Doctoral Thesis
DOI
https://doi.org/10.11606/T.3.2016.tde-22092016-143525
Document
Author
Full name
Wilder Bezerra Lopes
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2016
Supervisor
Committee
Lopes, Cássio Guimarães (President)
Diniz, Paulo Sergio Ramirez
Nascimento, Vitor Heloiz
Panazio, Cristiano Magalhaes
Vaz Junior, Jayme
Title in English
Geometric-algebra adaptive filters.
Keywords in English
Adaptive filtering
Geometric algebra
Point-clouds registration
Quaternions
Abstract in English
This document introduces a new class of adaptive filters, namely Geometric- Algebra Adaptive Filters (GAAFs). Those are generated by formulating the underlying minimization problem (a least-squares cost function) from the perspective of Geometric Algebra (GA), a comprehensive mathematical language well-suited for the description of geometric transformations. Also, differently from the usual linear algebra approach, Geometric Calculus (the extension of Geometric Algebra to differential calculus) allows to apply the same derivation techniques regardless of the type (subalgebra) of the data, i.e., real, complex-numbers, quaternions etc. Exploiting those characteristics, among others, a general leastsquares cost function is posed, from which two types of GAAFs are designed. The first one, called standard, provides a generalization of regular adaptive filters for any subalgebra of GA. From the obtained update rule, it is shown how to recover the following least-mean squares (LMS) adaptive filter variants: real-entries LMS, complex LMS, and quaternions LMS. Mean-square analysis and simulations in a system identification scenario are provided, showing almost perfect agreement for different levels of measurement noise. The second type, called pose estimation, is designed to estimate rigid transformations { rotation and translation - in n-dimensional spaces. The GA-LMS performance is assessed in a 3-dimensional registration problem, in which it is able to estimate the rigid transformation that aligns two point clouds that share common parts.
Title in Portuguese
Filtros adaptativos baseados em álgebra geométrica.
Keywords in Portuguese
Álgebra geométrica
Alinhamento de nuvens de pontos
Filtragem adaptativa
Filtros elétricos adaptativos
Processamento de sinais
Quaternions
Abstract in Portuguese
Este documento introduz uma nova classe de filtros adaptativos, entitulados Geometric-Algebra Adaptive Filters (GAAFs). Eles s~ao projetados via formulação do problema de minimização (uma função custo de mínimos quadrados) do ponto de vista de álgebra geométrica (GA), uma abrangente linguagem matemática apropriada para a descrição de transformações geométricas. Adicionalmente, diferente do que ocorre na formulação com álgebra linear, cálculo geométrico (a extensão de álgebra geométrica que possibilita o uso de cálculo diferencial) permite aplicar as mesmas técnicas de derivação independentemente do tipo de dados (subálgebra), isto é, números reais, números complexos, quaternions etc. Usando essas e outras características, uma função custo geral de mínimos quadrados é proposta, da qual dois tipos de GAAFs são gerados. O primeiro, chamado standard, generaliza filtros adaptativos da literatura concebidos sob a perspectiva de subálgebras de GA. As seguintes variantes do filtro least-mean squares (LMS) s~ao obtidas como casos particulares: LMS real, LMS complexo e LMS quaternions. Uma análise mean-square é desenvolvida e corroborada por simulações para diferentes níveis de ruído de medição em um cenário de identificação de sistemas. O segundo tipo, chamado pose estimation, é projetado para estimar transformações rígidas - rotação e translação { em espaços n-dimensionais. A performance do filtro GA-LMS é avaliada em uma aplicação de alinhamento tridimensional na qual ele estima a tranformação rígida que alinha duas nuvens de pontos com partes em comum.

WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2016-09-23

WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.