)|2 |u(n− 2)|2

7
1 0|1 1 1 u(n) |u(n− 1)|6

2 0|1 1 2 u(n) |u(n− 1)|4 |u(n− 2)|2

3 0|1 2 3 u(n) |u(n− 1)|2 . . . |u(n− 3)|2
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Table 7.4 – Examples of polynomials in the proposed pruning method (cont.).

Examples

k l
Memory

(m1|m2 . . .ml+1)
Polynomials

9

1 0|1 1 1 1 u(n) |u(n− 1)|8

2 0|1 1 1 2 u(n) |u(n− 1)|6 |u(n− 2)|2

2 0|1 1 2 2 u(n) |u(n− 1)|4 |u(n− 2)|4

3 0|1 1 2 3 u(n) |u(n− 1)|4 |u(n− 2)|2 |u(n− 3)|2

4 0|1 2 3 4 u(n) |u(n− 1)|2 . . . |u(n− 4)|2

11

1 0|1 1 1 1 1 u(n) |u(n− 1)|10

2 0|1 1 1 1 2 u(n) |u(n− 1)|8 |u(n− 2)|2

2 0|1 1 1 2 2 u(n) |u(n− 1)|6 |u(n− 2)|4

3 0|1 1 1 2 3 u(n) |u(n− 1)|6 |u(n− 2)|2 |u(n− 3)|2

3 0|1 1 2 2 3 u(n) |u(n− 1)|4 |u(n− 2)|4 |u(n− 3)|2

4 0|1 1 2 3 4 u(n) |u(n− 1)|4 |u(n− 2)|2 . . . |u(n− 4)|2

5 0|1 2 3 4 5 u(n) |u(n− 1)|2 . . . |u(n− 5)|2

13

1 0|1 1 1 1 1 1 u(n) |u(n− 1)|12

2 0|1 1 1 1 1 2 u(n) |u(n− 1)|10 |u(n− 2)|2

2 0|1 1 1 1 2 2 u(n) |u(n− 1)|8 |u(n− 2)|4

2 0|1 1 1 2 2 2 u(n) |u(n− 1)|6 |u(n− 2)|6

3 0|1 1 1 1 2 3 u(n) |u(n− 1)|8 |u(n− 2)|2 |u(n− 3)|2

3 0|1 1 1 2 2 3 u(n) |u(n− 1)|6 |u(n− 2)|4 |u(n− 3)|2

3 0|1 1 2 2 3 3 u(n) |u(n− 1)|4 |u(n− 2)|4 |u(n− 3)|4

4 0|1 1 1 2 3 4 u(n) |u(n− 1)|6 |u(n− 2)|2 . . . |u(n− 4)|2

4 0|1 1 2 2 3 4 u(n) |u(n− 1)|4 |u(n− 2)|4 |u(n− 3)|2 |u(n− 4)|2

5 0|1 1 2 3 4 5 u(n) |u(n− 1)|4 |u(n− 2)|2 . . . |u(n− 5)|2

6 0|1 2 3 4 5 6 u(n) |u(n− 1)|2 . . . |u(n− 6)|2
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Table 7.4 – Examples of polynomials in the proposed pruning method (cont.).

Examples

k l
Memory

(m1|m2 . . .ml+1)
Polynomials

15

1 0|1 1 1 1 1 1 1 u(n) |u(n− 1)|14

2 0|1 1 1 1 1 1 2 u(n) |u(n− 1)|12 |u(n− 2)|2

2 0|1 1 1 1 1 2 2 u(n) |u(n− 1)|10 |u(n− 2)|4

2 0|1 1 1 1 2 2 2 u(n) |u(n− 1)|8 |u(n− 2)|6

3 0|1 1 1 1 1 2 3 u(n) |u(n− 1)|10 |u(n− 2)|2 |u(n− 3)|2

3 0|1 1 1 1 2 2 3 u(n) |u(n− 1)|8 |u(n− 2)|4 |u(n− 3)|2

3 0|1 1 1 2 2 2 3 u(n) |u(n− 1)|6 |u(n− 2)|6 |u(n− 3)|2

3 0|1 1 1 2 2 3 3 u(n) |u(n− 1)|6 |u(n− 2)|4 |u(n− 3)|4

4 0|1 1 1 1 2 3 4 u(n) |u(n− 1)|8 |u(n− 2)|2 . . . |u(n− 4)|2

4 0|1 1 1 2 2 3 4 u(n) |u(n− 1)|6 |u(n− 2)|4 |u(n− 3)|2 |u(n− 4)|2

4 0|1 1 2 2 3 3 4 u(n) |u(n− 1)|4 |u(n− 2)|4 |u(n− 3)|4 |u(n− 4)|2

5 0|1 1 1 2 3 4 5 u(n) |u(n− 1)|6 |u(n− 2)|2 . . . |u(n− 5)|2

5 0|1 1 2 2 3 4 5 u(n) |u(n− 1)|4 |u(n− 2)|4 |u(n− 3)|2 . . . |u(n− 5)|2

6 0|1 1 2 3 4 5 6 u(n) |u(n− 1)|4 |u(n− 2)|2 . . . |u(n− 6)|2

7 0|1 2 3 4 5 6 7 u(n) |u(n− 1)|2 . . . |u(n− 7)|2

7.4 PROPOSED MODEL SIZING

The regression matrix Φ of the pruned-Volterra model is composed of the kth-order
sub-matrices Φ(k), k = 1, . . . , K, with k odd, each of which composed of disjoint blocks
Φ(k,l)
j , as illustrated in Figure 7.1. Note that in some cases the indexes j and/or l can be

omitted.

Φ(1) Φ(3) Φ(5)

Φ(5,2)Φ(5,1)
Φ(7)

Φ(7,2)Φ(7,1) Φ(7,3)
Φ(9)

Φ(9,2)Φ(9,1) Φ(9,3) Φ(9,4)

Φ(9,2)
1 Φ(9,2)

2

Φ(11)

Φ(11,2)Φ(11,1) Φ(11,4)

Φ(11,2)
1 Φ(11,2)

2

Φ(11,5)Φ(11,3)

Φ(11,3)
1 Φ(11,3)

2

...

Figure 7.1 – Proposed structure in blocks Φ(k,l)
j
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For model sizing using group-wise LASSO selection, each block Φ(k,l)
j is further

divided into sub-blocks. Thus, Group-LASSO and SGL techniques select the most relevant
sub-blocks within each block of the model. The strategy adopted here is to divide each
block of order k (except for k=1) into sub-blocks of length Mk + 1. Given the parameters
k, Mk and Lk, the number of sub-blocks of length Mk + 1 in a block (k, l) is:

(7.16)N
(k,l)
sb =

(
Lk − 1
l − 1

)(
Mk + 1

l

)
.

Thus, in eq. (7.16), the number of sub-blocks depends onMk, Lk and l; for example,
with parameters Mk=8 and Lk=3, the numbers of sub-blocks per block (k, l) are N (k,l)

sb =
9 (l = 1); 72 (l = 2) and 84 (l = 3) sub-blocks, i.e., in total, 165 sub-blocks for each Φ(k,l)

j .
Now, for parameters Mk=8 and Lk=2, the number of sub-blocks per block (k, l) is N (k,l)

sb =
9 (l = 1) and 36 (l = 2), i.e., 45 sub-blocks in total.

Next, the SGL technique, described in section 6.1, is applied to the regression
matrix Φ, retaining only the most relevant sub-blocks in each block. After the model sizing
and sparse estimation task is completed, the selected sub-blocks indexes, regressor indexes
and corresponding model coefficients are copied to the predistorter.

7.4.1 Kronecker Product Implementation

In this subsection, we illustrate an efficient way to compute separately each regres-
sion block Φ(k,l)

j in eq. (7.15). Firstly, we propose a modified truncated Kronecker operator,
�q−, that allows to implement polynomials (k, l) and is also presented in appendix B.

For each k, the input vector ũ(n) at instant n is adjusted for length Mk + 1, as in
eq. (7.14). Then we define the squared amplitude input vector, as follows:

(7.17)ũ(2)(n) =
[
|ũ(n)|2 |ũ(n− 1)|2 . . . |ũ(n−Mk)|2

]
T .

Next, the modified truncated Kronecker product of ũ(2)(n) by itself is given by:

(7.18)�2
−ũ

(2)(n) =


|ũ(n)|2ũ(2)(n− 1)
|ũ(n− 1)|2ũ(2)(n− 2)

...
|ũ(n−Mk + 1)|2ũ(2)(n−Mk)

,

where:

(7.19)ũ(2)(n− i) =
[
|ũ(n− i)|2 |ũ(n− i− 1)|2 . . . |ũ(n−Mk)|2

]
T .



130 Chapter 7. Flexible Baseband Volterra Model Pruning Technique

The high order modified truncated Kronecker product of ũ(2)(n) is given, recursively,
by:

(7.20)�q−ũ(2)(n) =


|ũ(n)|2�q−1

− ũ(2)(n− 1)
|ũ(n− 1)|2�q−1

− ũ(2)(n− 2)
...

|ũ(n−Mk + q − 1)|2�q−1
− ũ(2)(n−Mk + q − 2)

.

Finally, the proposed expressions for the rows of Φ(k,l)
j , for k ≥ 3, are given by:

- For j = 1:

(7.21)Φ(k,l)
1 (n) = ũ(n)⊗

[
ũ(k+1−2l)(n)�− (�l−1

− ũ(2)(n))
]
,

where Φ(1)
j (n) = ũ(n), �0

−ũ
(2)(n) = 1 and �1

−ũ
(2)(n) = ũ(2)(n).

Note that (k + 1 − 2l) is even and ũ(k+1−2l)(n) is an element-wise powered version of
ũ(2)(n), thus:

(7.22)

ũ(k+1−2l)(n)�− (�l−1
− ũ(2)(n)) =

|ũ(n)|k+1−2l �l−1
− ũ(2)(n)

|ũ(n− 1)|k+1−2l �l−1
− ũ(2)(n− 1)

...
|ũ(n−Mk)|k+1−2l �l−1

− ũ(2)(n−Mk)

 .

- For j = 2:

(7.23)Φ(k,l)
2 (n) =

ũ(n)⊗
[
ũ(k−1−2l)(n)�− ũ(4)(n)�− (�l−2

− ũ(2)(n))
]
.

Appendix B also provides a few examples. The next section presents the experi-
mental results.

7.5 EXPERIMENTAL VALIDATION

Measured data for PA LMM, obtained with the experimental test set-up described
in section 3.1, is used to validate the DPD models proposed in this chapter. The proposed
pruned-Volterra models, RV1 in eq. (7.4) and RV2 in eq. (7.8), are compared in this section
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to the triangular FV and MV models from eqs. (2.4) and (2.7). The proposed models
are also compared to the VP, LV and MV4 LASSO models, as well as to the MP, GMP,
WHFB and sparse WHFB models. The MV4 LASSO model corresponds to the sparse
estimation of the MV4 coefficients, similarly to the sparse full-Volterra estimation in
(KEKATOS; GIANNAKIS, 2011), (ZENTENO et al., 2015), (ABDELHAFIZ et al., 2014).
Note that the estimation cost of running LASSO over the FV4 and MV4 models is very
high, thus this approach becomes less scalable than running LASSO over pruned-Volterra
models. Also note that the best values of the sparse parameter, λo, in the following sparse
models, are also obtained using the AIC score in eq. (3.4).

7.5.1 RV1 and RV2 Results

The original dense RV1 and RV2 models are considered in this item, i.e. sparsity is
not yet explored, and the model coefficients are estimated by OLS. Note that the estimation
cost of the FV4 and MV4 models grow fast with the NL order K, so this study is limited
to K=9. Table 7.5 shows the DPD performance of the models with parameters K = 7,
M = 5 and sets {Mk} as shown in the table. Additional parameters for the RV2 model are
Lk = [0, 1, 2, 2] and ηk = 1, for 1 ≤ k ≤ K. As observed on the tables, both the FV4 and
MV4 model sizes grow rapidly with the parameters, due to the doubly-combinatorial in eq.
(2.7). Even reducing the memory depths of the higher order terms, the MV4 model still
suffers from the curse of dimensionality. In turn, both the RV1 and RV2 models replace
the doubly-combinatorial by eq. (7.12), substantially reducing the model size. Finally,
RV2 model is able to further reduce model redundancies, by allowing the user to set the
polynomial dimensions and exponent vectors for each NL order.

Note that, in this subsection, the selection of polynomial dimensions and exponent
vectors is performed manually, through {Lk} and ηk, whereas, in the next subsection, it
is performed by the LASSO and group-wise LASSO algorithms. The table also includes
the VP and LV models, from chapter 4, and the MV4 LASSO model, i.e., the sparse
estimation of MV4 coefficients. Next, Table 7.6 shows the DPD performance with K = 9,
M = 4, Mk ≤ 4 and for the RV2 model, Lk = [0, 1, 2, 2, 2] and ηk = 1. From the results
so far, the proposed RV2 model approximate the DPD performance of the MV4 model,
while being much more affordable for practical implementation than the FV4 and MV4

structures. The tables also show that the proposed RV2 model results in lower numbers of
coefficients than the VP, LV and MV4 LASSO, for the same performance. Additionally,
Figure 7.2 shows the constellation diagrams for the MV4 and RV2 DPD output signals,
for the model parameters K = 9 and Mk = [4, 4, 4, 3, 3]. As can be seen, their constellation
diagrams are very similar, thus, their in-band performance are very close. The EVM of
the MV4 and RV2 output signals are, respectively, 1.8% and 2.1%. These results validate
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the pruned-Volterra RV2 model.

Table 7.5 – DPD performance for LMM PA with FV4, MV4, RV1 and RV2 (K=7, N= 50,000).

Num. coeffs. Max. ACPR
(dBc)

NMSE
(dB)

No DPD - -23.2 3.3
FV4 (M = 5) 8,364 -46.3 -35.0
MV4 (Mk = [5, 5, 5, 4]) 3,758 -44.8 -34.2
MV4 (Mk = [5, 5, 5, 3]) 2,008 -44.4 -33.5
RV1 (Mk = [5, 5, 5, 5]) 504 -43.9 -32.9
RV1 (Mk = [5, 5, 5, 4]) 343 -43.6 -32.5
RV2 (Mk = [5, 5, 5, 5]) 294 -43.8 -32.5
RV2 (Mk = [5, 5, 5, 4]) 243 -43.6 -32.4
VP (ALS) (Mk = [5, 5, 4, 2])
(Rk = [1, 13, 45, 32])

405 -43.0 -33.2

LV (Mk = [5, 5, 4, 2])
(Fk = [5, 5, 3, 1])

352 -42.9 -33.3

MV4 LASSO (Mk = [5, 5, 5, 4])
(λ = 24)

281 -42.7 -32.2

Table 7.6 – DPD performance for LMM PA with FV4, MV4, RV1 and RV2 (K=9, N= 50,000).

Num. coeffs. Max. ACPR
(dBc)

NMSE
(dB)

No DPD - -23.2 3.3
FV4 (M = 4) 11,875 -45.4 -34.9
MV4 (Mk = [4, 4, 4, 3, 3]) 3,265 -44.5 -34.1
MV4 (Mk = [4, 4, 4, 3, 2]) 1,620 -44.0 -33.6
RV1 (Mk = [4, 4, 4, 4, 4]) 630 -44.2 -33.7
RV1 (Mk = [4, 4, 4, 3, 3]) 325 -43.3 -32.8
RV2 (Mk = [4, 4, 4, 4, 4]) 255 -44.1 -33.1
RV2 (Mk = [4, 4, 4, 3, 3]) 185 -43.1 -32.4
VP (ALS) (Mk = [4, 4, 4, 3, 2])
(Rk = [1, 9, 40, 32, 32])

474 -43.3 -33.3

LV (Mk = [4, 4, 4, 3, 2])
(Fk = [4, 4, 3, 2, 1])

461 -43.3 -33.8

MV4 LASSO (Mk = [4, 4, 4, 3, 3])
(λo = 20)

354 -43.5 -32.5
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Figure 7.2 – Constellation diagram for LMM PA with RV2 model (K=9).

7.5.2 Sparse RV2 Model Results

Now, the DPD performance of the RV1 and sparse RV2 models are compared using
parameters K=9, Mk = [11, 11, 8, 6, 5] and, for the RV2 model, Lk = [0, 1, 2, 2, 2] and
ηk = 1 in Table 7.7. Group-wise LASSO optimization is applied to the RV2 model, to show
the model size reduction that can be achieved. In order to run the parsimonious selection
of the most relevant RV2 regressors blocks, firstly, Φ is standardized and the output
signal is centered. Then, Group-LASSO and SGL algorithms are run for a pre-defined
set of the corresponding sparse parameter values and the best values are determined
using the AIC score in eq. (3.4). Figure 7.3 illustrates the residual spectral regrowth
achieved with the RV1, RV2, RV2 LASSO, RV2 Group-LASSO and RV2 SGL models. It is
concluded from the results that the proposed sparse models are able to approximate the
DPD performance of the FV4 and MV4 models being much more affordable in terms of
running cost. Figure 7.4 shows the regressors selected by LASSO, Group-LASSO and SGL,
illustrating the difference between the LASSO and group-wise LASSO selection criteria,
i.e., that sub-blocks are first selected in the group-wise LASSO strategies. The initial size
of 883 coefficients of the RV2 model is reduced to approximately 330 coefficients using
sparse techniques. The Group-LASSO and SGL algorithms selected, respectively 41 and
50 sub-blocks, out of 107 sub-blocks of the RV2 model.
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Table 7.7 – DPD performance for LMM PA with RV1 and RV2 (K=9, N= 50,000).

Num. coeffs. Max. ACPR
(dBc)

NMSE
(dB)

No DPD - -23.2 3.3
RV1 (Mk = [11, 11, 8, 6, 5]) 1,905 -48.4 -34.9
RV2 (Mk = [11, 11, 8, 6, 5]) 883 -48.2 -34.2
RV2 LASSO (λo = 7) 332 -46.9 -33.9
RV2 Group-LASSO (λo =40) 337 -47.0 -33.4
RV2 SGL (λo =7, αo =8) 324 -47.3 -33.5

Figure 7.3 – Residual spectral regrowth for LMM PA with sparse RV2 model (K=9).
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Figure 7.4 – Sparse selection of the RV2 model (K=9).
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7.5.3 Comparison with the WHFB Model

Finally, the RV2 model is compared to the MP, GMP and WHFB models using
experimental data measured for PA LMM. Table 7.8 compares the DPD performance of the
RV2 LASSO, RV2 Group-LASSO and RV2 SGL, with K=15, Mk = [13, 13, 10, 10, 9, 7, 7, 7],
Lk = [0, 1, 2, 2, 2, 1, 1, 1] and ηk = 1, the MP, GMP and WHFB LASSO, WHFB Group-
LASSO and WHFB SGL from chapter 6, all for approximately the same number of
coefficients. The corresponding residual spectral regrowth is illustrated in Figure 7.5. The
results show that the proposed model improves the ACPR performance of the GMP model
by 3 to 4 dB, with the same number of coefficients. We can also conclude that the WHFB
and sparse WHFB models are more cost-effective for LMM PA than the RV2 models.
However, the RV2 models are expected to cover a wider range of operational/environmental
conditions, due to their flexibility. Figure 7.6 shows the regressors, selected by LASSO,
and/or sub-blocks selected by Group-LASSO and SGL. The initial size of 2404 coefficients
of the RV2 model is reduced to approximately 335 coefficients using sparse techniques.
The Group-LASSO and SGL algorithms selected, respectively, 33 and 50 sub-blocks, out
of 226 sub-blocks of the initial RV2 model.

Table 7.8 – DPD performance for LMM PA with WHFB, sparse WHFB and RV2, (K=15 and N= 50,000).

Num. coeffs. Max. ACPR
(dBc)

NMSE
(dB)

No DPD - -23.2 3.3
MP OLS 40 -42.0 -29.5
GMP OLS 360 -44.7 -32.7
WHFB OLS 1320 -53.3 -33.9
WHFB LASSO (λo=1) 356 -49.4 -33.5
WHFB Group-LASSO (λo =37) 414 -45.5 -33.2
WHFB SGL (λo=12, αo=7) 380 -49.2 -33.6
WHFB Proposed alg. (λo=0.7) 350 -48.6 -33.5
RV2 OLS 2404 -52.5 -35.1
RV2 LASSO (λo=7) 338 -48.8 -33.6
RV2 Group-LASSO (λo =25) 338 -48.7 -33.1
RV2 SGL (λo=9.5, αo=9) 335 -47.5 -33.2
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Figure 7.5 – Residual spectral regrowth with sparse RV2 model (K=15).

Figure 7.6 – Sparse selection of RV2 model (K=15).
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7.6 CONCLUSIONS

This chapter proposed a flexible and economical pruned-Volterra model that shows
significantly reduced running cost comparing to the triangular FV model, while being more
flexible than the MP/GMP and DDR models. From the experimental results of section
7.5.3, we observe that the RV2 model was able to achieve a DPD performance for the PA
LMM condition very close to that obtained with the WHFB model, with only the latter
being designed based on prior information of PA LMM. The advantages of the proposed
sparse RV2 model are summarized as follows:

- The model is able to include a mix of MP, GMP, DDR, WHFB and higher dimension
(up to Lk) polynomials that are selected depending on the operational/environmental
conditions of the PA.

- Its initial parameters {Mk}, {Lk} and ηk can be defined separately for each NL order,
avoiding the curse of dimensionality.

- Its model structure is modular, thus enables model sizing by the selection of the most
relevant sub-blocks. After model sizing is complete, only the coefficients and indexes of
the selected sub-blocks/ regressors are passed to the DPD predistorter.

The complete experimental validation of the RV2 model through other PAs and
operational conditions remains as a future work.
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8 CONCLUSIONS AND PERSPECTIVES

This thesis investigated DSP-based compensation techniques for RF analog im-
pairments in modern wideband wireless transmitters, including the non-idealities caused
by NL PAs and LMM that degrade the spectral purity and modulation quality. Several
practical scenarios of PAs subject to LMM motivated the research for more advanced
DPD behavioural models, able to overcome the limitations of polynomial models such
as the MP and GMP, while simultaneously being less complex than existing PA LMM
DPD approaches. In chapter 5, the WHFB polynomial was proposed as a simplified
DPD behavioural model for LMM PAs, being justified by the Volterra series analysis
and experimentally validated in chapter 6. This model was also extended to the joint
compensation of IQM imbalance.

The high dimensionality of the proposed DPD model was addressed in chapter 6,
using parsimonious, sparse estimation techniques, such as LASSO and block-wise LASSO
extensions. It was shown that using LASSO and block-wise LASSO, the number of required
coefficients is significantly reduced, thus reducing the DPD filter length and, proportionally,
the DPD running cost. Additionally, block-oriented selection techniques, such as Group-
LASSO and Sparse-group LASSO, can also be applied for the model dimensioning, i.e.,
setting the values of the model parameters. Finally, a simplified, approximate technique
was proposed in chapter 6, in which the most relevant WHFB blocks are selected prior to
running the LASSO, resulting in lower estimation cost than with LASSO. The WHFB and
sparse WHFB models were experimentally validated in section 6.5, by comparing their
performance to other models, including to the Volterra-PARAFAC and Laguerre-Volterra
models from chapter 4. The extension of the WHFB model for the joint compensation
of IQM imbalance is proposed in appendix A, but was not experimentally validated and
remains as a future work.

In chapter 7, a Volterra pruning strategy is proposed that leads to a flexible and
modular memory polynomial, in which the model parameters are chosen independently
for each NL order. Group LASSO was used to select the relevant blocks of regressors in
the model. This flexible approach is expected to accurately describe a wide range of PA
operational/ environmental conditions.
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8.1 PERSPECTIVES AND FUTURE WORK

This thesis dealt with techniques, such as behavioural modelling, Volterra model
pruning, linear and non-linear least squares regression, CS-based sparse selection and
tensor decomposition, that can also be applied in a variety of analog RF impairments, other
PA operational/ environmental conditions and wireless transceiver configurations (e.g.,
MIMO). Moreover, the techniques above, together with other ones, such as SVD/ PCA,
ANN, low-rank approximations, etc., are at the intersection of data-driven computational
methods, optimization and applied mathematics and have been widely employed to model,
predict and control non-linear, dynamic and high-dimensional complex systems in numerous
modern applications.

8.2 COMPARISON TABLES

This section provides in Tables 8.1, 8.2 and 8.3 an overview of the Pros and Cons
of the model structures and identification techniques discussed in the thesis.

Table 8.1 – Comparison of behavioural models.

Model
Pros Cons

Full-Volterra
- Universal approximator for
mild NL mappings

- Model is linear in the param-
eters

- Inherit stability from FIR fil-
ters

- The model complexity can
be reduced by employing
the PARAFAC decomposition
and Laguerre expansion

- Curse of dimensionality, i.e., im-
practical amount of parameters to
be estimated

- Computational cost

- Data over-fitting

- Regression matrix becomes ill-
conditioned
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Table 8.1 – Comparison of behavioural models (cont.).

Model Pros Cons

Memory-
polynomials - Lower computational cost

- Scalability

- Reduced amount of parame-
ters to be estimated

- Loss of generality

- Cannot guarantee that the most
relevant NL interactions of the sys-
tem are captured by the model

- Choosing the memory polynomial
that, with a given complexity, best
describes an unknown system is
challenging

- Model sizing is based on try-and-
error or heuristic methods
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Table 8.2 – Comparison of memory polynomial models.

Model
Pros Cons

MP
- Only two parameters are re-
quired to define the model

- Small number of coefficients

- Inability to suppress off-diagonal
terms may reduce the model per-
formance when these terms are
non negligible

GMP
- Better performance than MP,
by adding off-diagonal terms
to the model

- In general, satisfactory trade-
off between complexity and ac-
curacy

- Up to eight parameters are re-
quired, including leading and lag-
ging NL orders and memory
lengths

- Model performance degrades un-
der specific operational/ environ-
mental conditions, such as LMM
PA and IQM imbalance

WHFB
- Better performance than MP
and GMP models, useful un-
der specific operational/ envi-
ronmental conditions, such as
PA LMM

- Only four parameters are re-
quired to define the model

- The model complexity can be
reduced by CS-based sparse
estimation

- Computationally intensive

- Regression matrix may become ill-
conditioned
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Table 8.3 – Comparison of estimation techniques.

Estimation
Technique

Pros Cons

OLS
- Linear technique

- Convex cost function

- Unable to search for parsimo-
nious, sparse solutions for over-
parametrized models

- Large regression matrices may re-
sult in numerical instability and
ill-conditioning

LASSO
- Convex and linear optimiza-
tion

- Able to explore sparsity of the
original regression matrix

- Lower computational cost
than modelling techniques
that require NL optimization

- Unstructured model pruning,
not requiring a priori knowl-
edge of the system or sensitiv-
ity analysis

- Smoothly trades-off between
accuracy and model size, by
varying the sparsity parame-
ter

- Allows higher NL orders and
memory depths to be ex-
plored, in an economical way

- Tuning the sparsity parameter re-
quires cross validation or informa-
tion criteria

- Convex relaxation of the `−0 norm
optimization problem may lead to
some performance degradation

- LASSO estimation is more costly
than OLS, but less costly than NL
optimization
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Table 8.3 – Comparison of estimation techniques (cont.).

Estimation
Technique

Pros Cons

Volterra-
PARAFAC - Able to reduce the number

of parameters, while approx-
imating the original FV ker-
nels

- PARAFAC estimation can be
performed directly from input-
output data by iterative algo-
rithms, such as CLMS, NLS
LM

- Tensorlab and other tools are
capable of estimating the ten-
sor rank

- A priori physical knowledge
of the system to be modelled
is not required

- The estimation algorithms are non-
linear and the ALS algorithm re-
quires that the FV kernels are
firstly estimated

- PARAFAC decomposition is a non-
convex NL optimization problem,
highly dependent on the initializa-
tion, subject to find convergence
issues and local minima

- Tensor rank estimation and
PARAFAC decomposition are
time consuming

Laguerre-
Volterra - Able to reduce the number

of parameters, while approxi-
mating the FV performance

- In this thesis, presented
better scalability than the
PARAFAC approach when
the Volterra parameters in-
crease

- Allow to explore higher NL
orders and memory lengths, in
a more economical way than
the FV model

- OBF pole selection is a non-convex
NL optimization problem, highly
dependent on the initialization,
subject to local minima and con-
vergence not guaranteed
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APPENDIX A – JOINT COMPENSATION
OF PA LMM AND IQM IMBALANCE

This appendix proposes an extension of the WHFB model targeting the joint
compensation of PA LMM and IQM imbalances, discussed in section 2.4. The experimental
validation of this model is not presented in this thesis and remains as a future work.

IQM imbalance compensation is described in (VALKAMA; RENFORS; KOIVUNEN,
2001a), (ANTTILA; VALKAMA; RENFORS, 2008b), (ANTTILA; VALKAMA; REN-
FORS, 2008a) and is discussed here in the context of the joint compensation of IQM and
PA LMM. Therefore, this section extends the WHFB DPD model to the joint compensation
of IQM imbalance.

In the literature, IQM imbalance and PA NL can be mitigated either separately or
jointly. The individual compensation is a two-step process in which the IQM imbalance is
first compensated (CANTONI; TUTHILL, 2007), (EBADI; SALEH, 2008). In this case,
the compensation structure is composed of the cascaded PA DPD and IQM compensation
blocks, in this order. The solution requires extra hardware, since both the IQM and the PA
output signals are fed back to DSP. By its turn, the joint mitigation approach relies on a
parallel structure that performs the one-step compensation of PA NL and IQM imbalance
(ANTTILA; HANDEL; VALKAMA, 2010), allowing all coefficients to be simultaneously
estimated by the OLS technique. Besides, no additional hardware is required.

Two state-of-the-art models for the one-step, joint compensation of PA NL and IQM
frequency-dependent imbalance are considered in this section: the dual-input polynomial
model (CAO et al., 2008) and (CAO et al., 2009), and the dual-branch parallel Hammerstein
(PH) model (ANTTILA; HANDEL; VALKAMA, 2010). In the first approach, we also
consider that (SAFFAR et al., 2013) replaced the Volterra model in the original dual-input
DPD structure by the MP model, thus reducing its complexity and increasing the model
scalability. Note that some other approaches have been also proposed in the literature, such
as non-data-aided IQM compensation schemes, where statistical properties of the input
and output complex baseband signals are used, e.g., the cumulative distribution functions
(CDF) (HUANG; CARON, 2009), the circularity property of circular modulation formats
(VALKAMA; RENFORS; KOIVUNEN, 2001a), (ANTTILA; VALKAMA; RENFORS,
2008a), and the I and Q correlation of the output signal (since IQM imbalance creates
correlation between them) (VALKAMA; RENFORS; KOIVUNEN, 2005a). Finally, higher-
order statistics can also be used in a blind signal separation (BSS) technique applied to
the I and Q components, as proposed in (VALKAMA; RENFORS; KOIVUNEN, 2005b).
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First, let us consider the dual-branch PH joint-DPD model, proposed in (ANTTILA;
HANDEL; VALKAMA, 2010), as an augmented version of the IQM model in Figure 2.9,
using the PH model in each branch. The dual-branch PH model processes separately
the input signal and its complex conjugate, as shown in Figure A.1. The output signal
is modelled by memoryless polynomials with orders Ka and Kb, respectively, for the
non-conjugate and conjugate input signals, respectively, and by FIR filters with depths
{Mk}, associated to each PH branch.

Figure A.1 – Dual-branch PH joint DPD model.

The dual-branch PH DPD model is expressed as:

ŝ (n) =
K1∑
k=1
k odd

Mk∑
m=0

β
(1)
m,kũ (n−m) |ũ (n−m)|k−1 +

K2∑
k=1
k odd

Mk∑
m=0

β
(2)
m,kũ

∗ (n−m) |ũ (n−m)|k−1 ,

(A.1)
where Mk is the kth-order branch FIR filter depth, K1 and K2 are the pre-distorter non-
linear orders of the non-conjugate and conjugate MP blocks, ũ(n), ũ∗(n) and ŝ(n) are,
respectively, the ILA DPD input, conjugate input and modelled output signals.

As shown in (VALKAMA; RENFORS; KOIVUNEN, 2001a), the IQ imbalance
implies a widely linear transformation that is also present in the compensation structure.

The second model is the dual-input MP model that processes separately the real and
imaginary parts of the complex-valued baseband input signal (GHANNOUCHI; HAMMI,
2009). In Figure A.2, the dual-input MP block input signals are vI(n) and vQ(n), the real
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and imaginary parts of the normalized LPE PA output signal, uI(n) and uQ(n), after
passing through an IQM imbalance model, represented by the real filters gII , gIQ, gQI and
gQQ.

Figure A.2 – Dual-input MP joint DPD model.

The dual-input MP model output can be written as:

(A.2)

ŝ (n) =
M∑
m=0

K∑
k=1
k odd

βm,kṽ (n−m) |ṽ (n−m)|k−1

=
M∑
m=0

K∑
k=1
k odd

βm,k

(
ṽI(n−m) + jṽQ(n−m)

)
[
ṽ2
I (n−m) + ṽ2

Q(n−m)
] k−1

2
,

where vI(n) and vQ(n) are the IQM imbalance model output signals, given by:

(A.3)ṽI(n) = gIIũI(n) + gIQũQ(n)

and
(A.4)ṽQ(n) = gQIũI(n) + gQQũQ(n).

Replacing eq. (A.3) and (A.4) into eq. (A.2), the joint DPD model output is
expressed as:

(A.5)

ŝ (n) =
M∑
m=0

K∑
k=1
k odd

βm,k

[
gII(m)ũI(n−m) + gIQ(m)ũQ(n−m)

+ j
(
gQI(m)ũI(n−m) + gQQ(m)ũQ(n−m)

)] [
(gII(m)ũI(n−m)

+ gIQũQ(n−m))2 + (gQI ũI(n−m) + gQQũQ(n−m))2
] k−1

2
.

Then, the expression (A.5) is developed for k = 1 and k = 3, as in (GHANNOUCHI;
HAMMI, 2009):
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For k = 1:

(A.6)ŝI (n)k=1 =
M∑
m=0

βm,1

(
gII(m)ũI(n−m)

+ gIQ(m)ũQ(n−m)
)

and

(A.7)ŝQ (n)k=1 =
M∑
m=0

βm,1

(
gQI(m)ũI(n−m)

+ gQQ(m)ũQ(n−m)
)
.

For k = 3:

(A.8)
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M∑
m=0

βm,3

[
(g3
II + gIIg

2
QI)ũ3

I(n−m) + (3g2
IIgIQ + gIQg

2
QI

+ 2gIIgQIgQQ)ũ2
I(n−m)ũQ(n−m) + (3gIIg2

IQ + gIIg
2
QQ

+ 2gIQgQIgQQ)ũI(n−m)ũ2
Q(n−m) + (g3

IQ + gIQg
2
QQ)ũ3

Q(n−m)
]

and

(A.9)
ŝQ (n)k=3 =

M∑
m=0

βm,3

[
(g3
QI + g2

IIgQI)ũ3
I(n−m) + (3g2

QIgQQ + gQQg
2
II

+ 2gIIgQIgIQ)ũ2
I(n−m)ũQ(n−m) + (3gQIg2

QQ + gQIg
2
IQ

+ 2gIIgIQIgQQ)ũI(n−m)ũ2
Q(n−m) + (g3

QQ + gIQg
2
QQ)ũ3

Q(n−m)
]
.

By developing for the next odd-order NL terms, the dual-input MP model is
expressed by:

(A.10)ŝI (n) =
M∑
m=0

K∑
k=1
k odd

k∑
r=0

β
(I)
m,k,rũ

k−r
I (n−m)ũrQ(n−m)

and

(A.11)ŝQ (n) =
M∑
m=0

K∑
k=1
k odd

k∑
r=0

β
(Q)
m,k,rũ

k−r
I (n−m)ũrQ(n−m),

where M and K are the pre-distorter memory depth and NL order, zI(n) and zQ(n) are
the real and imaginary parts of the modelled pre-distorted IQM input signal, whereas
uI(n) and uQ(n) are the real and imaginary parts of the normalized PA output signal.
β(I) and β(Q) are the I- and Q-component coefficients vectors. The following expression is
equivalent to eqs. (A.10) and (A.11):
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(A.12)ŝ (n) =
M∑
m=0

K∑
k=1
k odd

k∑
r=0

βm,k,rũ
k−r
I (n−m)ũrQ(n−m),

where β is the complex-valued coefficients vector, such that β = β(I) + jβ(Q).

Likewise, using the dual-input joint DPD model approach, the WHFB DPD model
can be extended to the joint compensation of PA LMM and IQM imbalance, as follows:

(A.13)

ŝ (n) =
M1∑
m=0

K1∑
k=1
odd

k∑
r=0

β
(1)
m,k,rũ

k−r
I (n−m)ũrQ(n−m)

+
M2∑
m=0

L2∑
l=1

K2∑
k=1
odd

k∑
r=0

β
(2,1)
m,k,rũ

k−r
I (n−m)ũrQ(n−m)

Q2∑
q=0
even

q∑
s=0

β(2,2)
m,q,sũ

q−s
I (n−m− l)ũsQ(n−m− l)

+
M3∑
m=0

L3∑
l=1

K3∑
k=1
odd

k∑
r=0

β
(3,1)
m,k,rũ

k−r
I (n−m− l)ũrQ(n−m− l)

Q3∑
q=0
even

q∑
s=0

β(3,2)
m,q,sũ

q−s
I (n−m)ũsQ(n−m),

where ũI(n), ũQ(n) and ŝ(n) are, respectively, the I and Q components of the inverse model
normalized input and the output signals and the parameters M1 and K1 are, respectively,
the memory depth and power order on the first summation. Likewise, M2, L2, K2 and Q2

are, respectively, the memory depth, envelope time-shift, aligned envelope power order
and time-shifted envelope power order on the second summation. Finally, M3, L3, K3

and Q3 are, respectively, the memory depth, envelope time-shift, time-shifted envelope
power order and aligned envelope power order on the third summation. This way, the
model has NL order given by K +Q = max{K1, K2 +Q2, K3 +Q3} and memory length
M + L = max{M1,M2 + L2,M3 + L3}.
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APPENDIX B – KRONECKER PRODUCTS

The Kronecker product of the matricesA ∈ Cm×n andB ∈ Cp×q, with sizemp×nq,
is defined as:

(B.1)A⊗B =


a1,1B a1,2B . . . a1,nB

a2,1B a2,2B . . . a2,nB
... ... . . . ...

am,1B am,2B . . . am,nB

 .

In the case of column vectors, a ∈ Cm×1 and b ∈ Cp×1, the Kronecker and the
outer products are related by a⊗ b = vec(b ◦ a), where ◦ is the outer product and vec,
the vectorization operator. Thus,

(B.2)a⊗ b = vec(baT ) =
[
a1b1 . . . a1bp a2b1 . . . a2bp . . . amb1 . . . ambp

]
T ,

with size mp× 1.

The Kronecker product of a vector by itself, represented by⊗2a, produces redundant
cross-terms, as from the previous equation; for example, a1a2 and a2a1. In the simple case
of ⊗2a, the redundancies can be eliminated multiplying the result by a vectorized lower
triangular matrix, as follows:

(B.3)vec
(


1 0 . . . 0
1 1 0 0
... ... . . . 0
1 1 1 1


)

(∗)
[
a1a

T a2a
T . . . ama

T
]T

︸ ︷︷ ︸
⊗2a

=
[
a2

1 a1a2 . . . a1am 0 a2
2 . . . a2am 0 . . . 0 a2

m

]
T ,

where (∗) is the Hadamard (element-wise) product.

To avoid any redundancies in the general case, the truncated Kronecker product
of a vector by itself is defined (FERNANDES; MOTA; FAVIER, 2010) and (FAVIER;
KIBANGOU; CAMPELLO, 2003), as follows:
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(B.4)�2a = a� a =



a1a1

a2a2
...

aiai
...

amam


,

where ai =
[
ai ai+1 . . . am

]T
, for i = 1, . . . ,m. As can be seen, the truncated Kro-

necker product �2a suppresses the symmetric terms in ⊗2a. Also higher-order truncated
Kronecker operators �qa ≡ a� . . .� a︸ ︷︷ ︸

q

can be defined, recursively, as:

(B.5)�qa =


a1 �q−1 a1

a2 �q−1 a2
...

am �q−1 am

,

with �1a = a. These operators allow the representation of triangular Volterra models,
such as in eqs. (2.4) and eq. (2.7) and the computation of their regression matrices, as
shown in section 2.6.

In section 7.4, the proposed implementation of the model in eq. (7.8) is expressed
using a modified truncated Kronecker product, defined as follows:

(B.6)�2
−a =



a1a2

a2a3
...

aiai+1
...

am−1am


and the corresponding high-order modified truncated Kronecker operator, �q−:

(B.7)�q−a =


a1 �q−1

− a2

a2 �q−1
− a3
...

am−q+1 �q−1
− am−q+2

.

Next, we provide a few examples:
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From eq. (7.8), a pruned-Volterra model similar to the WHFB can be obtained
setting {Lk} = 2:

- For l = 1
(B.8)Φ(k,1)(n) = ũ(n) ⊗ ũ(k−1)(n);

for all k.

- For l = 2

(B.9)Φ(k,2)
j =1(n) = ũ(n) ⊗

[
ũ(k−3)(n)�− ũ(2)(n)

]
;

for k ≥ 3,

(B.10)Φ(k,2)
j =2(n) = ũ(n) ⊗

[
ũ(k−5)(n)�− ũ(4)(n)

]
;

for k ≥ 5.

In the next example, let us consider the model with the following parameters:
K=11, L7=3, L9=2 and L11=1. The model terms are:

- For l = 1
(B.11)Φ(k,1)(n) = ũ(n) ⊗ ũ(k−1)(n);

for 1 ≤ k ≤ 11.

- For l = 2

(B.12)Φ(k,2)
j =1(n) = ũ(n) ⊗

[
ũ(k−3)(n)�− ũ(2)(n)

]
;

for 3 ≤ k ≤ 9,

(B.13)Φ(k,2)
j =2(n) = ũ(n) ⊗

[
ũ(k−5)(n)�− ũ(4)(n)

]
;

for 5 ≤ k ≤ 9.

- For l = 3

(B.14)Φ(k,3)
j =1(n) = ũ(n) ⊗

[
ũ(k−5)(n)�− (�2

−ũ
(2)(n))

]
;

for k = 7.

This latter example shows that, by choosing Lk values independently, high orders
can be included to the model in a modular and more economical way.


