—
.

ccecceCcccccccccccccccccecac

DAVID LAMB

EFFICIENT ALGORITHMS AND HARDWARE
STRUCTURES FOR FRACTIONAL DELAY
FILTERING AND SAMPLE RATE CONVERSION

Sao Paulo
2015

cCC

DAVID LAMB

EFFICIENT ALGORITHMS AND HARDWARE
STRUCTURES FOR FRACTIONAL DELAY
FILTERING AND SAMPLE RATE CONVERSION

Tese apresentada & Escola Politécnica da
Universidade de Sao Paulo para obtencio
do Titulo de Doutor em Engenharia

Elétrica.

Sao Paulo
2015

DAVID LAMB

EFFICIENT ALGORITHMS AND HARDWARE
STRUCTURES FOR FRACTIONAL DELAY
FILTERING AND SAMPLE RATE CONVERSION

Tese apresentada & Escola Politécnica da
Universidade de Sao Paulo para obtengao
do Titulo de Doutor em Engenharia

Elétrica.

Area de Concentragao:

Sistemas Eletronicos

Orientador:

Vitor Heloiz Nascimento

Sao Paulo
2015

ACKNOWLEDGMENTS

This thesis is the fruit of my work at the University of Sdo Paulo in the Electronic
Systems Department (Departamento de Engenhiaria de Sistemas Eletrénicos). Years spent
at the University were clearly the best of my academic life. T would like to thank cveryone
from the University, especially my colleagnes from the PSI lab, for their constant support.

I'm particularly grateful to my supervisor, Dr. Vitor Heloiz Nascimento, for his
valuable guidance, unwavering patience and flexibility, and for believing in me during all
these years.

Many people contributed through encouragements and support. First and foremost [
want to thank my parents, Monique Beaudoin and Claude Lamb, and my brother, Jean-
Philippe Lamb, for teaching me [rom a very young age that overcoming challenges is it’s
own reward. A very special thank goes to Dr. David Hossack for his constant motivation
to pursue this work and to, as he would say, gef it done, as well as to my friend and fellow
student Luiz F. O. Chamon, for always listening to my embryonic ideas and pushing me

to make them flourish. I also want to thank Doctor Bruno Capron for his constant help
with logistics.

Last bul nol least, I want to thank my girlfriend Erika Dias da Silva for her love,
support and patience, and her family for welcoming me to their country with open arms
and making it a place that I now call home.

(

C ¢ C(

S cCccccccccccCcc e

“Our future success is only limited by
the scale of our ambition”

-Jerald G. Fishman

%

C ¢ C 0«

C

(

cccececccecceccccd

¢ C CC

-’
~

“Our future success is only limited by
the scale of our ambition”

-Jerald G. Fishman

RESUMO

Nesta pesquisa, sao propostas novas estruturas de filtragem para a conversio da taxa
de amostragem de sinais digitais. Sao consideradas taxas de conversio inteiras e fra-
ciondrias ¢ énfase ¢ dada ao desenvolvimento de estruturas com baixa complexidade em
hardware para uso em circuitos integrados dedicados (ASIC).

Primeiramente, os dois principais desafios da conversiao assincrona de taxa de amostragem

sao abordados: a geragao em tempo real de sinais de clock que rastreiam a taxa fracionaria
e a implementacao eficiente de filtros com atraso fraciondrio. Uma nova técnica totalmente
digital para a geragdo de clocks € introduzida. Ela difere do DPLL cléssico pois o rastrea-
mento é baseado no periodo do clock de referéncia ao invés de sua fase e/ou frequéncia,
0 que permite seu uso em faixas mais largas de fregiiéncias e sincronizagao mais rapida.
Em seguida, uma nova estrutura para efetuar filtragem com atrasos fracionsrios utilizando
polinémios spline é derivada usando a relacdo entre o filtro Farrow e a estrutura de New-
ton. A complexidade computacional do filtro é consideravelmente reduzida. sc tornando
comparavel & de filtros com polinémios de Lagrange.

Em seguida, o problema de conversio de taxa de amostragem com taxas inteiras é
considerado, especificamente do ponto de vista de reducao da complexidade do primeiro
estdgio de uma cascata de filtros de decimagao, tipicamente implementado usando um
filtro de cascata integrador-diferenciador (CIC). A éreae o consumo de energia do primeiro
filtro ¢ um fator em muitas aplicacdes, especialmente em conversores A/D ¥-A, devido
as altas frequéncias de amostragem envolvidas. A implementagdo em ponto fixo de uma
variante com espago de estado reduzido do filtro CIC introduzida anteriormente mostra
que esta pode ser uma alternativa interessante para filtros de ordem menor com fator de
decimagdo em poténcias de dois. Por fin, uma nova técnica é desenvolvida e integrada no
filtro CIC, mantendo suas vantagens, melhorando seu desempenho e reduzindo a drea da
implementagdo. A estrutura baseia-se na introdugao de um multiplicador com coeficientes
varidveis no tempo capaz de aproveitar a eficiéncia de filtros FIR esparsos.

Palavras-Chave — Conversio da Taxa de Amostragem, Conversao Fracionérias, Far-
row, Interpolacio, Decimacao.

ABSTRACT

In this work, new filtering structures for the sampling rate conversion of digital signals
are proposed. Both integer and fractional rate change are considered, and the emphasis is
put on developing hardware structurcs with low complexity for use in application specific
integrated circuits (ASIC).

First, the two main challenges of fractional sample rate conversion are addressed,
namely the real time generation of clock signals that properly track the fractional ratio,
and the efficient implementation of the polynomial-based filter. A new technique for all-
digital clock generation circuit is introduced. It differs from classical DPLLs in that the
locking mechanism is based on the period of the reference clock instead of its phase and/or
[requency which allows for wide bandwidths and fast locking times. Then a new structure
for performing the fractional filtering operation using spline polynomials is derived, based
on the relationship of the well-known Farrow structure and the relatively newly introduced
Newton structurc. The computational complexity of implementing the spline polynomial
15 greatly reduced and approaches that of the Lagrange polynomial.

Then, the problem of integer sample rate conversion is considered, mainly from the
perspective of reducing the complexity of the first filter of a multistage decimating chain,
typically implemented using a Cascaded-Integrator-Comb (CIC) filter. The area and
power consumption of the first filter is a concern in many applications, notably ¥-A A/D
converters, because of the high sampling frequencies involved. The fixed-point implemen-
tation of a previously introduced reduced state-space variant of the CIC filter is considered
and proven to be an interesting alternative for lower order filter with power of two dec-
imating ratios. Finally, a novel technique is developed that integrates seamlessly within
the CIC filter, keeping all of its advantages, while improving performance and reducing
area. The structure is based on the inclusion of a time-varying multiplier as part of the
original filter, leveraging the computational efficiency of sparse FIR filters.

Keywords — Sample Rate Conversion, Interpolation, Decimation, CIC filters, Frac-

tional Delay Filtering, Farrow Structure, All-Digital Phase Locked Loop (DPLL), Noise
Shaping.

g

10

11

12

13

14

15

16

17

18

19

20

21

LIST OF FIGURES

Typical NCO: (a) block diagram; (b) implementation, with oy = 0 when

the input of the quantizer @ is less than P and gou, = P, otherwise. 18
The values of 15 (fmclk,A = fmclk,B = 1.7fref). 20
Period-Locked NCO with lock-detection logic. 21

Period-Locked NCO with lock-detection logic: foax = 31.7MHz, fror =
48kHz, N =128, and valid P arrival window [N/4,3N/4]. 22

Spectrum of 20kHz sine wave sanipled at 6.144MHz using the period-locked

NCO for different modes of operation 24
Leaky integrator with ervor feedback. 25
Period-locked NCO with low-pass filtering of P. 25
NCO with 2"¢ order noise shaping (kg =2, ky = —1). 26
General topology of a DPLL. 28
The Farrow structure: (a) block diagram; (b) intersample position () ... 30
The Newton structure for Lagrange interpolation 31
Frequency response of 3™ order Lagrange and spline filters 33
Novel Newton-like spline interpolation structure 34
Standard recursive structure for CIC filters 38
Removal of first differentiator using mtegrate&dump 38
3™ order reduced state-space CIC filter _ 39
Reduced state-space filter with optimized wordlength, R=3, N=32 42
Standard recursive structure for CIC filters 46
Frequency Response of CIC filters of order 4,5and 6. 47
Removal of first differentiator using int&dump 48

22

23

24

26

27

28

29

30

31

Proposed CIC filter variant

Efficient low-power implementation of the integrator with time varying

coefficients (restricted to 0 or 1 in this example).
Implementation of FIR filter with more than N taps

Efficient implementation of FIR filter with more than N taps (2N shown

here)

Frequency Response of Sparse CIC filters of order 4, 5, and 6 where h(n] €

(O

Frequency Response of Sparse CIC filters of order 4, 5, and 6 where h[n] €
{0, £1,£2, £3, +4}

Frequency Response of CIC5, CIC4 with lengthN FIR and CIC3 with
length2N FIR, where h[n] € 0, £1, 42

Frequency response of (a) 6" order CIC filter (b) 3™ order sparse CIC with
length-2N FIR

ccccecccccccc

cCcccccccoccc

r
.

2

LIST OF TABLES

Computational complexity

Feedback coefficients of reduced state-space CIC filters

Arca comparison for 0.18um (square microns)

CONTENTS

1 Introduction
1.1 Contributions of this work
1.2 List of publications and patent

1.2.1 Publications

1.3 Organization of the text

Part I: FRACTIONAL SAMPLE RATE CONVERSION

2 Fractional Delay Filtering: timing of the intersample position

2.1 Introduction

2.2 The NCO as an Open Loop Clock Generator

2.3 The Period-Locked NCO

2.3.1 The closed-loop clock generator

2.3.2 Lock acquisition and detection

2.4 Performance Analysis and Improvements

2.4.1 Filtering the P sequence

2.5 Comparison with Standard DPLLs

2.6 Conclusion

3 An Efficient Filtering Structure for Spline Interpolation and Decimation

3.1 Introduction

3.4 Farrow state-space transformations and the Newton structure 31

3.5 Novel structure for spline interpolation 34
3.6 Conclusion 35
Part II: INTEGER SAMPLE RATE CONVERSION 36

4 On the fixed-point implementation of Reduced State-Space CIC Filters 37

4.1 Imtroduction 37
4.2 The classical CIC filter 37
4.3 Elimination of the first differentiator 38
4.4 Higher order integrate and dump 39
4.5 Fixed point implementation for guaranteed stability 40
4.6 Wordlength optimization of each integrator stage 41
4.7 Area comparison 42
4.8 Conclusion 43
5 Sparse CIC Filters - A Hardware-Efficient Class of Digital Filters for

Decimation and Interpolation 44
5.1 Imtroduction 44
5.2 Brief CIC Filter review 45
5.3 Proposed structure 47

5.3.1 Elimination of the first differentiator and FIR equivalency 47

5.3.2 Controllable coefficient through time-varying multiplier 48

5.3.3 Previous work on the CIC-FIR combination 50
54 Design and Optimization of the FIR filter 50

5.4.1 Efficient implementation of the proposed structure 52

54.2 Longer FIR filters 52

9.4.3 Delay only path

5.4.4 Generalized structure 54

0.0 Design Examples 56

5.5.1 Example from Coleman and Saramaki-Ritoniemi 56

9.5.2 Non-binary coefficients 57

5.5.3 FIR filter longer than N 57

9.6 Bit accurate model and verification methodology 29

5.7 Conclusion 60

6 Conclusions and Further Research 61

6.1 Summary, 61

6.2 Promising lines of researcho 62
0.2.1 Reduced complexity implementation structures for polynomial-based

filbers. 62

6.2.2 Sparse CICfilters 63

6.2.2.1 Non-symmetric sparse FIR filters 63

6.2.2.2 Droop Compensation using the sparse FIR filter 63

References 64

Appendix A — Matlab code for the design of sparse CIC filters 69

Appendix B ~ Matlab code for sparse CIC filter model 76

12

1 INTRODUCTION

Sampling rate conversion is at the very heart of digital signal processing (DSP). As
soon as two digital systems running at different rates are exchanging data, there is a
need for sampling rate conversion (SRC). Also, many applications which on surface seem
to deal with a single sample rate are relying on some form of sample rate conversion
to happen behind the scenes. For example, one only has to look at any oversampling
Y-A A/D converters which are ubiquitous in interfacing the digital and analog worlds to
find specialized circuits perforining sample rate conversion. The design of such circuits
is particularly complex due to extreme constraints put on silicon area and power con-
sumption. This paved the way to enormous research efforts on the derivation of efficient
filtering structures to perform the surprisingly difficult task of altering the sampling rate
of digital signals. This dissertation is one more effort at trying to improve the many
algorithms and filtering structures available for SRC, with a unique focus on the cost of

dedicated hardware impleientations.

The first part of the text is focused on the problem of asynchronous sample rate
conversion (ASRC). ASRC arises in many systems where a discrete time scquence needs
to be converted to a new sequence with different sampling rate where the rate conversion
is fractional, or even irrational. In some systems, the ratio might, even be slowly varying
and nceds to be properly tracked. In the end, an ASRC algorithm has to be able to
cvaluate the value of a discrete time sequence at any time instant between input samples.
Software Defined Radio is one important application where ASRC is required; different
communication standards use different symbol rates that have to be recovered in the
digital domain after being sampled by an unrelated fixed rate A/D converter [1,2]. The
sampling rate of the the signal thus has to be converted to the original symbol rate
entirely in the digital domain. ASRC is also found in many audio systems, where signals
coming from different sources running at completely asynchronous sampling rates have to
be converted to the rate of the local digital signal processor before further processing [3,4].
A less obvious application is in audio power amplifiers where the ASRC is used to convert

the signal to a sampling rate where the switching frequency of the amplifier does not

13

interfere with an AM band [5].

The problem of ASRC can be divided in two distinct parts: (1) the calculation of the
ratio between the two sampling rates, and (2), the digital filter used to calculate new data
points at the required time instant. The first problem is analogous to the one faced by
digital phase-locked loop (DPLL) designers and similar techniques are used. The second
problem is typically solved by using FIR filters where the impulse response is built in real
Lime using piccewise polynomial basis functions [6]. Both topics will be explored in this

work and circuits with reduced complexity are proposed.

The second part of the text is concerned with the mathematically simpler problem of
integer sampling rate conversion, where the ratio is known to be a fixed integer. Although
the problem is easier to grasp, it is generally required in extremely demanding applications
where silicon arca and power consumption are tightly constrained, such as £-A A/D
converters. For example, efficient decimating filters are constantly being rescarched and
new structures regularly proposed [7-10]. It is well known that the problem of decimation
is better solved using a multistage approacly, where the performance requirements of the
first filters of the cascade, running at higher sampling rates, can be reduced without
affecting the overall system performance [11]. The design of the first stage filter will be

explored in greater detail leading to a novel implementation structure.

1.1 Contributions of this work

The main contributions of this dissertation are as follow:

L. A new locking mechanism is proposed for the design of an all-digital clock generator
circuit which is based on the period of the reference clock instead of its phase
and/or frequency. This leads to the proposed period-locked Numerically Controlled
Oscillator (NCO) which decouples various trade-offs inherent to feedback loops, such

as input jitter rejection, bandwidth, and settling time

2. Noise-shaping techniques previously used in Direct Digital Synthesizers (DDS) are
shown to have a straightforward relationship with the period-locked NCO and can

be directly integrated into the new circuit to reduce the phase noise of the generated

clock signal.

3. A matrix form of the Farrow transfer function is put forward and used to derive state-

space transformations between two otherwise completely different implementation

14

structures of the Lagrange interpolator. These transformations are then applied to
the spline polynomial giving rise to an efficient spline filtering method. The methods
proposed here form the basis for developing other efficient structures based on other

polynomials.

4. The fixed-point implementation of reduced state-space CIC filters is considered and
it is demounstrated that stability can be guaranteed if proper wordlength is used
throughout the filter. A technique is derived to calculate the maximum filter gain
at each integrator stage, leading to a reduced wordlength implementation while

preserving the desired finite impulse response intact.

5. A new filtering structure is proposed that systematically outperforms the classical
CIC filter response, while reducing the hardware and computational expenditure. Tt
is shown that the last integrator of standard CIC filters can be transformed into a
fully programmable decimating FIR filter at very low cost and that a simple sparsc

filter with small integer cocflicients is typically cnough to increase performance.

6. A Mixed Integer Linear Programming framework for the design of the new sparse
CIC filter is proposed.

1.2 List of publications and patent
1.2.1 Publications

The publications that resulted from the research presented in this dissertation are:

1. The Period-Locked NCO presented in Chapter 2 was submitted to IEEE Transac-
tions on Circuits and Systems II (TCAS-II).

2. The new structure for fractional delay filtering using the spline polynomial of Chap-

ter 3 was submitted to Electronics Letters (IET).

3. The fixed-point design and implementation of reduced state-space CIC filters from

Chapter 4 was submitted to Electronics Letters (IET).

4. The new sparse CIC filtering structure of Chapter 5 will be submitted to IEEE

Transactions on Circuits and Systems I (TCAS-I) as soon as the patent application
is filed.

15

1.2.2 Patent

A patent application is also being prepared for the new sparse CIC filtering structure

of Chapter 5.

1.3 Organization of the text

The dissertation is divided in two main parts; Part I is concerned with fractional
sample rate conversion, touching on both the fractional interval ratio calculation and
timing generation as well as the polynomial filter structure used to process the data. Then,
in Part II, integer sample rate conversion is discussed, mainly proposing improvements to

the first filter of a multistage decimating chain.
The remainder of this dissertation is structured as follow:

Chapter 2 presents a novel all-digital clock generator circuit where the period of the

reference signal is measured and used as way to enforce lock.

Chapter 3 introduces an efficient structure for spline-based fractional delay filtering

for interpolation/decimation.

Chapter 4 investigates the feasibility of the fixed-point implementation of the so-called

reduced state-space CIC filter structure.

Chapter 5 proposes a novel technique to improve the performance of standard CIC

filters while reducing complexity.

Chapter 6 concludes the thesis with a summary of the results and provides directions

for future research.

PART 1

FRACTIONAL SAMPLE RATE CONVERSION

17

2 FRACTIONAL DELAY FILTERING: TIMING
OF THE INTERSAMPLE POSITION

2.1 Introduction

Many digital systems use a stable master clock (mclk) to produce a sccondary clock
signal frequency-locked onto an incoming asynchronous reference clock (refclk). Often
times, this mclk is fixed so that neither its frequency nor phase can be controlled. This
seriously constrains the system performance since the edges of the generated clock must
be aligned with those of the mclk to keep the design fully synchronous and synthesis-
friendly. This problem statement is analogous to the one faced by digital phase-locked
loop (DPLL) designers, so that the same design methodologies are commonly used. A

good review of these techniques is available in [12].

Despite their ubiquity, classical DPLLs (e.g., [13-15]) are intricate to design, typically
display long locking times, and do not take advantage of the stable high frequency clock
available {12]. To address these issues, this work puts forward the period-locked NCO,
which relies on measurements of the refclk period instead of its frequency/phase. Although
similar circuits can be found in [16, 17, they rely on an idle period at the end of each
refclk cycle to guarantee lock and provide jitter immunity. This idle period introduces
distortions in the spectrum of the output clock that can hinder its use in some applications,

such as high fidelity analog to digital and digital to analog conversion (ADC/DAC).

The novel solution is developed by first reviewing how Numerically Controlled Os-
cillators (NCOs) can be used as flexible open-loop clock generators. Then, this circuit
is extended to ensure that the gencrated clock is locked onto refclk despite possible dis-
turbances, giving risc to the period-locked NCO. Contrary to standard closed-loop DPLL
techniques, this circuit is locked by design. F inally, simulations are used to illustrate the

performance of this novel approach and two methods are presented to improve the quality

of the generated clock.

18

inc out

Tout
ie[n]

(a) (b)

Figure 1: Typical NCO: (a) block diagram; (b) implementation, with go, = 0 when the
input of the quantizer @ is less than P and q,,, = P, otherwise.

2.2 The NCO as an Open Loop Clock Generator

It is useful to first consider how an NCO can be used as a flexible open-loop clock
generator. A typical NCO is simply a modulo- P overflowing accumulator that increments
by inc each mclk cycle (Figure 1). The gencrated clock frequency (fout) is given by the

overflow rate of the accumulator, as in
ne

fout = fmclk ' ?7 (21)

where fyax is the melk frequency. Take, for example, P = 660 and inc — 128, so that the
NCO generates a clock with frequency %,fmdk. Note that the fraction is never explicitly
evaluated and that the division is exact even if it cannot be represented in the system’s
precision. Indeed, it is straightforward to see that the period of the output clock is

precisely 1L mclk cycles on average. In the previous example, the output clock period

nc

in terms of melk cycles would look like [6,5, 5,6,5,5,5,6,...], such that the average is
660
exactly J5¢.

Constraining inc and P to be integers, the resolution of Jou is obtained by letting

inc =1 in (2.1), which yields
fmc]_k

Afout = _P

Hence the frequency resolution can be increased for a fixed fiacx by adding more bits to

(2.2)

P. Naturally, if the value of % is not an integer, the period of the generated clock will

not be constant: its peak-to-peak jitter will be one full meclk cycle, as illustrated in the

previous example.

It is worth noting that NCOs are also at the heart of Direct Digital Synthesiz-
ers (DDS), where they are commonly referred to as a phase accumulators [18]. In the DDS
literature, it is common to use P = 28 — 1, where B is the wordlength of the accumulator,

i order to maximize the resolution of Jour as well as simiplify the hardware. However,

19

by noticing that NCOs are systems that perform the exact division of the integers inc
and P [see (2.1)], allowing P to take on other values increases the set of achievable exact

ratios.

2.3 The Period-Locked NCO

2.3.1 The closed-loop clock generator

The output of the NCO in Section 2.2 is free-running. However, it is usually required
that the frequency of the generated clock be a multiple of the frequency of an incoming
asynchronous refclk (fror), i-€., four = N - frer, N € N. Even though the resolution of f,
can be made arbitrarily high by increasing the number of accumulator bits, the previous
circuit remains open-loop, i.e., it cannot track refelk. Generally, a control loop is designed
to adjust the inc value of the NCO to make the output clock (or its divided version)
follow refclk [12,14]. In contrast, the Period-Locked NCO tracks the reference clock by
adjusting the other free parameter of the NCO, P, which can be done in a considerably

simpler way.
To do so, solve (2.1) for P to get

pP= fmclk - Ane _ DPref nc
= — = - —
fref N Prclk N

where pyor and py,ai are the periods of the reference and master clocks, respectively. Notice

(2.3)

that by letting inc = N, P becomes a ratio of periods, l.e., it represents the number of
mclk cycles per refclk cycle, which can be measured using a simple counter. A remarkable
conscquence of using this approach is that it only takes one refelk cycle to obtain a correet
measurement of P, i.e., this circuit locks onto the frequency of refelk in a single period (see
Section 2.3.2). Note that this is only possible because P is not constrained to be 25 — 1,

as is usually done in DDS or DPLL designs [18].

It is straightforward to see from (2.1) and (2.3) that the ratio between Drer a0 Prcix
measurcd by the counter (P) must track the value of P for this circuit to stay locked.
Yet, P can ouly take integer values and therefore introduces quantization errors. It can
be shown, however, that these errors are always compensated on the following refclk cycle

and that, as long as every meclk cycle is accounted for, the average value of the P sequence

converges to P.

Theorem: The average value of ﬁ, computed as described above, is P. Proof: P

20

| | |
7mmT T T
mclkAi ! ! :,osT<AI P2 ’ i
mclkp l T !< A <7 < Pk >T P=1 : T

Figure 2: The values of P (fmec A = frockeB = 1.7 frer).

can take one of two values depending on the relative phase between mclk and refclk:
To = | Pret/Pmeic] and Ty = [prer/Pmei |, where || and [-] are the floor and ceil operators
respectively. To see this, consider the delay 0 < 7 < ppak between the first melk edge
after a refclk edge (Figure 2). Define A = pror — T Pmeix = (P — T0)Pmeix, the duration
of the fractional part of P in time units. When 0 < 7 < A, we have P = T1; otherwise
when A < 7 < puax we have P = 1y cycles. The average of n consecutive values of P

can therefore be expressed as

5 1 re kn
ﬂ:—h~p1+—, (24)
Pmelk

where &k, = 0 or 1 depending on the initial phase between the clock signals. Notice that,
since &, is bounded, the second term in (2.4) vanishes as n — oo, whereas the first term
converges t0 Pref/Pmen. Therefore, lim, _,o P, = P, which shows that the period-locked
NCO is able to compensate the quantization errors introduced in P and lock onto the
frequency of refelk. Note that the measurement of P is accurate to log,(P) after only one
reference cycle, so the generated clock can be considered locked right away - the theorem

above is ensuring that no small error accumulates over time.

2.3.2 Lock acquisition and detection

Although the basic period-locked NCO introduced in Section 2.2 can track P varia-
tions, care must be taken when updating 2 to avoid accumulating errors that would cause
the generated clock to drift with respect to refclk. Properly updating P plays the role
of the feedback loop of the systemn ensuring that no error can accumulate. An intuitive
solution is to ensure that each P value (i.e., refelk period) is used to output exactly N
cycles. This is, indeed, one of the simplest definitions of lock: for each refclk cycle, pro-
duce exactly N output cycles. In [16,17], the number of cycles generated between each
refclk edge is tracked by a counter. However, to deal with possible jitter or changes in P,
an udle time is inserted at the end of each N output cycle to guarantee that exactly N

cycles are synthesized. Though it accommodates variations in refclk, the generated clock

21

becomes somewhat discontinuous and bursty. This is not desirable if the clock is to be

used to drive a DAC, for example.

refell: edge) -
Prof / Pimlek A & P valid arrival
counter window?
p 7
L
wrap?
output reset
y t <
N — counter
out
NCO
A reset

Figure 3: Period-Locked NCO with lock-detection logic.

The period-locked NCO addresses this issue by using a two-step locking mechanism,
i.e., by decoupling the measurement of P and the update of the NCO (Figure 3). To do
$0, the modulo-N output counter used to ensure lock counts hetween mid-periods of refclk
instead of between edges. This can casily be implemented by always resetting the output
counter to N/2 (Figure 4). Notice that, for any given refelk pulse, the NCO generates
exactly N cycles independent of the arrival time of the next pulse. Hence, this scheme

can maintain lock under disturbances up to half a refclk cycle.

This process also embeds a lock detection mechanism into the period-locked NCO:
suffices to check the value of the output counter upon a refclk edge. If it is outside a guard
window around N/2, lock is assumed to be lost and the whole circuit is reset. The choice
of window length depends on the desired jitter tolerance. A hardware-friendly option is
to choose the range [N/4,3N/4] (constants that can be calculated with simple shift-and-
adds), thus providing a jitter tolerance of Pret/2 (Figure 4). This detection mechanism is
a considerable simplification over those used in standard DPLL, whose designs typically

rely on ad-hoc techniques and even Monte Carlo simulations [12].

The lock acquisition and detection process of the period-locked NCO is substantially
different from that of standard feedback loops and is therefore worth llustrating. Figure 4

shows a worst case locking process, that can be split into the four sections:

1. The circuit is coming out of reset and P < P since a full refclk cycle has not yet

passed. The slope of the output counter shows that the output clock is too fast.

2. A refelk edge is detected within a valid window of the output counter, so that the
new P value is accepted (the circuit considers it is locked). The NCO gets updated

with the new P when the output counter wraps-around, at which point the slope of

22

I(————A—)'(——B——)'(—C ——)Ii—-D—P

g I I |

P —k—n 9|L 660ﬁ|k 561 |

T

BEL X680

output —_— =53
counter
I | I I —k===9
I i L 1 [
valid refelk U i i
window I !
[| | [|

Figure 4: Period-Locked NCO with lock-detection logic: fiene = 31.7MHz, f.of = 48kHz,
N =128, and valid P arrival window [/N/4,3N/4].

the output counter changes. Notice that the output clock is already at the correct

frequency.

3. Another edge is detected on refclk, but it is now outside a valid window. Loss of
lock is detected, the NCO is reset, and the output counter is set to N/2. Since
the NCO was already running with a correct P value, the output counter slope
remains unchanged. The new P is passed to the NCO when the output counter

wraps-around.

4. The circuit is now fully locked with a half refclk cycle of jitter tolerance as shown by
the valid vefclk arrival signal. The output counter now wraps close to the middle

of the refclk cycle.

Note that in this worst case scenario the period-locked NCO tracked the refclk fre-
quency in one cycle and only required two additional cycles to become fully locked. When
operating with a known startup condition, such as coming out of reset, the circuit can

achieve full lock in a single refclk period by ensuring that the NCO does not start before

the arrival of the first valid P value.

2.4 Performance Analysis and Improvements

The perforinance of the basic period-locked NCO is limited by the precision of P.
Although it is guaranteed that the long time average of P tracks P, cycle to cycle variations
translate to jitter and phase noise of the output clock. These effects can present themselves
as random noise, harmonics, or skirts in the frequency domain, making the analytical

study of this circuit intricate. Moreover, jitter on both refelk and melk can affect the P

23

sequence, further complicating the analysis. One simple yet insightful method to evaluate
the quality of a clock signal is to consider its effects on the sampling process, i.e., as if
it was used to drive an ADC/DAC. The rcader is referred to [19] for a comprchensive

analysis of this case.

Figure da shows the amplitude spectrum of a simulated 20kHz sine wave sampled
at 6.144MHz using a period-locked NCO with the following parameters: foor = 48kHz,
N =128 and fiecx = 31.7MHz. Assuming the signal will be ultimately downsampled by
N, the SNR from 0 to 24kHz can be used as a good figure of merit. As expected, the
performance in this case is quite poor, since P = % is measured to a precision close to
9 bits [logy(£)]. This precision can be treated as jitter in the derivations presented in [19]
to provide an analytical evaluation of the sampling system. For comparison, the idle time
scheme from [17] is shown in Figure 5b for an idle period of 0.62us, about 3% of the refclk
period. Notice that since this idle time is periodic it has the effect of substantially raising

the harmonics of the fundamental, thus worsening the SNR.

The period-locked NCO performance can be improved by using a faster meclk providing
both a better estimate of the ratio P and a reduction in the peak-to-peak jitter attainable.
A fast mcik, however, is not always available and may even be undesirable, as it would
Increase power consumption and sensitivity to the refelk jitter. This issue is addressed
in the next sections by providing low complexity solutions that significantly improve the

performance of the basic period-locked NCO without relying on a faster mclk.

2.4.1 Filtering the P sequence

One straightforward yet effective improvement to the basic period-locked NCO is to
use linear filtering to increase the precision of the P measurements. Not only does this
reduce the low frequency phase noise of the output clock, but it also increases immunity
against refelk jitter. Even though this filter plays a similar role to that of the loop filter of a
standard DPLL, its design is significantly simplified as it can be approached independently
from the rest of the system. In fact, this filter is not embedded in a typical feedback loop
as in standard DPLLs. Moreover, simple low order filters are usually sufficient, e.g., a

moving average or a CIC filter [20].

Not cvery filter, however, is suited for this application. Indeed, recall that the P
sequence must on average track the exact value of P for the system to stay locked. In
other words, the filter must be DC-accurate. This was guaranteed by design when using

a couter as described earlier, but now care must be taken whe designing the filter so

cccCcccCccecCcCcCccccccccccccccecccccccac

24

or; ™77 T T TTTITIT T | TTTTTT T ||r|||l - T TTITIT
@ . SNR [0 24000] = 63.30 dB - - . o

|

-200 Lo PR
O v T T T T rrre

(b).

© © “2ISNR [0 24000] = 61.91 dB: -

: ‘h_,q_\\

=100}

—-150f

-200 P NI i,

TTIT 1 TTTTTTT T T T T T TTTTeT T T TTTIIT T4

© . sNR[024000] = 9639 dB S

Magnitude (dB)
I
8

-200

AN} [A WAV | TN
T A S A5 A B A L S 1 S
(d - “SNR [0 24000} = 112.31dB ’
~50}- EERNE Col :
~100

—150t _——\W&V\(“Jf\frﬁ

-200 | \iill;il Lo1b il i ||.

i ii ||x;|;n
0 T |--ir!- LI e B e R N T T BEILLELLL ERERLL
(€} SNR [0.24000] = 121.09dB - &
11 P S
~100
-150
—200L_. Coeverng @ popiiy 0 e . i \
10 1k 10k 100k M

Frequency (Hz)

Figure 5: Spectrum of 20kHz sine wave sampled at 6.144MHz using f. = 48kHz,
fmex = 3L.7MHz, and N = 128: (a) basic period-locked NCO; (b) system from [17)
with idle period of 20 mclk cycles (& 0.03 prer); (c) period-locked NCO with leaky in-
tegrator filtering; (d) period-locked NCO with leaky integrator filtering and 2" order

noise shaping; (e) period-locked NCO with leaky integrator filtering and 3

order noise
shaping;

that errors such as bit-truncation of the output, do not accumulate over time. Error

feedback can be used to circumvent this problem [21]. Take, for instance, the 1% order

lowpass IR filter sometimes called leaky integrator (Figure 6) where efficient hardware

implementation is possible by constraining o to be a power-of-two. The quantizer is

error feedback

Figure 6: Leaky integrator with error feedback.

Dref / Pmlck refclk edge » valid arrival
Te, mic ~ R ; d ’.?
counter P window?

S N y
A I A
1 |
S el ,
P filtering | =4 1
H Pr |
i ry Y 1
: 1
oA output | reset
N E P ToadF] | counter
— > nsNCO | | out A
1]
noise shaping NCO :_______AE _____ | reset

Figure 7: Period-locked NCO with low-pass filtering of P.

required to avoid infinite bit-growth around the loop. Modeling it as a noise source e[n],
its transfer function to the output reads

Y(z) 1
E(z) 1-(1-a)zV

(2.5)

which is obviously not 0 at DC. To avoid having this error build up over time, it is fed-back
into the system as in the dashed section of Figure 6. The result is that e[n] is high-pass
filtered by 1 — 2!, thus adding a zero at DC. The number of extra bits required after the

quantizer is a design parameter better evaluated through simulations.

The diagram of the period-locked NCO with low-pass filtering of P is shown in Fig-
ure 7. Since the output of the low-pass filter takes some time to settle, the value of P is
initially used directly so as not to affect the lock time. The result of using this improved
period-locked NCO is illustrated in Figure 5¢c. The leaky integrator uses o = 210 (—3dB
corner at 10Hz) and 10 extra bits after the quantizer. Notice that, although the mini-
mum achievable jitter in the output clock remains limited to one mclk cycle peak-to-pealk,
the performance of the system has improved considerably. This is due to the fact that,
the P used by the NCO is now much more accurate and stable, essentially reducing low

frequency phase noise caused by the coarse update of the ratio at each refelk cycle.

26

ne

iP
out
>

+ » Q

+1

ko ﬁ}H
7,_1 < z‘1 6[’]7,]

Figure 8: NCO with 2™ order noise shaping (kg = 2, k; = —1).

2.4.2 Noise shaping the NCO error

The spectrum in Figure 5c still displays undesirable high amplitude spikes and spurs.
To mitigate this issue, notice that the NCO in Figure 1b can be seen as a first order
2-A modulator with a DC input inc. A valid question is therefore: can the modulator
order be increased to improve performance while keeping the same structural advantages
of the NCO? Indeed it can and this is easily seen by comparing the NCO to a first
order X-A modulator in the error-feedback topology [22]. In fact, this is one of the
spur-reduction techniques used in the DDS literature, where it is referred to as phase-
error feedback [18]. Note that the theory is similar to the error-feedback filtering from
Section 2.4.1, except the shaping function is applied to the phase error instead of the am-
plitude error. An implementation of the 2" order noise shaped NCO (nsNCO) from [18]

1s shown in Figure 8.

The performance of the complete system shown in Figure 7 is evaluated in Figure 5d
and Figure 5e for 2" and 3 order nsNCOs. The high-pass filtering of the phase error of
the generated clock drastically reduces the spurs and tones, as predicted by the analysis

of the jitter effect on sampling from [19].

2.5 Comparison with Standard DPLLs

The most basic DPLL structure is presented in Figure 9. Although an astonishing
number of variations of this loop have been put forward, their fundamental functioning
remains the same [12]. Similar to DDS, virtually all DPLL architectures fix P = 28 — 1
in the NCO. Thus, in order for the steady-state output frequency to be fo = N Srer, the

value of inc must be, as per (2.1),

_./re.f _ A,P]incE (26)

tme=N.-P.
fmclk Pref

27

This value for inc is now difficult to find; there is no straightforward relationship with the
available signals at hand and there is no simple circuit that can easily provide an accurate
estimate. In fact, this value of inc is based on the ratio of the frequencies of the refclk
and mclk signal, as opposed to their periods as proposed in the period-locked NCO. Only
the period ratio is directly measurable from a simple counter; whereas frequency ratio

requires a division to calculate the inverse of the period ratio.

This difficulty in evaluating the increment word of the NCO leads to lock acquisition
issues in traditional DPLLs. Though various methods have been put forward to reduce
their lock time, e.g., (23,24], these usually address the lack of a direct relationship between
inc and the incoming clock signals by imnplicitly evaluating a division of their period mea-
surements. On the other hand, lock acquisition and detection mechanism are embedded

in the period-locked NCO, which can lock onto the refclk frequency in a single cycle.

'To achieve good performance, both the period-lock NCO and traditional DPLLs usc
a loop filter for jitter reduction, leading to a well-known trade-off between tracking per-
formance and lock time. The period-locked NCO has the same fundamental tradeoff,
however the jitter attenuation filter is not deeply embedded in the feedback loop, making
the design much easier. Furthermore, the Phase-Frequency Detector, a circuit that has
1ts roots in analog design and is difficult to design, model and analyze in the z-domain as

discussed in [12,25,26] is completely avoided.

Finally, noise shaping techuiques similar to those in Section 2.4.2 can be integrated
in the classical DPLL loop, as in [14]. Yet, it is not as straightforward as in the period-
locked NCO case. Indeed, the period-locked NCO is already based on the incoming clock
periods, so that noise shaping is a simple extension, whereas standard DPLLs need to

deal with both frequency and period.

It is important to note that either DPLLs or period-locked NCOs can achicve the same
performance if designed under the same specifications. In fact, given that the output clock
edges need to align to mclk edges, both designs are limited to one mclk cycle of jitter
on the generated clock. Nevertheless, the period-locked NCO is easier to design as it

decouples lock time and jitter rejection trade-offs.

2.6 Conclusion

A novel circuit for all-digital clock generation was introduced using an approach that

substantially differs from classical DPLLs. By adjusting the threshold value of the NCO

28

Phase-Frequency mclk
Detector

refelk Loop |inc_ Jour = N frer

filter NCO -

A

Figure 9: General topology of a DPLL.

instead of its increment value, a relationship that can be accurately measured with a
simple counter arises. Jitter reduction, which requires long time-constant filters are now
implemented outside the main loop, freeing the designer from usual closed-loop design
trade-offs (e.g., lock time/disturbance rejection). Noise shaping techniques can also be
integrated seamlessly in the period-locked NCQ, as in open-loop DDS designs. High qual-
ity clock signals for demanding applications such as audio ADC/DAC can be generated

using this low complexity and simple to design hardware.

29

3 AN EFFICIENT FILTERING STRUCTURE
FOR SPLINE INTERPOLATION AND
DECIMATION

3.1 Introduction

Fractional delay (FD) filtering is a technique to evaluate a discrete-time signal at
arbitrary—possibly non-integer multiple of the sampling rate—delays. FD filters are
at the heart of many digital signal processing solutions such as asynchronous sample
rate conversion (ASRC) [27], timing recovery in all-digital receivers for software-defined
radio [28], and wave field synthesis [29]. A thorough review of FD filtering and applications
can be found in [30].

Several structures have been presented in the literature to implement different poly-
nomial FD filters. One of the most celebrated is the Farrow structure that can be used
to efficiently implement any polynomial response [6]. Many improvements and modifi-
cations of this structure are available, most notably the modified Farrow structure that
exploits coefficient symmetry to reduce the number of multipliers. Further optimizations
arc possible by constraining the response to a single class of polynomials. For instance,
when considering only Lagrange polynomials, the Newton structure from [31-33] is by far
the least computationally cxpensive. Nevertheless, limitations in the frequency response
of Lagrange FD filters entail the use of higher order polynomials to mecet requirements,
leading designers to use polynomials with hetter characteristics such as splines. For this
reason, the structure developed in this work aims to combine the performance of spline

FD filters with the reduced complexity of the Newton structure.

Before proceeding, note that any interpolation structures can be used for decima-
tion (and vice-versa) by means of network transposition [2,33]. All structures described
in this part are therefore suitable for both interpolation and decimation. Thus, due to

space constraints and without loss of generality, only interpolation is discussed in the

sequel.

30

z{n] Oyln] .~ "
{ { ! . |

C}\J (Z) -

C1(2) Co(z) - | U
I i
L?-_- é}—»y[ﬂ] n—2 n—1 n
W
(a)

Sample index
(b)

Figure 10: The Farrow structure: (a) block diagram; (b) intersample position (1)
3.2 The Farrow structure

The Farrow structure (Fig. 10a) was introduced in [6] as a general implementation for

arbitrary polynomial FD filters. Its transfer function can be written as

H(z,p) = Z (Z Conn z"") am, (3.1)

m=0 \n=0

where M is the polynomial order and N is the subfilter order—usually, A/ = N. The
transfer function (3.1) is also parametrized by fi € [—1, 0), the intersample position, which
controls the fractional delay of the filter as illustrated in Fig. 10b. In fact, one of the most
important features of the Farrow structure is that it can mnplement variable delays. The
{emn} are cocfficients of the filters Cp,(2) = Zﬁ;ﬂ cmn2™™ (sce Fig. 10a) that uniquely
define the polynomial being implemented. For clarity, they arc typically collected in a
matrix €' that can be cvaluated for classical polynomials such as Lagrange and Hermite

using techniques from [34].

The modified Farrow structure reduces complexity using instead of i the transformed
value p1 = i +0.5 € [—0.5,0.5), taking advantage of the resulting symmetry in the Co(2)
coefficients [35] (note the symmetry in the rows of (3.3) further ahead). However, the

modified Farrow structure still requires O(M?) multiplications for M = N.

3.3 The Newton structure

The Newton structwre (Fig. 11) introduced in (31] and refined in [32,33] is based
on Newton’s backward difference formula, an efficient algorithm for Lagrange polynomial
interpolation. Of all optimized implementations of the Lagrange polynomnial surveyed

in [36], the Newton structure has the lowest complexity of only O(M) operations. How-

31

z[n] e L 1— 2 L=z f-e

yln] «O-Q—0O«® (O
fﬁ fﬁ—1 i—2 i— M1

Figure 11: The Newton structure for Lagrange interpolation

ever, it is restricted to the Lagrange polynomial, so that the only way to improve its
frequency response is by increasing the order M, undermining the computational advan-

tages and adding delay [33].

3.4 Farrow state-space transformations and
the Newton structure

Since the Newton structure implements a, Lagrauge FD filter, it is clearly equivalent
to a Farrow implementation of that same polynoial. However, the Newton structure has
only been motivated so far as a direct implementation of Newton’s backward dilference
formula [31-33]. To formalize the relation between these two structures, this section
shows how the Newton structure can be derived directly from a Farrow-Lagrange filter.
‘The motivation is that the same steps might lead to efficien{ structures when applied to
other polynomials in the Farrow structure. For the sake of clarity, the following derivations
are carried with M = N = 3, although they are valid for arbitrary values. Furthermore,
3 order polynomials are widely used and often times considered to be offering very good
performance and complexity tradeoffs [36]. When higher order polynomial filters are
required to meet specifications, it is typical to use a cascade ol an integer rate conversion
filter which can be very efficiently implemented, followed by a polynomial filter of lower

order.
First, express the Farrow transfer function (3-1) in matrix form as
HFarrow(z» /1') = MTCZ, (32)

where o= [1 p w2 3T 2=[1 21 ,2 ,-3 J”; and C'is chosen to implement,

32

a Lagrange polynomial [35]:

(3 97 97 _3]
9 54 54 -2
C agrange — . (33)
baranee = 1o 19 _12 12
8 24 -24 8§

Recall that p € [-0.5,0.5). Then, for & = u — 1.5 = i — 1, the Newton structure in

FFig. 11 can be written in the same form as (3.2), yielding
Hyewton(2. i) = it CZ, (3.4)

where 1= [1 & G(E-1) pE—-1)(E-2) 1" i € [-2,-1); C is a diagonal matrix
whose elements are {1,-1,1/2,-1/6}; and Z=[1 1—-2z"' (1-2"1)% (1— 2713 7.

To obtain (3.4) from (3.2), suffices to find two transformations T}, and T, such that
p =T, z="T,z, and C = TM_TCTZ“I, with A= = (AT)~!, for invertible A. Given

these transformations, one would have

Hpurow (2, 18) = " Cz = p"(TIT,T)C(T, ' T2 2
= (Tu”)T(Tu_TC’Tz_l)(TZZ) = ﬁTéZ = HNewton(Za ﬁ)

These transformations can be derived in three steps: (i) find T,; (ii) find Ty; (iii) check

that T, and T, indeed transform C into C.

(i) The fractional delay transformation is derived in two parts. First, the fractional inter-
val range is made identical among structures. Changes in the range of the intersample
position are common and have been used, for instance, as a means to reduce complex-
ity in the derivation of modified Farrow structures [35,37]. Since u € [—0.5,0.5) and

j € [~2,~1), T}, is obtained from the relation ji = it — 1.5 as

1 8 0 0 0
I 11-12 8 0 o0

= = L. 3.5
% 8118 -24 8 ¢ (3:5)
s -27 54 -36 8

Notice that the n-th row of Tj, collects the coeflicients of the polynomial (g — 1.5)""1,

Second, the vector on the left-hand side of (3.5) must become fi, where each element

is a polynomial of fi. Once again, the transformation is based on the coefficients of

33

O~
~ <
S Tl Lagrange 3™ order
- - ~ | o
_ 20 \ = == Spline 3" order
R R
S Ll '
= i
E -52.89 B —%& .
x e ’ -~
5 -60f - i .
g 68.51 dB —»t k
= ’ P k T~
80 . ° ‘\ -
0.875 - 27 Y RO
LR . A T N r ‘\
S, ; — A
10()0 1 4 5 6 7

Normalized Frequency (7 rad/s)

Figure 12: Frequency response of 3" order Lagrange and spline filters

these polynomials as in

10 00
01 0 0

T! = (3.6)
0 -1 1 0
0 2 -3 1

Finally, g = T, T, 1, so that the intersample position transformation is chosen as

T, = T!T".

(i) The flter basis 27! of the Farrow structure must be changed into the differentiator

(iii)

basis 1 — 27! used by the Newton structure. This can be done using the matrix

1 0 0 0
1 -10 0
TZ - 3 (3.7)
1 -2 1 0
1 -3 3 -1

whose 7-th row represents the coefficients of (1 — z=)n~1.

The matrices T}, and T, derived in items (i) and (ii) arc designed to perform the

transformations g — 1 and z — 2, respectively. 1t is straightforward to see by dircct

cvaluation that they also fulfill C = TI:TCT; '. By interpreting these transforma-

tions as changes in the bascs of the interpolation operator C, the low complexity of

the Newton structure is explained by the fact that it uses bases in which the coeffi-

cient matrix is diagonal, reducing the number of operations required to evaluate the

weighted inner product in (3.2).

34

p—
[\l

Figure 13: Novel Newton-like spline interpolation structure

3.5 Novel structure for spline interpolation

As mentioned before, the main disadvantage of the Newton structure is that it can
only implement the Lagrange polynomial, which has poor frequency response. It is well
known that splines have better properties for signal processing applications and converge
to the ideal interpolator as their order goes to infinity [38]. Indeed, Fig. 12 compares
the frequency response of 3" order Lagrange and spline interpolators. It shows the latter
displays an extra 16dB of attenuation at the 0.875 - 27 normalized band edge, which
corresponds to the worst-case image attenuation when interpolating a signal oversampled
by 4. Spline polynomials can naturally be implemented using the Farrow structure by
deriving C' in (3.2) similar to [39]:

- -

1 23 23 1
-6 -30 30 6
Cspline = - (38)
12 -12 -12 12
-8 -4 -24 8

The proposed structure is derived by applying the same transformations from the

previous section to Cypline, yielding a Newton-like structure for spline interpolation. Ex-

plicitly,

) -
o i i
_ _ 0 -10 3
T[—L TCS])liueTz ! = . ‘ = C'LCN- (39)
00 1 o
0 0 0 -4

Notice that Cicy is quasi-diagonal and that its coefficients have trivial hardware imple-
mentations. The full structure is depicted in Fig. 13 and its computational complexity

is compared in Table 1 to that of the modified Farrow (suitable for Lagrange and spline)

35

and the Newton structure (Lagrange only). Only three additional adders are necessary
to turn a 3™ order Lagrange-only Newton structure into a spline interpolation structure

that is largely simpler than its Farrow counterpart.

Table 1: Computational complexity

Modified Farrow Newton Proposed

Add Mult Add | Mult | Add | Mult

Lagrange | 11 11 6 4 - -
Spline 11 11 - - 9 4

3.6 Conclusion

A novel structure for spline interpolation/decimation was proposed. First, the New-
ton structure was derived using a series of transformations of the Farrow-Lagrange struc-
ture. These transformations were applied to the spline coefficient matrix yielding a novel
Newton-like structure for spline interpolation. The transformations were applied to 37
order polynomials only, but more general results using this matrix formulation as well
as direct optimization of the coefficients in the new structure will be addressed in future

works.

PART 11

INTEGER SAMPLE RATE CONVERSION

37

4 ON THE FIXED-POINT IMPLEMENTATION
OF REDUCED STATE-SPACE CIC FILTERS

4.1 Introduction

Cascaded-integrator-comb (CIC) filters introduced in [40] are used in an array of
applications where efficient sampling rate conversion is required. Their multiplier-less
structure and low hardware complexity makes them particularly attractive when used
as the front end decimation filter of ¥-A A/D converters, reducing the sampling rate
before entering a more expensive second stage filter. Their regular structure, coupled
with a trivial design procedure makes them the go-to choice for a myriad of applications
where data needs to be averaged. For many applications, their relatively poor frequency
response, namely narrow stopband and large passband droop, has been the main challenge
to overcome. Hence a lot of attention has been dedicated to improve their frequency
response using techniques such as polyphase decomposition [41], filter sharpening 8,42]

and zero-rotation [43].

However, there are many cases where the frequency response is adequate, but reducing
the hardware area of a given filter is paramount for cost-effective solutions. This problem
was tackled in [10] and further gencralized in [44,45] but the potential area, savings were
never quantified and the fixed point implementation not investigated. It is shown here
that for some combinations of filter order aud decimation ratio, the generalized structure
of [44] can yield silicon area savings of up to 50% compared to a traditional CIC filter

implementation, while being a bit-accurate design.

4.2 The classical CIC filter

The recursive CIC filter structure shown in Figure 14 was first introduced in (40

and is the simplest and most common way to implement the following transfer function

38

followed by a decimation by N
N-1o R 1 ,~N\ R

H(z) = (;Z 1) = (ﬁ) , (4.1)
where [2 is the filter order. CIC filters are extensively covered in the literature and the
reader is referred to [40,46] for more details. The main particularity of CIC filters is that
they exhibit exact pole-zero cancellation, such that the recursive structure is implementing
exactly the underlying FIR filter described on the left side of (4.1). To ensure stability,
the wordlength at all nodes should be made equal to Bj, + [Rlog,(N)], where B;, is the
input wordlength [40]. One way to understand how this works is that the filter needs
enough bits at all nodes to accommodate for the complete gain of the underlying FIR

filter. The modulo properties of two’s complement arithmetic ensures that the final result

will belong to the right modulo quadrant.

R integrators R differentiators
,"\-..

== AN

X[n] Ir’. ~ h +N (N) y[n]
; 1 | ; £ I I 2-1; | 2-1;

Figure 14: Standard recursive structure for CIC filters

4.3 Elimination of the first differentiator

It is well known that a the first differentiator of a CIC filter is not necessary as it is
simply removing the initial condition at the preceding integrator N cycles before. This is
obvious when looking at a first order filter: the integrator output at time N is the running
sum of the input plus the initial condition, so the differentiator simply removes the initial
condition. The pair thus works as an integrateSedump circuit. This is always the case for
the innermost integrator /differentiator pair of CIC filters of any order, and is depicted in
Figure 15 for a 2"! order filter. The reset operation of the integrator is virtually free in

hardware so this optimization saves ﬁ,‘ the area of the corresponding CIC filter.

Xl o~ A

vk z" N P

& reset

r"
i
[®

Figure 15: Removal of first differentiator using integrate&dump

39
4.4 Higher order integrate and dump

The idea of removing the need for differentiators by altering the state of the integrators
was generalized in [44]. The task is substantially more complicated for higher order filters
and the technique is based on the Raising Procedure presented in [47]) where minimal
realization of periodic systems is investigated. In the case of CIC filters, the minimal
state-space representation yields a system where all the differentiators are removed, at
the expense of a set of time-varying coefficient multipliers feeding back the output to
each integrator. The resulting system is shown in Figure 16 for a 3" order filter and
can be extended to any order by feeding back the output to each integrator through
a time-varying multiplier. Those systems can be intuitively thought of as higher order
integratededump circuits, meaning that the durnp operation is done over multiple periods
of the output rate for R — 1 integrators. The ¢; coefficients for filters of order 1 — 4 are

derived in [48] and repeated in Table 2 for convenience.

X[= - N

z! z! z"

o 1 A reset
AN

Figure 16: 3" order reduced state-space CIC filter

o o [o o]
I T R
R TR N
s L e |
EEERNE eI

Table 2: IFeedback coefficients of reduced state-space CIC filters

A few comments are in order regarding this structure:

(i) All the states of the differentiators are completely gone, whereas the subtractors

were moved to the input of each integrator as part of the feedback path.

(if) The feedback branches only take non-zero values every N cycles, limiting switching

activity in the multipliers and feedback subtractors.

40

(iii) The ¢; coefficients are dependent on N, making the structure less flexible than its

recursive counterpart if multiple decimation ratios are to be supported.

(iv) The ¢y cocfficicnt is always 1 and is best implemented as an integrate&dump circuit

as previously discussed.

(v) Up to 3" order, all other ¢; coefficients are realizable with few non-zero CSD digits

when N is a power of 2.

(vi) Any decimation ratio N leading to ¢; not ezactly representable in two’s complement

arithimetic cannot be implemented in this structure.

(vii) Even il implementing an exact FIR response, this structure will never come out
of a bad state even if given enough time (as opposed to an FIR filter, or even the
classical recursive structure). This is a risk that designers need to take into account.
Examples of entering a bad state would be an incorrect reset condition, or the result

of the release of alpha particles, altering the states of the filter.

(viii) This structure does not rely on the modulo arithmetic trick of CIC filters: integra-
tors never overflow if proper wordlength are selected, which is a necessary condition

[or proper operation.

That being said, the reduced state-space structure is a good fit for applications with
a tight area constraint where the decimation ratio NV is fixed. Power of two ratios are also
preferred since the resulting ¢; coefficients are easier to implement. It should be noted
that many applications fall in this category so those restrictions should not be considered

as a fatal setback.

4.5 Fixed point implementation for guaranteed
stability

The reduced state-space structure derived in [44] is implementing exactly the same
transfer function as its traditional recursive CIC counterpart, which is finite in duration
as shown in (4.1). As mentioned before, exact pole-zero cancellation is required so care
must thus be taken during the fixed point realization of either system as exact arithimetic
has to be used. The problem is well known for CIC filters and is dealt with by ensuring
that every signal node has enough bits to accommodate for the maximum gain of the

filter (N®) applied to the input width. Overflows in the integrators can then be ignored if

41

two’s complement arithmetic is used, see [40,46] for a thorough explanation. The problem
is slightly different in the reduced state-space structure as the multipliers will generate
fractional bits that have to be kept. At first sight. it might seem that the reduced state-
space structure requires truncation along the feedback path to avoid infinite bit-growth,
but this is not necessary since the impulse response being iinplemented is the same as the
one from the standard CIC filter, where all coefficients are integers. Indeed, the feedback
coefficients were chosen so that the output of the filter never has non-zero fractional bits

at each multiple of N cycles.

4.6 Wordlength optimization of each integrator stage

The simplest way to choose the wordlength of the reduced state-space filter is to take
a similar approach to the classical CIC filter: add enough integer bits to accommodate for
the worst case filter gain, while also keeping all fractional bits generated by the feedback
coellicients. This is a conservative approach since only the last integrator is subject to the
worsl case gain,; all other integrators are damped by a feedback coeflicient smaller than
oue, so that the signal gain from tle input is guaranteed to be less than the overall filter
gain. This is similar to the design of sigma-delta modulators, although in this case bit
exactness is still achieved. Using the techniques of [44], the raised state space matrices
A, B, C and D of the filter can be found and the gain from input to each integrator, G,

can be calculated with

G, 1
Gy 1

= |B AB A?B ... AR'B| ||, (4.2)
Gr 1

where the last integrator gain, G, is the total gain of the filter. The number of extra
bits required at each integrator stage is then [logy(G;)]. Figure 17 shows the optimal
wordlength of cach node for a 3" order filter with N=32 and a 8 bit input. Using (4.2),
the maximum gain for each integrator is found to be 63, 1845.5 and 32768 respectively,
each requiring 6, 11, and 15 MSB bits. The number of fractional bits required are directly

calculated from the feedback ¢; coefficient shown in Table 2.

42

Figure 17: Reduced state-space filter with optimized wordlength, R=3, N=32

4.7 Area comparison

Many different filters were designed in both the standard recursive structure and re-
duced state-space. Clearly, the coefficient complexity of the reduced state-space structure
goes up rapidly with the order so only filters of order 2 and 3 were considered, each for
two relatively common decimation ratios of N=16 and 32. The input wordlength was set
to 8 bits in all cases. The designs were coded in Verilog, verified for bit-exactness with
the recursive structure counterpart, and synthesized in 0.18um using Synopsys Design

Compiler. Results are shown in Table 3.

Order	N	Recursive CIC	Reduced State-Space			
	[Total l Logic	Flop [Total	Logic	Flop		
, [16] 8947	3993	4917	5380	3044	2335	
	32/ 10025	4456	5531	6107	3464	2643

| 16 | 15691 | 7048 | 8605 | 14071 | 9338 | 4732 |
| 32| 18057 | 8124 | 9895 | 16411 | 10879 | 5531 |

3

Table 3: Area comparison for 0.18um (square microns)

Area savings close to 50% are achieved for 2" order filters, while both 3™ order filters
are about 10% smaller. The reported area was broken down in Flop and Combinato-
rial logic since the latter can be potentially reused across channels if a higher frequency
clock is available [49], while the Flop elements of each channel are needed. The ratio of
combinatorial logic area over total area is around 50% for the typical recursive structure,

while closer to 65% for the reduced state-space structure, enabling the design of extremely

compact multichannel systems.

43

4.8 Conclusion

The design and fixed-point implementation of reduced state-space CIC filters first
introduced in [48] was presented. It is shown that substantial area savings are possible
when compared to the traditional recursive CIC filter structure. Those savings come at
the price of flexibility: the dependency of the feedback coefficients on the decimation
ratio NV complicate the design if NV must be made programmable. The complexity of
the coeflicients also increases quickly with N, making the structure suitable mostly for
low order designs (R< 4), where the decimation ratio is a fixed power of 2. The area is

dominated by the combinatorial logic enabling efficient multichannel implementation.

44

5 SPARSE CIC FILTERS - A
HARDWARE-EFFICIENT CLASS OF
DIGITAL FILTERS FOR DECIMATION AND
INTERPOLATION

5.1 Introduction

Cascaded-Integrator-Comb (CIC) filters are ubiquitous in Digital Signal Processing
applications where efficient interpolation and decimation of oversampled signals is re-
quired. Since their introduction in Eugene Hogenauer’s seminal paper in 1981 [40], a
plethora of research has been dedicated to the improvement of their major weakness: lim-
ited worstcase stopband attenuation caused by the fact that all zeros at each stopband
null are at the same location instead of being optimally distributed. Most, of the litcera-
turc can be categorized into two main lines of research: (a) the zero-rotating approach
[9,50,51] where structural changes are incorporated to the classical flter with the aim
to wideu the stopbands by spreading the zeros closer to their optimal location, and (b),
filter sharpening theory [8,52-55], where a sharpening polynomial is applied to the stop-
bands of the filter. The concepts of polyphase decomposition, multistage factoring and
non-recursive implementation of the underlying FIR filter have been also applied to the
original Hogenauer filter [41], as well as to both lines of research mentioned above [43,56].
An excellent survey of most relevant techniques is presented in [57] where the redundancy

in the impressive body of work regarding CIC filters is pointed out and slightly criticized.

It is paramount to not lose sight of what makes CIC filters so widely used: simplic-
ity, flexibility, trivial design procedure and, even, elegance. Simple because the structure
consists solely of integrators and differentiators, without coefficients, in a regular arrange-
ment. Flexible because any integer decimating ratio can be supported with essentially
the same hardware, enabling straightforward support of programmable decimation ratios,
a crucial feature for many systems such as software defined radio [48]. Trivial design pro-

cedure is almost an understatement: the order of the filter is increased until performance

45

18 met; no more design work is required, no coefficient quantization to worry about and
overflows can - and should - be left undetected. The wordlength of all nodes is identical
and a direct consequence of the filter order and decimation ratio. Elegance - mostly as
a way to encompass all aforementioned features - is the perfect term that defines CIC

filters, and for any hardware design engineer, translates to ’the bug-less filter’.

Although effective, most of the techniques proposed in previous research give up on
one or morc of these features, hindering their use in practice. In fact, any improvement of
the CIC filter is up against a tenacious contender: increasing the filter order and moving
on with the rest of the design. It is dangerous to confuse the quest for an optimal filter in
the mathematical sense with the primary goal at hand: improving the response of a filter
of order R without adding more hardware than a filter of order R+ 1 would require. The
dual goal is also true and sometimes more appropriate: reduce the amount of hardware
and computational expenditure of a filter of order IR without compromising performance.

CIC filters play in the territory of good enough, which is typically the enenty of optimal.

A new technique is put forward here that integrates seamlessly within a CIC filter,
has a simple hardware implementation and improves the filter response at the bottleneck
- the first null - while trading off attenuation at the higher frequency nulls that ave
overdesigned anyway. Both the hardware area and computational complexity are reduced,
while preserving the elegance of the original CIC filter. The proposed technique is vast and
flexible; it provides many knobs to designers who are faced with different design constraints
and restrictions. Finally, design examples are preseuted and compared against previously

published results.

Before proceeding, as was mentioned in Chapter 3, interpolation structures can he
used for decimation (and vice-versa) by means of network transposition (2,33]. Once again,
all structures described in this Chapter can therefore be used for both interpolation and

decimation. Only decimation will be considered here to be consistent with most of the
literature on CIC filter.

5.2 Brief CIC Filter review

The standard recursive CIC filter structure shown in Figure 18 was first introduced

in [40] and was previously discussed in Chapter 4. It is a recursive way to implement

46
ezactly the following transfer function

H(z) = (NZ] z—i)R: (11:‘2__?)1? (5.1)

1=0

where 12 is the filter order and N is the decimation ratio. A very thorough description
can be found in [40], while [46] presents a more intuitive introduction. Exact pole-zero
cancellation and stability is guaranteed if the wordlength of all nodes is made equal to
B, + Bgrowin, where Bj, is the input wordlength and Byrown, = [Rlogy(N)] [40]. The
impulse response of a K™ order CIC filter is that of K boxcar filters of length-N convolved
with themselves; each CIC integrator/dilferentiator pair is responsible for generating each
such boxcar impulse.

R integrators R differentiators
,-'\-._

A
L

(h (" O yin)
z! z! z" z!

Figure 18: Standard recursive structure for CIC filters

Note that the CIC filter is not an aggressive filter by any measure, but is extremely well
suited to decimation or interpolation of oversampled signals. In what is now considered
a classic paper, Crochicre and Rabiner have shown in [11] that decimation is optimally
performed in multiple stages where the filter order of the initial stages can be substantially
reduced. Multistage partitioning is possible as long as the overall decimation ratio, osr, is
expressible as a product of integers. Typically, two stages are used, so that osr = N - M,
CIC filters play the role of the first stage filter ({ N) and are designed to decimate the
signal as much as possible (since it is a cheap filter to implement), while providing enough
anti-aliasing attcnuation for the frequency bands that will alias into the bascband. For a
sampling rate of fs, the bascband, or passband, is given by the region

B, =

P

fs
0, -2 } Hz, (5.2a)
osT

and in the same manner as in [53], the aliasing bands, or stopbands, are given by:

N/2
l I fs/ 2n 1 fo/ 2n 1
Bs = —_ — = — iy A
et [2 N osrJ'2\ N + osr Hz, (5.2b)

47

and A,,;n, the worst case attenuation in the stopbands, is given by

Amin = max lH(LL))I . (520)
we B,

Figure 19 shows the response of 4% 5*h and 6" order CIC filters with corresponding
Apin, assuming a passband f, = a'm% where a = (0.907. This value of « is a reasonable
assumption and corresponds to standard audio signal specifications: passband edge at
20kHz for an output sampling rate of % = 44.1kHz and osr = 64. The same values were

used in [53,57] and will serve as a comparison point later on.

Clearly, the bottleneck of the frequency response is located at the first aliasing edge
of the first null. Increasing the order to R+ 1 in (5.1) adds N extra zeros across the unit
circle at ezactly the same frequency points as the filter of order R, which is not optimal
from a mathematical perspective. Also notice that the other nulls, except for maybe
the second one, provide unnecessary attenuation as the order is increased. This has led
researchers to investigate ways to move, offset or rotate the zeros closer to their optimal
locations. It would clearly be desirable to tradeoff some of the extra attenuation at those

higher frequency aliasing bands for more attenuation at the first and maybe the second
bands.

cicd
- - ~cic5
—cich
= stopbands
-
_gpl X:0.1108° . .
8015 71 80/ :
» 0
X:0.1108 |, P
~100| y: -89.86 i K .
. = i LN Doae -
X:0.1108 | i [E o
—120| :-107.8 | q N -
v [it ‘ IR [y
-140 et B) VAN VTR LY
0 0.1 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Normalized Frequency (7T rad/s)

Figure 19: Frequency Response of CIC filters of order 4, 5 and 6.

9.3 Proposed structure

5.3.1 Elimination of the first differentiator and FIR equivalency

The first step in the derivation of the proposed structure is to make use of the well

known fact that the first differentiator of CIC flters is redundant as it is simply removing

48

the initial condition at the preceding integrator N cycles before. This was explained in
Chapter 4 and formed the basis for the reduced state-space structure, where higher order
CIC filters were shown to be higher order integrate&dump circuits. Although the higher
order filters were difficult to design, the innermost integrator/differentiator pair of any
order CIC filter can always make use of this as depicted in Figure 20 for a 2" order filter.
This optimization saves roughly %{ the area of the corresponding CIC filter since the reset

operation of the integrator is virtually free in hardware.

) Ny E R
7| 7'l |-> z

A__reset |

yln]

—_

Figure 20: Removal of first differentiator using int&dump

This observation brings us back to the original idea of a CIC filter: each section is
implementing an N-tap FIR filter whose coefficients are one. In fact, the diagram of
Figure 20 can be redrawn as in Figure 21, where all the h[n| coefficients are 1. Those
two circuits are equivalent, and the int&dump version is simply a hardware-cfficient way
to implement the FIR filter. We show next that we can modify the original CIC idea to
allow the last section to implement FIR filters with different sets of coefficients, using a
time-varying coefficient in the input of the last integrator. Restricting this time-varying
coefficient to be "simple” (i.e. 0 or 1, or a small integer), we retain the low complexity of
the CIC filter.

5.3.2 Controllable coefficient through time-varying multiplier

Having full control over the coefficients of the last stage of a CIC filter would be a
tremendous advantage when it comes to frequency response improvement, but unfortu-
nately if the structure of Figure 21 is to be used, the amount of storage elements would
quickly become prohibitive for even modest decimation ratios N. The proposed structure
keeps the int&dump circuit in place, but precedes it with a time-varying multiplier, giving

full control over the h[n] coefficients, as depicted in Figure 22.
The transfer function of the proposed structure can be written as

1 — ,~N\R-1 /N~
Hprap(z) = (1——Zj> ' Z hnZﬂl) (5-3)

n=>0

where the h, are free parameters to be designed. Note that the FIR filter is still im-

49

i _? y[n]

x[n]
; 2-1 [|

Figure 21: FIR interpretation of last integrator of a CIC filter

R-1 integrators R" integrator R-1 differentiators

x[n]'

y[n]
—» int ¥ int

¥ P diff > diff F—>

R

0] AL1]---hIN-1]

Iigure 22: Proposed CIC filter variant

plemented efficiently through an integrator, but now with a time-varying input gain. In
simple terms, for a system with a total of R integrators, the response of an R — 1 CIC

filter is convolved with the response of an N-tap FIR filter for which we have full control.

At first sight, the FIR filter should be optimized so that it places its zeros at or near
their optimal locations, at least for the first null or two, improving the response at the
bottleneck. The problem with this approach is that the oplimal location will require
precise coeflicients, undermining most of the advantages of the CIC filter. However, as
we show next, much improvement can be obtained even if we use suboptimal coefficients,
chosen so that the hardware remains simple. In particular, a coefficient equal to zero
has very interesting properties: it means do not inlegrale, reducing the amount of high
speed operations performed by the filter, and lessens the overall filter gain, reducing the
number of bits required for all the nodes of the filter. This naturally leads to the idea of

coustraining the FIR coeflicients to a set of small integers, ideally as sparse as possible.

The new structure can be thought of as a hybrid recursive /polyphase approach to CIC
filters. The recursive part places zeros in the middle of the aliasing bands, reasonable,
albeit not optimal locations, for cheap. On the other hand, the polyphase part gives full

control of its zero locations, at the cost of increased coefficient complexity. It is shown

50

next that once enough recursive sections are used, better performance is achieved by using
a sparse polyphase FIR with trivial coeflicients. The use of a time-varying multiplier in
front of the int&dump circuit keeps the memory requirements of the polyphase filter to a

minimuin.

5.3.3 Previous work on the CIC-FIR combination

The idea of embedding an FIR filter inside a CIC filter is not new and was first
introduced in [58], where it was proposed to embed the subsequent decimating stage filter
inside the CIC filter. However this idea did not get investigated further as the FIR filter,
which has by definition more stringent performance specifications, requires coefficients
with a relatively large dynamic range, increasing the number of bits at the output. All
the bits have to be kept since the FIR has to work with the same modulo arithmetic trick

as the CIC filter, thus increasing the wordlength of all nodes of the filter [58].

The use of an embedded FIR filter was also proposed in [59], this time in the context
of CIC filter improvement. However, the efficient implementation using a time-varying
coefficient was not considered, and the design of the FIR filter not approached in a way
that would elegantly embed in the CIC filter structure - see Section 5.4. In fact, the
FIR filter design was approached from the angle of optimum zero placement, demanding
for precise coefficients - read large integers - contributing to bit-growth for all the nodes
of the overall filter. To circumvent this, it was suggested to implement the coefficients
outside the non-modulo arithmetic zone, requiring separate differentiator paths for cach
non-zero FIR filter tap. Even if the filter is made sparse, this is clearly adding substantial

hardware, as each comb path amounts to half the original filter.

5.4 Design and Optimization of the FIR filter

It is thus desired to design an FIR filter with sparse coefficients, taken from a subset
of small integers, that would complement the response of the CIC filter in a better way
then the conventional boxcar filter. Mixed-Integer Linear Programming (MILP) solvers
are now able to solve this kind of problem quickly on most modern computers. Opti-
mization and quantization of FIR filter coefficients using (MILP) is a powerful technique
thoroughly described in [60, 61). Now widely available, current MILP solvers do not re-
quire knowledge of the inner working of the algorithms. Frameworks are available that

automatically convert the problem to a suitable form for the SOLVER and check for vi-

9l

olations of constraints and even convexity, see [62-64] for examples. We now show how
these MILP solvers can be used to design hardware-efficient modified CIC filters, using

appropriate constraints on the coefficients.

First, recall from [61] that the zero-phase frequency response of a length-N FIR filter

can be written as \
Fi

H(w) = Z b[n]®(w,n), (5.4a)

n=0
where

1 for Type I; n=0,

2 cos(nw) for Type I; n > 0,

O(w,n) =

2 cosf(n + 1)w]
2sin[(n + 1)w)]

2sin[(n -+ 3)w

for Type 11,
for Type III,
for Type 1V,

for Type I,
bn] = { nE=2 — p) for Type Il and IV, (5.4¢)

h[A5t —1—n] for Type I,

N—-1
2

M=4q822 for Type Il and 1V, (5.4d)

for Type 1,

M’

N;—"’ for Type III.

where h[n] arc the cocficients of the filter. This is all that is nceded to formulate the

MILP problem: find the b[n] that minimizes

o = Tnax | Hprop(w) — D(w)], (5.5a)
subject to
x| Hyvy (1) — D(w)| < b, (5.5b)
and
b[n] € B, (5.5¢)

where w, and w, are the passband and stopband regions respectively as in (5.2a) and
(5.2b), 7 the maximum allowable passband droop, and D(w) the ideal response, in this
case obviously 1 in the passband and 0 in the stopband. The cocfficients b[n] arc taken
from a subset of the integers B C Z and in many cases, B can be just {0,1}. Since H,

prop

shown in 5.3 consists of the cascade of a fixed CIC filter and the F IR filter to be designed,

the CIC filter response can be pre-calculated and used as a weighting function, reducing
the number of variables to optimize. The problem formulation above is only one example,
leading to a minimax design. Other cost functions can be used, such as minimizing the
number of non-zero coefficients, while meeting a given passband droop and stopband
attenuation. The full flexibility of MILP for FIR filter design can be leveraged and help
designers accurately meet specific design constraints without reverting to an overdesigned

CIC filter. Complete code using the Y ALAMI P [62] framework is shown in Appendix A.

5.4.1 Efficient implementation of the proposed structure

Figure 23 shows an efficient implementation of the int&dump circuit with time varying
coefficients. When h[n] = 0, the flip-flop is disabled or clock-gated and the adder is also
data gated - ie. presented with the same two input values as in the previous cycle,
avoiding unnecessary calculations. If h[n] can take values other than 0 or 1, then the
proper multiplier (or more appropriately shift&add network) can be designed as part of

the multiplexer logic.

Sy reéet
h[0] A[1] ~ A[N-1]
MO00001001000001

Figure 23: Efficient low-power implementation of the integrator with time varying coeffi-
cients (restricted to 0 or 1 in this example).

5.4.2 Longer FIR filters

So far only FIR filters with length equal to the decimation ratio N were considered.
It is natural to ask if filters with longer impulse responses could also be implemented,
ideally in a similar fashion so that few extra memory elements are required. Because
the FIR filter is directly followed by the downsampler, only every other N outputs are
used by the chain of differentiators, so a polyphase implementation is possible. Polyphase
decomposition of FIR filters for decimation is extensively covered in [46], and when each
FIR phase is implemented using the transposed form, the efficient implementation shown

n Figure 24 arises. The added cost for each increase of N taps of the FIR filter is one

H [}

N NN @ S X ryy

: 1]

H S Z T X
§HIND BIN*1]— h[2N-1] : Z

---¥ int

diff |-~

Figure 24: Implementation of FIR filter with more than N taps

integrator at the high rate that implements the second half of the impulse response h[n),
one memory element at the low rate delaying the integrator result by one output cycle,
and one adder at the low rate. Using this implementation strategy, the hardware cost
to increase the FIR length above N is thus identical as increasing the CIC filter order
by 1 (one integrator and one differentiator). However it is possible to make use of the
clever technique of [65] to reduce the cost by half, as shown in Figure 25 for a length-2/V
FIR. In this polyphase structure, both integrators are accumulating the complete impulse
response of the FIR filter, and being reset at half the output rate. The reset for the
top integrator, denoted by 2N* has a phase offset of half the impulse response length,
so that the output can be taken from each integrator at the decimated rate using the
commuter switch model. Typically such an implementation of decimating polyphase FIR
filters is not preferred as the integrators have to accommodate for the complete gain of the
filter instead of only a part of the impulse response, making the delay and adder larger.
However, here all the nodes have to accommodate for the complete filter gain anyway as
we are operating in the modulo-arithmetic zone, so it can be concluded that each new

sparse integrator requires more or less half the resources of a standard CIC stage.

It is worth illustrating this with an example comparing a few possible implementation:

1. A standard 4" order CIC filter: 4 integrators and 3 differentiators.

2. A 4" order CIC filter where the last integrator is made sparse with length-N FIR:

4 integrators and 3 differentiators.

3. Using the technique of Figure 24, a 4™ order CIC filter where the last integrator is
made sparse with length-2N FIR: 5 integrators, 3 differentiators, and one low rate

delay and adder (similar to the complexity of a differentiator).

h[2l\'l—1]

[
1

’ -

s 1

4 1

[

»

1

t

Figure 25: Efficient implementation of FIR filter with more than N taps (2N shown here)

4. Using the technique of Figure 25, a 4'" order CIC filter where the last integrator is

made sparse with length-2N FIR: 5 integrators, 3 differentiators.

5. A 5% order CIC filter: 5 integrators and 4 differentiators.

As will be shown in Section 5.5.3 the real cost will depend on the performance improve-
ment that a longer FIR can provide, the choice of coefficient set constraints and the overall
gain of the filter. Different designs might call for the optimization of different parameters,

and the added flexibility is one extra tool for designers to use.

5.4.3 Delay only path

Another observation worth noting is that if the FIR filter length is extended to N + 1,
and R[N + 1] # 0, the extra integrator path reduces to a simple delay (or a gain and a
delay if R[N +1] # 1). This structure is identical to Figure 8 of [58] where it was observed
that using a length-(N+1) impulse for the last stage typically helps improving attenuation
at the first null. The structure presented here can be seen as a generalization of this idea,

giving full control of all the coefficients for any length FIR by using an integrator with

time-varying coefficient.

5.4.4 Generalized structure

The same idea of an embedded FIR filter can be applied to all integrators of a CIC

filter, as long as the output of each FIR is added back to the appropriate differentiator.

(9]
(]

FIR-L, FIR-L

)
h{1]
i

hiN]
h[N+1]

h[L.N-;1] 't

-- int int }— i diff P{ + ¥ diff
hi0)

hi1) A

Y

hiN]
hiN+1)

h{LN-1]

h{N+1]

H 4
h{LN-1] @

h[N+1]

,
hlLzN-1) ./

Figure 26: Generalized structure

This leads to the generalized structure shown in Figure 26. This structure is of similar
shape as the one shown in [53], although here, a branch originates from each integrator as
opposed to every second ones, and there is a fully controllable polyphase FIR filter of any
length for each branch. The analysis of this structure is beyond the scope of this work, but
it is believed that it might be an extremely efficient general purpose FIR filter structure,
leveraging the unique property of integrators to generate integer coefficients economically,

with added control provided by using time-varying simple/trivial multipliers.

56
5.5 Design Examples

5.5.1 Example from Coleman and Saramaki-Ritoniemi

An interesting comparison point is the design example from [53], which was later used
as a comparison point with the Chebyshev stopband sharpening techniques in [57]. The
filter specifications are N = 16, osr = 64, o = 0.907, with a worst case attenuation of
—90dB across all stopbauds, see Section 5.2 for more details on each of these parameters.
First, recall the performance of the standard CIC filters of order 4, 5 and 6 from Figure 19:
[Amin, Bgrowtn] = [—71.8dB, 16bits|, [—89.8dB, 20bits] and [—107.8dB, 24bits] respectively.
A 6" order standard CIC filter is thus required to meet A, = —90dB, since a 5" order

filter barely falls short by —0.2dB, making one suspicious about the choice of specifications.

Sparse CIC filters of the same orders were designed, constraining the coefficients to
the set {0,1}, and limiting the passband droop to be no worse than —6dB, as droop can
always be compensated later at the lower rate. The optimal FIR filter coefficients, h[n],
are identical for all three filters and given by [1000001001000001], which has a high level of
sparsity. Performance results are shown in Figure 27, along with a zoomed section of the
first null, showing the effective zero rotation provided by the h{n]. Using the same notation
as before, [Anin, Byrown] = [—77.6dB. 14bits], [—100.1dB, 18bits] and [~120.1dB, 22bits]
for the three filters. A, is reduced by around 6, 11, and 13dB for cach filter while
Byrown 1s reduced by 2bits in all of them. Recall that Bgrowtn 1s the wordlength of all
nodes in the filter, so the area savings are not negligible. These results are encouraging,
as the performance is increased at the expense of doing less operations, each less costly,

in the same elegant hardware structure.

The same design specifications were achieved in [57], with block diagram and frequency
response shown in their Figure 5 and 9 respectively. A fair comparison is with the 5" order
sparse filter, as both have a total of 5 integrators. However, the design from [57] requires
15 extra memory elements (27!) along with all the adders required to implement the
integer coefficients. To be fair, the sharpening techniques and design ideology used were
after equiripple stopbands, clearly interesting from a mathematical standpoint, but less
so from the engineering perspective seeking a hardware efficient realization. The design
from [53] is less storage intensive, but after having cancelled out comparable structural
adders and memory clements, their design requires 3 extra storage locations and 2 extra
adders, as well as 2 extra bits to account for bit growth. Considering that the sparse

CIC filter has a total of 9 memory elements and 9 adders, the extra hardware needed is

significant.

" sparseCLC4|
o . ¢ |- =~sparseCICS
i S — sparseCIC6

. [
o L
\
i

L C

: oE tel
! -

: : ' .

v :__' \ \: B R A
Vota oy e Lon et T “
Vidw G : vt
N | 1! g v 1
° [Vik < e
vy oy B gyl N
v h RO T '

2 03 04 05 06 07 08 09
Normalized Frequency (7T rad/s)

==
J:/

Figure 27: Frequency Response of Sparse CIC filters of order 4, 5, and 6 where hAln| €

{0,1}

5.5.2 Non-binary coefficients

As mentioned before, the FIR coefficients need not be constrained to the {0,1} subset.
Better performance can be achieved if this constraint is relaxed - however the designer
has to be careful monitoring the benefits of doing so. Larger coefficients might require
structural adders, and generate more gain, making all the nodes of the filter larger. De-
pending on the performance gain, it might be more economical to add a standard CIC
stage. Nevertheless, the same three filters as above were redesigned, this time constraining
the coeflicients to integers in the set [-4,4]. Results are shown in Figure 28. Lmprovements
of 5, 7, and 14dB are possible over the same filters constrained to use binary coeflicients,
while Bgrown is reduced by 1bit. Only for the 5™ order filter was the coefficient +3 used,
costing one extra adder, while the set {0, £1, £2, +4} is optimal for the other two filters,
implementable with a trivial multiplexer, sign change and a shift. Other set of trivial

coeflicients could be used and worth investigating.

5.5.3 FIR filter longer than N

In Section 5.4.2, it was shown how FIR filters longer than N can also be efficiently
implemented using the proposed structure by making use of polyphase decomposition.
Combined with optimizing for different subsets of admissible coefficient values, this opens
up a wide array of design options which cannot be covered here. It is however enlightening

to compare filters with the same total amount of integrators, as this is a good measure

v v

- sparseCLC4,
- - -sparseCICS|
— sparseCICO)

X: 01391

%
I s
[
2

PRI y L
0.3 0.4 0.5 0.6 0.7
Nornmalized Frequency (7Trad/s)

Figure 28: Frequency Response of Sparse CIC filters of order 4, 5, and 6 where h[n] €
{0, 1, 42, 43, 4}

of overall complexity. We will compare three filters with a total of 5 integrators: the
standard 5" CIC, a 4'* order sparse CIC with length-N FIR, and a 3'Y order sparse CIC
with length-2N FIR. Performance is [-89.8dB, 20bits], [—105.3dB, 17bits] and [-108.1dB,
16bits] for the three filters respectively and the frequency response shown in Figure 29.

cics |
- - -CICSsparse ||
\ e CIC45_p_arsc2N__

80

X: 0.1108 |-
—100y: -89.86 |- |

P M
X:0.2358
~120 Y:-108.1

M0 0z 03 o4 0.
Normalized Frequency (77 rad/s)

Figure 29: Frequency Response of CIC5, CIC4 with lengthN FIR and CIC3 with length2N
FIR, where h[n] € 0,41, +2

The 3" order sparse CIC with length-2N FIR has similai, performance to the G
order standard CIC filter previously shown in Figure 19 (A, =~ —107dB). Both filters
are drawn side by side in Figure 30, where B yrowen is 24bits for the CIC and merely 16 bits
for the sparse CIC. The benefits of using a length-2N FIR (i.e. extra sparse integrators)

as opposed to adding standard CIC stages is clearly illustrated: not only performance is

oj
U

hiny |/ |
N+ reset

n[zN'-1] '

hin]={1-11001001101102002011011001001-11]

Figure 30: Frequency response of (a) 6 order CIC filter (b) 3" order sparse CIC with
length-2N FIR

increased, but the number of bits to do so is reduced, thanks to the sparsity of the FIR
filter. Extra sparse integrators also do not require a differentiator. Area of both circuits
can be estimated using 5
A=>"NP-W, (5.6)
=0
which was proposed in [41] for estimating silicon area of different polyphase implemen-
tations of CIC filters. A i (5.6) is unit-less but proportional to silicon area. It was
concluded in [41] that equation-based area estimation is very close to real implementation
results. NP is the number of 1bit partial products to be added in stage ¢ and W; is the
wordlength of stage 4. Here, decimation is performed in one stage s0 L = 1. The area for
both circuits of Figure 30 is 616 for the classical 6% order CIC and 256 for the 39 order
sparse CIC with length-2N FIR, showing savings of more than 50%.

5.6 Bit accurate model and verification methodology

Proving that hardware structures are actually implementing the desired transfer func-

tion is not a trivial task. This is further complicated here because the complete filter is

60

working with modulo data and overflows are not detected. A complete cycle and bit-
accurate fixed-point model of the proposed structure was built and all of the filter ex-
amples designed here were tested with various types of input signals such as sine waves,
square waves, full scale DC inputs, and the response was compared with that of the under-
lying FIR. filter predicted by the transfer function. An example of a simulated frequency
response sweep test is shown in Figure 31 for the 5" order filter of Figure 27. Each point
of the simulated response line is calculated by measuring the signal level of a sinusoidal
test tone after being filtered by the model, accounting for aliasing, and adjusting for gain.
1024 such simulations were run to generate this curve. Matlab code of the model is shown

in Appendix B.

= clc3sp2 slmulated
rictwp? ibesl

Magnitude (dB}

1] 24 3z 40

Frequency (in fs/128)

Figure 31: Simulated frequency response of the 5" order filter of Figure 27

5.7 Conclusion

A novel structure for improving the performance of the well known CIC filter while
preserving their main qualities and characteristics was proposed. It was shown that the
last integrator stage of CIC filters can be modified in order to implement any FIR filter
impulse response of any length. Substantial performance improvement is possible with
sparse FIR filters constrained to small integer coefficients, which leads to efficient hardware
implementation. When compared to standard CIC filters, the proposed structure can
improve the worst case stopband attenuation, while reducing the overall gain of the filter
and the amount of high rate operations performed. The structure allows to leverage the
advantages of both the recursive and polyphase implementation of CIC filters, giving more

flexibility to the designers confronted with different design challenges.

61

6 CONCLUSIONS AND FURTHER RESEARCH

6.1 Summary

In this dissertation, algorithms and efficient filtering structures for the problem of
sampling rate conversion of digital signals were investigated. The first part of the text
was concerned with the two distinct challenges faced in asynchronous sample rate con-
version (ASRC), namely the generation of clock signals that properly track the fractional
ratio, and the implementation of efficient polynomial-based filtering structures for frac-
tional rate change. The second part of the work covered integer sample rate conversion,

investigating potential ways to improve the first filter of a decimating chain.

In Chapter 2, an all-digital clock generator circuit was introduced. It differs from
classical DPLLs in that the locking mechanism is based on the period of the reference
clock instead of its phase and/or frequency. This allows for wide bandwidths and fast
locking times without relying on dividers, mode switching, and/or tuning word preset-
ting. Moreover, various trade-offs inherent to feedback loops, such as input jitter rejection,
bandwidth, and settling time, are decoupled and made transparent to the designer mak-
ing the overall design more intuitive. Noise shaping techniques can also be seamlessly
mtegrated into the period-locked NCO to reduce phase noise in a desired frequency band.
The resulting low complexity hardware can be used to generate high quality clock signals

for demanding applications such as andio ADC /DAC.

Then, in Chapter 3, an efficient structure for spline-based fractional delay filtering
was introduced. Inspired by the Newton structures for Lagrange interpolation, it requires
less than half the number of operations of a typical Farrow implementation. Moreover, it
displays better frequency response characteristics than Lagrange-based filters. To obtain
this structure, a matrix form of the Farrow transfer function is put forward and used to
derive state-space transformations between the Lagrange-Farrow structure and its Newton
counterpart. These transformations are then applied to the spline polynomial giving rise

to the efficient Newton-like spline filtering method.

62

Chapter 4 analyzed a previously published structure for reduced complexity CIC fil-
ters [44]. The reduced state-space structure has been mostly ignored due to its apparent
complexity caused by the need for feedback multipliers. It was shown that for filters
of order 3 and below along with even decimation ratios, the multipliers can be exactly
implemented with only a few non-zero canonical-signed-digit(CSD) terms, making the
structure very attractive. Savings of up to 50% silicon area compared to a traditional
recursive implementation are possible. Furthermore, most of the area comes from com-
binatorial logic which can be reused across channels, leading to compact multichannel

implementations.

Finally, a novel structure for improving the classical CIC filter was proposed in Chap-
ter 5. The structure is based on the observation that the last integrator of a standard
CIC filter is in fact implementing a polyphase FIR flter where the coefficients are all 1.
By making the coefficients controllable through a time-varying multiplier in front of the
integrator, the frequency response of the CIC filter can be improved while simultaneously
reducing computational complexity, given a certain level of sparsity. A MILP framework
was suggested to optimize the cocfficients of the polyphase FIR filter by constraining them
to small integers. The length of the polyphase FIR filter can also be extended above the

decimating ratio.

6.2 Promising lines of research

6.2.1 Reduced complexity implementation structures for
polynomial-based filters

The new structure proposed in Section 3.5 was derived using a Matrix representation
of the Farrow transfer function leading to identifying state-space transformations between
the Lagrange-Farrow structure and its Newton counterpart. These transformations were
then applied to the spline polynomial giving rise to the efficient Newton-like spline filtering
method. First, those same transformations could be applied to other polynomials, or
different orders, in order to generate other potentially efficient structures for classical

time-domain polynomial functions. However, with a slight change of basis function from
-1

270 = 1—2z7!, the mixed-integer linear programming (MILP) techniques proposed in [66]

for direct optimization of the cocfficients of the Farrow structure could be applied to
optimization directly in the new structure. Furthermore, computational complexity might

be reduced even more by Incorporating the fractional interval state-space transformation

63

as part of the optimization process.

6.2.2 Sparse CIC filters

6.2.2.1 Non-symmetric sparse FIR filters

So far only symmetric sparse FIR filters were considered in the design of the pro-
posed sparse CIC filters. It would be worthwhile investigating design techniques where
the symmetry of the sparse FIR filter is not enforced, opening up the design space to
include non-linear phase filters. Non-linear phase filter could be used to either improve
performance, or increase the sparsity of the FIR, effectively reducing the overall gain and
the wordlength required. Genetic algorithms come to mind, such as Differential Evolu-

tion [67]. previously successfully applied to digital filter optimization problems.

6.2.2.2 Droop Compensation using the sparse FIR filter

Only stopband performance improvement was considered in the work presented here,
but preliminary work has shown that the sparse CIC filter can be used to effectively
reduce the undesired droop caused by higher order CIC filters. This opens up room for
the design of a more encompassing set of MILP constraints, where designers could balance

desired stopband attenuation, maximum droop allowed, and hardware complexity.

C (

(

C CCC

-
s

ccececcCceeacccc

64

REFERENCES

[1] GRAYVER, E. Implementing Software Defined Radio. [S.1.]: Springer Science & Busi-
ness Media, 2012.

[2] HENTSCHEL, T.; FETTWEIS, G. Continuous-time digital filters for sample-r

ate
conversion in reconfigurable radio terminals. Frequenz, v. 55[5/6], p. 185-188, 2001.

(3] PARK, J.-S. et al. An asynchronous sample-rate converter from CD to DAT. In:
Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03). 2008 IEEE
International Conference on. [S.l: s.n.], 2003. v. 2, p. I1-509-12 vol.2. ISSN 1520-6149.

[4] ADAMS, R.; KWAN, T. Theory and VLSI architectures for asynchronous sample-rate
converters. .J. Audio Eng. Soc., v. 417/8], p. 539-555, 1993.

[5] MIDYA, P.; ROECKNER, B.; SCHOOLER, T. Asynchronous sample rate converter

for digital audio amplifiers. In: AUDIO ENGINEERING SOCIETY. Audio Engineering
Society Convention 121. [S.1], 2006.

[6] FARROW, C. A continuously variable digital delay element. In: IEEE Int. Symp. on
Circuits and Syst. [S.1.: s.n], 1988. p. 2641-2645.

(7] ABED, K.; NERURKAR, S. Low power and hardware efficient decimation filter. In:

Wireless Communications and Networking, 2003. WCNC 2003. 2008 IEEE. [S.1: s.n.],
2003. v. 1, p. 454-459 vol.1. ISSN 1525-3511.

[8] CANDAN, C. Optimal sharpening of CIC filters and an cfficient implementation
through Saramaki-Ritoniemi decimation filter structure. 2013.

[9] DOLECEK, G. J.; LADDOMADA, M. An economical class of droop-compensated

generalized comb filters: Analysis aud design. Circuits and Systerns II: Eaxpress Briefs,
IEEE Transactions on, IEEE, v. 97, n. 4, p. 275-279, 2010.

[10] LOSADA, R. A.; LYONS, R. Reducing CIC filter complexity.

Signal Processing Mag-
azine, IEEE, IEEE, v. 23, n. 4, p. 124-126, 2006.

[11] CROCHIERE, R. E.; RABINER, L. Optimum FIR digital filter implementations

for decimation, interpolation, and narrow-band filtering. Acoustics, Speech and Signal
Processing, IEEE Transactions on, IEEE, v. 23, n. 5, p. 444-456, 1975.

[12] BEST, R. Phase-locked loops: theory, design, and applications. [S.L]: McGraw-Hill,
1993.

(13] RILEY, T COPELAND, M.; KWASNIEWSKI, T. Delta-sigma modulation in

fractional-N frequency synthesis. ITEEE Journal of Solid-State Circuits, v. 28(5], p. 553~
559, 1993. '

65

(14] KWAN, T.; ADAMS, R.; LIBERT, R. A stereo multibit -A DAC with asynchronous
master-clock interface. JEEE Journal of Solid-State Clircuits, v. 31{12], p. 1881 -1887,
1996.

[15]) BRANDONISIO, F. et al. Modelling and implementation of an accumulator-based
ADPLL on a Virtex-5. IET, 2012.

(16] NILSSON, P.; TORKELSON, M. A monolithic digital clock-generator for on-chip
clocking of custom DSP’s. IEEE Journal of Solid-State Clircuits, v. 31[5], p. 700-706,
1996.

[17] OLSSON, T.; NILSSON, P. Portable digital clock generator for digital signal pro-
cessing applications. [ET Electronics Letters, v. 39[19], p. 1372-1374, 2003.

[18] VANKKA, J.; HALONEN, K. Direct digital synthesizers: Theory, design, and appli-
cations. [S.1.]: Springer, 2001.

[19] VITAL, J. C.; TEMES, G. C. Clock generation system with reduced jitter noise in
the baseband. In: International Circuits and Systems Symposium. [S.1.: s.n.], 1991. p.
2621-2624.

20] HOGENAUER, E. An economical class of digital filters for decimation and inter-
polation. IEEFE Transaclions on Acoustics, Speech, and Signal Processing, v. 29[2], p.
155-162, 1981.

[21] DATTORRO, J. The implementation of recursive digital filters for high-fidelity audio.
Journal of the Audio Engineering Society, v. 36[11], p. 851-878, 1988.

[22] KISS, P. et al. Stable high-order delta-sigma digital-to-analog converters. IEEE
Transactions on Circuits und Systems I, v. 51[1], p. 200-205, 2004,

[23] DUNNING, J. et al. An all-digital phase-locked loop with 50-cycle lock time suitable
for high-performance microprocessors. IEICE Transactions on Electronics, v. 78[6], p.
660-670, 1995.

[24] MENDEL, S.; VOGEL, C. A z-domain model and analysis of phase-domain all-digital
phase-locked loops. In: Norchip. [S.1.: s.n], 2007. p. 1-6.

[25] ABRAMOVITCH, D. Phase-locked loops: A control centric tutorial. In: American
Control Conference. [S.1.: s.n.], 2002. p. 1-15.

[26) MENDEL, S.; VOGEL, C. Improved lock-time in all-digital phase-locked loops due
to binary search acquisition. In: International Conference on Electronics, Circuits and
Systems. [S.1.: s.n.], 2008. p. 384-387.

[27) KLEIDER, J.; STEENHOEK, C. A new filter implementation strategy for Lagrange
interpolation. In: IEEE Military Commaun. Conf. [S.1.: s.n], 2014. p. 724-730.

(28] HUANG, X.; GUO, Y,; ZHANG, J. A. Sample rate conversion using B-spline inter-
polation for OFDM based software defined radios. IEEE Trans. on Commun., v. 60[8],
p. 2113-2122, 2012.

[29] FRANCK, A. et al. Reproduction of moving sound sources by wave field synthesis:
An analysis of artifacts. In: Int. Conf. Audio Eng. Soc. [S.1.: s.n.], 2007.

¢

C ¢ C ¢«

(

ccccccccccCcccccccccCcccccccccccccococ

66

[30] LAAKSO, T. et al. Splitting the unit delay [FIR/all pass filters design]. JEEE Signal
Process. Mag., v. 13[1], p. 30-60, 1996.

[31] TASSART, S.; DEPALLE, P. Fractional delays using Lagrange interpolators. In: /nt.
Comput. Music Conf. [S.].: s.11.], 1996.

[32] CANDAN, C. An efficient filtering structure for Lagrange interpolation. /EEE Signal
Proc. Lett., v. 14[1], p. 17-19, 2007.

[33] LEHTINEN, V. RENFORS, M. Structures for interpolation, decimation, and

nonuniform sampling based on Newton’s interpolation formula. In: Int. Conf. on Sam-
pling Theory and Applicat. [S.].: s.n.], 2009.

[34] W ISE, D.; BRISTOW-JOHNSON, R. Performance of low-order polynomial interpo-
lators in the presence of oversampled input. J. Audio Eng. Soc., 1999.

[35] VALIMAKI, V. A new filter implementation strategy for Lagrange interpolation. In:
IEEE Int. Symp. on Circuits and Syst. [S.1: s.n., 1995. p. 361-364.

[36) FRANCK, A. Efficient algorithms and structures for fractional delay filtering based
on Lagrange interpolation. .J. Audio Eng. Soc., v. 5612], p. 1036-1056, 2009.

[37) HUNTER, M.; MIKHAEL, W. A novel Farrow stricture with reduced complexity.
In: [EEE Int. Midwest Symp. on Circuits and Syst. [S.L.: s.n.], 2009. p. 581-585.

[38] UNSER, M. Splines: A perfect fit for signal and image processing. IEEE Signal
Process. Mag., v. 16[6], p. 22-38, 1999.

[39] DOOLEY, S.; STEWART, R.; DURRANI, T. Fast on-linc B-spline interpolation.
[ET Electron. Lett., v. 35[14], p. 1130-1131, 1999.

[40] HOGENAUER, E. An economical class of digital filters for decimation and interpo-

lation. Acoustics, Speech and Signal Processing, IEEE Transactions on, IEEE, v. 29,
n. 2, p. 155-162, 1981.

[41] ABOUSHADY, H. et al. Efficient polyphase decomposition of comb decimation filters
in X-A analog-to-digital converters. In: IEEE. Circuits and Systems, 2000. Procecdings
of the 48rd IEEE Midwest Symposium. on. [S.L], 2000. v. 1, p. 432-435.

[42] JOVANOVIC-DOLECEK, G.; MITRA, S. K. Efficient sharpening of CIC deci-

mation filter. In: IEEE. Acoustics, Speech, and Signal Processing, 2003. Proceed-
ings. (ICASSP’08). 2003 IEEE International Conference on. [S.1.], 2003. v. 6, p. VI-385.

(43] JOVANOVIC-DOLECEK, G.; MITRA, S. Efficient multistage comb-modified ro-

tated sinc (RS) decimator. In: Signal Processing Conference, 2004 12th European. [S.1.:
s.n.], 2004. p. 1425-1428.

[44] HENTSCHEL, T.; FETTWEIS, G. Reduced complexity comb-filters for decimation
and interpolation in mobile communications terminals. In: IEEE. Electronics, Circuits

and Systems, 1999. Proceedings of ICECS’99. The 6th [EEE International Conference
on. [S.1], 1999. v. 1, p. 81-84.

[45) HENTSCHEL, T.; FETTWEIS, G. Time-varying recursive filters for decimation and
interpolation. In: Proc. 10th Euro. Sig. Processing Conf. [S.L: s.n.], 2000. p. 5-8.

(

¢

(

(ccococcCcCcocccCceccccCccCceccCccccccccccccco o

67

[46] LYONS, R. G. Understanding Digital Signal Processing. [S.1.): Pearson Education,
2010.

[47] LIN, C-A.; KING, C.-W. Minimal periodic realizations of transfer matrices. Auto-
matic Control, IEEE Transactions on, IEEE, v. 38, n. 3, p. 462-466, 1993.

(48] HENTSCHEL, T. Sample Rate Conversion in Software Configurable Radios. [S.1):
Artech House, 2002.

(49] PARHI, K. K. VLSI Digital Signal Processing Systems: Design and Implementation.
[S.1]: John Wiley & Sons, 2007.

[50] PRESTI, L. L.; AKHDAR, A. Efficient antialiasing decimation filter for AY convert-

ers. In: IEEE. FElectronics, Circuils and Systems, 1998 IEEE Iniernalional Conference
on. [S.1], 1998. v. 1, p. 367-370.

[51] PRESTI, L. L. Efficient modified-sinc filters for sigma-delta A/D converters. Circuits
and Systems II: Analog and Digital Signal Processing, IEEE Transactions on, IEEE,
v. 47, n. 11, p. 1204-1213, 2000.

[52) ENGELBERG, S. A more general approach to the filter sharpening technique of

kaiser and hamming. [EEE TRANSACTIONS ON CIRCUITS AND SYSTEMS PART
2 EXPRESS BRIEFS, IEEE, v. 53, 1. 7, p. 538, 2006.

[53] SARAMAKI, T.; RITONIEML, T. A modified comb filter structure for decimmation.

In: TEEE. Clircuits and Systems, 1997. ISCAS '97., Proceedings of 1997 IEEE Interna-
tional Symposium on. [S.1], 1997. v. 4, p. 2353-2356.

[54] Tapio Saramaki, Tapani Ritoniemi, Ville Ecrola, Timo Husu, Eero Pajarre, Seppo
Ingalsuo et al. Decimation Filter. 1997. US Patent 5,689,449.

[55) KWENTUS, A. Y.; JIANG, Z.; JR, A. N. W. Application of filter sharpening to

cascaded integrator-comb decimation filters. Signal Processing, IEEE Transactions on,
IEEE, v. 45, n. 2, p. 457-467, 1997.

[56] STEPHEN, G.; STEWART, R. High-speed sharpening of decimating cic filter. Elec-
tronics Letters, IET, v. 40, n. 21, p. 1383-1384, 2004.

[57) COLEMAN, J. O. Chebyshev stopbands for cic dccimation filters and cic-

implemented array tapers in 1d and 2d. Circuits and Systems I: Regular Papers, IEEE
Transactions on, IEEE, v. 99, n. 12, p. 2956-2968, 2012.

[58] CHU, S.; BURRUS, C. S. Multirate filter designs using comb filters. Circuits and
Systems, IEEE Transactions on, IEEE, v. 31, n. 11, p. 913-924, 1984.

[59] LEHTINEN, V. RENFORS, M. On cic decimator variants - from shifting zeros to

the sparse fir-cic structure. In: IEEE. Signal Processing and Its Applications, 2007.
ISSPA 2007. 9th International Symposium on. [S.1], 2007. p. 1-4.

[60] LIM, Y. Design of discrete-coefficient-value linear phase FIR filters with optimun

normalized peak ripple magnitude. Circuits and Systems, IEEE Transactions on, v. 37,
n. 12, p. 1480-1486, Dec 1990. ISSN 0098-4094.

cccccccccccccccccccccCcccccccccccccccg

68

[61] MITRA, S. K.; KAISER. J. F. Handbook for Digital Signal Processing. [S.1]: John
Wiley & Sons, Inc., 1993.

[62] LOFBERG, J. YALMIP: A toolbox for modeling and optimization in MATLAB. In;

IEEE. Computer Aided Control Systems Design, 2004 IEEE International Symposium
on. [S.1], 2004. p. 284-289,

[63] GRANT, M.; BOYD, S.; YE, Y. CVX: Matlab Software for Disciplined Convex
Programming. 2008.

[64) DIAMOND, S.: CHU, E; BOYD, S. CVXPY: A Python-Embedded Modeling Lan-
guage for Convex Optimization, version 0.2. 2014. Urlhttp://cvxpy.org/.

[65] Koji Kawamoto, Toru Kengaku, Eiichi Teraoka, Tetsuaki Oga e Hiroichi Ishida.
Decimating digital finite impulse response filter. 1993. US Patent 5,191,547.

[66] FRANCK, A. Efficient Algorithms for Arbitrary Sample Rote Conversion with Ap-

plication to Wave Field Synthesis. Tese (Doutorado) — Universitétshibliothek Imenau,
2011.

[67] PRICE, K.; STORN, R. M.; LAMPINEN, J. A. Differential Evolution: A Practical
Approach to Global Optimization. [S.L.]: Springer Science & Business Media, 2006.

(ccccccCccccocccccccccccccccccccccec

69

APPENDIX A - MATLAB CODE FOR
THE DESIGN OF
SPARSE CIC FILTERS

The following Matlab script can be used to design sparse CIC filters. The design
specifications are the same as presented in Chapter 5. A suitable MILP solver has to be

installed. Support functions are also listed.

1 clear all

2 format long

14 npoints = 2°14;

15 cicR = 16;
16 showresp = 1;
17

18 tswarss [lirey setrines
19 mincoeff = (;

20 maxcoeff = 1;

21 sparseN = cicR-1;

22 if (mod(sparseN, 2)==0) sparseType = 1; else sparseType = 2; end
23 sparseM = getM(sparseN, sparseType);

W RULANGEOT P00 LUR08 DIiGr Do nrasan Tl

(

(

c

(ccccceccCccCcccccCcccCccccccccccc o

26

27

28

29

30

31

32

33

34

36

37

38

39

40

41

45

46

47

438

419

50

59

60

Gl

62

63

64

65

66

cicsofar = makeCIC(4, cicR);

B

N = length(cicsofar)+(sparseN+1)—1;
N = N‘l,’ R fooad »

if (mod(N, 2)==0) type = 1; else type = 2; end

w = linspace(O,pi,npoints);

getTrig(N,w, type);

cicorder = 5;

hcic = makeCIC(cicorder, cicR);

[tmp, w] = freqz (hcic/sum(hcic), 1, npoints); HcicdB =
20+1ogl0(abs (tmp)) ;

fsin = 3072e3;

osSr = 64;

alpha = 0.907;
fp = alpha*fsin/ (2xosr);
pEdgeosr = fp/fsin;
sbwidth = round (pEdgeosr*2+npoints);
sbcenter = round((Z*npoints/cicR):(2*npoints/cicR):npoints);
sbidx = sbcenter;
for i=l:length (sbcenter)
sbidx = [sbidx, ((sbcenter(i)—sbwidth) : (sbcenter(i)+sbwidth))];
end
sbidx = sort (unique (sbidx)) ;
sbidx = sbidx (sbidx>0);
sbidx = sbidx(sbidx<npoints);
pbidx = 1:sbwidth;
wcare = [pbidx, sbidx];
wdontcare = setdiff((1:npoints),wcare);
Hideal = zeros (1, npoints);
Hideal (pbidx) 1;
Hideal (sbidx) 0;

Hidealcare = Hideal(wcare)';

I

Hidealpass = Hideal (pbidx)';

70

(cccccccCcccccccccccCcccccccccceccc

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

83

84

85

86

87

BY

&9

£l

91

92

23

94

95

96

97

98

102

103

104

105

106

107

108

Hidealstop = Hideal (sbidx) ';
Gcare = trig(wcare, :);
Gpass = trig{pbidx, :);
Gstop = trig(sbidx, :);

maxdroop = HcicdB (sbwidth)-3;
minstop = -80; % BEMAN (RIS e iries s -

alll = ones(1,cicR);

tvec = intvar(l,sparseM+l); S invar
symtve = btoh (tve, sparseType) ;

hyal = conv(cicsofar, symtvc) ;

byal

htob (hyal, type);

s = sdpvar; ‘

Cl = [sx(1 - (1-10" (maxdroop/20))) <« (Gpass+byal') < s+ (1 +
(10" (-maxdroop/20)-1))1;

C2 =10 < s ;

C4 = [mincoeff < tvc < maxcoeff];

Constraints = [Cl, C2, c4]);

Objective = norm(Gstopsbyal', 2);

options = sdpsettings ('sciver', "gurobi'); 40y 2

sol = solvesdp(Constraints, Objective, options);

if (sol.problem == ()
byal = double (byal)
else
display ('Hmm, something wenl wrongin talmip solving...!');
sol.info
yalmiperror (sol.problem)
end

hyal

btoh (byal, type);
Hyal = 20*logl0(abs (trigsbyal'))

;

gain max (Hyal);

il

Hyal Hyal-gain;

showtip=1;
figure

freqs = (fsin/2)sw/pi;

71

¢

e
\

(cccccccccccccccccCccccccccccaccoc

109

110

m

112

113

114

115

116

117

118

119

120

121

122

123

dePlot = plot (fregs, Hyal, fregs, HcicdB);
hold all;
xlabel ('Freq normalizad'); ylabel ('mag ¢d8'); ylim([-140 0]); grid on;

Hidealplot = Hideal; Hidealplot (sbidx) = 0.003;
plot (freqgs,20+1logl0(Hidealplot), 'Lins!

vidth', 5);

legend(‘Hsparse‘,sprintf('Hcic order 3d', cicorder), 'Stephands ') ;
fiqure
stem(hyal);hold all; stem (hcic)

legend ('hsparse!, sprintf(‘hcic%d',cicorderﬂ

display (sprintf ('CIC worst czse attenuacion %gdB',max(Hcich(sbidx))))

display (sprintf ('O1

2 » attenuation
%gdB',max(Hyal(sbidx))))

display{sprintf ('CiC Bitgrowth %gbits',ceil(logZ(sum(hcic)))));

display(sprintf ('CiC

—Sparse biltgrowth

%qbits‘,ceil(logZ(sum(abs(hyal))))));

72

ccccccCccccCccccccccccccccccccccoccec

¢ €

function [trig, M] = getTrig(N, w, type)
M = getM(N, type);
switch type
case 1
n=0:1:M;
trig = 2xcos(w'xn);
trig(:,1) = 1;
case 2
n=0:1:M;
trig = 2xcos(w'*(n+0.5));
case 3
n=0:1:M;
trig = 2xsin(w'* (n+l));
case 4
n=0:1:M;
trig = 2+sin(w'+«(n+0.5));
end
end

73

function

switch type

case 1
M=N/2;
case 2
M= (N-1)/2;
case 3
M=(N-2)/2;
case 4

M=(N-1)/2;

end

end

TS

I ars

LaE

[M] = getM(N, type)

(

(

C C«

(ccccccCccccocccccccccccccccccccocccca

74

function b = htob(h, type)

m =

length (h);

switch type

end

end

case 1

b = fliplr(h(l: (m+1)/2));
case 2

b = fliplr(h(l:m/2));

case 3

case 4

B e
2 function h = btoh (b, type)
3
4 ‘s
5
6 switch type
7 case 1
8 h=[fliplr(b), b(2:end)];
9 case 2
10 h=[fliplr(b), b(l:end)];
1
12 case 3
13 h=[fliplr(b), O, -b];
14 case 4
15 h=[fliplr(b), b(l:end)];
16
17 end
18
19 end

~—

N

c

C C C C¢

-
AN

C CCCCx

CCCCC(

C{

cCCcceccccc

75

function

end

hcic

for

end

[hcic]l = makeCIC(order, cicR)

= ones (1,cicR);
i=1: (order-1)

hcic = conv(hcic,

ones (1,cicR});

(CCCClCCCCCCCCCCc CCCC

c

¢ C

APPENDIX B - MATLAB CODE FOR

22

23

24

25

SPARSE CIC FILTER
MODEL

76

2 function dout = dosparse(y, tvec, sparseorder, order, cicW, cicR,
numcycles)

3

4 int = zeros(1,order);

5 intN = zeros (1, order);

6 diff = zeros(l,order);

7 diffN = zeros (1, order);

8

9 intsparseN = zeros (1, sparseorder-1);

10 intsparse = zeros (1, sparseorder-1);

11 diffsparseN = zeros (1, sparseorder) ;

12 diffsparse = zeros (1, sparseorder) ;

13

14 k =1;

for i=1:numcycles
coeff = tve(l, mod(i-1,cicR)+1);
intN(1l) = addsubq (int (1), y(i), cicW, 'add');
for j=2:order-1
intN(73)

end

addsubg (int (j), intN(3j-1), cicW, 'add");

intN (order) = addsubqg (int (order), coeffxintN(order-1),
cicW, ‘adal’);

for j=1:sparseorder-1
intsparseN(j) = addsubgqg (intsparse (j),

tvc(j+1,mod(i—l,cicR)+l)*intN(order—l), cicW, 'add');
end

¢ ¢ 0 (<

is
<

e
AN

ccceccccccccCccceccccccccCcccccccccco

26

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

48

493

50

51

if (mod (i, cicR)==0)
for j=1:sparseorder-1
diffsparseN(j) =
addsubq(intsparseN(j),diffsparse(j+1), cicW, *add’);
end
diffN(1l) = addsubq(intN(order),diffsparse(l), cicW, 'add'");
intN(order) = 0; .14

for j=1:sparseorder-1
intsparseN(j) = 0;
end
for j=2:order
diffN(j) = addsubqg (diffN(j-1), diff(j-1), cicW, 'sub’);
end
out (k) = diffN(order);
k = k+1;

for j=l:order
diff (j) = diffN(7j);
end
for j=1:sparseorder-1
diffsparse(j) = diffsparseN(j);
end
end
for j=l:order
int (j) = intN(j);
end
for j=1:sparseorder-1
intsparse(j) = intsparseN (j);
end
end

dout = out / 2" (cicW-1);

77

