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“Our noblest impulse, the impulse to
know and understand, makes it our
duty to search. And even a false the-
ory, if only it was found through gen-
uine search, is for that reason superior
to the complacent certainty of those who
reject it because they presume to know
— to know, although they themselves
have not searched!”

-Arnold Schoenberg-
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RESUMO

Um problema encontrado na prática ao projetar um filtro adaptativo FIR (do inglês,
finite impulse response) é escolher um comprimento adequado para o filtro. O compri-
mento ideal para o filtro depende da aplicação, por isso é comum determiná-lo por métodos
simples e práticos, como por tentativa e erro. Com um número pequeno de coeficientes, o
filtro tem menor complexidade e pode se beneficiar de uma maior taxa de convergência,
mas seu desempenho em regime é afetado por submodelamento. Por outro lado, com
muitos coeficientes, asseguramos um baixo ou inexistente efeito de submodelamento, ao
custo de limitar a máxima taxa de convergência estável do filtro, aumentar a complexi-
dade computacional e também reduzir a capacidade do filtro em acompanhar variações
no tempo. Neste trabalho, analisamos como o comprimento do filtro afeta o desempenho
de algoritmos adaptativos, em particular dos algoritmos LMS e ε-NLMS. Para ambi-
entes estacionários, analisamos o desempenho tanto em transiente quanto em regime, e
propomos um projeto para o comprimento do filtro que garante alta convergência e baixo
submodelamento, assumindo que a resposta impulsiva do meio segue uma envoltória de
decaimento exponencial. Mostramos como um filtro com o comprimento proposto é par-
ticularmente interessante para ser usado em uma combinação de filtros, operando como
o filtro rápido. Para ambientes não-estacionários, focamos no estudo do desempenho em
regime, e mostramos com simulações que um filtro curto pode superar o desempenho de
um filtro mais longo tanto em convergência quanto ao rastrear as variações temporais do
sistema.

Palavras-Chave – Filtros adaptativos, comprimento do filtro, submodelamento, escolha
do comprimento do filtro, combinação de filtros



ABSTRACT

A practical problem faced when designing an FIR (Finite Impulse Response) adaptive
filter is to set an appropriate filter length. The best choice for the length is application-
dependent, and is common practice to determine it by some rough approximation, such
as by trial-and-error. By setting a small number of coefficients, the filter has a reduced
complexity and may benefit from an increased convergence rate, but its steady-state per-
formance is degraded by undermodeling. By setting a large number of coefficients, we
ensure the filter suffers negligible or no undermodeling effects, but we limit the maximum
stable convergence rate, increase the computational complexity and also decrease the fil-
ter ability to respond in nonstationary scenarios. In this work, we analyze how the filter
length affects the performance of adaptive algorithms, in particular, for the LMS and the
ε-NLMS algorithms. For stationary scenarios, we analyze both transient and steady-state
performance, and propose a method for selecting the filter length that ensures fast con-
vergence rate and low undermodeling effects, assuming that the system impulse response
follows an exponential decay envelope. We show that a filter with the proposed length is
particularly interesting to operate as the fast filter within a combination of filters. For
nonstationary scenarios, we focus our study on the steady-state performance, and show
through simulations that a short filter may outperform a longer one in both convergence
and tracking performance.

Keywords – Adaptive filtering, filter length, undermodeling, filter length selection, com-
bination of filters
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13

1 INTRODUCTION

A practical problem when designing an FIR (Finite Impulse Response) adaptive filter

is how to choose the filter order — the number of tap weights, also called the filter length.

The adaptive filter must have enough taps to be able to model the impulse response of the

target system (or of the inverse system, depending on the application) so that the overall

estimation error is satisfactorily low. As the impulse response is unknown by definition

in adaptive filtering, the filter order is often adjusted by trial-and-error.

Such a loose choice for the filter length, however, may yield an insufficient or excessive

number of taps, affecting negatively the filter performance [1–4]. If we set an insufficient

length for the filter, the estimation will be biased, which is also known as undermodeling

[5, 6]. In recursive estimation, as is the case of adaptive filtering, this reflects mainly on

a degradation of the steady-state performance. If we set a large length, even though we

may benefit from less bias since many real systems have very long or infinite impulse

responses, we may encounter implementation problems due to the processing limitations

of the computational device, and the increased variance due to the estimation of a larger

number of parameters.

In spite of the increased estimation error of an undermodeled filter, there are some

advantages that are worth considering: by reducing the number of taps, we reduce the

algorithm complexity and may reduce the mean square error since the increased bias may

be offset by reduced variance. In some cases, we can increase the convergence speed, as

some analyses of undermodeled algorithms show [7–10].

Therefore, the problem of selecting the filter length faces the compromise between

choosing a large length that ensures a low steady-state error level, but that limits the

convergence rate, and choosing a small length to take advantage of lower complexity and

of a possible increase of convergence rate, at the cost of an increased steady-state error.

This dilemma is somewhat similar to the well-known trade-off between convergence rate

and steady-state error found, for example, when tuning the step size of the LMS algorithm,

or when tuning the forgetting factor of the RLS algorithm. When the environment is
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stationary, a large length usually guarantees any desired steady-state performance level

since we can adjust other filter parameters. With the LMS algorithm, for example, while

a large length ensures low estimation bias, we can reduce undefinitely the step size so as

to reduce the estimation variance. In time-variant environments, on the other hand, it

might not be possible to improve the steady-state performance by reducing the step size

because small step sizes might make the filter unable to track the system behavior.

In the literature, the problem of choosing the length of a fixed length adaptive filter

has not drawn much attention as, for example, the question of tuning the step size or

designing time-varying step sizes for LMS-like algorithms. Some works [11] investigate

the choice of the filter length for specific applications. The classical analyses of adaptive

algorithms [1–3, 12] consider filters with the same length as the optimal weight vector

(the actual impulse response), which hinders the treatment of the filter length as a free

variable. On the other hand, there are many works that propose techniques to adaptively

select the filter length, yielding variable-length algorithms [8,13–20] that can outperform

fixed length algorithms in both transient and steady-state performance. Some of these

algorithms are also capable of adapting to changes in the length of the impulse response.

Nevertheless, they are intrinsically more complex algorithms, and most of them encounter

implementation difficulties. For example, [13] and [14] encounter difficulties to set the in-

stants to increment the filter taps; [8] has increased computational complexity to compute

the length at each iteration; and [15] and [16] are too sensitive to parameter choice.

Another techniques in the literature widely used to select the model order are the

information criterion methods, such as the AIC (Akaike Information Criterion) and BIC

(Bayesian Information Criterion) [21,22]. Assuming a probabilistic model for the observed

data, these methods aim to select the model order that maximizes the relative Kullback-

Leibler information. In [23], the AIC was employed to select the filter order of adaptive

filters. However, as based on maximum likelihood estimation, information criterion meth-

ods do not consider the excess mean-square error intrinsic to stochastic algorithms, as the

ones used in adaptive filtering.

1.1 Objectives

In this work, we focus on analyzing the effects of the filter length on the performance of

a fixed length adaptive filter, in particular, for the LMS and the ε-NLMS algorithms. We

derive the performance analyses considering the filter length independent from the length

of the impulse response, as done in analyses of undermodeled filters [8–10]. We derive
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these analyses for time-invariant systems (stationary environments) and for time-variant

systems (often refered to as nonstationary environments in the literature).

Based on such analyses, for the stationary case, we propose a filter length design

method for the LMS/ε-NLMS algorithm by pondering the transient and steady-state per-

formance. Specifically, the proposed method allows a small degradation of the steady-state

performance due to undermodeling in order to take advantage of the faster convergence

rate and the lower complexity of shorter filters. The proposed method assumes that the

underlying impulse response has an exponential decay envelope. Although this seems very

restrictive, such models for impulse response are found in many practical applications of

adaptive filtering, such as acoustics and communications [8, 18, 24–27].

A filter designed with the proposed length, which enjoys fast convergence rate, is

an ideal candidate to operate within a combination of filters. Combinations of filters

take independent adaptive filters with distinct properties and combine them so that the

overall output can perform at least as well as the best component filter [28–32]. A common

example is combining one filter with fast convergence rate, though with high steady-state

error, as the proposed filter, with a slow filter that has a low level of steady-state error.

We propose the fast filter in the combination to be designed with the proposed length, so

that the combination benefits from both complexity reduction and fast convergence rate.

1.2 Contributions

This work contributes with the following original developments:

1. Extension of the optimal step size for the fastest convergence rate based on the

initial difference [33], by including undermodeling effects (Subsection 3.2.1);

2. A method to select the filter length for the LMS and ε-NLMS algorithms based on

the pondering between the transient and steady-state performance (Section 3.3);

3. Combination of filters with an undermodeled fast filter (Section 3.4);

4. Extension of the cycle length design for the weight feedback scheme [34], by con-

sidering the whole mean-square error, instead of only the minimum error, and by

including undermodeled filters (Subsection 3.4.1);

5. Tracking performance of the undermodeled LMS and ε-NLMS algorithms (Section

4.2);
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6. Derivation of the optimal step size (minimizing steady-state mean-square error) for

the nonstationary and undermodeled case, for white input (Section 4.3).

1.3 Publications

This work resulted in the publication of the following paper:

• T. Y. Aoyagi, A. C. Ferreira, C. G. Lopes, and V. H. Nascimento, “Exploring

undermodeling in combinations of adaptive filters”, in 2021 IEEE Statistical Signal

Processing Workshop, 2021, pp. 66-70.

1.4 Structure of this work

In Chapter 2, we introduce the state-of-the-art of adaptive filtering that is relevant to

this text. We introduce the system identification framework and the assumptions about

the environment under which we derive our analyses; we present the linear estimation

problem that underlies the operation of adaptive filters; we present the adaptive algo-

rithms that are relevant to this text, such as the LMS, the ε-NLMS and the combinations

of filters; and we present how we evaluate the performance of adaptive algorithms.

In Chapter 3, we treat the development for the stationary case. We begin with

the analysis of both transient and steady-state performance for the LMS and ε-NLMS

algorithms, considering the length of the filter independent from the length of the impulse

response (as we will see, the case of undermodeled filters is general enough to comprise any

filter length case); we derive the step size that maximizes convergence rate; we propose a

method to choose the filter length so that the filter benefits from fast convegence rate and

low undermodeling; we show how a combination of filters can benefit from a fast filter

designed with the proposed length; and finally we design of the cycle length of the weight

feedback scheme, including the effects of undermodeling and of the excess mean-square

error.

In Chapter 4, we analyze the tracking performance of undermodeled LMS and ε-NLMS

algorithms in nonstationary environment, employing the energy conservation relation; we

then derive the step size that minimizes the steady-state error, considering white input

signal; in simulations, we show that an undermodeled filter can benefit from both faster

convergence rate and lower steady-state error.
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Finally, we conclude this text in Chapter 5 discussing the ideas in this text that can

be further developed in future works.

1.5 Notation

We introduce here the notation we use throughout this work, which is based on [35].

Random variables are denoted by boldface, as x, and deterministic variables are de-

note by plainface, as x. Deterministic variables include observations of random variables,

mostly used when describing update rules of an algorithm or relations based on observed

or measured quantities. The notation of boldface, on the other hand, are employed in the

context of analyzing statistical behavior.

Scalars and vectors are denoted by lowercase letters, while matrices are denoted by

uppercase. Uppercase letters also denote the natural integers for the size of arrays (vectors

and matrices). When iteration-dependent, scalars are indexed in parenthesis as x(i), and

vectors and matrices are indexed in subscript as, respectively, xi and Xi. Note that, when

iteration-dependent, we can distinguish scalars and vectors by the way they are indexed.

All vectors are column vectors, except the regressor vector ui (defined around (2.1)),

which is taken as row vector for convenience of notation. The k-th element of a vector x

is denoted by x(k), and the {k, `}-th element of a matrix X is denoted as X(k, `).

In this work, we deal with arrays of different lengths, so it is important to identify

their size in the notation. We identify a vector length by a subscript, for example, xM is

a vector of length M . For a matrix of size M × N , we write XM,N , and for an M ×M
square matrix, we write XM .

The variance of a zero-mean random variable x or of a zero-mean stationary random

process x(i) is denoted by σ2
x = Ex2. The autocorrelation matrix of a random vector xM

is denoted as Rx,M = ExMx
T
M . The cross-correlation between xM and yN is denoted as

Rxy,M,N = ExMy
T
N .

We list in the following the notation of some mathematical operations we use:

• ||x|| =
√
xTx is the Euclidean norm of a vector x;

• dxe is the ceiling function of x;

•
∑
xM , when indexes are not explicit, sums over all elements of the array (vector or

matrix);
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• XM,N � YM,N is the Hadamard matrix product between XM,N and YM,N , that is,

their element-wise product.
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2 ADAPTIVE FILTERING AND ADAPTIVE

ALGORITHMS

An adaptive filter is a digital filter whose parameters are recursively adapted in order

to perform a desired task. It is more powerful than a simple digital filter of fixed weights to

extract desired information from observed signals since, as an adaptive and time-varying

device, it is capable of tracking the behavior of time-variant environments and hence it

finds application in a large variety of fields, such as communication, radar, biomedical

engineering, control, acoustics, among others [1–4,35].

The adaptive filter works by extracting the correlation between two signals. One

signal is taken as the filter input, while the other, the desired signal, usually sensed in

real-time from the same environment of the input signal, is taken to supervise the filtering

operation in order to realize the desired task. The error between the desired signal and

the filter output, which measures the filtering performance, is then used in an adaptive

algorithm, the core mechanism in an adaptive filter, to adapt iteratively the filter weights.

Let us illustrate with some examples. In a system identification problem [36, 37], we

wish the adaptive filter to replicate the behavior of a target system. By observing the

input and the output of the system, we feed the filter with the same input and we want to

minimize the error between the filter output and the observed output (the desired signal).

Another classical application of adaptive filtering is acoustic echo cancellation [24,25,

38]. An active echo canceller is required whenever a loudspeaker and a microphone are

placed such that the microphone picks up the signal radiated by the loudspeaker and its

reflections at the borders of the enclosure, causing a usually annoying effect that depends

on the application. In a hands-free telephony, for example, this annoying effect would be

the interlocutor to hear a delayed and attenuated version of his own speech. An adaptive

filter can be used to prevent this by reproducing a synthesized version of the echo, and by

subtracting it from the signal received by the microphone, the echo would be cancelled

in a proper operation. In this problem, the loudspeaker signal is input to the adaptive

filter, while the microphone signal, composed by the echo signal superposed to the local
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speaker voice, is taken as the desired signal.

In this chapter, we introduce the fundamental definitions and relations in the field of

adaptive filtering that are relevant to this text. In Section 2.1, we introduce the system

identification framework, which describes the class of adaptive filtering problems we deal

with. In Section 2.2, we introduce some mathematical assumptions for the environment

and signals to make the analysis of adaptive filtering tractable. In Section 2.3, we present

the estimation problem that underlies the operation of an adaptive filter and, then, in

Section 2.4, we define the adaptive algorithms with which we work throughout this text

and show how they are related to this estimation problem. In Section 2.5, we present com-

binations of filters, which are schemes used to improve the adaptive filtering performance

by combining multiple adaptive filters of different characteristics. Finally, in Section 2.6,

we show how we evaluate the performance of an adaptive filter.

2.1 The system identification framework

The first step to implement an adaptive filter is to determine what are the input and

the desired signals in the application. Traditionally, there are four classes of applica-

tions of adaptive filtering that determines its configuration: system identification, inverse

identification, interference cancelling and prediction [1–3].

Throughout this work, we consider the system identification framework, in which

the desired signal is the output of the unknown system, possibly corrupted by some

measurement noise, and the input of the adaptive filter is the same excitation input of

the system. This setup is usually adopted in the literature for algorithm analysis due

to the facility it provides to evaluate the algorithm performance [35,39,40]. It comprises

applications such as channel estimation [41,42], time delay estimation [43–45] and adaptive

model control [1, 46].

Let us describe this formally. Consider an unknown system fed by a discrete-time

input signal u(i), where i ∈ Z. In a general system identification setup, the output is

expressed as [2, 4]

d(i) = H (uP,i) + v(i), (2.1)

where H(·) is an unknown function, uP,i =
[
u(i) u(i− 1) . . . u(i− P + 1)

]
∈ R1×P

is the input regressor vector, and v(i) is an additive measurement noise, uncorrelated

with u(i). The term H (uP,i) indicates that the output depends only on the lastest P

samples of u(i).
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We wish the output of the adaptive filter to be as close as possible to the system

output, and so we arrange the filter as depicted in Figure 1. Considering the filter with

M adaptive weights, and denoting the filter weight vector as wM,i ∈ RM×1, the filter

output is given by

y(i) = uM,iwM,i−1, (2.2)

where uM,i =
[
u(i) u(i− 1) . . . u(i−M + 1)

]
∈ R1×M . The error between the

desired signal and the filter output is

e(i) = d(i)− y(i) = d(i)− uM,iwM,i−1. (2.3)

Most analyses in the literature consider that the length of the filter matches the system

order M = P . In this work, however, we are interested in the general case in which the

filter might undermodel the system (M < P ) or overmodel the system (M > P ).

H (uP,i)

v(i)

u(i) d(i)

e(i)

wM,i

Adaptive filter

y(i) −

Figure 1: System identification framework for adaptive filters.

2.2 Modeling the environment

The model above describes a quite general scenario in which an adaptive filter is able

to operate. However, to continue the analysis in this and in the following chapters, we

must make some simplifying assumptions about the input signal and the system output

signal to make theoretical derivations tractable.
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2.2.1 Input signal

We assume that the input signal u(i) is a zero-mean wide-sense stationary (WSS)

process [2, Ch.2] [3, Ch.2]. This implies that its mean function is constant Eu(i) = 0

and that its autocorrelation function depends only on the difference k between two time

instants ru(k) = Eu(i)u(i− k). Another implication is that the autocorrelation matrix,

say of size P , Ru,P = EuT
P,iuP,i, is a Toeplitz matrix and time-invariant. All the entries

in the main diagonal of Ru,P have the value of the input variance σ2
u = Eu2(i).

In this text, when simulating correlated input signals, we take u(i) as the first-order

autoregressive (AR(1)) process [2, Ch.2] [3, Ch.2]

u(i) = ρu(i− 1) +
√
σ2
u(1− ρ2)n(i), (2.4)

where |ρ| < 1 and n(i) is a zero-mean i.i.d. sequence of unit variance. Under this model,

it is very practical to generate the input signal and to quantify its autocorrelation. If

ρ = 0, u(i) is white (u(i) = n(i)). Otherwise, u(i) is correlated, and the autocorrelation

is stronger as |ρ| is closer to one.

2.2.2 System output

We assume that the system output (2.1) is a linear function of the input as [4,35,40]

d(i) = uP,ihP,i + v(i), (2.5)

where hP,i =
[
h(0) h(1) · · · h(P − 1)

]T

∈ RP×1 is the impulse response of the sys-

tem. We also assume that the noise v(i) is a zero-mean i.i.d. process of variance σ2
v .

We model the system impulse response by the Markov model [35, Ch.7] [47]hP,i = hP + θP,i

θP,i = cθP,i−1 + qP,i

, (2.6)

where hP ∈ RP×1 is the deterministic counterpart, θP,i ∈ RP×1 is the internal state, c is a

real scalar where |c| < 1, and qP,i ∈ RP×1 is a zero-mean i.i.d. sequence with mean vector

and covariance matrix, respectively,

EqP,i = 0P , EqP,iq
T
P,i = QP . (2.7)

Note that each entry θP,i(k), for k = 0, 1, . . . , P − 1, is a first-order Markov process,
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and each entry of hP,i(k) is one of these Markov processes added to a deterministic value

hP (k).

We assume that the Markov process begins at some past instant such that, when the

adaptive filter begins to run, at i = 0, the mean and mean-square behavior of the model

(2.6) have already reached steady-state. As qP,i is zero-mean, we are effectively assuming

that EθP,i = 0P and EhP,i = hP for any instant i ≥ 0.

Along this text, we often use a particular case of the model (2.6) in which the compo-

nent θP,i is identically zero (case in which the covariance matrix QP is identically zero),

for any i, resulting the deterministic and time-invariant impulse response hP,i = hP . We

call this case as the stationary scenario since the system output is a WSS process under

this model [48, Ch.10]. Otherwise, we call the general case of the model (2.6) as the

nonstationary scenario (time-variant impulse response).

Most nonstationary models for adaptive filtering in the literature [2–4, 35] consider

zero-mean impulse response hP = 0P (that is, hP,i = θP,i), which does not allow a fair

evaluation of the transient of an adaptive algorithm since the filter weights are usually

initialized at the origin. Some of the classical models further consider c = 1 [4,35], yielding

a model known as the random-walk model. Although this model provides some algebraic

simplifications for algorithm analysis, it is not necessarily meaningful in practice, since the

covariance matrix of hP,i grows unboundedly as i → ∞. This unstable behavior makes

the random-walk model unsuitable for analyzing undermodeled algorithms because, as

we will see in Sections 2.3 and 4.1, undermodeling effects depend on the magnitude and

distribution of the weights along the impulse response, and that is why we exclude the

case |c| = 1 in this text.

2.3 Linear optimal estimation

The objective in adaptive filtering is to minimize the error e(i) between the filter

output y(i), which is a linear function of the input signal (see (2.2)), and the observed

output d(i). Equivalently, we can also say that we want the linear model y(i) to estimate

d(i) from the input regressor uM,i [35, Ch.2]. Implicitly, we estimate the parameters wM,i

of this linear model.

In this section, we address the theoretical issues of this estimation problem, such as

the cost function and the optimal solution. The general derivations below assume that
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the input and the output signals are jointly WSS1 [1, 2, 49], and so the resulting solution

is time-invariant, so we drop the iteration index in the notation for convenience (in fact,

this estimation problem can actually be written as a simple linear estimation problem, as

shown in [35], where the input and the output are regarded as random variables rather

than random processes).

Mathematically speaking, we can pose the problem above as the task of finding the

filter weights wM that minimizes the mean-square error (MSE) function

J(wM) = Ee2 = E(d− y)2 = E(d− uMwM)2. (2.8)

Define the input autocorrelation matrix Ru,M , EuT
MuM , the cross-correlation vector

Rdu,M , EduT
M and the variance σ2

d = Ed2. It can be shown that the optimal solution

that minimizes (2.8) is [35]

woM = R−1
u,MRdu,M , (2.9)

and the cost associated to it, the minimum MSE attainable, is

Jmin = J(woM) = σ2
d −RT

du,MR
−1
u,MRdu,M . (2.10)

Now, consider that the system is modeled by the linear relation (2.5), with stationary

impulse response hP,i = hp. Assume, at a first moment, that the filter is undermodeled,

i.e., that M < P . Define N = P −M and the following partitions

hP =

[
hM

h̄N

]
, uP =

[
uM ūN

]
, (2.11)

where hM =
[
h(0) . . . h(M − 1)

]T

, h̄N =
[
h(M) . . . h(P − 1)

]T

and

ūN =
[
u(i−M) . . . u(i− P + 1)

]
. Consequently, the autocorrelation matrix Ru,P

can be partioned as

Ru,P =

[
Ru,M Ru,M,N

RT
u,M,N Ru,N

]
. (2.12)

Thus, the moments in (2.10) that depend on d become

σ2
d = E(uPhP + v)T(uPhP + v) = σ2

v + hT
PRu,PhP , (2.13)

1Two jointly WSS processes are both WSS, and their cross-correlation function depends only on their
time difference.
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and

Rdu,M = EuT
M(uPhP + v) = EuT

MuPhP

= EuT
M

[
uM ūN

] [hM
h̄N

]
= Ru,MhM +Ru,M,N h̄N . (2.14)

Then, the optimal filter weights and the respective minimum cost are given, respectively,

by [50]

woM = hM +R−1
u,MRu,M,N h̄N (2.15)

and

Jmin = σ2
v + h̄T

N

[
Ru,N −RT

u,M,NR
−1
u,MRu,M,N

]
h̄N . (2.16)

The term R−1
u,MRu,M,N h̄N in (2.15) is the estimation bias, which is nonzero only when

the input signal is correlated (for white input, Ru,M,N = 0M,N) and when the filter

is undermodeled. The term Ru,N − RT
u,M,NR

−1
u,MRu,M,N in (2.16) is the Schur comple-

ment of Ru,M in Ru,P . It can be shown [51] that, if Ru,M is positive definite, then its

Schur complement in Ru,P is positive semi-definite if and only if Ru,P is positive semi-

definite. Autocorrelation matrices, such as Ru,M and Ru,P , are positive semi-definite [3],

but for practical signals they are usually positive definite. Therefore, we can say that in

practice the Schur complement of Ru,M is positive definite, which implies that the term

h̄T
N

[
Ru,N −RT

u,M,NR
−1
u,MRu,M,N

]
h̄N is nonnegative, and that the absolute minimum cost

is σ2
v , attained only if h̄N = 0N .

When M = P , the terms h̄N , ūN , Ru,M,N and Ru,N are empty arrays, and the deriva-

tions above follow analogously, but these terms do not appear. The optimal solution and

the minimum error become, respectively,

woP = hP and Jmin = σ2
v . (2.17)

When the filter overmodels the impulse response, that is, when M > P , we can

artificially fill the vector hP with zeros2 up to the length M , obtaining a case analogous

to the case for M = P , where the last M − P terms in hM are zero. Thus, we see that

the case of undermodeled filter has the most complete derivations, and the results for the

other cases can be obtained straightforwardly.

2When we say that the impulse response has length P , we say that it only admits nonzero coefficients
from h(0) to h(P − 1). Outside this range, the coefficients are all implicitly zero.
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2.4 Adaptive algorithms

The optimal solution (2.9) depends on the exact knowledge of the statistics of the

environment, namely, the autocorrelation matrix Ru,M and the cross-correlation vector

Rdu,M . As these quantities are usually unknown in practice, this solution cannot be applied

directly. That is where adaptive filters come into scene. Adaptive filters are provided with

an adaptive algorithm that estimates these statistical quantities from the environment in

real time, enabling a practical approximation of the linear optimal solution.

The optimal solution (2.9) can be obtained recursively by the steepest descent algo-

rithm [1, 2, 35]

wM,i = wM,i−1 − µ∇J(wM,i−1), (2.18)

where the adaptation step size µ is a scalar usually much smaller than one, and the

gradient ∇J(wM) of the cost function (2.8) is [35]

∇J(wM) = Ru,MwM −Rdu,M . (2.19)

As the cost function (2.8) is convex3 [1, 2, 35], the steepest descent algorithm always

converges to the global minimum (2.9).

The steepest descent algorithm avoids the computation of the inverse R−1
u,M , but still

depends on the unknown statistical quantities. If we approximate them by the instanta-

neous measures

Ru,M ≈ uT
M,iuM,i, Rdu,M ≈ d(i)uT

M,i, (2.20)

then the algorithm (2.18) becomes

wM,i = wM,i−1 − µ
(
uT
M,iuM,iwM,i−1 − d(i)uT

M,i

)
= wM,i−1 + µuT

M,i (d(i)− uM,iwM,i−1) , (2.21)

where the term in parenthesis is the filter output error (2.3). Thus,

wM,i = wM,i−1 + µuT
M,ie(i), (2.22)

which is the least-mean-square (LMS) algorithm, probably the most popular adaptive

algorithm used in practice due to its low computational cost, robustness and easy imple-

mentation. We assume that the algorithm starts operating at the instant i = 0 given an

initial condition wM,−1, usually taken as wM,−1 = 0M .

3Provided that Ru,M is positive definite, as is in most of the practical cases.
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Figure 2: Illustrating the MSE performance of LMS filters. Curves obtained from the
ensemble average of 1000 realizations, with white input of variance σ2

u = 1, noise variance
σ2
v = 0.01 and impulse response of length P = 100.

Figure 2 illustrates the performance curves of two LMS filters, both with the same

length but distinct step sizes. The cost (2.8) (MSE) is approximated by taking the en-

semble average of several independent realizations of the learning curve. These curves

exemplify the well-known dilemma when designing an LMS algorithm: within a certain

range of step size values, when increasing the step size, the convergence rate of the algo-

rithm increases but at the same time the error level in steady-state also increases, whereas

an ideally desired performance would be high convergence rate and low steady-state error.

Other adaptive algorithms can be obtained from recursive algorithm structures other

than (2.18), or by using other cost functions or by using other strategies to improve some

specific attribute. For example, to reduce the complexity of LMS, we can quantize the

error (and eventually the step size) in the term µuT
M,ie(i), so it can be implemented more

efficiently by means of shift registers [52, 53]. Another particular algorithm that will be

of interest in this text is the normalized LMS (ε-NLMS) algorithm

wM,i = wM,i−1 +
µ

ε+ ||uM,i||2
uT
M,ie(i). (2.23)

where the regularization factor ε is a small scalar. It can be shown that this algorithm

also approximates the solution (2.9), but it is derived using Newton’s recursion [35]. The

ε-NLMS algorithm is more robust than the LMS in case the power of the input signal u(i)

fluctuates considerably, such as for a speech signals, since the step size is normalized by

||uM,i||2.
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2.5 Combinations of adaptive filters

The algorithms presented in the previous subsection are adequate for single adaptive

filters, also called as standalone filters. We can improve the performance of adaptive

filtering by combining distinct standalone filters into a scheme called combination of

filters.

Combinations of adaptive filters have been used to improve the performance of adap-

tive algorithms by taking advantage of the best characteristics of multiple independent

filters. If properly designed, the overall combination works at least as well as the best

component filter at every iteration, making combinations a good strategy to deal with

transient/steady-state trade-offs and to improve tracking performance [28,29,31,34,54,55].

Concretely, the combination outputs a weighted sum of the outputs of the component

filters, adaptively adjusted by a supervisor. In a convex combination of two filters, the

overall output combines the component filter outputs y1(i) and y2(i) as

yc(i) = λ(i)y1(i) + [1− λ(i)] y2(i), (2.24)

where the mixing parameter is 0 ≤ λ(i) ≤ 1. The role of the supervisor is to adjust λ(i)

so that yc(i) = y1(i) when this is the filter with the best performance at a certain instant,

and yc(i) = y2(i) when the second component filter is the best. When the performance of

the component filters are comparable, yc(i) is a weighted combination of both.

A simple approach to adjust λ(i) is proposed in [28] to minimize the instantaneous

squared error e2
c(i), where

ec(i) = d(i)− yc(i) (2.25)

is the error of the overall combination. A more robust adaptation of λ(i) is proposed

in [29], where it is computed via the auxiliary variable a(i) by

λ(i) =
1

1 + e−a(i−1)
(2.26)

and a(i) is updated as

a(i) = a(i− 1) + µaec(i) [e2(i)− e1(i)]λ(i) [1− λ(i)] , (2.27)

where µa is a small step size, and ek(i) = d(i) − yk(i), k = 1, 2, are the errors of each

component filter. The update of a(i), however, stops whenever λ(i) is too close to the

limit values of zero or one. This can be avoided by restricting the values of a(i) within a

symmetric interval [−a+, a+] so that λ(i) keeps a minimum distance from zero and one,
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and thus a(i) never stops adapting. A common practice is setting a+ = 4 [56]. This

restriction, however, creates the problem that the mixing parameter never reaches zero

or one, and this affects the combination performance. The restriction of values of a(i),

therefore, should work along with the thresholding of the values of λ(i) as

λu(i) =


1, a(i) ≥ a+ − δ

λ(i), a+ − δ < a(i) < −a+ + δ

0, −a(i) ≤ a+ + δ

, (2.28)

where δ is the threshold, and then the combination overall output is computed as

yc(i) = λu(i)y1(i) + [1− λu(i)] y2(i). (2.29)

The order of magnitude of a well designed step size µa varies significantly according

to the environment, which makes it a hard-designing parameter, and makes it suffer from

lack of robustness for time-varying environments. Aiming at these inconveniences, [54]

proposes the power normalization of the step size µa, where a(i) is adapted as

a(i) = a(i− 1) +
µa
p(i)

ec(i) [e2(i)− e1(i)]λ(i) [1− λ(i)] , (2.30)

where the step size µa is normalized by p(i), an estimate of the power of e2(i) − e1(i),

which is updated every iteration as

p(i) = bp(i− 1) + (1− b) [e2(i)− e1(i)]2 , (2.31)

where 0 < b < 1. This procedure for estimating λ(i) was shown to track closely the

optimum value of λ(i) [29,31,57] (in the sense of minimizing the combination MSE Ee2
c(i)).

When used with LMS/ε-NLMS algorithms, combinations help with the dilemma be-

tween fast convergence rate and low steady-state error, incorporating both the convergence

rate of a fast filter and the steady-state of a slow one, as illustrated in Figure 3, where

the two LMS filters with different step sizes of Figure 2 are combined.

A strategy to further improve combinations is the weight feedback scheme [34], which

anticipates the convergence of the slower filter in the combination. Consider that the

component filters may have different lengths M1 ≤M2, and that their weights are w1,M1,i

and w2,M2,i . Consider the partition w2,M2,i =
[
wT

2,M1,i
w̄T

2,M2−M1,i

]T

. In a combination
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Figure 3: Illustrating the MSE performance of a combination of filters by combining the
filters from Figure 2. Combination parameters are α+ = 4, δ = 1, b = 0.95, µa = 1 and
the feedback period is L = 300.

with weight feedback, the equivalent weights of the overall combination, computed as

wc,M2,i = λ(i)

[
w1,M1,i

0M2−M1

]
+ [1− λ(i)]w2,M2,i

=

[
λ(i)w1,M1,i + [1− λ(i)]w2,M1,i

[1− λ(i)] w̄2,M2−M2,i

]
=

[
wc,M1,i

w̄c,M2−M1,i

]
, (2.32)

is fed back to each component filter once in a period of L iterations. Concretely, at each

iteration i before the weight is updated by the adaptive algorithm, we update filter k, for

k = 1, 2, as

wk,Mk,i =

wc,Mk,i, for i = `L

wk,Mk,i, otherwise
, (2.33)

where ` ∈ Z. The advantage of such a scheme over a standard combination is illustrated

in Figure 3.

2.6 Performance measures

As the algorithms discussed are practical approximations to minimize the cost function

(2.8), the MSE arises as the natural measure for evaluating the performance of an adaptive

algorithm. However, in the literature of adaptive filtering [1,3,35], it is usual to evaluate

instead measures that are related to the MSE, but that are more meaningful depending on

the application. These alternative measures are also more sensitive to distinguish errors

that are closer to the minimum possible error.
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So far the filter weight vector wM,i has been treated as a deterministic variable since

it is computed by deterministic operations from observed variables, such as in (2.22)

and (2.23). When measuring performance, however, we aim at measuring its statistical

behavior, and so we regard it as a random variable wM,i.

The minimum MSE Jmin for the underlying estimation problem, provided that the

system output is modeled as (2.5), is given by (2.16). Although this minimum value

depends on the filter length, the absolute minimum is attained when M ≥ P , yielding

Jmin = σ2
v (as given in (2.17)).

A common practice is to evaluate the filter performance by the error that exceeds this

minimum estimation error, which is called excess MSE (EMSE). We define the EMSE as

the error that exceeds the absolute minimum error σ2
v , so that

MSE(i) , Ee2(i) = σ2
v + EMSE(i). (2.34)

Some works on undermodeled adaptive filters [9, 10] consider the EMSE relative to the

minimum error for specific length M , just as in (2.16), but this hinders the EMSE to

fairly compare the performance of filters with different lengths.

It can be shown that the EMSE, under the assumptions in Section 2.2, is nonnegative.

Consider that M ≤ P . Using (2.5), the MSE can be expanded as

Ee2(i) = E (d(i)− uM,iwM,i−1)2 = E (v(i) + uP,ihP,i − uM,iwM,i−1)2 . (2.35)

As v(i) is zero-mean and assumed to be independent from the other quantities, we have

Ee2(i) = σ2
v + E (uP,ihP,i − uM,iwM,i−1)2 . (2.36)

Comparing (2.36) with (2.34), we note that

EMSE(i) = E (uP,ihP,i − uM,iwM,i−1)2 , (2.37)

concluding, therefore, that the EMSE is a nonnegative quantity. Note that the EMSE

measures directly the difference between the filter output and the system output without

noise, so it is conceptually interesting in applications such as interference cancelling and

active noise control. We can simplify the EMSE expression (2.37) by defining the a priori
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estimation error 4

ea(i) , uP,ihP,i − uM,iwM,i−1 = uP,i

(
hP,i −

[
wM,i−1

0N

])
, (2.38)

then the excess MSE can be written as

EMSE(i) = Ee2
a(i). (2.39)

For the stationary case (time-invariant impulse response hP,i = hP ) and with station-

ary and white input (Ru,P = σ2
uIP ), the EMSE can be decomposed in a convenient way.

Define the weight error vector

w̃M
P,i , hP,i −

[
wM,i

0N

]
. (2.40)

Note that this is not the term that appears in (2.38). In (2.40), the filter weights and the

impulse response are considered in the same time instant. However, for time-invariant

systems, hP,i = hP is independent of the time index, and the a priori estimation error

(2.38) can be rewritten simply as

ea(i) = uP,iw̃
M
P,i−1. (2.41)

Assuming also that uP,i is statistically independent5 from wP,i and from hP , then (2.39)

becomes

EMSE(i) = E

[ (
w̃M
P,i−1

)T (
EuT

P,iuP,i
)
w̃M
P,i−1

]
= σ2

uE||w̃M
P,i−1||2, (2.42)

that is, for stationary environment and white input, we can directly measure the EMSE

from the mean-square deviation

MSD(i) , E||w̃M
P,i||2. (2.43)

As measuring the error directly from the model weights, the MSD is particularly mean-

ingful for applications such as system identification and time delay estimation.

In the analysis of the undermodeled filters, it will also be convenient to define partial

4We call it estimation error because it measures the difference between the filter estimate y(i) and
the optimal estimate uP,ihP , obtained in the case of M = P . We characterize it as a priori because we
consider the filter weights before the update of the current iteration.

5In fact, this is not true because wP,i depends on uM,i−1, which is correlated with uM,i. However,
for analysis purposes, the statistical independence between uM,i−1 and uM,i is usually assumed in the
literature [1, 4, 35], and it is one of the well-known independence assumptions.
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error measures, comprising only the weights in the range of the filter. So, define the

partial weight error vector

w̃M,i , hM,i −wM,i, (2.44)

and the partial a priori estimation error

ea,M(i) , uM,ihM,i − uM,iwM,i−1 = uM,i (hM,i −wM,i−1) . (2.45)

From (2.40) and (2.44), note that

w̃M
P,i =

[
hM,i

h̄N,i

]
−

[
wM,i

0N

]
=

[
w̃M,i

h̄N,i

]
. (2.46)

Taking the expectation of the squared norm of (2.46), the MSD can be obtained as

MSD(i) = E||w̃M
P,i||2 = E||w̃M,i||2 + E||h̄N,i||2. (2.47)

All the performance measures MSE, EMSE and MSD are mean functions of some

random process. In order to assess these quantities from simulations, we take the ensem-

ble average of a large number of independent realizations of the corresponding random

processes.
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3 ANALYSIS AND DESIGN OF

UNDERMODELED FILTERS IN

STATIONARY SCENARIOS

In the literature, the analyses of adaptive algorithms are commonly carried out as-

suming that the adaptive filter has the same tap-length as the optimal weight vector (or

the actual impulse response) [1–4, 12, 58, 59]. Although this framework allows the under-

standing of how different parameters, such as step size, environment noise and number of

taps, influence the algorithm performance, it does not allow to evaluate the filter length

as a free variable: the filter length is bounded to the length of the impulse response. We

are not able to evaluate the influence of the filter length on the algorithm performance

for a fixed impulse response scenario.

When considering the filter length designed independently from the system impulse

response, two new situations arise: undermodeling and overmodeling. As discussed in

Section 2.3, the overmodeling case can be comprised into the case in which the filter has

the same length as the impulse response. The extension of the performance analysis for

undermodeling, however, is nontrivial. Although undermodeling has a vast literature in

other fields, such as in control theory [5, 6], its study in adaptive filtering is relatively

recent. Some brief but general analyses of undermodeling can be found in [3,4], and more

involved analyses for LMS and ε-NLMS algorithms can be found in [8–10]. We can also

find some analysis of undermodeling in adaptive IIR (Infinite Impulse Response) filters

in [60–62].

In this chapter, we evaluate the performance of the LMS and the ε-NLMS algorithms

as function of the filter length, specifically, for the undermodeling case. We consider in

this chapter the case of stationary environments (time-invariant impulse response), and

address the nonstationary case (time-variant impulse response) in the next chapter.

When comparing the performance of distinct algorithms, it is customary in the liter-

ature to fix the transient performance of the algorithms and compare their steady-state

error (or vice-versa) [30]. However, in the case of this study, there are two degrees of
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freedom in the filter design: even fixing the filter length, the transient and steady-state

performance is highly dependent on the choice of the step size. And it is worth recalling

that filters of different lengths have different stability bounds for the step size. Thus,

in order to offset this difference when we compare filters of different lengths, we adjust

the step size according to the best step size (the step size of maximum convergence rate,

which we will call “optimal” step size) of a given filter length.

Using the analysis results, we then propose a novel method for selecting the length

of an adaptive filter based on the pondering between the transient and steady-state per-

formance. The proposed method selects a length in the imminence of relevant under-

modeling, and, as we will show in simulations, a filter with such a length attains fast

convergence rate with small degradation due to undermodeling in steady-state. Also, by

taking a length value in the imminence of relevant undermodeling, the method yields

a filter with less computational complexity when compared to other filters with similar

steady-state performance.

The proposed method can also be used within a combination of filters. Since the

filter with the proposed length benefits from fast convergence rate, it fits into the role

of a fast filter in a combination, working along with a slow filter to ensure good steady-

state performance. We also propose a simple modification on the weight feedback period

from [30] to comprise undermodeled filters.

This chapter is organized as follows: in Section 3.1, we firstly present some notes

and assumptions about the impulse response; in Section 3.2, we derive the mean-square

behavior of the LMS and ε-NLMS algorithms for the white input case, and then analyze

their performance as function of the filter length; in Section 3.3, we describe the design of

the filter length and present simulation results comparing a filter with the proposed length

to filters with other lengths; finally, in Section 3.4, we show the benefits of designing the

fast filter in a combination with the proposed method.

3.1 Exponential decay impulse response

In this and in the following chapter, we derive some expressions that rely on the system

impulse response partition terms ||hM ||2 and ||h̄N ||2. With no contraints, these terms have

as many degrees of freedom as the number of elements in hM and h̄N , respectively. In

order to treat these variables conveniently, in some parts of the text we make a simplifying

assumption about the system impulse response so as to make these terms parametric
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functions.

In some parts of this text, we will assume that the system impulse response is infinite

and has an exponential decay envelope, so that it can be written as

h(k) = βe−αkhb(k), for k = 0, 1, . . . ,∞, (3.1)

where scalar α > 0 is the exponential decay factor, β > 0 is the scale factor, and hb(k)

is the base sequence of the impulse response. In order to preserve the overall exponential

shape of h(k), the moving average of hb(k) must be approximately constant, such as in

a sinusoid or in a realization of a stationary process. The order of magnitude of hb(k) is

not crucial, since it can be offset by the constant β, although it is more meaningful for

β to represent the order of magnitude of h(k) as a whole. Figure 4a illustrates a impulse

response under such an assumption.
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Figure 4: (a) Example of an impulse response with exponential decay envelope, where
α = 0.05, ||hP ||2 = 1 and hb(k) is a Gaussian i.i.d. sequence; (b) ||h̄N ||2 as a function of
M for system impulse responses with different decay α, where hb(k) are Gaussian i.i.d.
sequences, ||hP ||2 = 1 and P = 500, that is sufficiently long for the simulation cases.

If we approximate hP by its exponential envelope, we can write

||h̄N ||2 ≈
∞∑

k=M

(
βe−αk

)2
= β2 e−2αM

1− e−2α
= e−2αM ||hP ||2. (3.2)

Now, ||h̄N ||2 is a function of M parameterized by α and ||hP ||2. From (2.11), ||hP ||2 =

||hM ||2 + ||h̄N ||2, and then

||hM ||2 ≈ (1− e−2αM)||hP ||2, (3.3)
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which will conveniently simplify some expressions further in this text. Figure 4b illustrates

how the exponential envelope approximates the impulse response. We depict ||h̄N ||2×M
for several impulse responses hP , for fixed ||hP ||2 and different values of α, where hb(k) is

simulated as Gaussian i.i.d. sequences.

Assumption (3.1) will not be necessary, in particular, in the derivations of Sections

3.2 and 4.2, and we use it only when analyzing simulation results since the decay α has

experimentally proved to influence relevantly the algorithm performance. In Section 3.3,

it will be a necessary assumption to significantly simplify the derivations for the proposed

design method.

This exponential decay assumption has practical fundament. When a system can

be modeled as a finite-order linear system, its transfer function is given by a rational

function [63]. The impulse response of such a transfer function is a sum of exponentials,

and α can be taken as the decay rate of the dominant pole. The exponential envelope

impulse response appears in practical scenarios such as acoustic paths [19, 24, 25] and

radio communication systems [26, 27], and is also assumed in some adaptive filtering

studies [8, 18].

3.2 Performance analysis in stationary scenarios

In this section, we analyze the performance of undermodeled filters for stationary

environments considering that the input signal is white, that is, Ru,P = σ2
uIP . We make the

white input assumption because it significantly simplifies the transient analysis. We derive

the mean-square convergence model using a general framework called data-normalized

algorithm, and we obtain expressions for the transient and steady-state performances for

the LMS and ε-NLMS algorithms. We then compare the results of these analytical results

to simulated data, and analyze the behavior of the filter performance in terms of the

length M under various environment conditions.

We conduct the mean-square analysis using the data-normalized algorithm [35, Ch.9]

wM,i = wM,i−1 + µ
uT
M,i

g(uM,i)
e(i), (3.4)

where µ is the adaptation step size, e(i) is the instantaneous filter output error (2.3), and

g(·) is a positive-valued scalar function that determines the specific algorithm. We are

interested, in particular, in the LMS algorithm, obtained when g(uM,i) = 1, and in the ε-

NLMS algorithm, obtained when g(uM,i) = ε+ ||uM,i||2. After deriving the transient and
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steady-state performance in terms of this general algorithm, we compute the particular

results for the LMS and ε-NLMS algorithms.

Writing the system output d(i) as (2.5) and considering the partition of hP in (2.11),

the output error (2.3) becomes

e(i) = d(i)− uM,iwM,i−1

= uM,ihM + ūN,ih̄N + v(i)− uM,iwM,i−1

= uM,iw̃M,i−1 + v(i) + ūN,ih̄N . (3.5)

Substracting both sides of (3.4) from hM , and using (3.5), we have

hM −wM,i = hM −wM,i−1 − µ
uT
M,i

g(uM,i)

(
uM,iw̃M,i−1 + v(i) + ūN,ih̄N

)
, (3.6)

w̃M,i =

(
IM − µ

uT
M,iuM,i

g(uM,i)

)
w̃M,i−1 −

µuT
M,i

g(uM,i)

(
v(i) + ūN,ih̄N

)
. (3.7)

Now, we employ the well-known independence assumptions [1,4,35]: we assume that

uM,i is statistically independent from uM,j, for any i 6= j1, implying that uM,i is an i.i.d.

sequence. We also assume that ūN,i is independent from uM,j, for any i 6= j. As the

filter weights are updated with the input regressor and the system output signal, w̃M,i−1

depends on the past samples of u(i), some of them contained in uM,i and ūN,i. However,

under these assumptions, we can consider w̃M,i−1 statistically independent of uM,i and

ūN,i, and as we considered that v(i) is an i.i.d. process, w̃M,i−1 is also independent of

v(i). In the case of white input, ūN,i is uncorrelated with uM,i. Taking expectation of

the squared norm in both sides of (3.7), considering all the above assumptions, we have

E||w̃M,i||2 = Ew̃T
M,i−1

(
IM − 2µT1,M + µ2T3,M

)2
w̃M,i−1

+ µ2σ2
vTrT2,M + µ2σ2

u||h̄N ||2TrT2,M , (3.8)

where

T1,M , E
uT
M,iuM,i

g(uM,i)
, T2,M , E

uT
M,iuM,i

g2(uM,i)
and T3,M , E

uT
M,iuM,iu

T
M,iuM,i

g2(uM,i)
(3.9)

are the algorithm-dependent terms. For white stationary input, these moment matrices

are multiples of the identity, and we can define scalars tk so that

Tk,M = tkIM , for k = 1, 2, 3, (3.10)

1Strictly speaking, this assumption is not valid, but is widely considered in the literature for algorithm
analysis because it yields simplified and reliable results.
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and rewrite (3.8) as

E||w̃M,i||2 = γE||w̃M,i−1||2 + µ2Mt2
(
σ2
v + σ2

u||h̄N ||2
)
, (3.11)

where

γ = 1− 2µt1 + µ2t3. (3.12)

3.2.1 Transient and steady-state performances

We evaluate the transient performance by the initial difference of the recursion (3.11),

which, as we will see, considers noise and undermodeling effects [33], unlike approaches

based only on evaluating γ (3.12), as customary in the literature [35,40]. Define the initial

difference

κ , E||w̃M
P,0||2 − E||w̃M

P,−1||2 = E||w̃M,0||2 − E||w̃M,−1||2. (3.13)

Considering null initial condition wM,−1 = 0M , then E||w̃M,−1||2 = ||hM ||2. And using

(3.11) and (3.12) in (3.13), we have

κ = (γ − 1)||hM ||2 + µ2Mt2
(
σ2
v + σ2

u||h̄N ||2
)

= (−2µt1 + µ2t3)||hM ||2 + µ2Mt2
(
σ2
v + σ2

u||h̄N ||2
)
. (3.14)

Note that κ is a quadratic function of µ. Factoring (3.14), we obtain

κ = t1||hM ||2νµ
(
µ− 2

ν

)
, (3.15)

where

ν =
t3
t1

+
Mt2
t1

(
σ2
v + σ2

u||h̄N ||2

||hM ||2

)
. (3.16)

As κ is a quadratic function of µ (always opening upwards), the step size that minimizes

it and the corresponding minimum value are straightforwardly obtained:

µo =
1

ν
, κo = −t1||hM ||

2

ν
. (3.17)

The initial difference, for stable convergence of the algorithm, must be negative. So,

the step size that minimizes (3.15) actually maximizes the absolute value of κ (for sta-

ble convergence), and the initial difference with the largest modulus yields the fastest

convergence rate, and thus we refer to µo as the optimal step size.
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At steady-state, i→∞ and (3.11) becomes

E||w̃M,∞||2 = γE||w̃M,∞||2 + µ2Mt2
(
σ2
v + σ2

u||h̄N ||2
)

=
µMt2

(
σ2
v + σ2

u||h̄N ||2
)

2t1 − µt3
. (3.18)

Then, using (3.18) in (2.47), the steady-state MSD is given by

MSD(∞) =
µMt2

(
σ2
v + σ2

u||h̄N ||2
)

2t1 − µt3
+ ||h̄N ||2. (3.19)

3.2.2 Moments for LMS and ε-NLMS algorithms

Now, we derive the values of tk for the LMS and the ε-NLMS algorithms. For the

LMS algorithm (g(uM,i) = 1), T1,M and T2,M are just the autocorrelation matrix σ2
uIM , so

that t1 = t2 = σ2
u. We can simplify T3,M if we assume that the input is Gaussian, so that

the fourth-order moments can be written analytically. In Appendix 3.A, we show that

EuT
M,iuM,iu

T
M,iuM,i = Ru,MTrRu,M + 2(Ru,M)2, (3.20)

and, along with the fact that the input is white, T3,M becomes

T3,M = σ2
uIM(σ2

uM) + 2σ4
uIM = σ4

u(M + 2)IM , (3.21)

which implies that t3 = σ4
u(M + 2).

Substituting the values tk in (3.16), we have

ν =
σ4
u(M + 2)

σ2
u

+M
σ2
u

σ2
u

(
σ2
v + σ2

u||h̄N ||2

||hM ||2

)
= σ2

u

[
2 +M +M

(
σ2
v + σ2

u||h̄N ||2

σ2
u||hM ||2

)]
= σ2

u

[
2 +M

(
σ2
v + σ2

u||hP ||2

σ2
u||hM ||2

)]
. (3.22)

Note that the term multiplying M is always larger than 1. For large M , we can approxi-

mate

ν ≈ σ2
uM

(
σ2
v + σ2

u||hP ||2

σ2
u||hM ||2

)
= σ2

uM
||hP ||2

||hM ||2

(
1 +

1

SNR

)
, (3.23)

where SNR = σ2
u||hP ||2/σ2

v is the signal-to-noise ratio of the system.
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For the steady-state expression, substituting tk for LMS in (3.19), we obtain

MSD(∞) =
µM

(
σ2
v + σ2

u||h̄N ||2
)

2− µσ2
u(M + 2)

+ ||h̄N ||2. (3.24)

For the ε-NLMS algorithm (g(uM,i) = ε + ||uM,i||2), to compute analytically the

moments T1,M , T2,M and T3,M , we must assume that the input signal is white and Gaussian,

so that ||uM,i||2 can be considered statistically independent from any function of uM,i

[59, 64]. We also assume that ε ≈ 0. Then, as derived in Appendix 3.B, we have

T1,M = E
uT
M,iuM,i

||uM,i||2
=

1

M
IM , (3.25)

T2,M = E
uT
M,iuM,i

(||uM,i||2)2 =
1

M(M + 2)σ2
u

IM (3.26)

and

T3,M = E
uT
M,iuM,iu

T
M,iuM,i

(||uM,i||2)2 =
1

M
IM , (3.27)

from which t1 = t3 = 1/M and t2 = (M(M + 2)σ2
u)
−1

. Substituting these values of tk in

(3.16), we have

ν = 1 +
M

(M + 2)σ2
u

(
σ2
v + σ2

u||h̄N ||2

||hM ||2

)
, (3.28)

which becomes, for large M ,

ν ≈
(
σ2
v + σ2

u||hP ||2

σ2
u||hM ||2

)
=
||hP ||2

||hM ||2

(
1 +

1

SNR

)
. (3.29)

For the ε-NLMS algorithm, the steady-state expression (3.19) becomes

MSD(∞) =
M

σ2
u(M + 2)

µ
(
σ2
v + σ2

u||h̄N ||2
)

2− µ
+ ||h̄N ||2. (3.30)

Note that the term
(
1 + SNR−1

)
||hP ||2/||hM ||2 appears for both algorithms in (3.23)

and (3.29). When SNR→∞ and ||hM ||2 → ||hP ||2, that is, when the noise level and the

undermodeling effect become negligible, this term tends to one. This makes the optimal

step size µo (3.17) (either for the LMS or for the ε-NLMS) become the same optimal step

size derived by minimizing γ [35,40], which, for the LMS and the ε-NLMS algorithms, are

respectively,

µo =
1

σ2
uM

and µo = 1. (3.31)

Figure 5 compares the performance curves of filters with the optimal step size (3.31) and

with optimal step size (3.17). When the SNR is high, the difference between using one or
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the other optimal step size is very subtle. On the other hand, as the SNR decreases, and

as the undermodeling effect becomes critical, the steady-state performance when using

(3.17) has nitid advantage.
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Figure 5: Comparing performance curves when using the traditional optimal step size
(3.31) (dash-line) and when using the optimal step size (3.17) (solid lines), for the LMS
algorithm. The curves were simulated with σ2

u = 1 and exponential hP with α = 0.05 and
||hP ||2 = 1.

3.2.3 Comparing to other analyses in the literature

As already mentioned, there are analyses in the literature regarding the performance

of undermodeled adaptive filters. Although their results are similar or identical to what

we obtain in this text, it is worth pointing out the particularities of each work.

In [8], the mean-square convergence model is derived for the undermodeled LMS

(refered to as deficient-length LMS) for white input via the squared norm of the weight

error vector ||w̃M
P,i||2, similar to what we do. However, they do not partition the weight

error vector as w̃M,i and h̄N and derive directly from w̃M
P,i.

In [9], a comprehensive analysis for the undermodeled LMS is derived for general

input correlation, based on the the covariance matrix of the weight error vector. Their

derivations are carried out with the partial weight error w̃M,i, not considering the error

counterpart h̄N on the excess MSE, that is, their excess error is computed relatively to

the optimal error (2.15) of a specific length M . In [10], the same author derives a similar

analysis for the undermodeled ε-NLMS algorithm, now using the squared norm of the

weight error vector.
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Our approach to analyze the mean-square convergence model is based on the squared

norm of the weight error vector using the data-normalized algorithm framework, similiar

to [35, Ch.9], from which the LMS and the ε-NLMS algorithms are particular cases. In

this way, the analysis carried out in this section can be viewed as the extension of the

analysis in [35, Ch.9] for the undermodeled algorithm case, for white input.

Although not explicit, the case of undermodeled filters can be comprised within the

classical analyses of full-length filters [3,12,35,58,59]. In the classical analyses, the system

impulse response has the same length as the filter, that is, M = P and thus there is no

explicit undermodeling. However, the undermodeling can be considered hidden in the

noise. From the system output model (2.5), note that

d(i) = uP,ihP + v(i) = uM,ihM + ūN,ih̄N + v(i), (3.32)

and, if we define v0(i) = ūN,ih̄N + v(i), the model is equivalent to a system impulse

response of length M and noise v0(i).

When the input is white, v0(i) is independent of uM,i, and if we consider the inde-

pendence assumptions for ūN,i, that is, that ūN,i is independent of ūN,j for i 6= j, turning

v0(i) into an i.i.d. process, then the classical analysis would derive the same results as

in this text. One important difference is that, with such analysis, the EMSE and MSD

would be computed relatively to the optimum error (2.16) of the specific length, that is,

relatively to

σ2
v0

= σ2
v + σ2

u||h̄N ||2, (3.33)

which is (2.16) for white input.

When the input is correlated, v0(i) is correlated to uM,i, and this strategy to analyze

undermodeled filters with the framework of full-length filter analysis cannot be applied.

In this case, the optimal solution to which the filter weight converges is biased, as shown

in (2.15).

3.2.4 Simulations

Now we explore the theoretical results of transient and steady-state performance de-

rived in this section. We analyze the behavior of κ (3.15) and MSD(∞) (3.19) as functions

of the filter length under some different conditions, and compare the theoretical curves to

simulated experimental data. We adopt |κ| as figure of merit for the transient, instead of

just κ, because it is directly proportional to the convergence speed.
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For the following analyses, we consider σ2
u = 1 and impulse responses with ||hP ||2 = 1,

P = 500, which can be considered infinite in the simulated scenarios2, and hb(k) = 1,

for k = 0, 1, · · · , P − 1. The other environment parameters (α and σ2
v) and the step size

value change along the tests. The experimental measures for transient and steady-state

are computed from approximate MSD curves, obtained from the ensemble average of

1000 realizations of squared-deviation curves ||w̃MP,i||2. We consider ν with the simplified

expressions (3.23) (LMS algorithm) and (3.29) (ε-NLMS algorithm) to compute both the

theoretical value of |κ| and the experimental values of the step size (3.17).

Figure 6 compares the behavior of |κ| and MSD(∞) using the LMS algorithm for

exponential decay rates of α = 0.02, 0.05, 0.1 and 0.2. The noise variance is set to

σ2
v = 0.001. Every filter runs with the optimal step size (3.17), which varies according

to the filter length. Note that the experimental values are very close to the theory. As

we decrease the filter length, the initial difference |κ| increases until reaching a maximum

value, and then declines very fast. This means that short filters (but not excessively short

ones) converge faster than large filters. Note that |κ| is higher for higher values of decay

α when M is small, which means that when the energy of the impulse response is more

concentrated at smaller delays, the filter can attain faster convergence rate. For large

lengths, on the other hand, almost no difference in |κ| is observed for different values of

α. The steady-state MSD decreases as we increase M , until reaching a minimum error

level. The steady-state MSD decreases faster for steeper decays in the impulse response,

but the minimum error level attained for filters of large length is the same no matter the

decay α. This happens because, for small length, undermodeling is predominant in the

steady-state error and decreases exponentially as M increases. For sufficiently large M ,

when undermodeling becomes negligible, MSD(∞) is roughly constant in terms of M and

depends more significantly on the other variables, such as noise variance and step size

value.

Figure 7 shows analogous simulations for the ε-NLMS algorithm. Note that these

results are very similar to the LMS case. For this reason, in the subsequent simulations

we show the results only for the LMS algorithm.

For the curves shown in Figure 8, we fix the impulse response decay rate to α = 0.05

and vary the noise level from σ2
v = 0.0001 to σ2

v = 0.5. Note that the noise level affects

mostly the steady-state MSD for large filter lengths. As σ2
v increases, the level of steady-

state MSD for large M increases. The steady-state error of short length filters is also

2In the simulated scenario with the slowest decay in the impulse response, when α = 0.02, clipping
the infinite exponential at P = 500 causes a loss of 0.0000002% in the energy of the impulse response.
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Figure 6: Theoretical and experimental curves of (a) initial difference and (b) steady-state
error for the LMS algorithm, comparing different decay rates α. Every filter runs with
the optimal step size (3.17), and σ2

v = 0.001.
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Figure 7: Theoretical and experimental curves of (a) initial difference and (b) steady-state
error for the ε-NLMS algorithm, comparing different decay rates α. Every filter runs with
the optimal step size (3.17), and σ2

v = 0.001.
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Figure 8: Theoretical and experimental curves of (a) initial difference and (b) steady-state
error for the LMS algorithm, comparing different noise levels σ2

v . Every filter runs with
the optimal step size (3.17), and α = 0.05.

affected, but is less sensitive to variations in the noise power. The initial differences are

barely affected by variations of σ2
v . They subtly decrease as the noise power increases,

and the reduction becomes relevant only for σ2
v = 0.1 or higher.

In Figure 9, we fix α = 0.05 and σ2
v = 0.001 and now compare the transient and

steady-state curves for different values of step size. Consider the decomposition of the

step size as

µ = µ0µ
o, (3.34)

where 0 < µ0 ≤ 1 is the normalized step size, that is, the ratio of the actual step size µ

to the optimal step size. We compare, specifically, curves for different µ0 (notice that µ

still varies for each curve). The behavior of the steady-state performance when varying

µ0 is somewhat similar to when we vary the noise level. As we decrease µ0, short length

filters have almost no effect in their steady-state values, but long filters have lower level

of steady-state error. For the initial difference, however, there are significant differences.

The curves for |κ| shift down considerably as we decrease µ0, what is expected since the

step size controls the rate of convergence.

In all figures presented so far in this subsection, note that the step sizes µ are not

constant along each curve. They decrease as M increases, according to the optimal step

size µo (3.17). Figure 10 shows what happens to the curves for the LMS algorithm if we

use a fixed µ instead, as we vary M . For short filters, the curves in Figure 10 are very

similar to the curves in Figure 9. But now, as we increase M , the initial difference stays

constant (or decreases very slowly), and the steady-state now reaches a point of minimum
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Figure 9: Theoretical and experimental curves of (a) initial difference and (b) steady-state
error for the LMS algorithm, comparing different normalized step sizes µ0. Every filter
runs with step size µ = µ0µ

o, α = 0.05 and σ2
v = 0.001.

MSD and then begins to grow slowly.

The simulations so far have considered that the impulse response is an (practically)

infinite exponential. In the following two simulation cases, we show what happens when

the impulse response is clipped, creating an abrupt change along the coefficients in hP .

Figure 11 depicts the simulation case of Figure 6 where the only difference is that the

impulse response is clipped at k = 70 (P = 70), that is, h(k) = 0 for k ≥ 70. The entries

of hP are also rescaled so as to keep ||hP ||2 = 1. The curves of |κ| have no apparent

difference from the curves in Figure 6a. In Figure 11b, note that the curves of steady-

state MSD that does not reach the minimum error level before M = 70 in Figure 6b now

exhibit an abrupt decrease at this point. The curves that reach the minimum level before

M = 70, which are the curves for higher values of decay α, are apparently not affected

by the impulse response clipping.

Figure 12 shows an example of these curves when the impulse response is not expo-

nential. We simulate, instead, an impulse response of length P = 150, where h(k) is a

positive constant for k = 0, 1, · · · , P − 1, and h(k) = 0 otherwise, so that ||hP ||2 = 1.

Note that this is a clipped exponential hP where α = 0. We set σ2
v = 0.001 and compare

curves for different step sizes µ0. Now, the convergence rate increases until the length of

the filter equals the length of the impulse response, and decreases for larger filters. The

steady-state error is constant when we vary M so that M ≥ P , but for roughly any length

smaller than P , the steady-state error is incomparably higher.
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Figure 10: Theoretical and experimental curves of (a) initial difference and (b) steady-
state error for the LMS algorithm, comparing different step sizes µ. Now step size µ is
constant along each curve, α = 0.05 and σ2

v = 0.001.
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Figure 11: Comparing theoretical and experimental curves of (a) initial difference and (b)
steady-state error for the LMS algorithm, comparing different decay rates α. σ2

v = 0.001
and now the impulse response is clipped at P = 70.
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Figure 12: Comparing theoretical and experimental curves of (a) initial difference and (b)
steady-state error for the LMS algorithm, comparing different normalized step sizes µ0.
Every filter runs with the optimal step size (3.17), σ2

v = 0.001 and now α = 0 (rectangular
impulse response).

3.3 Design of the filter length

The curves from Subsection 3.2.4 show an interesting pattern in the behavior of the

transient and steady-state performance of the LMS/ε-NLMS algorithms, when considering

an exponential impulse response and white input: increasing the filter length (beyond the

peak in the curve of κ, and while keeping the normalized step size µ0 fixed) reduces the

convergence rate and reduces the steady-state error (until reaching a minimum level).

This behavior creates a dilemma for the choice of the filter length very similar to the

dilemma faced when designing the step size for fixed length: do we reduce the steady-

state error at the cost of a slower convergence, or increase convergence rate at the cost of

a higher steady-state error?

In order to make a reasonable choice for the filter length, we define an indicator that

balances these two attributes. We define the overall performance as the ratio between the

absolute initial difference |κ| and the steady-state MSD

η(M,µ0) ,
|κ|

MSD(∞)
, (3.35)

where the normalized step size µ0 is so that

µ = µ0µ
o. (3.36)

Larger values of η imply better performance of the filter, in a sense that comprises both
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the transient and the steady-state performance.

If we take the logarithm of (3.35) (which does not change its extreme points), we

obtain

ln η(M,µ0) = ln |κ| − ln MSD(∞). (3.37)

In Subsection 3.2.4, we observed these logarithmic curves for exponential impulse re-

sponses3: ln |κ| is a smooth hill-shaped function, and ln MSD(∞) is a bounded and de-

creasing function of M , tending to a constant value as M → ∞. It is expected, and we

will see later in this section, that η is a hill-shaped function of M for exponential impulse

responses.

We want to find the value of M that maximizes (3.35) (and equivalently maximizes

(3.37)), which we call optimal length M o, and use it to design the filter length. Let us

expand the terms in (3.35). Using (3.36) in (3.15) and (3.19), where µo = 1/ν, we have

κ = t1||hM ||2νµ0µ
o

(
µ0µ

o − 2

ν

)
= −µ0 (2− µ0)

t1||hM ||2

ν
, (3.38)

and

MSD(∞) =
µ0Mt2

(
σ2
v + σ2

u||h̄N ||2
)

2t1ν − µ0t3
+ ||h̄N ||2. (3.39)

The expressions of ν for LMS (3.23) and ε-NLMS (3.29), considering the approxima-

tion for large M , can be written as

ν ≈ tx
||hP ||2

||hM ||2
(
1 + SNR−1

)
, (3.40)

where tx = σ2
uM for the LMS, and tx = 1 for the ε-NLMS.

In (3.38), the term that depends on the algorithm is given by ν/t1. For the LMS

algorithm, t1 = σ2
u, and for the ε-NLMS algorithm, t1 = 1/M . It turns out that for both

algorithms, considering ν as (3.40), ν/t1 is

ν

t1
≈M

||hP ||2

||hM ||2
(
1 + SNR−1

)
, (3.41)

and then (3.38) becomes, for both LMS and ε-NLMS,

κ ≈ − µ0 (2− µ0)(
1 + SNR−1

)
||hP ||2

||hM ||4

M
. (3.42)

3In fact, the curves were in logarithm of base 10, which differs only by a scale factor.
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In (3.39), the term that depends on the algorithm is given by

2t1ν − µ0t3
µ0Mt2

≈
2t1tx

||hP ||2
||hM ||2

(
1 + SNR−1

)
− µ0t3

µ0Mt2

=
||hP ||2

||hM ||2

[
2t1tx
µ0Mt2

(
1 + SNR−1

)
− µ0t3
µ0Mt2

||hM ||2

||hP ||2

]
=
||hP ||2

||hM ||2

[
2t1tx
Mt2

(
1 + SNR−1

µ0

)
− t3
Mt2

+
t3
Mt2

||h̄N ||2

||hP ||2

]
. (3.43)

From the terms tk derived in Subsection 3.2.2, one can verify that t3/t2M = σ2
u and

t1tx/Mt2 = σ2
u, for both LMS and ε-NLMS. Then,

2t1ν − µ0t3
µ0Mt2

≈ σ2
u

||hP ||2

||hM ||2

[
2

(
1 + SNR−1

µ0

)
− 1 +

||h̄N ||2

||hP ||2

]
. (3.44)

Substituting (3.44) in (3.39), we have

MSD(∞) ≈

(
σ2
v + σ2

u||h̄N ||2
)

+ σ2
u
||hP ||2
||hM ||2

[
2
(

1+SNR−1

µ0

)
− 1 + ||h̄N ||2

||hP ||2

]
||h̄N ||2

σ2
u
||hP ||2
||hM ||2

[
2
(

1+SNR−1

µ0

)
− 1 + ||h̄N ||2

||hP ||2

]
=
σ2
u
||hP ||2
||hM ||2

[(
1

SNR
+ ||h̄N ||2
||hP ||2

)
||hM ||2 +

(
2
(

1+SNR−1

µ0

)
− 1 + ||h̄N ||2

||hP ||2

)
||h̄N ||2

]
σ2
u
||hP ||2
||hM ||2

[
2
(

1+SNR−1

µ0

)
− 1 + ||h̄N ||2

||hP ||2

]
=

||hM ||2
SNR

+
(

2
(

1+SNR−1

µ0

)
− 1
)
||h̄N ||2 + ||h̄N ||2||hM ||2+||h̄N ||4

||hP ||2[
2
(

1+SNR−1

µ0

)
− 1 + ||h̄N ||2

||hP ||2

] . (3.45)

Note that ||h̄N ||2||hM ||2 + ||h̄N ||4 = ||h̄N ||2(||hP ||2 − ||h̄N ||2) + ||h̄N ||4 = ||hP ||2||h̄N ||2.

Then,

MSD(∞) ≈
||hP ||2
SNR

− ||h̄N ||
2

SNR
+
(

2
(

1+SNR−1

µ0

)
− 1
)
||h̄N ||2 + ||h̄N ||2

2
(

1+SNR−1

µ0

)
− 1 + ||h̄N ||2

||hP ||2

=

||hP ||2
SNR

+ ||h̄N ||2
SNR

[
2SNR

(
1+SNR−1

µ0

)
− 1
]

2
(

1+SNR−1

µ0

)
− 1 + ||h̄N ||2

||hP ||2

=

||hP ||2
SNR

[
1 + ||h̄N ||2

||hP ||2
(2SNR+1

µ0
− 1)

]
[
2
(

1+SNR−1

µ0

)
− 1
] [

1 + ||h̄N ||2
||hP ||2

(
µ0

2−µ0+2SNR−1

)] . (3.46)

Substituting (3.42) and (3.46) in (3.35), we have, finally,

η(M,µ0) ≈ s0
1

M

(
||hM ||2

||hP ||2

)2

[
1 + s2

||h̄N ||2
||hP ||2

]
[
1 + s1

||h̄N ||2
||hP ||2

] , (3.47)
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where

s0 ,
µ0 (2− µ0) SNR

[
2
µ0

(SNR + 1)− SNR
]

SNR + 1
, (3.48)

s1 ,
2

µ0

(SNR + 1)− 1, (3.49)

s2 ,
µ0

2− µ0 + 2SNR−1 (3.50)

are terms that depend exclusively on the SNR and the normalized step size µ0.

3.3.1 Finding the optimal length

The expression (3.47) of the overall performance is composed by the terms ||hM ||2

and ||h̄N ||2, which depend on the impulse response and are therefore unknown. However,

if we assume that the impulse response has an exponential decay envelope, as described

in Section 3.1, we can make reasonable approximations for these terms.

Consider that the impulse response is infinitely long and has exponential decay en-

velope of the form (3.1). If we approximate ||hM ||2 and ||h̄N ||2 considering only their

exponential envelope, as in (3.2) and (3.3), the overall performance (3.47) becomes

η(M,µ0) ≈ s0

M

(
1− e−2αM

)2
(

1 + s2e−2αM

1 + s1e−2αM

)
= s0

[
1 + (s2 − 2)e−2αM + (1− 2s2)e−4αM + s2e−6αM

M + s1Me−2αM

]
, (3.51)

which is a transcendental equation in terms of M . In Appendix 3.C, we show how to find

M that maximizes (3.51) recursively, by considering M as a continuous variable. We then

compute M o via the auxiliar variable xo as

M o ≈
⌈
xo

2α

⌉
. (3.52)

We round the value to the following integer because larger lengths suffer less undermod-

eling effects, although the difference of one tap is often negligible.

As shown in Appendix 3.C, the quantity xo is a function of the SNR and the normalized

step size µ0. Its behavior as a function of µo, for different values of the SNR, is depicted

in Figure 13. We can also approximate xo empirically as an explicit function of the SNR

and µ0 as

xo ≈ −0.265µdB
0 + ln

(
5.65 + exp

(
1.6 + 0.272SNRdB + 0.0006SNRdBµdB

0

))
, (3.53)
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Figure 13: Behavior of xo×µ0 for distinct values of SNR. Solid lines: exact values obtained
via (3.81) in Appendix; dash-lines: aproximate values obtained via (3.53).

where SNRdB = 10 log10 SNR and µdB
0 = 10 log10 µ0 are the quantities in dB. This is a

good approximation for values of µdB
0 in the range from -40dB to 0dB, and for values of

SNRdB from 0dB to 40dB.

The computation of the optimal length requires some parameters that might be un-

known in practice. Directly from (3.52) and (3.53), we must know the SNR and the

exponential decay α. Moreover, to compute the actual step size µ, we must compute the

optimal step size µo = 1/ν, which, for the ε-NLMS algorithm (3.29), also depends on4 the

SNR and α, and for the LMS algorithm (3.23), depends on the SNR, α and σ2
u. If these

parameters are not available for the practitioner, in Appendix 3.D we propose a method

to estimate them experimentally, with the aid of an adaptive filter.

The proposed method allows us to design the filter length M , provided some envi-

ronment parameters are known (or estimated), and given a specified normalized step size

µ0 (and thus the step size µ is also determined). The value of µ0 may be specified by

considering how fast the convergence rate is required. By setting µ0 closer to one, we

obtain faster convergence rate, at the cost of a higher steady-state error. By reducing µ0,

usually in orders of magnitude, we obtain lower steady-state error, but the convergence

rate becomes slower. In summary, the proposed design follow the steps:

1. Specify 0 < µ0 ≤ 1;

2. Get environment parameters SNR, α and σ2
u (if not given, estimate as suggested in

Appendix 3.D);

3. Compute the filter length M = M o via (3.53) and (3.52);

4Considering that the term ||hM ||2 in (3.23) and (3.29) can be approximated as (3.2).
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4. Compute the optimal step size µo via (3.23), (3.29) and (3.17);

5. Compute the step size µ from relation (3.36).

3.3.2 Simulations

We present simulations to show how a filter with the optimal length performs com-

pared to filters with other lengths. In all the following scenarios, we simulate white input

of variance σ2
u = 1, impulse responses with length P = 500, that can be regarded as

infinite in the simulated scenarios, where ||hP ||2 = 1 and hb(k) are Gaussian i.i.d. se-

quences. For the ε-NLMS algorithm, we use ε = 0.0001. The MSD performance curves

are obtained as ensemble averages of 1000 runs. We consider estimates M̂ o and µ̂o for the

optimal length and the optimal step size, respectively, because we compute them via the

estimated parameters α̂, σ̂2
u and ˆSNR (estimated according to Appendix 3.D).

Figure 14a shows curves η ×M for different values of α, where η is computed with

the theoretical model (3.51) for exponential envelope approximation. For all curves we

considered µ0 = 1 and σ2
v = 0.001 (SNR = 30dB). In order to fit distinct curves into

scale, we normalized η so that the maximum of each curve is one. The estimated optimal

lengths M̂ o, computed with the estimated parameters, are also shown. As expected from

(3.52), α scales the curves along the horizontal axis. Each of the Figures 14b-14d compares

the MSD performance curves of filters with distinct lengths for each scenario depicted in

Figure 14a. The performance curves for the LMS (solid lines) and for the ε-NLMS (dash-

lines) algorithms are shown, and note that they are very similar. For each scenario, the

filter with optimal length M̂ o exhibits steady-state error very close to filters with larger

lengths, but exhibits much faster convergence rate. Any filter of larger length (including

the length with which we simulated the “infinitely” long impulse response) would not

improve the steady-state performance in a relevant manner, and would only decrease

the rate of convergence and increase the computational cost. Filters with length shorter

than M̂ o have even faster convergence rate, but their steady-state performance becomes

severely degraded.

Figure 15 shows analogous simulations, but comparing different scenarios of SNR.

For all curves we considered µ0 = 1 and α = 0.05. Now, note that the curves η ×M for

different SNR are roughly shifts of the others rather than a rescaling, as in the previous

case. Comparing the performance curves for filters of different lengths, we also observe

a behavior similar to that of the previous case, with the exception that, as we decrease

the SNR, the filter with the optimal length exhibits a noticeably higher steady-state
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Figure 14: Simulations for µ0 = 1, SNR = 30dB, and for different values of α: (a)
theoretical curves of η × M ; (b-d) comparing MSD performance curves of filters with
different lengths (solid lines: LMS; dash-lines: ε-NLMS).
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Figure 15: Simulations for µ0 = 1, α = 0.05 and for different values of SNR: (a) theoretical
curves of η×M ; (b-d) comparing MSD performance curves of filters with different lengths
(solid lines: LMS; dash-lines: ε-NLMS).

error compared to the filters of larger lengths, although it is still a subtle increase when

considering the learning curve as a whole.

Figure 16 compares the filter performance when different normalized step sizes µ0 are

used. We fix α = 0.05 and SNR = 30dB. We observe, again, that the filter with the

optimal length is the one with the fastest convergence rate that keeps the steady-state

performance comparable to the performance of longer filters. All in all, from the simulated

results, the optimal length seems to optimize, approximately and not in a strict sense,

the convergence rate of the algorithm subject to a given steady-state value, that depends

on the environment parameters and on the choice of the normalized step size.

Although the optimal length was designed specifically for the case of white input,

Figure 17 shows how a filter with such a length behaves in correlated input scenario. The
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Figure 16: Simulations for SNR = 30dB, α = 0.05 and for different values of µ0: (a)
theoretical curves of η × M ; (b-d) comparing MSD performance curves of filters with
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Figure 17: MSD performance for σ2
v = 0.001, α = 0.05, where the input signal is an AR(1)

process with parameter ρ = 0.95 (correlated input); curves for different values of µ0 (solid
lines: LMS; dash-lines: ε-NLMS).

simulations consider the same scenarios of Figures 16b and 16c, now with correlated input

signal as an AR(1) process of parameter ρ = 0.95. As we use the same design method,

the curves η×M would be the same as in Figure 16a. Now, the LMS algorithm no longer

converges for µ0 = 1 and then its curves are not shown. The filter with optimal length still

converges faster than filters with other lengths, but now the steady-state has noticeable

undermodeling. When the LMS converges, now we can note significant difference between

the LMS and the ε-NLMS algorithms.

3.4 Length design within a combination

As observed in the simulation results of Subsection 3.3.2, the proposed method chooses

an LMS/ε-NLMS filter with fast convergence rate while keeping the steady-state perfor-

mance comparable to the minimum possible for a given environment scenario and a given

value of normalized step size. This is particularly interesting when designing the filter

with the step size of fastest convergence rate, that is, for unit normalized step size µ0 = 1.

However, a very fast filter will suffer from a very high steady-state error that might be

prohibitive in practical applications.

We can correct the steady-state performance if we use such a fast filter within a

combination, so that we can ensure a low steady-state error by running a slow filter in

parallel. In fact, it is customary to use combinations of filters to combine a fast filter,

though with poor steady-state performance, to a slow filter with low steady-state error.
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By this point of view, this strategy can also be interpreted as reducing the computational

complexity of the combination, since we are taking for the fast filter a filter with length

usually smaller than the filter that gives the lowest steady-state error in the combination.

Some works in the literature regard combinations in which the fast filter has shorter

length. [65] proposes a shorter filter in a combination of ε-NLMS filters, but does not

propose any method to design the filter length. [20] proposes a combination in which the

length of both filters are iteratively adapted. [66] adjusts recursively the length of the fast

filter to track a sparse impulse response.

In this section, we propose, concretely, that the fast filter in a combination, of either

LMS or ε-NLMS algorithms of fixed length, be designed with the optimal length M o

(3.52) and step size µo (3.17). In the simulations that follow in this section, we employ

combinations with power normalization (2.30) and the weights feedback scheme (2.32).

3.4.1 Design of the weights feedback cycle length

One of the practical problems when using parallel combinations with weight feed-

back is the design of the feedback cycle length L. [34] proposed the design of L based

on the instant in which the performance curve of the fast filter transit from transient

to steady-state. In their derivation, the authors consider the steady-state error as the

minimum MSE. This can be a good approximation for relatively small step size and for

non-undermodeled filters. However, in our case, the fast filter is undermodeled and has

large step size (µ0 = 1), so the excess MSE in steady-state is no longer negligible. Hence,

we extend the method proposed in [34] to include such factors.

For the white input case, the mean-square error is obtained from the mean-square

deviation as (from (2.34) and (2.42))

MSE(i) = σ2
v + σ2

uE||w̃M
P,i−1||2. (3.54)

From (3.11), note that MSE(i) has also convergence rate γ. The initial value is MSE(0) =

σ2
v + σ2

u||hP ||2 = σ2
d, that is, the variance of the system output. Using the steady-state

MSD (3.24) and (3.30), the steady-state MSE is, from the error relations in Section 2.6,

MSE(∞) =
(
σ2
v + σ2

u||h̄N ||2
)

(1 + ε) , (3.55)

where ε = µMσ2
u

2−µσ2
uM

for the LMS algorithm, and ε = µ
2−µ for the ε-NLMS algorithm. As we

consider µ0 = 1, then µ = µo. We choose the feedback cycle length L as the instant in
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Figure 18: Method proposed to design the weights feedback cycle length.

which the transient of the MSE, approximated by the exponential decay factor γ (a line

in log-scale) reaches the steady-state value (3.55), as illustrated in Figure 18. Thus, L is

so that

10 log(γLMSE(0)) = 10 log
(
Ee2(∞)

)
, (3.56)

L =
log MSE(∞)− log σ2

d

log γ
. (3.57)

Assuming exponential impulse response, the term ||h̄N ||2 can be approximated as in (3.2)

and is therefore determined by ||hP ||2 and α. The parameters α, σ2
d, σ

2
u and σ2

v , if not

available, can be estimated as suggested in Appendix 3.D.

3.4.2 Simulations

Now we present simulated performance curves for the proposed combination of adap-

tive filters. We consider the same background scenarios of the simulations in Subsec-

tion 3.3.2, with parameters σ2
u = 1, ||hP ||2 = 1, hb(k) as Gaussian i.i.d. sequences and

ε = 0.0001. For each simulated scenario, we compare different combinations of filters,

with slow filters of the same length M2, but with fast filters of distinct lengths M1. The

fast filters run with step size µ1 = µo1 (varies with M1) and the slow filter with µ2 = 0.1µo2.

The optimal step sizes and the optimal lengths are computed as in the previous simula-

tion, from estimated parameters. In all cases, we set the supervisor parameters µa = 1,

power normalization of lowpass factor b = 0.95, saturation a+ = 4, threshold δ = 1 and,

for each combination, the feedback period L is computed as proposed in (3.57). After

the learning curves reach steady-state, we introduce an abrupt change into the impulse

response, turning it into another Gaussian i.i.d. sequence with the same exponential decay
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Figure 19: MSD performance of combinations of filters in the case of white input, α = 0.1
and SNR= 30 dB, for (a) LMS algorithm and (b) ε-NLMS algorithm.

as before, in order to test the reconvergence ability of the algorithm.

Figure 19 depicts the case of impulse response of exponential decay α = 0.1 and

SNR = 30 dB. In Figure 19a, both filters in each combination are LMS filters, and in

Figure 19b all filters employ the ε-NLMS algorithm. For all combinations, we consider

M2 = 200. The combinations perform very similarly with either the LMS or the ε-

NLMS algorithms. Because of the combination, all curves have the same level of steady-

state error. They have, however, distinct overall convergence rates and computational

complexities. When reducing the length M1 of the fast filter down to M1 = M̂ o
1 , the

combination becomes faster and less complex. The combination with M = M̂ o
1 has

initial convergence about three times faster and has about 2/3 of the complexity5 of the

5We consider complexity in terms of the total number of weights of the combination. In this case,
the combination with M1 = 56 has 200 + 56 weights, and the combination with M1 = 200 has 200 + 200
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combination with M1 = 200. If we reduce even more the length of the fast filter, the initial

convergence is slightly improved, but the overall convergence becomes slower because the

fast filter reaches a higher level of steady-state error, and the supervisor makes the slower

filter take over earlier.

After the abrupt change, the filters reconverge with similar convergence rate and reach

the same steady-state level as in the first convergence. However, there are differences re-

garding the performance of the weights feedback. First, the cycle length is computed

using the undermodeling quantity h̄N , estimated considering only the exponential enve-

lope. The exact value of h̄N , however, varies independently of the exponential envelope,

as we can notice from the difference on the steady-state error of the filter with M1 = 30,

before and after the abrupt change. Futhermore, in (3.57) we considered that the initial

weight error is so that ||w̃MP,−1||2 = ||hP ||2, which happens when the filter is initialized in

wM,−1 = 0M . With the reconvergence, the filter starts converging from some other value

of wM,−1, which caused the algorithm to anticipate the ideal weight feedback instant.

Figure 20 presents analogous plots for the scenario of SNR = 30 dB and smoother

impulse response of α = 0.02, considering M2 = 400, and Figure 21 presents the plots

for low SNR scenario, where SNR = 10 dB, α = 0.02 and M2 = 300. In both cases, the

behavior of the combinations by varying the length M1 of the fast filter is similar to the

case in Figure 19.

Figure 22 shows the performance curves of the combinations when the input is corre-

lated with ρ = 0.95. We consider a scenario similar to the case in Figure 19, with α = 0.1,

SNR = 30 dB, M2 = 200, but now µ2 = 0.2µo2. As in the simulations of Figure 17a,

the fast LMS filter does not converge, and thus we show only the curves for the ε-NLMS

algorithm. The behavior of the combinations in the correlated input scenario is consistent

with the previous results for the white input cases.

3.A Computation of fourth-order moments

In this appendix, we compute the fourth-order moment matrix EuT
M,iuM,iu

T
M,iuM,i

from (3.20), and the the fourth-order moment matrices EuT
M,iuM,iu

T
M,iūN,i and

EūT
N,iuM,iu

T
M,iūN,i from (4.42) (from the following chapter). As in many texts in the

literature [9, 35, 58, 59], we derive these quantities by assuming that the input u(i) is a

Gaussian process.

weights.
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Figure 20: MSD performance of combinations of filters in the case of white input, α = 0.02
and SNR= 30 dB, for (a) LMS algorithm and (b) ε-NLMS algorithm.
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Figure 21: MSD performance of combinations of filters in the case of white input, α = 0.02
and SNR= 10 dB, for (a) LMS algorithm and (b) ε-NLMS algorithm.

0 20000 40000 60000 80000 100000 120000 140000 160000
Iteration i

−40

−30

−20

−10

0

M
SD

 (d
B)

S andalone fil ers
Comb. wi h M1 =200
Comb. wi h M1 =100
Comb. wi h M̂o

1 =̂6
Comb. wi h M1 =30

(a)

Figure 22: MSD performance of combinations of filters in the case of correlated input
ρ = 0.95, α = 0.1 and SNR= 30 dB, for the ε-NLMS algorithm.
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Higher-order moments of multivariate Gaussian variables can be computed from second-

order Gaussian moments. Let x1, x2, x3 and x4 be zero-mean Gaussian variables that are

mutually correlated. From Isserlis’ theorem [67], the fourth-order moment Ex1x2x3x4

can be computed as

Ex1x2x3x4 = E [x1x2]E [x3x4] + E [x1x3]E [x2x4] + E [x1x4]E [x2x3] . (3.58)

Now, let us consider Gaussian random vectors6 x, y and z, each of them of arbitrary

length. We wish to compute the moment matrix

X = EyxTxzT. (3.59)

Matrix X yields all the fourth-order moment matrices in (3.20), (3.27) and (4.42), de-

pending on how we specify the vectors x, y and z. For7 x = y = z = uT
M,i, X becomes

EuT
M,iuM,iu

T
M,iuM,i. For x = y = uT

M,i and z = ūT
N,i, X becomes EuT

M,iuM,iu
T
M,iūN,i.

Finally, for x = uT
M,i and y = z = ūT

N,i, X becomes EūT
N,iuM,iu

T
M,iūN,i.

Let us define the autocorrelation matrices

Rx = ExxT, Ry = EyyT, Rz = EzzT, (3.60)

and the cross-correlation matrices

Rxy = ExyT, Rxz = ExzT, Ryz = EyzT. (3.61)

Note that the term xTx =
∑

i x(i)x(i) in (3.59) is a scalar, then it can pre-multiply

the whole term. Each element X(k, `) can then be written as

X(k, `) = E

[(∑
i

x(i)x(i)

)
y(k)z(`)

]
=
∑
i

Ex(i)x(i)y(k)z(`). (3.62)

Using Isserlis’ theorem, and rearranging conveniently, we have:

X(k, `) =
∑
i

E [x(i)x(i)]E [y(k)z(`)] +
∑
i

E [x(i)y(k)]E [x(i)z(`)]

+
∑
i

E [x(i)z(`)]E [x(i)y(k)] . (3.63)

Note that
∑

iE [x(i)x(i)] = TrRx is a scalar, and E [y(k)z(`)] is the {k, `}-th element of

matrix Ryz. The second and the third terms on the right are, respectively, the {k, `}-th
6These variable names have no relation to variables of the same name along the text.
7Recall that the regressor vectors uM,i exclusively are row vectors.
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element of the matrices RT
xyRxz and

(
RT
xzRxy

)T
= RT

xyRxz. Then:

X = RyzTrRx + 2RT
xyRxz. (3.64)

For the moments in our problem, we have

EuT
M,iuM,iu

T
M,iuM,i = Ru,MTrRu,M + 2(Ru,M)2, (3.65)

EuT
M,iuM,iu

T
M,iūN,i = Ru,M,NTrRu,M + 2Ru,MRu,M,N , (3.66)

EūT
N,iuM,iu

T
M,iūN,i = Ru,NTrRu,M + 2RT

u,M,NRu,M,N . (3.67)

3.B Aproximations for the moments in the analysis

of ε-NLMS algorithm

We can analytically approximate the moments T1,M , T2,M and T3,M from (3.9), for

the ε-NLMS algorithm, if we assume that the input signal is white and Gaussian, so that

||uM,i||2 can be considered statistically independent from any function of uM,i [10,59,64,

68], and considering ε ≈ 0. Consider a random matrix UM that depends on uM,i (that

later will be used to form matrices T1,M , T2,M and T3,M). Under the assumptions above:

EUM = E

[
UM ||uM,i||2

||uM,i||2

]
≈ E

UM

||uM,i||2
E||uM,i||2, (3.68)

where E||uM,i||2 = Mσ2
u, and

EUM = E

[
UM (||uM,i||2)

2

(||uM,i||2)2

]
≈ E

UM

(||uM,i||2)2E
(
||uM,i||2

)2
, (3.69)

where the scalar moment E (||uM,i||2)
2

can be written as

E
[ (
u2(i) + · · ·+ u2(i−M + 1)

) (
u2(i) + · · ·+ u2(i−M + 1)

) ]
. (3.70)

For every term in the sum on the left, there are M −1 terms on the sum on the right that

are uncorrelated to it, yielding M(M−1) terms of expected value σ4
u. Yet, the distributive

multiplication yields M 4th-order moments, that, as zero-mean Gaussian variables, have

expected value 3σ4
u. Thus, this moment becomes

E
(
||uM,i||2

)2
= M(M − 1)σ4

u +M3σ4
u = M(M + 2)σ4

u. (3.71)
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For UM = uT
M,iuM,i, we obtain from (3.68)

T1,M = E
uT
M,iuM,i

||uM,i||2
≈
EuT

M,iuM,i

E||uM,i||2
=
Ru,M

Mσ2
u

=
1

M
IM . (3.72)

Considering UM = uT
M,iuM,i in (3.69), we obtain

T2,M = E
uT
M,iuM,i

(||uM,i||2)2 ≈
EuT

M,iuM,i

E (||uM,i||2)2 =
Ru,M

M(M + 2)σ4
u

=
1

M(M + 2)σ2
u

IM , (3.73)

and considering UM = uT
M,iuM,iu

T
M,iuM,i in (3.69), and using the 4th-moment result

(3.65), we obtain

T3,M = E
uT
M,iuM,iu

T
M,iuM,i

(||uM,i||2)2 ≈
EuT

M,iuM,iu
T
M,iuM,i

E (||uM,i||2)2 =
(M + 2)σ4

u

M(M + 2)σ4
u

=
1

M
IM . (3.74)

3.C Recursive computation of the optimum length

In this appendix, we derive M that maximizes η(M,µ0) given in (3.51), considering

exponential impulse response. For convenience of notation, here we write η only as a

function of M . Defining

ϕ(M) , 1 + (s2 − 2)e−2αM + (1− 2s2)e−4αM + s2e−6αM (3.75)

and

ξ(M) ,M + s1Me−2αM , (3.76)

where s1 and s2, defined in (3.49) and (3.50), respectively, are held as constants. Then,

η(M) =
s0ϕ(M)

ξ(M)
, (3.77)

where s0 is defined in (3.48). Considering M as a continuous variable, the value M o that

maximizes η(M) is so that

∂η(M)

∂M
=
s0 (ϕ′(M)ξ(M)− ϕ(M)ξ′(M))

ξ2(M)
= 0, (3.78)

where ϕ′(M) and ξ′(M) are, respectively, the derivatives of ϕ(M) and ξ(M) in respect to

M . As ξ(M) is a bounded function for finite M , then M o satisfies

ϕ′(M)ξ(M)− ϕ(M)ξ′(M) = 0. (3.79)
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Substituting (3.75) and (3.76) in (3.79), and defining x , 2αM , we have

e−x
[
(2 + s1 − s2)x+ (2− s1 − s2)

]
+ e−2x

[
2(2s2 − 1)x+ 2(s1 + s2)− (1 + s1s2)

]
− e−3x

[
(2s1 + 3s2 + 3s1s2 + 2s1s

2
2)x+ s1s2(1− 2s2)

]
− e−4x

[
2s1s2x+ s1s2

]
= 1. (3.80)

As (3.80) is a transcendental equation on x, we cannot solve it explicitly, and we must

compute x recursively. Taking e−x in evidence in (3.80), and taking the natural logarithm

of both sides, then the solution xo to (3.80) can be computed recursively as

x(k) = ln

[
(2 + s1 − s2)x(k − 1) + (2− s1 − s2)

+ e−x(k−1)
[
2(2s2 − 1)x(k − 1) + 2(s1 + s2)− (1 + s1s2)

]
− e−2x(k−1)

[
(2s1 + 3s2 + 3s1s2 + 2s1s

2
2)x(k − 1) + s1s2(1− 2s2)

]
− e−3x(k−1)

[
2s1s2x(k − 1) + s1s2

]]
, (3.81)

so that xo = limk→∞ x(k).

3.D Estimating unknown environment parameters

The methods proposed in Sections 3.3 and 3.4 rely on quantities usually unknown

about the environment, namely, σ2
u, σ

2
v , σ

2
d, SNR and α. In this appendix, we show that

we can estimate these parameters by observing signals u(i) and d(i) and using the weights

of a pilot adaptive filter.

The procedure is divided in three parts. First, we estimate the noise variance σ2
v by

taking the mean of the squared values of the system output samples, provided that the

input of the system is null (from (2.5), when uP,i = 0P the output is solely the noise v(i)).

We can acquire null input by either turning the input down, if possible, or acquiring the

input during silent tracks. As the signal v(i) is an i.i.d. sequence, the standard deviation

of the estimation is, when using K samples, σ2
v

√
2/K [69].

Second, we estimate σ2
u and σ2

d by measuring the mean-square values of the system

input and output, respectively, now considering that the system is operating with integral
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input. From the measures so far, we can estimate the SNR from

σ2
d

σ2
v

=
σ2
v + σ2

u||hP ||2

σ2
v

= 1 + SNR. (3.82)

Finally, we estimate the exponential decay α of the system impulse response with the

aid of an adaptive filter. We measure an approximate impulse response from the filter

weights w(k), for k = 0, . . . ,M − 1, at steady-state. The filter length M can be chosen

loosely, as long as it enables the filter to capture the decay behavior, and the excess mean-

square error in steady-state must be reasonably low (using, for example, µ = 0.1µo). We

estimate α by minimizing the squared error between |w(k)| and the exponential model

βe−αk in logarithm scale, for k = 0, . . . ,M − 1, as [69][
β

−α

]
=
(
XTX

)−1
XTy, (3.83)

where

X =


1 0

1 1
...

...

1 M − 1

 , y =


log |w(0)|
log |w(1)|

...

log |w(M − 1)|

 . (3.84)
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4 ANALYSIS OF UNDERMODELED FILTERS

IN NONSTATIONARY SCENARIO

We have studied so far in this text the cases in which the underlying environment is

stationary. The model of a time-invariant impulse response, however, may not be repre-

sentative in many practical applications where the environment is constantly changing,

such as in acoustic paths [70] and in communication channels [47, 71].

In this chapter, we derive the tracking performance, which is the steady-state perfor-

mance under time-variant systems, for the undermodeled LMS and ε-NLMS algorithms.

Although the analyses of these algorithms for nonstationary models (time-variant impulse

responses) [2, 3, 35, 72, 73] and for undermodeled filters [9, 10] are separately available in

the literature, the joint analysis as we derive is a novelty, and, as we will show, simulta-

neous nonstationarity and undermodeling yields terms that are not trivially obtained by

separate analysis.

Since we focus on the analysis of steady-state performance, we opt to use the energy

conservation relation [35] in the derivations. We employ the impulse response model (2.6),

that considers general mean hP and decay rate c. Many authors approximate such decay

rate c to 1 in the algorithm analyses [2, 4, 35], but we keep |c| < 1 in our derivations

since an unstable mean-square behavior in the impulse response is not suitable to analyze

undermodeled filters.

We also derive the optimal step size under such time-variant model for the white

input case. Differently from what we consider in the previous chapter, we now consider

the optimal step size as the one that minimizes the steady-state EMSE. We show that

such optimal step size may not exist, and we derive the condition for its existence.

This chapter is organized as follow: in Section 4.1, we carry out a preliminar analysis

for the mean and mean-square behavior of the impulse response model (2.6); in Section 4.2,

we derive the mean behavior of the general data-normalized algorithm, and the mean-

square behavior in steady-state using the energy conservation relation; we derive the

results, in particular, for the LMS and ε-NLMS algorithms; in Section 4.3, we derive the
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step size that minimizes the steady-state EMSE when the input signal is white; finally,

in Section 4.4, we present simulated curves to better understand the theoretical results

obtained, and to compare with experimental data.

4.1 Behavior of the impulse response

Before we begin the algorithm performance analysis, we need to derive the mean and

the mean-square behavior of the impulse response model (2.6).

First, let us analyze the mean and mean-square behaviors of the internal state θP,i.

Recall, from the second equation in (2.6), that

θP,i = cθP,i−1 + qP,i, (4.1)

where |c| < 1, and qP,i is as an zero-mean i.i.d. process with covariance matrix EqP,iq
T
P,i =

QP . As qP,i is zero-mean, we have EθP,∞ = 0P .

Define the covariance matrix of θP,i as ΘP,i , EθP,iθ
T
P,i. Then, using (4.1), we can

write it as

ΘP,i , EθP,iθ
T
P,i = E(cθP,i−1 + qP,i)(cθP,i−1 + qP,i)

T

= c2EθP,i−1θ
T
P,i−1 + cEθP,i−1q

T
P,i + cEqP,iθ

T
P,i−1 + EqP,iq

T
P,i

= c2ΘP,i−1 +QP , (4.2)

and, as i→∞,

ΘP,∞ =
1

1− c2
QP . (4.3)

Note that E||θP,i||2 = TrΘP,i, and similarly, as i→∞,

TrΘP,∞ =
TrQP

1− c2
. (4.4)

From the first equation in (2.6), the impulse response hP,i is obtained from the internal

state simply by adding the deterministic term hP , as

hP,i = hP + θP,i, (4.5)

and so the mean and mean-square behaviors of hP,i are straightforward. The mean be-

havior is

EhP,i = hP + EθP,i, (4.6)
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and EhP,∞ = hP . As hP,i differs from θP,i only by the mean, the covariance matrix hP,i

equals the covariance matrix ΘP,i:

E(hP,i − hP )(hP,i − hP )T = EθP,iθ
T
P,i = ΘP,i. (4.7)

The correlation matrix of hP,i is

EhP,ih
T
P,i = E (hP + θP,i) (hP + θP,i)

T

= hPh
T
P + ΘP,i + hPEθ

T
P,i + EθP,ih

T
P

= hPh
T
P + ΘP,i. (4.8)

As i→∞, using (4.3),

EhP,∞h
T
P,∞ = hPh

T
P +

1

1− c2
QP , (4.9)

and similarly

E||hP,∞||2 = ||hP ||2 +
TrQP

1− c2
. (4.10)

We assume that, as the adaptive filter begins to run at i = 0, the impulse response

has already reached steady-state, that is, we assume that the environment model above

starts to run at some instant distant in the past.

Else, note that, for |c| < 1, the quantities in steady-state (4.3), (4.4) and (4.10) are

finite real numbers. For |c| = 1, on the other hand, these quantities grow unboundedly. As

seen in the analyses of the previous chapter, the performance of undermodeled algorithms

depends on how the energy of the impulse response is distributed along the taps, and

we show in this chapter that this is also true for the nonstationary case. Therefore, in

order to take only the cases in which the algorithm performance is stable, we consider

that |c| < 1.

4.1.1 Notes about the covariance matrix QP

In the definitions of qP,i, stated back in Subsection 2.2.2 and reminded above in this

section, we only specified the temporal property for qP,i — an i.i.d. sequence. This,

however, does not tell us anything about matrix QP , that defines how the elements of the

vector qP,i are correlated to each other at a given time instant.

In the literature, tracking analyses are carried out assuming a general matrix QP

[2, 35]. In the analysis that follows in this text, for the case of undermodeled filters, we

make two simplifying assumptions about the elements of qP,i: (i) each element of the
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vector qP,i is independent of the others, so that matrix QP is a diagonal matrix; and (ii)

the variance of elements in qP,i follows an exponential envelope of decay α. Under these

assumptions, the elements of qP,i can be written as

qP,i(k) = e−αkzP,i(k), for k = 0, 1, . . . , P − 1, (4.11)

where zP,i(k) has variance σ2
z and is independent of zP,j(`) if either i 6= j or k 6= `. With

this considered, the trace of QP is given by

TrQP =
P−1∑
k=0

e−2αkEz2
P,i(k) = σ2

z

(
1− e−2αP

1− e−2α

)
. (4.12)

The exponential envelope assumption for qP,i(k), together with a similar assumption

for the mean hP , leads hP,i to have an exponential envelope. As observed in the previous

chapter, an exponential impulse response is meaningful in many practical applications

and provides a mathematical parameter to evaluate how undermodeling affects the per-

formance of an adaptive algorithm.

Assuming that the elements in qP,i are independent from one another implies that the

entries θP,i(k), for k = 0, 1, . . . , P −1, are independent processes (and so are the entries of

hP,i). This induces a reasonable statistical simplification when considering the partitions

of these vector quantities, as we address in the following subsection.

4.1.2 Vector partitions

In the analyses of undermodeled filters, it is necessary to split the impulse response

vector into two parts, as in the previous chapters. Similarly to (2.11), we define, for the

nonstationary case,

qP,i =

[
qM,i

q̄N,i

]
, θP,i =

[
θM,i

θ̄N,i

]
, hP,i =

[
hM,i

h̄N,i

]
, (4.13)

where qM,i,θM,i,hM,i ∈ RM×1 and q̄N,i, θ̄N,i, h̄N,i ∈ RN×1. Considering the indepen-

dence assumptions from Subsection 4.1.1, none of the quantities qM,i, θM,i and hM,i are

statistically dependent of any of the quantities q̄N,i, θ̄N,i and h̄N,i.

Consequently, the mean and mean-square behavior of these vector partitions are sim-

ply the partition of the results from the previous subsection. Vectors qM,i, q̄N,i, θM,i and

θ̄N,i are zero-mean, and EhM,i = hM and Eh̄N,i = h̄N , where hP =
[
hT
M h̄T

N

]T

.
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For the mean-square quantities, define QM , EqM,iq
T
M,i and Q̄N , Eq̄N,iq̄

T
N,i. Then:

TrQP = EqT
P,iqP,i = E

[
qT
M,i q̄T

N,i

] [qM,i

q̄N,i

]
= EqT

M,iqM,i + Eq̄T
N,iq̄N,i

= TrQM + TrQ̄N . (4.14)

Analogously, if we define ΘM,i , EθM,iθ
T
M,i and Θ̄N,i , Eθ̄N,iθ̄

T
N,i, then

TrΘP,i = TrΘM,i + TrΘ̄N,i, (4.15a)

E||hP,i||2 = E||hM,i||2 + E||h̄N,i||2, (4.15b)

and, in steady-state,

TrΘM,∞ =
TrQM

1− c2
, (4.16a)

TrΘ̄N,∞ =
TrQ̄N

1− c2
. (4.16b)

If we assume that elements of the vector qP,i are independent, under the exponential

model (4.11), then

TrQM = σ2
z

(
1− e−2αM

1− e−2α

)
, (4.17a)

TrQ̄N = σ2
z

(
e−2αM − e−2αP

1− e−2α

)
= σ2

ze
−2αM

(
1− e−2αN

1− e−2α

)
. (4.17b)

4.2 Tracking performance analysis

In this section, we derive the excess MSE for the nonstationary environment. We

carry out the derivations considering a data-normalized algorithm, and then derive the

particular cases for the LMS and the ε-NLMS algorithms, similarly to what is done in Sec-

tion 3.2. We begin the analysis by deriving some fundamental relations and assumptions;

we then derive the mean behavior, and finally we derive the mean-square performance by

using the energy conservation relation.

The full and partial a priori estimation errors ea(i) and ea,M(i), defined respectively
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in (2.38) and (2.45), are related as

ea(i) = uP,i

(
hP,i −

[
wM,i−1

0N

])
=
[
uM,i ūN,i

] [hM,i −wM,i−1

h̄N,i

]
= ea,M(i) + ūN,ih̄N,i. (4.18)

Recall from (2.40) and (2.44) that the weight error vectors consider impulse response

and filter weight of the same time instant. Using (4.1) and (4.5), we can relate the

expression hM,i −wM,i−1 to the weight error vector w̃M,i−1 as

hM,i −wM,i−1 = hM + cθM,i−1 + qM,i −wM,i−1

= hM + θM,i−1︸ ︷︷ ︸
hM,i−1

+(c− 1)θM,i−1 + qM,i −wM,i−1

= w̃M,i−1 + qM,i − (1− c)θM,i−1. (4.19)

The filter output error is given by

e(i) = d(i)− uM,iwM,i−1

= v(i) + uM,ihM,i + ūN,ih̄N,i − uM,iwM,i−1

= v(i) + uM,i(hM,i −wM,i−1) + ūN,ih̄N,i

= v(i) + ea,M(i) + ūN,ih̄N,i

= v(i) + ea(i). (4.20)

For the analysis that follows, we consider that uP,i is independent of uP,j for i 6= j

[1, 4, 35]. Summarizing our independence assumptions, we have that:

1. Random processes uP,i, v(i) and qP,i are mutually independent;

2. uP,i, v(i) and qP,i are i.i.d. processes;

3. hP,i and θP,i are independent of the processes uP,i and v(i); they are also indepen-

dent of qP,j, but only for i < j;

4. w̃M
P,i is independent of v(j), qP,j and uP,j for j > i, but is dependent for j ≤ i; w̃M

P,i

is correlated to θP,j and hP,j for any j.

These assumptions apply analogously for vector partitions. Also, considering the assump-

tions in Subsection 4.1.1 for qP,i, any upper partition is independent of any lower partition

(the only exception is w̃M,i, which is correlated to θ̄N,j and h̄N,j, for any j).
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Taking the expectation of the squared-norm of (4.18), the excess MSE can be decom-

posed as

Ee2
a(i) = Ee2

a,M(i) + Eh̄
T
N,iū

T
N,iūN,ih̄N,i + 2Eh̄

T
N,iū

T
N,iuM,i(hM,i −wM,i−1). (4.21)

Using (4.19), the third term in the right of (4.21) can be decomposed as

2Eh̄
T
N,iū

T
N,iuM,i(hM,i −wM,i−1) = 2Eh̄

T
N,iū

T
N,iuM,iw̃M,i−1

+ 2Eh̄
T
N,iū

T
N,iuM,iqM,i − 2(1− c)Eh̄T

N,iū
T
N,iuM,iθM,i−1. (4.22)

As qM,i and θM,i−1 are zero-mean and independent from h̄
T
N,iū

T
N,iuM,i, the second and

third terms in the right of (4.22) are zero. The EMSE (4.21) thus becomes

EMSE(i) = Ee2
a(i) = Ee2

a,M(i) + ζum(i) (4.23)

where the undermodeling term ζum(i) is

ζum(i) , Eh̄
T
N,iū

T
N,iūN,ih̄N,i + 2Eh̄

T
N,iū

T
N,iuM,iw̃M,i−1. (4.24)

In Appendices 4.A and 4.B, we show how to compute the terms in ζum(i) from the au-

tocorrelation matrix Rh,N,i , Eh̄N,ih̄
T
N,i and the cross-correlation matrix Rwh,M,N,i ,

Ew̃M,i−1h̄
T
N,i.

Before we proceed to the derivation of Ee2
a,M(i), we first address the mean behavior,

whose result will be required subsequently.

4.2.1 Mean analysis

Consider the general data-normalized algorithm

wM,i = wM,i−1 + µ
uT
M,i

g (uM,i)
e(i). (4.25)

Subtracting both sides of this expression from hM,i, and expanding e(i) as (4.20), we have

hM,i −wM,i = hM,i −wM,i−1 − µ
uT
M,i

g (uM,i)
e(i), (4.26)

hM,i −wM,i = hM,i −wM,i−1 − µ
uT
M,i

g (uM,i)
(v(i) + uP,ihP,i − uM,iwM,i−1), (4.27)

w̃M,i =

(
IM − µ

uT
M,iuM,i

g (uM,i)

)
(hM,i −wM,i−1)−

µuT
M,i

g (uM,i)
v(i)− µ

uT
M,iūN,i

g (uM,i)
h̄N,i. (4.28)
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Expanding (hM,i −wM,i−1) as (4.19), we have the recursion for the partial weight error

vector as

w̃M,i =

(
IM − µ

uT
M,iuM,i

g (uM,i)

)
w̃M,i−1 − µ

uT
M,i

g (uM,i)
v(i)− µ

uT
M,iūN,i

g (uM,i)
h̄N,i

+

(
IM − µ

uT
M,iuM,i

g (uM,i)

)(
qM,i − (1− c)θM,i−1

)
. (4.29)

Taking expectation, as v(i), qM,i and θM,i−1 are zero-mean and uncorrelated to uM,i,

the terms with them become zero. Also, note that h̄N,i = h̄N + θ̄N,i, where θ̄N,i is

zero-mean and independent of uM,i. With the independence assumptions, w̃M,i−1 is in-

dependent of uM,i, then (4.29) becomes

Ew̃M,i = (IM − µT1,M)Ew̃M,i−1 − µT4,M,N h̄N , (4.30)

where (T1,M is the same as previously defined in (3.9))

T1,M , E
uT
M,iuM,i

g (uM,i)
and T4,M,N , E

uT
M,iūN,i

g (uM,i)
. (4.31)

Then, in steady-state, we have

Ew̃M,∞ = −T−1
1,MT4,M,N h̄N . (4.32)

4.2.2 Energy conservation relation

In this subsection, we derive the steady-state behavior of Ee2
a,M(i) using the energy

conservation relation.

Considering the definition of ea,M(i) in (2.45) and defining the a posteriori estimation

error ep,M(i) , uM,i(hM,i − wM,i), we have, by pre-multiplying both sides of (4.26) by

uM,i,

ep,M(i) = ea,M(i)− µ ||uM,i||2

g (uM,i)
e(i). (4.33)

Isolating e(i) in (4.33) and substituting it in (4.26), the scalars µ and g(uM,i) are cancelled,

and we have

(hM,i −wM,i) +
uT
M,iea,M(i)

||uM,i||2
= (hM,i −wM,i−1) +

uT
M,iep,M(i)

||uM,i||2
. (4.34)

Taking squared-norm and expectation, the cross-terms are cancelled and we obtain the
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energy conservation relation [35]

E||hM,i −wM,i||2︸ ︷︷ ︸
(I)

+E
e2
a,M(i)

||uM,i||2︸ ︷︷ ︸
(II)

= E||hM,i −wM,i−1||2︸ ︷︷ ︸
(III)

+E
e2
p,M(i)

||uM,i||2︸ ︷︷ ︸
(IV )

. (4.35)

Note that (I) is E||w̃M,i||2. In the following, we compute (III) and (IV ) and we will see

that the term (II) will be cancelled.

First, let us rewrite (III) in terms of E||w̃M,i−1||2. Taking the squared norm of (4.19),

we have

E||hM,i −wM,i−1||2 = E||w̃M,i−1||2 + τns(i− 1), (4.36)

where the term τns, related to the nonstationarity, is

τns(i) , TrQM + (1− c)2TrΘM,i − 2(1− c)TrRwθ,M,i, (4.37)

and Rwθ,M,i , Ew̃T
M,iθM,i. In appendix 4.B, we show how to compute the cross-correlation

term Rwθ,M,i in steady-state.

For (IV ), let us rewrite ep,M(i) in terms of ea,M(i) (using (4.20) and (4.33)):

ep,M(i) =

(
1− µ ||uM,i||2

g (uM,i)

)
ea,M(i)− µ ||uM,i||2

g (uM,i)
v(i)− µ ||uM,i||2ūN,i

g (uM,i)
h̄N,i. (4.38)

Taking the square, dividing by ||uM,i||2 and taking expectation, the cross-terms with v(i)

are zero, and then

E
e2
p,M(i)

||uM,i||2
= E


1− 2µ

||uM,i||2

g(uM,i)
+ µ2 ||uM,i||4

g2(uM,i)

||uM,i||2

 e2
a,M(i)


+ µ2E

||uM,i||2

g2 (uM,i)
v2(i) + µ2Eh̄

T
N,i

ūT
N,i||uM,i||2ūN,i
g2 (uM,i)

h̄N,i

− 2µEh̄
T
N,i

ūT
N,i

g (uM,i)

(
1− µ ||uM,i||2

g (uM,i)

)
ea,M(i). (4.39)

We can expand ea,M(i) in the fourth term on the right side in (4.39) using (2.45). Yet,

as the terms qM,i and θM,i−1 in (hM,i −wM,i−1) are zero-mean and uncorrelated to h̄N,i,

then

E
e2
p,M(i)

||uM,i||2
= E

e2
a,M(i)

||uM,i||2
− 2µE

e2
a,M(i)

g (uM,i)
+ µ2E

||uM,i||2e2
a,M(i)

g2 (uM,i)

+ µ2σ2
vTrT2,M + µ2Eh̄

T
N,iT6,N h̄N,i − 2µEh̄

T
N,i (T4,M,N − µT5,M,N)T w̃M,i−1, (4.40)
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where T2,M was defined previously in (3.9) as

T2,M , E
uT
M,iuM,i

g2(uM,i)
(4.41)

and

T5,M,N , E
uT
M,i||uM,i||2ūN,i
g2 (uM,i)

and T6,N , E
ūT
N,i||uM,i||2ūN,i
g2 (uM,i)

. (4.42)

Defining τum as the quantity that collects the undermodeling effect in (4.40)

τum(i) , µEh̄
T
N,iT6,N h̄N,i − 2Eh̄

T
N,i (T4,M,N − µT5,M,N)T w̃M,i−1, (4.43)

then (4.40) becomes

E
e2
p,M(i)

||uM,i||2
= E

e2
a,M(i)

||uM,i||2
− 2µE

e2
a,M(i)

g (uM,i)
+ µ2E

||uM,i||2e2
a,M(i)

g2 (uM,i)

+ µ2σ2
vTrT2,M + µτum(i). (4.44)

The expectation terms in (4.43) can be computed with the results in Appendices 4.A and

4.B.

Now, substituting (4.36) and (4.40) back into the energy conservation relation (4.35),

and considering steady-state i → ∞ so that E||w̃M,i||2 = E||w̃M,i−1||2, we obtain the

steady-state variance relation

2µE
e2
a,M(∞)

g (uM,∞)
− µ2E

||uM,∞||2e2
a,M(∞)

g2 (uM,∞)
= µ2σ2

vTrT2,M + τns(∞) + µτum(∞). (4.45)

In order to isolate the term Ee2
a,M(∞), we must make further independence assumptions

and consider specific algorithms to specify the function g(·).

4.2.3 Performance for the LMS algorithm

For the LMS algorithm, g (uM,i) = 1 and the moment matrices become

T1,M = T2,M = EuT
M,iuM,i = Ru,M , (4.46)

T4,M,N = EuT
M,iūN,i = Ru,M,N . (4.47)

For the fourth-order moment matrices, we assume that the input is Gaussian and, from

the results in Appendix 3.A, we have

T5,M,N = EuT
M,i||uM,i||2ūN,i = (2Ru,M + TrRu,MIM)Ru,M,N , (4.48)
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T6,N = EūT
N,i||uM,i||2ūN,i = 2RT

u,M,NRu,M,N +Ru,N(TrRu,M). (4.49)

The cross-correlation matrices Rwθ,M,∞ and Rwh,M,N,∞, necessary to compute (4.24),

(4.37) and (4.43), are, from the results (4.106) and (4.112) in appendix,

Rwθ,M,∞ =
1

1 + c

[
(1− c)IM + µcRu,M

]−1
(IM − µRu,M)QM (4.50)

and

Rwh,M,N,∞ = −R−1
u,MRu,M,N h̄N h̄

T
N −

1

1− c2

[(
1− c
cµ

)
IM +Ru,M

]−1

Ru,M,NQ̄N . (4.51)

Recalling from Section 4.1 that Rh,N,∞ = Eh̄N,∞h̄
T
N,∞ = h̄N h̄

T
N+ Q̄N

1−c2 , using the results

in Appendix 4.A to compute bilinear forms and using the cross-correlation matrices above,

the nonstationarity and undermodeling terms (4.37), (4.43) and (4.24) become

τns(∞) =
2

1 + c

[
TrQM − (1− c)Tr

[
[(1− c)IM + µcRu,M ]−1 (IM − µRu,M)QM

] ]
,

(4.52)

τum(∞) = µ
∑(

2RT
u,M,NRu,M,N +Ru,N(TrRu,M)

)
�
(
h̄N h̄

T
N +

Q̄N

1− c2

)
− 2

∑[(
(1− µTrRu,M)IM − 2µRu,M

)
Ru,M,N

]
�Rwh,M,N,∞, (4.53)

ζum(∞) =
∑

Ru,N �
(
h̄N h̄

T
N +

Q̄N

1− c2

)
+ 2

∑
Ru,M,N �Rwh,M,N,∞. (4.54)

In order to isolate Ee2
a,M(∞) in (4.45), we assume that ||uM,∞||2 is independent of

e2
a,M(∞), which is a reasonable approximation in steady-state [35]. Then,

µEe2
a,M(∞) (2− µTrRu,M) = µ2σ2

vTrRu,M + τns(∞) + µτum(∞) (4.55)

Ee2
a,M(∞) =

µMσ2
vσ

2
u + µ−1τns(∞) + τum(∞)

2− µMσ2
u

. (4.56)

Using (4.56) in (4.23), we have

EMSE(∞) =
µMσ2

vσ
2
u + µ−1τns(∞) + τum(∞)

2− µMσ2
u

+ ζum(∞), (4.57)

where τns(∞), τum(∞) and ζum(∞) are given, respectively, by (4.52), (4.53) and (4.54).

This result, although general enough to comprise any input signal correlation, filter
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length and time-variant impulse response under the model (2.6), is quite complex. The

expression (4.57) can be simplified under some particular conditions, such as for stationary

systems, full-length filters or white input signal.

When the system is stationary, matrix QP is identically zero, making τns(∞) = 0 and

the terms that depend on QP in τum(∞) and ζum(∞) vanish. These terms become

τum(∞) = µ
∑(

2RT
u,M,NRu,M,N +Ru,N(TrRu,M)

)
� h̄N h̄T

N

− 2
∑[(

(1− µTrRu,M)IM − 2µRu,M

)
Ru,M,N

]
�Rwh,M,N,∞, (4.58)

ζum(∞) =
∑

Ru,N � h̄N h̄T
N + 2

∑
Ru,M,N �Rwh,M,N,∞, (4.59)

Rwh,M,N,∞ = −R−1
u,MRu,M,N h̄N h̄

T
N . (4.60)

When M = P , the terms Ru,N , Ru,M,N and h̄N,i vanish, and consequently τum(∞) = 0

and ζum(∞) = 0.

When the input signal is white, we can isolate the EMSE in the variance relation

(4.45) without the rough independence assumption between ||uM,∞||2 and e2
a,M(∞). In

Appendix 4.C, it is shown that, when input is white,

E||uM,∞||2e2
a,M(∞) = (M + 2)σ2

uEe
2
a,M(∞), (4.61)

so that (4.57) becomes

EMSE(∞) =
µMσ2

vσ
2
u + µ−1τns(∞) + τum(∞)

2− µσ2
u(M + 2)

+ ζum(∞). (4.62)

Furthermore, uncorrelation of samples of u(i) implies that Ru,P = σ2
uIP and consequently

Ru,M,N = 0M,N and Rwh,M,N,∞ = 0M,N , which simplify most of the expressions τns(∞),

τum(∞) and ζum(∞), becoming:

τns(∞) =
2

1 + c

[
TrQM − (1− c)Tr

[(
(1− c) + µcσ2

u

)−1
IM
(
1− µσ2

u

)
IMQM

]]
=

2

1 + c

[
1− (1− c)(1− µσ2

u)

1− c+ µcσ2
u

]
TrQM

=

(
2

1 + c

)(
µσ2

u

1− c+ µcσ2
u

)
TrQM

=
2µσ2

uTrQM

(1 + c)(1− c+ µcσ2
u)
, (4.63)
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τum(∞) = µRu,N(TrRu,M)�
(
h̄N h̄

T
N +

Q̄N

1− c2

)
= µσ4

uM

(
||h̄N ||2 +

TrQ̄N

1− c2

)
, (4.64)

ζum(∞) = Ru,N �
(
h̄N h̄

T
N +

Q̄N

1− c2

)
= σ2

u

(
||h̄N ||2 +

TrQ̄N

1− c2

)
. (4.65)

4.2.4 Performance for the ε-NLMS algorithm

The evaluation of the moment matrices (4.31), (4.41) and (4.42) for the ε-NLMS

algorithm is, under general input correlation conditions, a very complex task. In the

literature, such analyses for the ε-NLMS algorithm are traditionally carried out for some

specific conditions on the eigenvalues of Ru,P and assuming that the input signal is Gaus-

sian [10, 59, 68]. Only recently a more general analysis has been derived [74]. In this

section, for simplicity, we focus the case in which all the eigenvalues of Ru,P are equal,

that is, when the input signal is white.

Recalling that for the ε-NLMS algorithm g(uM,i) = ε + ||uM,i||2, and assuming that

u(i) is Gaussian and white and that ε ≈ 0, the moment matrices T1,M and T2,M can be

approximated, from Appendix 3.B, as

T1,M ≈
1

M
IM and T2,M ≈

1

M(M + 2)σ2
u

IM . (4.66)

Using a similar procedure, and with the results of the fourth-order moments in Appendix

3.A, the other moment matrices become

T4,M,N ≈
EuT

M,iūN,i

E||uM,i||2
=
Ru,M,N

Mσ2
u

= 0M,N , (4.67)

T5,M,N ≈
EuT

M,i||uM,i||2ūN,i
E (||uM,i||2)2 =

(2Ru,M + TrRu,MIM)Ru,M,N

M(M + 2)σ4
u

= 0M,N , (4.68)

T6,N ≈
EūT

N,i||uM,i||2ūN,i
E (||uM,i||2)2 =

2RT
u,M,NRu,M,N +Ru,N(TrRu,M)

M(M + 2)σ4
u

=
1

M + 2
IN . (4.69)
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The cross-correlation matrices Rwθ,M,∞ and Rwh,M,N,∞ become, then,

Rwθ,M,∞ =
1

1 + c

[
(1− c) +

µc

M

]−1 (
1− µ

M

)
QM

=
M − µ

(1 + c) (M −Mc+ µc)
QM (4.70)

and

Rwh,M,N,∞ = 0M,N . (4.71)

The nonstationarity and undermodeling terms (4.37), (4.43) and (4.24), then, become

τns(∞) =
2µTrQM

(1 + c) (M −Mc+ µc)
, (4.72)

τum(∞) = µEh̄
T
N,∞T6,N h̄N,∞ =

µ

M + 2
E||h̄N,∞||2

=
µ

M + 2

(
||h̄N ||2 +

TrQ̄N

1− c2

)
, (4.73)

ζum(∞) = Eh̄
T
N,∞Ru,N h̄N,∞ = σ2

uE||h̄N,∞||2 = σ2
u

(
||h̄N ||2 +

TrQ̄N

1− c2

)
. (4.74)

As in the LMS case, we assume that ||uM,∞||2 is independent of e2
a,M(∞). Then, the

variance relation (4.45) becomes

2µE
e2
a,M(∞)

||uM,∞||2
− µ2E

||uM,∞||2e2
a,M(∞)

(||uM,∞||2)2 = µ2σ2
vTrT2,M + τns(∞) + µτum(∞), (4.75)

E
e2
a,M(∞)

||uM,∞||2
=

µσ2
v

(M+2)σ2
u

+ µ−1τns(∞) + τum(∞)

2− µ
, (4.76)

Ee2
a,M(∞) =

Mσ2
u

2− µ

(
µσ2

v

(M + 2)σ2
u

+ µ−1τns(∞) + τum(∞)

)
. (4.77)

Considering the approximation for large M , and substituting in (4.23), we have

EMSE(∞) =
µσ2

v

2− µ
+
Mσ2

u

2− µ

(
µ−1τns(∞) + τum(∞)

)
+ ζum(∞), (4.78)

where τns(∞), τum(∞) and ζum(∞) are given, respectively, by (4.72), (4.73) and (4.74).

4.3 Optimal step size for white input

In the stationary scenario, treated in Chapter 3, we attain lower and lower steady-state

error level as we reduce the step size value. In the nonstationary scenario, in constrast,



84

this does not occur: reducing undefinitely the step size may not improve and might

even degrade the filter performance since the filter becomes unable to track the constant

changes in the system. A question that arises, consequently, is if there is a step size value

that maximizes the tracking performance, that is, that minimizes the steady-state error

of the filter. We call such step size value as the optimal step size for the tracking case.

In the literature, the optimal step size has been derived for some different models

[2, 3, 35]. In the following, we derive the optimal step size for the nonstationary model

(2.6), that we employed along this chapter, considering the undermodeling and white

input case, and then we analyze its existence condition: is there always a step size that

minimizes the steady-state error?

The steady-state EMSE expressions of the LMS and the ε−NLMS algorithms for

white input, respectively, (4.62) and (4.78), considering the approximation M ≈ M + 2,

can be unifiedly written as

EMSE(∞) =
χ0χ3µ

2− µχ3

+
Mσ2

uχ1

χ3(2− µχ3)(χ2 + µ)
+
(
χ0 − σ2

v

)
(4.79)

where

χ0 , σ2
v + σ2

u

(
||h̄N ||2 +

TrQ̄N

1− c2

)
, χ1 ,

2TrQM

c(1 + c)
, (4.80)

χ2 ,


1−c
cσ2

u
, for LMS,

M(1−c)
c

, for ε-NLMS
, χ3 ,

Mσ2
u , for LMS,

1 , for ε-NLMS
. (4.81)

Taking the derivative of (4.79) in terms of µ, we have

∂EMSE(∞)

∂µ
=

2χ0χ3

(2− µχ3)2 −
Mσ2

uχ1 [2− χ2χ3 − 2χ3µ]

χ3 (2− µχ3)2 (χ2 + µ)2

=
2χ0χ

2
3 (χ2 + µ)2 +Mσ2

uχ1 [χ2χ3 + 2χ3µ− 2]

χ3 (2− µχ3)2 (χ2 + µ)2 . (4.82)

The optimal step size µo, that minimizes EMSE(∞), is so that (4.82) equals zero. As

0 < µ < 2/χ3 for stable convergence (for both LMS and ε-NLMS) [12], the denominator

of (4.82) cannot zero the expression. Then, the optimal step size is such that

2χ0χ
2
3

[
(µo)2 + 2χ2µ

o + χ2
2

]
+Mσ2

uχ1 [χ2χ3 + 2χ3µ
o − 2] = 0, (4.83)

2χ0χ
2
3(µo)2 + 2χ3

(
2χ0χ2χ3 +Mσ2

uχ1

)
µo + 2χ0χ

2
2χ

2
3 +Mσ2

uχ1 [χ2χ3 − 2] = 0. (4.84)

Then, as a quadratic function of µo, and because step size is positive, the only solution
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to (4.84) is

µo = −µ′ +
√

(µ′)2 − µ′′, (4.85)

where

µ′ =
2χ3 (2χ0χ2χ3 +Mσ2

uχ1)

4χ0χ2
3

= χ2 +
Mσ2

uχ1

2χ0χ3

(4.86)

and

µ′′ =
2χ0χ

2
2χ

2
3 +Mσ2

uχ1 [χ2χ3 − 2]

2χ0χ2
3

= χ2
2 +

χ2Mσ2
uχ1

2χ0χ3

− Mσ2
uχ1

χ0χ2
3

= χ2µ
′ − Mσ2

uχ1

χ0χ2
3

. (4.87)

The only terms that determine whether the LMS or the ε-NLMS algorithm is cosidered

are χ2 and χ3, computed as in (4.81).

4.3.1 Existence condition for the optimal step size

As we can notice from (4.85), the optimal step size does not always exist. Analytically,

if µ′′ ≥ 0, then µo would be zero or negative, which are not valid values for a step size, and

thus an optimal step size would not exist. This means that, when µ′′ ≥ 0, as we decrease

undefinitely the step size towards zero, the steady-state error continually decreases, but

converging to a nonzero value. In practice, as we will see in the simulations of Section

4.4, decreasing the step size from a certain point on does not yield relevant improvement

in the steady-state performance for these cases.

Let us derive with more detail the conditions under which the optimal step size exists.

For the LMS algorithm, substituting χ1, χ2 and χ3 from (4.80) and (4.81) into (4.87), we

have

µ′′ =

(
1− c
cσ2

u

)2

+

(
1− c
cσ2

u

)
TrQM

c(1 + c)χ0

− 2TrQM

Mσ2
uc(1 + c)χ0

. (4.88)

The optimal step size exists if µ′′ < 0, that is, if(
1− c
cσ2

u

)2

+

[
1− c
cσ2

u

− 2

Mσ2
u

]
TrQM

c(1 + c)χ0

< 0, (4.89)

(
2

M
− 1− c

c

)
TrQM

c(1 + c)χ0

>
(1− c)2

c2σ2
u

, (4.90)(
2

M
− 1− c

c

)(
c

1− c

)
TrQM

1− c2
>
χ0

σ2
u

. (4.91)
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Then, substituting χ0 from (4.80) into (4.91), we have(
2c

M(1− c)
− 1

)
TrQM

1− c2
>
σ2
v

σ2
u

+ ||h̄N ||2 +
TrQ̄N

1− c2
. (4.92)

Analogously, for the ε-NLMS algorithm,

µ′′ =
M2(1− c)2

c2
+Mσ2

u

(
M(1− c)

c

)
TrQM

c(1 + c)χ0

− 2Mσ2
u

TrQM

c(1 + c)χ0

. (4.93)

Imposing µ′′ < 0, it follows that

M2(1− c)2

c2
+Mσ2

u

(
M(1− c)

c
− 2

)
TrQM

c(1 + c)χ0

< 0, (4.94)

σ2
u

(
2− M(1− c)

c

)
TrQM

c(1 + c)χ0

>
M(1− c)2

c2
, (4.95)(

2− M(1− c)
c

)(
c

M(1− c)

)
TrQM

1− c2
>
χ0

σ2
u

, (4.96)

which yields the same existence condition in (4.92).

From the right-hand side of (4.92), note that the optimal step size µo exists if un-

dermodeling (given by the terms ||h̄N ||2 and TrQ̄N) is sufficiently low, and if the SNR

(proportional to the inverse of σ2
v/σ

2
u) is sufficiently high. Also, the left-hand side of

(4.92) must be positive for the inequality to hold, and so a necessary (but not sufficient)

condition is
2c

M(1− c)
− 1 > 0, (4.97)

which, after trivial manipulation and considering the bound |c| < 1, yields

M

M + 2
< c < 1. (4.98)

Recall that all these derivations come from (4.79), which assumes the approximation

for large length M ≈M+2. Using this approximation also in (4.98) gives a contradiction,

since the equality c = 1 is not allowed. Instead, we can interpret the lower bound

M/(M + 2) as a value very close to one for large M , and we will indeed verify, in the

simulations in Section 4.4, that the optimal step size exists only for c very close to one.

The conditional existence of the optimal step size in tracking has also been treated

in [75], but considering the case of general input correlation and no undermodeling. In the

derivations above, by considering the case of white input, we could derive a closed-form

expression for the existence condition (4.92), also including the undermodeling effect.
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When the filter is not undermodeled (the two last terms in the right on (4.92) do

not exist, by construction) and making c → 1, note that condition (4.92) always holds

because the term on the left grows unboundedly to positive infinity. This is consistent

with the results in the literature [2,35], in which the optimal step size always exist for the

random-walk model (and not undermodeled filter).

4.4 Simulations

We present simulations to visualize the behavior of the tracking performance derived

in this chapter, under distinct environment conditions. For all the following simulations,

we consider σ2
u = 1, σ2

v = 0.001, and impulse response with decay α = 0.05 (for both hP

and qP,i), ||hP ||2 = 1, P = 500, that can be regarded as infinite for the decay α employed,

and the mean hP is a pure exponential. The other environment parameters and the step

size value changes along the tests.

Figure 23 shows curves of EMSE(∞) × µ for the LMS algorithm, alternating which

parameters are fixed and which ones are varied. We compare theoretical curves (dash-

lines), computed as (4.57), to steady-state values obtained experimentally (colored dots).

The experimental measures are obtained from approximate learning curves of EMSE that

are the ensemble average of 300 realizations, from which we compute the average of 10000

samples in steady-state.

Figure 23a shows the case in which we fix TrΘP,∞ = 0.001, M = 100, white input ρ = 0

and vary c (note that, by fixing TrΘP,∞ and varying c, we are varying TrQP according to

relation (4.4)). As c gets closer to 1 (the time-varying component in the impulse response

is more correlated and slow), the steady-state error can attain lower values. This happens

because slower variations in the impulse response are easier to track. However, as we take

smaller and smaller step sizes, the steady-state error increases because the filter becomes

unable to track the system variations. Note that all the curves converge to the same value

of EMSE(∞) as µ→ 0. Indeed, we can verify, from (4.62), that

lim
µ→0

EMSE(∞) =
1

2

2σ2
uTrQM

(1 + c)(1− c)
+ σ2

u

(
||h̄N ||2 +

TrQ̄N

1− c2

)
= σ2

u

(
TrQM

1− c2
+

TrQ̄N

1− c2
+ ||h̄N ||2

)
= σ2

u

(
TrΘP,∞ + ||h̄N ||2

)
. (4.99)

which is constant for fixed TrΘP,∞ and M . This means that when the filter is much slower

than the impulse response variations, the filter gets stuck on the impulse response mean

hP , and EMSE(∞) depends mostly on TrΘP,∞, which is related to the variance of the
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Figure 23: Comparing EMSE(∞) × µ curves for the LMS algorithm, under different
scenario conditions; dash-lines: theoretical curves; dots: experimental data. Parameters
(if a specific parameter is not varied): TrΘP,∞ = 0.001, M = 100, ρ = 0 (white input),
c = 0.999, σ2

u = 1, σ2
v = 0.001, α = 0.05.

entries of θP,∞.

The squares point out the theoretical minimum steady-state EMSE value obtained

with the optimal step size (4.85). Note that they are indeed the minimum of each curve.

Note that the curve for c = 0.99 is a crescent function and does not have a minimum

value (although satisfying the necessary condition (4.98)). The value of the optimal step

size computed via (4.85), in this case, is negative. And although this curve does not have

a minimum value, note that the improvement of the tracking performance by reducing

the step size to values smaller than 0.001 is negligible.

Figure 23b shows a similar plot, now fixing c = 0.999, M = 100, ρ = 0 and showing

curves for distinct TrΘP,∞. As expected, larger values of TrΘP,∞ yield larger error in
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steady-state. For very small values of TrΘP,∞, there is no optimal step size and the

tracking performance continually improves as we decrease the step size. Figure 23c shows

these curves when fixing c = 0.999, TrΘP,∞ = 0.001, ρ = 0 and varying M . As we decrease

M from 200 to 100, the minimum EMSE(∞) continually decreases, but EMSE(∞) for

M = 80 suffers too much undermodeling. Figure 23d presents these results for different

input correlation conditions, for c = 0.999, M = 100 and TrΘP,∞ = 0.001. Note that, for

µ smaller than 10−4, the theoretical values are reasonably accurate. For step sizes larger

than that, however, the theoretical model does not adhere very well to experimental data

for correlated input. This can be explained by the fact that the independence assumptions

are less accurate for large step sizes, in special for correlated input. In particular, for

undermodeled filters, we have additional terms ūN,i, that are still very correlated to uM,j,

for i 6= j, when ρ is high.

Figure 24 presents plots similar to those in Figure 23, now for the ε-NLMS algorithm.

The results are very similar to those obtained for the LMS algorithm. A remarkable

difference is in the step size values, that are two orders of magnitude higher than those

for the LMS. Another difference is the absence of theoretical curves when ρ 6= 0, which

we do not derive in this text.

Now, let us observe the behavior of EMSE(∞) as function of the filter length M .

Figure 25a shows curves EMSE(∞) ×M using the LMS algorithm, for different values

of step size. We consider the same environment scenario as in the simulations above in

this section, and we fix TrΘP,∞ = 0.01, c = 0.999, and we consider white input ρ = 0.

For small step size (µ = 0.001), the performance is roughly constant for M = 100 or

higher, which implies no advantage in using a filter larger than that. For µ = 0.003,

EMSE(∞) reduces and the advantage of using a filter around M = 80 and M = 100

rather than larger lengths becomes more evident. As we use larger step sizes, filters with

larger lengths becomes severely degraded. We also show the minimum EMSE(∞) for

every filter length, attained using the optimal step size (4.85), by the solid gray curve.

Figure 25b shows the performance curves of some of the filters that are close to this

minimum. These performance curves are obtained from the ensemble average of 1000

realizations. Note that, as we decrease the filter length down to M = 90, we achieve both

lower steady-state error and higher convergence rate, and naturally reduced complexity,

evidencing that excessive taps in nonstationary environment are very disadvantageous.

Figure 26 presents plots analogous to those in Figure 25, now for impulse response

decay with α = 0.1. The curves EMSE(∞)×M are similar to the previous simulation, but,

as expected for steeper impulse response, the lowest steady-state error value is attained



90

10−3 10−2 10−1 100
Step size μ

−40

−35

−30

−25

−20

−15

−10

St
ea

d 
-s
ta
te
 E
M
SE

 (d
B)

Theory
Minimum
c = 0.99
c = 0.999
c = 0.9999
c = 0.99999

(a) varying c.

10−3 10−2 10−1 100
Step size μ

−40

−30

−20

−10

0

St
ea

dy
-s
ta
te
 E
M
SE

 (d
B)

Theory
Minimum
TrΘ = 0.01
TrΘ = 0.001
TrΘ = 0.0001
TrΘ = 1.0e-5

(b) varying TrΘP,∞.

10−3 10−2 10−1 100

Step si e μ

−34

−33

−32

−31

−30

−29

−28

St
ea

dy
-s
ta
te
 E
M
SE

 (d
B)

Theory
Minimum
M = 80
M = 100
M = 150
M = 200

(c) varying M .

10−3 10−2 10−1 100
Step size μ

−34

−33

−32

−31

−30

−29

−28

−27

St
ea

dy
-s
ta
te
 E
M
SE

 (d
B)

Theory
ρ = 0.0
ρ = 0.7
ρ = 0.9
ρ = 0.95

(d) varying ρ.

Figure 24: Comparing EMSE(∞) × µ curves for the ε-NLMS algorithm, under different
scenario conditions; dash-lines: theoretical curves; dots: experimental data. Parameters
(if a specific parameter is not varied): TrΘP,∞ = 0.001, M = 100, ρ = 0 (white input),
c = 0.999, σ2

u = 1, σ2
v = 0.001, α = 0.05.
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Figure 25: (a) Curves EMSE(∞) × M for the LMS algorithm; dash-lines: theoretical
values; dots: experimental data; (b) Comparing performance curves of filters of different
lengths. Parameters: TrΘP,∞ = 0.01, ρ = 0 (white input), c = 0.999, σ2

u = 1, σ2
v = 0.001,

α = 0.05.

for smaller length, around M = 40 and M = 60. Also, the performance curves in Figure

26b, of filters whose parameters M and µ are taken close to the gray line in Figure

26a (minimum steady-state EMSE), show more evident advantages of filters with smaller

length.

Figure 27 presents simulations for the same scenario in Figure 25, but using the ε-

NLMS algorithm. Now, curves of different step size have similar shape, differing mostly

by a vertical displacement, and does not increase more abruptly for large values of µ. In

this sense, note that the optimal step size is roughly the same for all filter lengths, of

about µ = 0.7. The performance curves shown in Figure 27b, for filters with the optimal

step size and with different lengths, are still very similar to those for the LMS case,

where filters with smaller lengths, within a certain range of values, exhibit both better

convergence rate and better steady-state performance.

Because shorter filters exhibit both advantages in the transient and in the steady-state

performance when compared to longer ones in nonstationary scenario, a combination of

filters as proposed in the stationary case would not provide considerable performance

improvement, as the supervisor would choose the undermodeled filter all the time. In

fact, the combination would only increase the computational cost in this case.
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Figure 26: (a) Curves EMSE(∞) ×M for the LMS algorithm, for α = 0.1; dash-lines:
theoretical values; dots: experimental data; (b) Comparing performance curves of filters
of different lengths. Parameters: TrΘP,∞ = 0.01, ρ = 0 (white input), c = 0.999, σ2

u = 1,
σ2
v = 0.001, α = 0.1.
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Figure 27: (a) Curves EMSE(∞)×M for the ε-NLMS algorithm; dash-lines: theoretical
values; dots: experimental data; (b) Comparing performance curves of filters of different
lengths.



93

4.A Computation of bilinear forms

In this chapter, we often deal with bilinear forms1

b = ExTAy, (4.100)

where x and y are correlated random vectors, and thus we cannot compute the expected

values separately. This bilinear form can be written as the summation

b = E
∑
i

x(i)
∑
j

A(i, j)y(j) =
∑
i

∑
j

A(i, j)Ex(i)y(j). (4.101)

which is simply the sum of all elements of the entrywise product of A and ExyT, that is,

b =
∑

A� ExyT, (4.102)

As so, the moment ExyT can be computed apart from the matrix A. Note that, when

A = I, b = xTy is the trace of matrix ExyT.

4.B Computation of cross-correlations of the weight

error vector

In this appendix, we derive the correlations matrices Rwθ,M,i = Ew̃M,iθ
T
M,i and

Rwh,M,N,i = Ew̃M,i−1h̄
T
N,i in steady-state. Matrix Rwh,M,N,i does not appear explicitly

in the derivations, and rather appear through the bilinear form Ew̃T
M,i−1AM,N h̄N,i, for

some matrix AM,N , in equations (4.24) and (4.43). Using the results from Appendix 4.A,

we need the correlation matrix Rwh,M,N,i to compute this bilinear form.

Expanding w̃M,i by the weight error recursion (4.29), and θM,i as in (4.1), the cross-

1The variable names in this appendix are illustrative and do not refer to specific variables defined in
the main text.
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correlation matrix Rwθ,M,i can be written as

Rwθ,M,i = E

(
IM − µ

uT
M,iuM,i

g (uM,i)

)
w̃M,i−1

(
cθT

M,i−1 + qT
M,i

)
− µE

(
v(i) + ūN,ih̄N,i

) uT
M,i

g (uM,i)

(
cθT

M,i−1 + qT
M,i

)
+ E

(
IM − µ

uT
M,iuM,i

g (uM,i)

)
qM,i

(
cθT

M,i−1 + qT
M,i

)
− (1− c)E

(
IM − µ

uT
M,iuM,i

g (uM,i)

)
θM,i−1

(
cθT

M,i−1 + qT
M,i

)
. (4.103)

Note that v(i) is independent of all others quantities, qM,i is uncorrelated to all quantities

but itself, and θM,i−1 is uncorrelated to h̄N,i. Thus

Rwθ,M,i = c (IM − µT1,M)Rwθ,M,i−1 + (IM − µT1,M)

(
QM − c(1− c)ΘM,i−1

)
. (4.104)

In steady-state, recall that ΘM,∞ = (1− c2)−1QM , then

[(1− c)IM + µcT1,M ]Rwθ,M,∞ = (IM − µT1,M)
[
QM − c(1− c)(1− c2)−1QM

]
, (4.105)

Rwθ,M,∞ =
1

1 + c

[
(1− c)IM + µcT1,M

]−1
(IM − µT1,M)QM . (4.106)

For Rwh,M,N,i, note that

Rwh,M,N,i = Ew̃M,i−1h̄
T
N,i = Ew̃M,i−1h̄

T
N + Ew̃M,i−1θ̄

T
N,i. (4.107)

Let us denote Rwθ,M,N,i , Ew̃M,i−1θ̄
T
N,i. Analogously to (4.103), Rwθ,M,N,i can be com-

puted recursively as

Rwθ,M,N,i = E

(
IM − µ

uT
M,i−1uM,i−1

g (uM,i−1)

)
w̃M,i−2

(
cθ̄

T
N,i−1 + q̄T

N,i

)
− µE

(
v(i− 1) + ūN,i−1h̄N,i−1

) uT
M,i−1

g (uM,i−1)

(
cθ̄

T
N,i−1 + q̄T

N,i

)
+ E

(
IM − µ

uT
M,i−1uM,i−1

g (uM,i−1)

)
qM,i−1

(
cθ̄

T
N,i−1 + q̄T

N,i

)
− (1− c)E

(
IM − µ

uT
M,i−1uM,i−1

g (uM,i−1)

)
θM,i−2

(
cθ̄

T
N,i−1 + q̄T

N,i

)
. (4.108)
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As θ̄N,i−1 and q̄N,i are zero mean and uncorrelated to θM,i−2, qM,i−1 and v(i− 1), then

Rwθ,M,N,i = c

(
IM − µE

uT
M,i−1uM,i−1

g (uM,i−1)

)
Rwθ,M,N,i−1

− µE
uT
M,i−1ūN,i−1

g (uM,i−1)
E(h̄N,0 + θ̄N,i−1)

(
cθ̄

T
N,i−1 + q̄T

N,i

)
, (4.109)

Rwθ,M,N,i = c (IM − µT1,M)Rwθ,M,N,i−1 − cµT4,M,NΘ̄N,i−1, (4.110)

and, in steady-state,

Rwθ,M,N,∞ = −
[(

1− c
cµ

)
IM + T1,M

]−1

T4,M,NΘ̄N,i−1 (4.111)

Back to (4.107), and using the mean behavior (4.32), we have

Rwh,M,N,∞ = −T−1
1,MT4,M,N h̄N h̄

T
N −

[(
1− c
cµ

)
IM + T1,M

]−1

T4,M,N
Q̄N

1− c2
(4.112)

4.C Simplification of variance relation for white in-

put

When the input signal u(i) is white, we can isolate the EMSE Ee2
a,M(i) in the term

E||uM,∞||2e2
a,M(i), from the variance relation (4.45), without making a strong assumption

as used in Section 4.2.2.

Note that, when input is white, Ru,M = σ2
uIM and the partial EMSE can be rewritten

as

Ee2
a,M(i) = E(hM,i −wM,i−1)TuM,iu

T
M,i(hM,i −wM,i−1)

= E(hM,i −wM,i−1)TRu,M(hM,i −wM,i−1)

= σ2
uE||hM,i −wM,i−1||2. (4.113)

The term E||uM,i||2e2
a,M(i) can be written as

E||uM,i||2e2
a,M(i) = E(hM,i −wM,i−1)TuM,iu

T
M,iuM,iu

T
M,i(hM,i −wM,i−1), (4.114)
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where the fourth-order moment can be computed as in Appendix 3.A

E||uM,i||2e2
a,M(i) = E(hM,i −wM,i−1)T

(
2R2

u,M + (TrRu,M)Ru,M

)
(hi,M −wM,i−1)

= E(hM,i −wM,i−1)T
(
2σ4

uIM +Mσ4
uIM

)
(hM,i −wM,i−1)

= (M + 2)σ4
uE||hM,i −wM,i−1||2. (4.115)

Using the EMSE equivalence in (4.113), we have

E||uM,i||2e2
a,M(i) = (M + 2)σ2

uEe
2
a,M(i), (4.116)

in which the EMSE Ee2
a,M(i) is obtained from E||uM,i||2e2

a,M(i) by a constant factor.
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5 CONCLUSION

We presented in this text several analyses of the effects of the filter length on the

performance of an adaptive filter, in particular, for the LMS and the ε-NLMS algorithms.

For stationary environments, and considering exponential impulse response, we showed

that by increasing the filter length we reduce the steady-state error although degrading

the convergence rate. For a fair comparison between filters of different lengths, it is im-

portant to remark that we adjust the step size to have a constant ratio to the optimal

step size µo (that maximizes convergence rate).

By increasing the number of filter taps from some point on, however, we obtain almost

no improvement in the steady-state performance, which means that, for lengths larger

than a certain value, we only degrade the convergence rate. And we proposed a method

to find this value of length, by defining and optimizing the overall performance criterion

η, which is the ratio between the absolute value of the initial difference of the MSD curve

and the steady-state MSD. We showed in simulations that the filter with the length M o,

that maximizes η, has indeed such an optimized overall performance: it has almost the

same steady-state performance as longer filters, while exhibiting the fastest convergence

rate. A filter with such a length also has reduced complexity when compared to filters

with similar performance and larger length.

A filter that maximizes η, and designed with the step size that maximizes the conver-

gence rate, is particularly interesting to be used as the fast filter within a combination.

As presented in simulations, while the steady-state is ensured by a slow filter, a combina-

tion with such a fast filter has the best convergence rate when compared to combinations

whose fast filter has any other length, in addition to the reduced complexity.

We also analyzed the performance of undermodeled filters in nonstationary scenar-

ios. When the impulse response is time-varying, a shorter filter may exhibit both better

convergence rate and better steady-state performance. We also derived the step size that

minimizes the steady-state error, and showed that, under certain conditions, it does not
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exist, that is, the steady-state error monotonically decreases (converging to a nonzero

positive value) as we reduce the step size towards zero.

As the reader must have noticed, we did not compare the length design proposed in

this text to any work in the literature, and this is because we did not find works that are

conceptually similar to the proposed method. Works that propose length selection [11,23]

aim at the minimization of the EMSE, and do not consider LMS-like algorithms. The

proposed method does not deal explicitly with the minimization of the EMSE, and rather

focuses on the enhancement of the convergence rate. Works that might be comparable are

the variable length algorithms [8,13–18], in the sense that these algorithms usually improve

the transient performance by using shorter filters while the algorithm is converging.

As this text is being written, we are also working in some improvements of the results

in Section 3.3 for a journal paper. Specifically, the method proposed in this text to design

the filter length requires a given value of normalized step size µ0, which also must be

chosen somehow. So, among other improvements, we are deriving a method to design

both length and step size of the filter given a specified performance in steady-state error.

The ideas discussed in this text that still leave some unexplored spots, and that can

be further investigated in future works, are:

1. The comparison of the proposed length method with other works in the literature,

such as the variable length algorithms;

2. The design of the filter length for impulse responses with other shapes than the

exponential model, that are meaningful in practice (such as sparse ones);

3. The extension of the derivations (analyses for both stationary and nonstationary,

and for length design) to other relevant algorithms, such as RLS, APA (affine pro-

jection algorithm), among others;

4. The design of the filter length for the nonstationary case, either by minimizing

the steady-state error, as we experimentally show, or by considering the transient

performance;

5. The extension of the length design to a variable length algorithm: as we can estimate

the exponential decay rate with an adaptive filter — the own filter running the

algorithm, we can adaptively adjust the filter length to changes in the decay rate of

the impulse response.



99

REFERENCES

[1] B. Widrow and S. D. Stearns, Adaptive Signal Processing, Prentice Hall, 1985.

[2] S. Haykin, Adaptive Filter Theory, Prentice Hall, 3rd edition, 1996.

[3] P. S. R. Diniz, Adaptive Filtering: Algorithms and Practical Implementation,
Springer, 3rd edition, 2008.

[4] V. H. Nascimento and M. T. M. Silva, “Adaptive filters,” in Academic Press Li-
brary in Signal Processing, Vol. 1, Signal Processing Theory and Machine Learning,
R. Chellappa and S. Theodoridis, Eds., pp. 619–761. Chennai: Academic Press, 2014.

[5] H. Hjalmarsson and L. Ljung, “Estimating model variance in the case of under-
modeling,” IEEE Transactions on Automatic Control, vol. 37, no. 7, pp. 1004–1008,
1992.

[6] M. Knudsen, “Determination of parameter estimation errors due to noise and un-
dermodelling,” in IEEE Instrumentation and Measurement Technology Conference,
1996, pp. 288–293.

[7] J. Homer, R. R. Bitmead, and I. Mareels, “Quantifying the effects of dimension on
the convergence rate of the LMS adaptive FIR estimator,” IEEE Transactions on
Signal Processing, vol. 46, no. 10, pp. 2611–2615, 1998.

[8] Y. Gu, K. Tang, and H. Cui, “Convergence analysis of a deficient-length LMS filter
and optimal-length sequence to model exponential decay impulse response,” IEEE
Signal Processing Letters, vol. 10, no. 1, pp. 4–7, January 2003.

[9] K. Mayyas, “Performance analysis of the deficient length LMS adaptive algorithm,”
IEEE Transactions on Signal Processing, vol. 53, no. 8, pp. 2727–2734, August 2005.

[10] K. Mayyas, “Performance analysis of selective coefficient update NLMS algorithm in
an undermodeling situation,” Digital Signal Processing, vol. 23, no. 8, pp. 1967–1973,
August 2013.

[11] W. S. Hodgkiss, “Selecting the length of an adaptive transversal filter,” in ICASSP,
1978, vol. 3, pp. 96–99.

[12] S. C. Douglas and M. Rupp, “Convergence issues in the LMS adaptive filter,” in Dig-
ital Signal Processing Handbook CRCnetBASE, V. K. Madisetti and D. B. Willians,
Eds. CRC Press, 1999.

[13] Z. Pritzker and A. Feuer, “Variable length stochastic gradient algorithm,” IEEE
Transactions on Signal Processing, vol. 39, no. 4, pp. 997–1001, April 1991.



100

[14] V. H. Nascimento, “Improving the initial convergence of adaptive filters: variable-
length LMS algorithms,” in 14th International Conference on Digital Signal Process-
ing Proceedings (DSP 2002), 2002, pp. 667–670.

[15] Y. Gu, K. Tang, and H. Cui, “LMS algorithm with gradient descent filter length,”
IEEE Signal Processing Letters, vol. 11, no. 3, pp. 305–307, March 2004.

[16] Y. Gong and C. F. N. Cowan, “An LMS style variable tap-length algorithm for
structure adaptation,” IEEE Transactions on Signal Processing, vol. 53, no. 7, pp.
2400–2407, July 2005.

[17] Y. Zhang and J. A. Chambers, “Convex combination of adaptive filters for a variable
tap-length LMS algorithm,” IEEE Signal Processing Letters, vol. 13, no. 10, pp. 628–
631, October 2006.

[18] Y. Zhang, J. A. Chambers, S. Sanei, P. Kendrik, and T. J. Cox, “A new variable
tap-length LMS algorithm to model an exponential decay impulse response,” IEEE
Signal Processing Letters, vol. 14, no. 4, pp. 263–266, April 2007.

[19] C. Schuldt, F. Lindstrom, H. Li, and I. Claesson, “Adaptive filter length selection
for acoustic echo cancellation,” Signal Processing, vol. 89, pp. 1185–1194, January
2009.

[20] M. Zeller, L. A. Azpicueta-Ruiz, and W. Kellermann, “Adaptive FIR filters with
automatic length optimization by monitoring a normalized combination scheme,” in
2009 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics,
2009, pp. 149–152.

[21] P. Stoica and Y. Selen, “Model order selection: a review of information criterion
rules,” IEEE Signal Processing Magazine, pp. 36–47, July 2004.

[22] J. Ding, V. Tarokh, and Y. Yang, “Model selection techniques — an overview,”
IEEE Signal Processing Magazine, vol. 35, pp. 16–34, November 2018.

[23] H. Clergeot, “Filter-order selection in adaptive maximum likelihood estimation,”
IEEE Transactions on Information Theory, vol. 30, no. 2, pp. 199–210, 1984.

[24] C. Breining, P. Dreiseitel, E. Hansler, A. Mader, B. Nitsch, H. Puder, T. Schertler,
G. Schmidt, and J. Tilp, “Acoustic echo control - an application of very-high-order
adaptive filters,” IEEE Signal Processing Magazine, vol. 16, 1999.

[25] C. Paleologu, S. Ciochina, and J. Benesty, “Variable step-size NLMS algorithm for
under-modeling acoustic echo cancellation,” IEEE Signal Processing Letters, vol. 15,
2008.

[26] M. Failli, COST 207: digital land mobile radio communications, Luxemborg: Com-
mission of the European communities, 1989.

[27] W. C. Y. Lee, Mobile communications engineering: theory and applications, Mc-
Graw Hill, 2nd edition, 1998.

[28] M. Martinez-Ramon, J. Arenas-Garcia, and A. R. Figueiras-Vidal, “An adaptive
combination of adaptive filters for plant identification,” in 14th International Con-
ference on Digital Signal Processing Proceedings (DSP 2002), 2002, pp. 1195–1198.



101

[29] J. Arenas-Garcia, A. R. Figueiras-Vidal, and A. H. Sayed, “Mean-square perfor-
mance of a convex combination of two adaptive filters,” IEEE Transactions on
Signal Processing, vol. 54, no. 3, pp. 1078–1090, March 2006.

[30] L. F. O. Chamon, H. F. Ferro, and C. G. Lopes, “A data reusage algorithm based
on incremental combination of LMS filters,” in Asilomar Conference on Signals,
Systems and Computers. IEEE, 2012, pp. 406–410.

[31] J. Arenas-Garcia, L. A. Azpicueta-Ruiz, M. T. M. Silva, V. H. Nascimento, and A. H.
Sayed, “Combinations of adaptive filters: performance and convergence properties,”
IEEE Signal Processing Magazine, vol. 33, no. 1, pp. 120–140, January 2016.

[32] R. Claser and V. H. Nascimento, “Low complexity approximation to the Kalman
filter using convex combinations of filters of adaptive filters from different families,”
in 25th European Signal Processing Conference (EUSIPCO), 2017, pp. 2630–2633.

[33] C. G. Lopes and J. C. M. Bermudez, “Evaluation and design of variable step size
adaptive algorithms,” in ICASSP. IEEE, 2001, pp. 3845–3848.

[34] L. F. O. Chamon, W. B. Lopes, and C. G. Lopes, “Combination of adaptive filters
with coefficients feedback,” in ICASSP. IEEE, 2012, pp. 3785–3788.

[35] A. H. Sayed, Fundamentals of Adaptive Filtering, John Wiley & Sons, 2003.

[36] L. Ljung, System identification: theory for the user, Prentice-Hall, 1987.

[37] K. Ogata, Modern control engineering, Prentice Hall, 2009.

[38] C. Paleologu, J. Benesty, and S. Ciochina, “A variable step-size affine projection
algorithm designed for acoustic echo cancellation,” IEEE Transactions on Audio
Speech and Language Processing, vol. 16, 2008.

[39] V. Solo, “The limiting behavior of LMS,” IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. 37, pp. 1909–1922, 1989.

[40] D. T. M. Slock, “On the convergence behavior of the LMS and the normalized LMS
algorithms,” IEEE Transactions on Signal Processing, vol. 41, pp. 2811–2825, 1993.

[41] D. Schafhuber, M. Rupp, G. Matz, and F. Hlawatsch, “Adaptive identification and
tracking of doubly selective fading channels for wireless MIMO-OFDM systems,” in
IEEE Workshop on Signal Processing Advances in Wireless Communications, 2003.

[42] J. G. Proakis and M. Salehi, Digital Communications, McGraw-Hill, 5 edition, 2007.

[43] F. Reed, P. L. Feintuch, and N. J. Bershad, “Time delay estimation using the LMS
adaptive filter - static behavior,” IEEE Transactions on Acoustic, Speech and Signal
Processing, vol. 29, no. 3, pp. 561–571, March 1981.

[44] P. L. Feintuch, N. J. Bershad, and F. Reed, “Time delay estimation using the LMS
adaptive filter - dynamic behavior,” IEEE Transactions on Acoustic, Speech and
Signal Processing, vol. 29, no. 3, pp. 571–576, March 1981.

[45] L. F. O. Chamon and C. G. Lopes, “Combination of adaptive filters for relative
navigation,” in EUSIPCO, 2011, pp. 1771–1775.



102

[46] B. Widrow and E. Walach, Adaptive inverse control: a signal processing approach,
Wiley-IEEE Press, 2008.

[47] C. Komninakis, C. Fragouli, A. H. Sayed, and R. D. Wesel, “Multi-input multi-
output fading channel tracking and equalization using Kalman estimation,” IEEE
Transactions on Signal Processing, vol. 50, no. 5, pp. 1065–1076, May 2002.

[48] A. Leon-Garcia, Probability, statistics, and random processes for electrical engineer-
ing, Prentice Hall, 3rd edition, 2008.

[49] M. B. Priestley, Spectral analysis and time series, Acedemic Press, 1981.

[50] Y. Gu, K. Tang, and H. Cui, “Sufficient condition for tap-length gradient adaption
of LMS algorithm,” in ICASSP, 2004, pp. 461–464.

[51] F. Zhang, The Schur complement and its applications., Springer, 2005.

[52] P. Xue and B. Liu, “Adaptive equalizer using finite-bit power-of-two quantizer,”
IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 34, no. 6, pp.
1603–1611, December 1986.

[53] E. Eweda, “Convergence analysis and design of an adaptive filter with finite-bit
power-of-two quantizer error,” IEEE Transactions on Circuits and Systems - II:
Analog and Digital Signal Processing, vol. 39, no. 2, pp. 113–115, February 1992.

[54] L. A. Azpicueta-Ruiz, A. R. Figueiras-Vidal, and J. Arenas-Garcia, “A normalized
adaptation scheme for the convex combination of two adaptive filters,” in ICASSP.
IEEE, 2008, pp. 3301–3304.

[55] C. G. Lopes, E. H. Satorius, P. Estabrook, and A. H. Sayed, “Adaptive carrier
tracking for Mars to Earth communications during entry, descent and landing,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 46, no. 4, pp. 1865–1879,
2010.

[56] V. H. Nascimento, M. T. M. Silva, L. A. Azpicueta-Ruiz, and J. Arenas-Garcia, “On
the tracking performance of combinations of least mean squares and recursive least
squares adaptive filters,” in ICASSP. IEEE, 2010, pp. 3710–3713.

[57] V. H. Nascimento, M. T. M. Silva, R. Candido, and J. Arenas-Garcia, “A transient
analysis for the convex combination of adaptive filters,” in 2009 IEEE Workshop on
Statistical Signal Processing. IEEE, 2009, pp. 53–56.

[58] A. Feuer and E. Weinstein, “Convergence analysis of LMS filters with uncorrelated
gaussian data,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.
33, no. 1, pp. 222–230, 1985.

[59] M. Tarrab and A. Feuer, “Convergence and performance analysis of the normalized
LMS algorithm with uncorrelated gaussian data,” IEEE Transactions on Information
Theory, vol. 34, no. 4, pp. 680–691, 1988.

[60] P. A. Regalia and M. Mboup, “Undermodeled adaptive filtering: an a priori er-
ror bound for the Steiglitz-McBride method,” IEEE Transactions on Circuits and
Systems II, vol. 43, no. 2, pp. 105–116, 1996.



103

[61] A. P. Liavas and P. A. Regalia, “Acoustic echo cancellation: do IIR models offer
better modeling capabilities than their FIR counterparts?,” IEEE Transactions on
Signal Processing, vol. 46, no. 9, pp. 2499–2504, 1998.

[62] P. M. S. Burt and P. A. Regalia, “Adaptive IIR filtering: convergence speed proper-
ties in the undermodelled case,” in ICASSP. IEEE, 2005, pp. (IV)45–48.

[63] U. Mackenroth, Robust Control Systems: Theory and Case Studies, Springer, 2004.

[64] M. Kendall and A. Stuart, The advanced theory of statistics, vol. 1, Charles Griffin,
1977.

[65] L. A. Azpicueta-Ruiz, J. Arenas-Garcia, V. H. Nascimento, and M. T. M. Silva,
“Reduced-cost combination of adaptive filters for acoustic echo cancellation,” in
2014 International Telecommunications Symposium (ITS), 2014, pp. 1–5.

[66] A. Gonzalo-Ayuso, M. T. M. Silva, V. H. Nascimento, and J. Arenas-Garcia, “Im-
proving sparse echo cancellation via convex combination of two NLMS filters with
different lengths,” in IEEE 2012 IEEE International Workshop on Machine Learning
for Signal Processing (MLSP), 2012.

[67] L. Isserlis, “On a formula for the product-moment coefficient of any order of a normal
frequency distribution in any number of variables,” Biometrika, vol. 12, pp. 134–139,
1918.

[68] N. J. Bershad, “Analysis of the normalized LMS algorithm with gaussian inputs,”
IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 34, pp. 793–806,
1986.

[69] S. M. Kay, Fundamentals of statistical signal processing: estimation theory, Prentice
Hall, 1993.

[70] R. B. Wallace and R. A. Goubran, “Improved tracking adaptive noise canceler for
nonstationary environments,” IEEE Transactions on Signal Processing, vol. 40, no.
3, pp. 700–703, March 1992.

[71] M. K. Tsatsanis, G. B. Giannakis, and G. Zhou, “Estimation and equalization of
fading channels with random coefficients,” Signal Processing, vol. 53, pp. 211–229,
1996.

[72] B. Widrow, J. M. McCool, M. G. Larimore, and C. R. Johnson Jr., “Stationary and
nonstationary learning characteristics of the LMS adaptive filter,” Proceedings of the
IEEE, vol. 64, no. 8, pp. 1151–1162, August 1976.

[73] S. Haykin, A. H. Sayed, J. R. Zeidler, P. Yee, and P. C. Wei, “Adaptive tracking
of linear time-variant systems by extended RLS algorithms,” IEEE Transactions on
Signal Processing, vol. 45, no. 5, pp. 1118–1128, May 1997.

[74] T. Y. Al-Naffouri and M. Moinuddin, “Exact performance analysis of the ε-NLMS
algorithm for colored circular Gaussian inputs,” IEEE Transactions on Signal Pro-
cessing, vol. 58, no. 10, pp. 5080–5090, 2010.



104

[75] R. Claser and V. H. Nascimento, “On the tracking performance of adaptive filters
and their combinations,” IEEE Transactions on Signal Processing, vol. 69, no. 5, pp.
3104–3116, May 2021.


