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ABSTRACT

FEITOSA,A. E. Favor the Tortoise over the Hare: a study on an efficient detection algorithm

for wireless sensor networks. 2023. Thesis (Doctor in Electric Engineering) – Polytechnic

School of the University of São Paulo, São Paulo, 2023.

This doctoral thesis describes the results of a detailed research conducted between January 2019

and July 2023 on a new distributed detection algorithm. In general terms, this study deals with

the statistical detection problem using smart Wireless Sensor Networks (WSNs). In this context a

network of sensors is distributed over a site in order to monitor the environment and decide the

current state of nature based on observations under Gaussian noise. The sensors use embedded

computation capabilities to locally process data and communicate wirelessly with closest sensors,

enabling the exploitation of cooperative algorithms. More specifically, this study focused on

a situation where WSNs are deployed over sites under stringent power conditions; therefore,

low computational complexity and low power consumption is highly desired, which led to the

development of a detection algorithm suitable for real applications and with a performance that

tends to optimum under such restrictions. Moreover, in a world increasingly connected through the

Internet of Things (IoT) paradigm, algorithms that perform indispensable tasks such as detection

and operate with minimum energy consumption are highly sought after. Not incidentally, the

main contribution of this thesis is the description of a detector with low computational complexity

that approximates the performance expected from an optimal detector in terms of the average

probability of error, provided certain conditions are met. The most crucial is maintaining a

slow learning rate of the distributed algorithm that drives the detection routine, specifically the

diffusion LMS (Least Mean Square), a wellknown adaptive estimation algorithm for distributed

networks. The diffusion LMS is used in this context for data processing and sharing information

among sensors throughout the network. Notably, like the Tortoise of the fable, the performance

of the detector improves as the value of the LMS step size is reduced, without penalizing the

convergence rate in terms of probability of error, and despite the slowing down of the estimation

routine at the core of the developed detection algorithm. This counterintuitive result is explained

theoretically and confirmed by simulations. The detection problem presented herein is modeled as

a multiple hypothesis test using the Bayesian formulation, and it extends the research conducted

during my master degree to a more general situation. Additionally, this thesis includes interesting

insights about the value of the initial estimate of the LMS algorithm, paving the way for promising

future research.

Keywords: Detection in wireless sensor networks (WSN). IoT. Distributed diffusion algorithms.

Learning rate. Bayesian hypothesis test.





RESUMO

FEITOSA,A. E. Favor the Tortoise over the Hare: a study on an efficient detection algorithm

for wireless sensor networks. 2023. Tese (Doutorado em Engenharia Elétrica) – Escola

Politécnica da Universidade de São Paulo, São Paulo, 2023.

Esta tese de doutorado descreve os resultados de uma pesquisa detalhada realizada entre janeiro de

2019 e julho de 2023 em um novo algoritmo de detecção distribuída. Em termos gerais, este estudo

trata do problema estatístico de detecção usando Redes de Sensores Sem Fio (RSSF) inteligentes.

Nesse contexto, uma rede de sensores é distribuída por um local para monitorar o ambiente e

decidir o “estado da natureza” (state of nature) atual com base em observações sujeitas a ruído de

natureza gaussiana. Os sensores utilizam capacidade de computação embarcada para processar

localmente os dados e se comunicam sem fio com os sensores mais próximos, permitindo a

exploração de algoritmos cooperativos. Mais especificamente, este estudo concentrouse em uma

situação em que as RSSF são implantadas em locais com restrições rigorosas de energia; portanto,

é altamente desejável uma baixa complexidade computacional e baixo consumo de energia. Isso

levou ao desenvolvimento de um algoritmo de detecção adequado para aplicações reais e com

um desempenho que tende ao ótimo sob tais restrições. Além disso, em um mundo cada vez mais

conectado pormeio do paradigma da Internet das Coisas (Internet of Things—IoT), algoritmos que

realizam tarefas indispensáveis, como a detecção, e operam com consumo mínimo de energia são

muito procurados. Não por acaso, a principal contribuição desta tese é a descrição de um detector

com baixa complexidade computacional que se aproxima do desempenho esperado de um detector

ótimo em termos da probabilidade média de erro, desde que certas condições sejam atendidas.

A condição mais crucial é manter uma taxa de aprendizado lenta do algoritmo distribuído que

conduz a rotina de detecção, especificamente o algoritmo diffusion LMS (Least Mean Square),

um conhecido algoritmo adaptativo de estimação para redes distribuídas. O diffusion LMS é aqui

utilizado para processamento de dados e compartilhamento de informações entre os sensores

em toda a rede. De forma notável, assim como a Tartaruga da fábula, o desempenho do detector

melhora à medida que o valor do tamanho do passo do LMS é reduzido, sem penalizar a taxa

de convergência em termos de probabilidade de erro, apesar da desaceleração da rotina de

estimação no cerne do algoritmo de detecção desenvolvido aqui. Esse resultado contraintuitivo é

explicado teoricamente e confirmado por simulações. O problema de detecção apresentado aqui

é modelado como um teste de múltiplas hipóteses usando a formulação Bayesiana e estende a

pesquisa realizada durante meu mestrado para uma situação mais geral. Além disso, esta tese

inclui discussões interessantes sobre o valor da estimativa inicial do algoritmo LMS, abrindo

caminho para pesquisas futuras promissoras.

Palavraschave: Detecção em redes de sensores semfio (RSSF). IoT. Algoritmos distribuídos

de difusão. Taxa de Aprendizado. Teste de hipótese bayesiano.
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1 INTRODUCTION

1.1 Wireless Sensor Networks: a brief history and motivation

Since their emergence at the very end of the second millennium, wireless sensor networks

(WSNs) have garnered considerable interest in the fields of science and engineering [1, 2]. The

extensive body of scientific contributions on this subject over the years is a direct consequence of

advancements in wireless communications and electronics during the final years of the 1990s [3,

4]. These advancements enabled the development of lowcost, lowpower, multifunctional

tiny intelligent sensors. This rising interest was also driven by the wide range of potential

applications [5–7], which traditionally encompasses, for instance, environmental monitoring

such as water and air pollution, forest fire, gas leakage, and coal mining [8–12]. They are

also utilized in conditionbased maintenance [13], smart buildings and smart cities [14, 15],

health care monitoring [16, 17], defense [18], precision agriculture [19–21], vehicle tracking [22,

23], transportation [24], factory instrumentation [25, 26], animal tracking [27] and industrial

control [28].

The versatility of WSNs stems from their defining characteristics: an ensemble of tiny

lowpowered sensor devices, called nodes, endowed with an embedded local processing unit.

These nodes are densely deployed and easily spread over a geographic area to closely monitor a

phenomenon of interest (e.g., humidity, pressure, heat, or vibration) via their sensing interfaces.

Moreover, each node is capable of locally processing data before being sent through wireless

communication channels. Those features provide WSNs with high flexibility, robustness against

environmental obstacles, and simplicity in design and operation [5]. Furthermore, the ability of

nodes to communicate enables a high potential for the use of cooperative routines, which can be

exploited by adequate algorithms.

Within this vast universe of WSNs, this thesis focuses on the problem of decision making

and detection of events. This topic arises naturally in WSNs, as it is often the initial or even

the main purpose of any deployed sensing system. The classical distributed layout for detection

was first presented in [29], using both NeymanPearson and Bayesian formulations within the

context of decentralized radar for military purposes. At that time and in the following years,

“decentralized” simply meant that the nodes would process and compact data before sending it to

a fusion center, responsible for making the ultimate decision. For instance, [30] describes a real

example of a deployed WSN for volcanic eruption detection in 2004. Consequently, in such a

network structure, the designer’s effort was directed towards determining what information each

sensor should send to the fusion center. Indeed, there is a vast and rich literature concerning the

detection problem using this structure, and the interested reader can explore this by referring

to the bynomeans exhaustive list of key works [31–39]. Another feature of these original
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detectors was that they were static detectors, in the sense that the sensors perform a decision only

after receiving the whole sequence of observations. This must be distinguished from dynamic

sequential detectors, which process the observations sequentially in time once they become

available [40].

S

S
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S

S

S

S

S

F

(a)
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SS
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Figure 1 – Abstract representation of the two main setting of WSN.

Note: In the fusioncentered network in (a), the sensor nodes collect, process and send data to the fusion center

F, which is responsible for the main detection routine using the received data from all nodes. On the other

hand, in the fully distributed network in (b), sensor nodes cooperatively participate in the decision process by

sharing information with their closest neighbors.

Early works on distributed detection assumed that sensor messages are received reliably

at the fusion center, ignoring the link variability intrinsic to wireless communications [41].

Thereupon, this issue was addressed in works like [42, 43], which incorporated a fading channel

model between sensor and fusion center. However, another way to mitigate the effect of path

loss in the communication link is by means of a fully distributed network, based on nodetonode

message passing (see Figure 1). In this setting, no fusion center is needed, as the nodes themselves

cooperatively participate in the decisionmaking process. Also, communication is allowed only

among closely positioned nodes, reducing the attenuation effects due to longer transmission

paths. Moreover, a fully distributed WSN has a simpler communication infrastructure, higher

scalability and robustness to sensor or link failures, and possibly a more efficient use of limited

system resources, such as energy and spectral bandwidth. However, it is essential to note that

fusioncentered distributed detection remains an active field of research anymore, as evident

from recent works such as [44–46].

In this thesis, sequential and fully distributed cooperative detection in WSNs are consid

ered, envisioning realword applications. Thus, it is important to realize that to fully leverage the

potential flexibility inWSN applications, the sensor nodes must be capable of working under very

stringent power requirements, as power supply significantly impacts howWSNs can be deployed

in a given environment. Such considerations become even more crucial with the influence of the
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Internet of Thing (IoT) paradigm upon theWSN research in the recent years [47]. Not incidentally,

WSNs are considered a key technology for materializing the IoT concept, since they perform the

fundamental role of detecting events and measuring physical and environmental quantities of

interest [48, 49]. Therefore, the development of energyefficientWSN algorithms compatible with

IoT is essential (see Figure 2 for an example of WSN as described in [21]). One major example in

this direction is the research effort towards energy harvesting in WSNs [50–54], which involves

harnessing from ambient power sources such as vibration, heat, and electromagnetic waves in

the immediate surroundings of the network. Equally important is the study and development of

specialized lowcost algorithms, a focus on which this thesis centers.

Underground WSN node

On ground WSN node

Internet CloudSmartphone

Figure 2 – Conception of a WSN deployed for agriculture applications.

Source: adapted from [21].

Note: This is a conception of a WSN deployed for agriculture applications as described in [21]: sensors nodes on

the ground and underground monitor the environment of a farm and share information among them. Also,

the network is connected via Internet to other services, such as a remote user, smartphone, a server or cloud,

following the IoT paradigm.

The goal of a fullydistributed and cooperative WSN for detection purposes is for all its

nodes to converge to a common decision. Each node updates its guesses from (𝑖) information
from its neighbors, and (𝑖𝑖) processed local data from uptodate local observations. For instance,

consider a cooperative underwater network for marine surveillance as described in [55]: small,

lowpowered and possibly mobile robots patrol an area of coverage, looking for predefined

targets to be detected (see Figure 3). If a target is present in the network coverage, it causes some

physical perturbation, strong enough to be sensed by the agents and distinguishable from other

alternative targets through some statistical procedure. At each time instant, agents decide about

the presence of the possible targets based on those measurements and send their locally processed
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data in the form of a statistic (i.e., a preprocessing of the data) to all their closest neighbors via

wireless communication. Agents then update their decisions upon the data received, thereby

improving the quality of the decision. Then, the process is repeated, with more iterations expected

to result in better local decision quality. A similar case that operates along these lines can be

found in cooperative unmanned aerial vehicles (UAV) applied, for instance, in fire detection [56,

57].

(a) (b)

Figure 3 – Illustration of a practical use of a mobile robotic underwater network.

Note: This is an illustration of a practical use of a mobile robotic underwater network for surveillance as described

in [55]. In (a), a physical signal is generated, such as pressure variation, and the network patrolling the

environment must decide which target generated the signal (in the example, an ordinary fish or a potential

dangerous intrusive robot). In (b), the robots communicate with each other sending their collected and

processed data to perform a better decision by incorporating more information from other robots.

Another envisioned application of WSN is for Structural Health Monitoring (SHM),

which involves implementing a damage detection strategy for aerospace, civil or mechanical

engineering infrastructures. SHM includes observing a structure or mechanical system over time

using periodically spaced dynamic response measurements, the extraction of damagesensitive

features from these measurements and the statistical analysis of these features to determine the

current state of system health [58]. An SHM system can encompass the installation of multiple

wireless sensors along the structure under test, receiving spatiotemporal signals containing

relevant information about the mechanical stress to which the structure is subjected. Notably,

there is a large interest in developing SHM systems for aircraft structures, aiming to increase

their reliability and lifetime while reducing maintenance costs.

In my master’s thesis, completed in 2018, I participated in a collaborative project between

Escola Politécnica da Universidade de São Paulo and Empresa Brasileira de Aeronáutica (EM

BRAER), aimed at developing methods for detection of events during tests in aircraft structures

to improve the SHM system used by EMBRAER. In these tests the structure is kept on the ground,

subjected to load cycles from mechanical actuators that emulate the structural efforts that a plane

experiences when airborne, and a collection of piezoelectric sensors is placed along the structure

under inspection (see Figure 4). These sensors collect acoustic emission signals and send them to

a processing center [59]. That research pursued two main approaches: one focused on developing
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classifiers using the installed SHM system for shortterm implementation, while the other looked

at the longterm solution using WSN equipped with a fully distributed detector. The results of

the latter generated a paper that was published in the IEEE Signal Processing Letters [60].

(a) (b) (c)

Figure 4 – Conception of a WSN employed in structural health monitoring on airships.

Note: This is a conception of a WSN employed in structural health monitoring on airships. (a) Mechanical strains

in an aeronautical structure in ground tests. (b) Collection of sensors along the structure to capture acoustic

emission signals. (c) Representation of the sensor network.

1.2 Most related literature

In recent years, we have witnessed the emergence of two major sequential cooperative

strategies for both parameter estimation and detection for distributed settings: consensus algo

rithms [61–71] and diffusion algorithms [60, 72–82]. In the consensus strategy, nodes run a

protocol that asymptotically leads to an agreement about a common value that represents the

final detection statistic, shared by all the nodes. The classical consensus algorithm relied on the

use of two separate timescales for environment sensing and consensus [61–64], whereas the

running consensus technique (also called consensus+innovation) unifies these two phases into a

simultaneous sequential procedure [65–71].

Diffusion strategies for distributed detection, unlike consensus, offer more flexibility

as agreement among nodes is not enforced. Each sensor, after exchanging data in its vicinity,

updates its local statistic as a convex combination of local and received information data, aiming

at converging to a desired solution with acceptable meansquare error bounds. This is so because

diffusion algorithms were originally designed for distributed parameter estimation, relying on

algorithms such as the diffusion Least Mean Square (dLMS) [72], the diffusion Recursive Least

Square (dRLS) [83], and diffusion Kalman filtering [84]. It has been argued that diffusion

strategies entail superior stability compared with consensus under constant step sizes [85]. The

step size is a key parameter which, roughly speaking, controls the performance of these algorithms

over time, affecting decay rate and steadystate value of the meansquare error on estimation.

According to [85], consensus strategies generally depends on diminishing values of the step size
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to achieve asymptotic optimal performance, whereas constant values of it can lead to instability.

However, as emphasized in [75], a constant step size is required if one wants the ability of

tracking changes (drifts) in the current state of nature, though this also imposes a performance

tradeoff, as large values of the step size favor tracking speed whereas small values favor detection

accuracy. As detailed later on, the step size also plays a decisive role regarding the performance

of the proposed detector, since the dLMS is the core of the detection algorithm due to its known

distributed qualities.

The dLMS used for distributed detection was first proposed in [77] and further developed

in [78], in the form of a distributed twohypotheses NeymanPearson (NP) detector [86]: given

a null hypothesis 𝐻0 and an alternative 𝐻1, the detector seeks to maximize the probability of

correct detection of the alternative event (detects 𝐻1 when 𝐻1 is true), given a desired probability

of false alarm (detects 𝐻1 when 𝐻0 is true). This approach is appropriate, for instance, to detect

the presence of a target in a radar. Alternatively, a Bayesian approach can be employed, where

the detector aims to minimize the overall detection error, taking into account prior probabilities

assigned to possible outcomes. When the prior probabilities are assumed to be equal for all

possible alternatives, the Bayesian detector reduces to themaximum likelihood (ML) detector [86],

which can be applied, for instance, in problems where the prior probabilities are uncertain—the

ML detector, in this case, minimizes the worstcase error probability [87, thm. 1.2.1], since

the maximum error probability in detection occurs when the prior probabilities are equally

likely. The already mentioned master’s thesis that preceded this research developed a two

hypotheses ML distributed detector [60], using the dLMS similarly as proposed in [78]. After a

few months of research in this thesis, those results were extended to detection problems with

different probabilities assigned to the two hypotheses [88], resulting in a binary Maximum a

Posteriori (MAP) detector. The new detector presented in this work further extends these results

to problems with more than two hypotheses, allowing for arbitrary values to be assigned to the

prior probabilities.

Traditionally, the majority of the works in distributed detection have focused on asymp

totic steadystate behavior, which is specially appealing for a continuous sequential detection,

where the sensor network keeps monitoring its environment indefinitely. In this case, the decision

accuracy is improved as its performance converges asymptotically to the steadystate. However,

equally important is the capacity of making a decision over a limited time interval while ensuring

bounds on the detection performance. As argued in [89], this is a crucial question, since in

realistic scenarios, one often faces situations where a decision must be taken within a finite time

to save limited resources or to prevent potential costly damages. As demonstrated in this thesis,

the proposed detector aims at detecting events with a performance comparable to an optimal

sequential detector within a finite time interval while keeping a simple, feasible detection routine,

computationally speaking. Additionally, a designer may ask, prior to deployment, how long the

algorithm must run to guarantee a performance benchmark, such as a maximum probability of

error. For example, [90] proposes a distributed consensusbased detection algorithm that finds an
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appropriate stopping rule. In this thesis, an offline algorithm that can estimate a stopping time is

also presented.

The detection problem addressed in this thesis must be contrasted with an apparently

similar but fundamentally different situation, which is the quickest detection of changes in the

state of nature. In this case, the goal is to detect a transition between states as quickly as possible

after its occurrence. Therefore, in this case both tracking ability and quick response are at a

premium [91–93]. Although tracking changes is not a goal of the proposed detector, a simple

periodic reset strategy can, in fact, enable the proposed algorithm to track this changes in state

adequately.

Finally, to close this section on the most related literature, it is worth mentioning few

more recent subareas on distributed detection. For instance, [94] addresses decision learning on

distributedmultitask networks using a diffusion algorithm, where nodes are grouped into clusters

of different addressing decision problems while keeping both a learning rate and tracking ability

of the network. Works like [95] and more recently [96] explore distributed network decision

problems over the Social Learning paradigm, where agents incorporate information from their

own observations to form their prior beliefs over a set of hypotheses, and then combine their

beliefs locally among neighbors. [97] develops an distributed consensusbased Chernoff test on

a active decision setting, where the network agents must continuously choose the best action to

take over a set of possible actions.

1.3 Objectives and contributions

Based on the discussions above, the research objectives can be summarized as follows:

1. Obtain a feasible detection algorithm for cooperative WSNs to determine the current state

of the environment being monitored under Gaussian noise.

2. The algorithm in Objective 1 must have low complexity, having in mind operation under

stringent power limitations.

3. The algorithm in Objective 1 should reach a required detection performance in a finite

time interval which can be previously estimated.

The proposed detector satisfies all the objectives above. Now, let us delve into the new

contributions of the proposed detector, built upon previous research presented in my master’s

thesis [59] and published in the IEEE Signal Processing Letters [60], where it was first proposed a

binary MLdistributed detector based on the dLMS algorithm and was shown that the convergence

rate of the probability of detection error is independent of the value of the LMS step size if

it is chosen to be as small as possible. In other words, by adopting a slower learning rate in

estimation, similar to a “tortoiselike” pace. These results were further extended to a binary
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MAP detector during the initial months of this thesis research, which was later published in the

2020 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)

Proceedings [88]. Thereafter, these are the new contributions:

1. A new general detector that generalizes previous results already published [60, 88] to more

than two hypotheses with arbitrary values for the prior probabilities.

2. The new detector deals with uncertainty in the parametric vector that represents the different

hypotheses.

3. Amore detailed theoretical treatment that encompasses the previous results as particular

cases.

4. A detailed description of how to obtain an implementable lowcomplexity algorithm

envisioning real detection problems.

5. A proof that as the dLMS estimation rate at the core of the detection algorithm becomes

slower, the proposed detector tends to the optimal performance.

6. Additionally, this research includes a simple routine to estimate the stopping time and a

strategy to track potential changes in the state of nature.

1.4 Notation

1.4.1 Basics

We use both normal lowercase “𝑥” and uppercase “𝑋” for scalars or functions; the

uppercase is preferred to denote scalar constants or sets.

Lowercase boldface “𝒙” is used for vector quantities. Vectors are always column vectors;
a row vector is thus denoted by 𝒙⊤.

Uppercase boldface “𝑿” or calligraphic “𝒳” is used for matrices. A calligraphic font

denotes a new matrix that groups together other smaller matrices of kindred origin that refer to

each sensor node, using above all the operators “col” or “diag” (see 1.4.2 below for definitions

on these functions).

𝑰𝐷 denotes a 𝐷×𝐷 identity matrix.

“𝟎” denotes either a vector or a matrix filled with zeros, with adequate dimensions

depending on the given context.

The operator ‖ 𝒙 ‖2
2 represents the squared ℓ2norm (‖ 𝒙 ‖2)2 of vector 𝒙.
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1.4.2 Special Operators

The “col” operator stacks its arguments (scalars, vectors or matrices) in a columnwise

fashion, producing new vectors or new “tall” matrices. For example, for 𝑥𝑖 ∈ ℝ, 1 ≤ 𝑖 ≤ 𝑁,

the operation col{𝑥1, 𝑥2, … , 𝑥𝑁} produces a new vector 𝒙 = [𝑥1 𝑥2 … 𝑥𝑁]⊤ ∈ ℝ𝑁; similarly,

for matrices 𝑿𝑖 ∈ ℝ𝐾×𝐿, 1 ≤ 𝑖 ≤ 𝑁, the operation col{𝑿1, 𝑿2, … , 𝑿𝑁} produces a new

matrix 𝒳 = [𝑿⊤
1 𝑿⊤

2 … 𝑿⊤
𝑁]⊤ ∈ ℝ𝑁𝐾×𝐿. The vector case follows from the matrix example

for 𝐿 = 1.

The “diag” operator arranges its arguments along the diagonal of a square matrix with

appropriate dimensions, filling the remaining of the new resulting matrix with zeros. For example,

for 𝑥𝑖 ∈ ℝ and 𝑿𝑖 ∈ ℝ𝐾×𝐿, 1 ≤ 𝑖 ≤ 𝑁, we have

diag{𝑥1, 𝑥2, … , 𝑥𝑁} =
⎡
⎢
⎢
⎢
⎣

𝑥1 0 ⋯ 0
0 𝑥2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑥𝑁

⎤
⎥
⎥
⎥
⎦

∈ ℝ𝑁×𝑁, and

diag{𝑿1, 𝑿2, … , 𝑿𝑁} =
⎡
⎢
⎢
⎢
⎣

𝑿1 𝟎 ⋯ 𝟎
𝟎 𝑿2 ⋯ 𝟎
⋮ ⋮ ⋱ ⋮
𝟎 𝟎 ⋯ 𝑿𝑁

⎤
⎥
⎥
⎥
⎦

∈ ℝ𝐾𝑁×𝐿𝑁.

𝑨⊗𝑩 denotes the Kronecker product of matrices 𝑨 and 𝑩; i.e., for 𝑨 = (𝑎𝑘ℓ) ∈ ℝ𝐾×𝐿

and 𝑩 ∈ ℝ𝑀×𝑁

𝑨 ⊗ 𝑩 =
⎡
⎢
⎢
⎢
⎣

𝑎11𝑩 𝑎12𝑩 ⋯ 𝑎1𝐿𝑩
𝑎21𝑩 𝑎22𝑩 ⋯ 𝑎2𝐿𝑩

⋮ ⋮ ⋱ ⋮
𝑎𝐾1𝑩 𝑎𝐾2𝑩 ⋯ 𝑎𝐾𝐿𝑩

⎤
⎥
⎥
⎥
⎦

∈ ℝ𝐾𝑀×𝑁𝐿.

1.4.3 Time indices

Discrete timedependent quantities are denoted by indices 𝑖, 𝑗, 𝜄 inside brackets (e.g.,
𝑥[ 𝑖 ], 𝒙[ 𝑗 ], 𝑿[ 𝑖, 𝑗 ], 𝒳[ 𝑖, 𝑗, 𝜄 ]).

Vectors or matrices that are a collection of quantities from time 𝑖 down to time 0 are

denoted using “ 0∶ 𝑖 ” as subscript; e.g.,

𝒙0∶𝑖 = col{𝑥[ 𝑖 ], 𝑥[ 𝑖 − 1 ], … , 𝑥[ 0 ]},

𝑿0∶𝑖 = diag{𝑿[ 𝑖 ], 𝑿[ 𝑖 − 1 ], … , 𝑿[ 0 ]},

1.4.4 Indices for states

If the definition of a quantity depends on a determined state of nature, this is denoted by

indices 𝑛, 𝑚, 𝜈 in subscript (e.g., 𝑥𝑛 , 𝑿𝑚).
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1.4.5 Random quantities and its operators

We represent random quantities by a tilde mark underneath its symbol, as in 𝑥∼ and 𝒙∼ ;
their respective realizations are generally denoted simply as 𝑥 and 𝒙.

If 𝒙∼ has a distribution conditioned on a given state of nature indexed by 𝑛 ∈ ℕ, we

denote such dependence as 𝒙∼ 𝑛.

The operator E(𝒙∼ ) denotes unconditional expectation, and E(𝒙∼ ∣ 𝐻𝑛) denotes an expec
tation conditioned on a given hypothesis 𝐻𝑛.

Similarly, the operator Var(𝑥∼) denotes the unconditional variance of the random variable

𝑥∼ , and Cov(𝑥∼ , 𝑤∼ ) denotes the unconditional covariance between the random variables 𝑥∼ and 𝑤∼ .
No conditional variance or covariance is used throughout this thesis.

We may see the abuse of notation Var( 𝒙∼ ) or even Var(𝒙∼⊤) to refer to the corresponding
covariance matrix of the random vector 𝒙∼ , defined as E(𝒙∼ 𝒙∼⊤) − E(𝒙∼ )E(𝒙∼⊤).

1.4.6 Indices denoting sensor nodes

Subscripts 𝑘 and ℓ are used to label sensor nodes in the network. If a time varying quantity
𝒙 depends on a given state 𝑛 and also on a specific sensor node labeled as 𝑘, the indices for
the state and for the node are separated by a comma, with that of the state appearing first (e.g.

𝒙𝑛,𝑘[ 𝑖 ]).

1.4.7 Avoiding too many subscript indices

Sometimes a quantity 𝑥𝑛,𝑘[ 𝑖 ], which depends on state 𝑛 and is defined at node 𝑘, can be
a realization of a random process that is also conditioned on a given state 𝑚. In order to avoid

denoting this random process with too many subscript indices such as 𝑥∼ 𝑚,𝑛,𝑘[ 𝑖 ], instead no

subscript for the conditioning is used, and it is denoted by other means such as

𝑥∼ 𝑛,𝑘[ 𝑖 ] conditioned on state 𝑚, or

𝑥∼ 𝑛,𝑘[ 𝑖 ] ∣ “state 𝑚”, or

𝑥∼ 𝑛,𝑘[ 𝑖 ] ∣ 𝐻𝑚,

where 𝐻𝑚 refers to the hypothesis that “state 𝑚” is the actual state of nature.

Similarly, quantities such as 𝒙0∶𝑖 that are the realization of a random process conditioned

on a given state 𝑛are are better denoted as “𝒙∼ 0∶𝑖 conditioned on state 𝑛” or other variations.

1.5 Brief description of the next chapters

The following Chapter 2 formulates the decision problem discussed in this Introduction

but restricted to a single isolated sensor node, in order to build on that the theoretical founda

tions and basic assumptions pertaining both the model of the observed data and the statistical
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hypothesis test. In this fashion the reader becomes familiar with the terminology and notations

used throughout this thesis in the context of a simpler system. The chapter takes advantage of

this simplicity to present the important connection between detection and parameter estimation,

and discuss how such a connection can lead to a more suitable detection strategy.

Next, Chapter 3 expands the discussion of the preceding chapter to a distributed network

of wireless sensors and formulates a cooperative detection algorithm based on the estimation

algorithm dLMS, using the detectionestimation connection discussed previously. The main

mathematical basis of the distributed detector described in this thesis is developed in this chapter,

producing a theoretical and “noapproximations” detector which is the base for the analysis and

developments in the following chapters.

The performance analysis of the dLMS detector is done in Chapter 4, where it will be

proved that its performance is independent of the value of the step size of the LMS algorithm,

provided it is sufficiently small, and that this performance tends to optimum.

In Chapter 5, a lowcomplexity distributed detector, suitable for applications under

stringent power conditions, is derived from the theoretical one developed in Chapter 3 by means

of a few justifiable approximations, but maintaining the same performance behavior shown in

Chapter 4. Also, we discuss the effect of the initial value of the LMS estimate in the performance

and in the algorithm complexity. Finally, Chapter 5 concludes presenting a technique to estimate

offline the stopping time of the proposed detector and how it can be used to devise a strategy to

track eventual changes in the state of nature.

The simulations showing the performance of the lowcomplexity detector developed in

Chapter 5 are presented in Chapter 6, where it is compared with the performances of the theoreti

cal detector of Chapter 3 and with an optimal detector under the same conditions. Additional

simulations regarding other topics and later findings are also presented.

Finally, Chapter 7 provides conclusive remarks regarding this thesis and provide some

ideas for future work.
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2 FUNDAMENTALS OFTHE DECISION PROBLEM: THE SINGLE

NODE CASE

We start addressing the decision problem of a single isolated sensor node, so that the

theoretical foundations and basic assumptions can be built on top of a simpler system. We then

derive and discuss an optimal test and its statistic, and from this examination an alternative test

based upon a recursive parameter estimator is presented. This connection between detection and

estimation produces a sequential detector, which is more suitable for the distributed problem

being addressed and further developed in Chapter 3. The chapter then concludes with a brief

discussion concerning the statistical sufficiency of the parameter estimator.

2.1 Framework

Suppose that an isolated node, endowed with sensing and computation capacities, senses

and measures events in its surroundings via an observable scalar 𝑑[ 𝑖 ], available periodically at
every discrete time instant 𝑖. From these observations, our sensor must infer the current state

of its environment, which must be chosen from a set of 𝑁 known possible states, each indexed

by 𝑛 = 1, 2, … , 𝑁. To each state 𝑛 is associated a different 𝐷dimensional random vector of

parameters 𝒘∼ 𝑛 , called state vector, and their prior distributions for each possible state form a

family of normally distributed vectors, given as

𝒘∼ 𝑛 ∼ 𝒩(𝜽𝑛 , 𝜮𝒘) ∈ ℝ𝐷, 𝑛 ∈ {1, … , 𝑁}, (2.1)

where {𝜽𝑛}𝑁
𝑛=1 are known vector means and the covariance matrix 𝜮𝒘 is independent of any

specific state and represents our uncertainty about the true value of any realization 𝒘 of the

random state vector 𝒘∼ 𝑛 . Our observable scalar 𝑑[ 𝑖 ] is related to 𝒘 through the linear model

𝑑[ 𝑖 ] = 𝒖⊤[ 𝑖 ]𝒘 + 𝑣[ 𝑖 ], (2.2)

where 𝒖[ 𝑖 ] ∈ ℝ𝐷 is a known “input” vector, available at every time 𝑖, and the scalar 𝑣[ 𝑖 ] is a
measurement noise, modeled as a realization of a white noise process with 𝑣∼[ 𝑖 ] ∼ 𝒩(0, 𝜎2

𝑣) and
assumed to be independent of 𝒘∼ 𝑛. In summary, our node must decide from a noisy observation

𝑑[ 𝑖 ] and a known vector 𝒖[ 𝑖 ] which state is at place at time 𝑖. In addition, assume that there is
no change of states during the period of time under consideration, unless it is expressly stated.

The interpretation of the quantities 𝑑𝑘[ 𝑖 ], 𝒖𝑘[ 𝑖 ] and 𝒘 can vary substantially depending

on the specific application where the linear model in (2.2) is valid. This is particularly the case in

the field of Adaptive Filtering, which the algorithm LMS—the “core” of the proposed distributed

detector described in Chapter 3—is mostly related with. We refer to [98, pp. 168–174] and

[99] for some examples of applications of the model. As it is customary in Adaptive Filtering,
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assume that the input vector 𝒖[ 𝑖 ] in Equation (2.2) has a shift delay structure; i.e., given a signal
𝑢[ 𝑗 ] ∈ ℝ, 𝑗 = 0, … , 𝑖, we have

𝒖[ 𝑖 ] = col{𝑢[ 𝑖 ], 𝑢[ 𝑖 − 1 ], … , 𝑢[ 𝑖 − 𝐷 + 1 ]}.

For this reason, the model in Equation (2.2) is known as tapped delay line, commonly used to

model a multipath channel signal transmission [86, p. 169], and in this context the vector 𝒖[ 𝑖 ]
is called regressor vector, a terminology adopted in Adaptive Filtering and in this thesis.

For most scenarios where the model in Equation (2.2) is applied, the regressor vector is

the observation of a random process 𝒖∼ . The sequence of observed regressors {𝒖[ 𝑗 ]}𝑖
𝑗=0 should

be considered deterministic at time 𝑖, in the sense that they have already been observed. Therefore,
the solution to the decision problem herein can be seen as designed for this particular sequence of

realizations of the random process 𝒖∼ , and such a solution is in fact optimal and has a closedform,
as we see later on.

Finally, in order to arrange and simplify the description of the decision problem, let us

collect all data samples up to instant 𝑖:

𝒅0∶𝑖 = col{𝑑[ 𝑖 ], 𝑑[ 𝑖 − 1 ], … , 𝑑[ 0 ]} ∈ ℝ𝑖+1,

𝑼0∶𝑖 = col{𝒖⊤[ 𝑖 ], 𝒖⊤[ 𝑖 − 1 ], … , 𝒖⊤[ 0 ]} ∈ ℝ(𝑖+1)×𝐷. (2.3)

Thus, given state 𝑛, the data model in Equation (2.2) can be grouped as

𝒅0∶𝑖 = 𝑼0∶𝑖𝒘 + 𝒗0∶𝑖 , (2.4)

where 𝒗0∶𝑖 = col{𝑣[ 𝑖 ], … , 𝑣[ 0 ]} is the realization of a white noise process 𝒗∼ 0∶𝑖 ∼ 𝒩(𝟎, 𝜮𝒗0∶𝑖
)

which is independent of 𝒘∼ 𝑛 , and whose covariance matrix is

𝜮𝒗0∶𝑖
= diag{𝜎2

𝑣, … , 𝜎2
𝑣} ∈ ℝ(𝑖+1)×(𝑖+1). (2.5)

2.2 Formulating a Hypothesis Test

The solution of a decision problem is a rule that associates the observed data with a

unique true hypothesis, chosen from a sequence {𝐻𝑛}𝑁
𝑛=1 of possible alternatives, where each𝐻𝑛

represents the event {“state 𝑛 is the current state”}. We start defining a function 𝛷 ∶ ℝ𝑖+1 → ℕ∗

of the observed data 𝒅0∶𝑖 , and the event

{𝛷(𝒅0∶𝑖) = 𝑛 ∣ 𝑼0∶𝑖 , 𝐻𝑚}, 𝑛 ∈ {1, … , 𝑁}, (2.6)

represents a decision in favor of hypothesis 𝐻𝑛 based on the observed data 𝒅0∶𝑖, given a particular

matrix 𝑼0∶𝑖 and 𝐻𝑚 , 𝑚 ≠ 𝑛 , is the true hypothesis. In a Bayesian framework, we assign a

cost (𝐻𝑛 , 𝐻𝑚) ↦ 𝐶𝑛𝑚 whenever we decide for 𝐻𝑛 when 𝐻𝑚 is true, and we measure the
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performance of the decision rule 𝛷(𝒅0∶𝑖) through the average decision cost (also called Bayes
risk function), given as [86, p. 80]

𝑅[ 𝑖 ] =
𝑁

∑
𝑛=1

𝑁
∑
𝑚=1

𝐶𝑛𝑚 ℙ({𝛷(𝒅0∶𝑖) = 𝑛 ∣ 𝑼0∶𝑖 , 𝐻𝑚})ℙ(𝐻𝑚).

The probabilities {ℙ(𝐻𝑚)}𝑁
𝑛=1 above are called the prior probabilities and represent our knowl

edge or belief about the “odds” of the hypotheses before any data is observed. Evidently, we

have ℙ(𝐻𝑚) = ℙ({“state 𝑛 is the current state”}). In particular, setting 𝐶𝑛𝑚 = 1 if 𝑛 ≠ 𝑚
and 𝐶𝑛𝑚 = 0 otherwise, the Bayes risk reduces to the average probability of error 𝜉[ 𝑖 ], given as

𝜉[ 𝑖 ] =
𝑁

∑
𝑛=1

𝑁
∑
𝑚=1
𝑚≠𝑛

ℙ({𝛷(𝒅0∶𝑖) = 𝑛 ∣ 𝑼0∶𝑖 , 𝐻𝑚})ℙ(𝐻𝑚), (2.7)

which can be minimized by setting 𝛷(𝒅0∶𝑖) = 𝑛 whenever the probability ℙ(𝐻𝑛 ∣ 𝒅0∶𝑖 , 𝑼0∶𝑖) is
maximum. In other words, we choose 𝐻𝑛 if

ℙ(𝐻𝑛 ∣ 𝒅0∶𝑖 , 𝑼0∶𝑖) > ℙ(𝐻𝑚 ∣ 𝒅0∶𝑖 , 𝑼0∶𝑖) ∀𝑚 ≠ 𝑛 . (2.8)

The probabilities above are called posterior probabilities, since they represent the chances of

each hypothesis to be correct after data is observed. Consequently, this test is called maximum a

posteriori (MAP). Note that the MAP test in Equation (2.8) implies the evaluation of 𝑁 posterior

probabilities and 𝑁 − 1 comparisons between pairs in order to find the maximum.

Using Bayes’ theorem, we can compare a given pair of hypotheses {𝐻𝑛, 𝐻𝑚} by

𝑓(𝒅0∶𝑖 ∣ 𝑼0∶𝑖 , 𝐻𝑛)ℙ(𝐻𝑛)
𝛷≠𝑚
≷

𝛷≠𝑛
𝑓(𝒅0∶𝑖 ∣ 𝑼0∶𝑖 , 𝐻𝑚)ℙ(𝐻𝑚) , (2.9)

where 𝑓(𝒅0∶𝑖 ∣ 𝑼0∶𝑖 , 𝐻𝑛) is the probability density function (p.d.f.) of the random vector 𝒅∼ 0∶𝑖

conditioned on {𝑼0∶𝑖 , 𝐻𝑛}, which is, from Equation (2.4), given as

𝒅∼ 0∶𝑖 ∣ {𝑼0∶𝑖 , 𝐻𝑛} = 𝑼0∶𝑖𝒘∼ 𝑛 + 𝒗∼ 0∶𝑖 ; (2.10)

therefore,

𝒅∼ 0∶𝑖 ∣ {𝑼0∶𝑖 , 𝐻𝑛} ∼ 𝒩(𝑼0∶𝑖𝜽𝑛 , 𝜮𝒅0∶𝑖
),

where 𝜮𝒅0∶𝑖
= 𝑼0∶𝑖𝜮𝒘𝑼⊤

0∶𝑖 + 𝜮𝒗0∶𝑖
is its covariance matrix. Since it is a normal random vector,

its p.d.f. is given as

𝑓(𝒅0∶𝑖 ∣ 𝑼0∶𝑖 , 𝐻𝑛) = ((2π)
𝑖+1

2 det
1
2 𝜮𝒅0∶𝑖

)
−1

e𝜏𝑛[ 𝑖 ], (2.11)

where 𝜏𝑛[ 𝑖 ] is a function of the data given as

𝜏𝑛[ 𝑖 ] = −
1
2(𝒅0∶𝑖 − 𝑼0∶𝑖𝜽𝑛)⊤𝜮−1

𝒅0∶𝑖
(𝒅0∶𝑖 − 𝑼0∶𝑖𝜽𝑛) . (2.12)
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Thus, taking the logarithm on both sides of the inequality in Equation (2.9) and canceling constants

out, the test can be reduced to the following equivalent:

𝜏𝑛[ 𝑖 ]
𝛷≠𝑚
≷

𝛷≠𝑛
𝜏𝑚[ 𝑖 ] + 𝛾𝑚𝑛 , (2.13)

where 𝛾𝑚𝑛 = ln(ℙ(𝐻𝑚)/ℙ(𝐻𝑛)). The functions of data {𝜏𝑛[ 𝑖 ]}𝑁
𝑛=1 used to compare pairs of

hypotheses are called test statistics. Let us summarize these results in the following proposition:

Proposition 1. A test statistic 𝜏𝑛[ 𝑖 ] and the hypothesis test to decide in favor of 𝐻𝑛 from

𝒅0∶𝑖 = 𝑼0∶𝑖𝒘 + 𝒗0∶𝑖 are given as

𝜏𝑛[ 𝑖 ] = −
1
2(𝒅0∶𝑖 − 𝑼0∶𝑖𝜽𝑛)⊤𝜮−1

𝒅0∶𝑖
(𝒅0∶𝑖 − 𝑼0∶𝑖𝜽𝑛),

𝜏𝑛[ 𝑖 ]
𝛷≠𝑚
≷

𝛷≠𝑛
𝜏𝑚[ 𝑖 ] + 𝛾𝑚𝑛 ,

where 𝛾𝑚𝑛 = ln(ℙ(𝐻𝑚)/ℙ(𝐻𝑛)).

Proof. See equations (2.9) to (2.13) above.

The test statistic just presented in Equation (2.12) consists in a batch process; i.e, in

order to evaluate it and make a decision at time 𝑖, we have to process all the previously collected
data at once. Therefore, in such a scenario it is reasonable to evaluate the test statistic only at

the end of our observation, when all data are collected. In this thesis, the focus in on a solution

that produces intermediate statistics for every time 𝑖 without the need for data accumulation,
since the sensor nodes could benefit from this inbetween processing to share their intermediate

results with its neighboring nodes, which in turn can combine this new information with their

own local statistic, thus improving their performance. This could be achieved, for instance, by

using a recursive algorithm, in such a way that the evaluation of these new intermediate statistics

depends only on its past values and on the most recently observed data. In the next section, we

will discuss the case where these intermediate statistics are estimates of the state vector 𝒘 and

how we can employ it as the core of a detection algorithm.

2.3 Detection & Estimation

From our previous discussion, we are interested in producing a test with the following

structure:

𝑔(�̌�[ 𝑖 ] ∣ 𝐻𝑛)
𝛷≠𝑚
≷

𝛷≠𝑛
𝑔(�̌�[ 𝑖 ] ∣ 𝐻𝑚) + 𝛾 ′

𝑚𝑛 , (2.14)

where �̌�[ 𝑖 ] ∈ ℝ𝐷 is any estimate of 𝒘∼ 𝑛 , 𝛾 ′
𝑚𝑛 is an appropriate decision threshold and

𝑔 ∶ ℝ𝐷 → ℝ is a function which depends on the observable data 𝒅0∶𝑖 only through �̌�[ 𝑖 ]. To get
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rid of the direct dependence on previously observed data, assume that �̌�[ 𝑖 ] can be evaluated
recursively in time as follows:

�̌�[ 𝑖 ] = 𝐺(�̌�[ 𝑖 − 1 ], 𝑑[ 𝑖 ], 𝒖[ 𝑖 ]),

where 𝐺(⋅) is a function which depends on previous information only through �̌�[ 𝑖 − 1 ]. As
mentioned, nodes in a cooperative wireless network can take advantage of these local estimates to

share information among them, which we should expect will improve the detection performance.

Not incidentally, there are efficient estimators whose use was devised for detection in distributed

networks, such as the already mentioned dLMS algorithm (see the most related literature in

Section 1.2). We will discuss in Chapter 3 how we can formulate a distributed detector based on

the dLMS. But first it must be shown that a hypothesis test can be produced from an estimator,

as shown in Equation (2.14).

According to the Bayesian philosophy, the criterion typically employed to choose an

estimator—i.e., a random quantity whose realizations are estimates—is to select the one that

minimize the Bayesian mean squared error (BMSE): given a hypothesis 𝐻𝑛, we choose the

estimator such that

�̌�∼ ∗
𝑛[ 𝑖 ] = arg min

�̌�∼ [ 𝑖 ]
E(‖ 𝒘∼ 𝑛 − �̌�∼ [ 𝑖 ] ‖2

2 ∣ 𝒅0∶𝑖 , 𝑼0∶𝑖).

The solution to such problem is the Bayesian minimum mean square error estimator (MMSE)

[100, p. 316], whose estimates at time 𝑖 are set as the mean value of the random variable 𝒘∼ 𝑛

after (conditioned on) the observation of data; put mathematically,

�̌�∗[ 𝑖 ] = E(𝒘∼ 𝑛 ∣ 𝒅0∶𝑖 , 𝑼0∶𝑖). (2.15)

Therefore, assuming the linear model in Equation (2.4), the MMSE can be expressed as [100,

p. 326]

�̌�∗[ 𝑖 ] = 𝜽𝑛 + 𝜮𝒘𝑼⊤
0∶𝑖𝜮−1

𝒅0∶𝑖
(𝒅0∶𝑖 − 𝑼0∶𝑖 𝜽𝑛), (2.16)

where 𝜽𝑛 = E(𝒘∼ 𝑛) (see Equation (2.1)). The MMSE is noteworthy because its estimates can be

calculated recursively. Such recursive routine is given by the following equation [100, p. 398]:

�̌�∗[ 𝑖 ] = 𝝎[ 𝑖 ]𝑑[ 𝑖 ] + (𝑰𝐷 − 𝝎[ 𝑖 ]𝒖⊤[ 𝑖 ])�̌�∗[ 𝑖 − 1 ] , (2.17)

where

𝝎[ 𝑖 ] =
𝜴[ 𝑖 − 1 ]𝒖[ 𝑖 ]

𝜎2
𝑣 + 𝒖⊤[ 𝑖 ]𝜴[ 𝑖 − 1 ]𝒖[ 𝑖 ]

∈ ℝ𝐷, and

𝜴[ 𝑖 ] = (𝑰𝐷 − 𝝎[ 𝑖 ]𝒖⊤[ 𝑖 ]) 𝜴[ 𝑖 − 1 ] ∈ ℝ𝐷×𝐷,

which must be initialized as �̌�∗[−1] = 𝜽𝑛 and 𝜴[−1] = 𝜮𝒘. However, if we want to make

use of the MMSE, we would need to remove the direct dependence on a specific 𝜽𝑛 , because

we do not know the current state 𝑛 in order to set �̌�∗[−1] = 𝜽𝑛 . Furthermore, this would be
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preposterous, since if we knew the correct 𝜽𝑛 to choose, the detection problem would be solved

already. In order to fix this inconsistency, let us notice that the MMSE is unbiased, since from

Equation (2.16)

E(𝒘∼ 𝑛 − E(�̌�∼ ∗
𝑛)) = E(𝒘∼ 𝑛 − 𝜽𝑛) = 𝟎;

in fact, we can remove the direct dependence on a specific 𝜽𝑛 by discarding the unbiased condition.

By substituting 𝜽𝑛 in Equation (2.16) by an arbitrary constant vector 𝒃 ∈ ℝ𝐷, we produce a new

biased estimator 𝒘∼ based on the MMSE, whose estimates are given as

𝒘[ 𝑖 ] = 𝒃 + 𝜮𝒘𝑼⊤
0∶𝑖𝜮−1

𝒅0∶𝑖
(𝒅0∶𝑖 − 𝑼0∶𝑖𝒃). (2.18)

which is a biased estimate for all 𝒃 ≠ 𝜽𝑛 . Although 𝒘∼ is not optimal according to the BMSE

criterion due to the insertion of a bias, we will see ahead in Section 2.4 that, from a detection

perspective, this bias does not change the detector performance because it is a sufficient statistic

for 𝜽𝑛. Furthermore, the new estimator 𝒘∼ can also be updated by the same recursive algorithm

given in Equation (2.17) for the MMSE, setting the initial estimate to 𝒘[−1] = 𝒃.

Next, we define a new test statistic 𝜏 ′
𝑛[ 𝑖 ] from 𝜏𝑛[ 𝑖 ] in Equation (2.12) that depends on

𝒅0∶𝑖 only through the estimate 𝒘[ 𝑖 ] and is equivalent to 𝜏𝑛[ 𝑖 ] with regard to detection. Since
this is an important result, let us state it in the following proposition:

Proposition 2. The following hypothesis test with its corresponding statistic test, namely

𝜏 ′
𝑛[ 𝑖 ]

𝛷≠𝑚
≷

𝛷≠𝑛
𝜏 ′

𝑚[ 𝑖 ] + 𝛾𝑚𝑛 ,

𝜏 ′
𝑛[ 𝑖 ] = (𝒘[ 𝑖 ] − 𝒃)⊤𝜮−1

𝒘 (𝜽𝑛 − 𝒃) −
1
2(𝜽𝑛 − 𝒃)⊤𝑼⊤

0∶𝑖𝜮−1
𝒅0∶𝑖

𝑼0∶𝑖(𝜽𝑛 − 𝒃), (2.19)

is completely equivalent to the original test in Equation (2.13) in a statistical hypothesis test

point of view.

Proof. The new test statistic 𝜏 ′
𝑛[ 𝑖 ] is obtained from 𝜏𝑛[ 𝑖 ]. First, by using the following algebraic

manipulation:

𝒅0∶𝑖 − 𝑼0∶𝑖𝜽𝑛 = (𝒅0∶𝑖 − 𝑼0∶𝑖𝒃) − (𝑼0∶𝑖𝜽𝑛 − 𝑼0∶𝑖𝒃),

we can expand Equation (2.12) to obtain

𝜏𝑛[ 𝑖 ] = −
1
2(𝒅0∶𝑖 − 𝑼0∶𝑖𝒃)⊤𝜮−1

𝒅0∶𝑖
(𝒅0∶𝑖 − 𝑼0∶𝑖𝒃) + (𝒅0∶𝑖 − 𝑼0∶𝑖𝒃)⊤𝜮−1

𝒅0∶𝑖
𝑼0∶𝑖(𝜽𝑛 − 𝒃)

−
1
2(𝜽𝑛 − 𝒃)⊤𝑼⊤

0∶𝑖𝜮−1
𝒅0∶𝑖

𝑼0∶𝑖(𝜽𝑛 − 𝒃). (2.20)

Let ℎ(𝒅0∶𝑖) be the first righthand side term above; i.e.,

ℎ(𝒅0∶𝑖) = −
1
2(𝒅0∶𝑖 − 𝑼0∶𝑖𝒃)⊤𝜮−1

𝒅0∶𝑖
(𝒅0∶𝑖 − 𝑼0∶𝑖𝒃).

Note that ℎ(𝒅0∶𝑖) does not change when 𝐻𝑛 changes; thus, ℎ(𝒅0∶𝑖) cannot influence the test
result and it is always canceled out when we compare a pair {𝜏𝑛[ 𝑖 ], 𝜏𝑚[ 𝑖 ]} of statistics. Hence,
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we can remove it by defining 𝜏 ′
𝑛[ 𝑖 ] = 𝜏𝑛[ 𝑖 ] − ℎ(𝒅0∶𝑖). Next, substitute in Equation (2.20) the

following identity:

(𝒅0∶𝑖 − 𝑼0∶𝑖𝒃)⊤𝜮−1
𝒅0∶𝑖

𝑼0∶𝑖 = (𝒘[ 𝑖 ] − 𝒃)⊤𝜮−1
𝒘 ,

which can be obtained by manipulating Equation (2.18) accordingly:

𝒘[ 𝑖 ] − 𝒃 = 𝜮𝒘𝑼⊤
0∶𝑖𝜮−1

𝒅0∶𝑖
(𝒅0∶𝑖 − 𝑼0∶𝑖𝒃) ⇒

𝜮−1
𝒘 (𝒘[ 𝑖 ] − 𝒃) = 𝑼⊤

0∶𝑖𝜮−1
𝒅0∶𝑖

(𝒅0∶𝑖 − 𝑼0∶𝑖𝒃),

and then transposing both sides of the equation. Thus, we have

𝜏 ′
𝑛[ 𝑖 ] = (𝒘[ 𝑖 ] − 𝒃)⊤𝜮−1

𝒘 (𝜽𝑛 − 𝒃) −
1
2(𝜽𝑛 − 𝒃)⊤𝑼⊤

0∶𝑖𝜮−1
𝒅0∶𝑖

𝑼0∶𝑖(𝜽𝑛 − 𝒃), (2.21)

which is, as in Equation (2.14), a function that depends on the observable data 𝒅0∶𝑖 only through

the estimate𝒘[ 𝑖 ]. From the test in Equation (2.13), we also conclude that 𝛾 ′
𝑚𝑛 = 𝛾𝑚𝑛 . Therefore,

the hypothesis test presented in Proposition 2 is equivalent to the test in Equation (2.13).

Note that, because the statistic 𝜏𝑛[ 𝑖 ] in Equation (2.12) does not depend on the particular
value of 𝒃, and the test in Equation (2.19) is equivalent to that in Equation (2.13), we conclude
that the value chosen for 𝒃 can not, in principle, influence the detection performance. This result

justifies replacing the MMSE in Equation (2.17) with a more consistent biased version without

losing anything by doing this replacement from a detection perspective. However, although we

can choose any value for 𝒃, there are in fact more adequate choices when we take approximations
for the test statistics as we develop the implementable distributed detector later in Chapter 5.

2.4 Sufficiency

The detection equivalence between the tests Equation (2.13) and Equation (2.19) can

be addressed by showing that the estimator 𝒘[ 𝑖 ] as defined in Equation (2.18) is a sufficient

statistic for 𝜽𝑛, given that 𝐻𝑛 is true (notice that, when 𝐻𝑛 is true, 𝜽𝑛 is a constant deterministic

parameter). We can verify this fact by examining the p.d.f. of 𝒅∼ 0∶𝑖 in Equation (2.11), which is

𝑓(𝒅0∶𝑖 ∣ 𝑼0∶𝑖 , 𝐻𝑛) = ((2π)
𝑖+1

2 det
1
2 𝜮𝒅0∶𝑖

)
−1

eℎ(𝒅0∶𝑖∣𝑼0∶𝑖) e𝜏 ′
𝑛[ 𝑖 ] . (2.22)

As we can see, the p.d.f. in Equation (2.22) is a product of a function eℎ(𝒅0∶𝑖) depending only

on the data and function e𝜏 ′
𝑛[ 𝑖 ]. Also, remember that 𝜏 ′

𝑛[ 𝑖 ] = 𝑔(𝒘[ 𝑖 ] ∣ 𝐻𝑛) is a function that
depends on the data 𝒅0∶𝑖 only through the estimate 𝒘[ 𝑖 ]. According to the NeymanFisher

Factorization Theorem [100, p. 104], 𝒘[ 𝑖 ] is, therefore, a sufficient statistic for 𝜽𝑛 . This fact

justifies considering the estimates 𝒘[ 𝑖 ], instead of 𝒅0∶𝑖, as our de facto data sample, since all the

information needed to perform a detection about 𝒘∼ 𝑛 (or, equivalently, about 𝜽𝑛) is embedded

in 𝒘[ 𝑖 ]. Framing the detection problem directly from an estimator expands the set of possible

algorithms we can use, since there are many works on distributed estimation in WSNs that
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propose efficient cooperative algorithms for this task, such as the already mentioned dLMS. This

is, perhaps, the motif for many works on detection in distributed WSNs that rely on solutions

for the estimation problem, such as [78–81]. Moreover, finding a truly distributed sufficient

statistic for WSNs in real world applications is likely an unattainable task. Therefore, there is

a practical interest in finding a distributed estimator that can be used in lieu of an unattainable

sufficient statistic and that can approximate, under certain conditions, an optimal performance. In

the next chapters, we head towards a distributed detection solution based on the dLMS estimator,

as well describe its main features (Chapter 3), and its interesting, useful and somewhat counter

intuitive performance behavior (Chapter 4), notably a decay rate of the probability of error that

is independent of the learning rate of the LMS algorithm.
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3 THE DISTRIBUTED DETECTOR USING THE DIFFUSION–LMS

In this chapter, we start the discussion about the proposed cooperative detector based on

the dLMS, aiming at exploiting the diffusion of information within the wireless network. From

the connection between detection and estimation discussed in the previous chapter, we develop

the necessary mathematical tools to show that we can produce a cooperative 𝑁ary hypothesis

test whose “core” is the dLMS. The detector developed in this chapter is ideal in the sense that

no approximations are taken during its conception, and is the base for the performance analysis

in Chapter 4 and for the construction of a feasible lowcomplexity detector in Chapter 5.

3.1 Cooperative estimation with 𝐾 sensor nodes

Consider now a wireless network composed of 𝐾 different sensor nodes, where each

node 𝑘 has its local inputs 𝑑𝑘[ 𝑖 ] and a regressor vector 𝒖𝑘[ 𝑖 ] (seen as a realization of a random
process 𝒖∼ 𝑘[ 𝑖 ]). All nodes are inserted in the same environment and therefore undergo the same
ongoing state, and must decide, as the single node case, which is the current state. Likewise,

each node is capable of processing data locally. They also can communicate bidirectionally

with other nodes in their vicinity in order to share information in a fully distributed setting (i.e.,

there is no fusion center), and considering resource limitations such as power. Likewise, to each

state 𝑛 is associated a random and unknown state vector 𝒘∼ 𝑛 whose prior distribution depends

on the current state 𝑛 according to Equation (2.1). We make the same assumptions taken in

Equation (2.2) for the single node case: the inputs 𝑑𝑘[ 𝑖 ], 𝒖𝑘[ 𝑖 ] are related to a realization 𝒘 of

𝒘∼ 𝑛 by

𝑑𝑘[ 𝑖 ] = 𝒖⊤
𝑘[ 𝑖 ]𝒘 + 𝑣𝑘[ 𝑖 ], (3.1)

where 𝑣∼𝑘[ 𝑖 ] ∼ 𝒩(0, 𝜎2
𝑣𝑘

) is the noise at node 𝑘. As for the isolated node in Chapter 2, assume
that the regressor vectors 𝒖𝑘[ 𝑖 ] have a shift delay structure; i.e.,

𝒖𝑘[ 𝑖 ] = col{𝑢𝑘[ 𝑖 ], 𝑢𝑘[ 𝑖 − 1 ], … , 𝑢𝑘[ 𝑖 − 𝐷 + 1 ]}.

where 𝑢[ 𝑗 ] ∈ ℝ, 𝑗 = 0, … , 𝑖 is an input signal.1

Note that a general optimal solution for this decision problem would be unfeasible in

practice, since a sufficient statistic would require that all data be collected at the same place (in

other words, at a fusion center). Notwithstanding, the focus herein is not on global solutions,

but in formulating and describing practical algorithms that exploit the sharing of information

among nodes across the network, in such a way that we can achieve a detection performance

that we expect to be superior in general to what sensor nodes would attain if they acted with no

cooperation.

1 For an example, see [78] for a application of distributed detection using the linear model in the context of a

cognitive radio problem.
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Based on our previous discussion, we are employing a preprocessing of data via a

cooperative estimation algorithm that can satisfactorily exploit information sharing in the network,

instead of an impractical sufficient statistic. Therefore, assume that each node 𝑘 can calculate

recursively from 𝑑𝑘[ 𝑖 ] and 𝒖𝑘[ 𝑖 ] a local estimate �̂�𝑘[ 𝑖 ] of the state vector 𝒘 and send it

to its neighbors at every time 𝑖. For this task the diffusion–LMS (dLMS) was chosen as the

cooperative estimation algorithm due to its well known good performance and simplicity for

adaptive estimation on WSNs [72]. The dLMS estimates at nodes are denoted as �̂�𝑘[ 𝑖 ], whose
recursive algorithm can be outlined by the following equations:

𝝍𝑘[ 𝑖 ] = �̂�𝑘[ 𝑖 − 1 ] + 𝜇𝑘𝒖𝑘[ 𝑖 ](𝑑𝑘[ 𝑖 ] − 𝒖⊤
𝑘[ 𝑖 ]�̂�𝑘[ 𝑖 − 1 ]), (3.2)

�̂�𝑘[ 𝑖 ] = ∑
ℓ ∈ 𝜗𝑘

𝑎ℓ𝑘𝝍ℓ[ 𝑖 ] , (3.3)

where 𝑎ℓ𝑘 ≥ 0 and ∑𝐾
ℓ=1 𝑎ℓ𝑘 = 1 ∀𝑘, ℓ ∈ {1, 2, … , 𝐾}.

Equation (3.2) shows that the intermediate estimates 𝝍𝑘[ 𝑖 ] are the output of a local LMS

update from the previous estimate �̂�𝑘[ 𝑖−1 ] using local uptodate inputs 𝑑𝑘[ 𝑖 ] and 𝒖𝑘[ 𝑖 ]. Next,
the estimates �̂�𝑘[ 𝑖 ] are obtained via a convex combination of the intermediate estimates 𝝍ℓ[ 𝑖 ]
from neighbors connected to node 𝑘, which constitute the vicinity of node 𝑘, represented by the
set

𝜗𝑘 = {ℓ ∶ node ℓ is connected with node 𝑘}

(also consider that every node 𝑘 is connected to itself). The weights of this combination are given

by the coefficients 𝑎ℓ𝑘. Figure 5 shows an illustration of the diffusionLMS. Finally, 𝜇𝑘 > 0 is

the constant step size of the LMS algorithm2.

From the structure of the dLMS algorithm in Equation (3.2) and Equation (3.3), notice

that each estimate �̂�𝑘[ 𝑖 ] condenses information from a set of measurable quantities

𝛶𝑘[ 𝑖 ] = {𝑑𝑘[ 𝑖 ], 𝒖𝑘[ 𝑖 ]} ∪ { ⋃
ℓ∈𝜗𝑘

{�̂�ℓ[ 𝑖 − 1 ]}}. (3.4)

Therefore, it is reasonable to consider �̂�𝑘[ 𝑖 ] as a sample of a process which depends on those
quantities in the set 𝛶𝑘[ 𝑖 ]; in other words, we could build a hypothesis test as in Equation (2.9)
using corresponding p.d.f. of the estimator �̂�∼ 𝑛,𝑘[ 𝑖 ] as follows:

𝑓(�̂�𝑘[ 𝑖 ] ∣ 𝛶𝑘[ 𝑖 ], 𝐻𝑛)
𝛷𝑘≠𝑚

≷
𝛷𝑘≠𝑛

𝑓(�̂�𝑘[ 𝑖 ] ∣ 𝛶𝑘[ 𝑖 ], 𝐻𝑚),

where 𝛷𝑘 ∶ ℝ𝐷 → ℕ∗ is the decision rule at node 𝑘, which is a function of the estimate �̂�𝑘[ 𝑖 ].
However, in order to do so, first we need to find its distribution of �̂�∼ 𝑛,𝑘 for each node 𝑘 and

hypothesis 𝐻𝑛 , which it is done in the next section.

2 The step size regulates the dynamics of the learning ability of the LMS algorithm—in a general sense, a greater

value of 𝜇 yields a faster convergence rate, whereas smaller values reduce the steady–state quadratic error. These

two performance metrics are, in general, conflicting; thus, one should set a value of the step size that balances

both metrics. However, as shown later, the proposed detector does not show this conflict between transient state

and steady state, which means we do not need to set any compromise value for the step size.



3.2. The distribution of the local dLMS estimator 41

1

2

3
4

5

67

8{𝑑2[ 𝑖 ], 𝒖2[ 𝑖 ]}

{𝑑2[ 𝑖 ], 𝒖2[ 𝑖 ]}

{𝑑3[ 𝑖 ], 𝒖3[ 𝑖 ]}

{𝑑4[ 𝑖 ], 𝒖4[ 𝑖 ]}

{𝑑5[ 𝑖 ], 𝒖5[ 𝑖 ]}

{𝑑6[ 𝑖 ], 𝒖6[ 𝑖 ]}
{𝑑7[ 𝑖 ], 𝒖7[ 𝑖 ]}

{𝑑8[ 𝑖 ], 𝒖8[ 𝑖 ]}

𝝍1[ 𝑖 ]

𝝍2[ 𝑖 ]

𝝍3[ 𝑖 ]

𝝍4[ 𝑖 ]

𝝍5[ 𝑖 ]

𝝍6[ 𝑖 ]

𝝍7[ 𝑖 ]

𝝍8[ 𝑖 ]

(a)

1

2

3
4

5

67

81

22

3
44

5

667

8

𝝍3[ 𝑖 ]

𝝍5[ 𝑖 ]

𝝍8[ 𝑖 ]
𝝍7[ 𝑖 ]

(b)

Figure 5 – Diffusion LMS algorithm

Note: Example of a dLMS algorithm running in a small wireless network. In (a) each node 𝑘 in the network

individually collects a pair {𝑑𝑘[ 𝑖 ], 𝒖𝑘[ 𝑖 ]} and processes it to produce 𝝍𝑘[ 𝑖 ] according to Equation (3.2).
In (b) we observe the information sharing with focus on node 𝑘 = 1: neighboring nodes send their local

estimates produced in the last step to node 1, which in turn sends its own local estimate. The final estimate is
produced by taking a convex combination of the received and local estimates, as described in Equation (3.3).

3.2 The distribution of the local dLMS estimator

As we were discussing, before building a hypothesis test based on the dLMS algorithm,

first we need to find the distribution of random vector �̂�∼ 𝑛,𝑘[ 𝑖 ] from which the dLMS estimate

�̂�𝑘[ 𝑖 ] in Equation (3.3) is the corresponding realization. We start by rearranging the dLMS

equations in Equation (3.2) and Equation (3.3) to find an expression for the p.d.f. of the local

estimates. First, let us define the matrix

𝒀𝑘[ 𝑖 ] = 𝑰𝐷 − 𝜇𝑘𝒖𝑘[ 𝑖 ]𝒖⊤
𝑘[ 𝑖 ], (3.5)

and rewrite Equation (3.2) and Equation (3.3) more compactly as

�̂�𝑘[ 𝑖 ] = ∑
ℓ∈𝜗𝑘

𝑎ℓ𝑘(𝜇ℓ𝒖ℓ[ 𝑖 ]𝑑ℓ[ 𝑖 ] + 𝒀ℓ[ 𝑖 ]�̂�ℓ[ 𝑖 − 1 ]). (3.6)

We define a combination matrix 𝑨 = (𝑎ℓ𝑘) that, by the definition of the coefficients 𝑎ℓ𝑘 in

Equation (3.3), displays the property 𝑨⊤𝟙𝐾 = 𝟙𝐾 , where 𝟙𝐾 ∈ ℝ𝐾 and

𝟙𝐾 = col{1, 1, … , 1}.

In other words, 𝑨 is a left stochastic matrix.
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Let us also define the following matrices:

𝒜 = 𝑨⊤ ⊗ 𝑰𝐷 ∈ ℝ𝐷𝐾×𝐷𝐾, 3

ℳ = diag{𝜇1𝑰𝐷, … , 𝜇𝑘𝑰𝐷, … , 𝜇𝐾𝑰𝐷} ∈ ℝ𝐷𝐾×𝐷𝐾,

𝒅[ 𝑖 ] = col{𝑑1[ 𝑖 ], … , 𝑑𝑘[ 𝑖 ], … , 𝑑𝐾[ 𝑖 ]} ∈ ℝ𝐾,

𝒰[ 𝑖 ] = diag{𝒖1[ 𝑖 ], … , 𝒖𝑘[ 𝑖 ], … , 𝒖𝐾[ 𝑖 ]} ∈ ℝ𝐷𝐾×𝐾,

𝒴[ 𝑖 ] = diag{𝒀1[ 𝑖 ], … , 𝒀𝑘[ 𝑖 ], … , 𝒀𝐾[ 𝑖 ]} ∈ ℝ𝐷𝐾×𝐷𝐾. (3.7)

We will use these new matrices to wrap the dLMS equations in Equation (3.6) for all nodes as a

single expression, which can be done by defining the collection of estimates4

�̂�[ 𝑖 ] = col{�̂�1[ 𝑖 ], … , �̂�𝑘[ 𝑖 ], … , �̂�𝐾[ 𝑖 ]} ∈ ℝ𝐷𝐾. (3.8)

Thus, we can rewrite �̂�[ 𝑖 ] above as

�̂�[ 𝑖 ] =
⎡
⎢
⎢
⎢
⎣

∑ℓ∈𝜗1
𝑎ℓ1(𝜇ℓ𝒖ℓ[ 𝑖 ]𝑑ℓ[ 𝑖 ] + 𝒀ℓ[ 𝑖 ]�̂�ℓ[ 𝑖 − 1 ])

∑ℓ∈𝜗2
𝑎ℓ2(𝜇ℓ𝒖ℓ[ 𝑖 ]𝑑ℓ[ 𝑖 ] + 𝒀ℓ[ 𝑖 ]�̂�ℓ[ 𝑖 − 1 ])

⋮
∑ℓ∈𝜗𝑘

𝑎ℓ𝐾(𝜇ℓ𝒖ℓ[ 𝑖 ]𝑑ℓ[ 𝑖 ] + 𝒀ℓ[ 𝑖 ]�̂�ℓ[ 𝑖 − 1 ])

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝑎11𝑰𝐷 𝑎21𝑰𝐷 ⋯ 𝑎𝐾1𝑰𝐷

𝑎12𝑰𝐷 𝑎22𝑰𝐷 ⋯ 𝑎𝐾2𝑰𝐷

⋮ ⋮ ⋱ ⋮
𝑎1𝐾𝑰𝐷 𝑎2𝐾𝑰𝐷 ⋯ 𝑎𝐾𝐾𝑰𝐷

⎤
⎥
⎥
⎥
⎦

⋅
⎛⎜⎜⎜⎜⎜⎜
⎝

⎡
⎢
⎢
⎢
⎣

𝜇1𝒖1[ 𝑖 ] 𝟎 ⋯ 𝟎
𝟎 𝜇2𝒖2[ 𝑖 ] ⋯ 𝟎
⋮ ⋮ ⋱ ⋮
𝟎 𝟎 ⋯ 𝜇𝐾𝒖𝐾[ 𝑖 ]

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝑑1[ 𝑖 ]
𝑑2[ 𝑖 ]

⋮
𝑑𝐾[ 𝑖 ]

⎤
⎥
⎥
⎥
⎦

+
⎡
⎢
⎢
⎢
⎣

𝒀1[ 𝑖 ] 𝟎 ⋯ 𝟎
𝟎 𝒀2[ 𝑖 ] ⋯ 𝟎
⋮ ⋮ ⋱ ⋮
𝟎 𝟎 ⋯ 𝒀𝐾[ 𝑖 ]

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

�̂�1[ 𝑖 − 1 ]
�̂�2[ 𝑖 − 1 ]

⋮
�̂�𝐾[ 𝑖 − 1 ]

⎤
⎥
⎥
⎥
⎦

⎞⎟⎟⎟⎟⎟⎟
⎠

= 𝒜(ℳ𝒰[ 𝑖 ]𝒅[ 𝑖 ] + 𝒴[ 𝑖 ]�̂�[ 𝑖 − 1 ]). (3.9)

Next, for analysis purposes, it is convenient to obtain a nonrecursive version of Equa

tion (3.9); but first, define the auxiliary matrix ℱ[ 𝑖, 𝑗 ] ∈ ℝ𝐷𝐾×𝐷𝐾 as

ℱ[ 𝑖, 𝑗 ] = {
∏𝑖

𝜄=𝑗 𝒜 𝒴[ 𝑖 + 𝑗 − 𝜄 ], if 𝑗 ≤ 𝑖,
𝑰𝐷𝐾 , if 𝑗 > 𝑖.

(3.10)

Proposition 3. A nonrecursive expression for �̂�[ 𝑖 ] in Equation (3.9) is given as

�̂�[ 𝑖 ] =
𝑖

∑
𝑗=0

ℱ[ 𝑖, 𝑗 + 1 ]𝒜ℳ𝒰[ 𝑗 ]𝒅[ 𝑗 ] + ℱ[ 𝑖, 0 ]�̂�[−1], 𝑖 ≥ 0, (3.11)

where �̂�[−1] = col{�̂�1[−1], … , �̂�𝑘[−1], … , �̂�𝐾[−1]} is the collection of initial estimates.

3 Matrix 𝒜 is defined in terms of 𝑨⊤ instead of 𝑨 to maintain a cleaner notation.
4 As this thesis deals with fully distributed solutions for the detection problem in WSN, the collection of all

estimates as defined herein only exists abstractly and for the sake of analysis only.
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Proof. We can prove Proposition 3 by a mathematical inductive process. Evaluating Equa

tion (3.9) for 𝑖 = 0, we have

�̂�[ 0 ] = 𝒜ℳ𝒰[ 0 ]𝒅[ 0 ] + 𝒜 𝒴[ 0 ]�̂�[−1] (3.12)

According to the definition of ℱ[ 𝑖, 𝑗 ] in Equation (3.10) , we have

ℱ[ 𝑖, 𝑖 ] = 𝒜 𝒴[ 𝑖 ] and ℱ[ 𝑖, 𝑖 + 1 ] = 𝑰𝐷𝐾 ;

thus, we can rewrite Equation (3.12) as

�̂�[ 0 ] = ℱ[ 0, 1 ]𝒜ℳ𝒰[ 0 ]𝒅[ 0 ] + ℱ[ 0, 0 ]�̂�[−1]

=
0

∑
𝑗=0

ℱ[ 0, 𝑗 + 1 ]𝒜ℳ𝒰[ 𝑗 ]𝒅[ 𝑗 ] + ℱ[ 0, 0 ]�̂�[−1],

which shows that Equation (3.11) is valid for 𝑖 = 0. Next, suppose it is valid for a given

𝑖 = 𝑖0 ≥ 0; let us verify if it is also valid for 𝑖0 + 1; again, from Equation (3.9), we have

�̂�[ 𝑖0 + 1 ] = 𝒜(ℳ𝒰[ 𝑖0 + 1 ]𝒅[ 𝑖0 + 1 ] + 𝒴[ 𝑖0 + 1 ]�̂�[ 𝑖0 ])

= 𝒜ℳ𝒰[ 𝑖0 + 1 ]𝒅[ 𝑖0 + 1 ]

+ 𝒜 𝒴[ 𝑖0 + 1 ] (
𝑖0

∑
𝑗=0

ℱ[ 𝑖0, 𝑗 + 1 ]𝒜ℳ𝒰[ 𝑗 ]𝒅[ 𝑗 ] + ℱ[ 𝑖0, 0 ]�̂�[−1])

= ℱ[ 𝑖0 + 1, 𝑖0 + 2 ]𝒜ℳ𝒰[ 𝑖0 + 1 ]𝒅[ 𝑖0 + 1 ]

+
𝑖0

∑
𝑗=0

𝒜 𝒴[ 𝑖0 + 1 ]ℱ[ 𝑖0, 𝑗 + 1 ]𝒜ℳ𝒰[ 𝑗 ]𝒅[ 𝑗 ] + 𝒜 𝒴[ 𝑖0 + 1 ]ℱ[ 𝑖0, 0 ]�̂�[−1].

Notice that, from the definition of ℱ[ 𝑖, 𝑗 ] in Equation (3.10), it holds that

ℱ[ 𝑖, 𝑗 ] = (𝒜 𝒴[ 𝑖 ]) ⋅ (𝒜 𝒴[ 𝑖 − 1 ]) ⋅ (…) ⋅ (𝒜 𝒴[ 𝑗 ])

= 𝒜 𝒴[ 𝑖 ]((𝒜 𝒴[ 𝑖 − 1 ]) ⋅ (…) ⋅ (𝒜 𝒴[ 𝑗 ]))

= 𝒜 𝒴[ 𝑖 ]
𝑖−1
∏
𝜄=𝑗

𝒜 𝒴[ 𝑖 + 𝑗 − 𝜄 ]

= 𝒜 𝒴[ 𝑖 ]ℱ[ 𝑖 − 1, 𝑗 ];

hence, we can rewrite �̂�[ 𝑖0 + 1 ] above as

�̂�[ 𝑖0 + 1 ] = ℱ[ 𝑖0 + 1, 𝑖0 + 2 ]𝒜ℳ𝒰[ 𝑖0 + 1 ]𝒅[ 𝑖0 + 1 ]

+
𝑖

∑
𝑗=0

ℱ[ 𝑖0 + 1, 𝑗 + 1 ]𝒜ℳ𝒰[ 𝑗 ]𝒅[ 𝑗 ] + ℱ[ 𝑖0 + 1, 0 ]�̂�[−1]

=
𝑖+1
∑
𝑗=0

ℱ[ 𝑖0 + 1, 𝑗 + 1 ]𝒜ℳ𝒰[ 𝑗 ]𝒅[ 𝑗 ] + ℱ[ 𝑖0 + 1, 0 ]�̂�[−1].

Therefore, we can see that expression Equation (3.11) holds for 𝑖0 + 1 supposing that it holds for

𝑖0. Since it was shown that it is valid for 𝑖 = 0, by a mathematical inductive process we must
conclude that it holds for any 𝑖 ≥ 0.
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It will be proven beneficial for our analysis to rewrite the summation of the nonrecursive

expression of �̂�[ 𝑖 ] in Equation (3.11) as a product of matrices; keeping that in mind, we define
a few more collections of data in the network:

𝑼[ 𝑖 ] = col{𝒖⊤
1[ 𝑖 ], … , 𝒖⊤

𝑘[ 𝑖 ], … , 𝒖⊤
𝐾[ 𝑖 ]} ∈ ℝ𝐾×𝐷,

𝒗[ 𝑖 ] = col{𝑣1[ 𝑖 ], … , 𝑣𝑘[ 𝑖 ], … , 𝑣𝐾[ 𝑖 ]} ∈ ℝ𝐾. (3.13)

Next, let us extend the definitions of the quantities in equations (2.3) and (2.4) to encompass all

data of every node 𝑘 in the network:

𝒅0∶𝑖 = col{𝒅[ 𝑖 ], … , 𝒅[ 𝑗 ], … , 𝒅[ 0 ]} ∈ ℝ(𝑖+1)𝐾,

𝑼0∶𝑖 = col{𝑼[ 𝑖 ], … , 𝑼[ 𝑗 ], … , 𝑼[ 0 ]} ∈ ℝ(𝑖+1)𝐾×𝐷,

𝒗0∶𝑖 = col{𝒗[ 𝑖 ], … , 𝒗[ 𝑗 ], … , 𝒗[ 0 ]} ∈ ℝ(𝑖+1)𝐾,

where 𝒅[ 𝑖 ] was defined in Equation (3.7) and 𝑼[ 𝑖 ], 𝒗[ 𝑖 ] in Equation (3.13). Please note that the
definitions made for the single node case in Equation (2.3) are just a special case of this extended

definition and correspond to 𝐾 = 1. Also, the linear model in Equation (2.4), which we must
recall:

𝒅0∶𝑖 = 𝑼0∶𝑖𝒘 + 𝒗0∶𝑖 , (3.14)

evidently holds for the whole network of 𝐾 ≥ 1 nodes now. Next, we define a matrix ℒ[ 𝑖 ] as

ℒ[ 𝑖 ] = [ 𝒜ℳ𝒰[ 𝑖 ] … ℱ[ 𝑖, 𝑗 ]𝒜ℳ𝒰[ 𝑗 − 1 ] … ℱ[ 𝑖, 1 ]𝒜ℳ𝒰[ 0 ] ], (3.15)

which can be combined with the time increasing vector 𝒅0∶𝑖 in order to rewrite the summation in

Equation (3.11) as follows:

𝑖
∑
𝑗=0

ℱ[ 𝑖, 𝑗 + 1 ]𝒜ℳ𝒰[ 𝑗 ]𝒅[ 𝑗 ] = ℒ[ 𝑖 ]𝒅0∶𝑖 .

Thereby, we can rewrite �̂�[ 𝑖 ] in Equation (3.11) using Equation (3.14) as

�̂�[ 𝑖 ] = ℒ[ 𝑖 ]𝒅0∶𝑖 + ℱ[ 𝑖, 0 ]�̂�[−1]

= ℒ[ 𝑖 ]𝑼0∶𝑖𝒘 + ℒ[ 𝑖 ]𝒗0∶𝑖 + ℱ[ 𝑖, 0 ]�̂�[−1]. (3.16)

Define 𝒫[ 𝑖 ] = ℒ[ 𝑖 ]𝑼0∶𝑖 ∈ ℝ𝐷𝐾×𝐷; the following proposition will be useful to rewrite Equa

tion (3.16) more appropriately.

Proposition 4. For the matrices ℱ[ 𝑖, 𝑗 ] defined in Equation (3.10), 𝒫[ 𝑖 ] = ℒ[ 𝑖 ]𝑼0∶𝑖 , and

𝕀 = col{𝑰𝐷, … , 𝑰𝐷}, it holds that

ℱ[ 𝑖, 0 ] 𝕀 = 𝕀 − 𝒫[ 𝑖 ] . (3.17)

Proof. From the definition of ℱ[ 𝑖, 𝑗 ] in Equation (3.10), we can rewrite it as

ℱ[ 𝑖, 𝑗 ] = ℱ[ 𝑖, 𝑗 + 1 ]𝒜 𝒴[ 𝑗 ].
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From the definitions of 𝒴[ 𝑖 ] in Equation (3.7) and 𝒀𝑘[ 𝑖 ] in Equation (3.5), we can rewrite 𝒴[ 𝑖 ]
as

𝒴[ 𝑖 ] = 𝑰𝐷𝐾 − ℳ 𝒰[ 𝑖 ] 𝒰⊤[ 𝑖 ]; (3.18)

thus, we can write

ℱ[ 𝑖, 𝑗 ] = ℱ[ 𝑖, 𝑗 + 1 ] 𝒜 − ℱ[ 𝑖, 𝑗 + 1 ]𝒜ℳ𝒰[ 𝑗 ] 𝒰⊤[ 𝑗 ].

Thus, repeatedly substituting ℱ[ 𝑖, 𝑗 + 1 ], in the first term above from 𝑗 = 0 up to 𝑖, we obtain

ℱ[ 𝑖, 0 ] = ℱ[ 𝑖, 1 ]𝒜 − ℱ[ 𝑖, 1 ]𝒜ℳ𝒰[ 𝑗 ] 𝒰⊤[ 𝑗 ]

= ℱ[ 𝑖, 2 ]𝒜2 −
𝑖

∑
𝑗=0

ℱ[ 𝑖, 𝑗 + 1 ]𝒜ℳ𝒰[ 𝑗 ] 𝒰⊤[ 𝑗 ]𝒜𝑗

⋮

= 𝒜𝑖+1 −
𝑖

∑
𝑗=0

ℱ[ 𝑖, 𝑗 + 1 ]𝒜ℳ𝒰[ 𝑗 ] 𝒰⊤[ 𝑗 ]𝒜𝑗 (3.19)

From 𝒫[ 𝑖 ] = ℒ[ 𝑖 ]𝑼0∶𝑖 and the definition of ℒ[ 𝑖 ] given in Equation (3.15), we can write 𝒫[ 𝑖 ]
as follows:

𝒫[ 𝑖 ] =
𝑖

∑
𝑗=0

ℱ[ 𝑖, 𝑗 + 1 ]𝒜ℳ𝒰[ 𝑗 ]𝑼[ 𝑗 ]. (3.20)

Note that we can rewrite the matrix 𝑼[ 𝑖 ] defined in Equation (3.13) as 𝑼[ 𝑖 ] = 𝒰⊤[ 𝑖 ] 𝕀, where
𝕀 = col{𝑰𝐷, … , 𝑰𝐷}. Furthermore, note that, by the definition of the combination matrix (recall
that 𝑨⊤𝟙𝐾 = 𝟙𝐾 ), it is true that 𝒜 𝕀 = 𝕀. Consequently, it is also true that 𝒜𝑖𝕀 = 𝕀, ∀𝑖 ∈ ℕ.

Thereby, let us rewrite 𝑼[ 𝑖 ] = 𝒰[ 𝑖 ]𝒜𝑖𝕀 and then substitute it in Equation (3.20), in order to

obtain

𝒫[ 𝑖 ] =
𝑖

∑
𝑗=0

ℱ[ 𝑖, 𝑗 + 1 ]𝒜ℳ𝒰[ 𝑗 ] 𝒰⊤[ 𝑗 ]𝒜𝑗𝕀

Now, multiply both sides of Equation (3.19) by 𝕀 to obtain

ℱ[ 𝑖, 0 ] 𝕀 = 𝒜𝑖+1𝕀 −
𝑖

∑
𝑗=0

ℱ[ 𝑖, 𝑗 + 1 ]𝒜ℳ𝒰[ 𝑗 ] 𝒰⊤[ 𝑗 ]𝒜𝑗𝕀

= 𝕀 − 𝒫[ 𝑖 ],

which completes the proof.

From the proposition above, if we set �̂�𝑘[−1] = 𝒃 for every node 𝑘, we can substitute
Equation (3.17) in Equation (3.16), resulting in

�̂�[ 𝑖 ] = 𝒫[ 𝑖 ]𝒘 + ℒ[ 𝑖 ]𝒗0∶𝑖 + (𝕀 − 𝒫[ 𝑖 ])𝒃.

Therefore, we conclude that the vector �̂�[ 𝑖 ] is a realization of the random vector

�̂�∼ 𝑛[ 𝑖 ] = 𝒫[ 𝑖 ]𝒘∼ 𝑛 + (𝕀 − 𝒫[ 𝑖 ])𝒃 + ℒ[ 𝑖 ]𝒗∼ 0∶𝑖 . (3.21)
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Hence, since the state vector process 𝒘∼ 𝑛 and the noise 𝒗∼ 0∶𝑖 are independent, we have, if 𝐻𝑛 is

true, that

�̂�∼ 𝑛[ 𝑖 ] ∼ 𝒩(𝒫[ 𝑖 ]𝜽𝑛 + (𝕀 − 𝒫[ 𝑖 ])𝒃, 𝒮[ 𝑖 ]), (3.22)

where 𝒮[ 𝑖 ] ∈ ℝ𝐷𝐾×𝐷𝐾 is defined as the covariance matrix of �̂�∼ 𝑛[ 𝑖 ]. It is shown in Appendix A
that 𝒮[ 𝑖 ] can be written from Equation (3.21) as

𝒮[ 𝑖 ] = 𝒫[ 𝑖 ]𝜮𝒘𝒫⊤[ 𝑖 ] + ℒ⊤[ 𝑖 ]𝜮𝒗0∶𝑖
ℒ[ 𝑖 ], (3.23)

where 𝜮𝒗0∶𝑖
is the extended covariance matrix of 𝒗∼ 0∶𝑖 :

𝜮𝒗0∶𝑖
= E(𝒗∼ 0∶𝑖𝒗∼ ⊤

0∶𝑖) = 𝑰𝑖+1 ⊗ 𝜮𝒗 , where 𝜮𝒗 = diag{𝜎2
𝑣1

, … , 𝜎2
𝑣𝐾

}. (3.24)

Also, it is convenient for our analysis to define 𝒵[ 𝑖 ] as the second term in the righthand side of

Equation (3.23):

𝒵[ 𝑖 ] = ℒ[ 𝑖 ]𝜮𝒗0∶𝑖
ℒ⊤[ 𝑖 ]. (3.25)

Having the distribution of �̂�∼ 𝑛[ 𝑖 ] in Equation (3.22), our next step is to describe the

distributions of the various local estimators �̂�∼ 𝑛,𝑘[ 𝑖 ]. Keeping that in mind, we divide matrix
𝒫[ 𝑖 ] = ℒ[ 𝑖 ]𝑼0∶𝑖 into 𝐾 matrix blocks:

𝒫[ 𝑖 ] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑷1[ 𝑖 ]
⋮

𝑷𝑘[ 𝑖 ]
⋮

𝑷𝐾[ 𝑖 ].

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, with 𝑷𝑘[ 𝑖 ] ∈ ℝ𝐷×𝐷. (3.26)

Next, let us call 𝑺𝑘[ 𝑖 ] the covariance matrix of the local estimator �̂�∼ 𝑘[ 𝑖 ]. Since 𝒮[ 𝑖 ] is the
covariance matrix of �̂�∼ [ 𝑖 ], and �̂�∼ [ 𝑖 ] is the collection of estimators as defined in (3.8), it follows
that 𝑺𝑘[ 𝑖 ] can be found by taking the 𝑘th diagonal block of 𝒮[ 𝑖 ]. It is shown in Appendix A that

𝑺𝑘[ 𝑖 ] = 𝑷𝑘[ 𝑖 ]𝜮𝒘𝑷⊤
𝑘[ 𝑖 ] + 𝒁𝑘[ 𝑖 ], (3.27)

where 𝒁𝑘[ 𝑖 ] is the corresponding 𝑘th diagonal block of matrix 𝒵[ 𝑖 ] defined in Equation (3.23).
Thus, from the definitions of 𝑷𝑘[ 𝑖 ], 𝑺𝑘[ 𝑖 ] and 𝒁𝑘[ 𝑖 ] as matrix blocks in Equation (3.26) and
Equation (3.27), and from the distribution of �̂�∼ in Equation (3.22), we can say that each local

estimator �̂�∼ 𝑘 is distributed, if 𝐻𝑛 is true, as

�̂�∼ 𝑛,𝑘[ 𝑖 ] ∼ 𝒩(𝑷𝑘[ 𝑖 ]𝜽𝑛 + (𝑰𝐷 − 𝑷𝑘[ 𝑖 ])𝒃, 𝑺𝑘[ 𝑖 ]). (3.28)

Note that the distribution of �̂�∼ 𝑛,𝑘[ 𝑖 ] above depends on the active hypothesis (i.e., the
state of nature at place) as the distribution of 𝒘∼ 𝑛 in Equation (2.1) in Chapter 2. Therefore, we

can build, for each node 𝑘, a hypothesis test using the local dLMS estimates, which are our de

facto data sample. We can find this test by performing the same process described for the single

node case in Chapter 2. The result is summarized in the following proposition.
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Proposition 5. A statistic 𝑡𝑛,𝑘[ 𝑖 ] and the MAP hypothesis test to decide in favor of 𝐻𝑛 given the

dLMS estimator in Equation (3.28) are

𝑡𝑛,𝑘[ 𝑖 ] = −
1
2(�̂�𝑘[ 𝑖 ] − 𝝐𝑛,𝑘[ 𝑖 ])⊤𝑺−1

𝑘 [ 𝑖 ](�̂�𝑘[ 𝑖 ] − 𝝐𝑛,𝑘[ 𝑖 ]),

𝑡𝑛,𝑘[ 𝑖 ]
𝛷𝑘≠𝑚

≷
𝛷𝑘≠𝑛

𝑡𝑚,𝑘[ 𝑖 ] + 𝛾𝑚𝑛 , (3.29)

where 𝝐𝑛,𝑘[ 𝑖 ] = E(�̂�∼ 𝑛,𝑘[ 𝑖 ]) and 𝛾𝑚𝑛 = ln(ℙ(𝐻𝑚)/ℙ(𝐻𝑛)).

Proof. We start from the MAP test to compare a pair of hypotheses {𝐻𝑛, 𝐻𝑚} at node 𝑘 when

�̂�𝑘[ 𝑖 ] is our observed sample; i.e., we set for each local decision rule 𝛷𝑘(�̂�𝑘[ 𝑖 ]) = 𝑛 whenever

ℙ(𝐻𝑛 ∣ �̂�𝑘[ 𝑖 ] , 𝛶𝑘[ 𝑖 ]) > ℙ(𝐻𝑚 ∣ �̂�𝑘[ 𝑖 ] , 𝛶𝑘[ 𝑖 ]) ∀𝑚 ≠ 𝑛,

where 𝛶𝑘[ 𝑖 ] was defined in Equation (3.4). Using Bayes’ theorem, we can compare using

𝑓(�̂�𝑘[ 𝑖 ] ∣ 𝛶𝑘[ 𝑖 ], 𝐻𝑛)ℙ(𝐻𝑛)
𝛷𝑘≠𝑚

≷
𝛷𝑘≠𝑛

𝑓(�̂�𝑘[ 𝑖 ] ∣ 𝛶𝑘[ 𝑖 ], 𝐻𝑚)ℙ(𝐻𝑚), (3.30)

where 𝑓(�̂�𝑘[ 𝑖 ] ∣ 𝛶𝑘[ 𝑖 ], 𝐻𝑛) is the p.d.f. of �̂�∼ 𝑘[ 𝑖 ] conditioned on {𝛶𝑘[ 𝑖 ], 𝐻𝑛}. From its distri

bution in Equation (3.28), this is

𝑓(�̂�𝑘[ 𝑖 ] ∣ 𝛶𝑘[ 𝑖 ], 𝐻𝑛) = ((2π)
𝑖+1

2 det
1
2 𝑺𝑘[ 𝑖 ])

−1
e𝑡𝑛,𝑘[ 𝑖 ], (3.31)

where 𝑡𝑛,𝑘[ 𝑖 ] is a function of data given as

𝑡𝑛,𝑘[ 𝑖 ] = −
1
2(�̂�𝑘[ 𝑖 ] − 𝝐𝑛,𝑘[ 𝑖 ])⊤𝑺−1

𝑘 [ 𝑖 ](�̂�𝑘[ 𝑖 ] − 𝝐𝑛,𝑘[ 𝑖 ]), (3.32)

where we define 𝝐𝑛,𝑘[ 𝑖 ] = E(�̂�∼ 𝑛,𝑘[ 𝑖 ]); thus, from Equation (3.28), we have

𝝐𝑛,𝑘[ 𝑖 ] = 𝑷𝑘[ 𝑖 ]𝜽𝑛 + (𝑰𝐷 − 𝑷𝑘[ 𝑖 ])𝒃. (3.33)

Hence, taking the natural logarithm on both sides in Equation (3.31) and canceling constants out,

the test is reduced to that in Equation (3.29).

In the next chapter, we will discuss the performance analysis of this detector and show that

during a period of time that does not extend indefinitely the dLMS detector yields a performance

that is independent of the step size and approximates an optimal detector, provided that its value

is sufficiently small.
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4 PERFORMANCEANALYSIS

In this chapter, we will discuss the fact that, during a period of time that does not extend

indefinitely, the dLMS detector developed in the previous chapter yields a performance that is

independent of the step size, provided that its value is sufficiently small. Furthermore, it will be

argued that as the step size is made smaller, and therefore the estimation algorithm at the core of

the detection routine becomes slower, the performance of the proposed detector approximates an

optimal Bayesian detector.

4.1 Criterion of performance

As a measure of performance, we consider the maximum probability of error

𝜉max[ 𝑖 ] = max{𝜉1[ 𝑖 ], … , 𝜉𝑘[ 𝑖 ], … , 𝜉𝐾[ 𝑖 ]},

where 𝜉𝑘[ 𝑖 ] is the average probability of error at node 𝑘 as defined in Equation (2.7). According

to Equation (3.29), an error occurs whenever 𝑡𝑛,𝑘[ 𝑖 ] < 𝑡𝑚,𝑘[ 𝑖 ] + 𝛾𝑚𝑛 for any 𝑚 when 𝐻𝑛 is

true. Thus, the probability of an error when 𝐻𝑛 is true is

𝜉𝑛,𝑘[ 𝑖 ] = ℙ⎛⎜
⎝

𝑁
⋃
𝑚=1
𝑚≠𝑛

{𝑡∼𝑛,𝑘[ 𝑖 ] < 𝑡∼𝑚,𝑘[ 𝑖 ] + 𝛾𝑚𝑛} ∣ 𝐻𝑛
⎞⎟
⎠

= 1 − ℙ⎛⎜
⎝

𝑁
⋂
𝑚=1
𝑚≠𝑛

{𝑡∼𝑚,𝑘[ 𝑖 ] ≤ 𝑡∼𝑛,𝑘[ 𝑖 ] − 𝛾𝑚𝑛} ∣ 𝐻𝑛
⎞⎟
⎠

, (4.1)

where 𝑡∼𝑛,𝑘[ 𝑖 ] is the random variable corresponding to 𝑡𝑛,𝑘[ 𝑖 ].1 Define 𝜁𝑛,𝑘[ 𝑖 ] = 1 − 𝜉𝑛,𝑘[ 𝑖 ] as
the probability of a correct detection given 𝐻𝑛. Thus, the average probability of error at node 𝑘
is given as

𝜉𝑘[ 𝑖 ] =
𝑁

∑
𝑛=1

ℙ(𝐻𝑛)𝜉𝑛,𝑘[ 𝑖 ] = 1 −
𝑁

∑
𝑛=1

ℙ(𝐻𝑛)𝜁𝑛,𝑘[ 𝑖 ], (4.2)

where 𝜁𝑛,𝑘[ 𝑖 ] = 1 − 𝜉𝑛,𝑘[ 𝑖 ] is the probability of a correct detection given 𝐻𝑛. By the Law of

Total Probability of continuous random variables, the probability of a correct detection given 𝐻𝑛

can be evaluated as

𝜁𝑛,𝑘[ 𝑖 ] = ∫
∞

−∞
ℙ⎛⎜

⎝

𝑁
⋂
𝑚=1
𝑚≠𝑛

{𝑡∼𝑚,𝑘[ 𝑖 ] ≤ 𝑡 − 𝛾𝑚𝑛} ∣ 𝑡∼𝑛,𝑘[ 𝑖 ] = 𝑡, 𝐻𝑛
⎞⎟
⎠

𝑓𝑡∼𝑛,𝑘[ 𝑖 ]∣𝐻𝑛
(𝑡) d𝑡,

where 𝑓𝑡∼𝑛,𝑘[ 𝑖 ]∣𝐻𝑛
(𝑡) denotes the marginal p.d.f. of 𝑡∼𝑛,𝑘[ 𝑖 ] given 𝐻𝑛. But note that if we define

𝑇𝑚𝑛,𝑘[ 𝑖 ] = 𝑡𝑚,𝑘[ 𝑖 ] − 𝑡𝑛,𝑘[ 𝑖 ], (4.3)

1 As other random quantities in this thesis, for each state of nature𝑛 there is a different random quantity correspond

ing to the various realizations 𝑡𝑚,𝑘[ 𝑖 ], ∀𝑚, 𝑘. As explained in subsection 1.4.7, in this case the dependence
on a state 𝑛 is not denoted by an extra index in subscript, but by the conditioning symbol “∣” followed by the
corresponding active hypothesis𝐻𝑛, as occurs in the expression of the probability of error given in Equation (4.1)
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the probability of a correct detection can be expressed, from Equation (4.1), as

𝜁𝑛,𝑘[ 𝑖 ] = ℙ⎛⎜
⎝

𝑁
⋂
𝑚=1
𝑚≠𝑛

{𝑇∼ 𝑚𝑛,𝑘[ 𝑖 ] ≤ −𝛾𝑚𝑛} ∣ 𝐻𝑛
⎞⎟
⎠

, (4.4)

where 𝑇∼ 𝑚𝑛,𝑘[ 𝑖 ] is the random variable corresponding to the realization 𝑇𝑚𝑛,𝑘[ 𝑖 ] and is condi
tioned on 𝐻𝑛. The expression in (4.4) can in turn be seen as a cumulative distribution function

(c.d.f) of the random vector

𝑻∼ 𝑛,𝑘[ 𝑖 ] = col{𝑇∼ 1𝑛,𝑘[ 𝑖 ], … , 𝑇∼ (𝑛−1)𝑛,𝑘[ 𝑖 ], 𝑇∼ (𝑛+1)𝑛,𝑘[ 𝑖 ], … , 𝑇∼ 𝑁𝑛,𝑘[ 𝑖 ]}

evaluated at point (−𝛾1𝑛 , … , −𝛾𝑁𝑛)—it should be noted that all 𝑇∼ 𝑚𝑛,𝑘[ 𝑖 ] are conditioned on
𝐻𝑛. The following proposition states that we can find the distribution of the various 𝑇∼ 𝑚𝑛,𝑘[ 𝑖 ]
given 𝐻𝑛 from the expressions of the 𝑇𝑚𝑛,𝑘[ 𝑖 ] in Equation (4.3).

Proposition 6. The statistics 𝑇𝑚𝑛,𝑘[ 𝑖 ] in Equation (4.3) are the realization of normally dis

tributed random variables and can be written as

𝑇𝑚𝑛,𝑘[ 𝑖 ] = (�̂�𝑘[ 𝑖 ] −
𝝐𝑚,𝑘[ 𝑖 ] + 𝝐𝑛,𝑘[ 𝑖 ]

2 )
⊤

𝑸𝑘[ 𝑖 ](𝜽𝑚 − 𝜽𝑛), (4.5)

where 𝝐𝑛,𝑘[ 𝑖 ] = E(�̂�∼ 𝑛,𝑘[ 𝑖 ]) and 𝑸𝑘[ 𝑖 ] = 𝑺−1
𝑘 [ 𝑖 ]𝑷𝑘[ 𝑖 ].

Proof. First, let us use the following result from Matrix Analysis: given a vector 𝒙 ≠ 𝟎 ∈ ℝ𝐷

and a positive definite matrix 𝑴 ∈ ℝ𝐷×𝐷, we call the product 𝒙⊤𝑴𝒙 a quadratic form, and for

any two vectors 𝒙 and 𝒚 ∈ ℝ𝐷, it holds that

𝒙⊤𝑴𝒙 − 𝒚⊤𝑴𝒚 = (𝒙 + 𝒚)⊤𝑴(𝒙 − 𝒚).

Notice that 𝑡𝑛,𝑘[ 𝑖 ] in Proposition 5 is in fact a quadratic form; therefore, 𝑇𝑚𝑛,𝑘[ 𝑖 ] as defined in
Equation (4.3) is a difference of two quadratic forms:

𝑇𝑚𝑛,𝑘[ 𝑖 ] = 𝑡𝑚,𝑘[ 𝑖 ] − 𝑡𝑛,𝑘[ 𝑖 ]

= −
1
2(�̂�𝑘[ 𝑖 ] − 𝝐𝑚,𝑘[ 𝑖 ])⊤𝑺−1

𝑘 [ 𝑖 ](�̂�𝑘[ 𝑖 ] − 𝝐𝑚,𝑘[ 𝑖 ])

+
1
2(�̂�𝑘[ 𝑖 ] − 𝝐𝑛,𝑘[ 𝑖 ])⊤𝑺−1

𝑘 [ 𝑖 ](�̂�𝑘[ 𝑖 ] − 𝝐𝑛,𝑘[ 𝑖 ])

=
1
2𝒙⊤𝑴𝒙 −

1
2𝒚⊤𝑴𝒚

=
1
2(𝒙 + 𝒚)⊤𝑴(𝒙 − 𝒚),

where we substituted 𝑴 = 𝑺−1
𝑘 [ 𝑖 ], 𝒙 = �̂�𝑘[ 𝑖 ] − 𝝐𝑛,𝑘[ 𝑖 ] and 𝒚 = �̂�𝑘[ 𝑖 ] − 𝝐𝑚,𝑘[ 𝑖 ]. Therefore,

we have

𝑇𝑚𝑛,𝑘[ 𝑖 ] = 1
2(𝒙 + 𝒚)⊤𝑴(𝒙 − 𝒚)

= (�̂�𝑘[ 𝑖 ] −
𝝐𝑛,𝑘[ 𝑖 ] + 𝝐𝑚,𝑘[ 𝑖 ]

2 )
⊤

𝑺−1
𝑘 [ 𝑖 ] (𝝐𝑚,𝑘[ 𝑖 ] − 𝝐𝑛,𝑘[ 𝑖 ]) .
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Note that, by the definition of 𝝐𝑛,𝑘[ 𝑖 ] as E(�̂�∼ 𝑛,𝑘[ 𝑖 ]), we have from Equation (3.33) that

𝝐𝑚,𝑘[ 𝑖 ] − 𝝐𝑛,𝑘[ 𝑖 ] = 𝑷𝑘[ 𝑖 ]𝜽𝑚 + (𝑰𝐷 − 𝑷𝑘[ 𝑖 ])𝒃 − (𝑷𝑘[ 𝑖 ]𝜽𝑛 + (𝑰𝐷 − 𝑷𝑘[ 𝑖 ])𝒃)

= 𝑷𝑘[ 𝑖 ](𝜽𝑚 − 𝜽𝑛). (4.6)

Thus, defining 𝑸𝑘[ 𝑖 ] = 𝑺−1
𝑘 [ 𝑖 ]𝑷𝑘[ 𝑖 ] results in the expression given in Proposition 6. Finally,

since 𝒙 = �̂�𝑘[ 𝑖 ] is a normally distributed vector (see Equation (3.28) ), 𝑇𝑚𝑛,𝑘[ 𝑖 ] is a lin
ear combination of correlated normally distributed variables and, therefore, is also normally

distributed.

We can now obtain from Equation (4.5) expressions for its statistical parameters of

𝑇∼ 𝑚𝑛,𝑘[ 𝑖 ] necessary to calculate the probability in Equation (4.4). Those are given in the following
proposition.

Proposition 7. The expectation, variance and covariance of 𝑇∼ 𝑚𝑛,𝑘[ 𝑖 ] are given as

E(𝑇∼ 𝑚𝑛,𝑘[ 𝑖 ] | 𝐻𝑛) = −
1
2(𝜽𝑚 − 𝜽𝑛)⊤𝑹𝑘[ 𝑖 ](𝜽𝑚 − 𝜽𝑛),

Var(𝑇∼ 𝑚𝑛,𝑘[ 𝑖 ]) = (𝜽𝑚 − 𝜽𝑛)⊤𝑹𝑘[ 𝑖 ](𝜽𝑚 − 𝜽𝑛),

Cov(𝑇∼ 𝑚𝑛,𝑘[ 𝑖 ], 𝑇∼ 𝜈𝑛,𝑘[ 𝑖 ]) = (𝜽𝑚 − 𝜽𝑛)⊤𝑹𝑘[ 𝑖 ](𝜽𝜈 − 𝜽𝑛). (4.7)

where 𝑹𝑘[ 𝑖 ] = 𝑷⊤
𝑘[ 𝑖 ]𝑸𝑘[ 𝑖 ].

Proof. Finding the expectation is straightforward:

E(𝑇∼ 𝑚𝑛,𝑘[ 𝑖 ] | 𝐻𝑛) = (𝝐𝑛,𝑘[ 𝑖 ] −
𝝐𝑚,𝑘[ 𝑖 ] + 𝝐𝑛,𝑘[ 𝑖 ]

2 )
⊤

𝑸𝑘[ 𝑖 ](𝜽𝑚 − 𝜽𝑛)

=
1
2(𝝐𝑛,𝑘[ 𝑖 ] − 𝝐𝑚,𝑘[ 𝑖 ])⊤𝑸𝑘[ 𝑖 ](𝜽𝑚 − 𝜽𝑛)

=
1
2(𝜽𝑛 − 𝜽𝑚)⊤𝑷⊤

𝑘[ 𝑖 ]𝑸𝑘[ 𝑖 ](𝜽𝑚 − 𝜽𝑛)

= −
1
2(𝜽𝑚 − 𝜽𝑛)⊤𝑹𝑘[ 𝑖 ](𝜽𝑚 − 𝜽𝑛),

where we used the fact that 𝝐𝑚,𝑘[ 𝑖 ] − 𝝐𝑛,𝑘[ 𝑖 ] = 𝑷𝑘[ 𝑖 ](𝜽𝑚 − 𝜽𝑛) as shown in Equation (4.6).
The variance can be easily found by applying some of its intrinsic properties: given a vector 𝒚
and matrix 𝑴, both deterministic, and a constant 𝑐, we have that

Var(𝒙∼⊤𝑴𝒚 + 𝑐) = 𝒚⊤𝑴⊤Var(𝒙∼ )𝑴𝒚;

thus, removing the constant term in Equation (4.5), we have

Var(𝑇∼ 𝑚𝑛,𝑘[ 𝑖 ]) = Var(�̂�⊤
𝑘[ 𝑖 ]𝑸𝑘[ 𝑖 ](𝜽𝑚 − 𝜽𝑛))

= (𝜽𝑚 − 𝜽𝑛)⊤𝑸⊤
𝑘[ 𝑖 ]Var(�̂�𝑘[ 𝑖 ]) 𝑸𝑘[ 𝑖 ](𝜽𝑚 − 𝜽𝑛)

= (𝜽𝑚 − 𝜽𝑛)⊤𝑷⊤
𝑘[ 𝑖 ]𝑺−1

𝑘 [ 𝑖 ]𝑺𝑘[ 𝑖 ]𝑸𝑘[ 𝑖 ](𝜽𝑚 − 𝜽𝑛)

= (𝜽𝑚 − 𝜽𝑛)⊤𝑹𝑘[ 𝑖 ](𝜽𝑚 − 𝜽𝑛).
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It can be proven that the covariance has a similar property:

Cov(𝒙∼⊤
1𝑴1𝒚1 + 𝑐1, 𝒙∼⊤

2𝑴2𝒚2 + 𝑐2) = 𝒚⊤
1𝑴⊤

1 Cov(𝒙∼ 1, 𝒙∼ 2)𝑴2𝒚2 ;

thus, the covariance between 𝑇∼ 𝑚𝑛,𝑘[ 𝑖 ] and 𝑇∼ 𝜈𝑛,𝑘[ 𝑖 ] can be found similarly:

Cov(𝑇∼ 𝑚𝑛,𝑘[ 𝑖 ], 𝑇∼ 𝜈𝑛,𝑘[ 𝑖 ]) = Cov(�̂�⊤
𝑘[ 𝑖 ]𝑸𝑘[ 𝑖 ](𝜽𝑚 − 𝜽𝑛), �̂�⊤

𝑘[ 𝑖 ]𝑸𝑘[ 𝑖 ](𝜽𝜈 − 𝜽𝑛))

= (𝜽𝑚 − 𝜽𝑛)⊤𝑸⊤
𝑘[ 𝑖 ]Cov(�̂�𝑘[ 𝑖 ], �̂�𝑘[ 𝑖 ])𝑸𝑘[ 𝑖 ](𝜽𝜈 − 𝜽𝑛)

= (𝜽𝑚 − 𝜽𝑛)⊤𝑷⊤
𝑘[ 𝑖 ]𝑺−1

𝑘 [ 𝑖 ]𝑺𝑘[ 𝑖 ]𝑸𝑘[ 𝑖 ](𝜽𝜈 − 𝜽𝑛)

= (𝜽𝑚 − 𝜽𝑛)⊤𝑹𝑘[ 𝑖 ](𝜽𝜈 − 𝜽𝑛),

since Cov(�̂�𝑘[ 𝑖 ], �̂�𝑘[ 𝑖 ]) must be equal to Var(�̂�𝑘[ 𝑖 ]) = 𝑺𝑘[ 𝑖 ] by definition.

Since all statistical information we need in order to infer the probability in Equation (4.4)

is given by the parameters in Equation (4.7), it is evident that the analysis of matrix 𝑹𝑘[ 𝑖 ] is
mandatory. Therefore, we need to describe how both matrices 𝑷𝑘[ 𝑖 ] and 𝑺𝑘[ 𝑖 ] evolve with time
in order to evaluate those quantities. We will do this analysis in the next section, assuming that

the step size of the dLMS algorithm is sufficiently small.

4.2 The influence of the initial estimate

Before we move forward, there is yet another important property of the detector in Equa

tion (4.5), which concerns the influence of the initial estimate. In order to illustrate this property,

write the following alternative expression for �̂�𝑘[ 𝑖 ] based on its distribution in Equation (3.28):

�̂�𝑘[ 𝑖 ] = 𝑳𝑘[ 𝑖 ]𝒅0∶𝑖 + (𝑰𝐷 − 𝑷𝑘[ 𝑖 ])𝒃 , (4.8)

where we set �̂�𝑘[−1] = 𝒃, and 𝑳𝑘[ 𝑖 ] ∈ ℝ𝐷×(𝑖+1)𝐾 is a deterministic matrix defined in such

a way that 𝑷𝑘[ 𝑖 ] = 𝑳𝑘[ 𝑖 ]𝑼0∶𝑖 . It is shown in Appendix B that 𝑳𝑘[ 𝑖 ] is in fact well defined.
Finally, note that choosing 𝒃 = 𝟎 in Equation (4.8), we obtain �̂�𝑘[ 𝑖 ] = 𝑳𝑘[ 𝑖 ]𝒅0∶𝑖 ; therefore,

we can write

�̂�𝑘[ 𝑖 ]∣𝒃 = �̂�𝑘[ 𝑖 ]∣𝟎 + (𝑰𝐷 − 𝑷𝑘[ 𝑖 ])𝒃, (4.9)

where the vertical bar with a subscript “|𝒃” indicates that �̂�𝑘[ 𝑖 ] was initialized as �̂�𝑘[−1] = 𝒃.
Now, also note from Equation (3.28) that

1
2(𝝐𝑚,𝑘[ 𝑖 ] + 𝝐𝑛,𝑘[ 𝑖 ]) = (𝑰𝐷 − 𝑷𝑘[ 𝑖 ])𝒃 + 𝑷𝑘[ 𝑖 ] ̄𝜽𝑚𝑛 ,

where ̄𝜽𝑚𝑛 = (𝜽𝑚 + 𝜽𝑛)/2. We use this result and also Equation (4.9) to rewrite the statistic

𝑇𝑚𝑛,𝑘[ 𝑖 ] in Equation (4.5) as

𝑇𝑚𝑛,𝑘[ 𝑖 ] = (�̂�𝑘[ 𝑖 ]∣𝟎 − 𝑷𝑘[ 𝑖 ] ̄𝜽𝑚𝑛)⊤𝑸𝑘[ 𝑖 ](𝜽𝑚 − 𝜽𝑛). (4.10)
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Therefore, equations Equation (4.5) and Equation (4.10) describe the same quantity. But notice

that the estimate 𝒘𝑘[ 𝑖 ] in Equation (4.5) is not restricted to any particular initial value 𝒃; at the
same time, 𝑇𝑚𝑛,𝑘[ 𝑖 ] in Equation (4.10) does not depend on the value 𝒃. Therefore, we must
conclude that 𝑇𝑚𝑛,𝑘[ 𝑖 ] does not depend on the value of 𝒃; furthermore, because comparing

𝑇𝑚𝑛,𝑘[ 𝑖 ]
𝛷𝑘≠𝑚

≷
𝛷𝑘≠𝑛

−𝛾𝑚𝑛

is fundamentally the same as testing hypothesis 𝐻𝑛 against 𝐻𝑚 due to the definition of 𝑇𝑚𝑛,𝑘[ 𝑖 ]
in Equation (4.3), the performance of this detector does not depend on the value of the initial

estimate, as the optimal detector for the single node case in Chapter 2. Hence, one can choose

any value 𝒃 in order to initiate the dLMS algorithm and calculate the test statistic accordingly

to Equation (4.5), and would obtain the same detection performance as if the algorithm were

initialized at the zero vector, using the test statistic in Equation (4.10) instead. Although the

choice 𝒃 = 𝟎 seems the most natural choice for the initial estimate in the context of estimation

problems, there is in fact a more convenient value for 𝒃 for our detection context, as we will see

later when we discuss the implementation of a feasible and low cost detector suitable for real

world applications.

4.3 Analysis for small step sizes

As we discussed in the previous section, we must describe how matrices 𝑷𝑘[ 𝑖 ] and
𝑸𝑘[ 𝑖 ] in Equation (4.10) evolve with time in order to describe the detector performance in terms
of the probability of error in Equation (4.2). Let us start by analyzing the behavior of matrix

𝑷𝑘[ 𝑖 ]; recall from Equation (3.26) that 𝑷𝑘[ 𝑖 ] is a block of 𝒫[ 𝑖 ]. Recall that while proofing
Proposition 4, we saw that 𝒫[ 𝑖 ] can be written as a sum given in Equation (3.20), which we

repeat herein for future reference:

𝒫[ 𝑖 ] =
𝑖

∑
𝑗=0

ℱ[ 𝑖, 𝑗 + 1 ]𝒜ℳ𝒰[ 𝑗 ]𝑼[ 𝑗 ], (4.11)

(also recall the definitions of ℱ[ 𝑖, 𝑗 ], 𝒜, ℳ, 𝒰[ 𝑖 ] and 𝑼[ 𝑖 ] in Equation (3.7), Equation (3.10)
and Equation (3.13) ). For the general case, describing the evolution of 𝒫[ 𝑖 ] with relation to
time is a intractable mathematical problem. Notwithstanding, we will show later on that we can

choose a value of the step size as small as we want without damaging performance. Thus, we

proceed the analysis for the special case of small LMS step sizes.

Hereafter, we describe how to obtain an appropriate approximation of 𝒫[ 𝑖 ] for small
step sizes. First, it is convenient to define the local step sizes as 𝜇𝑘 = 𝜇𝜇′

𝑘 , with 𝜇, 𝜇′
𝑘 ∈ ℝ+.

Thus, we can substitute in Equation (3.20) ℳ = 𝜇ℳ′, where

ℳ′ = diag{𝜇′
1𝑰𝐷 , … , 𝜇′

𝑘𝑰𝐷 , … , 𝜇′
𝐾𝑰𝐷}. (4.12)
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Thereby, 𝒫[ 𝑖 ] in Equation (3.20) can be expanded as a polynomial on 𝜇, resulting in

𝒫[ 𝑖 ] = ℬ0[ 𝑖 ] + 𝜇ℬ1[ 𝑖 ] + ⋯ + 𝜇𝑖+1ℬ𝑖+1[ 𝑖 ], (4.13)

where the matrices ℬ𝜅[𝑗] are the coefficients of the expansion and do not depend on 𝜇. The first
three coefficients are given as (see Appendix C)

ℬ0[ 𝑖 ] = 𝟎,

ℬ1[ 𝑖 ] =
𝑖

∑
𝑗=0

𝒜𝑖−𝑗+1𝑯[ 𝑗 ],

ℬ2[ 𝑖 ] = −
𝑖

∑
𝑗=0

(
𝑖

∑
𝜄=𝑗+1

𝒜𝑖−𝜄+1ℋ[ 𝜄 ]𝒜𝜄−𝑗)𝑯[ 𝑗 ], (4.14)

where we define

𝑯[ 𝑗 ] = ℳ′𝒰[ 𝑗 ]𝑼[ 𝑗 ], and

ℋ[ 𝜄 ] = ℳ′𝒰[ 𝜄 ] 𝒰⊤[ 𝜄 ]. (4.15)

It is important to ask for what conditions it is reasonable to approximate 𝒫[ 𝑖 ] as a firstorder
polynomial on 𝜇. That is, since ℬ0[ 𝑖 ] = 𝟎,

𝒫[ 𝑖 ] ≈ 𝜇ℬ1[ 𝑖 ].

As we said in Chapter 1, we are interested in an algorithm that decides the current state within a

finite time interval; thus, let us limit our analysis for 𝑖 ≤ 𝐼ℬ1
, where 𝐼ℬ1

denotes the time limit in

which this approximation is to be valid. Under this condition, notice that ℬ2[ 𝑖 ] is upper bounded:
the summations in Equation (4.14) have at most 𝑖 ≤ 𝐼ℬ1

terms, and matrices ℋ[ 𝑖 ] and 𝑯[ 𝑖 ]
always have finite entries by their definition in Equation (4.15). In the case of matrix 𝒜, it follows

from its definition in Equation (3.7) that 𝒜𝑖 always converges as 𝑖 increases according to the
PerronFrobenius theorem [101]—we will discuss this more carefully ahead in Section 4.4. At

the same time, ℬ1[ 𝑖 ] is always different from the zero matrix if any of the regressors 𝒖𝑘[ 𝑖 ] ≠ 𝟎
for 𝑖 ≥ 0. Therefore, we can choose a value of the step size 𝜇 ≤ 𝜇ℬ1

sufficiently small so that,

for 𝑖 ≤ 𝐼ℬ1
, the second order term 𝜇2ℬ2[ 𝑖 ] is negligible in comparison to the first order term

𝜇ℬ1[ 𝑖 ]. This argument is valid for all terms 𝜇𝜅ℬ𝜅[ 𝑖 ], 𝜅 ≥ 2 by the same reasons. Thus, from

Equation (4.14), we can approximate 𝒫[ 𝑖 ] around 𝜇 = 0 as

𝒫[ 𝑖 ] ≈ 𝜇
𝑖

∑
𝑗=0

𝒜𝑖−𝑗+1𝑯[ 𝑖 ], (4.16)

provided that, for a given interval 𝑖 ≤ 𝐼ℬ1
, we guarantee that the higher order terms in Equa

tion (4.13) are negligible for all 𝜇 ≤ 𝜇ℬ1
; in other words, this approximation is valid for a

period of time lasting until time instant 𝐼ℬ1
. It is very important to note that if we want this

approximation to be valid for a larger interval, which means a larger value of 𝐼ℬ1
, we only need,

at least in principle, to choose a smaller value of the step size 𝜇 such that the higher order terms
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in Equation (4.13) take more time to really affect the behavior of 𝒫[ 𝑖 ] and, consequently, the
detector performance. As we will show later in this chapter, we can always choose smaller values

for 𝜇 with no degradation in performance.

Finally, we are able to find an approximation for 𝑷𝑘[ 𝑖 ]. First, we need the following
proposition:

Proposition 8. For matrix 𝒜 = 𝑨⊤ ⊗ 𝑰𝐷 , it holds that

𝒜𝑖 = (𝑨⊤)𝑖 ⊗ 𝑰𝐷 , 𝑖 ≥ 0. (4.17)

Proof. For 𝑖 = 0 and 𝑖 = 1, the proof is trivial. For 𝑖 ≥ 2, we use the property of Kronecker
products that, for any matrices 𝑴1, 𝑴2 , 𝑴3 and 𝑴4 with appropriate dimensions, it holds

(𝑴1 ⊗ 𝑴2) ⋅ (𝑴3 ⊗ 𝑴4) = (𝑴1𝑴3) ⊗ (𝑴2𝑴4). Therefore, for 𝑖 = 2, we have

𝒜2 = 𝒜 ⋅ 𝒜 = (𝑨⊤ ⊗ 𝑰𝐷) ⋅ (𝑨⊤ ⊗ 𝑰𝐷)

= (𝑨⊤𝑨⊤) ⊗ (𝑰𝐷𝑰𝐷) = (𝑨⊤)2 ⊗ 𝑰𝐷 .

Suppose that 𝒜𝑖−1 = (𝑨⊤)𝑖−1 ⊗ 𝑰𝐷 is a true statement. Thus,

𝒜𝑖 = 𝒜𝑖−1𝒜

= ((𝑨⊤)𝑖−1 ⊗ 𝑰𝐷) ⋅ (𝑨⊤ ⊗ 𝑰𝐷)

= ((𝑨⊤)𝑖−1𝑨⊤) ⊗ (𝑰𝐷𝑰𝐷)

= (𝑨⊤)𝑖 ⊗ 𝑰𝐷 .

Therefore, by a mathematical induction process, the proposition is proved for 𝑖 ≥ 2.

Next, using Proposition 8, and seeing 𝒫[ 𝑖 ] divided into block matrices 𝑷𝑘[ 𝑖 ] in Equa
tion (3.26), we can prove the following:

Proposition 9. A firstorder polynomial approximation of matrices 𝑷𝑘[ 𝑖 ], 𝑘 = 1, … , 𝐾, defined

in Equation (3.26), is given as

𝑷𝑘[ 𝑖 ] ≈ 𝜇
𝑖

∑
𝑗=0

𝐾
∑
ℓ=1

(𝑨𝑖−𝑗+1)ℓ𝑘 𝜇′
ℓ𝒖ℓ[ 𝑗 ]𝒖⊤

ℓ[ 𝑗 ], (4.18)

where (𝑨𝑖−𝑗+1)ℓ𝑘 denotes the entry of matrix 𝑨𝑖−𝑗+1 at the ℓh row and 𝑘th column. This

approximation if valid for 𝑖 ≤ 𝐼ℬ1
for any 𝜇 ≤ 𝜇ℬ1

such that the higher order terms 𝜇𝜅ℬ𝜅[ 𝑖 ],
𝜅 ≥ 2 in Equation (4.13) are negligible.

Proof. See Appendix D.

Very similarly and under the same conditions, we can find a suitable approximation

to 𝑺𝑘[ 𝑖 ] defined in Equation (3.27). Substituting ℒ[ 𝑖 ] and 𝜮𝒗0∶𝑖
by its definitions given in
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Equation (3.15) and Equation (3.24), respectively, in the expression of 𝒵[ 𝑖 ] in Equation (3.25)
and performing the resultant matrix product, we can find a new expression of 𝒵[ 𝑖 ] given as

𝒵[ 𝑖 ] = ℒ[ 𝑖 ]𝜮𝒗0∶𝑖
ℒ⊤[ 𝑖 ]

ℒ[ 𝑖 ] = [ 𝒜ℳ𝒰[ 𝑖 ] … ℱ[ 𝑖, 1 ]𝒜ℳ𝒰[ 0 ] ]
⎡
⎢⎢
⎣

𝜮𝒗 ⋯ 𝟎
⋮ ⋱ ⋮
𝟎 ⋯ 𝜮𝒗

⎤
⎥⎥
⎦

⎡
⎢⎢
⎣

(𝒜ℳ𝒰[ 𝑖 ])⊤

⋮
(ℱ[ 𝑖, 1 ]𝒜ℳ𝒰[ 0 ])⊤

⎤
⎥⎥
⎦

=
𝑖

∑
𝑗=0

ℱ[ 𝑖, 𝑗 + 1 ]𝒜𝒟[ 𝑗 ]𝒜⊤ℱ⊤[ 𝑖, 𝑗 + 1 ], (4.19)

where we define 𝒟[ 𝑗 ] = ℳ𝒰[ 𝑗 ]𝜮𝒗𝒰⊤[ 𝑗 ]ℳ⊤. Expanding 𝒵[ 𝑖 ] as a polynomial on 𝜇 as in

Equation (4.13), let 𝒞𝜅[ 𝑖 ], 𝜅 ∈ ℕ, be the matrix coefficients of such an expansion; i.e.,

𝒵[ 𝑖 ] = 𝒞0[ 𝑖 ] + 𝜇𝒞1[ 𝑖 ] + ⋯ + 𝜇𝑖+1𝒞𝑖+1[ 𝑖 ]. (4.20)

The first three coefficients are given as (see Appendix C)

𝒞0[ 𝑖 ] = 𝟎,

𝒞1[ 𝑖 ] = 𝟎,

𝒞2[ 𝑖 ] =
𝑖

∑
𝑗=0

𝒜𝑖−𝑗+1ℳ′ 𝒰[ 𝑗 ]𝜮𝑣 𝒰⊤[ 𝑗 ]ℳ′(𝒜⊤)𝑖−𝑗+1.

Thus, following the same reasoning used for 𝒫[ 𝑖 ], given a 𝜇 ≤ 𝜇𝒞2
such that all 𝒞𝜅[ 𝑖 ], 𝜅 ≥ 3,

are negligible for 𝑖 ≤ 𝐼𝒞2
, we can approximate2

𝒵[ 𝑖 ] ≈ 𝜇2
𝑖

∑
𝑗=0

𝒜𝑖−𝑗+1ℳ′𝒰[ 𝑗 ]𝜮𝒗 𝒰⊤[ 𝑗 ]ℳ′(𝒜⊤)𝑖−𝑗+1.

Recalling that 𝒁𝑘[ 𝑖 ] is the 𝑘th 𝐷×𝐷 diagonal block of 𝒵[ 𝑖 ], we can prove the following

proposition:

Proposition 10. A secondorder polynomial approximation of matrices 𝒁𝑘[ 𝑖 ], 𝑘 = 1, … , 𝐾,

defined as the 𝑘th 𝐷×𝐷 diagonal block of 𝒵[ 𝑖 ], is given as

𝒁𝑘[ 𝑖 ] ≈ 𝜇2
𝑖

∑
𝑗=0

𝐾
∑
ℓ=1

(𝑨𝑖−𝑗+1)2
ℓ𝑘 𝜇′

ℓ
2𝜎2

𝑣𝑘
𝒖ℓ[ 𝑗 ]𝒖⊤

ℓ[ 𝑗 ]. (4.21)

where (𝑨𝑖−𝑗+1)ℓ𝑘 denotes the entry of matrix 𝑨𝑖−𝑗+1 at the ℓh row and 𝑘th column. This

approximation if valid for 𝑖 ≤ 𝐼𝒞2
for any 𝜇 ≤ 𝜇𝒞2

such that the higher order terms 𝜇𝜅𝒞𝜅[ 𝑖 ],
𝜅 ≥ 3 in Equation (4.20) are negligible.

Proof. See Appendix D.

2 The attentive reader may question why 𝒵[ 𝑖 ] is approximated by a second order polynomial on 𝜇, whereas 𝒫[ 𝑖 ]
is approximated by a first order polynomial instead. This is so because 𝒫[ 𝑖 ] relates the estimators �̂�∼ 𝑘[ 𝑖 ] with its
expected values, as we can see in Equation (3.22), whereas 𝒵[ 𝑖 ] is related to their variances by Equation (3.23).
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Now, we choose the value of 𝜇 such that

𝜇 < 𝜇sup = min {𝜇ℬ1
, 𝜇𝒞2

},

in order to guarantee that our approximations for 𝑷𝑘[ 𝑖 ] and 𝑺𝑘[ 𝑖 ] are valid for any

𝑖 < 𝐼sup = min {𝐼ℬ1
, 𝐼𝒞2

}.

Under such conditions, define the matrices ̂𝑷𝑘[ 𝑖 ] and ̂𝒁𝑘[ 𝑖 ] such that 𝑷𝑘[ 𝑖 ] = 𝜇 ̂𝑷𝑘[ 𝑖 ] and
𝒁𝑘[ 𝑖 ] = 𝜇2 ̂𝒁𝑘[ 𝑖 ]. Note that, by definition, ̂𝑷𝑘[ 𝑖 ] and ̂𝒁𝑘[ 𝑖 ] do not depend on 𝜇 . Apply

ing the approximations for 𝑷𝑘[ 𝑖 ] and 𝒁𝑘[ 𝑖 ] obtained above, and the definition of 𝑺𝑘[ 𝑖 ] in
Equation (3.27), we have

𝑹𝑘[ 𝑖 ] ≈ 𝜇 ̂𝑷⊤
𝑘[ 𝑖 ](𝜇 ̂𝑷𝑘[ 𝑖 ]𝜮𝒘𝜇 ̂𝑷⊤

𝑘[ 𝑖 ] + 𝜇2 ̂𝒁𝑘[ 𝑖 ])
−1

𝜇 ̂𝑷𝑘[ 𝑖 ]

= ̂𝑷⊤
𝑘[ 𝑖 ]( ̂𝑷𝑘[ 𝑖 ]𝜮𝒘 ̂𝑷⊤

𝑘[ 𝑖 ] + ̂𝒁𝑘[ 𝑖 ])
−1 ̂𝑷𝑘[ 𝑖 ], (4.22)

where we can see that the resulting matrix product does not depend on 𝜇; therefore, the parameters
of 𝑇∼ 𝑚𝑛,𝑘[ 𝑖 ] in Equation (4.7) do not depend on 𝜇 as well, provided 𝜇 < 𝜇sup whenever 𝑖 < 𝐼sup .
Hence, for sufficient small step sizes and for a period of time, the performance of the detector

does not depend on the value of this step size. This results in the fact that its performance is not

affected by smaller choices of values for 𝜇 in terms of convergence rate, since smaller values of

𝜇 extend the period during which our approximations are valid. That means that desirable values

for the convergence rate and steady state performance of the detector are not conflicting, in

contrast to what happens in the estimation problem using the LMS algorithm. In fact, the dLMS

at the core of the detector is prevented from reaching the steady state, which in turn reflects in

the matrices 𝑹𝑘[ 𝑖 ] being independent of the step size.

This counterintuitive result can be more easily explained for 𝑁 = 2 hypotheses in the

small step size regime: as shown in the predecessor works [60] and [88], the detector performance

in that case depends on the ratio of the expected value of the detector statistic (which grows

with 𝜇) and the square root of the variance (which also grows with 𝜇); more specifically, the
probability of error at node 𝑘 is given as

𝜉𝑘[ 𝑖 ] = ℙ(𝐻1)𝒬(
𝜇𝛾 − E(𝑡𝑘[ 𝑖 ] ∣ 𝐻1)

𝜎𝑘[ 𝑖 ]
) + ℙ(𝐻2)𝒬(

E(𝑡𝑘[ 𝑖 ] ∣ 𝐻2) − 𝜇𝛾
𝜎𝑘[ 𝑖 ]

),

where 𝑡𝑘[ 𝑖 ] represents the 𝑁 = 2 test statistic, 𝜎𝑘[ 𝑖 ] = √Var(𝑡𝑘[ 𝑖 ]), 𝛾 is the proper decision

threshold and 𝒬(𝑧) = ℙ(𝑍 > 𝑧) for a standard normally distributed variable 𝑍. As we can see,
the step size 𝜇 cancels out in the expression above. Unfortunately, such easy visualization by a

simple expression is not possible for 𝑁 ≥ 3.

4.4 Analysis as smaller step sizes are chosen

Let us proceed our analysis in order to show how the proposed detector approximates

the minimum possible probability of error, which is the performance achieved by optimal ideal
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Bayesian detector. We do it by showing, under a few assumptions we discuss next, that the local

test statistics 𝑇𝑛,𝑘[ 𝑖 ] in Equation (4.10) approximates an ideal global optimal test statistic. We

start by discussing how the coefficients (𝑨𝑖)ℓ𝑘 can be approximated; recall that 𝑨, as defined

in Section 3.2, is a left stochastic matrix. Thus, it follows from the PerronFrobenius theorem

[101] that 𝑨 has a single (right) eigenvalue at one and its spectral radius is also one3—i.e.,

𝜌(𝑨) = 1—and there is a vector 𝝅 ∈ ℝ𝐾 with a sequence of entries {𝜋𝑘}𝐾
𝑘=1, 𝜋𝑘 > 0, such that

𝑨𝝅 = 𝝅, 𝟙⊤
𝐾𝝅 = 1.

In other words, 𝝅 is the (right) eigenvector of 𝑨 associated with the unitary eigenvalue. It follows

again from the PerronFrobenius theorem that, for a sufficiently large 𝑖 > 𝐼𝝅 ,

𝑨𝑖 ≈ 𝝅 𝟙⊤
𝐾 = [ 𝜋1 𝜋2 … 𝜋𝐾 ];

that is, as 𝑖 increases, the coefficients (𝑨𝑖)ℓ𝑘 can be approximated by 𝜋ℓ for each ℓ ∈ {1, … , 𝐾}.
Let us see how this is the case in Equation (4.18); after changing 𝑖 − 𝑗 = 𝜄 for simplicity, we can
approximate the inner summation as

𝑖
∑
𝜄=0

(𝑨𝜄+1)ℓ𝑘𝒖ℓ[ 𝑖 − 𝜄 ]𝒖⊤
ℓ[ 𝑖 − 𝜄 ] ≈

𝑖
∑
𝜄=0

𝜋ℓ 𝒖ℓ[ 𝑖 − 𝜄 ]𝒖⊤
ℓ[ 𝑖 − 𝜄 ]. (4.23)

Note that as 𝑖 increases more terms (𝑨𝜄+1)ℓ𝑘 in the summation can be better approximated by 𝜋ℓ ,

since 𝑨𝜄+1 becomes closer to 𝝅 𝟙⊤
𝐾 . Also note that this approximation is equivalent to assuming

that the network is totally connected with a combination matrix 𝑨 = 𝝅 𝟙⊤
𝐾 . 4 The reader should

be convinced that this is a reasonable argument, since due to the diffusion process among nodes

in a connected network, every node eventually receives information from every other node as

time increases. Therefore, according to this reasoning, this approximation is better when the

network has a large number of connections among nodes, as information diffuses faster. Finally,

all the reasoning about approximating (𝑨𝑖)ℓ𝑘 by 𝜋ℓ also applies to 𝒁𝑘[ 𝑖 ] in Equation (4.21).

Let us move forward and apply these results in order to find adequate approximations

for 𝑷𝑘[ 𝑖 ] and 𝒁𝑘[ 𝑖 ]. In addition to the criterion above about a sufficiently large 𝑖 > 𝐼𝝅 , also

consider that we choose a 𝜇 < 𝜇sup to approximate 𝑷𝑘[ 𝑖 ] in Equation (4.18), valid for 𝑖 < 𝐼sup.
Therefore, during a time interval such that 𝐼𝝅 < 𝑖 < 𝐼sup, 𝑷𝑘[ 𝑖 ] can be approximated as follows5:

𝑷𝑘[ 𝑖 ] ≈ 𝜇
𝑖

∑
𝑗=0

𝐾
∑
ℓ=1

𝜇′
ℓ 𝜋ℓ 𝒖ℓ[ 𝑗 ] 𝒖⊤

ℓ[ 𝑗 ], (4.24)

Under the same conditions, each matrix block 𝒁𝑘[ 𝑖 ] of 𝒵[ 𝑖 ] can also be approximated as

𝒁𝑘[ 𝑖 ] ≈ 𝜇2
𝑖

∑
𝑗=0

𝐾
∑
ℓ=1

𝜇′
ℓ
2𝜎2

𝑣𝑘
𝜋2

ℓ 𝒖ℓ[ 𝑗 ] 𝒖⊤
ℓ[ 𝑗 ]. (4.25)

3 The spectral radius of a square matrix 𝑴 ∈ ℝ𝐷×𝐷 is the maximum of the absolute values of its eigenvalues;

i.e., 𝜌(𝑴) = max{|𝜆| ∶ 𝜆 is an eigenvalue of 𝑴}.
4 By the PerronFrobenius theorem, the vector 𝝅 has only strictly positive entries. Therefore, the same applies to

the combination matrix 𝑨 = 𝝅 𝟙⊤
𝐾, and thus the network it describes has all nodes connected to all others.

5 As discussed in Section 4.3, we can guarantee, in principle, that 𝐼𝝅 < 𝐼sup by choosing a sufficiently small
value of 𝜇 to assure a sufficiently large 𝐼sup .
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Now, suppose that we are able to set, for all 𝑘,

𝜇′
𝑘 = (𝜋𝑘 𝜎2

𝑣𝑘
)−1, (4.26)

which is possible assuming that the noise variances 𝜎2
𝑣𝑘

at nodes are known or can be satisfactorily

estimated. Therefore, we have from Equation (4.24) and Equation (4.25) that

𝑷𝑘[ 𝑖 ] ≈ 𝜇
𝑖

∑
𝑗=0

𝐾
∑
ℓ=1

𝒖ℓ[ 𝑗 ] 𝒖⊤
ℓ[ 𝑗 ]

𝜎2
𝑣ℓ

,

𝒁𝑘[ 𝑖 ] ≈ 𝜇2
𝑖

∑
𝑗=0

𝐾
∑
ℓ=1

𝒖ℓ[ 𝑗 ] 𝒖⊤
ℓ[ 𝑗 ]

𝜎2
𝑣ℓ

. (4.27)

Also, examining closely, we can notice that

𝑖
∑
𝑗=0

𝐾
∑
ℓ=1

𝒖ℓ[ 𝑗 ] 𝒖⊤
ℓ[ 𝑗 ]

𝜎2
𝑣ℓ

= 𝑼⊤
0∶𝑖𝜮−1

𝒗0∶𝑖
𝑼0∶𝑖 ; (4.28)

thus, we have in Equation (4.27) that

𝑷𝑘[ 𝑖 ] ≈ 𝜇 𝑼⊤
0∶𝑖𝜮−1

𝒗0∶𝑖
𝑼0∶𝑖 , and 𝒁𝑘[ 𝑖 ] ≈ 𝜇2 𝑼⊤

0∶𝑖𝜮−1
𝒗0∶𝑖

𝑼0∶𝑖 . (4.29)

Now, under the conditions assumed so far, we apply the approximations of 𝑷𝑘[ 𝑖 ] and
𝑺𝑘[ 𝑖 ] in the expression of the local estimate �̂�𝑘[ 𝑖 ]. First, recall that we saw in Section 4.2 that

the detector performance does not depend on the initial estimate; thus, for simplicity, we assume

𝒃 = 𝟎. Hence, from Equation (2.3) and Equation (4.8), we can write

�̂�𝑘[ 𝑖 ]∣𝟎 = 𝑷𝑘[ 𝑖 ]𝒘𝑛 + 𝒛𝑘[ 𝑖 ], (4.30)

where 𝒛𝑘[ 𝑖 ] = 𝑳𝑘[ 𝑖 ]𝒗0∶𝑖 and 𝒘𝑘[−1] = 𝟎. In order to find an approximation for 𝒛𝑘[ 𝑖 ] under
the conditions we are assuming so far, since 𝑷𝑘[ 𝑖 ] = 𝑳𝑘[ 𝑖 ]𝑼0∶𝑖 and from the approximation of

𝑷𝑘[ 𝑖 ] above, we conclude that matrix 𝑳𝑘[ 𝑖 ] can be approximate as

𝑳𝑘[ 𝑖 ] ≈ 𝜇 𝑼⊤
0∶𝑖𝜮−1

𝒗0∶𝑖

and, therefore,

𝒛𝑘[ 𝑖 ] ≈ 𝜇 𝑼⊤
0∶𝑖𝜮−1

𝒗0∶𝑖
𝒗0∶𝑖 .

To show that this is indeed an adequate approximation, we use the fact that

𝒁𝑘[ 𝑖 ] = E(𝒛∼ 𝑘[ 𝑖 ]𝒛∼⊤
𝑘[ 𝑖 ]) (4.31)

(see proof in Appendix A). Thus,

E(𝒛∼ 𝑘[ 𝑖 ]𝒛∼⊤
𝑘[ 𝑖 ]) ≈ E(𝜇𝑼⊤

0∶𝑖𝜮−1
𝒗0∶𝑖

𝒗∼ 0∶𝑖)(𝜇𝑼⊤
0∶𝑖𝜮−1

𝒗0∶𝑖
𝒗∼ 0∶𝑖)⊤)

= 𝜇2𝑼⊤
0∶𝑖𝜮−1

𝒗0∶𝑖
E(𝒗∼ 0∶𝑖𝒗∼ ⊤

0∶𝑖)𝜮−1
𝒗0∶𝑖

𝑼0∶𝑖

= 𝜇2𝑼⊤
0∶𝑖𝜮−1

𝒗0∶𝑖
𝜮𝒗0∶𝑖

𝜮−1
𝒗0∶𝑖

𝑼0∶𝑖

= 𝜇2𝑼⊤
0∶𝑖𝜮−1

𝒗0∶𝑖
𝑼0∶𝑖 ,
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which is precisely, from Equation (4.28), the approximation for 𝒁𝑘[ 𝑖 ]. Thus, from the ap

proximations for 𝑷𝑘[ 𝑖 ] and 𝒛𝑘[ 𝑖 ] above, we have the following approximation for �̂�𝑘[ 𝑖 ] in
Equation (4.30):

�̂�𝑘[ 𝑖 ]∣𝟎 ≈ 𝜇 𝑼⊤
0∶𝑖𝜮−1

𝒗0∶𝑖
(𝑼0∶𝑖𝒘𝑛 + 𝒗0∶𝑖) = 𝜇 𝑼⊤

0∶𝑖𝜮−1
𝒗0∶𝑖

𝒅0∶𝑖 . (4.32)

Finally, we can approximate 𝑇𝑚𝑛,𝑘[ 𝑖 ] in Equation (4.10) substituting the quantities �̂�𝑘[ 𝑖 ],𝑷𝑘[ 𝑖 ]
and 𝒁𝑘[ 𝑖 ] by their approximations, which is presented in the following proposition:

Proposition 11. An approximation for 𝑇𝑚𝑛,𝑘[ 𝑖 ] for 𝜇 < 𝜇sup and 𝐼𝝅 < 𝑖 < 𝑖sup , and if

𝜇𝑘 = (𝜋𝑘 𝜎2
𝑣𝑘

)−1𝜇 is given as

𝑇𝑚𝑛,𝑘[ 𝑖 ] ≈ (𝒅0∶𝑖 − 𝑼0∶𝑖
̄𝜽𝑛𝑚)⊤𝜮−1

𝒅0∶𝑖
𝑼0∶𝑖(𝜽𝑚 − 𝜽𝑛). (4.33)

Proof. We will use the approximations of �̂�𝑘[ 𝑖 ]∣𝟎, 𝑷𝑘[ 𝑖 ], 𝒁𝑘[ 𝑖 ] in Equation (4.32) and Equa
tion (4.29) to substitute them in the expression of 𝑇𝑚𝑛,𝑘[ 𝑖 ] in Equation (4.10). But first, let us
recall the definitions of 𝑸𝑘[ 𝑖 ] (and also of 𝑺𝑘[ 𝑖 ] in Equation (3.27)) and rewrite it as

𝑸𝑘[ 𝑖 ] = 𝑺−1
𝑘 [ 𝑖 ]𝑷𝑘[ 𝑖 ]

= (𝑷𝑘[ 𝑖 ]𝜮𝒘𝑷⊤
𝑘[ 𝑖 ] + 𝒁𝑘[ 𝑖 ])−1𝑷𝑘[ 𝑖 ]

= (𝜮𝒘𝑷⊤
𝑘[ 𝑖 ] + 𝑷 −1

𝑘 [ 𝑖 ]𝒁𝑘[ 𝑖 ])−1.

Note that using the approximations of 𝑷𝑘[ 𝑖 ] and 𝒁𝑘[ 𝑖 ] in Equation (4.29) we have that

𝑷 −1
𝑘 [ 𝑖 ]𝒁𝑘[ 𝑖 ] ≈ 𝜇𝑰𝑀 ;

therefore, we can approximate of 𝑸𝑘[ 𝑖 ] as

𝑸𝑘[ 𝑖 ] ≈ (𝜇 𝜮𝒘𝑼⊤
0∶𝑖𝜮−1

𝒗0∶𝑖
𝑼0∶𝑖 + 𝜇𝑰𝑀)−1

=
1
𝜇(𝑼⊤

0∶𝑖𝜮−1
𝒗0∶𝑖

𝑼0∶𝑖 + 𝜮−1
𝒘 )−1𝜮−1

𝒘 . (4.34)

Thus, we have

𝑇𝑚𝑛,𝑘[ 𝑖 ] = (�̂�𝑘[ 𝑖 ]∣𝟎 − 𝑷𝑘[ 𝑖 ] ̄𝜽𝑚𝑛)⊤𝑸𝑘[ 𝑖 ](𝜽𝑚 − 𝜽𝑛)

≈ (𝜇𝑼⊤
0∶𝑖𝜮−1

𝒗0∶𝑖
𝒅0∶𝑖 − 𝜇𝑼⊤

0∶𝑖𝜮−1
𝒗0∶𝑖

𝑼0∶𝑖
̄𝜽𝑚𝑛)⊤

×
1
𝜇(𝑼⊤

0∶𝑖𝜮−1
𝒗0∶𝑖

𝑼0∶𝑖 + 𝜮−1
𝒘 )−1𝜮−1

𝒘 (𝜽𝑚 − 𝜽𝑛)

= (𝒅0∶𝑖 − 𝑼0∶𝑖
̄𝜽𝑚𝑛)⊤𝜮−1

𝒗0∶𝑖
𝑼0∶𝑖(𝑼⊤

0∶𝑖𝜮−1
𝒗0∶𝑖

𝑼0∶𝑖 + 𝜮−1
𝒘 )−1𝜮−1

𝒘 (𝜽𝑚 − 𝜽𝑛). (4.35)
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Now we need to manipulate the matrix product above as follows:

𝜮−1
𝒗0∶𝑖

𝑼0∶𝑖(𝑼⊤
0∶𝑖𝜮−1

𝒗0∶𝑖
𝑼0∶𝑖 + 𝜮−1

𝒘 )−1𝜮−1
𝒘 (4.36)

= 𝜮−1
𝒗0∶𝑖

𝑼0∶𝑖(𝑼⊤
0∶𝑖𝜮−1

𝒗0∶𝑖
𝑼0∶𝑖 + 𝜮−1

𝒘 )−1⎛⎜
⎝

𝜮−1
𝒘 + 𝑼⊤

0∶𝑖𝜮−1
𝒗0∶𝑖

𝑼0∶𝑖 − 𝑼⊤
0∶𝑖𝜮−1

𝒗0∶𝑖
𝑼0∶𝑖⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝟎

⎞⎟
⎠

= 𝜮−1
𝒗0∶𝑖

𝑼0∶𝑖 (𝑼⊤
0∶𝑖𝜮−1

𝒗0∶𝑖
𝑼0∶𝑖 + 𝜮−1

𝒘 )−1(𝜮−1
𝒘 + 𝑼⊤

0∶𝑖𝜮−1
𝒗0∶𝑖

𝑼0∶𝑖)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑰𝑖+1

− 𝜮−1
𝒗0∶𝑖

𝑼0∶𝑖(𝑼⊤
0∶𝑖𝜮−1

𝒗0∶𝑖
𝑼0∶𝑖 + 𝜮−1

𝒘 )−1𝑼⊤
0∶𝑖𝜮−1

𝒗0∶𝑖
𝑼0∶𝑖

= 𝜮−1
𝒗0∶𝑖

𝑼0∶𝑖 − 𝜮−1
𝒗0∶𝑖

𝑼0∶𝑖(𝑼⊤
0∶𝑖𝜮−1

𝒗0∶𝑖
𝑼0∶𝑖 + 𝜮−1

𝒘 )−1𝑼⊤
0∶𝑖𝜮−1

𝒗0∶𝑖
𝑼0∶𝑖

= (𝜮−1
𝒗0∶𝑖

− 𝜮−1
𝒗0∶𝑖

𝑼0∶𝑖(𝑼⊤
0∶𝑖𝜮−1

𝒗0∶𝑖
𝑼0∶𝑖 + 𝜮−1

𝒘 )−1𝑼⊤
0∶𝑖𝜮−1

𝒗0∶𝑖
)𝑼0∶𝑖 .

By the Matrix Inversion Lemma6, it holds that

𝜮−1
𝒗0∶𝑖

− 𝜮−1
𝒗0∶𝑖

𝑼0∶𝑖(𝑼⊤
0∶𝑖𝜮−1

𝒗0∶𝑖
𝑼0∶𝑖 + 𝜮−1

𝒘 )−1𝑼⊤
0∶𝑖𝜮−1

𝒗0∶𝑖
= (𝑼0∶𝑖𝜮𝒘𝑼⊤

0∶𝑖 + 𝜮𝒗0∶𝑖
)−1 = 𝜮−1

𝒅0∶𝑖
,

since 𝜮𝒅0∶𝑖
= 𝑼0∶𝑖𝜮𝒘𝑼⊤

0∶𝑖 + 𝜮𝒗0∶𝑖
(see Equation (2.10) ). Thus, we can write (4.36) as

𝜮−1
𝒗0∶𝑖

𝑼0∶𝑖(𝑼⊤
0∶𝑖𝜮−1

𝒗0∶𝑖
𝑼0∶𝑖 + 𝜮−1

𝒘 )−1𝜮−1
𝒘 = 𝜮−1

𝒅0∶𝑖
𝑼0∶𝑖 ,

and rewrite Equation (4.35) as given in Equation (4.33).

In order to make sense of this result, let us define an optimal statistic test direct from

the global linear model 𝒅0∶𝑖 = 𝑼0∶𝑖𝒘𝑛 + 𝒗0∶𝑖 . Consequently, the corresponding statistic must

encompass all data of all nodes and at all times; thus, it would be equivalent to the statistic of a

single omniscient sensor node where all data are received. Therefore, following a very similar

procedure described in Section 2.2 for the single node scenario (the only different is that 𝒅0∶𝑖

collects data of 𝐾 > 1 nodes), the optimal global statistic to test hypothesis 𝐻𝑛 results to be

given just as presented in Proposition 1; i.e.,

𝑜𝑛[ 𝑖 ] = −
1
2(𝒅0∶𝑖 − 𝑼0∶𝑖𝜽𝑛)⊤𝜮−1

𝒅0∶𝑖
(𝒅0∶𝑖 − 𝑼0∶𝑖𝜽𝑛). (4.37)

Define 𝑂𝑚𝑛[ 𝑖 ] = 𝑜𝑚[ 𝑖 ] − 𝑜𝑛[ 𝑖 ], which can be reduced, using the fact that this is a difference
of two quadratic forms, to7

𝑂𝑚𝑛[ 𝑖 ] = (𝒅0∶𝑖 − 𝑼0∶𝑖
̄𝜽𝑚𝑛)⊤𝜮−1

𝒅0∶𝑖
𝑼0∶𝑖(𝜽𝑚 − 𝜽𝑛), (4.38)

which is exactly the same expression obtained in Equation (4.33). Thus, the dLMS detector

approximates the performance of the global optimal detector as we make the estimation learning

run slower by choosing smaller values of 𝜇, provided that the diffusion algorithm runs for a

sufficient period of time for the approximation in Equation (4.23) to be valid.

6 For conformable matrices 𝑺, 𝑼, 𝒁 and 𝑽, where 𝑺 and 𝒁 are nonsingular matrices, it holds

(𝑺 + 𝑼𝒁𝑽)−1 = 𝑺−1 − 𝑺−1𝑼(𝒁−1 + 𝑽 𝑺−1𝑼)−1𝑽 𝑺−1.

7 As shown in the proof of Proposition 6, for 𝑴 positive definite and a vector 𝒙, 𝒙⊤𝑴𝒙 is a quadratic form, and

for any two vectors 𝒙 and 𝒚 ∈ ℝ𝐷, it holds that 𝒙⊤𝑴𝒙 − 𝒚⊤𝑴𝒚 = (𝒙 + 𝒚)⊤𝑴(𝒙 − 𝒚).
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4.5 Synthesis

In order to help assimilate the result just discussed and its correct interpretation, let us

synthesize the conditions on which this result depends and its consequences:

1. This chapter described the performance of the ideal dLMS detector in terms of statistical

quantities of the local dLMS estimates, namely their expectations, variances and covari

ances, obtained in Proposition 7. It was shown that if we choose sufficient small step size

these quantities are approximated by a linear and a quadratic function of the step size

(Propositions 9 and 10), and the performance of the detector does not depend on its specific

value (Equation (4.22)). The period of time 𝑖 < 𝐼sup during which this is valid depends
on how small we choose the value of the step size, and larger periods are achievable by

means of smaller step sizes.

2. It was assumed that the noise level to which the network is submitted is known or can be

estimated, since the noise variances at sensor nodes are necessary to “tune” the detector

accordingly (see Equation (4.26) ).

3. During the first iterations of the algorithm, as time increases to 𝑖 > 𝐼𝝅 , the network

becomes more similar to one that is totally connected, due to the diffusion process. Using

that we approximated the expressions further—note that this state of approximate “total

connectivity” of the network is completely independent of the value of the step size; it

only depends on the network topology and the combination coefficients.

4. Finally and most important, after a certain number of algorithm iterations 𝐼𝝅 and until a

time instant 𝐼sup—which we can choose to be as large as we wish by selecting a sufficiently

small value of 𝜇—, the dLMS detector approximates the performance of the optimal

detector that considers all data at all nodes at all times, although the estimation algorithm

at the detector core becomes slower in terms of its learning rate. Therefore, as in the classic

Aesop’s fable, we should favor the Tortoise over the Hare.
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5 LOWCOMPLEXITY DISTRIBUTED DETECTOR

In this chapter, we discuss the approximations we can take to produce a detector with

low complexity in terms of the number of arithmetic operations required to run the detection

routine, aiming at a feasible detector suitable for applications under stringent power limitations.

Also, we discuss how the initial estimate of the dLMS can be chosen having in mind a simpler

detector and a better performance. To fulfill one of the objectives of this thesis, it is shown how

we can estimate the time required (the stopping time) for this lowcomplexity detector to reach a

desired minimum performance. It is also explained how this stopping time can be used for the

strategy devised to track changes in the state of nature.

5.1 Developing the lowcomplexity detector

Using the results of Section 4.4, we can now find appropriate approximations for matrices

𝑹𝑘[ 𝑖 ] and 𝑸𝑘[ 𝑖 ]. Note that their evaluation, by definition, would be unfeasible in practice, since
it implies a tremendous amount of data to be shared between nodes, and matrix inversions are

required as well, which is highly costly and, therefore, should not compose an implementable

lowcost algorithm.

The following proposition provide us with a more useful and practical expression for the

analysis we conduct in this section:

Proposition 12. The test statistic

𝑡 ′
𝑛,𝑘[ 𝑖 ] = (�̂�𝑘[ 𝑖 ] − 𝒃)⊤𝑸𝑘[ 𝑖 ](𝜽𝑛 − 𝒃) −

1
2𝛿2

𝑛,𝑘[ 𝑖 ], (5.1)

where 𝛿2
𝑛,𝑘[ 𝑖 ] = (𝜽𝑛 − 𝒃)⊤𝑹𝑘[ 𝑖 ](𝜽𝑛 − 𝒃), is equivalent to the statistic 𝑡𝑛,𝑘[ 𝑖 ] to perform the

dLMS detector test in Equation (3.29).

Proof. First, let us reformulate the expression of 𝑡𝑛,𝑘[ 𝑖 ] in Equation (3.29) by using a few

algebraic manipulations. We start by using

�̂�𝑘[ 𝑖 ] − 𝝐𝑛,𝑘[ 𝑖 ] = (�̂�𝑘[ 𝑖 ] − 𝒃) + (𝒃 − 𝝐𝑛,𝑘[ 𝑖 ])

to rewrite Equation (3.29) as

𝑡𝑛,𝑘[ 𝑖 ] = −
1
2(�̂�𝑘[ 𝑖 ] − 𝒃)⊤𝑺−1

𝑘 [ 𝑖 ](�̂�𝑘[ 𝑖 ] − 𝒃)

+ (�̂�𝑘[ 𝑖 ] − 𝒃)⊤𝑺−1
𝑘 [ 𝑖 ](𝝐𝑛,𝑘[ 𝑖 ] − 𝒃)

−
1
2(𝝐𝑛,𝑘[ 𝑖 ] − 𝒃)⊤𝑺−1

𝑘 [ 𝑖 ](𝝐𝑛,𝑘[ 𝑖 ] − 𝒃). (5.2)

Now, we use the fact that 𝝐𝑛,𝑘[ 𝑖 ] − 𝒃 = 𝑷𝑘[ 𝑖 ](𝜽𝑛 − 𝒃), and recall the definitions 𝑸𝑘[ 𝑖 ] =
𝑺−1

𝑘 [ 𝑖 ]𝑷𝑘[ 𝑖 ] and 𝑹𝑘[ 𝑖 ] = 𝑷⊤
𝑘𝑸𝑘[ 𝑖 ]. We now substitute these in Equation (5.2), and removing
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the term that does not depend on the hypothesis being considered, we obtain the expression in

Equation (5.1).

The first step towards a feasible detector is to simplify the expression in Equation (5.1)

and try to minimize the number of arithmetic operations; more specifically, we can try to remove

the terms 𝛿2
𝑛,𝑘[ 𝑖 ] from the hypothesis test by some means. Suppose that we are able to choose

the initial estimate 𝒃 such that we minimize

𝑁−1
∑
𝑛=1

𝑁
∑

𝑚=𝑛+1
(𝛿2

𝑛,𝑘[ 𝑖 ] − 𝛿2
𝑚,𝑘[ 𝑖 ])2, (5.3)

so that we can approximate the terms 𝛿2
𝑛,𝑘[ 𝑖 ] in Equation (5.1) by a common value (we discuss

how this can be done in detail in Section 5.2 ahead). Thus, when performing the hypothesis test,

these terms can be canceled out, and we can simplify the statistic simply to

𝑡 ′
𝑛,𝑘[ 𝑖 ] = (�̂�𝑘[ 𝑖 ] − 𝒃)⊤𝑸𝑘[ 𝑖 ](𝜽𝑛 − 𝒃). (5.4)

Before we find a vector 𝒃 which satisfies this condition in practice, we need first to find an

appropriated approximation for matrices 𝑹𝑘[ 𝑖 ] ∀𝑘, as we will see in the next step.

The second step towards an implementable detector is to find an appropriate approxi

mation for both matrices 𝑹𝑘[ 𝑖 ] and 𝑸𝑘[ 𝑖 ]. Using the approximations of 𝑷𝑘[ 𝑖 ] and 𝒁𝑘[ 𝑖 ] in
Equation (4.27), we have that 𝑷 −1

𝑘 [ 𝑖 ]𝒁𝑘[ 𝑖 ] = 𝜇𝑰𝑀 and, therefore, we can approximate 𝑸[ 𝑖 ] as

𝑸𝑘[ 𝑖 ] = 𝑺−1
𝑘 [ 𝑖 ]𝑷𝑘[ 𝑖 ]

= (𝑷𝑘[ 𝑖 ]𝜮𝒘𝑷⊤
𝑘[ 𝑖 ] + 𝒁𝑘[ 𝑖 ])−1𝑷𝑘[ 𝑖 ]

= (𝜮𝒘𝑷⊤
𝑘[ 𝑖 ] + 𝑷 −1

𝑘 [ 𝑖 ]𝒁𝑘[ 𝑖 ])−1

≈ (𝜮𝒘𝑷⊤
𝑘[ 𝑖 ] + 𝜇𝑰𝐷)−1

and from the definition of 𝑹𝑘[ 𝑖 ], we have

𝑹𝑘[ 𝑖 ] = 𝑷⊤
𝑘[ 𝑖 ]𝑸𝑘[ 𝑖 ]

≈ 𝑷⊤
𝑘[ 𝑖 ](𝜮𝒘𝑷⊤

𝑘[ 𝑖 ] + 𝜇𝑰𝐷)−1

= (𝜮𝒘 + 𝜇𝑷 −1
𝑘 [ 𝑖 ])−1

using the fact that the approximation of 𝑷𝑘[ 𝑖 ] in Equation (4.27) is a symmetric matrix. We now

recall the fact that 𝒖𝑘[ 𝑖 ] was modeled as a realization of a random vector 𝒖∼ 𝑘[ 𝑖 ]. Suppose that
it is modeled as a wide sense stationary process1 and 𝒖∼ 𝑘[ 𝑖 ] ∼ 𝒩(𝟎, 𝜮𝒖𝑘

); thus, let us use the
fact that

𝑖
∑
𝑗=0

𝒖𝑘[ 𝑗 ]𝒖⊤
𝑘[ 𝑗 ]

𝑖 + 1 ⟹ 𝜮𝒖𝑘
, as 𝑖 increases, (5.5)

1 The stationary condition is required to keep the covariance matrix 𝜮𝒖𝑘
constant during the detection routine;

otherwise, it must be updated as time progresses. Also note that the stationary condition only need to be true

during the duration of the detection routine: once it is finished, a new updated covariance matrix can be used if

necessary, supposing that it is constant during the next detection routine.
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to further approximate 𝑷𝑘[ 𝑖 ] for a 𝑖 > 𝐼𝒖 sufficiently large. Therefore, we have from Equa

tion (4.27) that

𝑷𝑘[ 𝑖 ] ≈ (𝑖 + 1) 𝜇
𝐾

∑
ℓ=1

𝜮𝒖ℓ

𝜎2
𝑣ℓ

= (𝑖 + 1) 𝜇𝑷ct , (5.6)

where we define the constant matrix 𝑷ct = ∑𝐾
ℓ=1 𝜮𝒖ℓ

/𝜎2
𝑣ℓ
. Hence, our approximations of 𝑸𝑘[ 𝑖 ]

and 𝑹𝑘[ 𝑖 ] can now be written as

𝑸𝑘[ 𝑖 ] ≈ ((𝑖 + 1)𝜇𝜮𝒘𝑷ct + 𝜇𝑰𝐷)−1

𝑹𝑘[ 𝑖 ] ≈ (𝜮𝒘 + (𝑖 + 1)−1𝑷 −1
ct )−1, (5.7)

valid for 𝐼inf = max{𝐼𝝅, 𝐼𝒖} < 𝑖 < 𝐼sup and 𝜇 < 𝜇sup . Therefore, we can further approximate

the matrix inversions above, as 𝑖 increases, as

𝑸𝑘[ 𝑖 ] ≈ ((𝑖 + 1)𝜇𝜮𝒘𝑷ct)
−1, 𝑹𝑘[ 𝑖 ] ≈ 𝜮−1

𝒘 . (5.8)

As we can see, all quantities, except for 𝑖, are known and constant by assumption. Next, let us
substitute Equation (5.5) in the test statistic in Equation (5.4), which results in an approximation

of it, assuming that we choose am adequate 𝒃:

𝑡 ′
𝑛,𝑘[ 𝑖 ] ≈ (�̂�𝑘[ 𝑖 ] − 𝒃)⊤((𝑖 + 1)𝜇𝜮𝒘𝑷ct)

−1(𝜽𝑛 − 𝒃).

Defining the constant vector

𝒒𝑛 = (𝜮𝒘𝑷ct)
−1(𝜽𝑛 − 𝒃), (5.9)

the test using this approximation of 𝑡 ′
𝑛,𝑘[ 𝑖 ] is given as

(�̂�𝑘[ 𝑖 ] − 𝒃)⊤𝒒𝑛
(𝑖 + 1)𝜇

𝛷𝑘≠𝑚
≷

𝛷𝑘≠𝑛

(�̂�𝑘[ 𝑖 ] − 𝒃)⊤𝒒𝑛
(𝑖 + 1)𝜇

+ 𝛾𝑚𝑛.

Thus, multiplying both sides of the test by (𝑖 + 1)𝜇 and defining 𝑡 ′′
𝑛,𝑘[ 𝑖 ] = (�̂�𝑘[ 𝑖 ] − 𝒃)⊤𝒒𝑛 , we

have the following new lowcomplexity test:

𝑡 ′′
𝑛,𝑘[ 𝑖 ] = (�̂�𝑘[ 𝑖 ] − 𝒃)⊤𝒒𝑛,

𝑡 ′′
𝑛,𝑘[ 𝑖 ]

𝛷𝑘≠𝑚
≷

𝛷𝑘≠𝑛
𝑡 ′′
𝑚,𝑘[ 𝑖 ] + (𝑖 + 1)𝜇𝛾𝑚𝑛 , (5.10)

valid for 𝐼inf < 𝑖 < 𝐼sup and 𝜇 < 𝜇sup . Note that the test statistic is a simple dot product between

two vectors: our local diffusion estimate �̂�𝑘[ 𝑖 ] and two constant vectors 𝒃 and 𝒒𝑛. Therefore,

this version of the proposed detector is certainly feasible. Furthermore, from a computational

complexity viewpoint, it is surprisingly cheap: it requires for each iteration 𝑖 only 𝐷 products

and 2𝐷 − 1 sums to evaluate the test statistic. Since there are 𝑁 statistics, there are 𝑁𝐷 products

and 2𝑁𝐷 − 𝑁 sums.

We must recall that the lowcomplexity detector expressed in Equation 5.10 depends on

the assumption that the initial estimate 𝒃 is chosen so that the terms 𝛿2
𝑛,𝑘[ 𝑖 ] in Equation (5.1)

are sufficiently close to be removed from the hypothesis test. In the next section, we see how

to choose 𝒃 in such a way as to meet this requirement. Just as importantly, we should be able

to estimate the number of iterations that is needed to the the detector to reach a certain desired

performance level. This topic will be discussed ahead in Section 5.3.
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5.2 Choosing the initial estimate

In Chapter 4, choosing 𝒃 = 𝟎 was useful to describe mathematically the performance of

the proposed detector, but it is not necessarily the best choice for an implementable lowcost

version. We will see in this section how to choose 𝒃 that simplifies calculations.

We can now use the approximation of 𝑹𝑘[ 𝑖 ] obtained in Equation (5.8) to find the

initialization 𝒃 such that it minimizes Equation (5.3), which allows us to simplify the detector

by using the test statistic in Equation (5.10) for 𝐼inf < 𝑖 < 𝐼sup and 𝜇 < 𝜇sup . First, note that the

cost function in Equation (5.3) can be made equal to zero if there exists a value of 𝒃 such that

(𝜽𝑛 − 𝒃)⊤𝜮−1
𝒘 (𝜽𝑛 − 𝒃)⊤ = (𝜽𝑚 − 𝒃)⊤𝜮−1

𝒘 (𝜽𝑚 − 𝒃)⊤, ∀𝑚 ≠ 𝑛.

Such value can be found, if it exists, by solving

(𝜽1 − 𝒃)⊤𝜮−1
𝒘 (𝜽1 − 𝒃) = 𝛿2

(𝜽2 − 𝒃)⊤𝜮−1
𝒘 (𝜽2 − 𝒃) = 𝛿2

⋮

(𝜽𝑁 − 𝒃)⊤𝜮−1
𝒘 (𝜽𝑁 − 𝒃) = 𝛿2. (5.11)

Without loss of generality, for a 𝑛 ∈ {1, … , 𝑁} let us substitute 𝛿2 = (𝜽𝑛 − 𝒃)⊤𝜮−1
𝒘 (𝜽𝑛 − 𝒃)

in the other 𝑁 − 1 equations; thus,

(𝜽1 − 𝒃)⊤𝜮−1
𝒘 (𝜽1 − 𝒃) = (𝜽𝑛 − 𝒃)⊤𝜮−1

𝒘 (𝜽𝑛 − 𝒃)

(𝜽2 − 𝒃)⊤𝜮−1
𝒘 (𝜽2 − 𝒃) = (𝜽𝑛 − 𝒃)⊤𝜮−1

𝒘 (𝜽𝑛 − 𝒃)

⋮

(𝜽𝑁 − 𝒃)⊤𝜮−1
𝒘 (𝜽𝑁 − 𝒃) = (𝜽𝑛 − 𝒃)⊤𝜮−1

𝒘 (𝜽𝑛 − 𝒃). (5.12)

Note, for 𝑚 ≠ 𝑛, that

(𝜽𝑚 − 𝒃)⊤𝜮−1
𝒘 (𝜽𝑚 − 𝒃) = (𝜽𝑛 − 𝒃)⊤𝜮−1

𝒘 (𝜽𝑛 − 𝒃)

⇒ (𝜽𝑚 + 𝜽𝑛 − 2𝒃)⊤𝜮−1
𝒘 (𝜽𝑚 − 𝜽𝑛) = 0

⇒ (𝜽𝑚 + 𝜽𝑛)⊤𝜮−1
𝒘 (𝜽𝑚 − 𝜽𝑛) − 2𝒃⊤𝜮−1

𝒘 (𝜽𝑚 − 𝜽𝑛) = 0

⇒ (𝜽𝑚 − 𝜽𝑛)⊤𝜮−1
𝒘 𝒃 −

1
2(𝜽𝑚 + 𝜽𝑛)⊤𝜮−1

𝒘 (𝜽𝑚 − 𝜽𝑛) = 0

⇒ (𝜽𝑚 − 𝜽𝑛)⊤𝜮−1
𝒘 𝒃 −

1
2𝜽⊤

𝑚𝜮−1
𝒘 𝜽𝑚 +

1
2𝜽⊤

𝑛𝜮−1
𝒘 𝜽𝑛 = 0,

which is a linear equation on 𝒃. Therefore, we can rewrite the equations in Equation (5.12) into a
system of 𝑁 − 1 linear equations and 𝐷 unknowns; in matrix form it is given as

⎡
⎢⎢
⎣

(𝜽1 − 𝜽𝑛)⊤

⋮
(𝜽𝑁 − 𝜽𝑛)⊤

⎤
⎥⎥
⎦

𝜮−1
𝒘 𝒃 =

1
2

⎡
⎢⎢
⎣

𝜽⊤
1𝜮−1

𝒘 𝜽1 − 𝜽⊤
𝑛𝜮−1

𝒘 𝜽𝑛

⋮
𝜽⊤

𝑁𝜮−1
𝒘 𝜽𝑁 − 𝜽⊤

𝑛𝜮−1
𝒘 𝜽𝑛

⎤
⎥⎥
⎦

. (5.13)
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This system can have a unique solution, an infinity of solution or no solutions at all. The latter

happens if the vector on the righthand side of Equation (5.13) is not in the range space of the

matrix multiplying 𝒃 in the lefthand side. In this case, the best we can do is to choose a 𝒃 that

minimizes Equation (5.3). Having said that, let us know investigate the possible solutions to this

system.

5.2.1 Case I: 𝐷 = 𝑁 − 1

Note that the system in Equation (5.13) has a unique solution only if 𝐷 = 𝑁 − 1. In this
case, the matrix multiplying 𝒃 on the left must have full rank; in other words, if no row in that

matrix can be written as a linear combination of the other rows. i.e.,

𝛼1(𝜽1 − 𝜽𝑛)⊤𝜮−1
𝒘 + … + 𝛼𝑁(𝜽𝑁 − 𝜽𝑛)⊤𝜮−1

𝒘 = 𝟎 ⟺ 𝛼𝑚 = 0 for 𝑚 = 1, … , 𝑁, 𝑚 ≠ 𝑛.

We can rearrange the terms of the sum above to obtain

(𝛼1𝜽1 + … + 𝛼𝑁𝜽𝑁 − (𝛼1 + … + 𝛼𝑁)𝜽𝑛)⊤𝜮−1
𝒘 = 𝟎.

Since the covariance matrix 𝜮𝒘 has full rank by assumption, we have two types of solution to

the equation above:

𝛼𝑚 = 0 for 𝑚 = 1, … , 𝑁, 𝑚 ≠ 𝑛, or

𝜽𝑛 =
𝛼1𝜽1 + … + 𝛼𝑁𝜽𝑁

𝛼1 + … + 𝛼𝑁

Thus, if 𝜽𝑛 is an affine combination of 𝜽1, … , 𝜽𝑁 , the linear system in Equation (5.13) has no

solution. Interestingly, as 𝜽𝑛 ∈ ℝ𝑁−1, if {𝜽1, … , 𝜽𝑁} −{𝜽𝑛} is a linearly independent set, 𝜽𝑛

necessarily is a linear combination of the others, since they form a basis of ℝ𝑁−1; however,

only if 𝜽𝑛 is an affine combination of the other vectors that the system in Equation (5.13) has no

solution. For example, when 𝐷 = 𝑁 − 1 = 2, there exists no 𝒃 that satisfies Equation (5.13) if

{𝜽1, 𝜽2, 𝜽3} are collinear in ℝ2, since in this case any vector in the set is an affine combination

of the others. Similarly, for 𝐷 = 𝑁 − 1 = 3, there is no solution if {𝜽1, 𝜽2, 𝜽3, 𝜽4} are coplanar

in ℝ3.

5.2.2 Case II: 𝑁 − 1 < 𝐷

In this case, if the system in Equation (5.13) has solution, there are an infinity of them.

However, we should be cautious about our choice of 𝒃: as we will see in this subsection, when we
approximated the dLMS statistic 𝑡 ′

𝑛,𝑘[ 𝑖 ] defined in Section 3.2 by the lowcomplexity statistic
𝑡 ′′
𝑛,𝑘[ 𝑖 ] in Equation (5.10), the property that the detection performance does not depend on a

specific value of 𝒃 does not hold anymore, and a good choice for 𝒃 is, among all that satisfy the

system in Equation (5.13), the one with the least norm. To show that, let us define the error in

approximation

𝑒𝑛,𝑘[ 𝑖 ] = 𝑡 ′
𝑛,𝑘[ 𝑖 ] − 𝑡 ′′

𝑛,𝑘[ 𝑖 ], (5.14)
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and suppose we choose a 𝒃 that is a solution of Equation (5.13). Also, define the following error

matrices with respect to the approximation in Equation (5.8):

�̃�𝑘[ 𝑖 ] = 𝑸[ 𝑖 ] − ((𝑖 + 1)𝜇𝜮𝒘𝑷ct)
−1,

�̃�𝑘[ 𝑖 ] = 𝑹𝑘[ 𝑖 ] − 𝜮−1
𝒘 .

Thus, we can rewrite Equation (5.14) as follows:

𝑒𝑛,𝑘[ 𝑖 ] = (�̂�𝑘[ 𝑖 ] − 𝒃)⊤�̃�𝑘[ 𝑖 ](𝜽𝑛 − 𝒃) −
1
2𝛿2

𝑛,𝑘[ 𝑖 ]. (5.15)

When comparing a pair of statistics {𝑡 ′
𝑛,𝑘[ 𝑖 ], 𝑡 ′

𝑚,𝑘[ 𝑖 ]} of the dLMS detector, we have

𝑡 ′
𝑛,𝑘[ 𝑖 ]

𝛷𝑘≠𝑚
≷

𝛷𝑘≠𝑛
𝑡 ′
𝑚,𝑘[ 𝑖 ] + 𝛾𝑚𝑛 ⇒

𝑡 ′′
𝑛,𝑘[ 𝑖 ] + 𝑒𝑛,𝑘[ 𝑖 ]

𝛷𝑘≠𝑚
≷

𝛷𝑘≠𝑛
𝑡 ′′
𝑚,𝑘[ 𝑖 ] + 𝑒𝑚,𝑘[ 𝑖 ] + 𝛾𝑚𝑛 ⇒

𝑡 ′′
𝑛,𝑘[ 𝑖 ]

𝛷𝑘≠𝑚
≷

𝛷𝑘≠𝑛
𝑡 ′′
𝑚,𝑘[ 𝑖 ] + 𝛾𝑚𝑛 + (𝑒𝑚,𝑘[ 𝑖 ] − 𝑒𝑛,𝑘[ 𝑖 ]);

therefore, we can notice that the error committed when comparing {𝑡 ′′
𝑛,𝑘[ 𝑖 ], 𝑡 ′′

𝑚,𝑘[ 𝑖 ]} instead of

{𝑡 ′
𝑛,𝑘[ 𝑖 ], 𝑡 ′

𝑚,𝑘[ 𝑖 ]} is embedded in 𝑒𝑚,𝑘[ 𝑖 ] − 𝑒𝑛,𝑘[ 𝑖 ]. Let us call 𝐸𝑚𝑛,𝑘[ 𝑖 ] this detection error
due to approximations when comparing 𝐻𝑛 and 𝐻𝑛, which can be written, from Equation (5.15),

as

𝐸𝑚𝑛,𝑘[ 𝑖 ] = (�̂�𝑘[ 𝑖 ] − 𝒃)⊤�̃�𝑘[ 𝑖 ](𝜽𝑚 − 𝜽𝑛) −
1
2(𝛿2

𝑚,𝑘[ 𝑖 ] − 𝛿2
𝑛,𝑘[ 𝑖 ]). (5.16)

Recall that 𝛿2
𝑛,𝑘[ 𝑖 ] = (𝜽𝑛 − 𝒃)⊤𝑹𝑘[ 𝑖 ](𝜽𝑛 − 𝒃); since 𝑹𝑘[ 𝑖 ] = 𝜮−1

𝒘 + �̃�𝑘[ 𝑖 ], and given that
we chose a 𝒃 such that (𝜽𝑛 − 𝒃)⊤𝜮−1

𝒘 (𝜽𝑛 − 𝒃) = (𝜽𝑚 − 𝒃)⊤𝜮−1
𝒘 (𝜽𝑚 − 𝒃) ∀𝑚 ≠ 𝑛, we have

𝛿2
𝑚,𝑘[ 𝑖 ] − 𝛿2

𝑛,𝑘[ 𝑖 ] = (𝜽𝑚 − 𝒃)⊤�̃�𝑘[ 𝑖 ](𝜽𝑚 − 𝒃) − (𝜽𝑛 − 𝒃)⊤�̃�𝑘[ 𝑖 ](𝜽𝑛 − 𝒃).

Also notice that 𝛿2
𝑚,𝑘[ 𝑖 ] − 𝛿2

𝑛,𝑘[ 𝑖 ] above is a difference of two quadratic forms; hence,

𝛿2
𝑚,𝑘[ 𝑖 ] − 𝛿2

𝑛,𝑘[ 𝑖 ] = (𝜽𝑚 + 𝜽𝑛 − 2𝒃)⊤�̃�𝑘[ 𝑖 ](𝜽𝑚 − 𝜽𝑛);

thus, we can rewrite Equation (5.16) as

𝐸𝑚𝑛,𝑘[ 𝑖 ] = (�̂�𝑘[ 𝑖 ] − 𝒃)⊤�̃�𝑘[ 𝑖 ](𝜽𝑚 − 𝜽𝑛) − ( ̄𝜽𝑚𝑛 − 𝒃)⊤�̃�𝑘[ 𝑖 ](𝜽𝑚 − 𝜽𝑛), (5.17)

where ̄𝜽𝑚𝑛 = 𝜽𝑚+𝜽𝑛
2 .

It makes sense to choose 𝒃 such that it makes the expression in Equation (5.17) as close

to zero as possible when 𝐻𝑛 or 𝐻𝑚 is the true hypothesis 2. A suitable candidate for an objective

2 Note that comparing {𝑡 ′′
𝑛,𝑘[ 𝑖 ], 𝑡 ′′

𝑚,𝑘[ 𝑖 ]} when 𝐻𝜈 is true, 𝜈 ≠ 𝑚 and 𝜈 ≠ 𝑛, does not influence the detector

performance; therefore, these cases can be ignored.
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function in this case is the maximum mean square detection error E(𝐸2
𝑚𝑛,𝑘[ 𝑖 ]); in other words,

we want

𝒃∗ = arg min
𝒃

max E(𝐸2
𝑚𝑛,𝑘[ 𝑖 ]),

subject to: (𝜽𝑛 − 𝒃)⊤𝜮−1
𝒘 (𝜽𝑛 − 𝒃) = (𝜽𝑚 − 𝒃)⊤𝜮−1

𝒘 (𝜽𝑚 − 𝒃), ∀𝑚 ≠ 𝑛.

Since E(𝐸2
𝑚𝑛,𝑘[ 𝑖 ]) depends on the active hypothesis, let us consider as a mean square detection

error a weighted mean square error, given as

E(𝐸2
𝑚𝑛,𝑘[ 𝑖 ]) =

𝑝(𝐻𝑚)E(𝐸2
𝑚𝑛,𝑘[ 𝑖 ] | 𝐻𝑚) + 𝑝(𝐻𝑛)E(𝐸2

𝑚𝑛,𝑘[ 𝑖 ] | 𝐻𝑛)
𝑝(𝐻𝑚) + 𝑝(𝐻𝑛)

. (5.18)

Also, define for later use the following normalize probabilities:

𝑝′(𝐻𝑚) =
𝑝(𝐻𝑚)

𝑝(𝐻𝑚) + 𝑝(𝐻𝑛)
, and 𝑝′(𝐻𝑛) =

𝑝(𝐻𝑛)
𝑝(𝐻𝑚) + 𝑝(𝐻𝑛)

. (5.19)

In order to evaluate the expression above, we use the fact that

E(𝐸2
𝑚𝑛,𝑘[ 𝑖 ] | 𝐻𝜈) = Var(𝐸𝑚𝑛,𝑘[ 𝑖 ]) + (E(𝐸𝑚𝑛,𝑘[ 𝑖 ] | 𝐻𝜈))2 ;

thus, from Equation (5.17), we have

Var(𝐸𝑚𝑛,𝑘[ 𝑖 ]) = (𝜽𝑚 − 𝜽𝑛)⊤�̃�⊤
𝑘 [ 𝑖 ]𝑺𝑘[ 𝑖 ]�̃�𝑘[ 𝑖 ](𝜽𝑚 − 𝜽𝑛),

which does not depend on 𝒃. Next, calculate

E(𝐸𝑚𝑛,𝑘[ 𝑖 ] | 𝐻𝜈) = (𝜽𝜈 − 𝒃)⊤𝑷⊤
𝑘[ 𝑖 ]�̃�𝑘[ 𝑖 ](𝜽𝑚 − 𝜽𝑛) − ( ̄𝜽𝑚𝑛 − 𝒃)⊤�̃�𝑘[ 𝑖 ](𝜽𝑚 − 𝜽𝑛), (5.20)

where we used the fact from Equation (4.8) that

E(�̂�𝑘[ 𝑖 ] − 𝒃 | 𝐻𝜈) = E(𝑳𝑘[ 𝑖 ]𝒅0∶𝑖 − 𝑷𝑘[ 𝑖 ]𝒃 | 𝐻𝜈) = 𝑷𝑘[ 𝑖 ]𝜽𝜈 .

Let us rewrite this expression more adequately as follows:

E(𝐸𝑚𝑛,𝑘[ 𝑖 ] | 𝐻𝜈) = 𝒃⊤(�̃�𝑘[ 𝑖 ] − 𝑷⊤
𝑘[ 𝑖 ]�̃�𝑘[ 𝑖 ])(𝜽𝑚 − 𝜽𝑛) + 𝜀𝑚𝑛|𝜈[ 𝑖 ], (5.21)

where 𝜀𝑚𝑛|𝜈[ 𝑖 ] represents the terms of E(𝐸𝑚𝑛,𝑘[ 𝑖 ] | 𝐻𝜈) that do not depend on 𝒃; i.e.,

𝜀𝑚𝑛|𝜈[ 𝑖 ] = 𝜽⊤
𝜈 𝑷⊤

𝑘[ 𝑖 ]�̃�𝑘[ 𝑖 ](𝜽𝑚 − 𝜽𝑛) − ̄𝜽⊤
𝑚𝑛�̃�𝑘[ 𝑖 ](𝜽𝑚 − 𝜽𝑛). (5.22)

Let us define the vector𝝌𝑚𝑛[ 𝑖 ] = (�̃�𝑘[ 𝑖 ]−𝑷⊤
𝑘[ 𝑖 ]�̃�𝑘[ 𝑖 ])(𝜽𝑚−𝜽𝑛); thus, from Equation (5.21)

we have

(E(𝐸𝑚𝑛,𝑘[ 𝑖 ] | 𝐻𝜈))2 = (𝒃⊤𝝌𝑚𝑛[ 𝑖 ] + 𝜀𝑚𝑛|𝜈[ 𝑖 ])2

= (𝒃⊤𝝌𝑚𝑛[ 𝑖 ])2 + 2𝒃⊤𝝌𝑚𝑛[ 𝑖 ]𝜀𝑚𝑛|𝜈[ 𝑖 ] + 𝜀2
𝑚𝑛|𝜈[ 𝑖 ].
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Therefore, from Equation (5.18) and Equation (5.19), we obtain

E(𝐸2
𝑚𝑛,𝑘[ 𝑖 ]) = (𝒃⊤𝝌𝑚𝑛[ 𝑖 ])2 + Var(𝐸𝑚𝑛,𝑘[ 𝑖 ])

+ 2𝒃⊤𝝌𝑚𝑛[ 𝑖 ](𝑝′(𝐻𝑚)𝜀𝑚𝑛|𝑚[ 𝑖 ] + 𝑝′(𝐻𝑛)𝜀𝑚𝑛|𝑛[ 𝑖 ])

+ 𝑝′(𝐻𝑚)𝜀2
𝑚𝑛|𝑚[ 𝑖 ] + 𝑝′(𝐻𝑛)𝜀2

𝑚𝑛|𝑛[ 𝑖 ].

According to the CauchySchwartz inequality, we must have

∣ 𝒃⊤𝝌𝑚𝑛[ 𝑖 ] ∣ ≤ ‖ 𝒃 ‖2 ⋅ ‖ 𝝌𝑚𝑛[ 𝑖 ] ‖2 ;

thus,

E(𝐸2
𝑚𝑛,𝑘[ 𝑖 ]) ≤ ‖ 𝒃 ‖2

2 ⋅ ‖ 𝝌𝑚𝑛[ 𝑖 ] ‖2
2 + Var(𝐸𝑚𝑛,𝑘[ 𝑖 ])

+ 2 ‖ 𝒃 ‖2 ⋅ ‖ 𝝌𝑚𝑛[ 𝑖 ] ‖2 ⋅ ∣ 𝑝′(𝐻𝑚)𝜀𝑚𝑛|𝑚[ 𝑖 ] + 𝑝′(𝐻𝑛)𝜀𝑚𝑛|𝑛[ 𝑖 ] ∣

+ 𝑝′(𝐻𝑚)𝜀2
𝑚𝑛|𝑚[ 𝑖 ] + 𝑝′(𝐻𝑛)𝜀2

𝑚𝑛|𝑛[ 𝑖 ].

Let us define the function 𝐽𝑚𝑛(𝑥) for 𝑥 ∈ ℝ as follows:

𝐽𝑚𝑛(𝑥) = ‖ 𝝌𝑚𝑛[ 𝑖 ] ‖2
2 𝑥2 + Var(𝐸𝑚𝑛,𝑘[ 𝑖 ])

+ 2 ‖ 𝝌𝑚𝑛[ 𝑖 ] ‖2 ⋅ ∣ 𝑝′(𝐻𝑚)𝜀𝑚𝑛|𝑚[ 𝑖 ] + 𝑝′(𝐻𝑛)𝜀𝑚𝑛|𝑛[ 𝑖 ] ∣ 𝑥

+ 𝑝′(𝐻𝑚)𝜀2
𝑚𝑛|𝑚[ 𝑖 ] + 𝑝′(𝐻𝑛)𝜀2

𝑚𝑛|𝑛[ 𝑖 ].

Since
𝑑2

𝑑𝑥2 𝐽𝑚𝑛(𝑥) = 2 ‖ 𝝌𝑚𝑛[ 𝑖 ] ‖2
2 > 0, 𝐽𝑚𝑛(𝑥) has a minimum value which can be found by

solving
𝑑

𝑑𝑥𝐽𝑚𝑛(𝑥) = 0: thus,

2 ‖ 𝝌𝑚𝑛[ 𝑖 ] ‖2
2 𝑥 + 2 ‖ 𝝌𝑚𝑛[ 𝑖 ] ‖2 ⋅ ∣ 𝑝′(𝐻𝑚)𝜀𝑚𝑛|𝑚[ 𝑖 ] + 𝑝′(𝐻𝑛)𝜀𝑚𝑛|𝑛[ 𝑖 ] ∣ = 0

⇒ 𝑥 = −
∣ 𝑝′(𝐻𝑚)𝜀𝑚𝑛|𝑚[ 𝑖 ] + 𝑝′(𝐻𝑛)𝜀𝑚𝑛|𝑛[ 𝑖 ] ∣

‖ 𝝌𝑚𝑛[ 𝑖 ] ‖2
= 𝑥min .

Hence, 𝐽𝑚𝑛(𝑥) is nondecreasing for 𝑥 > 𝑥min ; furthermore, since 𝑥min < 0, 𝐽𝑚𝑛(𝑥) is non
decreasing for 𝑥 > 0. Thus, making 𝑥 = ‖ 𝒃 ‖2 , the new function 𝐺𝑚𝑛( 𝒃 ) = 𝐽𝑚𝑛(‖ 𝒃 ‖2) can
be minimized as 𝒃 is chosen such that ‖ 𝒃 ‖2 is minimum. Therefore, by finding a minimum ‖ 𝒃 ‖2
we are also minimizing the maximum value of E(𝐸2

𝑚𝑛,𝑘[ 𝑖 ]), since

E(𝐸2
𝑚𝑛,𝑘[ 𝑖 ]) ≤ 𝐺𝑚𝑛( 𝒃 ).

Finally, since this result does not depend on which pair of hypotheses we choose, by choosing a

𝒃 such that its norm is minimum reduces the maximum mean square error of the lowcomplexity

test in Equation (5.10). Let us state this result as a new proposition.

Proposition 13. When using the lowcomplexity dLMS test defined in Equation (5.10), in order to

minimize the maximum mean square detection error E(𝐸2
𝑚𝑛,𝑘[ 𝑖 ]) in Equation (5.18), committed

due to the approximations when comparing any pair of statistics {𝑡 ′′
𝑛,𝑘[ 𝑖 ], 𝑡 ′′

𝑚,𝑘[ 𝑖 ]} when 𝐻𝑛 or

𝐻𝑚 is the true hypothesis, we must choose a value of the initial estimate 𝒃 such that

𝒃∗ = arg min
𝒃

‖ 𝒃 ‖2 ,

subject to: (𝜽𝑛 − 𝒃)⊤𝜮−1
𝒘 (𝜽𝑛 − 𝒃) = (𝜽𝑚 − 𝒃)⊤𝜮−1

𝒘 (𝜽𝑚 − 𝒃), ∀𝑚 ≠ 𝑛.
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Avery special case happens when 𝑁 = 2 (i.e., a binary detection problem) and 𝑝(𝐻1) =
𝑝(𝐻2)3: we can show that 𝒃 = ̄𝜽12 = 1

2(𝜽1 + 𝜽2) in fact minimizes the mean square detection
error directly, not just its maximum value. In other words,

̄𝜽12 = arg min
𝒃

E(𝐸2
21,𝑘[ 𝑖 ]),

subject to: (𝜽1 − 𝒃)⊤𝜮−1
𝒘 (𝜽1 − 𝒃) = (𝜽2 − 𝒃)⊤𝜮−1

𝒘 (𝜽2 − 𝒃).

It is trivial to see that ̄𝜽12 is a solution of Equation (5.12):

(𝜽1 − 𝒃)⊤𝜮−1
𝒘 (𝜽1 − 𝒃) = (𝜽2 − 𝒃)⊤𝜮−1

𝒘 (𝜽2 − 𝒃)

⇒ (𝜽1 + 𝜽2 − 2𝒃)⊤𝜮−1
𝒘 (𝜽1 − 𝜽2) = 0.

Clearly, any vector 𝒃 = ̄𝜽12 + 𝛼𝒏 such that 𝒏⊤𝜮−1
𝒘 (𝜽1 − 𝜽2) = 0, ∀𝛼 ∈ ℝ, is also a solution.

But we are going to see that 𝛼 = 0 in fact minimizes the mean square detection error as defined

in Equation (5.18). From Equation (5.20), we have, for 𝑁 = 2 and making 𝒃 = ̄𝜽12 + 𝛼𝒏, the
following:

E(𝐸21,𝑘[ 𝑖 ] | 𝐻𝜈) = (𝜽𝜈 − ̄𝜽12 − 𝛼𝒏)⊤𝑷⊤
𝑘[ 𝑖 ]�̃�𝑘[ 𝑖 ](𝜽2 − 𝜽1) + 𝛼𝒏⊤�̃�𝑘[ 𝑖 ](𝜽2 − 𝜽1)

= (𝜽𝜈 − ̄𝜽12)⊤𝑷⊤
𝑘[ 𝑖 ]�̃�𝑘[ 𝑖 ](𝜽2 − 𝜽1)

+ 𝛼𝒏⊤(�̃�𝑘[ 𝑖 ] − 𝑷⊤
𝑘[ 𝑖 ]�̃�𝑘[ 𝑖 ])(𝜽2 − 𝜽1).

Call 𝜁𝜈,𝑘 = (𝜽𝜈 − ̄𝜽12)⊤𝑷⊤
𝑘[ 𝑖 ]�̃�𝑘[ 𝑖 ](𝜽2 − 𝜽1) and 𝜿21,𝑘 = (�̃�𝑘[ 𝑖 ] − 𝑷⊤

𝑘[ 𝑖 ]�̃�𝑘[ 𝑖 ])(𝜽2 − 𝜽1).
Thus, we have

(E(𝐸21,𝑘[ 𝑖 ] | 𝐻𝜈))2 = (𝛼𝒏⊤𝜿21,𝑘)2 + 2𝛼𝒏⊤𝜿21,𝑘𝜁𝜈,𝑘 + 𝜁2
𝜈,𝑘 ;

from Equation (5.18) and the fact that 𝑝(𝐻1) = 𝑝(𝐻2), we have

E(𝐸2
21,𝑘[ 𝑖 ]) = (𝛼𝒏⊤𝜿21,𝑘)2 + 2𝛼𝒏⊤𝜿21,𝑘(𝜁1,𝑘 + 𝜁2,𝑘) + 𝜁2

1,𝑘 + 𝜁2
2,𝑘 + Var(𝐸21,𝑘[ 𝑖 ]).

Note that 𝜁2,𝑘 = −𝜁1,𝑘 = (𝜽2 − 𝜽1)⊤𝑷⊤
𝑘[ 𝑖 ]�̃�𝑘[ 𝑖 ](𝜽2 − 𝜽1); thus, 𝜁1,𝑘 + 𝜁2,𝑘 = 0 and

E(𝐸2
21,𝑘[ 𝑖 ]) = (𝛼𝒏⊤𝜿21,𝑘)2 + 𝜁2

1,𝑘 + 𝜁2
2,𝑘 + Var(𝐸21,𝑘[ 𝑖 ]).

Therefore, the minimum value of the mean square detection error is reached for 𝛼 = 0, as we
wanted to demonstrate.

5.2.3 Case III: 𝑁 − 1 > 𝐷

In this case, we just choose a 𝒃 that minimizes Equation (5.3), since a unique solution

to the system in Equation (5.13) depends on the very particular condition where the vector on

the righthand side of Equation (5.13) is in the range space of the matrix multiplying 𝒃 in the

lefthand side.

3 In this case, the MAP detector defined in Chapter 2 reduces to what is called theMaximum Likelihood (ML)

detector, which was studied in [60].
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5.3 Stopping time

5.3.1 Offline estimation of the stopping time

Prior to an eventual deployment, we can estimate the number of iterations of the detection

algorithm to reach a desirable probability of error 𝜀—in other words, the stopping time. In fact,

this can be done without having to simulate a distributed network in its entirety: we need only to

calculate the distribution of the statistics at each time 𝑖. To do so, we use recursive versions of
Equations (3.20) and (4.19) to calculate the matrices 𝒫[ 𝑖 ] and 𝒵[ 𝑖 ], which are

𝒫[ 𝑖 ] = 𝒜(𝒴[ 𝑖 ]𝒫[ 𝑖 − 1 ] + 𝑯[ 𝑖 ]), (5.23)

𝒵[ 𝑖 ] = 𝒜(𝒴[ 𝑖 ]𝒵[ 𝑖 − 1 ]𝒴⊤[ 𝑖 ] + 𝒟[ 𝑖 ])𝒜⊤, (5.24)

recalling 𝒴[ 𝑖 ] = diag{𝒀1[ 𝑖 ], … , 𝒀𝐾[ 𝑖 ]} in (3.14), 𝑯[ 𝑖 ] = ℳ′𝒰[ 𝑗 ]𝑼[ 𝑗 ] in (4.14) and

𝒟[ 𝑖 ] = ℳ𝒰[ 𝑖 ]𝜮𝒘𝒰⊤[ 𝑖 ]ℳ⊤ in (4.19). The recursive expression of 𝒫[ 𝑖 ] in (5.23) was obtained
in Appendix B, Equation (B.4). To obtain the recursive expression of 𝒵[ 𝑖 ] in (5.24), we use the
definitions 𝒵[ 𝑖 ] = ℒ[ 𝑖 ]𝜮𝒗0∶𝑖

ℒ⊤[ 𝑖 ] and 𝜮𝒗0∶𝑖
= 𝑰𝑖+1 ⊗ 𝜮𝒘. Thus, we have

𝒵[ 𝑖 ] = [𝒜ℳ𝒰[ 𝑖 ] 𝒜 𝒴[ 𝑖 ]ℒ[ 𝑖 − 1 ]] [
𝜮𝒘 𝟎
𝟎 𝜮𝒗0∶𝑖−1

] [
(𝒜ℳ𝒰[ 𝑖 ])⊤

(𝒜 𝒴[ 𝑖 ]ℒ[ 𝑖 − 1 ])⊤]

= 𝒜ℳ𝒰[ 𝑖 ]𝜮𝒘𝒰⊤[ 𝑖 ]ℳ⊤𝒜⊤ + 𝒜 𝒴[ 𝑖 ]ℒ[ 𝑖 − 1 ]𝜮𝒗0∶𝑖−1
ℒ⊤[ 𝑖 − 1 ]𝒴⊤[ 𝑖 ]𝒜⊤

= 𝒜(𝒟[ 𝑖 ] + 𝒴[ 𝑖 ]𝒵[ 𝑖 − 1 ]𝒴⊤[ 𝑖 ])𝒜⊤.

Next, we estimate the local probabilities of error 𝜉𝑘[ 𝑖 ] by performing a Monte Carlo

simulation with 𝐿 realizations4 by which we generate samples of a pseudorandom vector whose

𝑁 entries represent the 𝑁 local statistics 𝑡 ′′[ 𝑖 ], 1 ≤ 𝑛 ≤ 𝑁, at node 𝑘. Supposing 𝐻𝑛 true, this

pseudorandom vector has a distribution given as

𝒕∼′′
𝑘 [ 𝑖 ] ∣ 𝐻𝑛 ∼ 𝒩(𝑸⊤𝑷𝑘[ 𝑖 ](𝜽𝑛 − 𝒃), 𝑸⊤𝑺𝑘[𝑖]𝑸), (5.25)

where we define 𝑸 = [ 𝒒1 … 𝒒𝑁 ], where the 𝒒𝑛 were define in Equation (5.9). To verify that

the distribution of 𝒕∼′′
𝑘 [ 𝑖 ] is correct, we start noting that, from (3.28) and (5.10), we have

E(𝑡 ′′
𝑚,𝑘[ 𝑖 ] | 𝐻𝑛) = 𝒒⊤

𝑚𝑷𝑘[ 𝑖 ](𝜽𝑛 − 𝒃),

Var(𝑡 ′′
𝑚,𝑘[ 𝑖 ]) = 𝒒⊤

𝑚𝑺𝑘[ 𝑖 ]𝒒𝑚 ,

Cov(𝑡 ′′
𝑚,𝑘[ 𝑖 ], 𝑡 ′′

𝜈,𝑘[ 𝑖 ]) = 𝒒⊤
𝑚𝑺𝑘[ 𝑖 ]𝒒𝜈 .

Define 𝒕′′
𝑘 [ 𝑖 ] = col{𝑡 ′′

1,𝑘[ 𝑖 ], … , 𝑡 ′′
𝑁,𝑘[ 𝑖 ]}. Therefore, we have

E(𝒕′
𝑘[ 𝑖 ] | 𝐻𝑛) = 𝑸⊤𝑷𝑘[ 𝑖 ](𝜽𝑛 − 𝒃),

Cov(𝒕𝑘[ 𝑖 ]) = 𝑸⊤𝑺𝑘[ 𝑖 ]𝑸,

4 For a binary hypothesis test, one can obtain the probabilities of error directly from a standard normal table since

in this case the cumulative distribution in (4.4) becomes univariate, depending only on 𝑇12,𝑘[ 𝑖 ].
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which are, as a matter of course, the expected value and variance of 𝒕∼ ′′
𝑘 [ 𝑖 ] in (5.25).

With the samples of 𝒕∼ ′′
𝑘 [ 𝑖 ] in each Monte Carlo trial, we can simulate the hypothesis tests

at each node, and then estimate the local probabilities of error 𝜉𝑘[ 𝑖 ] from the relative frequency

of incorrect detection in the total number of trials. We then compare, for each iteration 𝑖, the
maximum of the 𝐾 probabilities 𝜉𝑘[ 𝑖 ] with the desirable maximum probability of error 𝜀, and
repeat the process if that maximum is greater than 𝜀. This process can end, for example, when
max{𝜉1[ 𝑖 ], … , 𝜉𝐾[ 𝑖 ]} < 𝜀 for the first time,5 and the total number of iterations until will be the

estimate of the stopping time. The Algorithm 1 below shows in pseudocode the process just

described.

Algorithm 1 – Offline estimation of the stopping time.

Inputs: 𝜇𝑘 , 𝜎2
𝑣𝑘
, 𝒖𝑘[ 𝑖 ], {ℙ(𝐻𝑛)}𝑁

𝑛=1, 𝜽𝑛 , 𝑸, 𝒃, 𝜮𝒘 , 𝒜, 𝜀, 𝑖max , 𝐿.

Initialize 𝑖 = 0, 𝑖stop = 0, all matrices and vectors with zero entries.
while 𝑖 < 𝑖max do

𝑯𝑘 ← 𝜇𝑘𝒖𝑘[ 𝑖 ]𝒖⊤
𝑘[ 𝑖 ] for 𝑘 = 1, … , 𝐾.

𝒀𝑘 ← 𝑰𝐷 − 𝑯𝑘 for 𝑘 = 1, … , 𝐾.

𝑫𝑘 ← 𝜇𝑘𝜎2
𝑣𝑘

𝑯𝑘 for 𝑘 = 1, … , 𝐾.

𝑯 ← col{𝑯1 , … , 𝑯𝐾}, 𝒴 ← diag{𝒀1 , … , 𝒀𝐾}, 𝒟 ← diag{𝑫1 , … , 𝑫𝐾}.
𝒫 ← 𝒜(𝑯 + 𝒴𝒫). (5.23)

𝒵 ← 𝒜(𝒴𝒵𝒴 + 𝒟)𝒜⊤. (5.24)

𝒮 ← 𝒫𝜮𝒘𝒫⊤ + 𝒵. (3.23)

𝜶𝑛,𝑘 ← 𝑷𝑘(𝜽𝑛 − 𝒃) for 𝑘 = 1, … , 𝐾; 𝑛 = 1, … , 𝑁
𝜉𝑘 ← MC(𝑸, 𝑺𝑘 , {𝜶𝑛,𝑘}𝑁

𝑛=1, {ℙ(𝐻𝑛)}𝑁
𝑛=1, 𝐿) for 𝑘 = 1, … , 𝐾

if max{𝜉1, … , 𝜉𝐾} < 𝜀 then
𝑖stop ← 𝑖
break

end if

𝑖 ← 𝑖 + 1
end while

𝐼stop ←i

It is important to highlight that the desired maximum probability of error 𝜀 cannot be,
evidently, smaller than the lower bound of the probability of error of a certain network setting;

an appropriate description of how this lower bound can be estimated is given in Appendix E.

5.3.2 Tracking changes in the state of nature

As discussed in Chapter 1, this thesis does not cover the problem of detecting, as quickly

as possible, a transition between states. However, it was mentioned that a simple periodic reset

strategy could enable the tracking of this changes in state adequately for the purposes of this

5 The criterion to stop the algorithm can be different if we want, for example, that the maximum probability of

error is consistently inferior than 𝜀. For instance, we could estimate the stopping time as the iteration 𝑖 such that
it is the first time that max{𝜉1[ 𝑖 ], … , 𝜉𝐾[ 𝑖 ]} < 𝜀 uninterruptedly in a sequence of ten iterations.
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work. Conveniently, with the estimate 𝐼stop, we can devise an strategy that allows the algorithm
to track eventual changes on the state of the environment. The proposed detector, as showed,

has better performance as the step size 𝜇 is smaller; therefore, we would naturally favor slower

adaptation. However, if a change occurs during the process of diffusion, higher values of the step

size would be needed to quickly respond to such a change. Instead of falling back to the tradeoff

we discussed in the Chapter 1, we can reset the algorithm periodically, whenever it reaches the

number 𝐼stop of iterations. This guarantees that any change in state is correctly tracked as the
algorithm resets and we can keep the step size as small as we desire.6 A scenario with a change

in state during the operation of the proposed detector is simulated and the results are presented in

Chapter 6, Figure 13. Algorithm 2 below encapsulates all we have been discussing so far.

Algorithm 2 – Lowcomplexity dLMS detection algorithm with stopping time and resetting.

Inputs: 𝜇𝑘 , 𝑑𝑘[ 𝑖 ], 𝒖𝑘[ 𝑖 ], 𝛾𝑚𝑛 , 𝜽𝑛 , 𝒃, 𝜮𝒘 , 𝑨, 𝒒𝑛 (5.9), 𝐼stop
For each sensor node 𝑘 = 1, … , 𝐾 do:

while TRUE do

𝑖 ← 0, �̂�𝑘 ← 𝒃 (see Section 5.2)

while 𝑖 < 𝐼stop do
�̂�𝑘 ← dLMS(�̂�𝑘 , 𝜇𝑘 , 𝑑𝑘[ 𝑖 ], 𝒖𝑘[ 𝑖 ], 𝑨)
𝑡 ′′
𝑘,𝑛 ← (�̂�𝑘 − 𝒃)⊤𝒒𝑛 for 𝑛 = 1, … , 𝑁 (5.10)

Decide 𝐻𝑛 such that 𝑡 ′′
𝑘,𝑛 > 𝑡 ′′

𝑘,𝑚 + (𝑖 + 1)𝜇𝛾𝑚𝑛 ∀𝑚, 𝑛
end while

end while

6 To properly track the change in state, the time between two consecutive changes must be larger than 𝐼stop by a

sufficient amount.
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6 SIMULATIONS

In this chapter, we see the simulated performance of the lowcomplexity detector of

Chapter 5 (called “LCD” for short in this chapter), comparing it with the theoretical detector

from Chapter 3 (called “HCD” for “highcomplexity detector”) and with the optimal detector

under the same conditions. The performances are tested under the worstcase connectivity (an

open ring) to show the real potential of the proposed detector. Additional simulations are also

presented, such as the effect of the number of Monte Carlo trials on the bias of the maximum

probability of error, and a sudden change of state and the application of the resetting strategy,

discussed in Subsection 5.3.2. We also see simulations showing the effect of varying the initial

estimate and a discussion about an alternative choice to the one recommended in Proposition 13

that can improve the detection performance. Finally, the chapter concludes with simulations

showing the effect of the conditioning number of the covariance matrix of the state vector 𝒘.

6.1 Simulation 1: network with 10 nodes
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Figure 6 – Topology and network parameters used in Simulation 1.

Note: (a) Open ring topology. (b) Values of network parameters for each node.

In order to illustrate the results in this thesis, first a distributed detector is simulated in a

network composed of 𝐾 = 10 nodes, connected in a form of a open ring (see Figure 6a); i.e., the

least connected topology possible, chosen as such to simulate a worst case scenario. Each node

must decide among 𝑁 = 6 hypotheses about the environment state; thus, we have the following



76 Chapter 6. Simulations

possibilities for the vector mean 𝜽𝑛 ∈ ℝ5, arranged columnwise:

[𝜽1 𝜽2 𝜽3 𝜽4 𝜽5 𝜽6] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0.16317 1.22914 0.95917 0.76734 −0.33855 0.45338
0.62918 −0.36314 −0.20530 0.54310 1.84345 2.31907
1.31436 0.95557 2.05600 1.25648 1.04744 0.90886
0.31290 0.68000 0.43832 0.95900 0.58317 −0.29710
0.27186 1.73930 1.73293 1.58458 0.95732 1.05079

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

To obtain a positive definite covariance matrix 𝜮𝒘 , we generated a matrix 𝑴 whose

elements were each randomly selected form a normal random variable in the interval with zero

mean and standard deviation 1, and calculated as

𝜮𝒘 = 𝜎2
𝒘(𝑴𝑴⊤ + 𝐷𝑰𝐷), 𝑴 ∼ 𝒩(𝟎, 𝑰𝐷) (6.1)

where 𝜎2
𝒘 = 10−2 is a constant. The term 𝐷𝑰𝐷 guarantees a covariance matrix with a low condi

tioning number (we discuss this issue further in Section 6.4). The following prior probabilities

were also randomly selected, using a uniform distribution in the interval [0, 1] and appropriately
normalized to sum to one:

{ℙ(𝐻1) ℙ(𝐻2) ℙ(𝐻3) ℙ(𝐻4) ℙ(𝐻5) ℙ(𝐻6)} =

{0.04753 0.18643 0.24122 0.26087 0.03105 0.23289} .

To obtain regressors 𝒖𝑘[ 𝑖 ] ∈ ℝ5, modeled as realizations of 𝒖∼ 𝑘[ 𝑖 ] ∼ 𝒩(𝟎, 𝜮𝒖𝑘
) with

full covariance matrices 𝜮𝒖𝑘
, we generate 𝐾 = 10 signals using first order Markov processes

with power 𝜎2
𝒖𝑘

and time correlation 𝛼𝑘 . The expression for the firstorder autoregressive filter,

for each node 𝑘, is given as1

𝐻𝑘(𝑧) =
√𝜎2

𝒖𝑘
(1 − 𝛼2

𝑘)

1 − 𝛼𝑘𝑧−1 .

The noise in the measurements was modeled as white Gaussian noise with power 𝜎2
𝑣𝑘
.

The values of 𝜎2
𝒖𝑘
, 𝛼𝑘 and 𝜎2

𝑣𝑘
were obtained randomly and can be seen in the graph in Figure 6b.

The weights 𝑎ℓ𝑘 in Equation (3.3) are obtained using the Metropolis rule, which is given as [103]

⎧
{
⎨
{
⎩

𝑎ℓ𝑘 = 1
max(𝑛𝑘,𝑛ℓ) , if nodes 𝑘 and ℓ (𝑘 ≠ ℓ) are linked,

𝑎ℓ𝑘 = 0, if nodes 𝑘 and ℓ (𝑘 ≠ ℓ) are not linked,
𝑎ℓ𝑘 = 1 − ∑𝐾

𝑚=1,𝑚≠𝑘 𝑎𝑚𝑘 , if 𝑘 = ℓ,

in which 𝑛𝑘 and 𝑛ℓ are the number of connections of nodes 𝑘 and ℓ. This composition results
in 𝑨 = (𝑎ℓ𝑘) being a double stochastic matrix, although this is not a necessary condition. The
initial estimate 𝒃 = 𝒘[−1] was obtained by solving the corresponding system in Equation (5.13)

with 𝑁 − 1 = 5 equations and 𝐷 = 5 unknowns.

1 Firstorder autoregressive models are usually used, among other applications, to model certain communication

channels and to generate signals with known correlation properties in simulations of adaptive filtering algorithms

[98, 102]. We used them in order to avoid overly simple uncorrelated regressors.
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Figure 7 – log10(𝜉max[ 𝑖 ]) for different values of the step size for Simulation 1.

Note: The figure shows the logscaled maximum probabilities of error of the dLMS LowComplexity Detector

(LCD, thick curves), and the ideal HighComplexity Detector (HCD, thin curves). We can see the performance

for three different values of 𝜇: 10−3, 10−4 and 10−5, and also the asymptotic performance of the optimal

detector described in Equation (4.37) (green curve).

In Figure 7, we can see the log of the maximum probability of error among the 𝐾 = 10
nodes in the network for two different detectors: the Low Complexity Detector (LCD, thick

curves) which is the detector we developed in Chapter 5, Equation (5.10), and what we call High

Complexity Detector (HCD, thin curves), which simulates the performance of an ideal detector

for the dLMS as presented in Chapter 3 and as given in Equation (5.1); i.e., it is calculated

without taking any approximation. For both detectors, we estimated the probabilities of error

using Monte Carlo simulations with 104 realizations. We simulated these two detectors for 3
different values for 𝜇:

𝜇 ∈ {10−3, 10−4, 10−5}.

As we can see from the results in Figure 7, for 𝜇 = 10−3, the LCD (blue curve) does not

show a good performance, since it has the highest probability of error of all the other possible

configurations. However, as we reduce 𝜇 tenfold, the performance improves (red curve), as

expected from our previous discussion about how a smaller value of 𝜇 leads to better performance,

since in this way we better approximate the performance of the theoretical HCD. Nevertheless,

the LCD does not reach the performance of the HCD, since the former does not attain as low

probabilities of error as the latter; also, as time 𝑖 increases, the performance worsens: this is due
to the effect of high order terms of 𝒫[ 𝑖 ] and 𝒵[ 𝑖 ] (see equations (4.13) and (4.20)). In more

precise words, the value of 𝜇 does not provide a 𝐼sup sufficiently large for the approximations of
Section 4.4 to be valid. But, for 𝜇 = 10−5 (yellow curve), we can see that the performance of the
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LCD becomes virtually the same as the HCD performance for sufficient large 𝑖. Therefore, as
we said earlier, as we reduce the value of the step size, we extend the time period in which our

approximations are valid, and simultaneously we obtain a performance that approaches that of

the HCD. Note that the LCD still lags the HCD in the initial iterations (𝑖 < ∼150) as an effect of
approximating matrices 𝑸𝑘[ 𝑖 ] and 𝑹𝑘[ 𝑖 ] in Equation (5.8) and also [𝑨𝑖]ℓ𝑘 ≈ 𝝅ℓ, since both

require a sufficiently large 𝑖 (more precisely, 𝑖 > 𝐼inf), as argued in sections 4.4 and 5.1. However,
for 𝑖 > 150, the performance is close to the minimum probability of error possible in this network

setting (green line), calculated by simulating the asymptotic performance of an optimal detector

(see Appendix E). This fact confirms what we argued in Section 4.4: the HCD approximates the

optimal detector given in Equation (4.37) as 𝜇 is chosen smaller, despite the fact that the network

is poorly connected, which indicates the robustness of our approximations. Furthermore, since

the LCD matches the HCD, and despite the small values of 𝜇, the lowcomplexity detector can
also closely match the optimal detector.

6.2 Simulation 2: network with 20 nodes
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Figure 8 – Values of network parameters for Simulation 2.

A new simulation was conducted using 𝐾 = 20 nodes in the open ring topology as in

Simulation 1. In this new setting the value of 𝜎2
𝒘 in Equation (6.1) was changed to 1.9 ⋅ 10−4,

and also those of 𝜎2
𝑣𝑘
, 𝜎2

𝒖𝑘
and 𝛼𝑘 (see Figure 8). This simulation used 105 Monte Carlo trials to

estimate the probabilities of error for both HCD and LCD, using 4 different values for 𝜇:

𝜇 ∈ {10−3, 3 ⋅ 10−4, 3 ⋅ 10−5, 3 ⋅ 10−6}.

Also, it includes the performance of the optimal detector for each 𝑖—details of how it can be

estimated can be seen in Appendix E. This time, we have the following 𝑁 = 6 possibilities for



6.2. Simulation 2: network with 20 nodes 79

the vector mean 𝜽𝑛 ∈ ℝ5, arranged columnwise:

[𝜽1 𝜽2 𝜽3 𝜽4 𝜽5 𝜽6] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0.41025 0.38319 0.91008 0.51673 0.55084 0.57463
1.09786 0.90515 1.13891 1.17009 1.22394 1.16104
0.30546 0.26871 0.45478 0.63032 0.32843 0.04282

−0.07999 0.06362 −0.43254 −0.15304 0.14816 0.28056
0.09365 0.13203 −0.27248 −0.28267 −0.46275 −0.51267

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.
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Figure 9 – log10(𝜉max[ 𝑖 ]) for different values of the step size for Simulation 2.

Note: The figure shows the logscaled maximum probabilities of error of LCD (thick curves) and HCD (thin dashed

curves) in a 20nodes open ring topology for 𝜇 ∈ {10−3, 3 ⋅ 10−4, 3 ⋅ 10−5, 3 ⋅ 10−6}, and also the

performance of the optimal detector described in Equation (4.37) (purple curve).

As we examine the curves in Figure 9, we observe that the HCD and the LCD exhibit

similar behavior in terms of the maximum probability of error. Some noteworthy observations

can be made from these results. Firstly, for relatively large values of 𝜇, the HCD reaches a

certain level of probability of error and seems stationary. This happens because large values of 𝜇
allow the dLMS filters to reach the steady state in estimation. As we discussed earlier, the HCD

approximates the optimal performance when kept in a transient state by means of small values

of 𝜇. This phenomenon was not apparent in Simulation 1 due the relatively high value of 𝜎2
𝒘 ,

since it sets the general level of “uncertainty” about the state vector 𝒘 (see Equation (6.1)). As

shown inAppendix E, the asymptotic probability of the optimal detector significantly depends on



80 Chapter 6. Simulations

𝜮𝒘 , and larger entries in 𝜮𝒘 lead to worse asymptotic performance due to a more challenging

discrimination among the possible 𝒘. This implies that as 𝜎2
𝒘 increases, the asymptotic error

probability also increases, and if this lower bound is sufficiently high, we may not observe the

steady state effect of the dLMS estimator on the HCD probability of error. However, the use of

substantially smaller 𝜎2
𝒘 in this simulation allowed us to observe this phenomenon and also note

that the steadystate probability of error becomes smaller with smaller values of 𝜇.

Additionally, comparing with the results in Figure 7, the maximum probabilities of error

in Figure 9 appear to reach a state where the difference with respect to the optimal performance

is notably larger. Two reasons contribute to this observation. Firstly, the open ring topology poses

challenges in the dissemination of information among nodes as the number of sensors increases.

Recall that a condition for the HCD to approximate the optimal performance is that the network

is not significantly different from a totally connected topology after several iterations of the

dLMS. However, in an open ring topology, a node with the worst performance among all receives

less information from other nodes, which could improve its decision quality. Consequently, the

maximum probability of error tends to increase in this scenario. However, Figure 10 reveals that

the average probability of error

̄𝜉[ 𝑖 ] =
1
𝐾

𝐾
∑
𝑘=1

𝜉𝑘[ 𝑖 ]

is not significantly different from the optimal detector, suggesting that, on average, the open ring

can still be approximated as a totally connected network.

Another factor contributing to the greater difference between the maximum probability of

error and the optimal performance for larger open rings is the bias introduced by the finite number

of Monte Carlo trials. As the number of nodes increases, the likelihood of a node performing

exceptionally poorly in the trials increases. Consequently, when selecting the maxima for each

iteration, these extreme performances contribute to the increased discrepancy. To validate this

observation, we repeated Simulation 2 for the LCD with 𝜇 = 3 ⋅ 10−6 using 𝐿 = 106 realizations

of Monte Carlo trials, a tenfold increase in the number of realizations. As shown in Figure 11,

the performance appears to improve for lower probabilities with more realizations. On the other

hand, Figure 12, comparing the mean probability of error for the same simulations, demonstrates

that the performance does not change significantly in the same region of lower probabilities.

This leads us to conclude that the bias incurred by the number of Monte Carlo trials impacts the

maximum probabilities more significantly than the mean probabilities.

Finally, to demonstrate the effectiveness of the reset strategy discussed in Section 5.3,

a change in the active hypotheses (state of nature) was insert during the simulation at iteration

𝑖 = 200. Figure 13 displays the performance curves of the LCD, showing a significant impact
on the performance of the detector after the change, with the maximum probability of error

remaining high as time progresses. On the other hand, by applying the reset strategy at a specific

point (in the simulation, at 𝑖 = 𝐼stop = 250), the performance of the detector behaves similarly as
the initial iterations, exhibiting the characteristic decay in the maximum probability of error and
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Figure 10 – log10( ̄𝜉[ 𝑖 ]) for different values of the step size for Simulation 2.

Note: The figure shows the logscaled average probabilities of error of LCD (thick curves) and HCD (thin dashed

curves) in a 20nodes open ring topology for 𝜇 ∈ {10−3, 3 ⋅ 10−4, 3 ⋅ 10−5, 3 ⋅ 10−6}, and also the

performance of the optimal detector described in Equation (4.37) (purple curve).
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Figure 11 – log10(𝜉max[ 𝑖 ]) varying the number of Monte Carlo trials.

Note: The figure shows the logscaled maximum probabilities of error of LCD (thick curves) for 𝜇 = 3 ⋅ 10−6} for

105 and 106 realizations of Monte Carlo trials to estimate the probabilities, and also the performance of the

optimal detector described in Equation (4.37) (purple curve).
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Figure 12 – log10( ̄𝜉[ 𝑖 ]) varying the number of Monte Carlo trials.

Note: The figure shows the logscaled average probabilities of error of LCD (thick curves) for 𝜇 = 3 ⋅ 10−6} for

105 and 106 realizations of Monte Carlo trials to estimate the probabilities, and also the performance of the

optimal detector described in Equation (4.37) (purple curve).

regaining the previous level of performance. Therefore, this indicates that a simple reset strategy

for the detection algorithm can effectively track eventual changes in the state of nature.
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Figure 13 – log10(𝜉max[ 𝑖 ]) when resetting the detector after a change in the state of nature

Note: The figure shows the logscaled maximum probabilities of error of LCD, showing the performance when the

detection algorithm is reset (𝑖 = 𝐼stop = 250) after a change in the state of nature at 𝑖 = 200 and when there

is no reset.
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6.3 Simulation 3: varying the initial estimate 𝒃

As we discussed in Section 5.2, when the dimension 𝐷 of the state vector 𝒘𝑛 and

the number of hypotheses 𝑁 are such that 𝑁 − 1 < 𝐷, there can be infinite choices for the

initial estimate 𝒃 that solves the linear system in Equation (5.13). As stated in Proposition 13, a

reasonable choice for 𝒃 is

𝒃∗ = arg min
𝒃

‖ 𝒃 ‖2 ,

subject to: (𝜽𝑛 − 𝒃)⊤𝜮−1
𝒘 (𝜽𝑛 − 𝒃) = (𝜽𝑚 − 𝒃)⊤𝜮−1

𝒘 (𝜽𝑚 − 𝒃), ∀𝑚 ≠ 𝑛. (6.2)

To show the effect of choosing different values of 𝒃 with different norms, the same open ring

network with 𝐾 = 20 nodes and the same network parameters given in Figure 8 was simulated,

with 𝑁 = 𝐷 = 6 and the following values of the parameters:

[𝜽1 𝜽2 𝜽3 𝜽4 𝜽5 𝜽6] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.11949 0.11899 −0.06096 −0.08742 0.08657 −0.47078
−0.50881 −0.04039 −0.13411 0.15146 −0.53324 −0.29274

0.80704 0.95676 0.73766 0.64996 1.11694 1.14088
0.37673 0.16697 0.33704 0.34582 0.53080 0.53003
0.82207 0.62328 0.57793 0.78833 0.36003 0.89798
0.90127 0.42503 0.89978 0.27165 0.59004 0.24073

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The step size 𝜇 was set at 3 ⋅ 10−6; all the other parameter settings were kept as presented in

Section 6.2. The initial estimate 𝒃 was chosen as follows:

𝒃 = 𝒃∗ + 𝛼𝒏 such that
⎡
⎢⎢
⎣

(𝜽1 − 𝜽𝑛)⊤

⋮
(𝜽𝑁 − 𝜽𝑛)⊤

⎤
⎥⎥
⎦

𝜮−1
𝒘 𝒏 = 𝟎, 𝛼 ∈ ℝ. (6.3)

in other words, 𝒏 is in the null space (kernel) of linear system in Equation (5.13), whose basis is

given as

{𝒏 ∣ 𝒏 = [−0.38005 0.32875 0.28043 0.64025 −0.46097 0.21547]
⊤

}

(note that the null space has dimension 1 since 𝑁 = 𝐷). And the initial estimate with least norm

is

𝒃∗ = [−0.61067 −0.36597 0.74963 0.09063 0.27763 0.33521]
⊤

.

We can see in Figure 14 the different detection performances of the LCD in terms of the maximum

probability of error in the network for 𝛼 ∈ {−1, −0.2, −0.1, 0, 0.1, 1}. The corresponding
resulting norms of 𝒃∗ + 𝛼𝒏 are

{1.50548, 1.14301, 1.12981, 1.12537, 1.12981, 1.50548} .
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Figure 14 – log10(𝜉max[ 𝑖 ]) for different initial estimates for Simulation 3.

Note: The figure shows the logscaled maximum probabilities of error of LCD in a 20nodes open ring topology for
𝜇 = 3 ⋅ 10−6, using different values for the initial estimate 𝒃 as described in Equation (6.3). The performance

of the HCD with 𝒃 = 𝒃∗ was included for reference.

The performance of the HCD with 𝒃 = 𝒃∗ was included for reference, but the reader must recall

that the HCD does not have a performance that changes with the choice of 𝒃.

As we examine the performance curves in Figure 15, it is evident that the worst detector

performances correspond to 𝒃with larger norms (thinner gray curves), while the best performances
correspond to smaller norms, consistent with our discussion in Section 5.2. However, interestingly,

the best performance is not achieved by the detector with 𝒃 = 𝒃∗ (thick green curve) having

the least norm, but rather by choosing 𝒃 = 𝒃∗ − 0.1𝒏 (thick purple curve). This phenomenon

is not surprising, as the choice of 𝒃 that minimizes the maximum quadratic detection error due

to approximations, as defined in Equation (5.16), may not necessarily minimize the quadratic

error per se. In fact, finding the best initial value for the detection problem in this thesis remains

an open matter, except for the special case when 𝑁 = 2 and 𝑝(𝐻1) = 𝑝(𝐻2), as shown in

Section 5.2. In this case, ̄𝜽12 = 𝜽1+𝜽2
2 effectively minimizes the quadratic detection error due to

approximations.

To explore this further, we considered the strategy of choosing an initial estimate 𝒃 that

minimizes the distance of 𝒃 from the mean value of the expected vector means values, i.e.

̄𝜽 =
𝜽1 + 𝜽2 + ⋯ + 𝜽𝑁

𝑁 .

This choice was motivated by the observation that sometimes the overall detection performance
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Figure 15 – log10(𝜉max[ 𝑖 ]) for two different strategies for choosing the initial estimate

Note: The figure shows a sequence of 20 different simulations comparing the maximum probability of error of

two initialization strategies: least norm Equation (6.2) and closest to the mean Equation (6.4), and varying

𝜎2
𝑣𝑘
, 𝜎2

𝒖𝑘
, 𝛼𝑘, {𝜽𝑛}𝑁

𝑛=1 , and 𝜮𝒘 each time, keeping the 𝐾 = 20 nodes in an open ring topology and

all the other network settings of the simulation in Section 6.2. In each simulation, the blue curve represents

the performance of the LCD for the strategy in Equation (6.2) (least norm), and the red one represents the

performance for the strategy in Equation (6.4) (closest to the mean).

can be improved by selecting an initial estimate that is closer to the mean value. To formalize
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this approach, we choose 𝒃∗ as the solution to the following optimization problem:

𝒃∗ = arg min
𝒃

∥ 𝒃 − ̄𝜽 ∥2 ,

subject to: (𝜽𝑛 − 𝒃)⊤𝜮−1
𝒘 (𝜽𝑛 − 𝒃) = (𝜽𝑚 − 𝒃)⊤𝜮−1

𝒘 (𝜽𝑚 − 𝒃), ∀𝑚 ≠ 𝑛. (6.4)

To evaluate the effectiveness of this strategy, we conducted a sequence of 20 different simulations,

comparing the performance in terms of the maximum probability of error, of the least norm

strategy in Equation (6.2) and the closest to the mean strategy in Equation (6.4). Each simulation

varied the network parameters 𝜎2
𝑣𝑘
, 𝜎2

𝒖𝑘
, and 𝛼𝑘, the vector means {𝜽𝑛}𝑁

𝑛=1, and the covariance

matrix 𝜮𝒘, while maintaining the 𝐾 = 20 nodes in an open ring topology and all other network

settings as in Simulation 2. In each simulation result, the blue curve represents the performance

of the LCD for 𝒃 chosen with the least norm, and the red curve represents the performance for 𝒃
chosen as the closest to the mean.

The results in Figure 15 demonstrate that there are instances where the closest to the mean

strategy outperforms the least norm strategy for the initial iterations of the algorithm (results 1,

2, 5, 7, 9, 10, 11, 12, 14, 16, 18, and 20) In other instances, there is no significant difference in

performance between the two strategies. This intriguing finding suggests that there may be an

interplay between these two constraints on the choice of 𝒃, warranting further investigation in
future research.

The choice of 𝒃 with the least norm was initially intuitive, as argued in Section 5.2. On the

other hand, the closest to the mean strategy has an intuitive interpretation, as it forces the initial

estimate to be close to the potential “answers” to the detection problem (i.e., the expected values

of the current 𝒘𝑛). This approach helps prevent any of the norms ‖ 𝒃 − 𝜽𝑛 ‖2, 1 ≤ 𝑛 ≤ 𝑁, from

being excessively large, which could otherwise amplify the detection error due to approximations.

While there remains a need for further investigation, these findings provide valuable insights

into the impact of different strategies for initializing the detection algorithm.

6.4 Simulation 4: the effect of the conditioning number of 𝜮𝒘

A high conditioning number2 of the covariance matrix 𝜮𝒘 can impact significantly

the performance of the LCD. To investigate this effect, let us vary the term that controls the

conditioning number in Equation (6.1); i.e., let us vary 𝛼 in

𝜮𝒘 = 𝜎2
𝒘(𝑴𝑴⊤ + 𝛼𝑰𝐷), 𝛼 ∈ ℝ.

For 𝛼 = 0, 1, … , 5, we have the following conditioning numbers:

{4.662, 2.968, 2.345, 2.022, 1.824} .
2 The conditioning number of a matrix is defined as the ratio of the largest to the smallest eigenvalue of the matrix,

and provides a measure of its numerical stability.
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All the other parameters were kept as used in Simulation 2, with 𝜇 = 3 ⋅ 10−6 and 𝒃 = 𝒃∗

(least norm). As shown in Figure 16, lower values of 𝛼 (corresponding to higher conditioning

numbers) caused the performance of the LCD to deteriorate significantly. This phenomenon can

be attributed to the fact that matrices with high conditioning numbers are numerically unstable,

in the sense that even tiny deviations resulting from the approximations made in Chapter 5 can

be greatly amplified by such matrices, leading to a worsening of performance.
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Figure 16 – log10(𝜉max[ 𝑖 ]) for different conditioning numbers of 𝜮𝒘 for Simulation 4.

Note: The figure shows a sequence of simulations to observe the effect of the conditioning number of the covariance

matrix 𝜮𝒘 of the state vector. The blue curves are the maximum probability of error of the LCD, and the red

ones that of the HCD. The network setting is the same as Simulation 2, with 𝜇 = 3 ⋅ 10−6 and 𝒃 = 𝒃∗.

Although this effect may appear to impose limitations on the use of the LCD, it is

essential to consider that a poorly conditioned 𝜮𝒘 indicates the presence of an eigenvalue close

to zero. Consequently, there exists a subspace of ℝ𝐷 given by the corresponding eigenvector
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where the state vector process 𝒘∼ 𝑛 is nearly deterministic. Therefore, it is possible to incorporate

this understanding into the problem modeling and apply some form of dimension reduction to

formulate the detection problem in ℝ𝐷−1. By removing the eigenvalue closest to zero from the

original covariance matrix, the new matrix in ℝ𝐷−1 will have a lower conditioning number,

potentially leading to improved numerical stability and overall performance.
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7 CONCLUSION, REMARKSAND NEXT STEPS

This doctoral thesis fulfilled its main objective, which was the development of a low

complexity detection algorithm for wireless networks with a detailed theoretical analysis encom

passing its most outstanding feature, namely a performance in terms of probability of error that

better approximates an optimal detector by means of a slower learning rate of the estimation

algorithm at the core of the distributed routine. A similar result for a much simpler setting was

achieved during my master’s degree, as mentioned in the Introduction, which served as the

motivation to this doctoral thesis. Therefore, this result is also an extension to a much more

general situation.

The detector’s lowcomplexity, discussed in detail in Chapter 5, makes it suitable for

distributed smart sensor networks, such as those employed in IoT networks, where low energy

consumption is fundamental to its feasibility and practical use. The estimation algorithm used is

the dLMS, which allows for the exploitation of its distributed nature to share information across

the network, resulting in a more robust detection routine.

Alongside the steps for the formulation of a feasible and lowcomplexity detector (LCD),

an ideal high complexity dLMS detector (HCD) that does not consider any physical limitations

such as energy, time, computational power, etc., was also developed to make performance

comparisons and better explain the theoretical results. The detector shows great generality by

encompassing detection problems with multiple possible outcomes with any values of the prior

probabilities, also considering uncertainties in the state vector which represents the different

hypotheses.

The main contribution of this thesis is proving theoretically that this lowcomplexity

detector has a performance that can be made very close to the performance of both the ideal

HCD and the optimal detectors by means of smaller choices of the LMS step size, without

damaging or penalizing the decay rate of the probability of error even in settings with poorly

connected networks.As shown, the performance of the detector (𝑖) is independent of the particular
value of the step size when it is sufficiently small and (𝑖𝑖) better approximates the asymptotic
performance of the optimal detector during a finite time interval, which can be made as long

as desired by smaller choices of the step size; therefore, by slowing the learning speed of the

estimation algorithm. In other words, this thesis showed that, at least in this so unexpected a

scenario, the Tortoise really beats the Hare as Aesop so aptly ventured to say in his classic fable.

As discussed, this thesis provides some interesting potential extensions for future work,

mainly a further investigation on the effect of the initial estimate on the first iterations of the

detection algorithm. In addition to that, other interesting extensions would be (𝑖) the expansion
of the results presented here to the classic NeymanPearson detection formulation, (𝑖𝑖) the
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estimation of the probability of error for a class of regressors rather than a specific observed

one, (𝑖𝑖𝑖) strategies for scenarios where it is not possible to obtain the network statistics such
as the noise powers, and possibly (𝑖𝑣) a formulation for nonGaussian signals. Other possible
extensions are (𝑣) the use of algorithm other than the dLMS, (𝑣𝑖) the use of different sets of states
of nature for different subsets of the network, and (𝑣𝑖𝑖) a study on the effect of varying the length
in bits of the data.



91

REFERENCES

1 POTTIE, G. J.; KAISER, W. J. Wireless integrated network sensors. Communications of

the ACM, ACM New York, NY, USA, v. 43, n. 5, p. 51–58, 2000.

2 AKYILDIZ, I. F. et al. A survey on sensor networks. IEEE Communications Magazine,

v. 40, n. 8, p. 102–114, Aug. 2002. ISSN 15581896. DOI:

10.1109/MCOM.2002.1024422.

3 BULT, K. et al. Low power systems for wireless microsensors. In: PROCEEDINGS of

1996 International Symposium on Low Power Electronics and Design. 1996. P. 17–21.

DOI: 10.1109/LPE.1996.542724.

4 ASADA, G. et al. Wireless integrated network sensors: Low power systems on a chip. In:

PROCEEDINGS of the 24th European SolidState Circuits Conference. 1998. P. 9–16.

DOI: 10.1109/ESSCIR.1998.186200.

5 ESTRIN, D. et al. Instrumenting the world with wireless sensor networks. In:

PROC. 2001 IEEE Int Conf. Acoust., Speech Signal Process. (ICASSP). 2001. v. 4,

p. 2033–2036. DOI: 10.1109/ICASSP.2001.940390.

6 RASHID, B.; REHMANI, M. H. Applications of wireless sensor networks for urban areas:

A survey. Journal of Network and Computer Applications, v. 60, p. 192–219, 2016.

ISSN 10848045. DOI: https://doi.org/10.1016/j.jnca.2015.09.008.

7 JINO RAMSON, S. R.; MONI, D. J. Applications of wireless sensor networks —A

survey. In: 2017 International Conference on Innovations in Electrical, Electronics,

Instrumentation and Media Technology (ICEEIMT). 2017. P. 325–329. DOI:

10.1109/ICIEEIMT.2017.8116858.

8 PULE, M.; YAHYA, A.; CHUMA, J. Wireless sensor networks: A survey on monitoring

water quality. Journal of Applied Research and Technology, v. 15, n. 6, p. 562–570,

2017. ISSN 16656423. DOI: 10.1016/j.jart.2017.07.004.

9 K. KHEDO, K.; PERSEEDOSS, R.; MUNGUR, A. AWireless Sensor Network Air

Pollution Monitoring System. International Journal of Wireless and Mobile Networks,

Academy and Industry Research Collaboration Center (AIRCC), v. 2, n. 2, p. 31–45, May

2010. ISSN 09754679. DOI: 10.5121/ijwmn.2010.2203.

10 VIKRAM, R. et al. EEFFL: energy efficient data forwarding for forest fire detection using

localization technique in wireless sensor network.Wireless Networks, v. 26, n. 7,

p. 5177–5205, Oct. 2020. ISSN 15728196. DOI: 10.1007/s11276020023931.

11 SALHI, L. et al. Early Detection System for Gas Leakage and Fire in Smart Home Using

Machine Learning. In: 2019 IEEE International Conference on Consumer Electronics

(ICCE). 2019. P. 1–6. DOI: 10.1109/ICCE.2019.8661990.



92 References

12 MUDULI, L.; MISHRA, D. P.; JANA, P. K. Application of wireless sensor network for

environmental monitoring in underground coal mines: A systematic review. Journal of

Network and Computer Applications, v. 106, p. 48–67, 2018. ISSN 1084–8045. DOI:

10.1016/j.jnca.2017.12.022.

13 MOURTZIS, D.; VLACHOU, E. A cloudbased cyberphysical system for adaptive

shopfloor scheduling and conditionbased maintenance. Journal of Manufacturing

Systems, v. 47, p. 179–198, 2018. ISSN 02786125. DOI: 10.1016/j.jmsy.2018.05.008.

14 HUANG, Q.; MAO, C. Occupancy Estimation in Smart Building Using Hybrid CO2/light

Wireless Sensor Network. Journal of Applied Sciences and Arts, v. 1, n. 2, 2016.

Available from: <https://opensiuc.lib.siu.edu/jasa/vol1/iss2/5>.

15 LU, W. et al. Collaborative Energy and Information Transfer in Green Wireless Sensor

Networks for Smart Cities. IEEE Transactions on Industrial Informatics, v. 14, n. 4,

p. 1585–1593, 2018. DOI: 10.1109/TII.2017.2777846.

16 DEY, N. et al. Developing residential wireless sensor networks for ECG healthcare

monitoring. IEEE Transactions on Consumer Electronics, v. 63, n. 4, p. 442–449, 2017.

DOI: 10.1109/TCE.2017.015063.

17 KADIRAVAN, D. et al. Metaheuristic Clustering Protocol for Healthcare Data Collection

in Mobile Wireless Multimedia Sensor Networks. Computers, Materials and Continua,

v. 66, p. 3215–3231, Jan. 2021. DOI: 10.32604/cmc.2021.013034.

18 GHOSH, K. et al. Intrusion Detection at International Borders and Large Military

Barracks with Multisink Wireless Sensor Networks: An Energy Efficient Solution.

Wireless Pers Commun, v. 98, p. 1083–1101, 2018. ISSN 09296212. DOI:

10.1007/s1127701749095.

19 KUMAR, S. A.; ILANGO, P. The Impact of Wireless Sensor Network in the Field of

Precision Agriculture: A Review.Wireless Personal Communications, v. 98, n. 1,

p. 685–698, 2018. ISSN 1572–834X. DOI: 10.1007/s112770174890z.

20 MAHBUB, M. A smart farming concept based on smart embedded electronics, internet of

things and wireless sensor network. Internet of Things, v. 9, p. 100161, 2020. ISSN

2542–6605. DOI: 10.1016/j.iot.2020.100161.

21 RAHAMAN, M. M.; AZHARUDDIN, M. Wireless sensor networks in agriculture

through machine learning: A survey. Computers and Electronics in Agriculture, v. 197,

p. 106928, 2022. ISSN 01681699. DOI: https://doi.org/10.1016/j.compag.2022.106928.

Available from:

<https://www.sciencedirect.com/science/article/pii/S0168169922002459>.

22 PASCALE, A. et al. Wireless sensor networks for traffic management and road safety.

IET Intelligent Transport Systems, v. 6, n. 1, p. 67–77, 2012. DOI:

10.1049/ietits.2010.0129.



References 93

23 ABDELHAQ, M. F.; SALMAN, A. Wireless Sensor Network for Traffic Monitoring. In:

2020 International Conference on Promising Electronic Technologies (ICPET). 2020.

P. 16–21. DOI: 10.1109/ICPET51420.2020.00012.

24 TALAMPAS, M. C. R. Wireless sensor networks for intelligent transportation applications:

A survey. Industrial Wireless Sensor Networks, CRC Press, p. 47–77, 2017.

25 HOLFELD, B. et al. Wireless Communication for Factory Automation: an opportunity for

LTE and 5G systems. IEEE Communications Magazine, v. 54, n. 6, p. 36–43, 2016.

DOI: 10.1109/MCOM.2016.7497764.

26 CANDELL, R.; KASHEF, M. Industrial wireless: Problem space, success considerations,

technologies, and future direction. In: 2017 Resilience Week (RWS). 2017. P. 133–139.

DOI: 10.1109/RWEEK.2017.8088661.

27 VERAAMARO, R.; ANGELES, M. E. R.; LUVIANOJUAREZ, A. Design and Analysis

of Wireless Sensor Networks for Animal Tracking in Large Monitoring Polar Regions

Using PhaseType Distributions and Single Sensor Model. IEEEAccess, v. 7,

p. 45911–45929, 2019. DOI: 10.1109/ACCESS.2019.2908308.

28 KIM DONGSEONGAND TRANDANG, H. Wireless Sensor Networks for Industrial

Applications. In: INDUSTRIAL Sensors and Controls in Communication Networks: From

Wired Technologies to Cloud Computing and the Internet of Things. Cham: Springer

International Publishing, 2019. P. 127–140. ISBN 9783030049270. DOI:

10.1007/9783030049270_10.

29 TENNEY, R. R.; SANDELL, N. R. Detection with Distributed Sensors. IEEE

Transactions on Aerospace and Electronic Systems, IEEE, AES17, p. 501–510, 4 July

1981. ISSN 23719877. DOI: 10.1109/TAES.1981.309178.

30 WERNERALLEN, G. et al. Monitoring volcanic eruptions with a wireless sensor

network. In: PROCEEEDINGS of the Second European Workshop on Wireless Sensor

Networks, 2005. 2005. P. 108–120. DOI: 10.1109/EWSN.2005.1462003.

31 CHAIR, Z.; VARSHNEY, P. Distributed Bayesian hypothesis testing with distributed data

fusion. IEEE Transactions on Systems, Man, and Cybernetics, v. 18, n. 5, p. 695–699,

1988. DOI: 10.1109/21.21597.

32 TSITSIKLIS, J. N. Decentralized detection by a large number of sensors.Mathematics of

Control, Signals and Systems, v. 1, n. 2, p. 167–182, 1988. DOI:

https://doi.org/10.1007/BF02551407.

33 . Decentralized detection. Advs. Statistical Signal Processing, v. 2, p. 297–344,

1993.

34 VARSHNEY, P. K. Distributed detection and data fusion. New York, NY, USA:

SpringerVerlag, 1997. ISBN 9781461273332. DOI: 10.1007/9781461219040.



94 References

35 VISWANATHAN, R.; VARSHNEY, P. Distributed detection with multiple sensors: Part

I—fundamentals. Proceedings of the IEEE, IEEE, v. 85, n. 1, p. 54–63, 1 Jan. 1997.

ISSN 15582256. DOI: 10.1109/5.554208.

36 BLUM, R.; KASSAM, S.; POOR, H. Distributed detection with multiple sensors: Part

II—Advanced topics. Proceedings of the IEEE, v. 85, n. 1, p. 64–79, Jan. 1997. DOI:

10.1109/5.554209.

37 WILLETT, P.; SWASZEK, P.; BLUM, R. The good, bad and ugly: distributed detection of

a known signal in dependent Gaussian noise. IEEE Transactions on Signal Processing,

v. 48, n. 12, p. 3266–3279, 2000. DOI: 10.1109/78.886990.

38 CHAMBERLAND, J.F.; VEERAVALLI, V. V. Decentralized Detection in Sensor

Networks. IEEE Transactions on Signal Processing, v. 51, n. 2, p. 407–416, 2003. DOI:

10.1109/TSP.2002.806982.

39 . Asymptotic Results for Decentralized Detection in Power Constrained

Wireless Sensor Networks. IEEE Journal on Selected Areas in Communications, v. 22,

n. 6, p. 1007–1015, 2004. DOI: 10.1109/JSAC.2004.830894.

40 HASHEMI, H.; RHODES, I. Decentralized sequential detection. IEEE Transactions on

Information Theory, v. 35, n. 3, p. 509–520, 1989. DOI: 10.1109/18.30973.

41 CHAMBERLAND, J.F.; VEERAVALLI, V. V. Wireless Sensors in Distributed Detection

Applications. IEEE Signal Processing Magazine, IEEE, v. 24, p. 16–25, 3 May 2007.

ISSN 15580792. DOI: 10.1109/MSP.2007.361598.

42 CHEN, B.; TONG, L.; VARSHNEY, P. Channelaware distributed detection in wireless

sensor networks. IEEE Signal Processing Magazine, v. 23, n. 4, p. 16–26, 2006. DOI:

10.1109/MSP.2006.1657814.

43 NIU, R.; CHEN, B.; VARSHNEY, P. Fusion of decisions transmitted over Rayleigh fading

channels in wireless sensor networks. IEEE Transactions on Signal Processing, v. 54,

n. 3, p. 1018–1027, 2006. DOI: 10.1109/TSP.2005.863033.

44 CIUONZO, D.; ROSSI, P. S.; VARSHNEY, P. K. Distributed Detection in Wireless Sensor

Networks Under Multiplicative Fading via Generalized Score Tests. IEEE Internet of

Things Journal, v. 8, n. 11, p. 9059–9071, 2021. DOI: 10.1109/JIOT.2021.3056325.

45 BISWAS, N.; DAS, G.; RAY, P. BufferAware User Selection and Resource Allocation for

an Opportunistic Cognitive Radio Network: A CrossLayer Approach. IEEE/ACM

Transactions on Networking, v. 30, n. 5, p. 1940–1954, 2022. DOI:

10.1109/TNET.2022.3159819.

46 CHENG, X. et al. MultiBit & Sequential Decentralized Detection of a Noncooperative

Moving Target Through a Generalized Rao Test. IEEE Transactions on Signal and

Information Processing over Networks, v. 7, p. 740–753, 2021. DOI:

10.1109/TSIPN.2021.3126930.



References 95

47 ATZORI, L.; IERA, A.; MORABITO, G. The Internet of Things: A survey. Computer

Networks, v. 54, n. 15, p. 2787–2805, 2010. ISSN 13891286. DOI:

10.1016/j.comnet.2010.05.010.

48 KOCAKULAK, M.; BUTUN, I. An overview of Wireless Sensor Networks towards

internet of things. In: 2017 IEEE 7th Annual Computing and Communication Workshop

and Conference (CCWC). 2017. P. 1–6. DOI: 10.1109/CCWC.2017.7868374.

49 KRUGER, C. P.; HANCKE, G. P. Implementing the Internet of Things vision in industrial

wireless sensor networks. In: 2014 12th IEEE International Conference on Industrial

Informatics (INDIN). 2014. P. 627–632. DOI: 10.1109/INDIN.2014.6945586.

50 KIM, S. et al. Ambient RF EnergyHarvesting Technologies for SelfSustainable

Standalone Wireless Sensor Platforms. Proceedings of the IEEE, v. 102, n. 11,

p. 1649–1666, 2014. DOI: 10.1109/JPROC.2014.2357031.

51 SHAIKH, F. K.; ZEADALLY, S. Energy harvesting in wireless sensor networks: A

comprehensive review. Renewable and Sustainable Energy Reviews, v. 55,

p. 1041–1054, 2016. ISSN 13640321. DOI: https://doi.org/10.1016/j.rser.2015.11.010.

52 ADUMANU, K. S. et al. EnergyHarvesting Wireless Sensor Networks (EHWSNs): A

Review. ACM Trans. Sen. Netw., Association for Computing Machinery, New York, NY,

USA, v. 14, n. 2, Apr. 2018. ISSN 15504859. DOI: 10.1145/3183338. Available from:

<https://doi.org/10.1145/3183338>.

53 SAH, D. K.; AMGOTH, T. Renewable energy harvesting schemes in wireless sensor

networks: A Survey. Information Fusion, v. 63, p. 223–247, 2020. ISSN 15662535.

DOI: https://doi.org/10.1016/j.inffus.2020.07.005. Available from:

<https://www.sciencedirect.com/science/article/pii/S156625352030316X>.

54 ARDESHIRI, G.; VOSOUGHI, A. On Adaptive Transmission for Distributed Detection in

Energy Harvesting Wireless Sensor Networks With Limited Fusion Center Feedback.

IEEE Transactions on Green Communications and Networking, v. 6, n. 3,

p. 1764–1779, 2022. DOI: 10.1109/TGCN.2022.3146868.

55 FERRI, G. et al. Cooperative robotic networks for underwater surveillance: an overview.

IET Radar, Sonar & Navigation, IET, v. 11, n. 12, p. 1740–1761, 2017.

56 MERINO, L. et al. Cooperative Fire Detection using Unmanned Aerial Vehicles. In:

PROCEEDINGS of the 2005 IEEE International Conference on Robotics and Automation.

2005. P. 1884–1889. DOI: 10.1109/ROBOT.2005.1570388.

57 SUDHAKAR, S. et al. Unmanned Aerial Vehicle (UAV) based Forest Fire Detection and

monitoring for reducing false alarms in forestfires. Computer Communications, v. 149,

p. 1–16, 2020. ISSN 01403664. DOI: https://doi.org/10.1016/j.comcom.2019.10.007.

Available from:

<https://www.sciencedirect.com/science/article/pii/S0140366419308655>.



96 References

58 FARRAR, C. R.; WORDEN, K. Structural health monitoring: a machine learning

perspective. John Wiley & Sons, 2012.

59 FEITOSA, A. E. Classification techniques for adaptive distributed networks and

aeronautical structures. 2018. MA thesis – Universidade de São Paulo.

60 FEITOSA, A. E.; NASCIMENTO, V. H.; LOPES, C. G. Adaptive detection in distributed

networks using maximum likelihood detector. IEEE Signal Processing Letters, v. 25,

n. 7, p. 974–978, July 2018. ISSN 10709908. DOI: 10.1109/LSP.2018.2832029.

61 OLFATISABER, R.; FAX, J. A.; MURRAY, R. M. Consensus and Cooperation in

Networked MultiAgent Systems. Proceedings of the IEEE, v. 95, n. 1, p. 215–233, 2007.

DOI: 10.1109/JPROC.2006.887293.

62 KAR, S.; ALDOSARI, S.; MOURA, J. M. F. Topology for Distributed Inference on

Graphs. IEEE Transactions on Signal Processing, v. 56, n. 6, p. 2609–2613, 2008. DOI:

10.1109/TSP.2008.923536.

63 SCHIZAS, I. D.; MATEOS, G.; GIANNAKIS, G. B. Distributed LMS for

ConsensusBased InNetwork Adaptive Processing. IEEE Transactions on Signal

Processing, v. 57, n. 6, p. 2365–2382, 2009. DOI: 10.1109/TSP.2009.2016226.

64 DIMAKIS, A. G. et al. Gossip Algorithms for Distributed Signal Processing. Proceedings

of the IEEE, v. 98, n. 11, p. 1847–1864, 2010. DOI: 10.1109/JPROC.2010.2052531.

65 BRACA, P.; MARANO, S.; MATTA, V. Enforcing Consensus While Monitoring the

Environment in Wireless Sensor Networks. IEEE Transactions on Signal Processing,

v. 56, n. 7, p. 3375–3380, 2008. DOI: 10.1109/TSP.2008.917855.

66 BRACA, P. et al. Asymptotic Optimality of Running Consensus in Testing Binary

Hypotheses. IEEE Transactions on Signal Processing, v. 58, n. 2, p. 814–825, 2010.

DOI: 10.1109/TSP.2009.2030610.

67 BAJOVIĆ, D. et al. Distributed Detection via Gaussian Running Consensus: Large

Deviations Asymptotic Analysis. IEEE Transactions on Signal Processing, v. 59, n. 9,

p. 4381–4396, 2011. DOI: 10.1109/TSP.2011.2157147.

68 BAJOVIĆ, D. et al. Large deviations performance of consensus+innovations distributed

detection with nonGaussian observations. IEEE Transactions on Signal Processing,

v. 60, n. 11, p. 5987–6002, 2012. DOI: 10.1109/TSP.2012.2210885.

69 JAKOVETIĆ, D.; MOURA, J. M. F.; XAVIER, J. Distributed detection over noisy

networks: large deviations analysis. IEEE Transactions on Signal Processing, v. 60, n. 8,

p. 4306–4320, 2012. DOI: 10.1109/TSP.2012.2197395.

70 SAHU, A. K.; KAR, S. Recursive distributed detection for composite hypothesis testing:

nonlinear observation models in additive Gaussian noise. IEEE Transactions on

Information Theory, v. 63, n. 8, p. 4797–4828, 2017. DOI: 10.1109/TIT.2017.2686435.



References 97

71 LEONARD, M. R.; ZOUBIR, A. M. Robust sequential detection in distributed sensor

networks. IEEE Transactions on Signal Processing, v. 66, n. 21, p. 5648–5662, Nov.

2018. DOI: 10.1109/TSP.2018.2869128.

72 LOPES, C. G.; SAYED, A. H. Diffusion leastmean squares over adaptive networks:

formulation and performance analysis. IEEE Transactions on Signal Processing, v. 56,

n. 7, p. 3122–3136, 2008. DOI: 10.1109/TSP.2008.917383.

73 SAYED, A. H. et al. Diffusion strategies for adaptation and learning over networks: an

examination of distributed strategies and network behavior. IEEE Signal Processing

Magazine, v. 30, n. 3, p. 155–171, May 2013. ISSN 10535888. DOI:

10.1109/MSP.2012.2231991.

74 SAYED, A. H. Adaptive networks. Proceedings of the IEEE, v. 102, n. 4, p. 460–497,

Apr. 2014. ISSN 00189219. DOI: 10.1109/JPROC.2014.2306253.

75 MATTA, V. et al. Diffusionbased adaptive distributed detection: steadystate performance

in the slow adaptation regime. IEEE Transactions on Information Theory, v. 62, n. 8,

p. 4710–4732, 2016. DOI: 10.1109/TIT.2016.2580665.

76 . Distributed detection over adaptive networks: refined asymptotics and the role

of connectivity. IEEE Transactions on Signal and Information Processing over

Networks, v. 2, n. 4, p. 442–460, 2016. DOI: 10.1109/TSIPN.2016.2613682.

77 CATTIVELLI, F. S.; SAYED, A. H. Diffusion LMSbased distributed detection over

adaptive networks. In: PROC. 2009 Conf. Signals, Syst. Comput. (Asilomar). 2009.

P. 171–175. DOI: 10.1109/ACSSC.2009.5470136.

78 . Distributed detection over adaptive networks using diffusion adaptation. IEEE

Transactions on Signal Processing, v. 59, n. 5, p. 1917–1932, 2011. DOI:

10.1109/TSP.2011.2107902.

79 LEE, J.W. et al. Spatiotemporal diffusion strategies for estimation and detection over

networks. IEEE Transactions on Signal Processing, v. 60, n. 8, p. 4017–4034, 2012.

DOI: 10.1109/TSP.2012.2197205.

80 ALSAYED, S.; ZOUBIR, A. M.; SAYED, A. H. Robust distributed detection over

adaptive diffusion networks. In: PROC. 2014 IEEE Int. Conf. Acoust., Speech Signal

Process. (ICASSP). 2014. P. 7233–7237. DOI: 10.1109/ICASSP.2014.6855004.

81 ALSAYED, S. et al. Nodespecific diffusion LMSbased distributed detection over

adaptive networks. IEEE Transactions on Signal Processing, v. 66, n. 3, p. 682–697,

Feb. 2018. ISSN 1053587X. DOI: 10.1109/TSP.2017.2771731.

82 MARANO, S.; SAYED, A. H. Detection under onebit messaging over adaptive networks.

IEEE Transactions on Information Theory, v. 65, n. 10, p. 6519–6538, Oct. 2019. DOI:

10.1109/TIT.2019.2916845.



98 References

83 CATTIVELLI, F. S.; LOPES, C. G.; SAYED, A. H. Diffusion recursive leastsquares for

distributed estimation over adaptive networks. IEEE Transactions on Signal Processing,

v. 56, n. 5, p. 1865–1877, 2008. DOI: 10.1109/TSP.2007.913164.

84 CATTIVELLI, F. S.; SAYED, A. H. Diffusion strategies for distributed Kalman filtering

and smoothing. IEEE Transactions on Automatic Control, v. 55, n. 9, p. 2069–2084,

Sept. 2010. ISSN 23343303. DOI: 10.1109/TAC.2010.2042987.

85 TU, S.Y.; SAYED, A. H. Diffusion Strategies Outperform Consensus Strategies for

Distributed Estimation Over Adaptive Networks. IEEE Transactions on Signal

Processing, v. 60, n. 12, p. 6217–6234, 2012. DOI: 10.1109/TSP.2012.2217338.

86 KAY, S. M. Fundamentals of statistical signal processing: Detection theory, vol. 2.

Prentice Hall Upper Saddle River, NJ, USA, 1998.

87 CIOFFI, J. M. Signal processing and detection. Class notes, page 18. Available from:

<https://cioffigroup.stanford.edu/doc/book/chap1.pdf>.

88 FEITOSA, A. E.; NASCIMENTO, V. H.; LOPES, C. G. A lowcomplexity map detector

for distributed networks. In: PROC. 2020 IEEE Int. Conf. Acoust., Speech Signal Process.

(ICASSP). IEEE, May 2020. DOI: 10.1109/icassp40776.2020.9054197.

89 SHAHRAMPOUR, S.; RAKHLIN, A.; JADBABAIE, A. Distributed Detection:

FiniteTime Analysis and Impact of Network Topology. IEEE Transactions on

Automatic Control, v. 61, n. 11, p. 3256–3268, 2016. DOI: 10.1109/TAC.2015.2506903.

90 LI, S.; WANG, X. Fully Distributed Sequential Hypothesis Testing: Algorithms and

Asymptotic Analyses. IEEE Transactions on Information Theory, v. 64, n. 4,

p. 2742–2758, 2018. DOI: 10.1109/TIT.2018.2806961.

91 VEERAVALLI, V. Decentralized quickest change detection. IEEE Transactions on

Information Theory, v. 47, n. 4, p. 1657–1665, 2001. DOI: 10.1109/18.923755.

92 XIE, L. et al. Sequential (Quickest) Change Detection: Classical Results and New

Directions. IEEE Journal on Selected Areas in Information Theory, v. 2, n. 2,

p. 494–514, 2021. DOI: 10.1109/JSAIT.2021.3072962.

93 BRACA, P. et al. Quickest Detection of COVID19 Pandemic Onset. IEEE Signal

Processing Letters, v. 28, p. 683–687, 2021. DOI: 10.1109/LSP.2021.3068072.

94 MARANO, S.; SAYED, A. H. Decision Learning and Adaptation Over MultiTask

Networks. IEEE Transactions on Signal Processing, v. 69, p. 2873–2887, 2021. DOI:

10.1109/TSP.2021.3077804.

95 LALITHA, A.; JAVIDI, T.; SARWATE, A. D. Social Learning and Distributed Hypothesis

Testing. IEEE Transactions on Information Theory, v. 64, n. 9, p. 6161–6179, 2018.

DOI: 10.1109/TIT.2018.2837050.



References 99

96 BORDIGNON, V.; MATTA, V.; SAYED, A. H. Partial Information Sharing Over Social

Learning Networks. IEEE Transactions on Information Theory, v. 69, n. 3,

p. 2033–2058, 2023. DOI: 10.1109/TIT.2022.3227587.

97 RANGI, A.; FRANCESCHETTI, M.; MARANO, S. Distributed Chernoff Test: Optimal

Decision Systems Over Networks. IEEE Transactions on Information Theory, v. 67,

n. 4, p. 2399–2425, 2021. DOI: 10.1109/TIT.2020.3046191.

98 SAYED, A. H. Adaptive filters. John Wiley & Sons, 2011.

99 NASCIMENTO, V. H.; SILVA, M. T. M. Adaptive Filters. In: Academic press library in

signal processing: Signal processing theory and machine learning. Ed. by

Sergios Theodoridis Rama Chellappa. Academic Press, 2014. v. 1, p. 619–761.

100 KAY, S. M. Fundamentals of statistical signal processing: Estimation theory, vol. 1.

Prentice Hall PTR, 1993.

101 PILLAI, S.; SUEL, T.; CHA, S. The PerronFrobenius theorem: some of its applications.

IEEE Signal Processing Magazine, v. 22, n. 2, p. 62–75, 2005. DOI:

10.1109/MSP.2005.1406483.

102 HAYKIN, S. O. Adaptive filter theory. Pearson Higher Ed, 2013.

103 XIAO, L.; BOYD, S.; LALL, S. A scheme for robust distributed sensor fusion based on

average consensus. In: PROC. Fourth Int. Symp. Inf. Process. in Sensor Networks (IPSN).

Apr. 2005. P. 63–70. DOI: 10.1109/IPSN.2005.1440896.





Appendix





103

APPENDIX A – THE COVARIANCE MATRIX OFTHE dLMS

We deduce here the expressions for the covariance matrix of the diffusionLMS estimator.

By Equation (3.21) and Equation (3.22), we have that

�̂�∼ [ 𝑖 ] − E(�̂�∼ [ 𝑖 ] ∣ 𝐻𝑛) = 𝒫[ 𝑖 ](𝒘∼ 𝑛 − 𝜽𝑛) + ℒ[ 𝑖 ]𝒗0∶𝑖.

Call 𝜶∼ [ 𝑖 ] = �̂�∼ [ 𝑖 ] − E(�̂�∼ [ 𝑖 ] ∣ 𝐻𝑛); then, we have that

𝜶∼ [ 𝑖 ]𝜶∼⊤[ 𝑖 ] = 𝒫[ 𝑖 ](𝒘∼ 𝑛 − 𝜽𝑛)(𝒘∼ 𝑛 − 𝜽𝑛)⊤𝒫⊤[ 𝑖 ]

+ 𝒫[ 𝑖 ](𝒘∼ 𝑛 − 𝜽𝑛)𝒗⊤
0∶𝑖ℒ⊤[ 𝑖 ]

+ ℒ[ 𝑖 ]𝒗0∶𝑖(𝒘∼ 𝑛 − 𝜽𝑛)⊤𝒫⊤[ 𝑖 ]

+ ℒ[ 𝑖 ]𝒗0∶𝑖𝒗⊤
0∶𝑖ℒ⊤[ 𝑖 ].

Recall that matrices ℒ[ 𝑖 ] and 𝒫[ 𝑖 ] are deterministic, since the regressors 𝒖𝑘[ 𝑖 ] are also defined
as such. Moreover, the state vector process 𝒘∼ 𝑛 and the noise ̃𝑣𝑘[ 𝑖 ] are independent for all 𝑘 and

𝑖, and E(()𝑣𝑘[ 𝑖 ]) = 0. Therefore, the covariance of �̂�∼ [ 𝑖 ], given as 𝒮[ 𝑖 ] = E(𝜶∼ [ 𝑖 ]𝜶∼⊤[ 𝑖 ]), is

𝒮[ 𝑖 ] = 𝒫[ 𝑖 ]𝜮𝒘𝒫⊤[ 𝑖 ] + ℒ[ 𝑖 ]𝜮𝒗0∶𝑖
ℒ⊤[ 𝑖 ],

which proves Equation (3.23) by defining 𝒵[ 𝑖 ] = ℒ[ 𝑖 ]𝜮𝒗0∶𝑖
ℒ⊤[ 𝑖 ]. The first term in Equa

tion (3.23) can be expanded as

𝒫[ 𝑖 ]𝜮𝒘𝒫⊤[ 𝑖 ] =
⎡
⎢⎢
⎣

𝑷1[ 𝑖 ]
⋮

𝑷𝑘[ 𝑖 ]

⎤
⎥⎥
⎦

𝜮𝒘 [𝑷⊤
1 [ 𝑖 ] ⋯ 𝑷⊤

𝐾[ 𝑖 ]]

=
⎡
⎢⎢
⎣

𝑷1[ 𝑖 ]𝜮𝒘𝑷⊤
1 [ 𝑖 ] ⋯ 𝑷1[ 𝑖 ]𝜮𝒘𝑷⊤

𝐾[ 𝑖 ]
⋮ ⋱ ⋮

𝑷𝐾[ 𝑖 ]𝜮𝒘𝑷⊤
1 [ 𝑖 ] ⋯ 𝑷𝐾[ 𝑖 ]𝜮𝒘𝑷⊤

𝐾[ 𝑖 ]

⎤
⎥⎥
⎦

.

Since 𝒁𝑘[ 𝑖 ] is the 𝑘th 𝑀 × 𝑀 diagonal block of matrix 𝒵[ 𝑖 ], as a consequence we have
𝑺𝑘[ 𝑖 ] = 𝑷𝑘[ 𝑖 ]𝜮𝒘𝑷⊤

𝑘[ 𝑖 ] + 𝒁𝑘[ 𝑖 ], which is the expression presented in Equation (3.27).

Lastly, we prove that 𝒁𝑘[ 𝑖 ] = E(𝒛𝑘[ 𝑖 ]𝒛⊤
𝑘 [ 𝑖 ]). Note that, from Equation (2.3) and

Equation (4.8), we have

�̂�∼ 𝑘[ 𝑖 ] − E(�̂�∼ 𝑘[ 𝑖 ] ∣ 𝐻𝑛) = 𝑷𝑘[ 𝑖 ](𝒘∼ 𝑛 − 𝜽𝑛) + 𝒛∼ 𝑘[ 𝑖 ],

where 𝒛∼ 𝑘[ 𝑖 ] = 𝑳𝑘[ 𝑖 ]𝒗0∶𝑖 just as defined in Equation (4.30). Next, call

𝒙∼ = �̂�∼ 𝑘[ 𝑖 ] − E(�̂�∼ 𝑘[ 𝑖 ] ∣ 𝐻𝑛),
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and expand

𝒙∼ 𝒙∼⊤ = 𝑷𝑘[ 𝑖 ](𝒘∼ 𝑛 − 𝜽𝑛)(𝒘∼ 𝑛 − 𝜽𝑛)⊤𝑷⊤
𝑘[ 𝑖 ] + 𝑷𝑘[ 𝑖 ](𝒘∼ 𝑛 − 𝜽𝑛)𝒛∼ ⊤

𝑘 [ 𝑖 ]

+ 𝒛∼ 𝑘[ 𝑖 ](𝒘∼ 𝑛 − 𝜽𝑛)⊤ + 𝒛∼ 𝑘[ 𝑖 ]𝒛∼ ⊤
𝑘 [ 𝑖 ].

Under the same conditions assumed so far, the covariance matrix of �̂�∼ 𝑘[ 𝑖 ] can also be expressed
as 𝑺𝑘[ 𝑖 ] = E( 𝒙∼ 𝒙∼⊤) by definition. Therefore,

𝑺𝑘[ 𝑖 ] = 𝑷𝑘[ 𝑖 ]𝜮𝒘𝑷⊤
𝑘[ 𝑖 ] + E(𝒛𝑘[ 𝑖 ]𝒛⊤

𝑘 [ 𝑖 ]);

comparing with Equation (3.27), we must have 𝒁𝑘[ 𝑖 ] = E(𝒛𝑘[ 𝑖 ]𝒛⊤
𝑘 [ 𝑖 ]).
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In Chapter 4 we defined the matrix 𝑳𝑘[ 𝑖 ] ∈ ℝ𝐷×(𝑖+1)𝐾 such that 𝑷𝑘[ 𝑖 ] = 𝑳𝑘[ 𝑖 ]𝑼0∶𝑖 . In

fact, 𝑳𝑘[ 𝑖 ] is well defined in this way if

𝑳𝑘[ 0 ] = ∑
ℓ∈𝜗𝑘

𝑎ℓ𝑘𝜇ℓ𝑾ℓ[ 0 ], (B.1)

𝑳𝑘[ 𝑖 ] = ∑
ℓ∈𝜗𝑘

𝑎ℓ𝑘[ 𝜇ℓ𝑾ℓ[ 𝑖 ] 𝒀ℓ[ 𝑖 ]𝑳ℓ[ 𝑖 − 1 ] ], 𝑖 ≥ 1, (B.2)

where we define 𝑾ℓ[ 𝑖 ] = [ 𝟎 … 𝒖ℓ[ 𝑖 ] … 𝟎 ] whose ℓth column is the only nonzero column. To
show that the expressions in Equation (B.1) and Equation (B.2) are adequate, we need to develop

a few new expressions first. From Equation (3.9) and Equation (3.16), we can rewrite �̂�[ 𝑖 ] as

�̂�[ 𝑖 ] = 𝒜ℳ𝒰[ 𝑖 ]𝒅[ 𝑖 ] + 𝒜𝒴[ 𝑖 ]ℒ[𝑖 − 1]𝒅0∶𝑖−1 + 𝒜𝒴[ 𝑖 ]ℱ[ 𝑖 − 1, 0 ]

= [ 𝒜ℳ𝒰[ 𝑖 ] 𝒜𝒴[ 𝑖 ]ℒ[𝑖 − 1] ] [
𝒅[ 𝑖 ]

𝒅0∶𝑖−1
] + ℱ[ 𝑖, 0 ];

therefore, by inspection we conclude, from Equation (3.16), that ℒ[ 𝑖 ] can be written as the

following recursive expression:

ℒ[ 𝑖 ] = [ 𝒜ℳ𝒰[ 𝑖 ] 𝒜𝒴[ 𝑖 ]ℒ[𝑖−1] ]. (B.3)

We then apply the definition 𝒫[ 𝑖 ] = ℒ[ 𝑖 ]𝑼0∶𝑖 to obtain

𝒫[ 𝑖 ] = [ 𝒜ℳ𝒰[ 𝑖 ] 𝒜𝒴[ 𝑖 ]ℒ[𝑖 − 1] ]𝑼0∶𝑖

= 𝒜ℳ𝒰[ 𝑖 ]𝑼[ 𝑖 ] + 𝒜𝒴[ 𝑖 ]ℒ[𝑖 − 1]𝑼0∶𝑖−1

= 𝒜(ℳ𝒰[ 𝑖 ]𝑼[ 𝑖 ] + 𝒴[ 𝑖 ]𝒫[𝑖 − 1]). (B.4)

From the definitions of ℳ, 𝒰[ 𝑖 ] and 𝒴[ 𝑖 ] in Equation (3.7), of 𝑼[ 𝑖 ] in Equation (3.13), and
that of 𝑷𝑘[ 𝑖 ] in Equation (3.26), we have

𝒫[ 𝑖 ] = 𝒜
⎛⎜⎜⎜
⎝

⎡
⎢
⎣

𝜇1𝒖1[ 𝑖 ]𝒖⊤
1[ 𝑖 ]

⋮
𝜇𝐾𝒖𝐾[ 𝑖 ]𝒖⊤

𝐾[ 𝑖 ]

⎤
⎥
⎦

+
⎡
⎢
⎣

𝒀1[ 𝑖 ]𝑷1[ 𝑖 − 1 ]
⋮

𝒀𝐾[ 𝑖 ]𝑷𝐾[ 𝑖 − 1 ]

⎤
⎥
⎦

⎞⎟⎟⎟
⎠

.

Therefore, from 𝒜 = 𝑨⊤ ⊗ 𝑰𝐷, we have

𝑷𝑘[ 𝑖 ] =
𝐾

∑
ℓ=1

𝑎ℓ𝑘(𝜇ℓ𝒖ℓ[ 𝑖 ]𝒖⊤
ℓ[ 𝑖 ] + 𝒀ℓ[ 𝑖 ]𝑷ℓ[𝑖−1]). (B.5)

For 𝑖 = 0, and setting 𝑷𝑘[−1] = 𝟎 ∀𝑘, we have

𝑷𝑘[ 0 ] =
𝐾

∑
ℓ=1

𝑎ℓ𝑘𝜇ℓ𝒖ℓ[ 0 ]𝒖⊤
ℓ[ 0 ] =

𝐾
∑
ℓ=1

𝑎ℓ𝑘𝜇ℓ𝑾ℓ[ 0 ]𝑼[ 0 ],
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and since 𝑼[ 0 ] = 𝑼0∶0 , we have 𝑷𝑘[ 0 ] = 𝑳𝑘[ 0 ]𝑼0∶0 if we define 𝑳𝑘[ 0 ] according to

Equation (B.1), which shows that it is in fact an adequate expression for 𝑳𝑘[ 𝑖 ] for 𝑖 = 0. For
𝑖 ≥ 1, suppose that 𝑷𝑘[ 𝑖 − 1 ] = 𝑳𝑘[𝑖 − 1]𝑼0∶𝑖−1 is a true statement; thus, we can rewrite

Equation (B.5) as

𝑷𝑘[ 𝑖 ] =
𝐾

∑
ℓ=1

𝑎ℓ𝑘[ 𝜇ℓ𝑾ℓ[ 𝑖 ] 𝒀ℓ[ 𝑖 ]𝑳ℓ[ 𝑖 − 1 ] ] [
𝑼[ 𝑖 ]
𝑼0∶𝑖−1

]=𝑳𝑘[ 𝑖 ]𝑼0∶𝑖 .

Therefore, by a mathematical induction process, we can conclude that the expression in Equa

tion (B.2) is also adequate for 𝑳𝑘[ 𝑖 ] to be well defined.
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In Section 4.3, we were presented to the coefficients ℬ𝜅[ 𝑖 ] of the polynomial expansion
of 𝒫[ 𝑖 ] in Equation (4.13). In order to obtain such coefficients, we evaluate at 𝜇 = 0

ℬ𝜅[ 𝑖 ] =
1
𝜅! (

𝑑𝜅

𝑑𝜇𝜅 𝒫[ 𝑖 ]) ∣
𝜇=0

, 𝜅 ≥ 0. (C.1)

From Equation (3.10) we obtain

𝑑
𝑑𝜇ℱ[ 𝑖, 𝑗 ] = −

𝑖
∑
𝜄=𝑗

ℱ[ 𝑖, 𝜄 + 1 ]𝒜ℋ[ 𝜄 ]ℱ[ 𝜄 − 1, 𝑗 ], (C.2)

where ℋ[ 𝜄 ] = ℳ′𝒰[ 𝑗 ]𝒰[ 𝑗 ]. Thus, rewriting 𝒫[ 𝑖 ] in Equation (3.20) as

𝒫[ 𝑖 ] = 𝜇
𝑖

∑
𝑗=0

ℱ[ 𝑖, 𝑗 + 1 ]𝒜𝑯[ 𝑗 ],

we have, for 𝜅 = 1 and 𝜅 = 2, the following:
𝑑

𝑑𝜇𝒫[ 𝑖 ] =
𝑖

∑
𝑗=0

ℱ[ 𝑖, 𝑗 + 1 ]𝒜𝑯[ 𝜄 ] + 𝜇
𝑖

∑
𝑗=0

𝑑
𝑑𝜇ℱ[ 𝑖, 𝑗 + 1 ]𝒜𝑯[ 𝜄 ]

𝑑2

𝑑𝜇2 𝒫[ 𝑖 ] = 2
𝑖

∑
𝑗=0

𝑑
𝑑𝜇ℱ[ 𝑖, 𝑗 + 1 ]𝒜𝑯[ 𝜄 ] + 𝜇

𝑖
∑
𝑗=0

𝑑2

𝑑𝜇2 ℱ[ 𝑖, 𝑗 + 1 ]𝒜𝑯[ 𝜄 ].

Finally, for 0 ≤ 𝜅 ≤ 2 we evaluate ℬ𝜅[ 𝑖 ] in Equation (C.1) using the following identities, which
result from Equation (3.10) and Equation (C.2):

ℱ[ 𝑖, 𝑗 + 1 ] ∣𝜇=0 = 𝒜𝑖−𝑗,
𝑑

𝑑𝜇ℱ[ 𝑖, 𝑗 + 1 ] ∣
𝜇=0

=
𝑖

∑
𝜄=𝑗

𝒜𝑖−𝜄+1ℋ[ 𝜄 ]𝒜𝜄−𝑗.

We evaluate the coefficients𝒞𝜅[ 𝑖 ] of the polynomial expansion of𝒵[ 𝑖 ] in Equation (4.19)
in the same way. For 𝜅 = 0 and 𝜅 = 1, its trivial that 𝒞𝜅[ 𝑖 ] = 𝟎. Let us rewrite 𝒵[ 𝑖 ] in
Equation (4.19) as

𝒵[ 𝑖 ] = 𝜇2
𝑖

∑
𝑗=0

ℱ[ 𝑖, 𝑗 + 1 ]𝒜⊤𝒟′[ 𝑗 ]𝒜ℱ⊤[ 𝑖, 𝑗 + 1 ],

where 𝒟′[ 𝑗 ] = ℳ′𝒰[ 𝑗 ]𝜮𝒘 𝒰⊤[ 𝑗 ](ℳ′)⊤. Then we have
𝑑2

𝑑𝜇2 𝒵[ 𝑖 ] = 2
𝑖

∑
𝑗=0

ℱ[ 𝑖, 𝑗 + 1 ]𝒜⊤𝒟′[ 𝑗 ]𝒜ℱ⊤[ 𝑖, 𝑗 + 1 ]

+ 2𝜇
𝑑

𝑑𝜇 (
𝑖

∑
𝑗=0

ℱ[ 𝑖, 𝑗 + 1 ]𝒜⊤𝒟′[ 𝑗 ]𝒜ℱ⊤[ 𝑖, 𝑗 + 1 ])

+ 𝜇2 𝑑2

𝑑𝜇2 (
𝑖

∑
𝑗=0

ℱ[ 𝑖, 𝑗 + 1 ]𝒜⊤𝒟′[ 𝑗 ]𝒜ℱ⊤[ 𝑖, 𝑗 + 1 ]) .

Finally, one needs only to evaluate 𝒞2[ 𝑖 ] = 1
2

𝑑2

𝑑𝜇2 𝒵[ 𝑖 ]|𝜇=0 .
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First, let us demonstrate the approximation of 𝑷𝑘[ 𝑖 ] in Equation (4.18). Notice that

𝑨𝑖 ⊗ 𝑰𝐷 =
⎡
⎢
⎢
⎢
⎣

(𝑨𝑖)11𝑰𝐷 (𝑨𝑖)12𝑰𝐷 ⋯ (𝑨𝑖)1𝐾𝑰𝐷

(𝑨𝑖)21𝑰𝐷 (𝑨𝑖)22𝑰𝐷
⋯ (𝑨𝑖)2𝐾𝑰𝐷

⋮ ⋮ ⋱ ⋮
(𝑨𝑖)𝐾1𝑰𝐷 (𝑨𝑖)𝐾2𝑰𝐷 ⋯ (𝑨𝑖)𝐾𝐾𝑰𝐷

⎤
⎥
⎥
⎥
⎦

.

From Proposition 8, we have that 𝒜𝑖 = (𝑨⊤)𝑖 ⊗ 𝑰𝐷. Note that

(𝑨⊤)𝑖 = 𝑨⊤ ⋅ 𝑨⊤ ⋅ … ⋅ 𝑨⊤⏟⏟⏟⏟⏟⏟⏟
𝑖 times

= (𝑨 ⋅ 𝑨 ⋅ … ⋅ 𝑨⏟⏟⏟⏟⏟⏟⏟
𝑖 times

)⊤ = (𝑨𝑖)⊤;

thus, from the property (𝑴1 ⊗ 𝑴2)⊤ = 𝑴⊤
1 ⊗ 𝑴⊤

2 of the Kronecker product,

𝒜𝑖 = (𝑨⊤)𝑖 ⊗ 𝑰𝐷 = (𝑨𝑖)⊤ ⊗ 𝑰𝐷 = (𝑨𝑖 ⊗ 𝑰𝐷)⊤ =
⎡
⎢
⎢
⎢
⎣

(𝑨𝑖)11𝑰𝐷 (𝑨𝑖)21𝑰𝐷 ⋯ (𝑨𝑖)𝐾1𝑰𝐷

(𝑨𝑖)12𝑰𝐷 (𝑨𝑖)22𝑰𝐷 ⋯ (𝑨𝑖)𝐾2𝑰𝐷

⋮ ⋮ ⋱ ⋮
(𝑨𝑖)1𝐾𝑰𝐷 (𝑨𝑖)2𝐾𝑰𝐷 ⋯ (𝑨𝑖)𝐾𝐾𝑰𝐷

⎤
⎥
⎥
⎥
⎦

.

From the definition of 𝑯[ 𝑖 ] in Equation (4.15), we have

𝑯[ 𝑖 ] = ℳ′ 𝒰[ 𝑗 ]𝑼[ 𝑗 ]

=
⎡
⎢
⎢
⎢
⎣

𝜇′
1𝑰𝐷 𝟎 ⋯ 𝟎
𝟎 𝜇′

2𝑰𝐷 ⋯ 𝟎
⋮ ⋮ ⋱ ⋮
𝟎 𝟎 ⋯ 𝜇′

𝐾𝑰𝐷

⎤
⎥
⎥
⎥
⎦

⋅
⎡
⎢
⎢
⎢
⎣

𝒖1[ 𝑖 ] 𝟎 ⋯ 𝟎
𝟎 𝒖2[ 𝑖 ] ⋯ 𝟎
⋮ ⋮ ⋱ ⋮
𝟎 𝟎 ⋯ 𝒖𝐾[ 𝑖 ]

⎤
⎥
⎥
⎥
⎦

⋅
⎡
⎢
⎢
⎢
⎣

𝒖⊤
1[ 𝑖 ]

𝒖⊤
2[ 𝑖 ]
⋮

𝒖⊤
𝐾[ 𝑖 ]

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝜇′
1𝒖1[ 𝑖 ]𝒖⊤

1[ 𝑖 ]
𝜇′

2𝒖2[ 𝑖 ]𝒖⊤
2[ 𝑖 ]

⋮
𝜇′

𝐾𝒖𝐾[ 𝑖 ]𝒖⊤
𝐾[ 𝑖 ]

⎤
⎥
⎥
⎥
⎦

Thus, from the approximation of 𝒫[ 𝑖 ] in Equation (4.16), we have

𝒫[ 𝑖 ]
𝜇 ≈

𝑖
∑
𝑗=0

𝒜𝑖−𝑗+1𝑯[ 𝑖 ]𝒜𝑖−𝑗+1𝑯[ 𝑖 ]

=
𝑖

∑
𝑗=0

((𝑨⊤)𝑖−1+1 ⊗ 𝑰𝐷)𝑯[ 𝑖 ]

=
𝑖

∑
𝑗=0

⎡
⎢
⎢
⎢
⎣

(𝑨𝑖−𝑗+1)11𝑰𝐷 (𝑨𝑖−𝑗+1)21𝑰𝐷 ⋯ (𝑨𝑖−𝑗+1)𝐾1𝑰𝐷

(𝑨𝑖−𝑗+1)12𝑰𝐷 (𝑨𝑖−𝑗+1)22𝑰𝐷 ⋯ (𝑨𝑖−𝑗+1)𝐾2𝑰𝐷

⋮ ⋮ ⋱ ⋮
(𝑨𝑖−𝑗+1)1𝐾𝑰𝐷 (𝑨𝑖−𝑗+1)2𝐾𝑰𝐷 ⋯ (𝑨𝑖−𝑗+1)𝐾𝐾

⎤
⎥
⎥
⎥
⎦

⋅
⎡
⎢
⎢
⎢
⎣

𝜇′
1𝒖1[ 𝑖 ]𝒖⊤

1[ 𝑖 ]
𝜇′

2𝒖2[ 𝑖 ]𝒖⊤
2[ 𝑖 ]

⋮
𝜇′

𝐾𝒖𝐾[ 𝑖 ]𝒖⊤
𝐾[ 𝑖 ]

⎤
⎥
⎥
⎥
⎦
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=
𝑖

∑
𝑗=0

⎡
⎢
⎢
⎢
⎣

∑𝐾
ℓ=1(𝑨𝑖−𝑗+1)ℓ1 𝜇′

1𝒖1[ 𝑖 ]𝒖⊤
1[ 𝑖 ]

∑𝐾
ℓ=1(𝑨𝑖−𝑗+1)ℓ2 𝜇′

2𝒖2[ 𝑖 ]𝒖⊤
2[ 𝑖 ]

⋮
∑𝐾

ℓ=1(𝑨𝑖−𝑗+1)ℓ𝐾 𝜇′
𝐾𝒖𝐾[ 𝑖 ]𝒖⊤

𝐾[ 𝑖 ]

⎤
⎥
⎥
⎥
⎦

.

Therefore, seeing 𝒫[ 𝑖 ] divided into block matrices 𝑷𝑘[ 𝑖 ] as in Equation (3.26), we have

𝑷𝑘[ 𝑖 ] ≈ 𝜇
𝑖

∑
𝑗=0

𝐾
∑
ℓ=1

(𝑨𝑖−𝑗+1)ℓ𝑘 𝜇′
ℓ𝒖ℓ[ 𝑖 ]𝒖⊤

ℓ[ 𝑖 ],

as we wanted to demonstrate.

We now demonstrate the approximation of 𝒁𝑘[ 𝑖 ] in Equation (4.21). From the definitions

of 𝒰[ 𝑖 ] in Equation (3.7), 𝜮𝑣 in Equation (3.24) and ℳ′ in Equation (4.12), and the fact that all

these matrices are diagonal block matrices, the following product is a diagonal matrix as well:

ℳ′𝒰[ 𝑗 ]𝜮𝑣𝒰⊤[ 𝑗 ]ℳ′ =
⎡
⎢⎢
⎣

(𝜇′
1)2𝜎2

𝑣1
𝒖1[ 𝑖 ]𝒖⊤

1[ 𝑖 ] ⋯ 𝟎
⋮ ⋱ ⋮
𝟎 ⋯ (𝜇′

𝐾)2𝜎2
𝑣𝐾

𝒖𝐾[ 𝑖 ]𝒖⊤
𝐾[ 𝑖 ]

⎤
⎥⎥
⎦

.

Hence, we have

𝒵[ 𝑖 ]
𝜇2 ≈

𝑖
∑
𝑗=0

𝒜𝑖−𝑗+1ℳ′𝒰[ 𝑗 ]𝜮𝑣𝒰⊤[ 𝑗 ]ℳ′(𝒜⊤)𝑖−𝑗+1

=
𝑖

∑
𝑗=0

⎡
⎢⎢
⎣

(𝑨𝑖−𝑗+1)11𝑰𝐷 ⋯ (𝑨𝑖−𝑗+1)𝐾1𝑰𝐷

⋮ ⋱ ⋮
(𝑨𝑖−𝑗+1)1𝐾𝑰𝐷 ⋯ (𝑨𝑖−𝑗+1)𝐾𝐾

⎤
⎥⎥
⎦

⋅
⎡
⎢⎢
⎣

(𝜇′
1)2𝜎2

𝑣1
𝒖1[ 𝑖 ]𝒖⊤

1[ 𝑖 ] ⋯ 𝟎
⋮ ⋱ ⋮
𝟎 ⋯ (𝜇′

𝐾)2𝜎2
𝑣𝐾

𝒖𝐾[ 𝑖 ]𝒖⊤
𝐾[ 𝑖 ]

⎤
⎥⎥
⎦

⋅
⎡
⎢⎢
⎣

(𝑨𝑖−𝑗+1)11𝑰𝐷 ⋯ (𝑨𝑖−𝑗+1)1𝐾𝑰𝐷

⋮ ⋱ ⋮
(𝑨𝑖−𝑗+1)𝐾1𝑰𝐷 ⋯ (𝑨𝑖−𝑗+1)𝐾𝐾

⎤
⎥⎥
⎦

=
𝑖

∑
𝑗=0

⎡
⎢⎢
⎣

(𝑨𝑖−𝑗+1)11(𝜇′
1)2𝜎2

𝑣1
𝒖1[ 𝑖 ]𝒖⊤

1[ 𝑖 ] ⋯ (𝑨𝑖−𝑗+1)𝐾1(𝜇′
𝐾)2𝜎2

𝑣𝐾
𝒖𝐾[ 𝑖 ]𝒖𝐾[ 𝑖 ]

⋮ ⋱ ⋮
(𝑨𝑖−𝑗+1)1𝐾(𝜇′

1)2𝜎2
𝑣1

𝒖1[ 𝑖 ]𝒖⊤
1[ 𝑖 ] ⋯ (𝑨𝑖−𝑗+1)2𝐾(𝜇′

𝐾)2𝜎2
𝑣𝐾

𝒖𝐾[ 𝑖 ]𝒖⊤
𝐾[ 𝑖 ]

⎤
⎥⎥
⎦

⋅
⎡
⎢⎢
⎣

(𝑨𝑖−𝑗+1)11𝑰𝐷 ⋯ (𝑨𝑖−𝑗+1)1𝐾𝑰𝐷

⋮ ⋱ ⋮
(𝑨𝑖−𝑗+1)𝐾1𝑰𝐷 ⋯ (𝑨𝑖−𝑗+1)𝐾𝐾

⎤
⎥⎥
⎦

=
𝑖

∑
𝑗=0

[
∑𝐾

ℓ=1(𝑨𝑖−𝑗+1)2
ℓ1(𝜇′

ℓ)2𝜎2
𝑣ℓ

𝒖ℓ[ 𝑖 ]𝒖⊤
ℓ[ 𝑖 ] ⋯ ∑𝐾

ℓ=1(𝑨𝑖−𝑗+1)ℓ1(𝑨𝑖−𝑗+1)ℓ𝐾(𝜇′
ℓ)2𝜎2

𝑣ℓ
𝒖ℓ[ 𝑖 ]𝒖⊤

ℓ[ 𝑖 ]
⋮ ⋱ ⋮

∑𝐾
ℓ=1(𝑨𝑖−𝑗+1)ℓ1(𝑨𝑖−𝑗+1)ℓ𝐾(𝜇′

ℓ)2𝜎2
𝑣ℓ

𝒖ℓ[ 𝑖 ]𝒖⊤
ℓ[ 𝑖 ] ⋯ ∑𝐾

ℓ=1(𝑨𝑖−𝑗+1)2
ℓ𝐾(𝜇′

ℓ)2𝜎2
𝑣ℓ

𝒖ℓ[ 𝑖 ]𝒖⊤
ℓ[ 𝑖 ]

].
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Therefore,

𝒁𝑘[ 𝑖 ] ≈ 𝜇2
𝑖

∑
𝑗=0

𝐾
∑
ℓ=1

(𝑨𝑖−𝑗+1)2
ℓ𝑘(𝜇′

ℓ)2𝜎2
𝑣ℓ

𝒖ℓ[ 𝑖 ]𝒖⊤
ℓ[ 𝑖 ],

as we wanted to demonstrate.
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APPENDIX E – PERFORMANCE OFTHE OPTIMALDETECTOR

Performance at each time instant 𝑖

In order to obtain the theoretical performance of an optimal detector, we need, as usual,

the expectations and the covariances of its statistics. We start by first expanding Equation (4.37)

and remove the term which is the same for all 𝐻𝑛, and define a new test statistic given as

𝑜′
𝑛[ 𝑖 ] = (𝒅0∶𝑖 − 𝑼0∶𝑖𝜽𝑛)⊤𝜮−1

𝒅0∶𝑖
𝑼0∶𝑖𝜽𝑛 −

1
2𝜽⊤

𝑛𝑼⊤
0∶𝑖𝜮−1

𝒗0∶𝑖
𝑼0∶𝑖𝜽𝑛 . (E.1)

For simplicity, define 𝑪0∶𝑖 = 𝑼⊤
0∶𝑖𝜮−1

𝒗0∶𝑖
𝑼0∶𝑖 . We then obtain:

E(𝑜′
𝑚[ 𝑖 ] ∣ 𝐻𝑛) = 𝜽⊤

𝑚𝑪0∶𝑖𝜽𝑛 −
1
2𝜽⊤

𝑚𝑪0∶𝑖𝜽𝑚 ,

Var(𝑜′
𝑚[ 𝑖 ]) = 𝜽⊤

𝑚𝑪0∶𝑖𝜽𝑚 ,

Cov(𝑜′
𝑚[ 𝑖 ], 𝑜′

𝜈[ 𝑖 ]) = 𝜽⊤
𝑚𝑪0∶𝑖𝜽𝜈 .

Define 𝒐′[ 𝑖 ] = col{𝑜′
1[ 𝑖 ], … , 𝑜′

𝑁[ 𝑖 ]} and 𝜣 = [ 𝜽1 … 𝜽𝑁 ]. Therefore, we have

E(𝒐′[ 𝑖 ] ∣ 𝐻𝑛) = 𝜣⊤𝑪0∶𝑖𝜽𝑛 −
1
2 col{𝜽⊤

1 𝑪0∶𝑖𝜽1, … , 𝜽⊤
𝑁𝑪0∶𝑖𝜽𝑁},

Cov(𝒐′[ 𝑖 ]) = 𝜣⊤𝑪0∶𝑖𝜣. (E.2)

Note that the terms {𝜽⊤
1 𝑪0∶𝑖𝜽1, … , 𝜽⊤

𝑁𝑪0∶𝑖𝜽𝑁} form the main diagonal of Cov(()𝒐′[ 𝑖 ]), and
similarly, that 𝜣⊤𝑪0∶𝑖𝜽𝑛 is the 𝑛th column of Cov(𝒐′[ 𝑖 ]).

Next, using the matrix inversion lemma, we expand 𝑪0∶𝑖 to obtain

𝑪0∶𝑖 = 𝑼⊤
0∶𝑖(𝑼0∶𝑖𝜮𝒘𝑼⊤

0∶𝑖 + 𝜮𝒗0∶𝑖
)−1𝑼0∶𝑖

= 𝑼⊤
0∶𝑖(𝜮−1

𝒗0∶𝑖
− 𝜮−1

𝒗0∶𝑖
𝑼0∶𝑖(𝜮−1

𝒘 + 𝑼⊤
0∶𝑖𝜮−1

𝒗0∶𝑖
𝑼0∶𝑖)

−1𝑼⊤
0∶𝑖𝜮−1

𝒗0∶𝑖
)

= 𝑼⊤
0∶𝑖𝜮−1

𝒗0∶𝑖
𝑼0∶𝑖 − 𝑼⊤

0∶𝑖𝜮−1
𝒗0∶𝑖

𝑼0∶𝑖(𝜮−1
𝒘 + 𝑼⊤

0∶𝑖𝜮−1
𝒗0∶𝑖

𝑼0∶𝑖)
−1𝑼⊤

0∶𝑖𝜮−1
𝒗0∶𝑖

𝑼0∶𝑖 .

Again for simplicity, let us call 𝑫0∶𝑖 = 𝑼⊤
0∶𝑖𝜮−1

𝒗0∶𝑖
𝑼0∶𝑖. Thereby, let us develop the last expression

above as follows:

𝑪0∶𝑖 = 𝑫0∶𝑖 − 𝑫0∶𝑖(𝜮−1
𝒘 + 𝑫0∶𝑖)

−1𝑫0∶𝑖

= 𝑫0∶𝑖 − 𝑫0∶𝑖(𝜮−1
𝒘 + 𝑫0∶𝑖)

−1𝑫0∶𝑖 − 𝜮−1
𝒘 (𝜮−1

𝒘 + 𝑫0∶𝑖)
−1𝑫0∶𝑖

+ 𝜮−1
𝒘 (𝜮−1

𝒘 + 𝑫0∶𝑖)
−1𝑫0∶𝑖

= 𝑫0∶𝑖 − (𝑫0∶𝑖 + 𝜮−1
𝒘 )(𝜮−1

𝒘 + 𝑫0∶𝑖)
−1

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑰𝑖+1

𝑫0∶𝑖 + 𝜮−1
𝒘 (𝜮−1

𝒘 + 𝑫0∶𝑖)
−1𝑫0∶𝑖

= 𝑫0∶𝑖 − 𝑫0∶𝑖 + 𝜮−1
𝒘 (𝜮−1

𝒘 + 𝑫0∶𝑖)
−1𝑫0∶𝑖

= 𝜮−1
𝒘 (𝜮−1

𝒘 + 𝑫0∶𝑖)
−1𝑫0∶𝑖 .
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We can develop this expression even further:

𝑪0∶𝑖 = 𝜮−1
𝒘 (𝜮−1

𝒘 + 𝑫0∶𝑖)
−1𝑫0∶𝑖 + 𝜮−1

𝒘 (𝜮−1
𝒘 + 𝑫0∶𝑖)

−1𝜮−1
𝒘

− 𝜮−1
𝒘 (𝜮−1

𝒘 + 𝑫0∶𝑖)
−1𝜮−1

𝒘

= 𝜮−1
𝒘 (𝜮−1

𝒘 + 𝑫0∶𝑖)
−1(𝑫0∶𝑖 + 𝜮−1

𝒘 )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑰𝑖+1

−𝜮−1
𝒘 (𝜮−1

𝒘 + 𝑫0∶𝑖)
−1𝜮−1

𝒘

= 𝜮−1
𝒘 − 𝜮−1

𝒘 (𝜮−1
𝒘 + 𝑫0∶𝑖)

−1𝜮−1
𝒘 . (E.3)

Thus, we have

𝑪0∶𝑖 = 𝜮−1
𝒘 (𝜮𝒘 − (𝜮−1

𝒘 + 𝑫0∶𝑖)
−1)𝜮−1

𝒘 . (E.4)

In the next steps, we analyze 𝑫0∶𝑖 = 𝑼⊤
0∶𝑖𝜮−1

𝒗0∶𝑖
𝑼0∶𝑖 . We saw in Equation (4.28) that it

can be rewritten as the double sum; i.e.,

𝑫0∶𝑖 =
𝑖

∑
𝑗=0

𝐾
∑
𝑘=1

𝒖𝑘[ 𝑗 ] 𝒖⊤
𝑘[ 𝑗 ]

𝜎2
𝑣𝑘

,

which can be rewritten again as follows:

𝑫0∶𝑖 =
𝑖−1
∑
𝑗=0

𝐾
∑
𝑘=1

𝒖𝑘[ 𝑗 ] 𝒖⊤
𝑘[ 𝑗 ]

𝜎2
𝑣𝑘

+
𝐾

∑
𝑘=1

𝒖𝑘[ 𝑖 ] 𝒖⊤
𝑘[ 𝑖 ]

𝜎2
𝑣𝑘

= 𝑫0∶𝑖−1 +
𝐾

∑
𝑘=1

𝒖𝑘[ 𝑖 ] 𝒖⊤
𝑘[ 𝑖 ]

𝜎2
𝑣𝑘

.

To continue the analysis, define 𝑴[ 𝑖 ] = (𝜮−1
𝒘 + 𝑫0∶𝑖)

−1
. Thereby, note that

𝑴[ 𝑖 ] = (𝜮−1
𝒘 + 𝑫0∶𝑖−1 +

𝐾
∑
𝑘=1

𝒖𝑘[ 𝑖 ] 𝒖⊤
𝑘[ 𝑖 ]

𝜎2
𝑣𝑘

)
−1

= (𝑴−1[ 𝑖 − 1 ] +
𝐾

∑
𝑘=1

𝒖𝑘[ 𝑖 ] 𝒖⊤
𝑘[ 𝑖 ]

𝜎2
𝑣𝑘

)
−1

. (E.5)

Thus, we have

𝑴−1[ 𝑖 ] = 𝑴−1[ 𝑖 − 1 ] +
𝐾

∑
𝑘=1

𝒖𝑘[ 𝑖 ] 𝒖⊤
𝑘[ 𝑖 ]

𝜎2
𝑣𝑘

. (E.6)

Let us also define the matrices 𝑴𝑘[ 𝑖 ] such that

𝑴−1
𝑘 [ 𝑖 ] = 𝑴−1[ 𝑖 − 1 ] +

𝑘
∑
ℓ=1

𝒖ℓ[ 𝑖 ] 𝒖⊤
ℓ[ 𝑖 ]

𝜎2
𝑣ℓ

, 1 ≤ 𝑘 ≤ 𝐾. (E.7)

Therefore, from Equation (E.5), we have

𝑴[ 𝑖 ] = (𝑴−1[ 𝑖 − 1 ] +
𝐾

∑
𝑘=1

𝒖𝑘[ 𝑖 ] 𝒖⊤
𝑘[ 𝑖 ]

𝜎2
𝑣𝑘

)
−1

= (𝑴−1[ 𝑖 − 1 ] +
𝐾−1
∑
𝑘=1

𝒖𝑘[ 𝑖 ] 𝒖⊤
𝑘[ 𝑖 ]

𝜎2
𝑣1

+
𝒖𝐾[ 𝑖 ] 𝒖⊤

𝑘[ 𝑖 ]
𝜎2

𝑣𝐾

)
−1

= (𝑴−1
𝐾−1[ 𝑖 ] +

𝒖𝐾[ 𝑖 ] 𝒖⊤
𝑘[ 𝑖 ]

𝜎2
𝑣𝐾

)
−1

.
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Using the Matrix Inversion Lemma, we obtain

𝑴[ 𝑖 ] = 𝑴𝐾−1[ 𝑖 ] − 𝑴𝐾−1[ 𝑖 ]𝒖𝐾[ 𝑖 ](𝜎2
𝑣𝐾

+ 𝒖⊤
𝑘[ 𝑖 ]𝑴𝐾−1[ 𝑖 ]𝒖𝐾[ 𝑖 ])−1𝒖⊤

𝑘[ 𝑖 ]𝑴𝐾−1[ 𝑖 ]

= (𝑰𝐷 −
𝑴𝐾−1[ 𝑖 ]𝒖𝐾[ 𝑖 ]𝒖⊤

𝑘[ 𝑖 ]
𝜎2

𝑣𝐾
+ 𝒖⊤

𝑘[ 𝑖 ]𝑴𝐾−1[ 𝑖 ]𝒖𝐾[ 𝑖 ]
)𝑴𝐾−1[ 𝑖 ]. (E.8)

From Equation (E.7), we have for 𝑘 = 𝐾 − 1, 𝐾 − 2, … , 2 that

𝑴𝑘[ 𝑖 ] = (𝑴−1
𝑘−1[ 𝑖 ] +

𝒖𝑘[ 𝑖 ] 𝒖⊤
𝑘[ 𝑖 ]

𝜎2
𝑣𝑘

)
−1

,

and for 𝑘 = 1, we have

𝑴1[ 𝑖 ] = (𝑴[ 𝑖 − 1 ] +
𝒖1[ 𝑖 ] 𝒖⊤

1[ 𝑖 ]
𝜎2

𝑣1

)
−1

.

Thus, we can do the same process that resulted in Equation (E.8) to find each 𝑴𝑘[ 𝑖 ], which
results in

𝑴𝑘[ 𝑖 ] = (𝑰𝐷 −
𝑴𝑘−1[ 𝑖 ]𝒖𝑘[ 𝑖 ]𝒖⊤

𝑘[ 𝑖 ]
𝜎2

𝑣𝑘
+ 𝒖⊤

𝑘[ 𝑖 ]𝑴𝑘−1[ 𝑖 ]𝒖𝑘[ 𝑖 ]
)

−1

𝑴𝑘−1[ 𝑖 ],

which is valid for 𝑘 = 1, … , 𝐾 if noting, as a consequence of Equation (E.7), that we have

𝑴−1[ 𝑖 ] = 𝑴−1
𝐾 [ 𝑖 ] ⟹ 𝑴[ 𝑖 ] = 𝑴𝐾[ 𝑖 ],

and also by following the convention that

𝑴0[ 𝑖 ] = 𝑴[ 𝑖 − 1 ].

Now, what remains is to find a proper initial value 𝑴[−1]. From Equation (E.6), we have

𝑴−1[ 0 ] = 𝑴−1[−1] +
𝐾

∑
𝑘=1

𝒖𝑘[ 0 ] 𝒖⊤
𝑘[ 0 ]

𝜎2
𝑣𝑘

⟹ 𝑴[ 0 ] = (𝑴−1[−1] + 𝑫0∶0)−1;

Therefore, comparing with the definition 𝑴[ 𝑖 ] = (𝜮−1
𝒘 + 𝑫0∶𝑖)

−1
, we must have

𝑴−1[−1] = 𝜮−1
𝒘 ⟹ 𝑴[−1] = 𝜮𝒘.

Returning to Equation (E.4), we can thus write

𝑪0∶𝑖 = 𝜮−1
𝒘 (𝜮𝒘 − 𝑴[ 𝑖 ])𝜮−1

𝒘 ,

and defining 𝜣′ = 𝜣𝜮−1
𝒘 (recall that 𝜣 = [ 𝜽1 … 𝜽𝑁 ]), we can rewrite Equation (E.2) as

Cov(𝒐′[ 𝑖 ]) = (𝜣′)⊤(𝜮𝒘 − 𝑴[ 𝑖 ]) 𝜣′,

E(𝒐′[ 𝑖 ] ∣ 𝐻𝑛) = (Cov(𝒐′[ 𝑖 ]))𝑚𝑛, 1≤𝑚≤𝑁 −
1
2(Cov(𝒐′[ 𝑖 ]))𝑚𝑚, 1≤𝑚≤𝑁, (E.9)

where (Cov(𝒐′[ 𝑖 ]))𝑚𝑛, 1≤𝑚≤𝑁 denotes the entries of the𝑛th column of Cov(𝒐′[ 𝑖 ]), and similarly
(Cov(𝒐′[ 𝑖 ]))𝑚𝑚, 1≤𝑚≤𝑁 denotes the entries of the main diagonal of Cov(𝒐′[ 𝑖 ]). Therefore, all
we need to estimate the performance of the optimal detector at each time instant 𝑖 is its covariance
matrix Cov(𝒐′[ 𝑖 ]), which can be done by numerical Monte Carlo (MC) trials with a number 𝐿
of realizations.

We synthesize all the last steps in Algorithm 3 below.
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Algorithm 3 – Estimation of Optimal detector performance.

Inputs: 𝜎2
𝑣𝑘
, 𝒖𝑘[ 𝑖 ], {𝑃(𝐻𝑛)}𝑁

𝑛=1, 𝜣′, 𝜮𝒘 , 𝐿, 𝑖max .

Initialize 𝑖 = 0, 𝑴 = 𝜮𝒘 .

while 𝑖 < 𝑖max do

for 𝑘 = 1, … , 𝐾 do Equation (E.8)

𝒎𝑘 ← 𝑴𝒖𝑘[ 𝑖 ].
𝒎′

𝑘 ← 𝒎𝑘/(𝜎2
𝑣𝑘

+ 𝒖⊤
𝑘[ 𝑖 ]𝒎𝑘).

𝑴 ← (𝑰𝐷 − 𝒎′
𝑘𝒖⊤

𝑘[ 𝑖 ])𝑴.

end for

Cov(𝒐′) ← (𝜣′)⊤(𝜮𝒘 − 𝑴) 𝜣′. Equation (E.9)

𝜉 ← MC(Cov(𝒐′), {𝑃 (𝐻𝑛)}𝑁
𝑛=1, 𝐿).

𝑖 ← 𝑖 + 1
end while

Lower Bound of the probability of error

The minimum probability of error that is achievable by a distributed detector in a given

setting is the asymptotic probability of error of the optimal detector. Therefore, in order to estimate

it we need the asymptotic distribution of the optimal statistic 𝑜𝑛[ 𝑖 ], given in Equation (4.37).

In the previous section it was shown that the performance of the optimal detector depends

basically on the covariance matrix of the equivalent optimal statistic 𝑜′
𝑛[ 𝑖 ], defined in Equa

tion (E.1). From Equation (E.2), we have that Cov(𝒐′[ 𝑖 ]) = 𝜣⊤𝑪0∶𝑖𝜣, where 𝜣 = [ 𝜽1 … 𝜽𝑁]
and 𝑪0∶𝑖 = 𝑼⊤

0∶𝑖𝜮−1
𝒗0∶𝑖

𝑼0∶𝑖 . It was shown in Equation (E.3) that

𝑪0∶𝑖 = 𝜮−1
𝒘 − 𝜮−1

𝒘 (𝜮−1
𝒘 + 𝑫0∶𝑖)

−1𝜮−1
𝒘 ,

where𝑫0∶𝑖 = 𝑼⊤
0∶𝑖𝜮−1

𝒗0∶𝑖
𝑼0∶𝑖, which can be written as the double sum as showed in Equation (4.28)

in Chapter 5. Thereby, we can rewrite Equation (4.28) as

𝑖
∑
𝑗=0

𝐾
∑
𝑘=1

𝒖𝑘[ 𝑗 ] 𝒖⊤
𝑘[ 𝑗 ]

𝜎2
𝑣𝑘

= (𝑖 + 1)
𝐾

∑
𝑘=1

1
𝜎2

𝑣𝑘

𝑖
∑
𝑗=0

𝒖𝑘[ 𝑗 ] 𝒖⊤
𝑘[ 𝑗 ]

𝑖 + 1 ,

Since the innermost sum above converges to 𝜮𝒖𝑘
as 𝑖 increases, because we assume also in

Chapter 5 that 𝒖∼ 𝑘[ 𝑖 ] ∼ 𝒩(𝟎, 𝜮𝒖𝑘
), the outermost sum converges to a nonsingular matrix as

𝑖 increases, as it is a sum of positive definite matrices. Therefore, 𝑫0∶𝑖 is nonsingular and its

terms become larger as 𝑖 increases. Thus, as 𝑖 → ∞, (𝜮−1
𝒘 + 𝑫0∶𝑖)

−1 → 𝟎, and consequently
𝑪0∶𝑖 → 𝜮−1

𝒘 . Hence, we can use this result to estimate, via a Monte Carlo simulation, the

asymptotic probability of error of the optimal detector.


