
WILLIAM TAKESHI PEREIRA

SCALABILITY ANALYSIS OF AN IOT
PLATFORM: THE SWARMOS SCALABILITY

Corrected Version

São Paulo
2023

WILLIAM TAKESHI PEREIRA

SCALABILITY ANALYSIS OF AN IOT
PLATFORM: THE SWARMOS SCALABILITY

Corrected Version

Dissertation presented to the Polytechnic

School of University of São Paulo to obtain

a Master’s Degree in Electrical Engineering.

São Paulo
2023

WILLIAM TAKESHI PEREIRA

SCALABILITY ANALYSIS OF AN IOT
PLATFORM: THE SWARMOS SCALABILITY

Corrected Version

Dissertation presented to the Polytechnic

School of University of São Paulo to obtain

a Master’s Degree in Electrical Engineering.

Program:

Electronic Systems

Advisor:

Laisa Caroline Costa de Biase

São Paulo
2023

 Autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio
convencional ou eletrônico, para fins de estudo e pesquisa, desde que citada a fonte.

Este exemplar foi revisado e corrigido em relação à versão original, sob
responsabilidade única do autor e com a anuência de seu orientador.

São Paulo, ______ de ____________________ de __________

Assinatura do autor: ________________________

Assinatura do orientador: ________________________

Catalogação-na-publicação

Pereira, William Takeshi
 Scalability Analysis of an IoT Platform: the SwarmOS Scalability / W. T.
Pereira -- versão corr. -- São Paulo, 2024.
 130 p.

 Dissertação (Mestrado) - Escola Politécnica da Universidade de São
Paulo. Departamento de Engenharia de Sistemas Eletrônicos.

 1.Internet das Coisas 2.Escalabilidade 3.Testes 4.Swarm 5.Sistemas
Distribuídos I.Universidade de São Paulo. Escola Politécnica. Departamento
de Engenharia de Sistemas Eletrônicos II.t.

Aos meus pais e meu irmão.

ACKNOWLEDGMENTS

Many are the persons who deserve my gratitude for helping me during the development
of this work.

I would like to begin by acknowledging my parents, Geraldo E. Pereira, Rozana T.
S. Pereira. Despite my career choice leading to involvement in areas unfamiliar to them,
they have always been a source of encouragement, inspiring me to pursue my chosen path
with determination and enthusiasm. And my brother Victor T. Pereira, whose support
and camaraderie have been constants in my life.

I would like to express my sincere gratitude to my advisors, Laisa C. C. De Biase
and Marcelo K. Zuffo, who have provided valuable guidance and support throughout my
project. Their expert knowledge and experience have been instrumental in shaping my
research and helping me navigate the complexities of the field. I am deeply thankful for
their unwavering support and encouragement, which has been an essential factor in my
academic and personal growth. I appreciate the time and energy they have dedicated to
my success.

I would like to extend my heartfelt thanks to my colleague Geovane Fedrecheski
for their invaluable support and collaboration throughout this project. His input and
contributions have been invaluable, and I have learned a great deal from working alongside
them. I appreciate their collaborative spirit, positive attitude, and willingness to lend a
helping hand.

Also, my acknowledgements to the Swarm Team and all who I have interacted with at
Universidade de São Paulo. I am honored to have had the opportunity to work with such
knowledgeable and talented individuals. I will always be grateful for their contributions
to my education and my future.

Finally, my acknowledgments to USP, who gave me all infrastructure and support for
me to develop this work.

RESUMO

Esta pesquisa adentra no vasto cenário da Internet das Coisas (IoT) através da ino-
vadora perspectiva da computação em enxame, inspirada em sistemas biológicos. Sistemas
de enxame, compostos por agentes simples, exibem a capacidade de autoorganização e
abordam colaborativamente desafios complexos por meio de interações. O ponto cen-
tral é o desafio inerente de escalabilidade na IoT, onde conectar inúmeros dispositivos se
torna uma empreitada complexa. Este estudo visa definir e aprimorar a escalabilidade
de sistemas de enxame. Para isso, o trabalho introduz um robusto ambiente de teste
virtualizado projetado para explorar técnicas de escalabilidade. Atuando como um passo
intermediário entre a concepção e testes em dispositivos f́ısicos, este ambiente proporciona
uma abordagem ágil e flex́ıvel. A ênfase reside não apenas em conceituar e aprimorar um
ambiente de teste rigoroso, mas também em aprimorar um sistema de IoT, especifica-
mente o SwarmOS, com um foco dedicado na escalabilidade, abordando desafios cŕıticos
no amplo domı́nio da IoT.

Palavras-Chave – Internet das Coisas, Escalabilidade, Testes, Swarm, Sistemas Dis-
tribúıdos.

ABSTRACT

This research explores the vast landscape of the Internet of Things (IoT) through the
lens of swarm computing, an innovative approach inspired by biological systems. Swarm
systems consist of simple agents that, through self-organization, collaboratively address
complex challenges via interactions. The inherent scalability challenge in IoT, connecting
a myriad of devices, becomes a focal point. The study seeks to define and improve the
scalability of swarm systems. For this, this work introduces a robust virtualized testbed
to probe scalability techniques, this testbed introduces a lean and flexible environment to
be a intermediate step between the idea and testing in physical devices. The emphasis
lies not only in conceptualizing and refining a rigorous testing environment but also in
enhancing an IoT system, specifically the SwarmOS, with a dedicated focus on scalability
addressing critical challenges in the expansive realm of the IoT.

Keywords – Internet of Things, Scalability, Testbed, Swarm, Distributed Systems, Vir-
tualization.

LIST OF FIGURES

1 Feature Tree . 24

2 Network Address Translation (NAT) IP address swapping. Source: Wikipedia

contributors (WIKIMEDIA, 2020b) . 26

3 Examples of 4 categories for Network Address Translation (NAT)s, Full

Cone, Restricted Cone, Port Restricted Cone and Symmetric Network

Address Translation (NAT). Source: Wikipedia Contributor (WIKIMEDIA,

2020a; WIKIMEDIA, 2020d; WIKIMEDIA, 2020c; WIKIMEDIA, 2020e) 27

4 Proposed testbed structure, each network can have many devices which

can have many agents/applications . 65

5 Testbed structure implemented with the off-the-shelf software 70

6 Example of security cameras found . 72

7 Output of pstree: Highlighted in red the processes created by docker and

in green the processes created by the application 72

8 Payment System: Cumulative system CPU time consumed by they system

and user in seconds . 73

9 Consumer Application: Cumulative system CPU time consumed by they

system and user in seconds . 73

10 Examples of 3 types of communication that exist in the structure of Swar-

mOS. In green (dotted), communication between brokers; in black (solid)

communication between broker and services; in purple (dashed), commu-

nication between services . 76

11 Diagram of the structure the broker discovered. 77

12 SwarmBroker discovery fluxogram . 87

13 Block diagram of searching on the internal cache 88

14 Block diagram of searching on the remote agents’ cache 88

15 Block diagram of querying the registry . 89

16 Structure of a Device Interaction test . 93

17 Peak percent CPU usage of a single core in scenarios varying from 1 to 32

cameras . 94

18 Peak memory usage in Mb in scenarios varying from 1 to 32 cameras . . . 95

19 Data transfer for different scenarios varying from 1 to 32 cameras 96

20 Time to response for each case of entrypoint discovery 99

21 Comparition of transaction time from query vs cache-assisted discovery . . 101

22 Reputation change on use case 1 . 102

23 Reputation change on use case 2 . 104

24 Reputation change on use case 3 . 105

25 Reputation change on use case 3 with a initial reputation 106

26 Reputation change on use case 4 . 107

27 Reputation score by block number (Malicious providers) 108

28 Reputation score by block number (Well intentioned providers) 109

29 Use case 5 average reputation score . 110

30 Reputation score by block number (Malicious providers) 112

31 Reputation score by block number (Well intentioned providers) 113

32 Use case 6 average reputation score . 114

LIST OF TABLES

1 Simple survey of different types of Network Address Translation (NAT)

traversal techniques . 29

2 Network Address Translation (NAT)s’ type and relative traversal capabil-

ity of Session Traversal Utilities for NAT (STUN). Source: Wang et. al.

(WANG; LU; GU, 2006) . 31

3 Details of the participants of the experiment 53

4 Characteristics of testbeds methods . 59

5 Comparison of Centralized, Pure, and Super-Node resource management

models. Adapted from (KHATIBI; SHARIFI, 2021) 86

6 Results of the Device Interaction test . 92

7 Comparison of query vs cache-assisted discovery time 100

8 Comparation of open-source implementations. Reprinted from (FEDRECH-

ESKI et al., 2021) . 116

9 Performance on different platforms. Reprinted from (FEDRECHESKI et al.,

2021) . 117

ACRONYMS

ABAC Attribute-Based Access Control

ACL Access Control Lists

DHT Distributed Hash Table

DID Decentralized Identifier

HGABAC Hierarchical Group and Attribute-Based Access Control

ICE Interactive Connectivity Establishment

IGDP UPnP Internet Gateway Device Protocol

IoT Internet of Things

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

MCUs microcontroller units

NAT Network Address Translation

NAT-PMP NAT Port Mapping Protocol

P2P Peer-to-Peer

PCP Port Control Protocol

PEX Peer Exchange

PM Policy Machine

RBAC Role-Based Access Control

SSI Self-Sovereign Identity

STUN Session Traversal Utilities for NAT

TURN Traversal Using Relays around NAT

UPnP Universal Plug and Play

VoIP Voice over Internet Protocol

WSN Wireless Sensor Network

XACML Extensible Access Control Markup Language

XML Extensible Markup Language

CONTENTS

1 Introduction 16

1.1 Motivation . 18

1.2 Scalability Requirements . 18

1.3 Challenges . 19

1.4 Contributions . 20

1.5 Structure of the dissertation . 20

2 Background and Related Work 22

2.1 Scalability . 22

2.2 Connecting Devices Globally . 25

2.2.1 Network Address Translation . 25

2.2.2 Network Address Translation (NAT) Traversal Techniques 28

2.2.3 IPv6 . 32

2.2.3.1 IPv6 vs IPv4 Performance 32

2.3 Service Discovery Strategies . 33

2.3.1 Distributed Registry . 34

2.3.1.1 Distributed Hash Table 34

2.3.2 The BitTorrent System . 35

2.4 Cooperation Incentives . 36

2.4.1 Blockchain . 37

2.4.2 Micro Economics . 37

2.4.3 Reputation . 38

2.5 Privacy . 39

2.5.1 Attribute-Based Access Control . 39

2.5.2 Self-Sovereign Identity . 40

3 Methodology 42

3.1 Connection . 43

3.1.1 Testing Device Interactions in Varied Network Environments 43

3.1.2 Concurrent Connection Capacity Test 44

3.2 Discovery . 46

3.2.1 Caching Performance Test . 46

3.2.2 Network Knowledge Enhancement Test 48

3.2.3 Query Discovery vs Cache-Assisted Discovery Time Test 49

3.3 Fairness . 50

3.3.1 Reputation Test . 50

3.4 Privacy . 54

3.4.1 SmartABAC Performance Test . 55

4 Edge-computing IoT Testing framework 57

4.1 Docker/Virtualization . 57

4.2 Testbed . 59

4.2.1 Physical Testbeds . 60

4.2.2 Emulated Testbeds . 60

4.2.3 Simulated Testbeds . 61

4.3 Testbed Framework Design . 63

4.3.1 Strategy . 64

4.4 Testbed Framework Implementation . 66

4.4.1 Experimental Subsystem . 66

4.4.2 Simulation-Stimulation Subsystem 69

4.4.3 Monitoring Subsystem . 69

4.5 Testbed Evaluation . 70

4.5.1 Docker CPU Overhead Test . 71

4.5.2 Virtualization Limit Test . 73

5 The Swarm Computing Paradigm and the SwarmOS Framework 75

5.1 SwarmOS Transaction Model . 77

5.2 SwarmOS Discovery Model . 79

5.3 SmartABAC . 79

5.4 Improvements in the SwarmOS Implementation 80

5.4.1 Improvements in SwarmOS connection system 80

5.4.1.1 Adding Universal Plug and Play (UPnP) Support 81

5.4.1.2 Adding IPv6 Support . 82

5.4.1.3 Implementation UPnP . 83

5.4.1.4 Implementation IPv6 . 84

5.4.2 Improvements in SwarmOS’s Discovery System 85

5.4.3 Improvements in Swarm Manager 88

5.4.4 Caching . 89

5.4.5 Privacy . 90

6 Results and Evaluation 92

6.1 Connection . 92

6.1.1 Testing Device Interactions in Varied Network Environments 92

6.1.2 Concurrent Connection Capacity Test 93

6.1.3 Results . 94

6.1.4 Scalability Analysis . 96

6.2 Discovery . 97

6.2.1 Caching Performance Test . 97

6.2.1.1 Results . 97

6.2.2 Network Knowledge Enhancement Test 98

6.2.3 Query Discovery vs Cache-Assisted Discovery Time Test 99

6.2.4 Scalability Analysis . 100

6.3 Fairness . 101

6.3.1 Reputation Test . 101

6.3.2 Scalability Analysis . 114

6.4 Privacy . 115

6.4.1 SmartABAC Performance Test . 115

6.4.2 Scalability Analysis . 117

7 Conclusions 119

References 122

Appendix A – PUBLICATIONS 130

A.1 Main Articles . 130

A.2 Other Publications . 130

16

1 INTRODUCTION

More and more the physical and digital worlds are merging into one. Sensors, ac-

tuators, and embedded devices are increasingly present in factories, smartphones, and

supermarkets, changing the way we realize and interact with the environment around

us. Recently, the advancement of various technologies, such as data analysis, cheaper

sensors, Internet communication, and embedded systems enabled the emergence of a new

revolution called the IoT. With these advancements, market interest and the use of the

technology have been growing a lot in recent years, according to International Data Cor-

poration, the number of IoT objects should reach 41.6 billion connected units generating

a total of 79.4 zettabytes of data in 2025 (IDC, 2019).

With the exponential growth of data and devices, we need to ensure sufficient connec-

tivity and resources for processing, collecting, transmitting, and exchanging data. Devices

used in IoT are mostly constrained in memory, CPU, and power resources (BORMANN;

ERSUE; KERANEN, 2014) and are generally composed of sensors and actuators. IoT plat-

forms are frameworks that enable communication, integration, and decision coordination,

allowing devices to transform from traditional objects to connected and intelligent agents.

Biology-based approaches such as Swarm Computing look at new classes of prob-

lems, in which task distribution, specialization, and decentralization of agents create

more robust and flexible systems. Swarm Computing is a paradigm where computational

devices start to collaborate allowing collective intelligence to emerge. In biology, swarm

intelligence is used in reference to colony-level behavior for example, individual fire ants

(Solenopsis invicta) struggle and drown after falling into a pool of water, however when

the are in groups, fire ants link together to float on the water surface (MLOT; TOVEY; HU,

2011).

Inspired by organic systems, Swarm Computing enables the sharing of resources be-

tween IoT devices in a global network, in an autonomous and distributed way (LEE et al.,

2014; COSTA et al., 2015b). Swarm-based systems are composed of thousands of smaller

agents where the interactions among them create a collective behavior (COSTA et al.,

17

2015b). But these advantages come at the cost of complexity. In a non-scalable system,

the addition of new agents can cause failures to appear after deployment (BJERKNES;

WINFIELD, 2013), which compromise the entire functioning of the system. To guarantee

the system’s functioning, an optimized design with test and measurement techniques is

necessary. Assuming the value generated from this network grows with the number of

connections since having more agents means more features in the network, challenges

arise in the scalability of these systems.

Concept of scalability can be defined as the work or cost of adding new resources to an

existing network (BONDI, 2000), that is, it is generally said that a system is not scalable

when the resources used for the growth of the system is excessive.

As intelligence emerges from the interaction and cooperation of the agents (LIU;

PASSINO, 2000). The research proposal on the analysis of scalability techniques will be

based on SwarmOS, a framework that emphasizes the communication of a large number

of devices, making the scalability of IoT/Swarm architectures a key research point. Swar-

mOS provides open APIs, protocols, and tools for communication and operation within

a network, facilitating the development of applications and ensuring interoperability be-

tween heterogeneous applications (COSTA et al., 2015b).

Utilizing the concept introduced by Lee and the TerraSwarm Research Center (2012)

of a unified operating system (SwarmOS) supporting various ”swarm applications,” we can

devise scalability testing methods. This information can then be employed to automati-

cally optimize SwarmOS parameters, addressing scalability challenges. The optimization

goals include enhancing message throughput, minimizing data transmission errors in ge-

ographically dispersed networks, and improving connectivity between diverse networks.

On the subject of scalability, there are researchers that developed in IoT, but the num-

ber is smaller in the context of Swarm. In IoT, as the study is often developed on top of a

centralized system, they are focused on performance tests on test platforms (testbeds) and

protocol tests to assess advantages in each use case. In the Swarm context, it is common

for each agent to make decisions focused on communication and local sensing, so many

researchers propose scalability as an inherent characteristic of this type of system, but

this is not necessarily true as described by Bjerknes & Winfield (2013) who demonstrates

that it is not safe to assume that scalability is an inherent attribute of swarm systems.

18

1.1 Motivation

In the context of a distributed IoT, such as the Swarm, the connection of millions, or

even billions of devices is expected. In swarm systems that rely on cooperative behavior

among nodes, scalability is essential to ensure that the network can sustain and benefit

from the contributions of all its participants. Swarm also has an open architecture, where

anyone can join and we can dynamically recruit resources, it will open up significant

scalability problems, enabling new applications not yet invented or impossible right now

to be created in the future.

1.2 Scalability Requirements

Because of the unique characteristics of IoT, with constrained devices having dynamic

connections between them, scalability in IoT has different requirements:

• Intermittent connectivity – IoT devices can have intermittent connectivity be-

cause they move, are connected in fields with low Wi-Fi availability, etc. Thus,

scalability must be able to be tested with many network characteristics in mind.

• Dynamic registration of IoT entities – IoT devices have become increasingly

popular and are growing in number. We must guarantee that new devices being

added to the network are accepted and ready to work without any problems.

• Consideration for resource constraints – IoT devices are resource-constrained

(SEHGAL et al., 2012), for example, they can have a low CPU processing power, we

must ensure that the connectivity overhead is minimal , and if tests are made using

virtualization, they need to consider these characteristics.

• Resilience and Robustness – In some cases, availability is needed, resilience and

robustness are essential to ensure that the network can continue to function even if

some devices fail or become unavailable.

• Locality – Not depending on central or remote systems can mitigate significant

latency and bandwidth issues, making it easier to scale the system effectively. It

is possible to minimize the demand on the network by processing data locally and

reducing the need for data transfer.

19

• Ease of deployment – Lowering the difficulty of deployment enables organizations

to rapidly and cost-effectively deploy new devices and expand the network. If de-

ployment is difficult or time-consuming, it can slow down the growth and expansion

of the network, making it difficult to scale effectively.

• Frequent communication between devices – In the swarm case, communica-

tion between devices is a fundamental characteristic that emerges from the swarm

intelligence, so dynamically varying situations resulting from mobility are expected

from the network.

1.3 Challenges

This section discusses why the state-of-the-art does not cope with Swarm Computing

requirements.

1. Heterogeneity : modern IoT platforms have a variety of devices and applications,

the testbed has to assume heterogeneity is a characteristic of the system. Even if a

project today has only one device model with one application running, because of

the fast pacing of IoT, it’s highly probable that with upgrades, the network will be

composed of heterogeneous devices.

2. Decentralization: many state-of-the-art works assume only architectures where de-

vices have a clear job of data collection, like in Wireless Sensor Networks Wireless

Sensor Network (WSN)s when testing for scalability, it’s assumed that the sensors

are not a problem and the only tested part is usually the gateway receiving all the

data. This is not true for other types of architectures, such as the Swarm.

3. Limited Scope: physical testbeds usually are focused on a single use case (smart city,

WSNs, structural monitoring, low-level protocols), making it harder for research

with different goals to be done on the same testbed.

4. Test Scalability : another way of testing done in the state-of-the-art is to set up

physical testbeds, making it harder to scale to a sizable number of devices without

being too expensive.

20

1.4 Contributions

In this dissertation, the SwarmOS is evaluated from a scalability point of view, break-

ing down the scalability factor and its challenges. The key contributions of the dissertation

are summarized as follows:

• This dissertation helps break down scalability and its challenges. It maps the

key enabling technologies for building scalable swarm networks. By exploring these

technologies in the context of the SwarmOS, this dissertation provides a deeper un-

derstanding of how to achieve scalability in IoT systems. Furthermore, this research

identifies the potential limitations and challenges associated with these technologies,

as well as implement and/or propose solutions.

• Evaluate the scalability of a swarm computing-based system, assessing the

scalability of centralized systems can be simpler, since there is a single point of con-

trol, meaning that all requests and data processing are handled by a central server;

thus the scalability of a centralized system can be measured by the scalability of the

central server. The scalability of a swarm computing-based system is interdepen-

dent of network and application scalability. Because of the high heterogeneity of the

Swarm, there is no single benchmark that measures the scalability of the system,

this work tries to propose and specify test cases to measure scalability on

a Swarm environment.

• This work deployed a concrete implementation of a testbed for the SwarmOS,

with high flexibility, being usable in various other use cases.

• Improve SwarmOS from a scalability point of view, investigate, propose,

implement, and test changes to make the SwarmOS more scalable.

1.5 Structure of the dissertation

The structure of this dissertation is delineated as follows: Chapter 2 delves into the

background and surveys related research works. Chapter 3 outlines the methodology

employed for scalability tests across all components discussed in this study. In Chapter 4,

we introduce and detail the Edge-computing IoT Testing framework, a key contribution

of this dissertation. Chapter 5 provides a comprehensive overview of SwarmOS, the

central framework subjected to scalability tests. Chapter 6 focuses on our evaluation of

21

SwarmOS’s scalability, and, finally, Chapter 7 draws conclusions and charts out potential

directions for future research.

22

2 BACKGROUND AND RELATED WORK

There is no single test capable of knowing if a system is scalable or not, scalability

has many interpretations, depending on the situation or scenario, also there are many

technologies and dimensions that can affect scalability.

In our pursuit of understanding scalability, this section unfolds with a multifaceted

investigation into the global interconnection of devices, a paramount consideration in

contemporary IoT frameworks. The intricacies of Network Address Translation (NAT)

and its traversal techniques are scrutinized, alongside an insightful comparison of IPv6

and IPv4 performance, offering a holistic perspective on addressing the challenges of

connecting devices across diverse networks.

Moving forward, our exploration delves into service discovery strategies, encompassing

the innovative distributed registry system and a detailed examination of the BitTorrent

model. These discussions pave the way for an exploration of cooperation incentives, where

we navigate the realms of blockchain technology, microeconomics, and reputation systems

as pivotal mechanisms driving collaborative dynamics in IoT ecosystems.

Furthermore, we turn our attention to the vital aspect of privacy, investigating Attribute-

Based Access Control as a means of safeguarding sensitive information. The exploration

culminates in an examination of the cutting-edge concept of Self-Sovereign Identity, un-

derscoring the evolving landscape of privacy in the IoT paradigm.

By navigating through these diverse dimensions, this section aspires to provide a

comprehensive backdrop for understanding the intricate interplay of factors influencing

the scalability and global connectivity of devices in the IoT realm.

2.1 Scalability

The word scalability can have many meanings depending on the context, the Merriam-

Webster dictionary definition is “capable of being easily expanded or upgraded on-demand”

23

(MERRIAM-WEBSTER, 2021) or if we use a computer science context, scalability means

work or cost of adding new resources to an existing network (BONDI, 2000), these re-

sources can be defined in various ways such as financial resources, human resources (time

to set up, deployment in geographically distributed locations, etc.) and computational

resources (throughput, CPU/memory usage, network resources, etc.). In this context,

scalability refers to the capacity to handle a growing number of devices and users, to

manage and transfer an increasing amount of data efficiently, and to support and enable

new applications and use cases.

Scalability is a critical factor in the design and development of IoT systems, which

often consist of a large number of interconnected devices, sensors, and actuators that

collect, process, and transmit data. To ensure the efficient operation of these systems, the

systems must be designed to scale with the growing number of devices. Gupta, Christie

& Manjula (2017) presented research gaps. Protocol and network security, identity man-

agement, fault tolerance, access control, trust, governance, etc.

IoT scalability is categorized in, vertical and horizontal. The vertical scalability

(SOTIRIADIS et al., 2016; CABRÉ; PRECUP; SANZ, 2017) refers to adjusting the computing

resources of a single IoT device, while horizontal scalability (WU; LIANG; BERTINO, 2009;

CHANG; SRIRAMA; BUYYA, 2019; SARKAR et al., 2014) is the addition or removal of IoT

nodes to work on the same problem. In this work we will focus on horizontal scalabil-

ity, considering four aspects: (1) connection, (2) discovery, (3) fairness, and (4) privacy.

Figure 1 shows enabling techniques for a scalable swarm.

The connection aspect will evaluate the ability of Swarm agents to seamlessly link

services across geographically distributed nodes without the need for centralized inter-

mediaries and regardless of their limitations or to their physical network. In the Swarm,

each node can act as both provider and consumer of services, enabling direct communica-

tion and data exchange between peers. This decentralized approach fosters efficient and

resilient connections, promoting faster data dissemination, improved fault tolerance, and

reduced latency.

The discovery aspect refers to the ability of each swarm agent to dynamically locate

and interact with the available services at the moment. It enables nodes to query and

discover other peers offering specific services or resources without relying on centralized

servers. Service discovery facilitates seamless communication and collaboration within

the decentralized network.

Fairness refers to the mechanisms and strategies employed to encourage nodes within

24

Figure 1: Feature Tree

the network to collaborate and share resources. As Peer-to-Peer (P2P) networks rely

on decentralized interactions, cooperation incentives are crucial to foster mutual support

and promote the sharing of services and data. These incentives can take various forms,

such as reputation systems, where nodes with a history of cooperation are rewarded

with increased privileges or better access to resources; or token-based economies, where

nodes are incentivized to contribute resources by earning tokens or cryptocurrencies in

return. Effective cooperation incentives play a vital role in maintaining network stability,

scalability, and reliability, driving sustained collaboration among nodes.

Privacy answers the question if swarm agents can control their own identity and

coordinate their interactions without having it stored and managed by a centralized third-

party. It also empowers the owners to determine who has access to their devices. This

decentralization means that the owner can not only restrict access to their devices but

can also selectively grant permissions. For instance, while they can choose to keep their

devices off-limits to most, they could allow specific individuals or entities access based on

trust or other criteria. This granularity in control emphasizes the importance of privacy

in ensuring both security and flexibility in the interactions within the swarm network.

25

2.2 Connecting Devices Globally

The original design of the Internet was based on a client-server architecture (GLOW-

NIAK, 1998), meaning that the client-side (personal computers, smartphones) requests

resources, information, and data from servers (web servers, email servers, databases).

This architecture was intended to allow for centralized control of the network and clear

separation of responsibilities between client and server. This means that the client must

start the communication and the server is only able to answer.

With the growth of P2P networks (e.g. torrents, Voice over Internet Protocol (VoIP),

Swarm Computing), where all nodes can act as both clients and servers some complexity

arises since the communication among nodes in P2P networks is dynamic and can occur

between any two nodes, however, this P2P connections are not possible directly over the

current Internet, because it is built over a NAT.

It is not straightforward to start a connection between two peers. Many network

applications want a more P2P network, but to enable these connections between peers,

we must understand how NATs works, and some of the most well-known NAT traversal

techniques are required.

2.2.1 Network Address Translation

In order to gain insights into the constraints associated with sending messages over

the Internet to any recipient, a thorough understanding of NAT is essential. NAT is a

method of mapping an IP address space into another by modifying information in the IP

header of the packets that are in transit across the router. This technique becomes popular

because of Internet Protocol version 4 (IPv4) address exhaustion, where the number of

IPv4 addresses cannot supply all existing devices.

Figure 2 depicts an example of a network address translation between the private

network and the Internet. The client (with a private IP of 10.0.0.1) wants to send a

packet to the server (200.100.10.1), the router with NAT capabilities changes the IP

header of the packet to the public IP address (150.150.0.1), typically assigned by an

Internet Service Provider. When the packets arrive at the server, the server answers, not

even being aware of this modification. When the packet arrives at the router, the router

changes the IP back to the private IP address and forwards the packet. This process is

completely invisible to both the server and the client.

There are several types of NAT. Since there is no standardization between NATs

26

Figure 2: NAT IP address swapping. Source: Wikipedia contributors (WIKIMEDIA, 2020b)

(FORD; SRISURESH; KEGEL, 2005), each company or each model can be different from

each one, but there are defined classes. In Figure 3 we can see 4 categories of NAT that

this dissertation will dive deeper to understand why the connection can be difficult.

We are using the following terminology: Every address will be defined by a pair of IP

addresses and Port, (Addr:Port).

iAddr:iPort : Internal address and internal port, means the address and port of the

client in the private network.

eAddr:ePort : External address and external port, means the address and port of the

client after NAT. Usually the address that the Internet service provider assigned.

sAddr:sAddr : Server address and server port, means the IP and port of the server,

who we are trying to communicate with.

Any : “Any” means that the IP or port value does not matter.

Full-cone NAT

Once an internal address (iAddr:iPort) is mapped to an external address (eAddr:ePort),

any packets from iAddr:iPort are sent through eAddr:ePort. All subsequent incoming

packets to iAddr:iPort by are redirected to eAddr:ePort. That means, full-cone NAT

allow messages coming from any :any

Address-restricted-cone NAT

27

Figure 3: Examples of 4 categories for NATs, Full Cone, Restricted Cone, Port Restricted Cone
and Symmetric NAT. Source: Wikipedia Contributor (WIKIMEDIA, 2020a; WIKIMEDIA, 2020d;
WIKIMEDIA, 2020c; WIKIMEDIA, 2020e)

Once an internal address (iAddr:iPort) is mapped to an external address (eAddr:ePort),

any packets from iAddr:iPort are sent through eAddr:ePort. An external server (sAddr:any)

can send packets to iAddr:iPort by sending packets to eAddr:ePort only if iAddr:iPort

has previously sent a packet to sAddr:any. That means incoming traffic can arrive from

any port, as long as it originates from the expected external host.

Port-restricted-cone NAT

Once an internal address (iAddr:iPort) is mapped to an external address (eAddr:ePort),

any packets from iAddr:iPort are sent through eAddr:ePort. An external host (sAddr:sPort)

can send packets to iAddr:iPort by sending packets to eAddr:ePort only if Addr:iPort has

previously sent a packet to sAddr:sPort. That means that incoming traffic is allowed only

from the expected external host and on the specific port used for the initial communica-

tion.

Symmetric NAT

Each request from the same internal IP address and port (iAddr:iPort) to a specific

destination IP address and port is mapped to a unique external source IP address and

port (eAddr:ePort); if the same internal host sends a packet even with the same source

address and port but to a different destination, a different mapping is used. Unlike other

NAT types, the mapping changes for each destination, making it difficult for external

hosts to predict the port used by the internal device. This behavior restricts inbound

traffic from reaching the internal device unless the internal device specifically initiates

28

communication with the external host.

2.2.2 NAT Traversal Techniques

Understanding NATs, we can see that it is not possible for a device to just send

another device packets. Even if they know the Addr:Port of their peer, the packet will

likely be dropped by the NAT. So to establish and maintain a connection that works

across these NATs, traversal techniques are required. Table 1 shows a simple survey of

different types of NAT traversal techniques.

There are three main solutions categories for this issue:

• Hole Punching: Send packets to open holes in the port mapping of the NATs.

This strategy works even when there are multiple NATs between the peer and the

Internet, unless there is a symmetric NAT in the way.

• Port Mapping: A peer asks for its NAT to create a port mapping from its private

network to the Internet. However, this solution only works in cases where there is

only 1 NAT between the peer and the Internet. In some cases, an Internet Service

Provider can take a whole region and use a NAT to share the same IP with every

customer. In this case, the port mapping will not expose the true public IP, but a

private regional IP.

• Relaying: Utilizing a central server accessible to both peers, acting as an interme-

diary between Peer1 and Peer2. In this approach, data packets traverse the network

through the following path Peer1 ↔ Server ↔ Peer2. While this method proves

effective in numerous scenarios, it comes with the drawback of centralization and

inefficiency. The reliance on a high-bandwidth server for continuous packet relay

introduces wasteful resource consumption.

Hole Punching

Hole punching enables two clients to set up a direct connection with the help of a

well-known rendezvous server, even if the clients are both behind NATs.

Usually, a NAT is configured as an outbound NAT, which means that it will send

packets from inside the private network to the Internet but will drop any external requests,

except packets that are answers from previous requests.

29

Table 1: Simple survey of different types of NAT traversal techniques

Name Type Pros Cons

NAT Hole Punching
Hole
punching

Works with Transmis-
sion Control Protocol
and User Datagram
Protocol (Transmis-
sion Control Protocol
64%, User Datagram
Protocol 82%) (FORD;

SRISURESH; KEGEL,
2005)

Hairpin translation, a fea-
ture that permits the access
of a service via the public IP
address from inside the lo-
cal network, is less common
(FORD; SRISURESH; KEGEL,
2005)

Traversal Using Re-
lays around NAT
(TURN) (REDDY.K et

al., 2020)

Relay Works in any case

High bandwidth needed on
the server
Add latency on the commu-
nication
Both services needed to con-
nect on the same server

Session Traversal
Utilities for NAT
(STUN) (ROSENBERG

et al., 2003)

Hole
punching

Works in 3/4 of types
of NATs
Direct connection
On swarm maybe we
can use registry as
Session Traversal Util-
ities for NAT (STUN)
server

Don’t work with symmetric
NATs

Interactive Connec-
tivity Establishment
(ICE) (KERäNEN;

HOLMBERG; ROSEN-

BERG, 2018)

Hole
punching,
Relay

Tries many connec-
tions and choose the
best one based on
heuristics

Worst case scenario use
a Traversal Using Relays
around NAT (TURN)
server

UPnP Internet Gate-
way Device Protocol
(IGDP) (BOUCADAIR;

PENNO; WING, 2013)

Port map-
ping

Direct Connection

Only works if you NAT is
connect directly to the pub-
lic internet
NAT has to implement this
protocol
Risk of security opening a
port to the internet

NAT Port Mapping
Protocol (NAT-
PMP) (CHESHIRE;

KROCHMAL, 2013)

Port map-
ping

Direct Connection

Only works if you NAT is
connect directly to the pub-
lic internet
NAT has to implement this
protocol
Risk of security opening a
port to the internet

Port Control Protocol
(PCP) (BOUCADAIR;

PENNO; WING, 2014)

Port map-
ping

Direct Connection

Only works if you NAT is
connect directly to the pub-
lic internet
NAT has to implement this
protocol
Risk of security opening a
port to the internet

30

The hole punching is a way of exploring this exception, with the use of a rendezvous

server. Both clients communicate with the rendezvous server that will answer with the

external address of the target peer. After getting to know the public IP of each other,

both send messages to each other. When peer1 with Addr1:Port1 sends a message to

peer2 on Addr2:Port2, his NAT (NAT1) opens an exception, accepting outbound packets

from Addr2:Port2 because is a response to a previous request, the same can be said the

other way around. If both parties transmit messages within a given time frame, typically

a few seconds, the ability to initiate communication and exchange data between them

is established. However, since NAT implementations lack standardization, the specific

duration of this time frame is not defined. Ford, Srisuresh & Kegel (2005) goes into more

detail on how it works and tests in which case it works.

Port Mapping Protocols

Port mapping or also known as port forwarding is when an application sends a message

to the NAT that redirects a communication request to create an Addr:Port pair that

traverses the network gateway. For port mapping protocols, it is required that your NAT

is connected directly to the Internet.

Examples of these protocols are UPnP Internet Gateway Device Protocol (IGDP)

(BOUCADAIR; PENNO; WING, 2013), NAT Port Mapping Protocol (NAT-PMP) (CHESHIRE;

KROCHMAL, 2013), Port Control Protocol (PCP) (BOUCADAIR; PENNO; WING, 2014)

Universal Plug and Play (UPnP), NAT-PMP, and PCP are all networking protocols

designed to facilitate port mapping for NAT devices.

UPnP and NAT-PMP are distinct implementations of a common concept, wherein

an endpoint requests the router or NAT device to open a port for external data recep-

tion. Initially developed by Apple, NAT-PMP was later adopted as an IETF standard

(CHESHIRE; KROCHMAL, 2013), while UPnP is an ISO/IEC standard (ISO/IEC. . . , 2017).

In its RFC (CHESHIRE; KROCHMAL, 2013), NAT-PMP’s section 9 outlines the reasons for

not using UPnP, citing advantages such as simplicity, focused scope, efficiency, garbage

collection, and other attributes. Later PCP came as a successor of NAT-PMP, PCP added

support for Internet Protocol version 6 (IPv6) and additional NAT scenarios (CHESHIRE

et al., 2013).

The functional requirements of these port mapping protocols indicate that it only

works when the router is directly linked to the Internet, and not configured behind another

NAT device. Furthermore, successful implementation of this protocol is necessary on the

NAT device supporting the protocol being implemented, because the standardization of

31

Table 2: NATs’ type and relative traversal capability of STUN. Source: Wang et. al. (WANG;

LU; GU, 2006)

Class NAT 1 Type NAT 2 Type Traversal capability
1 Full Cone Any YES
2 Address or Port restricted Address or Port restricted YES
3 Symmetric Address or Port restricted NO
4 Symmetric Symmetric NO

PCP, NAT-PMP and UPnP are recent (PCP, NAT-PMP in 2013 and UPnP in 2008) it

is possible to find routers that still don’t implement these standarlizations. It is crucial to

consider the inherent security risk associated with directly exposing ports to the Internet

when utilizing this protocol, as it can leave devices and services vulnerable to potential

external threats.

Session Traversal Utilities for NAT

Session Traversal Utilities for NAT (STUN) (ROSENBERG et al., 2003) is a lightweight

protocol that allows applications to discover the presence and types of NATs between

them and the public Internet. It also provides the ability for applications to determine

the public IP addresses allocated to them by the NAT.

Wang et. al. (WANG; LU; GU, 2006) shows that STUN protocol cannot effectively

support Symmetric NAT.

Traversal Using Relays around NAT (TURN)

TURN (REDDY.K et al., 2020) allows the host to control the operation of the relay and

to exchange packets with its peers using the relay. The difference TURN provides from

other relay control protocols is that it allows a client to communicate with multiple peers

using a single relay address. TURN is used in many other protocols since using relays the

relay server needs a high bandwidth to keep relaying packets, usually, TURN is used as a

fallback in case all other protocols fail.

Interactive Connectivity Establishment (ICE)

ICE (KERäNEN; HOLMBERG; ROSENBERG, 2018) is a NAT traversal technique, it uses

heuristics to choose which protocol to use, it mixes STUN and TURN. ICE works by

exchanging a multiplicity of IP addresses and ports, which are then tested for connectivity

by P2P connectivity checks.

32

2.2.3 IPv6

IPv6 is the successor to IPv4, which is a widely used protocol for communicating over

the Internet (IETF, 1998). IPv6 was designed to address the limitations of IPv4, such as

the limited number of available addresses. This protocol introduces several new features

and improvements, such as larger address space, improved packet handling, and support

for new mobility features.

IPv4 provides an addressing capability of 232 or approximately 4.3 billion addresses.

The anticipated shortage has prompted the development of new technologies, such as

NAT. IPv6 provides many advantages for connecting devices globally compared to IPv4.

IPv6 increases the address space from 32 bits to 128 bits, allowing for an enormous

number of unique addresses. This larger address space will be crucial in the future as the

number of devices connected to the Internet continues to grow exponentially.

Secondly, IPv6 supports auto-configuration, which enables devices to configure them-

selves with an IP address without requiring manual configuration or a DHCP server.

This is particularly useful for IoT devices that are frequently added or removed from a

network. Additionally, IPv6 includes new mobility features, such as seamless handovers

between different networks and the ability to maintain connections while moving between

networks.

2.2.3.1 IPv6 vs IPv4 Performance

One pressing question to consider is whether switching to IPv6 guarantees the same

level of performance. Will the transition maintain the status quo, or will there be a

noticeable enhancement or decline in the network’s functioning?

According to Zhou et al. (2008), there are legitimate concerns surrounding the perfor-

mance and scalability of IPv6 in comparison to its predecessor, IPv4. While native IPv6

paths exhibited delays comparable to IPv4, the introduction of IPv6 tunnels significantly

prolonged these delays. Particularly worrisome were the delays tied to IPv6-in-IPv4 tun-

nels.

Several factors contribute to the scalability issues observed with IPv6:

1. Infrastructure Limitations: A network with a limited number of routers tailored

for IPv6 hardware could lead to diminished performance.

33

2. Routing Path Challenges: There’s a tendency for IPv6 to utilize suboptimal

routes, a problem accentuated when tunnels are in use.

3. Network Management Shortcomings: IPv6 networks seem to be a step be-

hind in terms of advanced management and monitoring when juxtaposed with IPv4

networks. This gap arises partly because many ISPs are more reluctant to heavily

invest in IPv6 management, and also because of the extensive operational history

associated with IPv4.

4. Priority Issues: IPv6 is sometimes relegated to a lower priority status in routers,

often viewed as a more experimental technology, thereby potentially compromising

its efficiency.

Additionally, when it comes to packet loss metrics, IPv4 still has an edge over IPv6.

It’s widely believed that both IPv4 and IPv6 will operate in tandem for an extended

period, with IPv6 tunnels facilitating the transition. But, the data suggests that an

over-reliance on these tunnels adversely affects network performance. To achieve the best

from IPv6, a blend of native IPv6 and hardware-centric routers is ideal. These findings

emphasize the need for a well-thought-out infrastructure approach, considering IPv6’s

inherent constraints, to assure a seamless and proficient network experience.

2.3 Service Discovery Strategies

Bröring, Datta & Bonnet (2016) categorizes service discovery strategies based on

where the search is done. We can categorize them as searching physically around the

device, locally on the network, or globally outside the local network.

For discoveries focused outside the local network, Ccori et al. (2016) used an agent-

based simulation to evaluate centralized, decentralized, and hierarchical networks based

on some criteria. In centralized networks, we have two agent types, the central node,

and the services nodes. Decentralized network every node is a service where they have an

average number of neighbors known by each other. Hierarchical networks have supernodes

and service nodes, every service node is connected to a supernode that is connected with

other supernodes.

Based on (CCORI et al., 2016), the hierarchical topology gives us a good balance be-

tween the criteria evaluated, since the data transmitted is not too big, only for the dis-

covery of new services, the hierarchy can be used to bootstrap communications faster,

34

similar to trackers are used on the BitTorrent protocol (WU et al., 2010). A criteria not

discussed on (CCORI et al., 2016) is that for discovery central and hierarchical solutions

have the advantages of being simpler to implement and having advanced querying and

ranking capabilities, for example, semantic querying.

One common mechanism for peer discovery is to use a tracker. When a peer joins a

torrent, it typically registers with one or more trackers. Any peer can contact a tracker at

any time to obtain a random subset (IP-port pairs) of other peers in the torrent. Today,

there are at least a dozen tracker implementations. Many BitTorrent clients also support

“distributed trackers” using Distributed Hash Table (DHT)s and Peer Exchange (PEX).

2.3.1 Distributed Registry

A distributed registry refers to a database or data storage system that is distributed

across multiple nodes in a network. In this type of system, data is stored on multiple

computers or servers instead of being stored on a single central server. Each node in

the network has a copy of the part registry and can be used to access and update the

data stored in it. This type of registry is often used in decentralized networks and is

designed to be highly available, fault-tolerant, and scalable. The main advantage of a

distributed registry is that it eliminates the need for a single point of failure and allows

for the distribution of processing and storage load across the network. One notable

drawback is the potential for increased complexity in managing data across multiple

nodes. Synchronization issues between distributed nodes may arise, leading to consistency

challenges.

2.3.1.1 Distributed Hash Table

One of the ways of providing a service for discovery and lookup is to use a DHT.

A DHT is a type of distributed system that provides a service similar to a hash table

data structure, which means key-value pairs are stored and can be retrieved. Each DHT

node has a unique identifier and is responsible to store and keep part of the key-value

of the system. When a new lookup request is made on the system, a routing algorithm

resolves which node is responsible for storing that key and sends a request to that node.

This allows efficient data storage since a central server is not needed to manage the entire

database, another advantage is that each node only needs to host part of the key-value

pairs, making it lightweight. Also, another advantage of a DHT is that nodes can be

added or removed with minimum work around re-distributing keys.

35

With the growth of decentralized networks, finding a specific resource in a scalable

manner is a real challenge. There are many works using DHTs to leverage their key-value

pairs as a way to locate a specific service (SARMADY, 2010).

Although the DHT field has not reached its full potential and lots of new research

improving DHTs was published in the last few years, we have several reliable DHT im-

plementations (STOICA et al., 2001; RHEA et al., 2003; ROWSTRON; DRUSCHEL, 2001) are

readily available. Additionally, there are multiple DHT applications that are in daily

use (FREEDMAN; FREUDENTHAL; MAZIERES, 2004; MISLOVE, 2003; RAMASUBRAMANIAN;

SIRER, 2004), and even more ideas have been proposed and/or have prototypes.

2.3.2 The BitTorrent System

In the context of BitTorrent, multiple users (peers) share files with each other. Each

peer in the swarm acts as both a client and a server, downloading and uploading pieces

of the shared files to other peers.

Understanding how scalability works on one of the most used P2P protocols proved

useful to understand and find technologies to improve the SwarmOS.

Mendes et al. (2017) made a great experimental model to assess the throughput of

P2P systems, he uses a BitTorrent client to test the throughput of the systems and

compare it with the theoretical findings of other researchers. Since the test was only

done with the BitTorrent client, only one service (content distribution) was tested, so

the work is not suited for all systems, but it shed some light on incentive strategies to

increase the scalability of the system. Silva et al. (2019) presents new results to quantify

the throughput of P2P swarming systems based on different neighbor and block selection

policies.

Piatek et al. (2007) studies whether incentives help the throughput of BitTorrent and

discover that tit-for-tat strategy works but the bulk of the performance effect in practice

is altruistic contribution on the part of a small minority of high-capacity peers. And

selfishness can hurt Swarm performance.

Stutzbach, Zappala & Rejaie (2005) shows using a modeling simulation that swarm

systems scale positively with their size, where the system capacity increases with the

number of peers participating.

Besides the tit-for-tat strategy, another way to give incentives is to give a “credit” to

all people who give more to the network, if a user doesn’t provide a reasonable ratio, he

36

can be expelled from the network. Hales et al. (2009) studied this case and showed that

a small minority of peers can obtain a large amount of credit in the system. So adding

this incentive to the system can, counter-intuitively, reduce the throughput of the whole

network due to a shortage of credit.

2.4 Cooperation Incentives

Intrinsic motivation alone may be insufficient to consistently drive resource sharing

among participants. To incentivize resource sharing among participants in a P2P network,

extrinsic motivators are necessary, Bogliolo et al. (2012) divide the forms of rewards into

three. Reputation, which improves the ranking of an individual in a group; reciprocity,

making an individual agent first cooperate in the likelihood of future mutual cooperation;

and monetization which is to assign value to services. These incentives can be viewed

as a reward to help align individuals’ utility to network utility and penalize nodes that

engage in non-cooperative behavior.

To keep users motivated to share services and resources (bandwidth, computational

power, storage space, etc.) and to avoid malicious nodes inhibiting the functioning of

the whole system it is necessary to implement incentive mechanisms. Virtual currency

is often adopted in online communities to encourage participation, but by itself doesn’t

guarantee good quality of service (risk of dishonesty), which could keep people from taking

pro-network decisions.

To reduce this risk, reputation mechanisms are commonly used in online communities.

They can be used both to boost participation and keep the quality of service.

A reputation system can play a crucial role in enhancing scalability within a net-

work by efficiently identifying and expelling bad agents. By assigning reputation scores

to agents based on their behavior and interactions, the system can distinguish between

trustworthy and untrustworthy entities. As a result, bad actors with consistently poor

performance or malicious intent can be identified and expelled from the network, thereby

preventing them from causing disruptions and reducing the overall network’s efficiency.

This proactive approach in managing agent reputations fosters a healthier and more re-

liable environment for interactions, allowing the network to scale more effectively and

handle a larger number of participants with greater resilience.

37

2.4.1 Blockchain

To make the economic and reputation aspects more challenging, the distributed nature

of these networks forces the adoption of a transparent and distributed registry to store

this transaction information. Blockchain is a decentralized and transparent ledger that

can securely store and manage transactions and data. This makes it an ideal tool for

incentivizing cooperation in decentralized networks, where trust and security are crucial.

In recent years, the research of IoT applications has become increasingly complex. To

address the hardware constraints of IoT devices and centralized models, the blockchain

and P2P approaches can provide an improvement in scalability with the development of

decentralized and data-intensive applications running on many devices.

Another way blockchain can be used as a cooperation incentive is through the creation

of token-based incentives. Tokens can be used to represent various forms of value, such

as monetary, reputation, or influence. In decentralized networks, tokens can be used to

incentivize cooperative behavior by rewarding nodes for their contributions to the network.

But one question is how the blockchain performs based on scalability. For example,

Bitcoin’s blockchain is known for requiring a long time to store and preserve the consis-

tency of the blockchain database, this blockchain has a low limit of only 7 transactions

per second (CROMAN et al., 2016). Conoscenti, Vetro & Martin (2016) did a literature

review and found some works that consider this case.

Wörner & Bomhard (2014) uses the blockchain to purchase sensor data via bitcoins.

In this work, the author says there are scalability issues due to the exploding nature of

the number of transactions. Zyskind, Nathan & Pentland (2015) comes to a similar con-

clusion. Another issue pointed out by Barber et al. (2012) is that every node should verify

each block/transaction on the blockchain, making it inviable because of the constrained

resources that IoT devices usually have.

2.4.2 Micro Economics

Incentives can also be provided in the form of monetary rewards. For example, in

a swarm network nodes that provide high-quality service are rewarded with monetary

compensation. This incentivizes nodes to provide high-quality services, ensuring that the

network operates efficiently and effectively. Also, by providing a financial incentive for

individuals or organizations to invest their time and resources into the development of

new products or services, monetization can help drive innovation and spur technological

38

advancements.

By providing tangible benefits for cooperative behavior, monetization systems create

an incentive for individuals to actively participate and contribute to the community. By

generating revenue through usage, these systems provide a source of funding for continued

development, maintenance, and growth. This, in turn, can attract new members and

encourage further investment, leading to a virtuous cycle of growth and cooperation.

Biase et al. (2018) proposed a swarm microeconomy model for digital resource sharing

that works for large-scale networks while fulfilling constraints created by the presence of

low-resource devices. A blockchain-based transaction was developed for transparent and

immutable currency audit thereby ensuring trading among untrusted users.

2.4.3 Reputation

Monetization by itself may not be enough to have a scalable network. In the work

(BJERKNES; WINFIELD, 2013) on swarm robotics, the addition of fault agents can lower

the overall system reliability. To earn money/tokens/coins the agent can have a low

quality of service to improve their own profit.

Reputation systems play a crucial role in incentivizing cooperation in online communi-

ties by creating a mechanism for individuals to publicly display and build their trustworthy

behavior, thus leading to a more harmonious and productive environment.

In networks, reputation systems serve as a crucial tool to establish trust and incen-

tivize cooperation among participants. Reputation systems mitigate the likelihood of

fraud by providing a public record of an individual’s past behavior, allowing others to

make informed decisions about interacting with them.

Reputation systems also provide incentives for individuals to engage in cooperative be-

havior by allowing them to build a positive reputation and increase their visibility within

the community. This can lead to increased opportunities for transactions, as well as im-

proved relationships with other members. On the other hand, individuals with a negative

reputation face consequences such as reduced visibility and a decrease in opportunities

for transactions.

Combining economical and reputation-based incentives we can benefit from comple-

mentary strengths to overcome their weaknesses. Together, these incentives can create a

positive feedback loop where individuals are motivated to engage in cooperative and prof-

itable behavior, leading to increased network activity, and improved overall trust in the

39

platform. By combining economic and reputation-based incentives, online marketplaces

can create a more efficient and trustworthy environment that benefits all participants.

2.5 Privacy

When building a network, a common approach is to create a centralized service to

govern interactions, manage identities, and query the network. However, as the network

grows, this centralized approach can become a burden. The centralized service becomes a

single point of failure, and with its expansion, it can become unable to handle the increased

traffic and demand. This can lead to slow response times, outages, and frustrated users.

Because of that, a question that arises is, can swarm agents control their own identity

and coordinate their interactions without having it stored and managed by a centralized

third-party? One advantage of a decentralized approach is that it can be more scalable

and reliable. As the network grows, new nodes can be added to the network without

overwhelming the existing infrastructure. Additionally, there is no single point of failure,

so the network can continue to operate even if some nodes fail or are taken offline.

To solve access control security, Attribute-Based Access Control (ABAC) offers a

promising solution to address these concerns by providing a flexible, scalable, decentralized

and fine-grained access control mechanism.

And to solve the identity management problem, a solution is to use Self-Sovereign

Identity (SSI). SSI is a digital identity model that aims to give individuals full control

over their personal data and identity information, empowering individuals with control

over their own digital identities in the context of IoT ecosystems. SSI enables individuals

to securely manage and share their personal information with IoT devices and services

without relying on centralized authorities.

2.5.1 Attribute-Based Access Control

With the anticipated substantial increase in the number of consumer electronics de-

vices per person (STANKOVIC, 2014), the protection of consumer electronics devices re-

quires the implementation of access control mechanisms. Ensuring that only authorized

entities can access specific devices becomes crucial. This becomes particularly challenging

in scenarios like swarm, where users possess hundreds or thousands of devices at home,

making the management of authorizations between these devices a usability challenge

(LEE; KIM, 2017).

40

Access Control is vital in the Swarm, ensuring confidentiality, ownership, and protec-

tion against cyber-attacks by permitting only authorized communication.

When considering the implementation of access control in the context of IoT, tra-

ditional approaches like Access Control Lists (ACL) (e.g., (WANG et al., 2015; GA LKA;

MASIOR; SALASA, 2014)) and Role-Based Access Control (RBAC) encounter challenges

related to scalability and manageability (HU et al., 2013).

Applying ABAC in Swarm systems provides a powerful and versatile approach to ad-

dress the security and access control challenges prevalent in these complex environments.

ABAC offers granular control over access decisions by considering various attributes such

as user roles, device characteristics, location, and time. In Swarm systems, ABAC can

play a crucial role in device authentication and authorization, ensuring that only trusted

devices are granted access to the network and its resources. ABAC also enables fine-

grained control over data and resource access, allowing administrators to define access

policies based on attributes like data sensitivity, user context, and device capabilities.

This facilitates efficient sharing and utilization of Swarm data while ensuring privacy and

confidentiality. Real-time adaptation of access control policies in response to dynamic

changes in the Swarm environment becomes possible with ABAC, providing scalability

and flexibility.

Additionally, ABAC in Swarm systems enables centralized policy management and en-

forcement, simplifying administration and reducing the complexity associated with man-

aging access control in large-scale deployments. The integration of ABAC in Swarm sys-

tems promotes robust security and helps mitigate the risks associated with unauthorized

access, data breaches, and malicious activities, ultimately enhancing the overall trust and

reliability of Swarm ecosystems.

In Fedrecheski et al. (2018), the author proposes an ABAC policy system that en-

ables effortless policy creation and distribution across devices, eliminating the need for a

centralized authorization server.

2.5.2 Self-Sovereign Identity

SSI is a digital identity model that aims to give individuals full control over their per-

sonal data and identity information (TOBIN; REED, 2016). In traditional identity systems,

such as those used for online services or government-issued IDs, a third party is usually

responsible for verifying and storing the identity data. However, in an SSI system, the

41

individual is the sole owner and controller of their identity data, which is stored on a

decentralized network of nodes.

This decentralization allows for increased privacy, as personal data is not stored in

a central location vulnerable to hacking or data breaches. SSI also allows for greater

portability and interoperability of identity data, as individuals can choose which pieces of

their identity to share with different organizations, without needing to rely on third-party

verification.

To achieve SSI various technologies such as blockchain, public key cryptography, and

Decentralized Identifier (DID) standards are used to create a secure, decentralized network

that enables individuals to control their identity information. The goal of SSI is to create

a new paradigm of identity that empowers individuals with greater control, privacy, and

security in their online interactions.

42

3 METHODOLOGY

This research is designed as a study case of the SwarmOS scalability. It suggests and

evaluates scalability strategies for edge based, decentralized, open IoT networks of devices.

The research uses a mixed research method, relying mostly on quantitative approaches

for the scalability analyses, designing new tools to support data gathering.

Data will be collected through simulations and experiments using IoT testbeds. These

testbeds will replicate real-world Swarm scenarios to capture performance metrics and

scalability characteristics. Additionally, qualitative analyses become necessary when sim-

ulations and experiments cannot achieve the required scale.

The study explore various iterations of the SwarmOS case, suggesting and implement-

ing improvements. Specifically, SwarmOS 0.2.3 undergoes a scalability evaluation, leading

to proposed enhancements that are subsequently implemented and rigorously tested

The SwarmOS scalability tests were conducted using a tailored-made framework, the

Edge-computing IoT Testing framework, since the state of the art testbeds have

limitations. For example, in many works, these platforms were purpose-built for par-

ticular use cases, often specialized to a singular protocol, network architecture, and/or

data pipeline. Consequently, adapting these tools to work in different use cases can be

laborious. Given the requirements of SwarmOS, which necessitates a platform capable

of accommodating a wide array of protocols, architectures, and devices, the development

of a novel framework with a strong emphasis on flexibility became imperative. The new

framework is proposed and is presented in subsection 4.

The scalability analysis is conducted considering four aspects: (1) connection, (2)

discovery, (3) fairness, and (4) privacy.

43

3.1 Connection

The connection tests were designed to analyze scalability regarding connections within

the Swarm network. Specifically will be tested: connectivity through varied network

environments, and concurrent connections capability.

3.1.1 Testing Device Interactions in Varied Network Environ-
ments

This test has the goal to determine whether the swarm broker can effectively manage

connections across different networks.

Testbed Setup

The setup comprises a physical testbed, where physical devices are distributed across

multiple types of networks, each with distinct configurations.

Performance Metrics and Data Analysis

The study was designed to measure the efficacy of communication between devices,

which were pre-programmed with each other’s service descriptions, across a wide range

of network environments, from direct connections to public internet and home networks

situated behind NATs.

Experimental Design

The test consists of 2 Labrador 64bit boards 1 from Caninos Loucos that were located

in different networks. These were real commercial networks, physically separated and

different ISPs. The first test was behind a working commercial NAT, while the subsequent

test occurred on an internet infrastructure prepared for IPv6 connectivity. Each board has

a broker and a dummy temperature service, while one of the boards also runs a blockchain

agent. The test begins with both boards being aware of each other’s service description,

and they subsequently sought to use each other’s service.

The test aims to determine if both devices can initiate a connection and successfully

request temperature data, while also assessing the communication performance for any

significant inefficiencies stemming from bugs or errors. However, a direct comparison of

post-communication latency or delay was not conducted, as the modification of protocols

like UPnP was expected to have an insignificant impact on measures such as delay or

1https://caninosloucos.org/en/labrador-64-en/

44

packet loss.

Scalability Evaluation

The evaluation of scalability was performed by measuring the error rate, assessing the

frequency of errors and mistakes encountered during the setup and development phases.

Ethical and Security Considerations

The use of certain network protocols introduces security issues, especially if these pro-

tocols lack robust encryption, authentication, or authorization mechanisms. Vulnerabili-

ties in poorly implemented or outdated protocols could potentially lead to unauthorized

access, data breaches, and other security threats.

For example, the use of the UPnP protocol raises security considerations due to its

inherent openness and simplicity, which exposes devices to potential vulnerabilities and

unauthorized access. Security measures, such as proper authentication, encryption, and

access control mechanisms, need to be carefully implemented to mitigate these risks and

ensure a robust and secure IoT environment.

The researchers owned all the devices, data, and network involved in the experimen-

tation, ensuring full control and compliance with ethical standards. Moreover, the testing

phase was conducted without exposing any risks to individuals or external entities, prior-

itizing the safety and privacy of all stakeholders involved.

Limitations

P2P connections, harnessing a diverse array of network protocols, are instrumental for

facilitating effective communication in the dynamic and diverse P2P environment. Despite

the test being conducted with a restricted number of devices across a few networks, it

yielded valuable insights. The focus on 1-to-1 connections within the network composition

allowed for a targeted examination, offering significant insights into the performance and

adaptability of protocols in specific scenarios. This deliberate approach ensures that the

test remains valid, providing nuanced understanding and paving the way for potential

adaptations tailored to specific network configurations.

3.1.2 Concurrent Connection Capacity Test

This test has the goal to determine the maximum number of simultaneous connections

a swarm broker can handle without degrading performance or experiencing failures.

Testbed Setup

45

The configuration involves the Edge-computing IoT Testing framework, further

described in Section 4, ensuring all devices are interconnected within a unified network.

This network features a single consumer and several providers. The objective of the test

is to ascertain whether one broker can simultaneously communicate with several others

without encountering any failures.

Performance Metrics and Data Analysis

The test will measure several critical metrics, including the maximum number of

simultaneous connections the broker can manage, the consumption of resources - CPU,

memory, and bandwidth - at different connection thresholds, the response times observed

at these levels, and any recorded error rates or instances of connection drops. After the

test, it’s essential to pinpoint the count of connections when the broker starts showing

strain, marking it as its maximum capacity. The collected data will be analyzed to identify

patterns in resource usage as connections escalate. Additionally, an assessment will be

conducted to determine if the broker faces particular resource constraints, such as being

CPU-bound or memory-bound.

Experimental Design

During the initial setup, the process begins by taking a baseline measurement when the

swarm broker has no client connections. This stage also involves the careful monitoring

and documentation of the broker’s initial resource consumption, including metrics like

CPU, memory, and bandwidth usage.

As we proceed to the incremental connection phase, connections to the swarm bro-

ker are initiated in a phased manner. This might involve batches of connections, which

is contingent on the anticipated capacity. Following the establishment of each of these

connection batches, there’s a need to consistently monitor and log both the resource con-

sumption and the broker’s response times. Concurrently, it’s essential to remain vigilant

for any occurrences of connection interruptions, potential timeouts, or any errors that the

client nodes might experience.

The subsequent phase is the determination of the stress point. Here, the objective

is to continuously ramp up the number of concurrent connections. The progression halts

when the swarm broker demonstrates any of the following: a pronounced decline in its

performance, such as heightened latency or diminished throughput; a tendency to decline

fresh connection attempts; or a marked rise in error occurrences or connection disruptions.

Scalability Evaluation

46

The expected result is to have a distinct understanding of the threshold for concurrent

connections, beyond which the performance of the swarm broker begins to diminish.

Gaining this insight is crucial for comprehending the scalability potential of the broker.

Moreover, this knowledge can steer decision-making processes concerning load balancing

or the clustering of brokers, especially in expansive setups.

Ethical and Security Considerations

All data, devices, and networks employed in this experiment were simulated, avoiding

the need for ethical and security considerations.

Limitations

Although conducted entirely in a virtualized environment, this test holds significance

due to the fact that the same code can be utilized between virtualized and physical

devices. This consistency is a key strength, bolstering the test’s reliability in uncovering

bugs, limitations, or unexpected behaviors across diverse scenarios. The uniformity in

code implementation ensures that the insights gained from the virtualized environment

are highly applicable to real-world situations, making the test a robust and valuable

component of the overall evaluation process.

3.2 Discovery

The discovery tests were designed to evaluate the potential of finding resources in

the Swarm network. These tests aimed to gauge the efficiency and effectiveness of the

discovery process in identifying and accessing resources distributed across the network.

Conducting discovery tests posed unique challenges as the existing testbeds in related

works were tailored to scenarios where sensors possessed prior knowledge of each other or

communicated through a central node. However, the Swarm requires a more decentralized

approach, where such assumptions were not feasible, prompting the need for a new testbed

that offered enhanced flexibility. To accommodate this scenario, tests were conducted

using our tailored-made framework, the Edge-computing IoT Testing framework, further

described in Section 4.

3.2.1 Caching Performance Test

The goal is to measure and compare if the discovery is caching the correct endpoint

for the next connection.

47

Testbed Setup

The setup utilizes a virtualized testbed designed to ensure that devices operate with-

out being interlinked within a singular network. Within this network structure, there’s

one primary consumer and multiple providers. The test aims to determine if a consumer

can effectively memoize the correct endpoint and subsequently use it for a second request.

Performance Metrics and Data Analysis

Performance metrics will be a comparison of the time it takes to establish a successful

transaction before and after the implementation of a caching mechanism. This caching

mechanism memoizes the endpoint that worked during the last transaction, thus circum-

venting the need to attempt every endpoint sequentially each time a new transaction is

initiated.

If work to note that caching will not improve the first request, but subsequently

requests that can happen if the consumer chooses to use the same provider.

The data analysis takes into consideration the position of the first functioning end-

point in a service list and the corresponding time taken to resolve the endpoint. The

findings clearly illustrate the increased operational efficiency and time savings achieved

with the incorporation of caching, solidifying its value in streamlining transactions within

SwarmOS.

Experimental Design

Using the proposed testbed framework, this network can establish a controlled envi-

ronment, considering various network configurations and topologies. The discovery system

under evaluation would be deployed in this testbed, and data collection would commence

with various discovery tests conducted under different scenarios and load conditions.

In this study, diverse devices, represented as Docker containers, were established and

allocated across various networks within the testbed. The detailed explanation of the

SwarmOS discovery algorithm is later provided in Section 5.2. Subsequently, the devices

were tasked with identifying a list of agents of type “SwarmCamera”, and the resulting

log traces were meticulously examined, leading to the identification and resolution of any

encountered bugs.

Scalability Evaluation

The discovery phase is identified as a significant portion of the transaction duration.

To evaluate the impact of caching on this process, we will measure and compare the

48

time taken to identify the correct endpoint both before and after the implementation of

caching. This comparison will provide insights into the efficiency gains achieved through

caching in the system’s endpoint discovery.

Ethical and Security Considerations

All data, devices and networks were 100% simulated and adhered to ethical standards

throughout the experimentation.

3.2.2 Network Knowledge Enhancement Test

The goal is to determine if a device, after making several requests within the P2P

network, enhances its knowledge of the network and can discover devices it failed to find

previously. Essentially, it aims to understand whether interactions within the network

help a device to increase its awareness of other nodes, leading to more comprehensive

network connectivity and understanding.

Testbed Setup

For the Network Knowledge Enhancement Test, the environment constitutes a Swarm

network with a predetermined number of nodes, each with varying connectivity levels.

Some nodes are intentionally designed to be elusive during discovery. The primary de-

vice under scrutiny, termed as the test device, will gauge the expansion of its network

awareness.

Experimental Design

Initial Discovery Phase: With no pre-existing knowledge or stored data, initiate the

test device’s network discovery.

Interaction Phase: Initiate transactions to discover new agents within the same net-

work and store this interaction data in their local cache.

Enhanced Discovery Phase: Verify if, after gaining knowledge about more agents

beyond its own network, subsequent searches yield improved results.

Performance Metrics and Data Analysis

Key metrics include the tally of nodes identified during the initial phase versus the

enhanced phase, along with a compilation of newfound nodes during the enhanced dis-

covery. Data assessment involves contrasting the initial and enhanced lists of discovered

nodes, emphasizing any novel nodes found exclusively in the enhanced stage.

49

Scalability Evaluation

The expected outcome anticipates that with an increase in network knowledge through

prior interactions, the device will demonstrate a clear ability to identify a higher number

of nodes, especially those that were previously challenging to detect, during the enhanced

discovery phase compared to its initial attempt.

Ethical and Security Considerations

All data, devices, and networks used were entirely simulated, with strict adherence

to ethical standards throughout the research. Moreover, we meticulously carried out the

testing phase to ensure safety and privacy.

Limitations

Despite the constraints posed by the limited number of devices, the network discovery

test remains a valuable tool in our evaluation toolkit. The inherent limitation in device

quantity does not negate the test’s effectiveness. The test actively contributes to our ac-

ceptance testing process by identifying and flagging areas that may require enhancements.

This proactive approach leads us to possible limitations in network knowledge, ultimately

advancing to a more refined and robust system.

3.2.3 Query Discovery vs Cache-Assisted Discovery Time Test

The goal is to measure and compare the time taken for two nodes to establish a

connection using a query and when they have prior knowledge of each other.

Testbed Setup

A Swarm virtual network equipped with multiple agents.

Test Nodes: Two specific nodes, Node A and Node B, selected for assessing connection

establishment.

Experimental Design

In the Query-Assisted Connection Phase, start Node A and Node B, ensuring they

have no prior information about each other. From Node A, send a query to the network

and make sure Node B responds to it. Then, record the duration from the start of the

request to the end of the whole transaction.

In the Cache-Assisted Connection Phase, make sure Node A and Node B already

know each other’s network details from previous interactions. Then, have Node A initiate

50

a direct connection to Node B. Finally, calculate the duration it takes from the beginning

of this direct request until the connection is successfully established.

Performance Metrics and Data Analysis

Metrics:

• Duration for cache-assisted connection.

• Duration for query-assisted connection.

Data Analysis: Evaluate the connection times from the two phases to confirm the

faster method and its margin of efficiency.

Scalability Evaluation

Query Discovery typically requires more time and resources as it involves actively

seeking out nodes in the network for every request, which can become inefficient as the

network grows. On the other hand, Cache-Assisted Discovery leverages stored information

about previously discovered nodes, potentially offering quicker and more efficient discovery

processes, especially in larger networks.

Ethical and Security Considerations

All data, devices, and networks used were entirely simulated, with strict adherence

to ethical standards throughout the research. Moreover, we meticulously carried out the

testing phase to ensure safety and privacy.

3.3 Fairness

This test was designed to evaluate if the reward system is effective to achieve fairness

in the network, i.e. good service providers and service consumers are rewarded and the

malfunctioning or malicious ones deterred from interacting with peers in the network.

3.3.1 Reputation Test

Testbed Setup

An analysis of a reputation system in a simulation can provide valuable insights

into how such systems function in a controlled environment and identify any potential

strengths or weaknesses. By testing the reputation system in a simulated setting, we

51

can analyze its behavior under various scenarios, such as different levels of cooperation,

different types of transactions, and different numbers of participants. This can provide

a deeper understanding of the interplay between individual behavior and the reputation

system and allow for a systematic evaluation of the system’s effectiveness.

Using the testbed proposed in this work, multiple test cases encompassed various types

of bad actors within a network. These bad actors, acting individually or collaboratively,

sought to gain unfair advantages over other nodes or the entire network. Through com-

prehensive experimentation, we closely observed the network dynamics, analyzing how

these bad actors affected the overall performance and security.

The test simulates both providers and consumers, utilizing a machine equipped with

an Intel(R) Core(TM) i7-3632QM CPU @ 2.20GHz and 16GB of RAM. To maintain

consistency, a ratio of 80% devices acting as providers and 20% devices as consumers will

be employed throughout the testing. It is important to note that the chosen ratio was

selected in an arbitrary manner for the purpose of the experiment.

The test was conducted with a total of 41 simulated devices, comprising 32 providers,

8 consumers, and 1 blockchain payment system.

Performance Metrics and Data Analysis

The performance metrics used is the number of interactions among undesirable peers

with regular peers until the undesirable peers are deterred from interactions in the net-

work.

The Data Analysis is done generating graphics with the number of interactions in the

x axis and the reputation of actors in the y axis. Lines with the reputation mean of each

kind of actor are presented. A threshold line is also presented showing the exclusion of

the undesired actors from the network.

Experimental Design

With the testbed proposed in this work, 6 test cases will be simulated with different

types of undesirable actors to create a robust analysis of a reputation system in a sim-

ulation. These test cases vary the proportion of bad actors and good actors to evaluate

the network’s ability to detect and respond to adversarial behavior, thus enhancing its

robustness and trustworthiness.

The identification of particular malicious actors was built upon the work (GUO; CHEN;

TSAI, 2017). Furthermore, in addition to malicious actors, the actors with low quality of

service were also considered.

52

The use cases are:

1. Providers with Invalid HTTP responses: this use case is composed by regular

Consumers, and Providers that are part regular, and part providing invalid HTTP

responses. This Provider with invalid HTTP responses represents actors that are

malfunctioning or that are fraudsters, i.e. they receive the payment but do not

provide the service. Servers initially operated correctly but experienced crashes and

generated erroneous HTTP responses after five requests

2. Providers with slow response time: this use case is composed of regular Con-

sumers, and Providers that are part regular, and part providing slow response time.

This provider with slow response time represents a peer with poor quality of service

due to processing or communication limitations. Servers initially operated correctly,

but after five requests, started to present slow response times.

3. Providers doing on-off attack: this use case is composed of regular Consumers,

and Providers that are part regular, and part are malicious by providing on-off

attack. This provider is modeled by answering invalid HTTP responses randomly,

representing a provider that sometimes does not provide the service after receiving

the payment.

4. Providers doing opportunistic on-off attack: this use case is composed of

regular Consumers, and Providers that are part regular, and part are malicious

by providing on-off attack. This provider is modeled by answering invalid HTTP

responses, until its reputation is near to the selection threshold, then it starts offering

good quality of service to improve its reputation, operating with the reputation

above, but close to the selection threshold.

5. Gang attack: this attack is composed of both providers and consumers. Con-

sumers do self-promoting attacks, that are represented by giving the highest repu-

tation points to the providers that are part of the gang independently of having a

service actually provided. Consumers also do the bad-mouthing attacks, that is im-

plemented as providing bad evaluation of providers outside the gang independently

of the quality of service provided. The providers part of the gang do fraudster at-

tack, that is receiving the payment without providing the service. This way, they

try to keep a good reputation by the evaluations of the consumers that are part of

the gang.

53

Table 3: Details of the participants of the experiment

Use Case Type Description Provider Consumer

1 Malfunctioning
Provider

Providers with
Invalid HTTP
responses

Invalid HTTP -

2
Providers with
slow response time

Slow response time -

3 Malicious
Provider

Providers doing
on-off attack

On-off attack -

4
Providers doing
opportunistic
on-off attack

Opportunistic attack -

5
Gang Attack

Gang attack Fraudster attack
Self-promoting attack
+ Bad-mouthing attack

6
Opportunistic
gang attack

Opportunistic
on-off attacks

Self-promoting attack
+ Bad-mouthing attack

6. Opportunistic gang attack: this attack is composed of both providers and con-

sumers. Consumers do self-promoting attacks, that are represented by giving the

highest reputation points to the providers that are part of the gang independently

of having a service actually provided. Consumers also do bad-mouthing attacks,

that are implemented as providing bad evaluation of Providers outside the gang

independently of the quality of service provided. The Providers part of the gang

do on-off attacks, This provider is modeled by answering invalid HTTP responses,

until its reputation is near to the selection threshold, then it starts offering good

quality of service to improve its reputation, operating with the reputation above,

but close to the selection threshold.

The use cases are outlined on Table 3.

Tests were conducted with agents with undesirable behavior in varying quantities,

specifically using 12.5%, 25%, and 50% of providers and/or consumers, ensuring a com-

prehensive analysis of the reputation system’s performance.

The experiment involved a single miner, 8 consumers, and 32 cameras. All running in

a single network inside the Edge-computing IoT Testing framework. The choice of

a single network was deliberate, as the objective was to assess fairness rather than testing

connector or discovery mechanisms. A namespace was defined to facilitate understanding

each camera’s role, where camera1 to camera32 represented well-behaved cameras, while

camera33 and beyond simulated malfunctioning or malicious cameras.

The data collected was the whole reputation blockchain, where we can plot the reputa-

tion of each camera service on the block number, where block number is the chronological

order of the block’s inclusion in the reputation blockchain. By analyzing these values, we

54

can see if consumers stop using malfunctioning providers.

Scalability Evaluation

This test identifies the number of interactions between undesirable peers with regular

peers until the undesirable peers are deterred from interactions in the network. The

scalability analysis extrapolates the results doing a theoretical analysis of its implications

in a big global network of billions of devices.

Ethical and Security Considerations

Ethical and security considerations were not applicable in this study, as all data was

simulated and confined to a single computer. Consequently, the data exchanged during

the experiment was entirely fabricated and presented no real-world implications or risks.

Limitations

This work addresses only specific types of attacks against the network, and it is

essential to acknowledge that new types of attacks emerge unpredictably in the future.

As the threat landscape continuously evolves, further research and proactive measures are

imperative to counter potential novel attack vectors effectively.

This limitation, rather than detracting from the validity of the test, highlights the

forward-thinking nature of the study. The ongoing evolution of the threat landscape

necessitates a flexible testbed paired with continuous research and proactive measures,

emphasizing the relevance and timeliness of this work in addressing current and potential

future attack vectors.

3.4 Privacy

The privacy tests were designed to evaluate the device’s potential to govern interac-

tions in a decentralized and autonomously way, inside the Swarm network. These tests

aimed to gauge the efficiency and effectiveness of the authentication process in evaluating

and allowing resources distributed across the network.

This limitation, rather than detracting from the validity of the test, highlights the

forward-thinking nature of the study. The ongoing evolution of the threat landscape

necessitates a flexible testbed paired with continuous research and proactive measures,

emphasizing the relevance and timeliness of this work in addressing current and potential

future attack vectors.

55

3.4.1 SmartABAC Performance Test

Testbed Setup

SwarmOS incorporates a dedicated privacy module that integrates an ABAC system

and a SSI framework. The ABAC system allows for fine-grained control over access

to resources based on attributes, while the SSI empowers users to control their own

identity data. As part of our testing process, we indirectly assess the privacy module’s

functionality and effectiveness while conducting various other tests on SwarmOS. These

tests indirectly evaluate how the privacy module performs under different scenarios and

interactions within the SwarmOS ecosystem.

Performance Metrics and Data Analysis

The study aimed to assess the execution time among different ABAC models, including

open-source models like Policy Machine (PM), Hierarchical Group and Attribute-Based

Access Control (HGABAC), and Extensible Access Control Markup Language (XACML).

The comparison involved evaluating Time to Evaluate Policies, Policy Size, and Lines of

Code.

Additionally, the second test focused on the performance of two SmartABAC imple-

mentations across four distinct devices. The results demonstrated the functionality of

SmartABAC on different platforms.

Experimental Design

In the initial phase of the test, where we compared SmartABAC with other open-

source models, we gauged the total time, in milliseconds, required to evaluate a single

request against three different policies, repeated 3000 times. These assessments were

conducted on a laptop equipped with a 1.8-GHz quad-core CPU and 8 GB of RAM.

Additionally, we conducted a comparative analysis of policy sizes and lines of code for the

implementation of these policies.

Moving on to the second part of the test, which focused on the performance of

SmartABAC across various platforms, we considered a spectrum of devices. These ranged

from non-constrained devices like a commercial laptop and a Labrador (a single-board

computer) to constrained devices such as the ESP32 and Pulga, consisting of microcon-

troller units (MCUs) running bare-metal software.

Scalability Evaluation

This testing approach allows us to discern whether the policy system might become

56

a bottleneck in the system’s scalability. By repeatedly assessing the time required to

evaluate requests, the study aims to gauge how well the policy system scales as the

transaction volume increases. This measurement becomes crucial in scenarios where the

policy system’s efficiency directly influences the speed and responsiveness of the entire

transaction process.

Ethical and Security Considerations

All information, devices, and networks employed were completely simulated, and the

experiment adhered rigorously to ethical standards at all stages.

Limitations

This study focuses on a specific aspect of the process rather than conducting a com-

prehensive integration test of the entire transaction. It provides a preliminary insight into

the system’s functionality but acknowledges the necessity for additional tests to validate

scalability under more realistic deployment conditions. The focus on a particular aspect

allows for a detailed examination, providing valuable insights into how enhancements in

one part of the system can positively impact the entire process.

57

4 EDGE-COMPUTING IOT TESTING

FRAMEWORK

As mentioned before, a new testbed framework was proposed because other works had

frameworks tailored for a single use case, architecture or protocol. A new flexible testbed

was proposed to cater to the diverse and ever-expanding landscape of IoT applications.

The proposed testbed framework is designed to be versatile and adaptable, capable of

accommodating different use cases, network architectures, and communication protocols

within the IoT domain.

This chapter presents the proposed approach to create a general framework for testing,

working as an intermediate step between idealization and physical tests. This framework

is designed to be as flexible as possible, and to be open to measure various parameters of

the system such as performance, realism, ease of deployment, and scalability. The next

step would be to implement several test cases for testing the scalability of the swarm

computing-based system. These techniques will be chosen based on their relevance to the

swarm computing domain and their ability to measure the scalability of the system.

The implementation and testing of these techniques will be carried out within the

testbed framework developed in the first step. This approach will help to provide a

comprehensive understanding of the scalability of the Edge-computing IoT testing

framework and will help to identify the strengths and weaknesses of the system. The

results of the testing will be analyzed and presented in a structured manner, with recom-

mendations for further improvements to the system. This approach will provide a solid

foundation for improving the scalability of swarm computing-based systems.

4.1 Docker/Virtualization

Virtualization creates a virtual machine that runs on top of the physical hardware,

which provides isolation and compatibility for different operating systems. Containers, on

the other hand, are a lighter-weight method of virtualization that allows multiple isolated

58

applications to run on a single host machine, sharing the underlying operating system. The

main advantage of containerization is that it reduces overhead, allows for better resource

utilization, and makes it easier to deploy, scale, and manage applications. Additionally,

containers provide a portable and consistent environment for applications, making it easier

to move applications between different environments, such as development, testing, and

production.

Docker is a lightweight virtualization tool that can completely encapsulate an appli-

cation and its dependencies within a virtual container. The application provides a control

interface between the host OS and the application’s containers. Many research efforts are

being directed to joining the Docker advantages with IoT (KAO, 2020).

Containers can communicate between themselves using the Docker networks, a Docker

network uses a software bridge that allows containers connected to the same bridge net-

work to communicate while providing isolation from containers that are not connected

to that bridge network, so the developer has control over which containers are connected

and how they are connected, creating the topology as flexible as wanted.

In this work, Docker was selected as the preferred technology due to its well-established

track record, flexibility, and extensive array of add-ons tailored to support various net-

work architectures, communication protocols, and measurement software. The decision

to employ Docker as the underlying framework was driven by its proven reliability and

the versatility it offers, allowing for seamless adaptation to diverse IoT scenarios and

facilitating efficient experimentation with different configurations and tools.

A strategic choice was made to incorporate multiple applications within a single con-

tainer, this decision was taken for two reasons. Firstly, this approach was adopted to assess

the resource competition that arises when encapsulating various microservices within a

single IoT device. Secondly, the use of Docker runtime options facilitated the emulation

of device CPU and memory constraints, allowing for comprehensive simulations and eval-

uations of resource limitations that occur in real-world IoT environments. (RUNTIME. . . ,

2021).

Furthermore, to facilitate multi-Docker environments, Docker-compose serves as a

valuable tool for constructing and executing multi-container Docker applications. By en-

abling users to define an application’s services, networks, and volumes in a single file,

known as a docker-compose.yml file, this tool streamlines the process of creating and

starting all specified services with a single command, thus minimizing the time and ef-

fort required to manage intricate applications. Consequently, the utilization of Docker

59

Table 4: Characteristics of testbeds methods

Fidelity Cost Setup Time
Physical High High High
Emulated Medium Medium Medium
Simulated Low Low Low

in conjunction with Docker-compose offers the advantage of efficiently running a group

of containers, simplifying the tasks of container creation, removal, and updates, thereby

enhancing the scalability of the testing process for a greater number of devices and appli-

cations.

4.2 Testbed

Considerable research efforts are currently dedicated to the testing of emerging IoT

architectures. Such research can be categorized into three primary methods, physical,

emulated, and simulated testbeds. Table 4 compares testbeds based on fidelity, cost

and setup time.

Physical testbeds use real devices to do experimentation-based prototyping. The idea

is to create a platform where we connect these devices like we were connecting in the real

world and use them to test if the real platform will work. This type of testbed provides

a practical and realistic simulation of how these devices and technologies would work

in a real-world scenario, allowing researchers and developers to test their theories and

ideas in a controlled environment. They are essential for evaluating and optimizing the

performance of IoT systems and can be used to identify and resolve any issues that arise

during the development and deployment process.

Emulated testbeds use an emulator to mimic the hardware behavior. Emulators are

software tools designed to mimic all the essential hardware features of actual devices,

thereby facilitating the simulation of one system’s behavior at the hardware level to

resemble that of other devices during testing. This type of testbed provides a controlled

and isolated environment for experimentation, without the need for expensive and complex

physical hardware.

Simulated testbeds employ device models to replicate the behaviors of complete sys-

tems, wherein one or more models of devices are employed to specifically target particular

aspects of the platform. This testing approach involves the creation of computer mod-

els and algorithms that simulate the behavior and interactions of devices, networks, and

60

protocols, mirroring real-world scenarios. By utilizing such simulated environments, re-

searchers can systematically evaluate and analyze the performance and functionalities of

IoT architectures, without the need for physical implementation, enabling efficient and

controlled experimentation in a virtual yet realistic setting.

4.2.1 Physical Testbeds

Physical testbeds use real devices to perform tests. They present the advantage of a

highly accurate view of the system depending on the number of devices used and they

provide a degree of realism that simulations cannot achieve (NORDSTRÖM et al., 2007).

But the drawbacks are the cost and difficulty to set up a real IoT testbed, and with

the quick evolution of IoT hardware, it’s safe to assume that they will be outdated fast.

These drawbacks can be lessened with the use of open-testbeds, they are readily available

and deployed hardware and networks for experimentation, if you wanna use an open

testbed, you have to check some characteristic criteria to choose with a testbed to use

(CHERNYSHEV et al., 2018), below are some example criteria.

1. Scale – Maximum size of devices supported by the testbed.

2. Environment Type – Practical applicability (smart city, structural monitoring, low-

level protocols, etc.).

3. Communication Protocol – Which protocols are supported by the testbed.

4. Mobility – If mobility is tested too on the testbed.

Several large-scale testbeds have been deployed in recent years, many with a specific

focus. Some examples are the FIT IoT-LAB (ADJIH et al., 2015) in low-level protocols,

SmartSantander (SANCHEZ et al., 2014) in smart cities, Web of Things TestBed (WoTT)

(BELLI et al., 2015) in Web of Things, JOSE (TERANISHI et al., 2016) in structural moni-

toring and many others.

4.2.2 Emulated Testbeds

Emulators are a middle ground between physical and simulated testbeds. The exper-

imenter can use real code to emulate the behavior of a device or the whole network while

emulating the hardware behavior too. The drawbacks are that you need an emulator for

each type of device, being harder and harder to test in such a heterogeneous environment.

61

Many emulators are being developed, for many OSs. Cooja (ÖSTERLIND, 2006) is an

extensible Java-based emulator developed for ContikiOS devices. The code to be executed

by the node is exactly the same as you upload to physical nodes.

MAMMotH (LOOGA et al., 2012) is a large-scale IoT emulator, is able to emulate

thousands of devices per Virtual Machine, whose architecture presumes three distinct

scenarios, namely:

• mobile devices connected via GPRS to a base station forming a star topology

• a stand-alone WSN connected to a base station via GPRS

• constrained devices (e.g. sensors) connect to proxies, which in turn connect to the

backend

4.2.3 Simulated Testbeds

Between all types of tests, simulated testbeds are the best scaling, the models are

simplified versions of devices, so usually you can run many simulated devices inside a

machine. The drawbacks are that the test is as good as the models’ fidelity with reality,

and to simulate a heterogeneous system, you will need many models, one for each different

application. Dias et al. (2018) makes a concise overview of test approaches and tools

including many with simulated capabilities. The disadvantage of this type of testing is

that simulations are useful for problems with high-fidelity models, as the nature of an IoT

problem is dynamic and heterogeneous. Developing models that faithfully represent the

behavior of a system can be an arduous task.

Chernyshev et al. (2018) identified three main categories of simulator used in IoT

testbeds, full-stack simulators, focused end-to-end support to all IoT elements, data pro-

cessing simulators, focused on simulating the data flow and processing, and network sim-

ulators focused on simulating the network and its characteristics. Like open-testbeds, we

should look at some characteristic criteria to choose which testbed is better suited for

testing, like scope, type, language, architecture, etc.

Some examples of testbed simulators include CupCarbon (MEHDI et al., 2014), Cooja

(OSTERLIND et al., 2006), OMNeT++ (VARGA; HORNIG, 2008), NS-3 (HENDERSON et al.,

2008), and QualNet (QUALNET, 2021).

OS-level virtualization testbed uses the same software that runs on the real deploy-

ment hardware thus offering the chance to test errors that happen because of software

62

bugs and problems induced by errors in the network like packet loss/corruption, network

partition, etc. The drawback of these tests is the cost of computational processing of

virtualizing a whole device.

It can provide a step between simulated and physical testbeds. While simulated can

scale with fewer resources, virtualization can be faster and more realistic since it is not

needed to create a model for each one of the applications being tested, and since we can

virtualize many devices on a single machine, it can scale better than physical testbeds.

There is a lot of research being done in the virtualized testbed space. Dockemu (TO;

CANO; BIBA, 2015) is a simulator that joins Docker and NS-3 (a network simulator), the

framework facilitates creating new containers and connecting them using NS-3 to test

simulated networks. NS-3 offers ways to create more complex networks, but at the time

of writing, the Dockeremu framework only has 2 modes, all nodes are connected wired

or wireless, and there is no template for more complex networks, another drawback is

that the tool does not test the code, checking for possible errors in different message

orders, disconnection, network splits and the tool is limited on the maximum number of

containers the host machine can virtualize.

UiTiOt (LY-TRONG et al., 2018) is a hybrid system that mixes virtual wireless nodes

with real physical devices to perform a variety of IoT experiments. The tests are focused

on testing multi-hop routing on wired sensor networks (WSN), the framework can test

different architectures (mesh, tree, etc...), but the framework does not do tests where

agents are connected directly to the Internet.

EMU-IoT (RAMPRASAD et al., 2019) is a platform focused on the architecture of

producer→gateway↔application where it has a well-defined data pipeline, but this archi-

tecture does not reach more decentralized IoT architectures where cascading failures can

occur with different orders of messages, messages dropped, errors in connection.

ELIoT (MäKINEN; JIMéNEZ; MORABITO, 2017) is a platform that enables the emula-

tion of simple IoT devices on Docker. The author uses CoAP + LWM2M for communi-

cation and in the work, they test the scalability of the platform using the time that each

docker takes to connect to a single LWM2M Server. This testbed is focused on LWM2M

connections.

None of these solutions solves our problem, these platforms are focused on testing the

network, usually, testbeds are developed with a specific use case in mind, and adapting

these tools to work in different use cases can be laborious.

63

Since the goal of this work is to create an intermediate step between idealization and

full deployment, the simulated testbeds seem like a good fit, with great scalability and

low cost we can start fixing bugs and creating testing environments really fast. Also, it’s

easier to manipulate the simulated environment, which can be useful for debugging and

verifying the functionality of the system.

The only problem is that the realism of a simulation depends on the realism of the

model. The way this work improves the realism of the model is by using containers, where

we can run the same code as the one that will be deployed in production. Using the same

code brings two big advantages. This consistency in code execution helps to ensure that

tests accurately reflect real-world scenarios and reduces the risk of unexpected behavior

due to differences between test and production environments. Another advantage of

using containers is that it can improve the realism of tests. By running simulations in a

containerized environment, the testbed can provide a more accurate representation of the

system under test and help to identify potential issues before they occur in the production

environment.

4.3 Testbed Framework Design

The key idea of this section is to propose a general framework for testing IoT platforms.

The testbed is based on OS-level virtualization, which means that we can run (at the

expense of hardware usage) the same software executed in deployed devices, testing for

software bugs, errors in interoperability, monitoring CPU/memory usage, etc.

Since IoT devices are so heterogeneous, one of the framework goals is to be as general

as possible, without making any assumptions on the architecture of the network. Many

of the state-of-the-art testing frameworks are built with some architecture/usage in mind,

making it harder (or even in some cases impossible) to test projects with different use

cases.

Our emphasis lies in creating a general, realistic, and reproducible testbed, in other

words, strive to minimize the error between simulation and real test and aim to have

consistent results without losing any comprehensiveness. It’s worth saying that repro-

ducibility does not mean that the results will be exactly the same in different runs, just

that the results are consistent between runs. To help us with this framework, we will need

some tools:

• OS-OS-level virtualization, to create isolated user spaces on a single device, increas-

64

ing the number of applications executed without increasing too much the cost of

hardware.

• Network emulation, since virtualization gives us an unrealistic network, we need

an emulation tool to emulate a more realistic (with delay, corruption, lost packets)

network.

• Measurement tools, to measure and monitor desired metrics.

4.3.1 Strategy

Emulation can have more fidelity, but it is known to have poor efficiency (WHITE;

PILBEAM, 2010). Since virtualization is shown to introduce negligible overhead in terms

of resource consumption (MORABITO, 2017; MORABITO et al., 2017), we choose to use a

testbed based on virtualized devices, which also means that we can run the same software

as the one deployed on physical devices, this approach offers the advantage of identifying

potential bugs and issues within the code, contributing to improved software reliability.

The virtualization drawback is that there are no tests on the device hardware architecture

when compared with an emulation. And when compared to physical testbeds, the network

being tested is simulated and the hardware access has to be mocked up.

Fortier & Michel (2003) divides a testbed into three components: (1) an experimen-

tal subsystem, (2) a monitoring subsystem, and (3) a simulation-stimulation

subsystem. The experimental subsystem is the collection of models and/or prototypes

we wish to test. It defines the structure and characteristics of the network, how many

devices are tested, how the devices are connected, the limitations (if any) of each device,

etc. The monitoring subsystem is the set of tools used to extract raw data and collect

information about the experimental subsystem. It also comprehends the tools that help

organize and analyze the data collected, used to measure the target characteristics of the

test case. The simulation-stimulation subsystem can help create the initial conditions and

provides the handles and knobs necessary for the experimenter to input events into the

experimentation environment. Our framework architecture is based on Fortier & Michel

(2003) subsystems: experimental, monitoring, and simulation-stimulation.

The experimental subsystem is structured in agents, devices, and networks. An

agent is a computer program characterized by reacting to the environment and inputs,

having autonomy, goal orientation, and persistence (FRANKLIN; GRAESSER, 1996). In the

Swarm Computing paradigm, each agent corresponds to a service provider or consumer

65

(COSTA et al., 2015a). A device is a unit of physically independent electronic equipment

used to compute or support agents. The network defines the set of devices connected that

can share resources directly between themselves. The network also defines the mechanisms

used, isolating or opening communication between containers.

On the experimental subsystem, one network can have one or more devices that can

have one or more agents. Also, the job of the experimental subsystem is to create initial

conditions providing information about their devices such as resource constraints (CPU,

memory, throughput, etc.). Likewise, defining properties of the networks (delay, packet

loss, traffic rate limit, etc.), initial environment variables of each agent, and others.

The simulation-stimulation subsystem is composed of tools and knobs to provide

real-world system inputs. It provides the experimenter the ability to create scenarios to

test parts of the experimental subsystem. It can also pause or delete some agents, devices,

or networks.

The monitoring subsystem consists of tools to extract metrics and analyze the

collected information. It can monitor target data from any agent, device, or network, save

all packets trafficked in a network, and also help with the organization and automatically

create a graphic representation of the data collected. Some examples of useful metrics

that can be extracted are memory usage, CPU load, number of CPU throttled period

intervals, number of I/Os currently in progress, bandwidth metrics, requests delays, and

packet data. Figure 4 displays the testbed design structure.

Figure 4: Proposed testbed structure, each network can have many devices which can have many
agents/applications

66

4.4 Testbed Framework Implementation

To give a concrete implementation of the proposed framework, we choose to use well-

known off-the-shelf tools, the reason is that usually, off-the-shelf software has thousands of

work hours on developing, testing, making it more reliable and generic than custom-made

software, giving us a way to create a more generic framework. These tools also provide a

cost-effective and efficient solution. These tools are widely available, customizable, easy

to use, and have many extensions making them ideal for evaluating many architectures.

As mentioned above, the design of the testbed is based on the Fortier & Michel (2003)

subsystems. The following text will delve into the specifics of each software selected for

the foundational version of the proposed testbed.

4.4.1 Experimental Subsystem

A key feature to implement our virtualization testbed is the container manager. We

selected Docker since it is well-documented, compatible with most modern operating

systems, and widely used in many research works (KAO, 2020). Docker is a lightweight

virtualization tool that enables the user to completely encapsulate an application and its

dependencies within an OS-level virtualization, these encapsulations are called containers.

One of the advantages of using docker as a virtualization tool is that we can execute

the same code as the one running on the physical device, being able to test for other

aspects of the code, like security, performance, interoperability, robustness, conformance,

compatibility or multi-objective testing.

A container is a virtualization paradigm (RAMALHO; NETO, 2016) in which the oper-

ating system kernel allows the existence of multiple isolated user-space instances, which

is system memory allocated to running applications with their configuration files, library,

and software isolated from one another. User space instances have a lower level of privilege

than the operating system kernel.

Containers use fewer resources than Virtual Machines (VMs) because they share the

host operating system (POTDAR et al., 2020; RAMALHO; NETO, 2016). We are using

containers as tools to be used for testing in IoT, virtualizing devices, and making it easier

to scale and run cheaper tests since a single machine can virtualize many devices. Many

research efforts are being directed to leverage the advantages of using Docker in the IoT

space (KAO, 2020).

In our framework implementation, each device is represented by a container. This

67

decision was taken for two reasons: to evaluate resource competition caused by wrapping

different microservices into one device; to simulate the device CPU/memory constraints

using Docker runtime options (RUNTIME. . . , 2021).

Containers can communicate between themselves using Docker networks. A Docker

network1 uses a software bridge that allows containers connected to the same bridge

network to communicate while providing isolation from containers that are not connected

to that bridge network, so the developer has control over which containers are connected

and how they are connected, creating the topology as flexible as wanted.

One thing to keep in mind, the number of containers run by a single computer is

still limited by the resources available on the host machine and by software, for example,

the maximum number of containers per Linux Network Bridge is 1023 (Seetharami Seelam,

2023). So, to connect more containers we need to use more bridges.

Together with Docker, two tools are used: Docker-compose and Pumba2. Docker-

compose is a tool for creating and running multi-container Docker applications. With

a configuration file, we can create/edit/remove containers from the environment. So,

another advantage of using Docker with Docker-compose is to run a group of containers

together simplifying the work of creating, removing, and updating containers, making it

easier to escalate the number of devices/applications being tested just by adding some

lines of code. Listing 1 shows a Docker-compose configuration file, we can see 3 different

containers (payment, consumer, and camera) connected in 2 different networks, also we

can see resource constraints being applied in the level of devices (containers).

We can create/delete/update entire networks in minutes, even with heterogeneous

agents. We can also define many networks, connecting them and creating complex topolo-

gies, each network can have custom network drivers and options, increasing the control

over characteristics that the experimenter can use. We only need to configure it once,

after this we can mix and match any type of topology we want just by changing the

docker-compose configuration.

One characteristic of the docker network is that it creates an unrealistic network,

without delays, latency, and packet loss. To apply the expected network characteristics

of the deployment environment, Pumba, a chaos testing command-line tool for Docker

containers was utilized. Pumba can emulate wide-area network failures (adding network

delay, packet loss, corruption, duplicated packets, etc.) and stress-testing container re-

1https://docs.docker.com/network/
2https://github.com/alexei-led/pumba

68

version: "3"

networks:

network1:

network2:

services:

payment1:

build:

context: ./project

dockerfile: DockerfilePayment

networks:

- network1

- network2

consumer1:

build:

context: ./project

dockerfile: DockerfileConsumer

networks:

- network1

camera1:

build:

context: ./project

dockerfile: DockerfileCamera

networks:

- network2

deploy:

resources:

(optional) Resource constraints

on each container

limits:

cpus: '0.5'

memory: 100M

Listing 1: Example from Docker-compose, a configuration with 2 networks and 3 devices

69

sources (CPU, memory, I/O, and others). Besides that, Pumba can kill, pause or stop

containers, useful if we need to test failures in the network.

The experimental subsystem can be adjusted using the docker configurations, making

it possible to:

• Change the number of devices, having different runtime options, limiting the CPU

and memory that each container will have access;

• Use a network emulation tool, to emulate the properties of wide-area networks like

network delay, throughput, packet loss/corruption/duplication;

• Create/Delete/Lock some devices in the middle of transactions to analyze the be-

havior of single devices or the whole network;

• Change the topology using docker-compose networking feature, creating many net-

works, connecting them, and having different characteristics in each one of them.

For this work, we used Docker-compose and Pumba to create initial conditions on

containers and networks respectively.

4.4.2 Simulation-Stimulation Subsystem

As mentioned before, the simulation-stimulation subsystem is composed of tools and

hooks to provide real inputs. Many tools can be used to form this subsystem, some ex-

amples are stress testing tools to create high loads for agents, custom scripts to create

duplicated/corrupted/incomplete requests, or common requests to test the typical sce-

nario running in the network. For example, in other works, Tsung was also used as a

load-generating tool. For this work, we decided to start simple and only start with small

cases with common requests, so our simulation-stimulation subsystem consists of standard

RESTful requests made in curl3 requests.

4.4.3 Monitoring Subsystem

The monitoring subsystem is the measurements and data collection of the framework.

Despite presenting a broad framework, at first, we decided to apply a more restricted test,

selecting 3 metrics for analysis: CPU consumption, memory consumption (to evaluate the

testbed), and network degradation adding packed delay (to be used as a test case).

3https://github.com/curl/curl

70

Measuring CPU and memory usage metrics in docker can be tricky. Casalicchio

& Perciballi (2017) showed that many monitoring tools measure different metrics. We

selected the cAdvisor tool based on the same study which showed that cAdvisor measures

the effective workload generated by the container on the CPU, which is the data we

are looking for in this case. Together with cAdvisor, there are many plugins to export

statistics. We selected Prometheus, a well-known monitoring system, with which it is

possible to create graphics and alerts in real time.

For the network degradation test, the Wireshark software was used. Wireshark can

save all packets trafficked in the network, making it easier to check for bottlenecks, and

periods of great traffic of packets and compare many different cases.

After finishing all subsystems, the testbed structure implemented looks like figure 5.

Figure 5: Testbed structure implemented with the off-the-shelf software

4.5 Testbed Evaluation

Prior to commencing the scalability analysis of SwarmOS, a preliminary evaluation

of the testbed was done. The evaluation includes an analysis of CPU overhead to dis-

cover whether this testbed introduces substantial overhead that might impede the testing

process. Followed by an exploration of the upper limit of devices that the testbed can

effectively accommodate.

Using Docker-compose we can create/delete/update entire networks in minutes, we

can see on listing 1 how easy it is to create a simple network even with heterogeneous

agents.

71

Having a different network is easy too, we can define many networks with different

drives if needed and connect each one of the containers in different networks, building

complex networks. In the example, in the listing 1, we can see 3 different containers

connected in 2 different networks.

The proposed methodology is evaluated with the use case of a Swarm surveillance

application. The consumer together with the broker creates a query. This query is sent

across the network seeking cameras within a radius around the issuer and contracts the

ones he wants, a payment system will occur and he will receive a token to access the

cameras for a fixed amount of time. Then, after using the cameras, a reputation system

will happen. All of this is considered one transaction. In this use case, our consumer

is looking for cameras around his neighborhood. An example of security cameras found

when executing the query is given in Figure 6.

The tests will be focused on a couple of areas. First, how do small problems in the

network transform the transaction for all devices, for this, in the network degradation test

part we will add a bit of delay in all the networks and check for the change in the time of

completion of a standard transaction.

On the Docker CPU overhead test, we want to know if the testbed adds much overhead

in the test, and how much this overhead grows with more containers.

And for the last part, we will calculate the maximum value of virtualized devices we

can run on a machine and check if it’s possible to run tests of “real IoT applications”,

with hundreds, even thousands of devices.

4.5.1 Docker CPU Overhead Test

In this work, we consider Docker CPU overhead and any processing power not used

directly by the application. The Docker overhead is depending on several processes whose

values vary depending on the number of containers running, the number of exposed ports,

etc.

Running the command pstree (Figure 7), we can see the process tree that Docker

creates to run dockerd → containerd → containerd-shim → application and docker-proxies.

To analyze the CPU consumed by the application and by the system (dockerd +

containerd + containerd-shim + docker-proxy), in this work, we did use cAdvisor4, a tool

to inspect resource usage and performance characteristics of running containers, together

4https://github.com/google/cadvisor

72

Figure 6: Example of security cameras found

Figure 7: Output of pstree: Highlighted in red the processes created by docker and in green the
processes created by the application

73

Figure 8: Payment System: Cumulative system CPU time consumed by they system and user
in seconds

Figure 9: Consumer Application: Cumulative system CPU time consumed by they system and
user in seconds

with Prometheus5, a tool that collects and organize metrics from targets.

Together, both can be easily configured with Docker-compose, since both already have

pre-compiled container images. cAdvisor exposes container and hardware statistics and

Prometheus collects them giving instant results. The metric used was container cpu system

seconds total (cumulative system CPU time consumed) and container cpu user seconds

total (cumulative user CPU time consumed). This can be seen in figures 8 and 9. The

rate of CPU used by the system varied from 0.97% to 36.77%.

4.5.2 Virtualization Limit Test

To test how much this testbed is scalable, we want to test how many brokers +

applications pairs can be run on a single machine and test how much overhead the docker

adds to the framework.

5https://github.com/prometheus/prometheus

74

For our test case, we need only 1 consumer, to make the request, one payment system,

to approve the payment and generate the token for the utilization, and N cameras, that

the consumer wants to use.

Using a computer CPU Intel(R) Core(TM) i7-3632QM CPU @ 2.20GHz and 16GB of

RAM, the theoretical limit of our test is 60 machines running (58 cameras + 1 consumer

+ 1 miner) with the limiting factor being the CPU.

75

5 THE SWARM COMPUTING PARADIGM

AND THE SWARMOS FRAMEWORK

Swarm is a distributed network of cooperative devices. The swarm computing concept

expands the IoT to an organic network whereby the characteristics, communication, and

topology of the agents can be adapted dynamically. It particularly considers IoT devices

as agents that act independently.

A swarm system is a decentralized, self-organizing network of entities that work to-

gether to achieve a common goal. In a swarm system, individual entities, often referred

to as agents or nodes, interact locally with their neighbors based on simple rules, and the

collective behavior emerges from these interactions.

SwarmOS is a framework composed of services needed for creating swarm systems.

SwarmOS enables the deployment, scaling, and management of decentralized applications

and services, intending to make it easier to build, deploy, and operate large-scale, decen-

tralized systems. The operating system provides a set of tools and services to manage and

coordinate the interactions between nodes in the swarm, as well as an API for developing

decentralized applications that can run on top of the SwarmOS. The goal of the SwarmOS

is to provide a flexible and scalable platform for building decentralized systems that can

handle the growing demands of the IoT devices and applications. The architecture is com-

posed of many devices each one with one Swarm Broker and one or more microservices,

also called Swarm Agents.

A Swarm Agent is any autonomous entity that drives its activity towards achieving

goals, they are usually service consumers or service producers (COSTA et al., 2015a). Bro-

kers provide common resources to other agents, such as discovery, mediation, security,

and contract establishment (COSTA et al., 2015a). In figure 11 we can see a generic swarm

architecture.

The SwarmOS structure is developed using REST communication (COSTA et al.,

2015a). The applications developed must follow a protocol compatible with the bro-

ker, exposing REST endpoints the broker uses to mediate. An example of communication

76

Figure 10: Examples of 3 types of communication that exist in the structure of SwarmOS. In
green (dotted), communication between brokers; in black (solid) communication between broker
and services; in purple (dashed), communication between services

in a common architecture can be seen in Figure 10. A single broker can have n services.

A service starts by registering with the broker’s registration system, the broker uses its

tools to search for other brokers. When a service or broker needs to use an external func-

tionality, it creates a query and executes it by starting the contract in known networks

or brokers. A diagram of how the broker understands the network structure is shown in

Figure 11.

In order to facilitate the creation of new applications and communication with the

broker, the SwarmOS project has incorporated a library, specifically developed in the

Python programming language. This library facilitates accessibility to the Swarm network

by providing default functions that implement the SwarmOS communication protocol.

These functions act as conduits, facilitating interaction between various entities within the

system, including applications and brokers, as well as inter-application communication.

77

Figure 11: Diagram of the structure the broker discovered.

5.1 SwarmOS Transaction Model

The SwarmOS transaction model aims to facilitate the interaction between service

providers and consumers and ensure efficient and reliable service provision in a swarm

network. A key element in the development of a cooperative network within the Swarm

centers on the economic domain. Swarm Economy aims to ensure fair conditions that

encourage the sharing of resources among all participants. The economic facet becomes

increasingly complex in networks with distributed governance, as maintaining fairness and

transparency becomes a more intricate task. Such challenges stimulate the adoption of

advanced technologies capable of providing a trustworthy and immutable public registry

(BIASE et al., 2018).

In any system where monetary transactions or incentives are involved, there is an

increased likelihood of encountering malicious nodes. These malicious entities can be

driven by the prospect of achieving unfair advantages or illicit gains. They employ var-

ious strategies such as exploiting loopholes in the system, spreading disinformation, or

manipulating services.

The presence of malfunctioning agents is inevitable due to various factors such as

software bugs, hardware failures, or network disruptions. These malfunctioning agents

can adversely affect the network’s performance, causing delays and hindering overall scal-

ability. To ensure the network’s scalability and smooth operation, it becomes essential

to expel these malfunctioning agents promptly. Removing malfunctioning agents enables

the network to allocate its resources more effectively, optimize communication pathways,

and foster a more efficient ecosystem for genuine and reliable participants to interact,

ultimately enhancing the network’s scalability and overall performance.

78

The difficulty of finding a solution without relying on a central server to ban nodes

makes research in this area an ongoing and prominent topic. Addressing bad actors

and malicious nodes in a decentralized manner poses challenges, as it requires innovative

and distributed techniques to maintain network integrity and security. As technology

evolves, researchers continue to explore novel approaches and decentralized mechanisms

to effectively deal with bad actors in P2P networks, making it a persistent and relevant

area of investigation.

The SwarmOS implements a model for transactions based on nine steps: Registration,

Service Request, Discovery, Select Optimum Service Provider, Negotiation, Payment, SLA

Establishment, Feedback and Reputation Points Attribution, and Use (BIASE et al., 2018).

In short, the provider registers its services by sending a description file to the con-

sumer’s broker providing information such as the type of service, its capabilities, and its

price (1. Registration). Because SwarmOS uses a price-reputation model, the price is

not flat, it is calculated based on the level of trust of the provider in the consumer, this

price calculation rewards good behavior and penalizes bad behavior. When a consumer

wants to use a service, it sends a query to their consumer’s broker with some parameters,

specifying parameters like the type of service, price limit, and requested time window in

which the service will be used (2. Service Request). The consumer’s broker then takes

this query and receives a list of available service providers that fulfill the query parame-

ters (Explained in more detail in section 5.2) (3. Discovery). The consumer’s broker then

selects the provider with the lowest price (4. Select Optimum Service Provider). During

the negotiation, the consumer’s broker sends to the provider’s broker a transaction with a

Service Level Agreement (SLA), with price, duration, consumerID, etc. (5. Negotiation).

If the SLA is accepted, the consumer’s broker will conclude the trade with the payment

done using a virtual currency based on blockchain 1 (6. Payment). Now that the payment

is done and confirmed, the provider’s Broker will issue permission to grant access to the

consumer to the provider (7. SLA Establishment). then in the final step, the consumer

can use the permission granted to use and provide feedback on the service on a blockchain

(8. Feedback and 9. Use).

In the study (BIASE et al., 2018), the author introduces a formula for calculating

reputation feedback as follows:

Pointsi = αFi + (1 − α)Fb

where Fi ∈ [0, 5] and represents the feedback from another agent, which is based on

1https://lhartikk.github.io/

79

the quality of information provided, Fb ∈ [0, 5] and symbolizes the broker’s feedback,

which is based on the broker’s role in the transaction process (such as negotiation and

payment). Lastly α ∈ [0, 1] where α = Repi/10. However, the consumer’s reputation,

‘Repi’, is not yet implemented in SwarmOS version 0.2.3. Without this component, the

calculation for ‘α’ becomes infeasible. Consequently, a default value of α = 0.8 has been

used for the time being.

5.2 SwarmOS Discovery Model

Before the present development, SwarmOS was limited to functioning solely within

local networks. Its modus operandi was straightforward - it created a query which was

transmitted via multicast to all brokers within the same network. In response, it received

a list of providers that satisfies the given query parameters, streamlining the selection

process.

One interesting feature of the pre-existing SwarmOS was the concept of query redirec-

tion. Each query carried with it an integer value, representing the number of redirections

for that particular query. For instance, the original requester would send a query with

the field redirection number as zero, the brokers that initially received this query would

increase the number by 1 and forward the query to the multicast. Essentially, they acted

as secondary requesters, forwarding the same query to their network. The responses were

then compiled and returned to the requester.

This method, though somewhat rudimentary, allowed for the broadening of search

parameters and potential service providers. However, it was still constricted by the limi-

tation of functioning within the local network. As we move forward, we will discuss how

the revised SwarmOS overcomes these restrictions and enhances overall network function-

ality and service discovery.

5.3 SmartABAC

SmartABAC (FEDRECHESKI et al., 2021) is an innovative model for access control in

the IoT that is designed to run directly on IoT devices, aligning with the trend toward

IoT decentralization.

To simplify and enhance the policy parsing process, SmartABAC utilizes the enumeration-

based access policies (EAP) (BISWAS; SANDHU; KRISHNAN, 2016). To address the inherent

80

limitations in enumerated models, it incorporates typed and hierarchical attributes as a

compensatory measure.

Enumeration-based access policies in ABAC involve defining a finite set of attributes

and their possible values. These attributes can represent various characteristics of users,

devices, resources, or environmental factors relevant to access control decisions. The

enumerated values associated with each attribute determine the specific permissions or

restrictions granted to entities.

For example, in an IoT system, attributes like “device type”, “location”, or “user role”

can be enumerated with specific values such as “temperature sensor”, “living room”, or

“admin”. Access policies are then defined based on the combinations of attribute values,

specifying which entities are authorized to access specific resources or perform certain

actions.

Enumeration-based access policies provide a simplified and efficient approach to access

control management. By predefining a finite set of attribute values, policy administration

becomes more manageable, as administrators do not need to define complex rules or

conditions for each individual access decision. However, it is important to carefully design

and maintain the enumeration values to ensure they accurately represent the relevant

attributes and access requirements of the system.

One limitation of enumeration-based policies is their lack of flexibility and expres-

siveness compared to more complex policy languages or models. They struggle to accom-

modate dynamic or fine-grained access control requirements that require more nuanced

decision-making. But because ABAC models based on logic statements require highly

specialized parsers, they can be NP-complete to audit (BISWAS; SANDHU; KRISHNAN,

2016).

5.4 Improvements in the SwarmOS Implementation

5.4.1 Improvements in SwarmOS connection system

The SwarmOS version 0.2.3 uses a discovery system based on two in-memory lists,

one for internal agents and another for remote agents. Every broker can also work as a

registry for other users’ services. The discovery service can be divided into four functions;

(1) Internal agent in-memory list search; (2) Remote agent in-memory list search; (3)

Registry request search; and (4) Multicast search.

81

The current strategy employed by SwarmOS appears effective within local networks,

but it faces challenges when peers attempt to find each other across distinct networks.

This limitation arises from NATs that have the ability to assign private IP addresses to

devices within a local network, while presenting a single public IP address. This results in

communication barriers, as external devices cannot directly initiate connections to devices

within the local network without a workaround.

Due to this constraint, SwarmOS version 0.2.3 possesses a latent limitation concerning

global connectivity, being primarily confined to local networks. To address this limitation,

two techniques are proposed to enable global connectivity for SwarmOS, leveraging the

Internet’s capabilities: the UPnP protocol and support for IPv6. These additions aim

to enhance the network’s reach and ensure seamless communication between peers across

various networks.

5.4.1.1 Adding Universal Plug and Play (UPnP) Support

In the section 2.2 we explained the difficulties of connecting devices globally because

the Internet was designed with a client-server relationship in mind, also the existence of

Network Address Translation (NAT) devices, NATs are used to map internal private IP

addresses to a public IP address. This is done to conserve the limited number of public

IP addresses and to provide a layer of security for internal devices. However, NATs can

cause difficulties when it comes to establishing P2P connections because they often prevent

incoming connections from being established. This can lead to devices being unable to

connect to each other, making it difficult to form a global P2P network.

One solution that this work brings to the table is to add UPnP support improving its

connectivity by making it easier for devices to communicate with each other even when

behind Network Address Translation (NAT) devices such as routers.

UPnP includes mechanisms to enable devices behind NAT routers to open temporary

ports for communication with external devices, facilitating P2P connections even across

different networks. This mechanism helps devices bypass NATs by allowing them to auto-

matically configure their NAT devices to forward incoming P2P traffic to the appropriate

internal IP address. This improves the overall connectivity of the P2P network, making

it easier for devices to connect with each other and exchange information.

Due to the inherent complexity in configuring NATs, the inclusion of UPnP support

proved to be beneficial:

82

• Improved Network Connectivity: UPnP allows devices to automatically configure

network settings, making it easier for devices to connect to the Internet and com-

municate with each other. This can greatly improve network connectivity and make

it easier for devices to work together.

• Dynamic Configuration: UPnP allows devices to dynamically configure network

settings, such as port forwarding, which can be useful for applications that need to

communicate through firewalls and NATs (Network Address Translation).

• Improved User Experience: UPnP simplifies the process of setting up and configur-

ing devices, making it easier for users to get their devices up and running quickly.

This can improve the overall user experience and make it easier for users to use and

enjoy their devices.

Overall, implementing UPnP can help to improve the functionality and reliability of a

network, making it easier for devices to communicate and work together effectively. The

implementation is described on section 5.4.1.3.

5.4.1.2 Adding IPv6 Support

The creation of IPv6 has eliminated the necessity for a unified security architecture,

which was once required in IPv4 due to addressing constraints imposed by NAT. As

a result, manufacturers now have the freedom to choose between two design models.

They can opt for an open model that enables devices to be directly reachable end-to-

end, or they can stick to a familiar closed model in which the home gateway acts as a

middleware device. This shift presents a complex environment with various nuances like

different filtering behaviors, diverse access control policies, and specific IPv6 requirements,

resulting in an ambiguous setting. (OLSON; WAMPLER; KELLER, 2023)

But NAT will not disappear, the default NAT architecture undoubtedly offered a

plethora of privacy and security benefits for non-technical users, establishing a nearly

universal operational baseline. This made it easier for users with limited technical exper-

tise to enjoy enhanced online protection and privacy.

For developers, the potential impact of these changes is unclear. Like NAT, the

technology will be developed together with the new requirements that new features will

bring. Swarm and P2P networks can benefit a lot from an open model design, where

any node can communicate with any node, but this will depend on how the Internet

83

evolves from now on. The absence of standards makes it more challenging to determine

the specific scenarios in which IPv6 and SwarmOS will seamlessly work together.

In this work, I developed support for IPv6, enabling SwarmOS to leverage the advan-

tages of this new protocol. With IPv6, the addressing space is expanded, and every device

can have a unique IP. By implementing IPv6 support, SwarmOS can now take advantage

of these features and provide a more robust and secure infrastructure for IoT devices.

5.4.1.3 Implementation UPnP

As explained before, UPnP is a type of port-forwarding technology. The application

sends a message to the NAT device asking for an external IP, the NAT then creates a rule

to forward packets that come from this IP:port to the application.

For this work we will leverage the mechanisms to enable brokers behind NATs to open

temporary ports for communication with external devices.

The SwarmOS is written in Elixir, a functional programming language built on the

Erlang Virtual Machine (BEAM). This design enables seamless interconnection with Er-

lang, allowing SwarmOS to take advantage of the vast ecosystem and robust features

offered by the Erlang platform. The library utilized was erlang-nat that provides efficient

NAT handling facilities.

While using erlang-nat a minor issue arose due to its use of httpc, an Erlang module

that provides the API for HTTP/1.1. However, the SwarmOS elixir code, with its more

contemporary approach, relies on hackney for HTTP functionalities. As part of my con-

tributions to the project, I updated erlang-nat to use hackney, leading to the creation of

a forked version available at https://github.com/WilliamTakeshi/erlang-nat.

Subsequently, an additional module was integrated into SwarmOS. During the initial-

ization of SwarmOS, the broker checks if the NAT router implements the UPnP protocol.

If the UPnP protocol is supported, the broker creates a new port map effectively bridging

the external IP address and port to the internal one, enabling exposure to the external

network.

The Python implementation was also executed using the swarm lib python. A new

module was developed within the swarm lib python to facilitate the exposure of the agent

to the external network during the initialization phase. For this purpose, the upnpy library

was utilized for the communication with the UPnP protocol.

Upon integrating both modules, no additional effort is required for the developers.

84

They can seamlessly utilize UPnP without any impediment, simply by enabling a single

flag. This streamlined process grants developers the freedom to harness the benefits of

UPnP effortlessly within their applications.

If the flag is enabled, the router will establish a mapping for the Swarm Agents and

the Broker, and subsequently, the service description will be updated with a new entry in

the service field.

Listing 5.1: UPnP example

1 {
2 "serviceEndpoint": "http://100.68.138.64:5018/",

3 "id": "#upnp",

4 "type": "swarmService"

5 }

Also, any other swarm agent will have the possibility of trying a connection with the

UPnP port.

5.4.1.4 Implementation IPv6

In order to integrate IPv6 support into SwarmOS, a novel module was incorporated

within the SwarmOS broker. This was coupled with a Python library, previously dis-

cussed, which offers us a straightforward mechanism to establish a service connected with

the broker. This module and library together identify if an IPv6 address is accessible and

then add this information to the service list.

The inherent functionality of SwarmOS ensures that the system will automatically

seek out this IP address and assess its connectivity. Should it receive a positive response,

the IPv6 address will be designated as the endpoint for all subsequent communication.

Listing 5.2: IPv6 example

1 {
2 "serviceEndpoint": "http://[1ffe:0:a8:85a3::ac1f]:501

6/",

3 "id": "#ipv6",

4 "type": "swarmService"

5 }

85

5.4.2 Improvements in SwarmOS’s Discovery System

This work proposes a discovery system for SwarmOS, premised on the tracker model

frequently employed within BitTorrent P2P networks. The primary objective of this sys-

tem is to enhance the efficiency and scalability of device discovery within a decentralized

IoT framework. The work will dive into an evaluation of this discovery system’s perfor-

mance via testing and experimentation. Additionally, a series of minor improvements and

bug fixes have been proposed. By juxtaposing the performance of our system against

existing discovery mechanisms, our goal is to underscore its proficiency in facilitating

seamless and reliable peer discovery within the context of expansive P2P networks.

In a P2P torrent network, a tracker serves as a crucial intermediary that facilitates the

connection between peers. When a peer joins a torrent, it communicates with the tracker,

which provides a list of other peers currently downloading or seeding the same torrent

file. This system ensures efficient data exchange by continually updating and sharing peer

lists, thereby maintaining a robust and effective network for file sharing.

Because of the dynamism of the Swarm network, with new devices, and applications

joining and leaving the network all the time, users may not be aware of all resources and

services provided by the network, so resource discovery is a fundamental tool to facilitate

and scale interactions among swarm devices.

To have a scalable technology, one important dimension is the degree of distribution.

This limitation can define the impact networks can have on massively distributed systems

(CCORI et al., 2016). So it is important to have the technology to distribute queries.

A common approach to create components reusable and interoperable is service-

oriented architecture. The discovery of things, their resources, proprieties, and capabilities

is a requirement to enable the transactions on the network.

The Swarm network employs the microservice approach, a modular design pattern

that breaks down applications into smaller, independent components. Within this archi-

tecture, each microservice can make resources available, enabling consumers to utilize,

combine, and adapt these resources to create innovative solutions tailored to their specific

problems or needs.

We will now delve in a detailed explanation of how the SwarmOS discovery system

proposed and implemented works. This examination will provide insights into the under-

lying mechanisms that will be useful to understand the test being made.

86

Table 5: Comparison of Centralized, Pure, and Super-Node resource management models.
Adapted from (KHATIBI; SHARIFI, 2021)

Search
Performance

Scalability
Resilience to
Single-Point-of-
Failure

Centralized Model High Low Low
Pure Model Low High High
Super-Node Model Medium Medium Medium

Resource discovery in P2P networks can be classified into three main models. The

first is the centralized model, in which all information is stored on a single server or a

cluster of servers. The second is the pure model, where every node operates as both a

server and a client. Lastly, there’s the super-node model, wherein a select group of nodes,

referred to as super-nodes, oversee and manage a smaller subset of nodes. (KHATIBI;

SHARIFI, 2021).

In our case we choose a pure model, where every broker works as a registry, that means

they have the service that maintains a list of all available services within a particular

network or system. The registry works with two in-memory lists, one for internal agents

and another for remote agents. This distinction is necessary due to the variance in the

service descriptions between local and remote agents. Specifically, local agents possess

a more comprehensive set of information in their fields, necessitating a separate list to

account for these additional details like private credentials that are not needed on remote

agents.

The discovery service works using four different functions:

1. Internal agent in-memory list search

2. Remote agent in-memory list search

3. Registry request search

4. Multicast search

If the query is fulfilled by any given function, the broker ceases the search and does not

proceed to the next function. For instance, if the query successfully retrieves all requested

services from the first function (“Internal agent in-memory list search”), it will prevent

the execution of all subsequent functions. The behavior is represented on Figure 12

The first two functions (“Internal agent in-memory list search” and “Remote agent

in-memory list search”) search matches inside in-memory lists. The “Internal agent in-

87

Figure 12: SwarmBroker discovery fluxogram

memory list search” are agents registered on their broker (Fig 13), the “Remote agent

in-memory list search” are remote agents, added to the in-memory list by results of old

queries or other fellow brokers registering their agents as remote agents (Fig 14).

The initial pair of functions, “Internal Agent In-Memory List Search” and “Remote

Agent In-Memory List Search”, are responsible for seeking matches within the respective

in-memory lists. The “Internal Agent In-Memory List Search” refers to agents that are

registered within their own broker (Fig. 13). Conversely, the “Remote Agent In-Memory

List Search” relates to remote agents, which are appended to the in-memory list either

as a result of previous queries or through fellow brokers registering their own agents as

remote agents (see Fig 14 for a detailed representation).

The last two functions (“Registry request search” and “Multicast search”) send queries

for known registries or broadcast on their multicast network. If the registry or the mul-

ticast match the query, they return a list of results that the broker who did the initial

query can assemble and decide the ones they wanna use. The “Registry request search”

is displayed on Fig 15.

The last pair of functions, namely “Registry Request Search” and “Multicast Search”,

execute queries either to known registries or broadcast them on their multicast network.

When the registry or multicast matches the query, they return a list of results. This list is

then received by the querying broker, who is able to assemble these results and selectively

88

Figure 13: Block diagram of searching on the internal cache

Figure 14: Block diagram of searching on the remote agents’ cache

utilize the services that best align with their requirements. Also, if the querying broker

wants, it can save the result in the remote in-memory list of agents. A visual representation

of the “Registry Request Search” function can be found in Fig 15.

5.4.3 Improvements in Swarm Manager

Swarm manager is a command line interface (CLI) software tool to help configure,

create, update, and delete agents on a swarm network. It provides a convenient inter-

face for administrators and developers to manage and interact with their swarm agents,

without the need for manual, low-level operations. By using the swarm manager, users

can easily create and edit their IoT devices within the swarm network, ensuring reliable

and efficient communication and coordination among agents and decreasing the chance of

bugs that can appear with manual editing of the configuration files.

With this tool, managing a swarm system becomes more streamlined, making it easier

89

Figure 15: Block diagram of querying the registry

for users to scale their IoT solutions and achieve their goals.

Because of our tests we had to create hundreds of different devices, each one having

different behaviors, the use of swarm manager was vital to streamline the process and

ensure that each device was configured correctly. Without the use of a swarm manager,

setting up and managing such a large number of devices would have been extremely time-

consuming and prone to errors. The use of swarm manager allowed us to automate many

of the tasks involved in configuring and managing the devices, making our testing process

more efficient and less prone to errors.

In this work, new features were added to the Swarm Manager, for example, routines to

update IPs. On swarm networks, it is not uncommon to have devices changing locations

all the time, and manual updates can become time-consuming and difficult to manage.

Having devices broadcasting the wrong ID increases the time to find a suitable application

on the query system. Also creating functions that take long and are prone to error tasks

and automating, for example, the problem of issuing credentials. Since on the SwarmOS

network, we have to take the value issued by one broker and give it to another application,

this can be really hard, especially for thousands of different devices and applications.

5.4.4 Caching

Cache is a type of memory storage in computing that temporarily holds frequently

accessed data, enabling quick data retrieval on demand. In the context of SwarmOS, we

utilize caching as a strategy to reduce the overall number of network exploration requests.

90

This application of caching aims to enhance system performance by minimizing redundant

network queries and thereby decreasing latency. However, it’s important to manage caches

correctly as outdated or stale cache data can lead to inconsistencies.

Rather than sending a fresh request every time a user searches for a specific service,

a cached response can be provided if available, resulting in reduced network load and

discovery time.

The SwarmOS discovery system borrows the idea of connectivity checks from ICE

protocol (Interactive Connectivity Establishment)(ROSENBERG et al., 2012). ICE works

by gathering all available IP addresses and ports. The gathered candidates are then tested

by trying to establish a connection, and the most efficient, successful route is selected for

the connection.

In similar fashion, SwarmOS devices share their respective lists of candidate IP ad-

dresses and ports with each other. Subsequently, they begin performing connectivity

checks by mutually exchanging data packets via the candidate addresses belonging to the

remote device. The first route that successfully facilitates data exchange is selected for

establishing the connection and the connection details are stored, or ’cached’, for future

use.

For instance, when a service description contains multiple endpoints for various types

of communication (local, LAN, UPnP, IPv6, etc.), caching the endpoint that previously

functioned successfully can significantly enhance response speed.

This results in a faster, more responsive system and improved overall user experience.

Additionally, caching can also help to reduce the cost of system operations by reducing

the number of resources required to access the data.

5.4.5 Privacy

Writing internal tools to automate manual tasks can greatly benefit a system in terms

of efficiency and productivity. By automating repetitive tasks, developers can free up their

time to focus on more important and value-added activities. Additionally, internal tools

can reduce the risk of human error, especially access control/security where many steps

can be required and mistakes can cost internal data being leaked.

One important contribution of this dissertation was to streamline development pro-

cesses and reduce manual errors by developing internal tools. With the help of these tools,

developers can focus on more critical tasks, such as design and testing, while automated

91

tools take care of the routine tasks. This leads to a reduction in the overall development

time and improves the quality of the final product. Furthermore, having these internal

tools in place also makes it easier to invite new developers and maintain consistency across

the network. Overall, the development of internal tools is a crucial step toward creating

a more efficient and effective development process.

92

6 RESULTS AND EVALUATION

In this section, we evaluate the SwarmOS across four key dimensions: connection,

discovery, fairness and privacy. Through various use cases, the system’s ability to scale is

tested, and the performance of its newly added features is examined.

6.1 Connection

6.1.1 Testing Device Interactions in Varied Network Environ-
ments

The experimental approach involved an assortment of network environments to test

the communication capabilities of multiple physical devices dispersed across different net-

works. The aim was to determine if devices, pre-equipped with knowledge of each other’s

service descriptions, could effectively communicate across diverse network scenarios, em-

ploying a variety of communication strategies.

The networks employed for the experiment varied from direct connections to pub-

lic internet networks to controlled home networks located behind NATs. The devices

were pre-programmed to know each other before being distributed. The communication

methodologies encompassed a wide spectrum, starting with localhost checking, moving on

to intra-network communication, and finally resorting to using public IPs through UPnP

or IPv6 when necessary.

Our experiments furnished valuable insights into the practical capabilities and limi-

tations of device communication across various network contexts. These findings play a

crucial role in informing future network configuration strategies, enhancing device com-

Table 6: Results of the Device Interaction test

Connection Type Provider Successful
UPnP Swarm:Camera ✓
IPv6 Swarm:Camera ✓

93

Figure 16: Structure of a Device Interaction test

munication algorithms, and overall network performance across a diverse range of devices

and network conditions.

6.1.2 Concurrent Connection Capacity Test

The Concurrent Connection Capacity Test serves a dual purpose. The principal focus

is to ascertain the code’s ability to manage and maintain numerous simultaneous con-

nections seamlessly. Secondly, it evaluates the scalability of our testbed to determine its

capacity limits.

Initially, our setup comprises a single consumer, one provider represented as a cam-

era, a blockchain dedicated to payment, and another for reputation management. As

we progress through different scenarios, we double the count of providers in each step.

Starting with just one, we continue this increment until we reach a total of 32 cameras,

allowing us to observe the system’s behavior with escalating numbers of providers.

The results were derived using a testbed that employed cadvisor in conjunction with

prometheus. These tools collaborated to monitor and gather the essential metrics of our

system. Specifically, we extracted values for three key parameters: container cpu user

seconds total, which tracks the total CPU time used; container network receive

bytes total, indicating the total bytes received over the network by the container;

and container memory usage bytes, which measures the memory consumed by the con-

tainer. This approach ensured to capture a holistic view of the system’s performance

under varying conditions.

During each test, 10 transactions are executed in which the system actively searches

for every available camera within the network. Once these cameras are identified, the

system proceeds to use them. This process ensures a thorough assessment of the network’s

94

Figure 17: Peak percent CPU usage of a single core in scenarios varying from 1 to 32 cameras

responsiveness and the efficiency of the hiring mechanism across multiple transactions.

To determine the code’s capability to handle multiple simultaneous connections smoothly,

the test results were positive. The consumer successfully connected with all 32 providers

without any issues.

6.1.3 Results

Firstly we will start with container cpu user seconds total .The metric represents

the total amount of CPU time, in seconds, that processes in the container have spent in

“user” mode since the container started. When a process runs in “user” mode, it is

executing user-written code, as opposed to “system” mode, where the CPU is executing

system/kernel code.

Since we are focusing on a scalability analysis of the SwarmOS, we choose specifically

the user mode to not take in account the system time that docker can add in the CPU

usage.

The CPU usage for the consumer increases proportionally with the number of cameras

added to the network. This trend is logical, as the consumer interacts with more brokers,

establishes additional connections, and performs related tasks. Using the container cpu

user seconds total we can derive the percent of a core used for the experiment.

By analyzing the container cpu user seconds total, we can determine the per-

centage of a single core utilized during the experiment. Figure 17 depicts the peak CPU

usage for a single core across different test setups. It’s important to note that, given the

test machine has 8 cores, the maximum attainable value is 800%.

95

Figure 18: Peak memory usage in Mb in scenarios varying from 1 to 32 cameras

Turning our attention to the container memory usage bytes metric, it measures the

total memory presently consumed by a container, encompassing all memory regardless of

its last access time. This metric is instrumental in gauging the real-time memory footprint

of containerized applications or services. Given the dynamic nature of memory allocation

(with memory being allocated and freed as necessary), we captured the peak value, which

typically occurs during a transaction.

By examining the container memory usage bytes, we can pinpoint the highest mem-

ory consumption in MB. Figure 18 illustrates the peak memory used by the consumer

when retrieving camera images across various provider configurations. It’s noteworthy to

mention that the test machine was equipped with up to 16MB of memory, ensuring that

the testbed was never resource-deprived at any point.

Lastly, let’s discuss the container network receive bytes total metric. This met-

ric tallies the cumulative number of bytes a container receives through its network inter-

faces. Being an accumulative counter, its value continually increases unless the system

undergoes a restart or the counter is reset. Monitoring this particular metric provides

insights into the inbound network traffic volume of a specific containerized application or

service.

By examining the container network receive bytes total, we can gauge the net-

work traffic. It’s important to note that each provider generates an image of a fixed size,

specifically 8MB.

96

Figure 19: Data transfer for different scenarios varying from 1 to 32 cameras

6.1.4 Scalability Analysis

The network’s connection system demonstrates considerable strengths in addressing

diverse challenges, as unveiled during a comprehensive scalability analysis.

Primarily, the brokers showcase an automatic capability to detect accessible protocols

and dynamically incorporate them into their service descriptions, enabling seamless con-

nections with other brokers. This adaptive behavior streamlines the user or developer’s

tasks by providing a self-configuring environment.

Moreover, the concurrent connection test highlights that resource utilization scales

linearly with the number of connections. The system exhibits efficient handling of nu-

merous concurrent connections, attributed to its REST architecture. This design choice

facilitates scalability by efficiently managing the communication demands in a manner

that aligns with the growing number of connections. Overall, the connection system

not only showcases adaptability in addressing diverse protocols but also underscores its

scalability through efficient resource utilization in handling concurrent connections.

In the work Kash et al. (2012), shed light on the seeding and leeching behavior in

the context of BitTorrent. Despite a small percentage of users engaging in a high number

of concurrent seed/leech, the median leecher typically participates in just 1 torrent, and

the median seeder is active in 4 torrents. This data underscores that, in practical terms,

many users do not engage in numerous concurrent connections. Drawing parallels from

this BitTorrent example, it suggests that for certain applications or systems, a substantial

number of concurrent connections might not be a common or necessary scenario. The

study highlights the importance of understanding the specific requirements and usage

patterns within a network to optimize resources effectively.

97

6.2 Discovery

6.2.1 Caching Performance Test

As delineated in section 5.2, the SwarmOS operates by sequentially attempting every

possible endpoint. Upon receiving a valid response from an endpoint, it’s memoized for

prioritized use in subsequent transactions. Prior to the implementation of caching, this

method was performed every time a new transaction was required. The process was

inevitably time-consuming and somewhat inefficient.

The objective of this test is to monitor the system in action and address potential

issues arising from the newly introduced feature.

6.2.1.1 Results

With the implementation of caching, the system became significantly more efficient.

Now, based on the information from the last successful transaction, the SwarmOS already

knows which endpoint works, eliminating the need to sequentially test every endpoint each

time.

Below we represented an example service list and the time taken to resolve the end-

point in relation to the position of the first functional endpoint in the list. The position

index helps us understand how far into the list we had to traverse before finding a func-

tional endpoint, and thus, the time taken for endpoint resolution.

This comparative analysis clearly demonstrates the improved efficiency and time-

saving advantage offered by the caching mechanism. It reinforces the utility of caching in

facilitating faster and more effective transactions in SwarmOS.

This is a sample service endpoint list, a field that provides potential consumers with

a range of endpoints they can utilize to request a service. Because the consumer can’t

ascertain whether they reside on the same localhost or intranet, they must attempt each

endpoint in sequence until they receive a successful response.

Listing 6.1: Caching example

1 service: [

2 %BrokerCore.Registry.Service{
3 id: "# localhost",

4 serviceEndpoint: "http:// localhost:5151/",

5 type: "swarmService"

98

6 },
7

8 %BrokerCore.Registry.Service{
9 id: "#lan",

10 serviceEndpoint: "http://192.168.100.104:5151/",

11 type: "swarmService"

12 },
13

14 %BrokerCore.Registry.Service{
15 id: "#upnp",

16 serviceEndpoint: "http://100.68.138.126:5151/",

17 type: "swarmService"

18 },
19 %BrokerCore.Registry.Service{
20 id: "#ipv6",

21 serviceEndpoint: "http://[1ffe:0:a8:85a3::ac1f]:5151/",

22 type: "swarmService"

23 }
24]

After a transaction is completed, the subsequent transaction utilizes the cached end-

point, significantly enhancing the transaction speed. For instance, when a consumer and

a provider are on different networks, neither the localhost nor the intranet address serve

as valid endpoints. The first viable endpoint is the UPnP, but pinpointing this endpoint

by testing and discarding the initial two takes slightly more than 6 seconds. By caching,

the transaction time can be improved by almost 6 seconds.

6.2.2 Network Knowledge Enhancement Test

In our Network Knowledge Enhancement Test, we set up multiple networks, which

we’ll refer to as Network A, Network B, Network C, and so on. Each of these networks

had its own dedicated broker and provider, labeled correspondingly (i.e., Network A had

Broker A and Provider A). Crucially, Broker A was linked to Provider A within Network

A. Subsequently, devices within Network A were also interconnected with those in Network

B, and this pattern continued across the networks.

The objective is to evaluate the redirect functionality within the querying system.

99

Figure 20: Time to response for each case of entrypoint discovery

When a query is executed in Network A with the redirect setting at 1, we anticipate the

results to include Provider A, Provider B, and Provider C. Providers A and B are derived

directly from the initial query, while Provider C is sourced from the redirected query to

Broker B.

We observed that even as a node’s knowledge of the network increased, its capability

to discover new entities remained unchanged. The underlying reason for this stagnation

was that the caching system currently in place only caches providers and does not account

for the brokers.

Without brokers being cached, the system’s reach in terms of discovery remains lim-

ited, regardless of how much more it knows about the existing providers. To address

this shortcoming and truly enhance network discoverability, we recommend that future

iterations of the system explore mechanisms for caching brokers. Incorporating brokers

into the cache could potentially streamline and bolster the querying process, leading to

more efficient network utilization.

6.2.3 Query Discovery vs Cache-Assisted Discovery Time Test

To kick things off, a virtual Swarm network has been set up. Within this configuration,

the network comprises a node dedicated to the payment and reputation blockchain, a

singular consumer, and a range of providers varying between 1 to 5 entities.

During the initial phase, the “Query-Assisted Connection Phase”, every node starts

100

Table 7: Comparison of query vs cache-assisted discovery time

Cameras Query Discovery(s) Cache-Assisted Discovery(s)
1 18.88 3.82
2 19.26 4.20
3 19.62 4.55
4 20.00 4.55
5 20.39 5.38

with a clean slate, meaning they have zero prior knowledge of each other. In this con-

text, the consumer initiates a query directed towards the network. Given that the query

matches, every provider responds. The transaction duration is delineated from the mo-

ment the providers dispatch the initial query to the network and concludes upon the

utilization of the service, marking the final feedback’s transmission to the blockchain.

Transitioning to the “Cache-Assisted Connection Phase”, it’s noteworthy that the

consumer and providers have each other in the memory.—they’re well-acquainted thanks

to previous interactions. consumer initiates a query inside its own in memory list and

after the result of this query, a direct connection request to every provider, and again, we

measure the duration it takes for the whole transaction to finish.

In our analysis of transaction completion times on the Swarm network, we observed

some particularly intriguing patterns. Central to our findings was the undeniable advan-

tage that caching conferred upon transaction speeds. When the system utilized cache-

assisted discovery methods, the time taken to complete the whole transaction was con-

siderably reduced compared to traditional query-based methods.

The cache, in essence, serves as a memory bank, storing details of previously discov-

ered nodes. This eliminates the need for the system to actively search out nodes within

the network for each transaction, as would be the case in a query-based approach. In-

stead, by leveraging the stored information, nodes can directly communicate with their

counterparts, expediting the connection and subsequent transaction process. The data

underscores the importance of incorporating caching mechanisms in P2P networks, espe-

cially for applications where speed is paramount.

6.2.4 Scalability Analysis

When utilizing a querying system in a Swarm network, each request often requires

multiple hops between devices before reaching its intended destination. These intermedi-

ary steps can introduce latency and potentially hinder efficient discoverability. However,

101

Figure 21: Comparition of transaction time from query vs cache-assisted discovery

by integrating caching into the process, the speed for these numerous hops is significantly

reduced. As a result, not only is the query speed enhanced, but the overall discoverability

within the network also experiences a marked improvement, ensuring more efficient and

rapid node-to-node communications.

The limitation observed in the caching system, where only agents are cached and not

their brokers, resulted in no enhancement in network knowledge. Identifying this aspect

provides valuable insights for future iterations of SwarmOS, highlighting a specific area

that can be targeted for improvement.

6.3 Fairness

6.3.1 Reputation Test

Use cases 1 and 2 focus on a reputation analysis of agents in an environment with

default consumers and default providers, and malfunctioning providers.

Use case 1 - Providers with invalid HTTP responses

The simulation of both normal and malfunctioning agents enables a comprehensive

evaluation of the reputation system’s performance, specifically in terms of its response to

malfunctions.

During this phase, cameras numbered from 1 to 32 are considered to be functioning

correctly. However, cameras numbered beyond 32 manifest a bug wherein they initially

function correctly, but after five requests, they experience crashes, leading to the genera-

102

Figure 22: Reputation change on use case 1

tion of erroneous HTTP responses.

Figure 22 illustrates this use case in the reputation system, we can see the malfunc-

tioning camera’s reputation updating over the block number, where the block number

represents the chronological order of the block’s inclusion in the reputation blockchain.

They slowly start losing reputation, and when their reputation goes down lower than the

threshold they stop being requested.

Subsequently, cameras 34 and 37 begin receiving requests as the older cameras are no

longer detected in the queries. However, it is observed that these cameras also exhibit

the same bug, and after handling some requests, they too get expelled from the network.

Given the structure of the feedback formula explained in section 5.1, the consumer’s

feedback registers at 0 due to malfunctions, while the broker’s feedback is rated at 5,

reflecting an error-free and penalty-free transaction from the broker’s end.

Using an α = 0.8 the reputation score for a malfunctioning request is:

Pointsi = αFi + (1 − α)Fb

Pointsi = 0.8 · 0 + (1 − 0.8) · 5 = 1

Let’s denote ‘g’ as the count of positive evaluations, and ‘b’ as the number of unfa-

vorable reviews, then:

(5g + 1b)/(g + b) < 2

103

5g + b < 2g + 2b

3g < b

From these computations, it becomes clear that to effectively remove an unsatisfactory

participant from the network, we need thrice the number of negative responses compared

to positive ones. This trend holds true both in our formal analysis and simulation studies

- it shows that to expel a subpar provider from the network, at least three times more

negative experiences are necessary. Even under optimal conditions, where α = 1, there

needs to be 1.5 times more negative interactions than positive to ensure the removal of

an ineffective provider from the network.

Use case 2 - Providers with slow response time

During the evaluation of the reputation system, providers with slow response timers

were included in the testing. Figure 23 illustrates a use case scenario where cameras 34

to 41 initially responded normally to requests but experienced a decline in response time

after the first 5 interactions.

To assess the impact of delayed responses on the provider’s reputation, penalties were

applied based on the extent of the response delay. However, the provider’s reputation

score was never reduced to zero, as long as the responses remained valid.

Moreover, this experimentation showcased the reputation system’s capacity to expel

malfunctioning agents from the network. The average score for a slow response was about

1.48. Evaluating again on the formula.

(5n + 1.48k)/(n + k) < 2

5n + 1.48k < 2n + 2k

5.77n < k

Again, a minimum of 5.77 more malfunctioning requests were needed for expelling a

broken provider from the network. The simulation confirms this, requiring on average 28

bad requests to eliminate an agent that had previously provided five good requests.

Use cases 3 and 4 focus on a reputation analysis of agents in an environment with

default consumers/providers, together with malicious providers.

Reputation analysis in a simulation with malicious providers can provide insights into

how a reputation system behaves in the presence of selfish behavior. Malicious providers

can significantly hinder the scalability of a network by disrupting normal operations and

104

Figure 23: Reputation change on use case 2

causing instability. Their presence can lead to increased communication overhead, as the

network needs to constantly identify and handle malicious activities. This added burden

can strain the network’s resources and impede its ability to efficiently scale. Moreover,

malicious providers exploit vulnerabilities in the system, causing cascading failures and

reducing the network’s overall robustness.

Use case 3 - Providers doing on-off attacks

In a reputation system, a malicious device can attempt to manipulate the system by

providing random responses, good or bad, a strategy known as an ’On-off attack’. This

is where devices or agents share their observations or experiences about the behavior of

other agents. Random responses can distort the reputation scores of the device, potentially

impacting its ability to effectively participate within the system.

In Figure 24, we showcase an experiment involving malicious devices. Here, there’s

an equal probability (50% each) of providing either a good or a bad response. It’s notable

that all cameras, except camera 39, are expelled from the network as their reputation falls

below the predetermined reputation threshold.

The unpredictability of the on-off attack typically leads to the expulsion of most

malicious agents from the network during the initial interactions. However, if a malicious

agent manages to endure this stage, it’s theoretically expected that its score will average

around 3.0 (the midpoint between 5.0 and 1.0, the expected reputation score for good and

105

Figure 24: Reputation change on use case 3

bad responses respectively). Therefore, an on-off attack with a 50%/50% split is already

sufficiently disruptive to avert expulsion from the network.

The logical next question is whether these malicious agents could enhance their strat-

egy by initially building a stronger reputation with five good responses before randomly

providing bad responses. Theoretically, their reputation score would gravitate towards 3,

the average between 5 and 1, comfortably exceeding the expulsion threshold of 2.0. This

case can be seen on Figure 24.

Use case 4 - Providers doing opportunistic on-off attacks

In reputation systems, an “opportunistic attack” is a particular type of malicious

behavior in which a device provides false or misleading information only when it’s advan-

tageous for the device itself. In these instances, the malicious device cleverly manipulates

its reputation score by selectively supplying deceptive data to the system, in a way that

optimally benefits the device.

In Figure 24, we explore an experiment involving such opportunistic on-off attacks.

These devices operate on a simple strategy: if the reputation falls below 3.0, the agent

switches to providing a valid response. Intriguingly, these devices manage to maintain an

average reputation score despite frequently supplying misleading responses. Consequently,

they continue to remain within the network.

This indicates that even irregular but strategically placed valid responses can be

106

Figure 25: Reputation change on use case 3 with a initial reputation

sufficient to maintain an acceptable reputation score. Hence, it underscores the need

for reputation systems to be designed and implemented in a way that accounts for and

mitigates such opportunistic behaviors.

Use cases 5 and 6 focus on analyzing the reputation of gang-backed malicious actors.

An enhanced tactic for a malicious entity involves organizing in a coordinated, gang-like

fashion. By simulating the actions of malevolent entities operating within such coordi-

nated groups, we can examine their influence on the overall operation of the reputation

system and assess its proficiency in detecting and managing such organized malevolent

conduct.

Testing the resilience of the reputation system against a range of coordinated malevo-

lent activities, including deception, fraudulent activities, or poor service provision, allows

us to evaluate the efficacy of the system’s mechanisms in both recognizing and responding

to these behaviors. This process can reveal valuable insights into the system’s potential

vulnerabilities and assist in identifying possible enhancements.

Use case 5 - Gang Attack

In the realm of consumers, strategies often involve self-promotion attacks and bad-

mouthing attacks. Regardless of the Quality of Service (QoS), consumers in these sce-

narios rate gang members highly while providing low scores to other members. This

manipulation serves to artificially enhance their reputation while undermining that of ri-

107

Figure 26: Reputation change on use case 4

vals within the system. Such attacks can be orchestrated by individuals or organizations

to inflate their trustworthiness, credibility, or desirability, while simultaneously tarnish-

ing the reputation of competitors. These coordinated endeavors can significantly alter the

reputation scores of other agents, potentially impacting their ability to engage within the

network. Both self-promotion and bad-mouthing attacks, being malicious in nature, can

severely compromise the integrity and accuracy of a reputation system.

Regarding the providers, malicious agents primarily adopt a fraudulent strategy,

wherein they accept payment without rendering services to entities outside their gang.

In this analysis, we focus on the variation in the number of consumers. The quantity

of providers will not influence the outcome, given the reputation scoring and updating

mechanisms remain constant. To influence the reputation system’s results, we need to

alter the active participants, i.e., the consumers who contribute to the reputation score.

Analyzing the Impact on Coordinated Malicious Providers

The graph demonstrates the influence of gang formation on reputation scores in net-

works where 12.5%, 25%, and 50% of consumers belong to gangs. As the proportion of

consumers within a gang escalates, their strategy of self-rating favorably becomes increas-

ingly effective. As a result, the graph highlights a direct correlation between the size of

the gang and the positive impact on the reputation scores for gang members. The larger

the gang, the greater their capacity to manipulate reputation scores in their favor, thereby

108

Figure 27: Reputation score by block number (Malicious providers)

(a) Malicious providers scores on a network with
12.5% of consumers on the same gang

(b) Malicious providers scores on a network with
25% of consumers on the same gang

(c) Malicious providers scores on a network with
50% of consumers on the same gang

maintaining higher reputations despite their malicious actions.

Analyzing the Impact on Well-Intentioned Providers

The graph illustrates the predicament of well-intentioned providers who are not part

of these gangs. As these providers get systematically sidelined from the gangs, their

reputation scores suffer, leading to their eventual expulsion from the network. The graph

notably displays how gang-centric dynamics, which involve consumers providing elevated

reputation scores to their fellow gang members, foster an environment detrimental to the

network participation of well-meaning, non-gang providers. Their reputation scores dip,

leading to their systematic exclusion. As the count of consumers within gangs swells,

the repercussion of this strategy on the expulsion of well-intentioned providers becomes

109

Figure 28: Reputation score by block number (Well intentioned providers)

(a) Well intentioned providers scores on a network
with 12.5% of consumers on the same gang

(b) Well intentioned providers scores on a network
with 25% of consumers on the same gang

(c) Well intentioned providers scores on a network
with 50% of consumers on the same gang

glaringly evident. This underlines the substantial influence of gang dynamics on network

participation and the distribution of reputation scores.

Analyzing the Impact of Gang Membership on Reputation Scores

Subsequently, we altered the proportion of gang members within the network, incre-

mentally increasing their presence from an initial 12.5% to 25% and ultimately to 50%. At

each stage, we reevaluated the average reputation scores of both the well-behaved agents

and the gang members, providing us with a clear understanding of the effects of increased

gang membership on the network.

This stepwise escalation allowed us to witness the evolving dynamics within the net-

110

Figure 29: Use case 5 average reputation score

(a) Average score of well-intentioned vs gang cam-
eras with 12.5% of consumers on the same gang

(b) Average score of well-intentioned vs gang cam-
eras with 25% of consumers on the same gang

(c) Average score of well-intentioned vs gang cam-
eras with 50% of consumers on the same gang

work, revealing the pervasive influence of increasing gang membership on reputation

scores. The resultant data from this comprehensive study provided valuable insights into

how different levels of gang representation can significantly impact the reputation-based

dynamics of the network.

In essence, this analysis shines a light on the potential vulnerabilities of reputation-

based systems, especially in the face of orchestrated attacks by organized malicious actors

or ’gangs’. By thoroughly understanding these dynamics, we are better equipped to

develop effective countermeasures to preserve the integrity and fairness of these systems.

Use case 6 - Opportunistic gang attack

In a scenario akin to the prior one, consumers persistently employ strategies such as

111

self-promotion and bad-mouthing attacks.

Meanwhile, all the malicious providers resort to an opportunistic on-off attack strat-

egy. In this scheme, the malicious devices toggle between delivering good and bad re-

sponses, hinging upon their own reputation score. When their score descends below a

predetermined threshold, these providers adjust their behavior to appear virtuous. This

behavior jeopardizes the reliability of all agents’ reputation scores, complicating the task

of expelling malicious devices from the network.

Figure 30 presents a scenario in which gang members engage in collusion. They

persistently assign each other high reputation scores within the gang while simultaneously

delivering bad reputation scores to well-behaved, non-gang members. This artifice poses

significant challenges for the reputation system, making it difficult to differentiate between

colluding gang members and honest, non-gang participants.

The graphs illustrate how this coordinated effort by gang members to create a positive

reputation makes it more arduous to spot their harmful non-functioning devices. It fosters

an environment where their malicious actions blend seamlessly with those of the genuine

participants. Consequently, the reputation system may encounter hurdles in accurately

assessing and differentiating between these two groups. This situation can have a profound

impact on the overall accuracy and efficiency of the reputation mechanism, bringing its

reliability into question.

The dynamic representation of these graphs sheds light on the resilience of well-

intentioned providers who consistently offer legitimate services amidst challenges posed

by gang attacks. Despite the strategic maneuvers deployed by these groups, the reputa-

tion system demonstrates its effectiveness in identifying and penalizing malicious behav-

ior. These results underscore the system’s ability to uphold fairness and transparency,

rewarding honest providers for their services while efficiently detecting and countering

illicit activities. This resilience positions the reputation system as a robust guardian

against external threats, ensuring the integrity of the network and fostering a secure and

trustworthy environment for all participants.

Through comprehensive testing, it became evident that the gangs require a collusion

of more than 50% of the consumer network to potentially expel well-intentioned providers.

This notable threshold not only emphasizes the robustness of the reputation system but

also highlights its effectiveness in safeguarding against collusion attacks. Such a high

percentage requirement for collusion serves as a significant deterrent, making it challenging

for malicious entities to exploit the system. This aspect, combined with the system’s

112

Figure 30: Reputation score by block number (Malicious providers)

(a) Malicious providers scores on a network with
12.5% of consumers on the same gang

(b) Malicious providers scores on a network with
25% of consumers on the same gang

(c) Malicious providers scores on a network with
50% of consumers on the same gang

113

Figure 31: Reputation score by block number (Well intentioned providers)

(a) Well intentioned providers scores on a network
with 12.5% of consumers on the same gang

(b) Well intentioned providers scores on a network
with 25% of consumers on the same gang

(c) Well intentioned providers scores on a network
with 50% of consumers on the same gang

ability to accurately distinguish between good and malicious actors, positions it as a

formidable mechanism for maintaining the integrity, security, and fairness of the network.

In a manner akin to the preceding use case, the proportion of gang members within

the network was systematically modified, with a gradual increase in their presence from

an initial 12.5% to 25%, and eventually reaching 50%.

The analysis illustrates the impact that a sufficient number of coordinated gang mem-

bers can have on a swarm network. The graphs demonstrate how these groups, through

strategic coordination, can focus their actions on specific areas inside the network, for

example, they can coordinate to attack all known providers of type swarm:camera, effec-

tively dominating these fields.

114

Figure 32: Use case 6 average reputation score

(a) Average score of well-intentioned vs gang cam-
eras with 12.5% of consumers on the same gang

(b) Average score of well-intentioned vs gang cam-
eras with 25% of consumers on the same gang

(c) Average score of well-intentioned vs gang cam-
eras with 50% of consumers on the same gang

Perhaps most crucially, these analyses highlight that while accruing monetary gain,malicious

entities monopolize the network. This not only hampers competition but also presents

serious threats to network trust, and efficiency.

6.3.2 Scalability Analysis

The reputation system within the network exhibits notable strengths in handling

various challenges, as revealed through a detailed scalability analysis.

In the context of malfunctioning providers, the system showcases efficiency by success-

fully expelling all such entities from the network. While the process may take some time,

115

the ultimate removal of malfunctioning providers underscores the system’s commitment

to maintaining a robust and reliable network.

Addressing the issue of malicious providers, the reputation system proves its effec-

tiveness with a basic expulsion strategy. However, the system’s sophistication becomes

apparent when considering more nuanced strategies employed by malicious actors. Even

in the face of these advanced tactics, the reputation system demonstrates resilience, pre-

venting indefinite persistence of malicious providers within the network. This showcases

the adaptability and responsiveness of the system to evolving threats.

One of the system’s standout features is its ability to combat gang attacks. Exten-

sive testing reveals that these coordinated attacks necessitate collusion among more than

50% of the consumer network to potentially expel well-intentioned providers. This high

threshold underscores the robustness of the reputation system in the face of organized

efforts to manipulate and compromise network integrity. The system’s resistance to such

attacks contributes to creating a secure and equitable environment for all providers within

the network.

6.4 Privacy

6.4.1 SmartABAC Performance Test

SmartABAC is a novel and expressive ABAC model tailored for autonomous resource-

constrained IoT devices. Is also the access control model implemented in SwarmOS.

In the work (FEDRECHESKI et al., 2021) the authors do a comprehensive comparison

of execution time across various models together with SmartABAC, the author initially

chose models that had existing open-source implementations - namely, PM, HGABAC,

and XACML. The comparison was then segmented into three categories: Time to Eval-

uate Policies, Policy Size, and Lines of Code, providing a multi-faceted analysis of these

implementations.

Time to Evaluate Policies: This aspect is a significant consideration within Swarm

networks, where evaluations occur for each transaction. The author quantified the time

required to assess a single request against the given policies, repeating this process 3000

times for accuracy. This performance testing was executed on a laptop equipped with a 1.8

GHz quad-core processor and 8 GB of memory. The corresponding results are tabulated

in Table 8.

116

Table 8: Comparation of open-source implementations. Reprinted from (FEDRECHESKI et al.,
2021)

Criteria
Smart-
ABAC

PM HGABAC XACML

Time (ms) to
run 1 request
against policies,
p1, p4, and p6,
3000 times

0.18
(Ca)

70
(Elixirb)

1112
(Rubyc)

840
(Pythond)

46
(Javae)

Average policy
size (bytes)

85 52 111 3433

Lines of code 449 616 1277 1854 19269
a https://github.com/swarm-citi-usp/smart-abac-c
b https://github.com/swarm-citi-usp/smart-abac-elixir
c https://github.com/mdsol/the policy machine
d https://github.com/dservos/HGABAC
e https://github.com/authzforce/core

Policy Size: Considering the storage and bandwidth limitations often present in IoT

devices, it is crucial that embedded access policies are compact. The author conducted

a comparative study on policy sizes among various models by gauging their dimensions

and calculating the mean. Certain models already possess a predetermined serialization

format for policies. For instance, XACML employs Extensible Markup Language (XML),

whereas HGABAC utilizes its own policy language, HGPL. These formats were used for

expressing and evaluating the respective policies. In the case of SmartABAC, the author

utilized CBOR, a condensed yet flexible data format widely adopted in IoT applications.

Additionally, CBOR was used to depict the PM graph as an adjacency list, compensating

for its lack of an original serialization method.

Lines of code: In addition to performance, the size of a codebase is a consideration

for platforms with storage constraints. While the author recognizes that such comparisons

depend heavily on the programming language used and the features implemented, it

is included for reference. The Linux utility, wc5, was used to count lines, excluding

comments and blank lines. Furthermore, given that the PM repository offers various

storage adapters, only the in-memory adapter was included in the count for this analysis.

The performance of two SmartABAC implementations were examined across vari-

ous platforms, as outlined in Table VI. The laptop and Labrador are non-constrained

devices operating on Debian 10, while ESP32 and Pulga are MCUs running on bare-

metal software. A C-based implementation was assessed across all platforms, whereas the

Elixir-based version was only tested on the laptop and Labrador platforms.

117

Table 9: Performance on different platforms. Reprinted from (FEDRECHESKI et al., 2021)

Description Platform
SmartABAC

(C)
SmartABAC

(Elixir)

Time (ms) to run
1 request against

6 policies, 3000 times

Laptop 0.5 76
Labrador 5.5 830
ESP32 88 n/a
Pulga 176 n/a

Time (ms) to run
1 request against

3000 policies

Laptop 0.04 1
Labrador 0.12 6
ESP32 1 n/a
Pulga 4.8 n/a

The test descriptions and their corresponding results are presented in Table VII. In

the initial test, the author assessed a single request against the six policies, repeated

this process 3000 times, and measured the overall time taken. This scenario simulates

an IoT device receiving thousands of authorization requests within a short timeframe.

The C implementation exhibited minimal delay on the laptop and Labrador platforms

and a tolerable delay on the two resource-constrained platforms. The delay observed

when using Elixir on the laptop was also acceptable, although its evaluation delay on

Labrador could lead to a noticeable response time delay. In the second test, the author

evaluated a scenario of a device in a highly dense network, housing thousands of policies.

Here, the author measured the time necessary to evaluate a single request against 3000

policies. The evaluation time in this scenario was negligible for all tested platforms and

implementations. Even for the most resource-constrained device, a 32-MHz MCU, less

than five milliseconds were required to process 3000 policies.

6.4.2 Scalability Analysis

In conclusion, the scalability analysis of SmartABAC against other open-source mod-

els presents a compelling case for its suitability in autonomous resource-constrained IoT

devices, particularly within the SwarmOS framework. The analysis was conducted across

various dimensions, providing a comprehensive assessment of SmartABAC’s performance

and efficiency.

The performance results against other open source models are promising, for example,

the C implementation of SmartABAC was 255 times faster than its closest competitor, a

Java implementation of XACML.

Also the performance test on different platforms shows negligible delay on the laptop

118

and labrador, and a small delay on more constrained devices considering this test runs

3000 times and measures the total time.

In the second test, it was a device within a densely populated network with thousands

of policies. Accordingly, it measured the time required to evaluate a single request against

a set of 3000 policies, in this case, every delay was negligible.

While these results provide some indications of our system’s capacity to accommo-

date large networks, actual deployment remains essential to conclusively establish the

scalability of the solution.

119

7 CONCLUSIONS

Scalability is not a straightforward binary concept; it operates along a spectrum with

diverse levels of adaptability. In this research it was selected techniques to augment

the scalability of the network. Consequently, enhancements have been introduced across

various components of SwarmOS.

This research has undertaken a comprehensive analysis of scalability by dissecting it

into more accessible and manageable components. By focusing on key elements such as

connection, discovery, fairness, and privacy, the study systematically explored how each of

these factors influences the overall scalability of the system. This breakdown allowed for

a nuanced understanding of the intricate dynamics within each component and provided

insights into their collective impact on the system’s scalability. Through this approach,

the research aimed to unravel the complexities associated with scalability and offer a

more granular perspective that can guide targeted improvements in different facets of the

system.

The study proposed and specified a set of test cases designed to measure scalability

across key elements such as connection, discovery, fairness, and privacy within the Swarm

ecosystem. By formulating these test cases, the research aimed to create a structured

and systematic framework for assessing the performance and adaptability of the system.

This methodology not only allowed for an examination of each scalability aspect but

also facilitated the identification of specific strengths and weaknesses within the Swarm

environment. Through the careful orchestration of test scenarios, the research sought to

provide a comprehensive evaluation that contributes valuable insights into the scalability

dynamics of Swarm.

In order to conduct thorough and insightful tests on the scalability of SwarmOS,

an aspect of this research involved the development of a robust and flexible testbed im-

plementation. Recognizing the necessity for a tangible and adaptable environment, this

research crafted a concrete testbed designed with a high degree of flexibility, ensuring its

usability in a diverse array of use cases beyond scalability assessments. The testbed served

120

as a controlled and dynamic space where various scenarios could be simulated, allowing

for the systematic evaluation of SwarmOS performance across different conditions. This

deliberate and strategic investment in the development of a versatile testbed underscored

the commitment to creating a comprehensive and applicable framework for not only un-

derstanding the scalability nuances of SwarmOS but also for potentially informing and

enhancing its functionality in real-world applications.

The efficacy of our testbed became evident throughout our work. Even though it was

small, it proved invaluable in diagnosing several bugs and areas requiring improvement in

SwarmOS. Especially considering that it allowed for efficient identification of shortcomings

without necessitating the cost and complexity of vast physical testbeds.

While we take pride in the strides we’ve made in advancing SwarmOS, this work is

aware that the journey of improvement is continuous. Our discoveries and the roadmap for

future enhancements will be elaborated upon in the forthcoming ‘next steps’ section. The

horizon of SwarmOS development beckons with promise and potential. Future research

directions might include:

1. Diversifying Network Environments: While the current research spanned mul-

tiple network scenarios, introducing more varied and complex environments could

provide even richer data on SwarmOS’s performance and resilience.

2. Enhancing the Caching Mechanism: The caching mechanism could be refined

further, perhaps by introducing machine learning algorithms to predict which end-

points are most likely to be functional based on historical data, further improving

transaction times.

3. Security Considerations: With the focus on efficiency, it would be worthwhile to

assess any potential vulnerabilities introduced by the caching mechanism and design

countermeasures to address them.

4. Integrating Advanced Communication Protocols: As SwarmOS grows and

evolves, it would be beneficial to examine how newer communication strategies or

protocols could be amalgamated to boost performance further.

In essence, while our goals of understanding and enhancing SwarmOS’s efficiency have

been largely achieved, the ever-evolving nature of technology and network systems ensures

that this research will remain an ongoing journey, continually adapting and innovating in

response to new challenges and discoveries.

121

This work has ushered in enhancements to the SwarmOS, made possible through the

implementation of the Edge-computing IoT Testing framework. These improve-

ments are thoroughly documented in the dedicated section 5.4. The testing framework

provided a systematic and comprehensive approach to evaluating various aspects of the

SwarmOS, leading to targeted refinements. From the scalability of the connection system

to the adaptability of brokers in diverse network environments, the testing framework has

served as a catalyst for positive changes.

122

REFERENCES

ADJIH, C. et al. Fit iot-lab: A large scale open experimental iot testbed. In: 2015 IEEE
2nd World Forum on Internet of Things (WF-IoT). [S.l.: s.n.], 2015. p. 459–464.

BARBER, S. et al. Bitter to better—how to make bitcoin a better currency. In:
SPRINGER. International conference on financial cryptography and data security. [S.l.],
2012. p. 399–414.

BELLI, L. et al. Design and deployment of an iot application-oriented testbed. Computer,
v. 48, n. 9, p. 32–40, Sep 2015. ISSN 1558-0814.

BIASE, L. C. C. D. et al. Swarm economy: A model for transactions in a distributed and
organic iot platform. IEEE Internet of Things Journal, IEEE, v. 6, n. 3, p. 4561–4572,
2018.

BISWAS, P.; SANDHU, R.; KRISHNAN, R. A comparison of logical-formula and
enumerated authorization policy abac models. In: SPRINGER. Data and Applications
Security and Privacy XXX: 30th Annual IFIP WG 11.3 Conference, DBSec 2016,
Trento, Italy, July 18-20, 2016. Proceedings 30. [S.l.], 2016. p. 122–129.

BJERKNES, J. D.; WINFIELD, A. F. On fault tolerance and scalability of swarm
robotic systems. In: Distributed autonomous robotic systems. [S.l.]: Springer, 2013. p.
431–444.

BOGLIOLO, A. et al. Virtual currency and reputation-based cooperation incentives in
user-centric networks. In: IEEE. 2012 8th International Wireless Communications and
Mobile Computing Conference (IWCMC). [S.l.], 2012. p. 895–900.

BONDI, A. B. Characteristics of scalability and their impact on performance. In: ACM.
Proceedings of the 2nd international workshop on Software and performance. [S.l.], 2000.
p. 195–203.

BORMANN, C.; ERSUE, M.; KERANEN, A. Terminology for constrained-node
networks. Internet Engineering Task Force (IETF): Fremont, CA, USA, p. 2070–1721,
2014.

BOUCADAIR, M.; PENNO, R.; WING, D. Universal Plug and Play (UPnP)
Internet Gateway Device - Port Control Protocol Interworking Function (IGD-PCP
IWF). RFC Editor, 2013. RFC 6970. (Request for Comments, 6970). Dispońıvel em:
⟨https://rfc-editor.org/rfc/rfc6970.txt⟩.

BOUCADAIR, M.; PENNO, R.; WING, D. DHCP Options for the Port Control Protocol
(PCP). RFC Editor, 2014. RFC 7291. (Request for Comments, 7291). Dispońıvel em:
⟨https://rfc-editor.org/rfc/rfc7291.txt⟩.

123

BRÖRING, A.; DATTA, S. K.; BONNET, C. A categorization of discovery technologies
for the internet of things. In: Proceedings of the 6th International Conference on the
Internet of Things. [S.l.: s.n.], 2016. p. 131–139.

CABRÉ, J. A. C.; PRECUP, D.; SANZ, R. Horizontal and vertical self-adaptive cloud
controller with reward optimization for resource allocation. In: IEEE. 2017 International
Conference on Cloud and Autonomic Computing (ICCAC). [S.l.], 2017. p. 184–185.

CASALICCHIO, E.; PERCIBALLI, V. Measuring docker performance: What a mess!!!
In: Proceedings of the 8th ACM/SPEC on International Conference on Performance
Engineering Companion. [S.l.: s.n.], 2017. p. 11–16.

CCORI, P. C. et al. Device discovery strategies for the iot. In: IEEE. 2016 IEEE
International Symposium on Consumer Electronics (ISCE). [S.l.], 2016. p. 97–98.

CHANG, C.; SRIRAMA, S. N.; BUYYA, R. Internet of things (iot) and new computing
paradigms. Fog and edge computing: principles and paradigms, Springer, v. 6, p. 1–23,
2019.

CHERNYSHEV, M. et al. Internet of things (iot): Research, simulators, and testbeds.
IEEE Internet of Things Journal, v. 5, n. 3, p. 1637–1647, Jun 2018. ISSN 2327-4662.

CHESHIRE, S. et al. RFC 6887: Port Control Protocol (PCP). [S.l.]: RFC Editor, 2013.

CHESHIRE, S.; KROCHMAL, M. NAT Port Mapping Protocol (NAT-PMP).
RFC Editor, 2013. RFC 6886. (Request for Comments, 6886). Dispońıvel em:
⟨https://rfc-editor.org/rfc/rfc6886.txt⟩.

CONOSCENTI, M.; VETRO, A.; MARTIN, J. C. D. Blockchain for the internet of
things: A systematic literature review. In: IEEE. 2016 IEEE/ACS 13th International
Conference of Computer Systems and Applications (AICCSA). [S.l.], 2016. p. 1–6.

COSTA, L. C. P. et al. Swarm os control plane: an architecture proposal for
heterogeneous and organic networks. IEEE Transactions on Consumer Electronics, v. 61,
n. 4, p. 454–462, nov. 2015. ISSN 0098-3063.

COSTA, L. de P. et al. Swarm OS control plane: An architecture proposal for
heterogeneous and organic networks. In: 2015 IEEE International Conference on
Consumer Electronics (ICCE). [S.l.: s.n.], 2015. p. 245–246.

CROMAN, K. et al. On scaling decentralized blockchains. In: SPRINGER. International
conference on financial cryptography and data security. [S.l.], 2016. p. 106–125.

DIAS, J. P. et al. A brief overview of existing tools for testing the internet-of-things.
In: IEEE. 2018 IEEE International Conference on Software Testing, Verification and
Validation Workshops (ICSTW). [S.l.], 2018. p. 104–109.

FEDRECHESKI, G. et al. Attribute-based access control for the swarm with distributed
policy management. IEEE Transactions on Consumer Electronics, IEEE, v. 65, n. 1, p.
90–98, 2018.

FEDRECHESKI, G. et al. Smartabac: enabling constrained iot devices to make complex
policy-based access control decisions. IEEE Internet of Things Journal, IEEE, v. 9, n. 7,
p. 5040–5050, 2021.

124

FORD, B.; SRISURESH, P.; KEGEL, D. Peer-to-peer communication across network
address translators. In: USENIX Annual Technical Conference, General Track. [S.l.:
s.n.], 2005. p. 179–192.

FORTIER, P.; MICHEL, H. Computer systems performance evaluation and prediction.
[S.l.]: Elsevier, 2003.

FRANKLIN, S.; GRAESSER, A. Is it an agent, or just a program?: A taxonomy
for autonomous agents. In: SPRINGER. International workshop on agent theories,
architectures, and languages. [S.l.], 1996. p. 21–35.

FREEDMAN, M. J.; FREUDENTHAL, E.; MAZIERES, D. Democratizing content
publication with coral. In: NSDI. [S.l.: s.n.], 2004. v. 4, p. 18–18.

GA LKA, J.; MASIOR, M.; SALASA, M. Voice authentication embedded solution for
secured access control. IEEE Transactions on Consumer Electronics, IEEE, v. 60, n. 4,
p. 653–661, 2014.

GLOWNIAK, J. History, structure, and function of the internet. In: ELSEVIER.
Seminars in nuclear medicine. [S.l.], 1998. v. 28, n. 2, p. 135–144.

GUO, J.; CHEN, R.; TSAI, J. J. A survey of trust computation models for service
management in internet of things systems. Computer Communications, Elsevier, v. 97,
p. 1–14, 2017.

GUPTA, A.; CHRISTIE, R.; MANJULA, P. Scalability in internet of things: features,
techniques and research challenges. Int. J. Comput. Intell. Res, v. 13, n. 7, p. 1617–1627,
2017.

HALES, D. et al. Bittorrent or bitcrunch: Evidence of a credit squeeze in bittorrent?
In: IEEE. 2009 18th IEEE International Workshops on Enabling Technologies:
Infrastructures for Collaborative Enterprises. [S.l.], 2009. p. 99–104.

HENDERSON, T. R. et al. Network simulations with the ns-3 simulator. SIGCOMM
demonstration, v. 14, n. 14, p. 527, 2008.

HU, V. C. et al. Guide to attribute based access control (abac) definition and
considerations (draft). NIST special publication, Citeseer, v. 800, n. 162, p. 1–54, 2013.

IDC. The Growth in Connected IoT Devices Is Expected to Generate 79.4ZB of Data in
2025, According to a New IDC Forecast. 2019. International Data Corporation website.
Dispońıvel em: ⟨https://www.idc.com/getdoc.jsp?containerId=prUS45213219⟩. Acesso
em: 21 out. 2019.

IETF. Internet Protocol, Version 6 (IPv6) Specification. 1998. Request For Comments:
2460. Dispońıvel em: ⟨https://tools.ietf.org/html/rfc2460⟩. Acesso em: 19 mar. 2023.

ISO/IEC 29341 Information technology — UPnP Device Architecture. Geneva, CH,
2017. v. 2017.

KAO, C. H. Survey on evaluation of iot services leveraging virtualization technology. In:
Proceedings of the 2020 5th International Conference on Cloud Computing and Internet
of Things. Association for Computing Machinery, 2020. (CCIOT 2020), p. 26–34. ISBN
978-1-4503-7527-6. Dispońıvel em: ⟨https://doi.org/10.1145/3429523.3429524⟩.

125

KASH, I. A. et al. Economics of bittorrent communities. In: Proceedings of the 21st
international conference on World Wide Web. [S.l.: s.n.], 2012. p. 221–230.

KERäNEN, A.; HOLMBERG, C.; ROSENBERG, J. Interactive Connectivity
Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal.
RFC Editor, 2018. RFC 8445. (Request for Comments, 8445). Dispońıvel em:
⟨https://rfc-editor.org/rfc/rfc8445.txt⟩.

KHATIBI, E.; SHARIFI, M. Resource discovery mechanisms in pure unstructured
peer-to-peer systems: a comprehensive survey. Peer-to-Peer Networking and Applications,
Springer, v. 14, p. 729–746, 2021.

LEE, E. A. et al. The swarm at the edge of the cloud. IEEE Design & Test, IEEE, v. 31,
n. 3, p. 8–20, 2014.

LEE, E. A. et al. The terraswarm research center (tsrc)(a white paper). EECS
Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2012-207, 2012.

LEE, J.-H.; KIM, H. Security and privacy challenges in the internet of things [security
and privacy matters]. IEEE Consumer Electronics Magazine, IEEE, v. 6, n. 3, p.
134–136, 2017.

LIU, Y.; PASSINO, K. M. Swarm intelligence: Literature overview. Department of
electrical engineering, the Ohio State University, 2000.

LOOGA, V. et al. Mammoth: A massive-scale emulation platform for internet of
things. In: IEEE. 2012 IEEE 2nd International Conference on Cloud Computing and
Intelligence Systems. [S.l.], 2012. v. 3, p. 1235–1239.

LY-TRONG, N. et al. Uitiot v3: A hybrid testbed for evaluation of large-scale iot
networks. In: Proceedings of the Ninth International Symposium on Information
and Communication Technology. Association for Computing Machinery, 2018.
(SoICT 2018), p. 155–162. ISBN 978-1-4503-6539-0. Dispońıvel em: ⟨https:
//doi.org/10.1145/3287921.3287935⟩.

MEHDI, K. et al. Cupcarbon: A multi-agent and discrete event wireless sensor
network design and simulation tool. In: INSTITUTE FOR COMPUTER SCIENCE,
SOCIAL INFORMATICS AND TELECOMMUNICATIONS 7th International
ICST Conference on Simulation Tools and Techniques, Lisbon, Portugal, 17-19 March
2014. [S.l.], 2014. p. 126–131.

MENDES, D. X. et al. An experimental reality check on the scaling laws of
swarming systems. In: IEEE. IEEE INFOCOM 2017-IEEE Conference on Computer
Communications. [S.l.], 2017. p. 1–9.

MERRIAM-WEBSTER. Scalability. 2021. Dispońıvel em: ⟨https://www.
merriam-webster.com/dictionary/scalability⟩.

MISLOVE, A. Post: A secure, resilient, cooperative messaging system. Notes, v. 20,
p. 22, 2003.

126

MLOT, N. J.; TOVEY, C. A.; HU, D. L. Fire ants self-assemble into waterproof rafts to
survive floods. Proceedings of the National Academy of Sciences, National Acad Sciences,
v. 108, n. 19, p. 7669–7673, 2011.

MORABITO, R. Virtualization on internet of things edge devices with container
technologies: A performance evaluation. IEEE Access, v. 5, p. 8835–8850, 2017. ISSN
2169-3536.

MORABITO, R. et al. Evaluating performance of containerized iot services for clustered
devices at the network edge. IEEE Internet of Things Journal, IEEE, v. 4, n. 4, p.
1019–1030, 2017.

MäKINEN, A.; JIMéNEZ, J.; MORABITO, R. Eliot: Design of an emulated iot
platform. In: 2017 IEEE 28th Annual International Symposium on Personal, Indoor,
and Mobile Radio Communications (PIMRC). [S.l.: s.n.], 2017. p. 1–7. ISSN 2166-9589.

NORDSTRÖM, E. et al. Evaluating wireless multi-hop networks using a combination
of simulation, emulation, and real world experiments. In: Proceedings of the 1st
international workshop on System evaluation for mobile platforms. [S.l.: s.n.], 2007. p.
29–34.

OLSON, K.; WAMPLER, J.; KELLER, E. Doomed to repeat with ipv6? characterization
of nat-centric security in soho routers. ACM Computing Surveys, ACM New York, NY,
2023.

ÖSTERLIND, F. A sensor network simulator for the contiki os. SICS Research Report,
Swedish Institute of Computer Science, 2006.

OSTERLIND, F. et al. Cross-level sensor network simulation with cooja. In: IEEE.
Proceedings. 2006 31st IEEE conference on local computer networks. [S.l.], 2006. p.
641–648.

PIATEK, M. et al. Do incentives build robustness in bittorrent. In: Proc. of NSDI. [S.l.:
s.n.], 2007. v. 7, p. 4.

POTDAR, A. M. et al. Performance evaluation of docker container and virtual machine.
Procedia Computer Science, Elsevier, v. 171, p. 1419–1428, 2020.

QUALNET. Scalable Network Technologies. 2021. ⟨http://web.scalable-networks.com/
qualnet-network-simulator-software⟩. [Online; accessed 25-October-2021].

RAMALHO, F.; NETO, A. Virtualization at the network edge: A performance
comparison. In: IEEE. 2016 IEEE 17th International Symposium on A World of
Wireless, Mobile and Multimedia Networks (WoWMoM). [S.l.], 2016. p. 1–6.

RAMASUBRAMANIAN, V.; SIRER, E. G. The design and implementation of a next
generation name service for the internet. ACM SIGCOMM Computer Communication
Review, ACM New York, NY, USA, v. 34, n. 4, p. 331–342, 2004.

RAMPRASAD, B. et al. Emu-iot - a virtual internet of things lab. In: 2019 IEEE
International Conference on Autonomic Computing (ICAC). [S.l.: s.n.], 2019. p. 73–83.
ISSN 2474-0756.

127

REDDY.K, T. et al. Traversal Using Relays around NAT (TURN): Relay Extensions to
Session Traversal Utilities for NAT (STUN). RFC Editor, 2020. RFC 8656. (Request for
Comments, 8656). Dispońıvel em: ⟨https://rfc-editor.org/rfc/rfc8656.txt⟩.

RHEA, S. et al. Handling churn in a dht. In: REPORT NO. UCB/CSD-03-1299,
UNIVERSITY OF CALIFORNIA, ALSO PROC. USENIX [S.l.], 2003.

ROSENBERG, J. et al. STUN - Simple Traversal of User Datagram Protocol (UDP)
Through Network Address Translators (NATs). RFC Editor, 2003. RFC 3489. (Request
for Comments, 3489). Dispońıvel em: ⟨https://rfc-editor.org/rfc/rfc3489.txt⟩.

ROSENBERG, J. et al. RFC 6544: TCP Candidates with Interactive Connectivity
Establishment (ICE). [S.l.]: RFC Editor, 2012.

ROWSTRON, A.; DRUSCHEL, P. Pastry: Scalable, decentralized object location,
and routing for large-scale peer-to-peer systems. In: SPRINGER. Middleware 2001:
IFIP/ACM International Conference on Distributed Systems Platforms Heidelberg,
Germany, November 12–16, 2001 Proceedings 2. [S.l.], 2001. p. 329–350.

RUNTIME options with memory, cpus, and gpus. 2021. Dispońıvel em: ⟨https:
//docs.docker.com/config/containers/resource\ constraints/⟩.

SANCHEZ, L. et al. Smartsantander: Iot experimentation over a smart city testbed.
Computer Networks, v. 61, p. 217–238, Mar 2014. ISSN 1389-1286.

SARKAR, C. et al. Diat: A scalable distributed architecture for iot. IEEE Internet of
Things journal, IEEE, v. 2, n. 3, p. 230–239, 2014.

SARMADY, S. A survey on peer-to-peer and dht. arXiv preprint arXiv:1006.4708, 2010.

Seetharami Seelam. How to run more than 1024 docker containers on
my system? 2023. Dispońıvel em: ⟨http://sseelam.blogspot.com/2015/10/
how-to-run-more-than-1024-docker.html⟩.

SEHGAL, A. et al. Management of resource constrained devices in the internet of things.
IEEE Communications Magazine, IEEE, v. 50, n. 12, p. 144–149, 2012.

SILVA, E. d. S. e et al. On the scalability of p2p swarming systems. Computer Networks,
Elsevier, v. 151, p. 93–113, 2019.

SOTIRIADIS, S. et al. Elastic load balancing for dynamic virtual machine reconfiguration
based on vertical and horizontal scaling. IEEE Transactions on Services Computing,
IEEE, v. 12, n. 2, p. 319–334, 2016.

STANKOVIC, J. A. Research directions for the internet of things. IEEE internet of
things journal, IEEE, v. 1, n. 1, p. 3–9, 2014.

STOICA, I. et al. Chord: A scalable peer-to-peer lookup service for internet applications.
ACM SIGCOMM computer communication review, ACM New York, NY, USA, v. 31,
n. 4, p. 149–160, 2001.

STUTZBACH, D.; ZAPPALA, D.; REJAIE, R. The scalability of swarming peer-to-peer
content delivery. In: SPRINGER. International Conference on Research in Networking.
[S.l.], 2005. p. 15–26.

128

TERANISHI, Y. et al. Jose: An open testbed for field trials of large-scale iot services.
Journal of the National Institute of Information and Communications Technology,
National Institute of Information and Communications Technology, v. 62, n. 2, p.
151–159, 2016.

TO, M. A.; CANO, M.; BIBA, P. Dockemu–a network emulation tool. In: IEEE. 2015
IEEE 29th international conference on advanced information networking and applications
workshops. [S.l.], 2015. p. 593–598.

TOBIN, A.; REED, D. The inevitable rise of self-sovereign identity. The Sovrin
Foundation, v. 29, n. 2016, p. 18, 2016.

VARGA, A.; HORNIG, R. An overview of the omnet++ simulation environment. In:
Proceedings of the 1st international conference on Simulation tools and techniques for
communications, networks and systems & workshops. [S.l.: s.n.], 2008. p. 1–10.

WANG, Y.; LU, Z.; GU, J. Research on symmetric nat traversal in p2p applications.
In: IEEE. 2006 International Multi-Conference on Computing in the Global Information
Technology-(ICCGI’06). [S.l.], 2006. p. 59–59.

WANG, Y. et al. An automatic physical access control system based on hand vein
biometric identification. IEEE Transactions on Consumer Electronics, IEEE, v. 61, n. 3,
p. 320–327, 2015.

WHITE, J.; PILBEAM, A. A survey of virtualization technologies with performance
testing. arXiv preprint arXiv:1010.3233, 2010.

WIKIMEDIA. Full Cone NAT. 2020. File: Full Cone NAT.svg. Dispońıvel em:
⟨https://en.wikipedia.org/wiki/File:Full Cone NAT.svg⟩.

WIKIMEDIA. NAT IP Address Swapping. 2020. File: NAT Concept-en.svg. Dispońıvel
em: ⟨https://commons.wikimedia.org/wiki/File:NAT Concept-en.svg⟩.

WIKIMEDIA. Port Restricted Cone NAT. 2020. File: Port Restricted Cone NAT.svg.
Dispońıvel em: ⟨https://en.wikipedia.org/wiki/File:Port Restricted Cone NAT.svg⟩.

WIKIMEDIA. Restricted Cone NAT. 2020. File: Restricted Cone NAT.svg. Dispońıvel
em: ⟨https://en.wikipedia.org/wiki/File:Restricted Cone NAT.svg⟩.

WIKIMEDIA. Symmetric NAT. 2020. File: Symmetric NAT.svg. Dispońıvel em:
⟨https://en.wikipedia.org/wiki/File:Symmetric NAT.svg⟩.

WÖRNER, D.; BOMHARD, T. von. When your sensor earns money: exchanging data
for cash with bitcoin. In: Proceedings of the 2014 ACM International Joint Conference
on Pervasive and Ubiquitous Computing: Adjunct Publication. [S.l.: s.n.], 2014. p.
295–298.

WU, D. et al. Understanding peer exchange in bittorrent systems. In: IEEE. 2010 IEEE
Tenth International Conference on Peer-to-Peer Computing (P2P). [S.l.], 2010. p. 1–8.

WU, J.; LIANG, Q.; BERTINO, E. Improving scalability of software cloud for composite
web services. In: IEEE. 2009 IEEE International Conference on Cloud Computing. [S.l.],
2009. p. 143–146.

129

ZHOU, X. et al. Ipv6 delay and loss performance evolution. International Journal of
Communication Systems, Wiley Online Library, v. 21, n. 6, p. 643–663, 2008.

ZYSKIND, G.; NATHAN, O.; PENTLAND, A. Enigma: Decentralized computation
platform with guaranteed privacy. arXiv preprint arXiv:1506.03471, 2015.

130

APPENDIX A – PUBLICATIONS

This chapter lists the research articles published by the author during the development

of the research.

A.1 Main Articles

The following articles have direct impact on the work presented on this dissertation.

PEREIRA, William T. et al. A virtualized testbed for IoT: Scalability for swarm ap-

plication. In: 2023 IEEE Consumer Communications & Networking Conference

(CCNC). IEEE, 2023. p. 1074-1079.

A.2 Other Publications

The following publications were co-authored during the development of this disserta-

tion, and represent indirect results of this research.

FEDRECHESKI, Geovane et al. Self-sovereign identity for IoT environments: a

perspective. In: 2020 Global Internet of Things Summit (GIoTS). IEEE, 2020. p.

1-6.

AFZAL, Samira et al. Analysis of Web-Based IoT through Heterogeneous Networks:

Swarm Computing over LoRaWAN. Sensors, v. 22, n. 2, p. 664, 2022.

