
BRUNO EIDI NISHIMOTO

DEEP REINFORCEMENT LEARNING FOR
MULTI-DOMAIN TASK-ORIENTED DIALOGUE

SYSTEMS

São Paulo
2023

BRUNO EIDI NISHIMOTO

DEEP REINFORCEMENT LEARNING FOR
MULTI-DOMAIN TASK-ORIENTED DIALOGUE

SYSTEMS

REVISED VERSION

Manuscript submitted to the Escola Politéc-

nica da Universidade de São Paulo to fulfill

part of the requirements to obtain the

degree of Master of Science in the Electrical

Engineering Program.

São Paulo
2023

BRUNO EIDI NISHIMOTO

DEEP REINFORCEMENT LEARNING FOR
MULTI-DOMAIN TASK-ORIENTED DIALOGUE

SYSTEMS

REVISED VERSION

Manuscript submitted to the Escola Politéc-

nica da Universidade de São Paulo to fulfill

part of the requirements to obtain the

degree of Master of Science in the Electrical

Engineering Program.

Concentration Area: Computer Engineering

Advisor: Profa. Dra. Anna Helena Reali

Costa

São Paulo
2023

 Autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio
convencional ou eletrônico, para fins de estudo e pesquisa, desde que citada a fonte.

Este exemplar foi revisado e corrigido em relação à versão original, sob
responsabilidade única do autor e com a anuência de seu orientador.

São Paulo, ______ de ____________________ de __________

Assinatura do autor: ________________________

Assinatura do orientador: ________________________

Catalogação-na-publicação

Nishimoto, Bruno Eidi
 Deep Reinforcement Learning for Multi-Domain Task-Oriented Dialogue
Systems / B. E. Nishimoto -- versão corr. -- São Paulo, 2023.
 65 p.

 Dissertação (Mestrado) - Escola Politécnica da Universidade de São
Paulo. Departamento de Engenharia de Computação e Sistemas Digitais.

 1.Aprendizado por Reforço 2.Chatbot I.Universidade de São Paulo. Escola
Politécnica. Departamento de Engenharia de Computação e Sistemas Digitais
II.t.

31 Janeiro 2023

ACKNOWLEDGMENTS

First of all, I would like to thank my parents Wilson and Lúcia and my siblings Danilo
and Fernanda who have always supported and trusted me in all my decisions throughout
my life’s journey.

A special thanks to my advisor Profa. Dra. Anna Helena Reali Costa for the advises
and for allowing my evolution in the research area.

I thank Itaú Unibanco for the scholarship of the Itaú Scholarship Program (PBI) and
assist me in participating in conferences, and Escola Politécnica for providing adequate
infrastructure and environment for research.

I am grateful to the group of students who are part of Data Science Center (C2D) for
the excellent interaction and the daily exchange of ideas.

Finally, I would like to thank everyone who somehow contributed to my evolution.

“Those who can imagine anything, can
create the impossible.”

-- Alan Turing

RESUMO

NISHIMOTO, B. E.Deep reinforcement learning for multi-domain task-oriented
dialogue systems. 2022. Master Thesis. Escola Politécnica da Universidade de São
Paulo, São Paulo, 2022.

O sistema de diálogo (DS) é uma ideia antiga que remonta a 1966, quando o primeiro
sistema desse tipo foi criado. O DS pode ser classificado em três categorias: pergun-
tas & respostas, orientado à objetivo e socialbot. Os sistemas de diálogo orientados à
objetivo são um campo muito relevante devido à diversidade de aplicações posśıveis que
podem alcançar. Por exemplo, ele pode resolver tarefas como comprar um ingresso de
cinema, reservar um restaurante e fornecer atendimento ao cliente. Eles têm recebido
cada vez mais atenção nos últimos anos, e uma das razões para isso é o avanço no proces-
samento de linguagem natural. Embora a literatura apresente diversos estudos com foco
na SD, ainda há muitas questões a serem cumpridas. A maioria deles está relacionada à
gestão do diálogo, componente central do DS. A aprendizagem por reforço (RL) é uma
abordagem que alcançou grande sucesso recentemente. No entanto, as coisas se tornam
mais complexas quando o DS é estendido para configurações de vários domı́nios, ou seja,
quando o DS precisa concluir várias tarefas em diferentes domı́nios para o usuário. Al-
guns problemas como adaptação de poĺıticas e transferência de aprendizado surgem nesse
novo cenário. O objetivo desta pesquisa é aprimorar técnicas recentes de uso de RL na
gestão do diálogo. Apresentamos um aprendizado eficiente equilibrando exploração e ex-
plotação, e potencializando o uso do conhecimento especializado para orientar o agente.
Propomos um método para lidar com rúıdo e erro na entrada do gerenciamento de diálogo
e também fornecemos uma comparação básica entre RL e aprendizado supervisionado em
conjuntos de dados reais e de brinquedo. Por fim, apresentamos uma nova proposta para
lidar com configurações multidomı́nio: o uso da técnica de dividir e conquistar e transferir
aprendizado para diferentes domı́nios.

Palavras-Chave: Chatbots, Sistema de Diálogo, Gerenciamento de Diálogos, Apren-
dizado por Reforço, Múltiplos Domı́nios, Transferência de Aprendizado.

ABSTRACT

NISHIMOTO, B. E.Deep reinforcement learning for multi-domain task-oriented
dialogue systems. 2022. Master Thesis. Escola Politécnica da Universidade de São
Paulo, São Paulo, 2022.

Dialogue system (DS) is an old idea dating back to 1966, when the first such system
was created. DS can be classified in three categories: question & answering, task-oriented
and socialbot. Task-oriented dialogue systems are a very relevant field due to the diversity
of possible applications it can achieve. For example, it can solve tasks like buying a movie
ticket, booking a restaurant and providing customer service. They have received increasing
attention in recent years, and one reason for this is the advancement in natural language
processing. Although the literature presents several studies focusing on DS, there are still
many issues to be accomplished. Most of them are related to dialogue management, the
central component of DS. Reinforcement learning (RL) is one approach that has achieved
great success recently. However, things become more complex when DS is extended to
multi-domain settings, i.e. when DS needs to complete multiple tasks in different domains
for the user. Some problems such as policy adaptation and transfer learning arise in this
new scenario. The purpose of this research is to improve recent techniques using RL
on the dialogue management. We present an efficient learning by balancing exploration
and exploitation, and enhancing the usage of expert knowledge to guide the agent. We
propose a method to handle noise and error in the input of the dialogue management and
we also provide a basic comparison between RL and supervised learning in both toy and
real datasets. Finally, we present a new proposal to deal with multi-domain settings: the
use of the divide-and-conquer technique and transfer learning for different domains.

Keywords: Chatbots; Dialogue System; Dialogue Management; Reinforcement Learn-
ing; Multiple domains; Transfer Learning.

LIST OF FIGURES

1 Example of an complete dialogue with the three categories. 3

2 Simplified view of end-to-end architecture. 8

3 Simplified view of pipeline architecture. 9

4 Interaction between agent and environment in an MDP framework. 10

5 Transformer Architecture. 19

6 Example of the state representation in a system with D = 3 domains, where

d1 = restaurant, d2 = hotel and d3 = attraction. For the first domain |d1|
= 4 with s11 = pricerange, v11 = cheap, s12 = area, v12 = north, s13 =

food, v13 = ‘ ’, s14 = people and v14 = ‘ ’. The same applies for the other

domains. 27

7 Illustrative figure of the proposed DCDA-S2M architecture. 28

8 Architecture of the DQN algorithm. 32

9 Example of how intents are encoded. 33

10 Sketched view of the DRPO-DM system. 38

11 Schematic representation of the transformer dialogue management. In-

spired in figure from (VLASOV; MOSIG; NICHOL, 2019) 39

12 Example of real interactions between the user and the agent and their

respective translations to dialogue acts. 44

13 Learning curve for the Success rate, Average round, and Average reward. . 45

14 Learning curve for cinema ticket domain by flushing and not flushing the

experience replay memory. 46

15 Success rate for different levels of intent errors. 47

16 Success rate for different levels of slot errors. 47

17 DRPO x DQN with p=0.3 error rate. 47

18 Visual representation of the learned node embedding. 49

19 Example of a fail dialogue where the agent went in a loop. The user keeps

requesting the food type and the agent keeps informing the restaurant name

and address. 51

20 Example of dialogue using the slot sharing mechanism, resulting in a dia-

logue length 8. 54

21 Example of dialogue that does not use slot sharing mechanism, resulting

in a dialogue length 11. 54

LIST OF TABLES

1 Related Works for Multidomain Dimension 24

2 Related Works in other dimensions . 25

3 Example of possible errors . 37

4 Some examples of the ontology for each studied domain. 43

5 Comparison between the SL and RL approaches in the MultiWOZ domain.

Metrics with 95% confidence interval in the test dataset. 48

6 Comparison between the SL and RL approaches in the virtual assistant

domain. Metrics with 95% confidence interval in the test dataset. 49

7 Models compared. 50

8 Results for agents tested in a pipeline setting. The best results are in bold. 52

9 Evaluation of the use of S2M in the Rule policy and DCDA, with the goal

generator generating random goals. Best results are in bold. 52

10 Evaluation of the use of S2M in the Rule policy and DCDA with the goal

generator generating slots with common values. Best results are in bold. . 53

11 Training time in minutes for each agent. The hardware used in these ex-

periments was a graphic card NVIDIA GeForce GTX1060 and processor

Intel Core i7-7700HQ. 54

LIST OF NOTATION SYMBOLS

a - an action

s - a state

S - set of all states

A - set of all available actions at every given state

R - set of all possible rewards

T - transition probability function

π - policy

π∗ - optimal policy

qπ - state-action value function of policy π

t - time instant

St - state at instant t

At - action taken at instant t

rt - reward at instant t

Gt - total accumulated reward until final instant T

LIST OF ACRONYMS

AdaGrad - Adaptive Gradients

CM - Confusion Module

CNN - Convolutional Neural Network

DCDA - Divide-and-Conquer Distributed Architecture

DM - Dialogue Management

DQN - Deep Q-Network

DRL - Deep Reinforcement Learning

DRPO - Deep Recurrent Partial Observable

DST - Dialogue State Tracking

GAE - Generalized Advantage Estimate

GDPL - General Data Protection Law

GRU - Gated Recurrent Unit

LSTM - Long Short Term Memory

MDP - Markov Decision Process

MSE - Mean Squared Error

NLG - Natural Language Generation

NLP - Natural Language Processing

NLU - Natural Language Understanding

POMDP - Partial Observable Markov Decision Process

PPO - Proximal Policy Optimization

SGD - Stochastic Gradient Descent

RL - Reinforcement Learning

RMSProp - Root Mean Squared Propagation

RNN - Recurrent Neural Network

S2M - Slot Sharing Mechanism

SL - Supervised Learning

t-SNE - t-Distributed Stochastic Neighbor Embedding

VMLE - Vanilla Maximum Likelihood Estimation

CONTENTS

1 Introduction 1

1.1 Motivation . 4

1.2 Objective . 5

1.3 Organization of the Manuscript . 5

2 Background 7

2.1 Task-Oriented Dialogue Systems . 7

2.2 Reinforcement Learning . 9

2.2.1 Exploration vs Exploitation . 11

2.2.2 Algorithms . 12

2.2.2.1 Deep Q-learning . 13

2.2.2.2 Proximal Policy Optimization 14

2.2.3 Partially Observable Markov Decision Process 15

2.3 Supervised Learning . 17

3 Related Work 20

4 Proposal 26

4.1 Divide-and-Conquer Distributed Architecture 26

4.2 Slot Sharing Mechanism . 28

4.2.1 Learning Shareable Slots . 29

4.2.2 DCDA-S2M Dialogue Management 30

4.3 Reinforcement Learning in Dialogue Systems 31

4.3.1 Softmax . 34

4.3.2 Memory Flush . 35

4.3.3 Deep Recurrent Partially Observable Dialog Management 36

4.4 Supervised Learning in Dialogue Systems 38

5 Experiments and Results 41

5.1 Domains . 41

5.2 Softmax . 42

5.3 Memory Flush . 45

5.4 Dialogue Management with DRPO . 46

5.5 Reinforcement Learning vs Supervised Learning 48

5.6 Slot Similarity . 49

5.7 DCDA-S2M Evaluation . 50

5.8 Discussion . 55

6 Conclusions and Future Work 57

References 59

1

1 INTRODUCTION

Dialogue systems or conversational agents, also known as chatbots, are computer

programs that interact with humans employing natural language (SHAWAR; ATWELL,

2007). The idea of interacting with a machine using natural language was first introduced

by Alan Turing, in 1950, with the Turing test (TURING, 2009). In this test, he presents

the imitation game that defines a criterion to decide whether a machine is intelligent or

not. Such a test, in a nutshell, comprises an interviewer and two participants, one of

whom is a machine and the other a human. The interrogator does not know the identity

of either and needs to ask a series of questions for both to do so. At the end of the

interview, if the interrogator is still not able to figure out which of the participants is the

human and which is the machine, then it is said that the machine passed the test and

considers it being intelligent.

ELIZA was the first system to which the Turing test could be applied (WEIZEN-

BAUM, 1966). It was created in 1966 by Joseph Weizenbaum from the Artificial Intel-

ligence Laboratory at Massachusetts Institute of Technology. This system simulates the

behaviour of a psychologist and responses are taken from a set of rule templates. Based on

this and with the creation, in 1990, of the Loebner prize (POWERS, 1998), a competition

based on the Turing test that evaluates and rewards the best chatbots, the number of

studies concerned to this topic exploded, emphasizing the last years, in which growth was

exponential.

Thenceforth, a substantial number of dialogue systems emerged and they can be

arranged into three categories: question & answering, task-oriented, and socialbot (GAO;

GALLEY; LI, 2018):

• Questions & answering: it usually consists of single-turn dialogues, in which the

user asks a question and the system needs to correctly answer it. The answer must

be objective and concise, and there is usually a knowledge base from which the

answers are derived from.

2

• Socialbot: the system should have a pleasant and adequate conversation as long

as possible with the user, with no specific purpose. The dialogues are open domain

and can go through several subjects in the same dialogue. The major application

of this type of dialogue system is entertainment.

• Task-oriented: the bot needs to complete a user task using the fewest number of

interactions as possible. In this category, dialogues are generally closed domain, for

example, restaurant reservations and purchase of movie tickets.

Recently, with the era of artificial intelligence, promising advances have been observed

in both research and industry. Such advances resulted in the development of some popular

dialogue-based systems such as Apple Siri1 (2011), Amazon Alexa2 (2014), Microsoft

Cortana3 (2014), Microsoft XiaoIce4 (2014), and Google Assistant5 (2016). Advancement

in natural language processing (NLP) is one of the major factors that allowed the progress

of conversational agents, making them able to better interpret the user’s sentences and

generate higher quality sentences, and thus, providing better conversations.

In an ideal world, a single agent should be able to operate in all three categories,

such as shown in the example dialog of Figure 1. However, the great complexity of the

problem caused researchers to focus on each category individually. In particular, task-

oriented dialogue systems (CUAYÁHUITL; KEIZER; LEMON, 2015; LI; CHEN; LI, 2017;

WEISZ et al., 2018; MO et al., 2018) have proven to be a topic of increasing relevance due

to their diversity of applications, ranging from booking a restaurant to buying a movie

ticket and providing customer service. Thus, they can help users to complete common

daily tasks more conveniently and easily.

Moreover, such virtual assistants often provide services spanning over multiple do-

mains at the same time, i.e., within a single dialogue the user can buy a plane ticket and

book a hotel room in the destination city. Multi-domain dialogue systems (CUAYÁHUITL

et al., 2016; CUAYÁHUITL et al., 2017; XU et al., 2020) are useful as they can complete

multiple tasks for the user and especially because they can seize the information obtained

in one domain to use in another domain. For example, if the system already knows that

the user’s flight destination city is New York, and he/she asks for a hotel, it should filter

its search to hotels in New York unless specified by the user.

1https://www.apple.com/siri/
2https://www.alexa.com/
3https://www.microsoft.com/en-us/windows/cortana
4https://www.msxiaobing.com/
5https://assistant.google.com/

3

Turn

1

Dialogue

usr: Good morning!

agt: Good morning, I hope you had a great weekend.

2
usr: not really.

agr: You sound depressed. What can I do for you?

3
usr: I'd like to know where sales are lagging behind our forecast?

agt: The worst region is [country], where sales are 15% below projections.

4
usr: Do you know why?

usr: The forecast for [product] growth was overly optimistic.

5
usr: How can we turn this around?

agt: Here are the 10 customers in [country] with the most growth potential, per our CRM model.

6
usr: Can you set up a meeting with the CTO of [company]?

agt: Yes, I've set up a meeting with [person name] for next month when you are in [location].

7 usr: Thanks!

Figure 1: Example of an complete dialogue with the three categories. Turns 1 and 2 are
socialbots (blue), turns 3 to 5 are question & answering (yellow), and turns 6 and 7 are
task-oriented (red). Source: Gao, Galley and Li (2018)

Despite advances in NLP techniques, there are still some problems in the interactions

with chatbots. Many of these problems are related to insufficient data as domain-specific

dialogues are harder to obtain, to the lack of robustness for noisy inputs, and also to

the complexity of tasks, especially for multi-domain systems (ZHANG et al., 2020). In

multi-domain settings, there are, additionally, issues with domain adaptation (XU et al.,

2020), that is, how to agilely adapt existing bots to new domains, and with sharing inter-

domain knowledge, which consists in reusing some constraint information obtained during

a specific subtask in another domain (SAHA et al., 2020).

This work focuses on using deep reinforcement learning (DRL) techniques on multi-

domain task-oriented dialogue systems, more specifically on the dialogue management,

the central component of the system that controls all the conversation flow.

4

1.1 Motivation

DRL technique has proved itself to be highly promising in recent years. Some suc-

cessful use cases are: AlphaGO (SILVER et al., 2016), a game in which the machine won

against the Go world champion Lee Sedol; OpenAI Five (OPENAI, 2018), a game in

which 5 agents won 5 × 5 over an amateur team in Dota 2; AlphaStar (VINYALS et al.,

2019) in which the machine could beat professional players in StarCraft II and the most

recent AlphaFold (JUMPER et al., 2021), a highly accurate protein structure predictor.

Therefore, there is a trend in the adoption of DRL, which has already revealed re-

markable success in the sphere of complex games. Thus, it is interesting to expand its

applications to new domains such as dialogue systems. Although there are many works

that already use DRL in dialogue systems (WANG et al., 2020; LI; CHEN; LI, 2017;

GORDON-HALL et al., 2020), there are many open problems to be solved specially re-

garding transfer information in multi-domain dialogue systems. We believe that the use

of DRL contributes to the high relevance of the proposal, besides being a very current

research topic and of considerable importance in several application domains. For illustra-

tion, there is a strong concern in smart travel assistants: customer service chatbots that

can not only book and schedule flights, but can integrate additional services via social

media platforms; with open APIs, they can link supplementary services like Airbnb 6 and

Uber 7. Such example perfectly fits in the multi-domain topic as well. Chatbots can also

handle smaller daily tasks, content delivery, personalized help with managing shopping

lists, social life, etc. Anyhow, the applications are numerous, and this market is growing

fast.

In addition, nowadays several simple tasks are done using a specific app for this

purpose, for example, Ifood and UberEats are used to order food, Cinemark to make a

purchase of a movie in the cinema, among others. A recurring problem with this is the need

to download many apps, taking up a large portion of the memory. With conversational

agents, this would not be necessary, since only a messaging application like WhatsApp or

Messenger, for example, is enough to be able to accomplish such tasks.

Finally, it is already part of people’s daily lives to use messaging applications for a long

time. Therefore, they are already applied to interact by exchanging messages and so the

learning curve for using chatbots would be practically null, increasing their accessibility,

notably for people who have difficulties in handling more modern devices (the elderly, for

6〈https://en.airbnb.com/〉
7〈https://www.uber.com/br/pt-br/〉

5

example). Unlike apps, if you don’t have a good user experience, its usage is not intuitive

and painful to access. As a result of this work we expect to contribute in the advances

of dialogue systems in a way to improve the quality of interactions with people and help

them to accomplish specific tasks in a easier and faster way.

1.2 Objective

The major objective of this research is to improve state-of-the-art models for task-

oriented dialogue systems operating on multi-domain scenarios. We will cover two relevant

research gaps:

• Complexity of Multi-Domain Systems: it involves the use of the divide-and-

conquer approach to create subsystems specialized to solve small problems, i.e.,

tasks in specific domains and that can solve the major problem when assembled all

together. This enables the use of simpler and well known algorithms used in single

domain dialogue systems.

• Inter-domain knowledge sharing: it relates to transfer information across do-

mains so that the agent, in a single conversation, can reuse some overlapping infor-

mation obtained while completing a specific subtask to achieve the success faster in

another subtask.

Despite the main objective of this work, there are some other contributions related

to improvements in the dialogue management for single domain systems that could help

the construction of the system operating in the multi-domain setting. They include an

efficient balance between exploration and exploitation, enhancement in the use of expert

knowledge during training, handling eventual errors or noises in the dialogue’s input, and

a basic comparison between supervised and reinforcement learning approaches on dialogue

management.

1.3 Organization of the Manuscript

This document is organized as follows: Chapter 2 presents the main conceptual aspects

addressed in the research project, such as dialog systems, reinforcement and supervised

learning. In Chapter 3 there is a brief presentation of related works in the area, indicating

similarities and differences with our proposal. Then, Chapter 4 describes our proposal

6

and its implementation. Finally, Chapter 5 shows our results and some discussions and

Chapter 6 determines our conclusions in this work and describes future paths in the area.

7

2 BACKGROUND

This chapter presents the main theoretical and conceptual aspects involved in the

work. The first concept is an introduction to task-oriented dialogue systems, explaining

their essential architecture, and going through each of the key components. Next, there is

reinforcement learning (RL), starting from the intuition behind RL, its basic mathematical

concepts, the types of algorithms, and subsequently a detailed view on deep Q-learning

(DQN) and Proximal Policy Optmization (PPO) which are two classic algorithms in RL.

Finally it shows the basic concepts of supervised learning and the transformers, one of its

most recent architecture.

2.1 Task-Oriented Dialogue Systems

There are essentially two architectures of dialog systems: end-to-end and pipeline (or

modular) (CHEN et al., 2017).

In the end-to-end approach (Figure 2), we model the system as a sequence-to-sequence

problem, i.e., it receives the user’s sentence in natural language as input and generates

the system’s response in natural language as an output. Thus, the chatbot is viewed as a

single black-box component. The training of this method is carried out to learn a direct

mapping between the natural language sentence on the user side to the natural language

response of the system. Here, it is common to use supervised learning algorithms and

in particular recurrent neural networks (WEN et al., 2017) with attention mechanisms

(VLASOV; DRISSNER-SCHMID; NICHOL, 2018).

In the pipeline approach, there are three independent components: NLU (Natural

Language Understanding), DM (Dialogue Management) and NLG (Natural Language

Generation) (CHEN et al., 2017), as indicated in the Figure 3.

The DM comprises the Dialogue State Tracking (DST) and the policy. There are also

some other combinations such as coupling NLU and DST (word-level DST) and coupling

8

End-to-EndUser

I	want	two	tickets	for
The	Avengers	movie

What	is	the	best	time
for	you?

Figure 2: Simplified view of end-to-end architecture.

policy and NLG (word-level policy) (ZHANG et al., 2020).

The NLU is responsible for extracting important features from the user’s utterance and

transforming it into structured data so that the DM can process it. This structured data

is known as a dialogue act and comprises intent, slots and domains (if multiple domains).

All these info are predefined base on the specific domain(s). Intents represents the user’s

communication goal for that specific turn, e.g., greeting, request or inform. Slots are

domain-specific keywords implemented in order to obtain a broader interpretation of the

user’s utterance. For instance, in the movie domain, some slots are moviename, date,

starttime and numberofpeople. Both intents and slots are domain-specific and must

be previously defined by domain experts. Formally, we represent the input as a word

sequence ~x = {w1, w2, . . . , wn} and the output as a sequence of associated slots si for each

word, the intent i and optionally the domain d (if in a multi-domain system), so that

~y = {s1, s2, . . . , sn, i, d}. The intent and domain classification and the slot filling can be

achieved either jointly or individually.

The DM is responsible for the entire flow of the conversation, that is, it chooses the

best answer according to the current user action and the information previously got during

the dialogue. There are two primary functions for the DM: dialogue state tracking (DST)

and policy learning. The DST’s function is to give a good estimation of the conversation

state based on all interactions with the user so far. This is done by establishing and

encoding all essential information of the dialogue, which includes slots already informed,

the current turn number of the conversation, and the results of the database query. The

policy module is the agent’s brain. It encapsulates all the knowledge acquired during the

9

learning process. Its role is basically to map the state received by the DST to the fittest

reply to the user. For example, it can request some specific information from the user,

inform something important, or just wait for the user to provide more clues about its

objective. A desirable feature for the DM is to deal with possible erroneous data from the

NLU, that is, to be able to identify when the entry is possible wrong and work around this

situation, either by asking the user to repeat or trying to discover the correct information.

Ultimately, NLG translates the action obtained from DM into a natural language

utterance, providing a human-interpretable response. A good generator relies on several

aspects such as adequacy, fluency, readability, and variation. Although the nature of these

factors does not affect directly the performance of DM, they are desired in order to adapt

the agent’s language for each type of user, enhancing the system’s usability.

User

NLU DST

POLNLG

I w
ant a

res
tau

ran
t

locat
ed in the c

entre
 of

town

W
hat type of food do

you want?

state

restaurant-inform(area: centre)

restaurant-request(type)

DM

Figure 3: Simplified view of pipeline architecture.

2.2 Reinforcement Learning

Reinforcement learning is an area of machine learning in which the agent learns

through interactions with the environment and rewards received for each taken action.

It encompasses a collection of methods adopted to address sequential decision problems

that are formalized by a Markov Decision Process (MDP) framework. An MDP is defined

by the tuple 〈S,A, T ,R〉:

• S → set of possible continuous or discrete states s of the environment. A state must

be able to fully describe the situation of the agent in the environment;

10

• A → set of possible continuous or discrete actions a that the agent can execute in

a given state;

• T → state transition probability function T : S×A×S 7→ [0, 1], where T (s′ | s, a)
.
=

P(St = s′ | St−1 = s, At−1 = a) is the probability of the agent going to the state s′

given that it was in the state s and executed action a. It describes the dynamics of

the environment;

• R → reward function R : S 7→ R is the immediate reward the agent receives for

being in state s.

The interaction between agent and environment is as follows: first the agent ob-

serves the state st of the environment and performs an action at. With a probability

T (st+1 | st, at) the environment goes to the state st+1 and returns a reward rt+1 = r(st+1)

for the agent — see Figure 4.

Environment

Agent

action Atstate St reward Rt+1

Figure 4: Interaction between agent and environment in an MDP framework.

The actions performed by the agent are selected according to the agent’s policy π

which can be either deterministic π(s) : S 7→ A or stochastic π(s, a) : S × A 7→ [0, 1]

based on a probability distribution over the actions.

In reinforcement learning, the agent’s objective is to find an optimal policy π∗, which

is the one that maximizes the expected return received in an episode. An episode is

a sequence of actions taken by the agent through a sequence of states until reaching a

terminal state. The return Gt is defined to be the total discounted cumulative reward the

agent receives after time step t:

Gt = Rt+1 + γRt+2 + · · ·+ γT−t−1RT =
T−t−1∑
k=0

γkRt+k+1. (2.1)

where T is the final time step and γ is the discount factor whose intuition is to balance

the importance of immediate and future rewards. That is, if γ = 1 then all rewards will

11

have the same weight. On the other hand, if γ ≈ 0, then immediate rewards will have

greater weight than future rewards. From a mathematical point of view, γ limits the

return received in cases where the interaction has infinite horizon, since if γ = 1 and all

rewards received are positive, then the return received will always be ∞.

Therefore, as the optimal policy π∗ maximizes the expected return Gt, it can be

formally defined as:

π∗ = arg max
π

Eπ [Gt] ,

where Eπ [Gt] is the expected return received by following policy π.

2.2.1 Exploration vs Exploitation

Before going into detail on the algorithms, one must understand two very important

concepts: exploration and exploitation. Both are related to the agent’s policy π and refer

to how it chooses the action.

In exploration, the agent, without analyzing any metrics, chooses a random action.

The idea is that, it needs to execute different actions and visit unknown states to have a

better conception of the environment during the interactions. This enables the agent to

possibly discover better actions.

On the other hand, exploitation explores the current knowledge of the agent, and

performs the action that has given better results so far. This is important for the agent

to refine its estimates and be able to receive high rewards and converge to an optimal

policy.

Making a good balance between the use of exploration and exploitation is essential for

efficient learning. At the beginning of interactions, as the agent has virtually no knowl-

edge about the environment, it is preferable to use the exploration technique so it can

discover new states and actions. After a long time interacting, the use of exploitation is

advisable for the agent to improve the current estimates. The ε-greedy approach (SUT-

TON; BARTO, 1998) is a basic technique for this type of problem, which consists of the

agent selecting a random action with probability ε, and choose the best action (greedy

action) based on current estimates with probability 1− ε

12

π(s) =

random action from A, with probability ε,

greedy action, with probability 1− ε.

2.2.2 Algorithms

RL algorithms can be splitted into model-free or model-based. In model-based al-

gorithms, the agent learns the environment’s transition T and reward R functions and

then, with dynamic programming or other techniques, solves the problem using predic-

tions from the learned models. However, it is very hard to learn a perfect model of the

environment since the ground-truth of the environment is usually not available.

On the other side, in model-free algorithms, the agent does not care to learn the

dynamics of the environment, i.e, it does not need to predict the next state and the

reward to make its decision. It relies on experiences acquired through interactions with

the environment to learn a policy. Because it does not need to learn a complete model

of the environment, the later method ends up being more popular than the first one

(ACHIAM, 2018).

Going deeper inside model-free group, we can find two groups: value-based and policy-

based. Methods in the first one learn a function approximator q(s, a; θ) parameterized

by θ for the optimal value function q∗(s, a). The value function indicates the expected

return the agent receives by executing action a at state s and then following the policy π,

qπ(s, a) = Eπ [Gt | St = s, At = a] . (2.2)

They are mostly off-policy algorithms, i.e., they can use experiences obtained from

older policies and they usually need a memory replay to store their experiences and train

the function approximator. Some examples of value-based algorithms are Q-learning,

SARSA and DQN.

On the other side, policy-based algorithms directly optimizes the parameters θ of the

policy πθ(s|a) using gradient ascent on the objective function J(πθ). These techniques

are in majority on-policy, which means they only use data from the most recent version

of the policy. A2C, A3C and PPO are some examples of such algorithms.

In this work, we use the Deep Q-learning (DQN) and Proximal Policy Optimization

(PPO) algorithms. The first one is a value-based and off-policy algorithm and the later

13

a policy-based and on-policy algorithm. In the following, we explain in details both

algorithms.

2.2.2.1 Deep Q-learning

DQN is based on the Q-learning algorithm that keeps the estimates of all value func-

tion q(s, a) in a table and updates its values at each interaction:

qt+1(St, At)← qt(St, At) + α

error︷ ︸︸ ︷

Rt+1 + γmax
a
qt(St+1, a)︸ ︷︷ ︸

target

− qt(St, At)︸ ︷︷ ︸
estimate

 , (2.3)

where α is the learning rate, which indicates the weight the agent gives to the new

experience. Here, the expression [Rt+1 + γmaxa q(St+1, a) − q(St, At)] behaves like

an error in the agent’s estimate, where q(St, At) is the current estimate, and [Rt+1 +

γmaxa q(St+1, a)] would be the target.

However Q-learning and reinforcement learning algorithms are generally limited to

simple problems. To solve complex problems, such as Go and chess with a huge number

of states, it is impossible to store the value function of each state-action pair. A function

that approximates the value function is then needed. For this, neural networks are used,

introducing deep reinforcement learning.

Deep Q-learning, based on the classic Q-learning, is the first proposed deep reinforce-

ment learning algorithm (MNIH et al., 2015). Instead of the table with all state-action

pairs, it uses two neural networks, one as the training network to estimate the value

function q(s, a; θ) and another as the target network q(s, a; θ−). In the algorithm, the

concept of experience replay is introduced, in which the agent stores the experiences

et = (St, At, Rt, St+1) in memory M. During learning, a random sample (batch)

(s, a, r, s′) ∼ U(M) is drawn from memory and the network weights are updated using

the loss function:

Li(θi) = E(s,a,r,s′)∼U(M)

[
(y − q(s, a; θi))

2] , (2.4)

where y = r if s′ is terminal state and y = r + γmaxa′ q(s
′, a′; θ−i) otherwise, γ is the

discount factor, θ−i are the weights relative to the target network that are used to calculate

the error in the i-th iteration.

14

Algorithm 1 shows a pseudocode of Deep Q-learning. Mnih et al. (2015) evaluated

the algorithm on several Atari games and showed to achieve a performance comparable to

human players. First, we initialize the replay memory M and train q(s, a; θ) and target

q(s, a; θ−) networks. During each interaction, the agent observe state St and executes

action At, receiving reward Rt and new state St+1. These experiences are stored in the

replay memoryM. In order to update the parameters, we sample a batch of experiences

from the experience replay memory M. Then, it computes the target value y ← r or

y ← r + γmaxa q(s, a; θ−) depending if s is the final state or not, respectively. The

parameters of the training network θ are updated by applying gradient descent on the

loss function from Equation 2.4. The parameters θ− from target network are updated

every C (a predefined constant) episodes to have the same values as the parameters θ

from training network. This process proceeds until there are no more episodes to run.

Algorithm 1 Deep Q-Learning with experience replay.

1: Initialize replay memory M
2: Initialize training action-value function q(s, a; θ) with random weights θ
3: Initialize target action-value function q(s, a; θ−) with weights θ− = θ
4: repeat for each episode
5: Initialize the environment and set up the first state S1

6: repeat for each step
7: Choose action At in St following some exploration/exploitation strategy in
q(st, a; θ)

8: Observe the reward rt and new state st+1

9: Store the experience (St, At, Rt, St+1) in replay memory M
10: Sample a random minibatch B of experiences (Sj, Aj, Rj, Sj+1) from M
11: repeat for each experience in B
12: if Sj+1 is terminal state then
13: set yj ← Rj

14: else
15: set yj ← Rj + γmaxa q(Sj, a; θ−)
16: end if
17: Perform gradient descent with the loss function in Equation 2.4
18: until no more elements in minibatch
19: Every C episodes update q(.; θ−)← q(.; θ)
20: Set St ← St+1

21: until episode ends
22: until no more episodes

2.2.2.2 Proximal Policy Optimization

The PPO algorithm (SCHULMAN et al., 2017) is an online and policy based algo-

rithm. Thus it estimates the policy with parameter θ and updates it by typically taking

15

multiple steps of Stochastic gradient descent (SGD) to maximize the objective L:

θt+1 ← arg max
θ

E
s,a∼πθk

[L(s, a, θt, θ)] , (2.5)

where L is given by:

L(s, a, θold, θ) = min
(
ρ(s, a, θ)Â(s, a), clip(ρ(s, a, θ), 1− δ, 1 + δ)Â(s, a)

)
, (2.6)

where ρ(θ) = πθ(a|s)
πθold(a|s)

denotes the probability ratio, Â is the estimated advantage function

and δ is a hyperparameter that indicates how far can we go from old policy (although this

symbol is usually ε in the literature, we used δ to distinguish from the ε-greedy policy).

For the advantage function estimation, there is the Generalized Advantage Estimation

(GAE) (SCHULMAN et al., 2015), Â(st, at) = δ(st) + γλÂ(st+1, at+1), with δ(st) =

rt + γV̂ (st+1)− V̂ (st), where γ is the discount factor, λ is a hyperparameter to adjust the

bias-variance tradeoff and V̂ (s) is the estimate of value function, i.e, the expected reward

the agent receives being at state s.

Equation 2.7 shows the update rule for the value function V (s) in the PPO algorithm,

which is a regression on mean-squared error:

φk+1 ← arg min
φ

E
[
(Vφ(s)−G)2

]
(2.7)

where G is the return from state s, that is, the sum of discounted reward received after

state s.

Algorithm 2 describes the PPO algorithm. Schulman et al. (2017) tested the pro-

posed PPO algorithm on several environments such as MuJoCo, Atari and other high-

dimensional continuous control problems. First, it initializes the policy π(s, a; θ) and

value function V (s;φ). Then, for each episode it collects a set of trajectories Dk = {τi}
and computes the return R̂ and then the advantage estimate Â for each time step. Fi-

nally it performs the update of the policy and value function using Equations 2.5 and 2.7,

respectively.

2.2.3 Partially Observable Markov Decision Process

The MDP framework assumes the states are fully observable, that is, what the agent

can observe is enough for the agent to have all the necessary information to know ex-

16

Algorithm 2 Proximal Policy Optimization.

1: Initialize policy π(s, a; θ) with random weights θ0

2: Initialize value function V (s;φ) with random weights φ0

3: repeat for k = 0, 1, 2, . . .
4: Collect set of trajectories Dk = τi by running policy π(s, a; θk) in the environment.
5: Compute rewards-to-go R̂t

6: Compute advantage estimates Ât (using any method of advantage estimation)
based on the current value function V (s;φk)

7: Update the policy parameters by following Equation 2.5
8: Fit value function applying regression on Equation 2.7
9: until no more episodes

actly how the environment is doing. However, there are cases where this does not hap-

pen, so a new formulation of the problem is needed. The partially observable Markov

decision process (POMDP) (KAELBLING; LITTMAN; CASSANDRA, 1998) is a gen-

eralization of the MDP that emerged for this purpose. POMDP is defined by the tuple

(S,A, T ,R,O,Z), where S, A, T and R are the same as in MDP and:

• O → set of observations. As the state is no longer observable by the agent, it acts

according to the observations;

• Z → is the conditional probability of observations Z : O × S × A → [0, 1], where

Z(o | s, a) = P(Ot = o | St = s, At = a).

As the state is not known by the agent, it must maintain a state of belief b which

is a vector containing the probability that the agent is in each of the possible states

b(st) = P(St = st). Thus, the policy defined by the agent is based on the state of belief

rather than the state.

In the case of dialogue systems, this is an important factor to concern about, because

the NLU component will not always capture the correct information from the user ut-

terance. Hence, the dialogue management can not be sure about the dialogue action it

receives, and can deal with these errors/noises by using the POMDP approach (GAŠIĆ

et al., 2008; GAŠIĆ; YOUNG, 2014).

In our work, we studied how this issue affects the DM’s performance when using MDP

and POMDP by inducing random noisy on its input and comparing how the accuracy

degrades as the level of induced noise increases.

17

2.3 Supervised Learning

Formally, in supervised learning, there is a dataset D = {X, y}N with N examples,

where X represents a vector of values of some features of interest and y are the labels for

each instance, that is, the correct answers for the corresponding data. y can be either

discrete or continuous depending on whether the problem is classification or regression,

respectively. The objective of the algorithm is to learn an approximation function f̂(X) =

y based on the dataset D that can generalize to new data not available in the dataset.

The quality of the approximation function is measured by the loss function or cost

function L(f̂(X), y). It evaluates how far the model f̂ is from the correct answer y, i.e.,

the higher its value, the worse the model is. Some standard loss functions in machine

learning are: mean square error (MSE) or quadratic loss, hinge loss, and cross-entropy

loss.

Given the loss function, the algorithm needs to minimize it to obtain a good ap-

proximation function to model the data. This optimization process is done with several

different optimization algorithms, such as stochastic gradient descent (KIEFER; WOL-

FOWITZ, 1952) and its variants, root mean square propagation (RMSProp) (TIELE-

MAN; HINTON, 2012), adaptive gradient (AdaGrad) (DUCHI; HAZAN; SINGER, 2011),

and adaptive momentum (AdaM) (KINGMA; BA, 2015). In general, these algorithms

compute the directions that the loss function decreases and updates the parameters to

follow these directions to reach a minimum and find the best model that suits the dataset.

In deep learning, a neural network represents the approximation function f . There are

many types of neural network architecures, such as convolutional neural networks (CNN)

(Lecun et al., 1998) and recurrent neural networks (RNN) (RUMELHART; HINTON;

WILLIAMS, 1986). There is also the transformer architecture (VASWANI et al., 2017)

which came out recently and replaced the traditional RNNs in many sequential tasks. A

transformer architecture follows an encoder-decoder structure (CHO et al., 2014) which

maps a sequence of input symbols (x1, x2, · · ·xn) to another sequence of output symbols

(y1, y2, · · · ym). The difference is that it does not rely on recurrence and convolutions

to generate the output. Instead, it uses the attention mechanism (BAHDANAU; CHO;

BENGIO, 2015). This attention mechanism allows the network to look at previous steps

of the sequence and decide which of them are relevant for the current step. Figure 5

shows the architecture of a transformer model. On the left side there is the encoder

composed of a stack o N identical layers, where each layer comprises a multi-head self-

attention mechanism and a feed forward layer. On the right side, there is the decoder also

18

composed of N identical layers. Each layer is almost identical to the encoder layer with

the addition of another multi-head attention layer, one of them computes the attention of

encoder output and the other the attention of the decoder output of last time step. The

attention function is computed as follows:

Attention(Q,K, V) = softmax

(
QKT

√
dk

)
V, (2.8)

where Q, K and V are query, key and values, respectively; Values V are vectors cor-

responding to each token1 xi of the input sentence x = (x1, · · · , xn); dk represents the

query and key vectors dimension. Intuitively, Q is the vector representation of the current

input token xi and K the vector representation of all other inputs in the sequence. So

the function softmax(.) computes the weights, that is, the relevance of each other input

in the sequence related to the current input. Then, these weights are multiplied by their

values V. Thus, the multi-head attention can be described as:

MultiHead(Q,K, V) = Concat(head1, · · · , headh)W o, (2.9)

where headi = Attention(QWQ
i , KW

K
i , V W

V
i) and W denotes linear transformations.

Therefore, the multi-head attention mechanism jointly consider information from different

subspace of embedding, represented by the different linear transformations applied to the

input vectors. As there are no recurrent units in this architectures, i.e., there is no order

information, the positional encoding provides position information of the input. Finally

the usual linear transformation and softmax function is applied to the decoder output to

compute the model output probabilities.

In the context of dialogue systems, and more specifically of the DM, the input sequence

is defined by the sequence of dialogue turns, where at each dialogue turn the input is

featurized with the previous system action and the user actions (defined by the slots

and entities) which represents the dialogue state. Therefore, the transformer attention

mechanism can access different parts of dialogue history and learn their relevance from

data. More details about how this is applied to DM is given in Section 4.4.

1the token represents each element of the sequence, for instance, in a text each word, space or special
character is a token

19

Input
Embedding

Output
Embedding

Inputs Outputs
(shifted right)

Multi-Head
Attention

Feed Forward
Multi-Head Attention

Feed Forward

Masked Multi-
Head Attention

Linear

Softmax

Output
Probabilites

N x

N x

Figure 5: Transformer Architecture. Inspired in figure from (VASWANI et al., 2017)
.

20

3 RELATED WORK

We already remarked that there are three types of DSs. Here the focus is on the

task-oriented ones and the two dominant methods researchers have adopted to solve this

problem: RL and SL. We also present works on multi-domain scenarios for task-oriented

systems.

Reinforcement Learning: to solve a DS using RL, we need to formalize it with the

MDP framework to fit in a sequential decision problem (LEVIN; PIERACCINI;

ECKERT, 1997; SINGH et al., 1999).

Prior works with value-based algorithms used linear methods to approximate Q-

value. Li, Williams and Balakrishnan (2009), for example, employed a variation of

policy iteration algorithm to optimize the linear model. However, linear methods

require a set of predefined features and are too simple to model the dialogue. To

deal with it, Gašić and Young (2014), Gašić et al. (2017) modeled the Q-value with

a Gaussian Process, although they are computationally expensive. Recent works

moved up to the neural networks. Li, Chen and Li (2017), Zhao and Eskenazi

(2016) employed the classic deep Q-learning (DQN) algorithm to design a robust

DM applying a multi-layer perceptron (MLP) to approximate the Q-function.

The second work (ZHAO; ESKENAZI, 2016) included an LSTM layer on top of the

original network to support the manager deal with errors in the upstream module.

Some other classical value-based algorithms have been assessed, including SARSA

(MO et al., 2018) and deep dyna-Q (PENG et al., 2018b). Some other recent

works also used the classical DQN algorithm to train the policy (GORDON-HALL;

GORINSKI; COHEN, 2020; WANG et al., 2020), showing that despite simple, this

algorithm can provide good results. (MO et al., 2018) and (WEISZ et al., 2018)

tried out other RL algorithms to model the DM, such as SARSA and actor-critic,

respectively.

Turning into policy gradient methods, Dhingra et al. (2017), Liu et al. (2018) se-

lected the basic REINFORCE algorithm. The first one focused on getting better

21

queries from knowledge-base and the latter used human teaching and feedback in

the loop to help the agent’s learning. Rewards sparsity is a common issue related

to on-policy and policy gradient algorithms. With this in mind, Takanobu, Zhu

and Huang (2019) combined the PPO algorithm with a reward estimator based on

inverse reinforcement learning. It uses samples collected from human dialog sessions

and use these trajectories to optimize the reward estimator.

To avoid suboptimal behaviors and also to scale up training efficiency, various works

carry out the use of human experts either before or during the training, since learn-

ing from scratch in RL is data and time consuming. The most simple yet effective

method, used by off-policy algorithms, is to pre-fill the experience replay with some

dialogues generated by an expert or a rule-based agent (LIPTON et al., 2018; LI;

CHEN; LI, 2017). Further work pretrains the model using imitation learning with

supervised learning before fine-tuning with RL. However, it is more complex and

needs a lot of labeled data collected from experts. Su et al. (2016) simply trained the

policy network to ‘imitate’ interactions from the corpus data. Peng et al. (2018a)

employed adversarial learning where the discriminator needs to identify if an action

is generated from the expert or the model. Moreover, the discriminator can be per-

ceived as a reward function extracted from expert trajectories. Gordon-Hall, Gorin-

ski and Cohen (2020) proposed de Deep-Q-learning from Demonstrations (DQfD),

which uses expert demonstrations in a weakly supervised fashion.

Supervised Learning: With SL, the system is often trained in an end-to-end manner

(we will refer to it as SLe2e), that is, all three components (NLU, DM, and NLG)

are considered being integrated into a single one. Then the SLe2e algorithm learns

to map a user utterance directly to a system response. A common approach for

this problem is to use recurrent neural networks with the idea to retain information

throughout the interactions. Vinyals and Le (2015) make use of a sequence-to-

sequence framework, which is based on an RNN which reads the input token by

token and the output is also predicted one token at a time. Serban et al. (2016),

on the counterpart, mixed the encoder-decoder and hierarchical methods. The en-

coder maps the utterance to a hidden state, while the decoder performs the next

utterance prediction. Bordes and Weston (2017) tested memory networks (WE-

STON; CHOPRA; BORDES, 2015) on goal-oriented chatbots, following their good

performance on non goal-oriented chatbots (DODGE et al., 2016). The advantage

of memory networks relies on the capability of storing previous dialogues and short-

term context to reason about the response. In a more recent work, Lei et al. (2018)

22

used a LSTM with a CopyNet (GU et al., 2016) in a sequence-to-sequence model

to learn a generation model that maps directly the user utterance into the system

utterance. Wang et al. (2019) proposed an incremental dialogue system (IDS) which

relies on bidirectional Gated Recurrent Unit (GRU) and an uncertainty estimation

that shows how confident the model is on the response selection and select it if

there is low uncertainty. It performs online learning together with human responses

otherwise. Yang, Zhang and Erfani (2020) integrated graph knowledge into the end-

to-end system and incorporate external knowledge bases to consistently improve the

performance.

On the other hand, there are also some works that exploit SL in a modular man-

ner to training the DM (which we refer to as SLpip). Griol et al. (2008) used an

MLP network to represent the dialogue management policy. Although Wen et al.

(2017) developed its model in an end-to-end fashion, the architecture is modular,

incorporating a feed-forward network as the dialogue policy which receives the state

tracker, the user intents, and the database operation result. Bocklisch et al. (2017)

adopted similar concepts to Hybrid Code Networks (HCN) (WILLIAMS; ASADI;

ZWEIG, 2017) which is also a modular architecture trained with an end-to-end

method, containing a RNN to compute the hidden state and a dense layer with soft-

max activation function to choose the next action. More recent works (VLASOV;

DRISSNER-SCHMID; NICHOL, 2018; VLASOV; MOSIG; NICHOL, 2019) recom-

mended the usage of embedding layer to produce an embedding representation of

user input and system action with an attention mechanism over the RNN; and

a transformer architecture to replace RNNs, respectively. Likewise, (HAM et al.,

2020; HOSSEINI-ASL et al., 2020) used GPT-2, a pre-trained transformers model

to build generative model in the pipeline architecture.

Multi-domain: most of the formerly reported works that are focused on single domains

fail when extended to multi-domain settings due to the great growth in complexity.

There have been some efforts in the past that focused on multi-domain task-oriented

dialogue systems. Komatani et al. (2006) proposed a distributed architecture to inte-

grate expert dialogue systems in different domains using a domain selector trained

with a decision tree classifier. Further works employed traditional reinforcement

learning to learn the domain selector (WANG et al., 2014). However, these sys-

tems require manual feature engineering for their building. Finally Cuayáhuitl et

al. (2017) proposed to use deep reinforcement learning to allow training the system

using raw data, without the manual feature engineering. Another common proce-

23

dure is the adoption of hierarchical reinforcement learning (CUAYÁHUITL et al.,

2010). This technique normally consists of optimizing different policies in different

hierarchies. Saha et al. (2020), for instance, trained in three different levels: do-

main level, intent level, and primitive action level. Some recent works give a great

attention to centralized systems, i.e., a unique system capable of handling multiple-

domains instead of having multiple agents, each one specialized for each domain.

One reason for this is the increase in the power processing in modern computers.

Some examples are the already mentioned works from Bordes and Weston (2017),

Serban et al. (2016), Vlasov, Mosig and Nichol (2019). Despite these attempts to

use supervised learning to learn a policy for the DM, RL is more used since it fits

better in the sequential decision problem of a dialogue (DAI et al., 2020). Redun-

dancy with respect to the overlapping slots between domains is another issue in

multi-domain dialogue systems. Chen et al. (2019) address this problem by imple-

menting the policy with a graph neural network where the nodes can communicate

to each other to share information but they assume the adjacency matrix for this

communication is known. Although recent work on multi-domain settings does not

consider a distributed architecture, it is relevant for two reasons: it can reuse well-

established algorithms for a single domain and, in the need to add a new domain

to the system – which is common for real applications such as virtual assistants –

it is unnecessary to retrain the entire system. Therefore, we adopted a distributed

architecture using the divide-and-conquer approach. Furthermore, to the best of our

knowledge, it is the first work that focuses on learning this slot-sharing mechanism.

Among all the works employing RL on the DM, most of them balance the exploration

and exploitation with a very basic policy ε-greedy (with or without decay rate) (GAŠIĆ;

YOUNG, 2014; LI; CHEN; LI, 2017; MO et al., 2018). Exploring other methods may

enhance the learning efficiency of the agent. Another gap found is that just a few works

are concerned with noise and error from the NLU component, most of them consider the

information received by the DM is fully correct. Among all these works, only (LI; CHEN;

LI, 2017) take advantage of a set of pre-defined rules, used in a warm-up phase before

training. This method of expert knowledge is very cheap since it does not require any

pre-training or a huge amount of labeled data and yet is very effective. In this work, we

improve in the utilization of this knowledge, along with the acceleration of the agent’s

initial learning steps.

Despite the numerous proposals for designing a good DM, to the extent of our knowl-

edge, few works in the literature compare the two paradigms in terms of their perfor-

24

mances. Vlasov, Mosig and Nichol (2019) made a comparison between modular SL (SLpip)

with end-to-end (SLe2e) settings, while Takanobu et al. (2020) compared modular RL with

end-to-end (SLe2e). Both of them concluded that the modular approach achieves better

results against end-to-end. However, it lacks in literature a comparison between modular

SL (SLpip) and modular RL. Furthermore, most works adopt data collected from small

and controlled domains, where data is not a big issue for the training. In this work, we

also cover these two gaps by comparing supervised and reinforcement learning applied to

dialogue systems and also testing them in a real-world domain.

Table 1 compares our work with some other cited works in the dimension of multido-

main systems, showing that we cover a topic which is not very explored but have high

relevance.

Table 1: Related Works for Multidomain Dimension

Architecture Redundant Information

Works

C
en

tr
al

iz
ed

D
is

tr
ib

u
te

d

M
an

u
al

A
d

j.
M

at
ri

x

L
ea

rn
ed

A
d

j.
M

at
ri

x

(BORDES; WESTON, 2017;
SERBAN et al., 2016; VLASOV;

MOSIG; NICHOL, 2019)
3

(CHEN et al., 2019) 3 3

(KOMATANI et al., 2006; SAHA et
al., 2020; CUAYÁHUITL et al., 2017)

3

Our Work 3 3

Table 2 shows some of the mentioned related works and their characteristics compared

with what we did in our work: proposed a better exploration/exploitation technique,

evaluated dialogue systems on real dataset, make a better use of expert knowledge without

the need of pre-training, studied the effects of partially and fully observability on DM,

compared the modular SL and RL approaches.

25

Table 2: Related Works in other dimensions

Exploration Dataset
Expert
Knowledge

Environment Comparison

Works

ε-
gr

ee
d

y

S
of

tm
ax

T
oy

R
ea

l

S
im

p
le

W
ar

m
-u

p

P
re

-t
ra

in
in

g

E
n

h
an

ce
d

W
ar

m
-u

p

M
D

P

P
O

M
D

P

R
L

v
s

en
d

-t
o-

en
d

S
L

v
s

en
d

-t
o-

en
d

R
L

v
s

S
L

(LI; CHEN; LI,
2017; PENG et

al., 2018b)
3 3 3 3

(SU et al., 2016) 3 3 3 3 3

(GAŠIĆ;
YOUNG, 2014)

3 3 3

(VLASOV;
MOSIG;

NICHOL, 2019)
3 3

(TAKANOBU
et al., 2020)

3 3

Our work 3 3 3 3 3 3 3

26

4 PROPOSAL

This chapter presents the proposal of this work to handle multi-domain dialogue

systems. At first, we present the proposed architecture DCDA-S2M (Divide-and-Conquer

Distributed Architecture with Slot Sharing Mechanism). It is composed of two parts,

the Divide-and-Conquer Distributed Architecture (DCDA) that contains multiple agents

trained individually for each domain and then ensemble them to compose the whole multi-

domain system, and the Slot Sharing Mechanism (S2M), in which the system transfers

information acquired during the dialogue across domains. Then, we present the node

embedding approach used to implement the S2M and the reinforcement learning technique

used to implement the DM and three improvements in relation to the article from Li, Chen

and Li (2017) used as a guideline: a better balance between exploration and exploitation

in dialogue systems and better management of the designer knowledge during training,

and how to handle the noises and errors that come from NLU. Finally, we show some

basic implementations of DM using supervised learning techniques to compare with the

approach that uses reinforcement learning in DM.

4.1 Divide-and-Conquer Distributed Architecture

In the DCDA architecture, there are several agents, each one trained in a particular

domain, as illustrated by the squares in Figure 7. Since multi-domain dialogue systems

are much more complex compared to single domain systems due to the high increase in the

state and action spaces, the use of DCDA would allow us to divide the complex problem

into smaller ones and use simpler reinforcement learning algorithms to solve them.

Besides the multiple agents, the DCDA contains a controller that receives the input

dialogue act with all the information (intent, slots and domain) from NLU. Based on

the current domain of the dialogue, which is perceived directly in the dialogue act, the

controller redirects the flow to the corresponding agent to collect the response. The state

of the system is represented by a structured data, like a nested dictionary, where the

27

keys in the first level are the domains and in the second level the slots. Formally, it is

represented as

{di : {sij : vij}} with i = 1, 2, . . . , D and j = 1, 2, . . . , |di|

where di represents each of the D domains of the system, sij represents the |di| slots of the

domain di and vij is a variable the contains the value of the slot sij which could be empty.

Figure 6 shows an example of a state representation for a system with three domains:

restaurant, hotel and attraction. So at each interaction, the controller receives the dialogue

act from NLU and fills the corresponding domain and slot with their respective value.

restaurant: {
 pricerange: cheap,
 area: north,
 food:,
 people:
},
hotel: {
 area: north,
 pricerange: moderate,
 stars:,
 parking: no
},
attraction: {
 area: north,
 entrance_fee:
}

Figure 6: Example of the state representation in a system with D = 3 domains, where d1

= restaurant, d2 = hotel and d3 = attraction. For the first domain |d1| = 4 with s11 =
pricerange, v11 = cheap, s12 = area, v12 = north, s13 = food, v13 = ‘ ’, s14 = people and
v14 = ‘ ’. The same applies for the other domains.

The controller also contains a list g = [g1, g2, . . . gK], where gi ∈ {dj}Dj=1 is the i-th

domain of the dialogue between the agent and the user. Therefore, at every turn, the

controller checks if the domain of the dialogue act is different from the last element of

28

g, and if so, it detects a domain change and append the new domain to the list. In this

way, the controller can keep track of all state features from all agents allowing it to know

the past and current domains so that it can transfer knowledge across domain during a

dialogue. For instance, in Figure 7 the current domain is restaurant as observed in the

input dialogue act restaurant-inform(area: centre). Thus the controller updates

the dialogue states and check with the Slot Sharing Mechanism (explained in details in

Section 4.2) if there is any information to be transferred from past domains. Finally it

redirects the flow to the restaurant agent to give the response.

Restaurant Train Attraction Hospital

Controller

state
features

HotelPoliceTaxi Police

restaurant-inform(area: centre)

people: 2

restaurant-confirm(people: 2)
restaurant-request(foodtype: ?)

hotel-people

restaurant-people

Slot Sharing Mechanism

Figure 7: Illustrative figure of the proposed DCDA-S2M architecture.

4.2 Slot Sharing Mechanism

Some domains contain overlapping slots, i.e., slots that are likely to have the same

value. For instance, if the user is looking for a restaurant and a hotel, it is likely that

they are for the same day and in the same price range. There are also more complex

relationships such as the time of reservation for a restaurant and the time when the taxi

must arrive at its destination (which would be the restaurant). However, not all slots are

shareable between two domains, so we need to know which slots whose content can be

transferred from one domain to another.

In the following subsections we show how we learned these relationships. But for

now, suppose we already know what such slots are. Therefore, during the conversation,

when the controller notices a domain change, the slot-sharing mechanism first gets all

informed slots in previous domains and then checks whether any of those slots can share

29

their values with any slots of the new domain. In this case, the controller transfers

the information obtained during conversation to the new domain by copying the slots

values. For example, suppose the system has already interacted with the user in the hotel

domain and knows that the demand is for two people. When the conversation changes

to the restaurant domain, the slot sharing mechanism will see that hotel-people slot can

be shared with restaurant-people slot and the controller will transfer this information

(two people) to the restaurant domain. The agent then asks for confirmation and acts

considering this transferred slot. This can speed up the dialogue and improve the user

experience during interactions by avoiding asking redundant information. In the worst

case, if the transferred value is wrong, the user informs the correct value and continues

the interaction normally.

4.2.1 Learning Shareable Slots

Our proposal to learn which slots can be shared, named Node Embedding for Slots

Sharing Mechanism, uses the node embedding technique in which each node represents a

domain-slot pair. The similarity of two nodes indicates whether they can share the same

value in a conversation. It is defined by a simple scalar product, that is, given nodes u =

[u1, u2, . . . , ud] and v = [v1, v2, . . . , vd], we have: similarity(u, v) = 〈u, v〉 =
∑d

i=1 ui · vi,
where d is the embedding dimension. For instance, the nodes restaurant-day and hotel-day

must be similar, i.e., have a high scalar product, while restaurant-name and hotel-name

must have a low scalar product.

Before learning the node embedding, we need to build a similarity matrix A ∈ Rn×n,

a n×n matrix where n is the number of nodes, i.e, number of domain-slot pairs and each

cell Auv represents the similarity between nodes u and v normalized to range between 0

and 1, that is, similarity(u, v) ∈ [0, 1]. This is done using the dialogues from dataset D
as shown in Algorithm 3. At the end of each conversation, we observe the final state (the

state of the dialogue in the last interaction) and check if each node pair have the same

value (a node represents a domain-slot pair). If they do, the weight between these two

nodes is increased by one. In the end, all weights are normalized to the number of times

each pair of nodes appeared in the dialogues.

However, keeping a matrix with O(n2) of space complexity does not scale with the

number of domains and slots. For this reason, we trained a node embedding representation

for each domain-slot pair. The learning of node embedding uses the similarity matrix

A ∈ Rn×n and follows Algorithm 4 proposed by Ahmed et al. (2013). In each step, for

30

Algorithm 3 Similarity Matrix

Require: Dataset D
1: Initialize similarity matrix A ∈ Rn×n with zeros
2: Initialize pair-counter matrix C ∈ Rn×n with zeros
3: for all dialogue d ∈ D do
4: Set goal ← final state of dialogue d
5: for all (u, v) ∈ goal, where u and v form a domain-slot pair do
6: if value(u) = value(v) then
7: Auv ← Auv + 1
8: end if
9: Cuv ← Cuv + 1

10: end for
11: end for
12: A← A/C . normalize similarity matrix
13: return A

each node pair (u, v) ∈ E, where E is the set containing all node pairs, it performs an

update to minimize the following error

L(A,Z, λ) =
1

2

∑
(u,v)∈E

(Auv − 〈Zu, Zv〉)2 +
λ

2

∑
u

||Zu||2 (4.1)

The gradient of this loss function with respect to Zu is given by:

∂L

∂Zu
= −

∑
(v)∈N(u

(Auv − 〈Zu, Zv〉)Zv + λZu. (4.2)

where Z represents the embedding space and Zu is the vector for node u. Intuitively,

〈Zu, Zv〉 is the similarity between Zu and Zv and then this algorithm wants to get 〈Zu, Zv〉
as close as to Auv which represents the similarity taken from the similarity matrix with

λZu as a regularizer factor. The t in Algorithm 4 can be thought as a learning rate for

each update.

Therefore, the S2M contains a node embedding Zu of each domain-slot pair u (node)

and can infer the similarity of all pair of nodes (u, v) by computing the dot product of

their corresponding node embedding 〈Zu, Zv〉. Furthermore the S2M is independent of

the agent trained, so it can be plugged with any agent we want.

4.2.2 DCDA-S2M Dialogue Management

Gathering the DCDA, the S2M and all the agents we get the DCDA-S2M archicture

for the DM (Figure 7). The flow inside this architecture is as follow: at each interaction,

the controller gets the dialogue act from NLU and checks if its domain du is different from

31

Algorithm 4 Node Embedding

Require: Matrix A ∈ Rn×n, embedding dimension d, regularization factor λ, set of all
node pairs E

1: Initialize Z ∈ Rn×d at random
2: t← 1
3: repeat
4: for all (u, v) ∈ E do
5: η ← 1√

t
6: t← t+ 1
7: Zu ← Zu + η [(Auv − 〈Zu, Zv〉)Zv] + λZu
8: end for
9: until no more epochs

10: return Z

the current domain (which is the last element of the list of domains g). If so, it detects

a domain shift and appends du to g. After that, the controller updates its state features

by matching the keys domain and slots to fill with the value received in the dialogue act

from NLU. If there is no domain change, the controller redirects the flow directly to the

corresponding agent of the current domain. Otherwise, the controller asks the S2M for

all slots of past domains that can share values with slots from the current domain. Then,

for each slot, the S2M computes the similarities and returns a list of all domain-slot pairs

from old domains that can share value with it. Finally the controller fills the slots of

the new domain with values from shareable slots from past domains and then redirect

the flow to the corresponding agent. Inside each agent, the state features are encoded as

detailed in the next section and the agent’s policy returns the response to the user.

4.3 Reinforcement Learning in Dialogue Systems

This section presents the implementation of the DM used in this work, which is based

on Li, Chen and Li (2017), where the authors used the DQN algorithm (MNIH et al.,

2015) with an ε-greedy policy to balance exploration and exploitation during training.

Figure 8 summarizes the architecture used in the implementation and Algorithm 1

(see Section 2.2.2.1) shows the steps followed to train the DM. The dashed and green

components in figure are only used during the training phase.

The architecture of the DQN algorithm contains a user simulator (right part of the

figure), which represents the environment and interacts with the agent following the MDP

framework. The user action ua passes through the DST module and it returns the dialogue

state s. During the interactions, the agent acts either by choosing the action based either

32

Experience	Replay	Bufffer

Environment
(User

Simulator)

DST

Target	Network Training	Network
user	action	ua

reward	r

Rules

(s, a, r, s')

Policy

Batch
sample

state	s

Policy

action	a

Loss	Function

target	y	=	r	+	�	maxa'q(s',	a';)
optimize

co
py

pa
ra

m
et

er
s

Agent

warm-
up?

q(s,	a;)

Figure 8: Architecture of the DQN algorithm. The dashed and green components are
only used during the training phase.

on a rule based agent pre-defined by the system designer — if it is in the warm-up phase

— or by adopting a given policy (ε-greedy, softmax, etc.) concerning the training action-

value function q(s, a; θ) — if it is in the learning phase. The Q-value is computed by a

forward step of the training network. After receiving the agent action, the user simulator

gives a reward r and the next user action u′a, transitioning the dialogue to the next state s′.

During both the warm-up and training phase, the agent stores the interactions (s, a, r, s′)

in the replay buffer M. These interactions are then used to update the training network

parameters θ during the learning phase. For this, we sample a batch of experiences

(s, a, r, s′) from the replay memory M and compute the target value,

y ←

r + γmaxa′ q(s
′, a′; θ−), if s is not a terminal state,

r, otherwise.
(4.3)

These targets are inspired on the Bellman’s equation (BELLMAN, 1957) and they use

the target action-value function q(s, a; θ) (from target network) to calculate them. The

parameters θ of the training network are updated by applying gradient descent on the

loss function in Equation 2.4.

The parameters θ− from target network are updated every fixed number C of episodes

to have the same values as the parameters θ from training network. That is, we copy the

parameters values of training network into the target network every C episodes and remain

them fixed between individual updates.

As seen in Section 2.2, in reinforcement learning, the agent learns by interacting with

33

the environment — in the case of chatbots, by talking to the users. However, a large

number of interactions are required until the agent reaches an acceptable policy, making

the training with human experts unfeasible. In order to avoid this issue, it requires a user

simulator to replace humans to interact with the agent.

The user simulator follows an agenda-based approach (SCHATZMANN; YOUNG,

2009). At the beginning of the episode, it randomly sample a rule for the user from

a rules list and then starts a conversation with the dialogue system using a rule-based

policy. These rules are domain-specific, so for each domain there is one user simulator

with different rules. However, in general, the user simulator contains a agenda with a

stack-like structure that contains all slots needed to inform and request to complete the

task. At each turn it pops the action based on this agenda until the task is completed.

Due to the necessity of encompassing all important information presented in the di-

alogue, the state representation s (output of the DST component) is composed of the

dialog turn, the current user action, the last agent action, and the already-filled slots, i.e.,

all slots already reported or confirmed by the user. Both the user and the agent actions

are formed by an intent and a collection of slots. The intents and slots are encoded with

one-hot encoding. Figure 9 shows an example of intent encoding.

all	intents	=	greeting,	inform,	request,	thanks,	bye

intent	=	inform

encoded	=	[0,	1,	0,	0,	0]

Figure 9: Example of how intents are encoded.

Finally, all the information are encoded and stacked together in a single array, forming

the state representation.

The reward function is defined as follow:

R(s) =

Rsuccess, if success,

−Rfail, if fail or max round Mrounds is reached,

−1, otherwise.

(4.4)

for each turn, i.e., for each action it takes, the agent receives a small penalty of -1. This

penalty encourages the agent to achieve the goal as fast as possible. At the end of the

34

dialogue, if the goal is successfully achieved, the agent receives a larger reward of Rsuccess,

whereas if the goal is not successfully achieved, or the dialogue reaches the maximum

number of rounds Mrounds, the agent receives a larger penalty of −Rfail.

The warm-up process is conducted in order to improve the agent learning with the

help of the knowledge of experts represented in the form of pre-defined rules. It occurs

in a stage before the training itself. During this phase, the agent acts by following a

collection of expert-defined rules. It serves to fill the experience replay memory with

these interactions that will help the agent in the latter policy training turns. This phase

is important because in dialogue systems rewards are generally sparse. So learning from

tabula rasa may be very difficult to the agent to find an optimal policy. Given that, the

warm-up phase helps to guide the agent’s initial learning with the knowledge of experts.

The memory replay bufferM is used to store the agent’s experience acquired through

interactions and to train the Q-network with these experiences in an off-policy manner.

It has limited size |M|, and the older experiences are replaced when it is full, similar to

the behaviour of a circular list.

When testing, DQN does not use the dashed components from Figure 8. So the user

actions ua passes through the DST component and based on the state s the agent acts

with a greedy policy, that is, it chooses the action with the highest Q-value.

4.3.1 Softmax

As discussed in the section 2.2.1, the way the agent balances between exploration and

exploitation is very important for the agent to find the optimal global policy.

Li, Chen and Li (2017), the baseline article, uses an ε-greedy policy,

π(s) =

random action from A(s), if ξ < ε,

arg max
a∈A(s)

Q(s, a), otherwise,

where ε ∈ [0, 1] is a hyperparameter indicating how much the agent will explore the

environment and ξ ∈ [0, 1] is a random real number between 0 and 1 sampled at every

step. This is a very basic policy used in most of the articles using DQN algorithm

on dialogue systems in which basically the agent takes a random action (explore) with

probability ε or takes a greedy action (exploit) with probability 1 − ε. The major issue

related to this policy is that when exploring, the agent uniformly samples an action, giving

35

equal importance to all actions. This way, the agent can choose actions that it already

knows for being ‘bad’ actions with the same probability as other actions. It can delay the

learning of the agent as it is guided only by the rewards received, and ‘bad’ actions give

low rewards.

Therefore, we proposed to use a softmax policy, which is a non-deterministic policy

based on the distribution of Boltzman to classify each state-action pair (NISHIMOTO;

REALI COSTA, 2019):

π(a | s) = Pr{at = a | st = s} =
e
Q(s,a)
τ∑

b e
Q(s,b)
τ

,

where parameter τ is called temperature and it indicates the degree of exploration of

the agent. The higher its value the more exploration the agent makes, because softmax

makes actions to be approximately equiprobable (TOKIC, 2010). The value of τ linearly

decreases from τinit = 2.0 to τstop = 0.5,

τ = max

(
τstop, τinit −

(
τinit − τstop

τdecay rate

)
· epoch

)
,

with τdecay rate = 40 indicating at what epoch it will achieve τstop and an epoch is a set of

100 dialogues carried out by the agent.

4.3.2 Memory Flush

The strategy adopted in (LI; CHEN; LI, 2017) and (NISHIMOTO; REALI COSTA,

2019) resides in the flush of the experience replay when the agent achieves a certain

success rate (30%) and then, during the training process, flush again every time the

behavior network outperforms its previous policy. In other words, for every epoch, if

the average success rate is greater than the current best success rate, then it flushes the

memory. Li, Chen and Li (2017) argue that using data only from the best policy to train

the network, that is, using the best experiences to train the network can lead to a better

learning process. The major issue in this strategy, is that an early flush of the memory

would loose all the warm-up interactions, that is, all the experiences with some expert

knowledge embedded in it. Thus, there will be no more human guidance after the first

flush.

In this work we propose to keep experience replay instead of flushing it. The intuition

behind it is that the experience replay is filled with some rule-based actions which may

36

guide the agent’s learning primarily during the early epochs of the training phase due to

the pre-defined rules inherited from the warm-up process (NISHIMOTO et al., 2022). By

not flushing the memory, we keep these expert defined rules as long as possible and help

the agent to make a better use of them, thus learning a good policy faster than otherwise.

Flushing the memory when the agent reaches a certain success rate threshold can lead

the algorithm to not use properly the knowledge summed up in these rules.

4.3.3 Deep Recurrent Partially Observable Dialog Management

Section 2.1 states that the DM must be robust enough to handle with errors coming

from the NLU. Thus, we also proposed to model the problem using POMDP instead of the

classic MDP framework. In POMDP, the user action, as it has some degree of uncertainty,

is treated as part of the agent’s observation. However, uncertainties in the user’s action

also cause uncertainties in other components that comprise the state of the dialogue such

as slots already informed, making the state not fully observable.

In this formulation, DM receives as input a list of size N that contains N possible

actions of the user (instead of just the action provided by the NLU). Given a noisy entry

ãu from NLU that indicates the user action, a confusion model (CM) generates a list of

N possible actions for ãu so that DM can keep track of various dialogue paths during the

conversation. Each action in this list may have a different set of informed slots. Hence

we also need to maintain an N sized list of each one of these inform slots. Thus, for each

action in the list, DST updates the filled inform slots and combine them with the last

agent action and current turn. Finally, the final representation of the observation includes

the N -list of user actions aNu , informed slots sNu , and the number of matches in database

dbN , i.e., the number of entries in the database that match the current constraints (if

applicable), as well as the last action as taken by the DM agent and the current turn t:

ot = (aNu , s
N
u , db

N , as, t),

where the superscript N indicates a list o N values.

To deal with POMDP a recurring network is used in the deep recurrent Q-learning

(HAUSKNECHT; STONE, 2015) algorithm. The intuition is that, as the dialogues have

a sequential characteristic, the LSTM layer is able to capture this temporal information

throughout the conversation. Therefore it will aggregate information over the dialog turns

and may recognize possible errors, returning an approximation of the latent state space,

37

which is the actual belief state bt. Finally the last layer is a dense layer that learns the

policy approximation.

Figure 10 shows an abstract view of the proposal. CM is a confusion model that

generates the N-best list based on the user action. It is formally defined as:

C(ãu) = [ãu1, ãu2, · · · , ãuN],

where ãui is the i-th generated action and ãu1 is always the same as ãu.

There are basically four types of errors that can occur in the user action:

• Intent error (I): error on the classification of the intent;

• Value error (S1): error on the value of the slot;

• Slot error (S2): error on the slot name and slot value;

• Miss slot (S3): NLU skips a slot that should be classified.

Table 3 shows an example of each type of error. For each line, the part in italic is

where the error occurred, and in the last line, the slot-value pair for starttime is missing.

The error of intent is considered independent of others, i.e., it can occur regardless of

the occurrence of the other three errors.

Table 3: Example of possible errors

Action
inform(moviename=‘Joker’;starttime=‘7:30pm’)

Intent error
request(moviename=‘Joker’;starttime=‘7:30pm’)

Value error
inform(moviename=‘The Avengers’ ;starttime=‘7:30pm’)

Slot error
inform(moviename=‘Joker’;numberofpeople=‘3’)

Miss slot
inform(moviename=‘Joker’)

When DM receives the input, CM creates N−1 noisy actions. Each action is generated

by applying one of the slots errors (S1, S2 or S3) based on a probability distribution.

Additionally it also generates an I error with some probability. The final list of actions

N is composed of the received one and N − 1 generated by the application of some noise.

38

This list can be seen as a N-best list that comes from NLU, hence there is high probability

that the correct action is in it and we might assume that.

Our system was called DRPO-DM (Deep Recurrent Partial Observable) (NISHI-

MOTO; REALI COSTA, 2020).

Figure 10: Sketched view of the DRPO-DM system. Source:Deep Recurrent Q-Learning
for Partially Observable Dialog System (NISHIMOTO; REALI COSTA, 2020).

4.4 Supervised Learning in Dialogue Systems

Convolutional Neural Network (CNN), Gated Recurrent Unit (GRU), and Long Short

Term Memory (LSTM) are common neural networks used in supervised learning (SL) and

even used in some works focused on dialogue systems (GRIOL et al., 2008; WILLIAMS;

ASADI; ZWEIG, 2017). However, as mentioned before, transformer architecture has

become quite relevant in recent years for handling sequential data, reaching state-of-the-

art in many tasks. For this reason and due to the sequential nature of dialogue systems,

we implemented a DM using the transformer model for our comparisons.

The implementation is based on the work from (VLASOV; MOSIG; NICHOL, 2019)

and Figure 11 shows a schematic representation of the DM architecture using the trans-

former architecture.

39

Previous
System Action

Slots

User Intent
Entities

Transformer

Embedding
Layer

Similarity

Embedding
Layer

System Action

Dialogue turn

Loss

a

yaction

emba

emby

Figure 11: Schematic representation of the transformer dialogue management. Inspired
in figure from (VLASOV; MOSIG; NICHOL, 2019)

The input sequence of the transformer architecture is the sequence of the dialogue

turns of a conversation. At first, DM encodes the user input, the system action and the

slots just as showed before in Section 4.3, resulting in the dialogue state which is the input

of the transformer policy. Therefore, the transformer model learns to map the dialogue

state into the system action. The attention mechanism embedded in the transformer

allows it to look at previous dialogue turns dynamically and use these information to

select the best response, i.e., at each turn the transformer attention mechanism computes

the relevance of the previous turns that will help the system make its decision. This

relevance is what the attention mechanism will learn from data during the training. The

transformer output a and the system action yaction (which is the label in the supervised

approach) are transformed into an embedding through the embedding layer emba = E(a),

and emby = E(yaction), where emb ∈ Rd, with d = 20 being the embedding dimensions

and E represents the embedding layer.

The loss function is based on the similarity between the transformer output embedding

and all the system actions S = embTa emby. Precisely, the loss function for one dialogue is:

Ldialogue = −

〈
S+ − log

(
eS

+

+
∑
Ω−

eS
−

)〉
, (4.5)

where S+ = embTa emb
+
y , and emb+

y is the embedding for the target action y+
action (true

label). S− = embTa emb
−
y , where emb−y is the embedding for all other actions y−action (neg-

ative samples) which are elements of the set Ω−. The idea of this loss is to increase the

40

similarity between the transformer output and the target, and decrease the similarity be-

tween the output and all other actions. Finally the global loss is computed as an average

of the loss of all dialogues in the train dataset.

The feed forward layers inside the transformer contain one layer with 128 neurons.

The multi-head attention comprises h = 4 heads and the dimension size of embedding

vectors is d = 20. The batch size increases linearly from 8 to 32 for each epoch. So during

the training, we sample the batch size of dialogues from the training dataset and for each

dialogue we compute the loss, and then the global loss to optimize the transformer with

the Adam Optimizer.

During the inference time, the system chooses the action which is the most similar to

the transformer output as its response.

In summary, the proposed DCDA-S2M architecture comprises the controller, the slot

sharing mechanism and several agents specialized in a single domain. The architecture

of each agent is independent and may vary. We proposed the DQN-DM which uses

MDP, DQN, softmax and no-flush memory and the DRPO-DM which uses the POMDP,

DRQN, softmax and no-flush memory. In the next chapter we show the relevance of each

component in these architectures and also make a comparison of the DQN-DM with a

supervised learning approach DM based on the transformer architecture. We also evaluate

the benefits of DCDA-S2M architecture by comparing it with other RL algorithms and

the centralized architecture.

41

5 EXPERIMENTS AND RESULTS

The major metrics that are analyzed for DM in task-oriented chatbots are: success

rate, average reward received and average number of turns (LI; CHEN; LI, 2017; MO et

al., 2018; WEISZ et al., 2018). The first refers to the percentage of dialogues in which

the agent is able to complete the user’s task. The second is a traditional reinforcement

learning metric and indicates the average reward the agent received during interactions.

Ultimately, the average number of turns gives an idea of the average size of each dialogue.

Given these metrics, we can say that a good policy has a high success rate, a high average

reward received and a low average number of turns. Due to the strong relationship among

these metrics, we evaluated the three of them only in the first set of experiments, for the

other experiments, we just presented the success rate metric, which turns to be the most

important metric.

In the rest of this chapter, we present the domains used in this work and the experi-

ments executed to obtain the results of the effects of the softmax policy, the no-memory

flush strategy and the DRPO-DM method for single domain dialogue system. And finally

we present the result of our DCDA-S2M architecture and a comparison between RL and

SL approaches using toy (Multiwoz) and real (digital assistant) datasets.

5.1 Domains

There were three domains available for the experiments: movie ticket, MultiWOZ

(BUDZIANOWSKI et al., 2018; ERIC et al., 2019) and Itaú Bank’s virtual assistant.

The first one is a single domain built with toy datasets and is publicly available 1 so

that experiments are reproducible. Its goal is to book a movie ticket that satisfies the

user constraints such as movie name, ticket price, date, theater and so on. This domain

is used in the baseline (LI; CHEN; LI, 2017) and we used it in experiments regarding

single-domain agents using reinforcement learning.

1〈https://github.com/MiuLab/TC-Bot/tree/master/src/deep dialog/data〉

42

The MultiWOZ domain, is also publicly available2, but it is multi-domain. More

precisely, it contains seven domains: attraction, hospital, hotel, police, restaurant, taxi,

and train. So, the agent’s task is to accomplish the user goal in one or more domains in

a single conversation. For example, the user may want to go to an expensive Japanese

restaurant at 08:00pm and also book a five-star hotel, in the north area at 10:00pm.

The Itaú Bank’s domain comes from real-world data and this data is private due to

bank’s privacy concerns. All the data follow the GDPL (General Data Protection Law),

in which sensible data were not employed and client’s information was anonymised. This

domain is useful to illustrate the relative performances of the assessed methods in more

complex domains used in the real-world. The goal of this domain is to solve some client’s

interactions related to the bank. For example, in this domain, a rule is composed of the

intent doubt and the slots credit card and password; then the corresponding action

would be related to solve a problem with the credit card’s password. In this work, the

issues are specifically related to non-account holders, such as problems with credit card

and passwords, as well as doubts about loans.

Table 4 shows some examples of the ontology (intent/slot/data) for each domain,

including their respective statistics. Here the data are basically examples of interactions

presented in the dialogues of each domain. Note that the third domain, which comes from

a real-world application, is more complex than the other two due to the higher number of

intents and slots. The data in each domain are splitted such that 80% of them are used

for training and the remaining 20% are used for testing when training with supervised

learning.

Conversations between the agent and the user have similar structures for all domains.

During the interactions, the user informs some slots that are in his/her goal and the

agent evaluates if it is enough to complete the task. Otherwise, it just waits for the user

to inform something else or request for some additional information. Figure 12 shows

examples of the interactions between the user and the agent in all domains and their

respective translations to dialogue acts.

5.2 Softmax

In this section, the agent’s performance is analyzed with the proposed softmax policy

for balancing between exploration and exploitation, described in Section 4.3.1. We com-

2〈https://github.com/budzianowski/multiwoz〉

43

Table 4: Some examples of the ontology for each studied domain.

Domain Movie Ticket

Intent
inform, request, thanks, greeting, · · ·

(Total: 6)

Slot
moviename, starttime, data, genre, theater, numberofpeople, · · ·

(Total: 20)

Data
inform(starttime: 20:00, theater: manville 12 plex)

→ inform(moviename: zootopia)
(Total: 991)

Domain MultiWoz

Intent
welcome, inform, request, select, not found, bye, · · ·

(Total: 13)

Slot
aaddress, area, pricerange, name, phone, day, · · ·

(Total: 24)

Data
restaurant-inform(area: north, pricerange: moderate)

→ restaurant-inform(name: The Nirala)
(Total: 1482)

Domain Digital Assistant

Intent
doubt+invest, consult, negotiate, · · ·

(Total: dozens)

Slot
product, status, service, people, category, channel, functionality, · · ·

(Total: hundreds)

Data
consult(product: credit card) → inform(debt: X)

(Total: thousands)

pare the results with the ε-greedy policy adopted in the baseline work (LI; CHEN; LI,

2017) in the movie ticket domain. The experiments were repeated 20 times in order to

construct the learning curve graphs with a confidence interval of 95% (Figure 13).

There are three points that can be analyzed to compare two reinforcement learning

agents: initial jump, time to a certain limit and asymptotic performance. The initial jump

represents the improvement in performance in the first episode, the time to a certain limit

indicates how many episodes it took to reach a certain limit (usually 70% maximum) and

asymptotic performance is the performance achieved by the agent after learning stabilize.

From the analysis of the graphs of Figure 13, it is possible to observe that the proposed

method shows a statistically significant improvement over the base model during the

learning phase, in the three observed items. To get an idea of the improvement, looking

at the success rate curve, there is an improvement in the initial jump of approximately

17.24%, the time difference to reach the 0.5761 limit (which is 70% of the maximum

amount) is 15 times and the improvement in asymptotic performance is about 8.33%.

44

I	want	a	ticket	for	20:00	at	Hamilton	citiy

What	theater	do	you	want?

Manville	12	Plex,	please

There	is	the	movie	Zootopia	for	tomorrow

Thanks!

inform(starttime:	20:00,	city:	hamilton)	

request(theater)

inform(theater:	manville	12	plex)	

inform(moviename:	zootopia,	date:	tomorrow)

thanks()

Real	Interation Dialogue	Acts

(a) Movie Ticket

I want a restaurant in the north area with moderate price

There is The Nirala restaurant

Great! I also want a four stars hotel

For this I have the Limehouse hotel in the north area

Thanks!

inform(area: north, pricerange: moderate)

inform(name: The Nirala)

hotel-inform(stars: 4)

inform(name: Limehouse, area: north)

bye()

Real Interation Dialogue Acts

(b) MultiWOZ

I	have	a	doubt	about	consulting	my	credit	card

Can	you	give	me	more	information?

I	want	to	consult	the	debt

I	will	show	you	how	to	consult	your	credit	card	debt

Thanks!

consult+doubt(product:	credit	card)

listen()

consult+doubt(service:	debt)

action(consult	credit	card	debt)

thanks()

Real	Interation Dialogue	Acts

(c) Digital Assistant

Figure 12: Example of real interactions (left side) between the user and the agent and their
respective translations to dialogue acts (right side) for (a) movie ticket, (b) MultiWOZ
and (c) the digital assistant domain.

45

(a) (b)

(c)

Figure 13: Learning curve for the (a) Success rate, (b) Average round, and (c) Average
reward. Source: (NISHIMOTO; REALI COSTA, 2019)

5.3 Memory Flush

Figure 14a shows the learning curve of the success rate during training for the movie

ticket domain. We compare our proposed approach, which involves not flushing the replay

memory, with the previous works (LI; CHEN; LI, 2017; NISHIMOTO; REALI COSTA,

2019) that flush the replay memory. Although both procedures achieve comparable accu-

racy, the no-flush approach causes the agent to learn faster and achieves the asymptotic

performance before the flush method. For this specific experiment, we only evaluated

the results on the movie ticket domain as there already was an established baseline to

compare.

While our proposal reaches an average success rate greater than 0.8 at epoch 42 on

training dataset, the flush method only reaches such a result at epoch 82. We can view this

improvement in the learning speed as a better usage of the designer knowledge. Indeed, if

we flush the memory replay after some threshold, all the rule actions took in the warm-up

phase are lost. Consequently, not flushing the memory keeps the designer knowledge in

46

0 25 50 75 100 125 150 175 200
Simulation Epoch

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

Training Dataset (Movie Ticket)

flush
no flush

(a)

0 25 50 75 100 125 150 175 200
Simulation Epoch

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

Testing Dataset (Movie Ticket)

flush
no flush

(b)

Figure 14: Learning curve for the movie ticket domain on the a) training and b) testing
dataset by flushing and not flushing (our approach) the experience replay memory.

memory replay as long as possible and makes a better use of it.

Therefore, we can state that not flushing the replay memory improves the agent’s

knowledge generalization regarding the warm-up rules, thus leading the agent to learn an

appropriate policy faster, as shown in Figure 14b.

5.4 Dialogue Management with DRPO

The agent was also trained using the POMDP framework described in Section 4.3.3,

named DRPO-DM. In this case, we intend to analyze the robustness of the DM policies

regarding errors from the NLU. For these experiments, the runs were repeated 10 times

generating curves with a confidence interval of 95%. First we analyze the impact of errors

in the classification of intention and second, the impact of errors in the extraction of slots.

The levels of errors, i.e., the probability of an error occurring, ranged between 0.0 and

0.5.

Figure 15 shows the impact of errors in the classification of intention in both algo-

rithms, DQN (with MDP modeling) and DRPO (with POMDP modeling). Figure 16

shows the same analysis for errors in the extraction of slots. Finally, Figure 17 compares

both models in a specific probability error (0.3).

It is possible to verify that the error in the classification of the intent did not impact

the agent’s performance. This specific graph was not plotted with the confidence interval

just to allow a clearer visualization.

On the other hand, it is possible to verify that the errors in the extraction of the

47

(a) (b)

Figure 15: Success rate for different levels of intent errors. (a) for DQN algorithm. (b):
for DRPO algorithm. Source: (NISHIMOTO; REALI COSTA, 2020)

(a) (b)

Figure 16: Success rate for different levels of slot errors. (a) for DQN algorithm. (b): for
DRPO algorithm. Source: (NISHIMOTO; REALI COSTA, 2020)

Figure 17: DRPO x DQN with p=0.3 error rate.

slots of the sentence cause a significant decay in the agent’s performance. And this is

48

expected, since there is no easy “tip” to suggest that there was an error. For example, if

the user informs moviename: ‘‘The Avengers’’but the NLU understood moviename:

‘‘Joker", there is nothing to indicate that “Joker” is possibly wrong. However, it is

possible to observe that the DRPO algorithm, which uses POMDP, presents a smaller

decrease in performance with an increase in the level of error. Thus, it can be said that

the use of POMDP makes the system more robust.

Moreover, comparing the two models with 0.3 probability of error, as seen in Figure 17

the improvement achieved by DRPO-DM is statistically significant (as the curves were

plotted with 95% confidence interval) in both, the asymptotic performance and the time

to threshold. The asymptotic performance is the success rate that the agent stabilizes

while time to threshold means the number of epochs the curve achieves a specific success

rate.

5.5 Reinforcement Learning vs Supervised Learning

The results of the comparison between the supervised and reinforcement learning

approaches for both the MultiWOZ dataset and the virtual assistant domain are shown

in Tables 5 and 6, respectively. They show the results with 95% confidence interval in the

testing phase. We can see that although they present similar performance in the accuracy,

the reinforcement learning approach shows better results on the other metrics. It means

that the agent trained with reinforcement learning can learn better on how to fulfill the

user goal slots during the dialogue. The intuition behind this is that the sequential nature

of reinforcement learning algorithms fits well in the dialogue management problems. Even

though the transformer networks works well with sequential data, it does not leverage the

dynamic interactions that we have in reinforcement learning.

We can also see that this behaviour (RL with better performance than SL) keeps in

the virtual assistant domain. It was expected a decreasing in the performance compared

to the MultiWOZ domain because of the domain complexity (greater number of slots,

actions and intents) and the difficulty of collecting good data for training.

Table 5: Comparison between the SL and RL approaches in the MultiWOZ domain.
Metrics with 95% confidence interval in the test dataset.

MultiWOZ F1 Precision Recall Accuracy
Transformer 0.61 ± 0.02 0.63 ± 0.01 0.61 ± 0.04 0.70 ± 0.01

DQN 0.83 ± 0.04 0.78 ± 0.06 0.89 ± 0.08 0.71 ± 0.04

49

Table 6: Comparison between the SL and RL approaches in the virtual assistant domain.
Metrics with 95% confidence interval in the test dataset.

Virtual Assistant F1 Precision Recall Accuracy
Transformer 0.57 ± 0.01 0.57 ± 0.01 0.59 ± 0.04 0.73 ± 0.01

DQN 0.79 ± 0.04 0.78 ± 0.06 0.78 ± 0.03 0.78 ± 0.04

5.6 Slot Similarity

For visualization of the learned node embedding in the MultiWOZ domain we used a

t-distributed stochastic neighbor embedding (t-SNE) model with perplexity 5 using the

scalar product as similarity function. Figure 18 shows this visualization.

hotel-people

hotel-day

hotel-stay

hotel-name

hotel-area

hotel-parking

hotel-pricerange

hotel-stars

hotel-internet
hotel-type

attraction-type

attraction-name

attraction-area

restaurant-people

restaurant-day

restaurant-time
restaurant-food

restaurant-pricerange

restaurant-name

restaurant-area

hospital-department

taxi-leaveAt

taxi-destination
taxi-departure

taxi-arriveBy

train-people

train-leaveAt

train-destination

train-day
train-arriveBy

train-departure

Figure 18: Visual representation of the learned node embedding.

Figure 18 clearly shows some groups of nodes that are related to each other. For

example, hotel-area, attraction-area, and restaurant-area forms a group, indicating that

users generally request places in the same area. It also happens for the price range

(restaurant-pricerange and hotel-pricerange), day (restaurant-day, hotel-day, and train-

day) and people (restaurant-people, hotel-people, and train-people) slots. Although hotel-

stay and hotel-stars looks close to the group with slot “people”, computing their similarity

with restaurant-people we got 0.118 and 0.088, respectively – thus they are not similar and

should not share values. On the other hand, the similarity between restaurant-area and

attraction-area is 0.91 showing that they are similar and must share their values inside a

50

conversation. Here we used a similarity of 0.8 as a threshold for sharing the slots values.

An interesting observation is that attraction-name and hotel-name are quite close to

taxi-departure, with similarity 0.57 and 0.668, respectively, but they are not close to each

other, i.e., the similarity between them is 0.011. This is expected since it is not common

an attraction with the same name as a hotel.

5.7 DCDA-S2M Evaluation

To evaluate our proposal we assessed four models: the baseline Rule-based policy

available in ConvLab-2, the VMLE3 (Vanilla Maximum Likelihood Estimation) policy ,

and the PPO algorithm trained in both approaches: a centralized system with a unique

agent trained to handle all domains at once using PPO and DQN (PPOall and DQNall,

respectively) and our proposal with the single agents trained with both PPO and DQN

(DCDAppo and DCDAdqn, respectively). Table 7 summarizes the models that were com-

pared.

Table 7: Models compared.

Model Description
Rule ConvLab-2 Rule-based policy
VLME Policy obtained from the VLME algorithm
PPOall A single-agent centralized PPO DM trained to handle all domains
DQNall A single-agent centralized DQN DM trained to handle all domains
DCDAppo DCDA with PPO-trained individual agents
DCDAdqn DCDA with DQN-trained individual agents

The metrics are automatically computed by the evaluator presented in ConvLab-2 and

encompasses the complete rate, success rate, book rate, precision, recall, F1-score for the

informed slots, and average number of turns for both the dialogues that were successful

and the total set of dialogues. The complete rate indicates the rate of dialogues that

could finish (either with success or fail) before achieving the maximum number of turns.

The precision, recall and F1-score indicate the ability of the agent to fulfill the slots of

the user goal, i.e., leads to the correct slot. Tests were performed over 2000 dialogues in

the MultiWOZ domain.

Table 8 shows the evaluation results for all the six models in the pipeline setting,

i.e., without the NLU and NLG modules. As expected the rule policy performs almost

3VMLE is the simple maximum likelihood estimation which employs a multi-class classification via
imitation learning

51

“perfectly” succeeding in 98.45% of the dialogues and it can serve as a baseline. This is

so because the rule policy is designed specifically for this domain and knowing how the

simulator works (the disadvantage is that it does not work in other domains). Among

the trainable agents, the multiple agents models (DCDA) perform better than a single

agent in almost all aspects achieving more than 88% of success rate and more than 94% of

complete rate in both DCDAppo and DCDAdqn, while PPOall and DQNall present success

rate lower than 75%. This shows a much better performance and efficiency as it can solve

more user tasks using less number of turns. The average number of turns in all dialogues

is 14.92 and 12.99 for DCDAppo and DCDAdqn, respectively, which is very close to the

baseline rule policy (13.48) showing it could learn a very good policy in solving tasks.

The increase in the average number of turns for all dialogues can be explained by

analysing the failed dialogues during test. It can be seen that in many failed dialogues

the conversation went in a loop with the agent and the simulated user, repeating the same

act of dialogue consecutively. In these cases the dialogue lasts the maximum number of

turns, contributing to the increase in the average number of turns. Figure 19 shows an

example of a failed dialogue in which the user and the agent went in a loop. The reason

why this phenomenon occurs is not very clear to us. The worst performance of the VLME

is expected, as the other agents depend on the VLME for pre-training and it is a simple

algorithm that employs imitation learning.

R
es

ta
ur

an
t

usr: [Restaurant, Inform, Price, expensive]

agt: [Restaurant, Inform, Name, curry garden], [Restaurant, Inform, Addr, 106
Regent Street City Centre]

usr: [Restaurant, Inform, Area, south]

agt: [Restaurant, Inform, Name, he good luck chinese food takeaway],
[Restaurant, Inform , Addr, 82 Cherry Hinton Road Cherry Hinton]

 . . .

usr: [Restaurant, Request, Food, ?]

agt: [Restaurant, Inform, Name, he good luck chinese food takeaway],
[Restaurant, Inform , Addr, 82 Cherry Hinton Road Cherry Hinton]

usr: [Restaurant, Request, Food, ?]

. . .

Figure 19: Example of a fail dialogue where the agent went in a loop. The user keeps
requesting the food type and the agent keeps informing the restaurant name and address.

We can also see that our DQN algorithm - with the improvements of the softmax

strategy and no-flush memory replay - shows slightly better results than PPO in most

metrics. It is only worst in precision and consequently in F1-Score. The reason for this is

that the agent trained with DQN “guesses” more than the agent trained with PPO, that

is, the agent tries to inform some slots that the user has not requested yet based on the

available options and the constraints given by the user.

52

Table 8: Results for agents tested in a pipeline setting. The best results are in bold.

Rule VLME PPOall DQNall DCDAppo DCDAdqn

Success 98.45 39.57 66.63 71.2 88.14 89.68
Complete 98.45 41.50 77.17 89.62 94.01 94.78

Book 98.79 1.35 60.20 90.41 88.01 96.21
Precision 83.47 65.24 77.57 58.16 80.26 74.79
Recall 99.16 68.82 86.53 87.84 97.02 97.68
F1 88.55 64.12 79.12 67.45 86.00 80.72

Turn (suc) 13.40 13.80 13.62 11.93 13.84 11.34
Turns (all) 13.48 22.39 19.82 15.66 14.92 12.99

We also evaluated the effects of using or not the S2M in the rule and DCDA agents.

The results of this experiment regarding the use of the slot sharing mechanism are pre-

sented in Table 9. Results show that for the Rule policy the sharing mechanism also

helped the agent to have a slightly better performance. Although the success rate for

DCDA did not change much, the sharing mechanism also helped it to have a better com-

plete and book rate. Another enhancement was in the average number of turns. The

average number of turns required in successful dialogues for the Rule and DCDAppo poli-

cies decreased from 13.40 to 13.20, and from 13.84 to 13.43, respectively, when the sharing

mechanism was incorporated. Thus we can see that the sharing mechanism makes the

conversational agent complete dialogues faster than it would without this mechanism.

The DQN algorithm did not show improvement in turns with the S2M mechanism.

Table 9: Evaluation of the use of S2M in the Rule policy and DCDA, with the goal
generator generating random goals. Best results are in bold.

Rule DCDAppo DCDAdqn

with S2M no S2M with S2M no S2M with S2M no S2M
Success 98.60 98.45 88.24 88.14 89.84 89.68

Complete 98.65 98.45 95.94 94.01 94.99 94.78
Book 99.25 98.79 90.50 88.01 96.49 96.21

Precision 83.32 83.46 80.31 80.26 72.34 74.79
Recall 99.14 99.16 97.04 97.02 97.87 97.68
F1 88.46 88.55 86.02 85.99 80.80 80.72

Turn (suc) 13.20 13.40 13.43 13.84 11.39 11.34
Turns (all) 13.23 13.48 14.77 14.92 12.99 12.99

An interesting fact is that besides the slightly better performance with the sharing

mechanism, the precision, recall and F1-score did not followed the same behavior, i.e.,

they had better results or very close (less than 0.05%) results as those without the sharing

mechanism. This result is not very surprising because as the agent with the sharing

mechanism tries to “guess” the slots of new domains within the conversation, it ends up

53

reporting more wrong slots of the user goal causing worse precision, recall, and F1-score.

All theses experiments were assessed with the user simulator generating random goals

based on a distribution of the goal model extracted from the dataset. So this can include

simple goals within only one domain or goals that span to more than one domain but do

not have any slot with the same value to share. Indeed, among all 2000 goals generated

during testing, only about 400 contain common values between slots. With that in mind,

we ran another test of the sharing mechanism that restricts the user simulator to only

generating goals that contain common slots. Therefore, the generated goals end up being

more complex in general than those generated in the first test.

Table 10 shows the results. There is an expected significant decrease in the general

performance due to the increase in user goals complexity. However, here we can clearly

observe the great advantage of the S2M sharing mechanism in this setting.

Table 10: Evaluation of the use of S2M in the Rule policy and DCDA with the goal
generator generating slots with common values. Best results are in bold.

Rule DCDAppo DCDAdqn

with S2M no S2M with S2M no S2M with S2M no S2M
Success 92.60 80.35 78.41 68.42 78.80 72.08

Complete 92.50 80.45 92.13 85.49 90.19 87.73
Book 96.11 95.88 83.58 83.10 91.12 89.85

Precision 79.89 79.34 76.82 74.88 65.53 64.40
Recall 95.43 86.80 95.15 90.01 95.55 92.63
F1 83.99 77.38 82.92 78.77 75.23 73.02

Turn (suc) 17.15 18.24 19.97 20.69 15.43 15.92
Turns (all) 17.10 17.60 21.28 21.57 17.89 18.03

There is a 12.25%, 9.99% and 6.72% success rate difference with the Rule and DCDA

policies, respectively. We also see a bigger impact on the average number of turns. It

affects mostly the successful dialogues because the number of turns is affected only when

the transferred slots values are correct – otherwise the user would still need to inform

these slots – and chances of a successful dialogue increase when it happens. Finally, we

also see a better precision, recall and F1-score for the agent with the sharing mechanism.

Since all goals in this tests have at least one common value among the slots, the agent

“guesses” are more likely to be correct.

Figures 20 and 21 show examples of system generated dialogues using and not using

the slot sharing mechanism, respectively.

Observe that when the domain switched to the hotel domain, the agent in Figure 20

asked for confirmation if the price is moderate and area is north and recommended a hotel

54

G
oa
l

R
es
ta
ur
an
t

restaurant: info: {area: north, food: indian, pricerange: moderate},
 reqt: {postcode: ?, address: ?},

hotel: info: {parking: yes, pricerange: moderate, stars: 4, area: north},
 reqt: {type: ?}}

usr: [Restaurant, Inform, Price, moderate], [Restaurant, Inform, Area, north]

agt: [Restaurant, Inform, Name, the nirala]

usr: [Restaurant, Request, Addr, ?], [Restaurant, Request, Post, ?]

agt: [Restaurant, Inform, Addr, 7 Milton], [Restaurant, Inform , Post, cb41uy]

H
ot
el

usr: [Inform, Hotel, Starts, 4

agt: [Confirm, Hotel, Price, moderate], [Confirm, Hotel, Area, north],
 [Recommend, Hotel, Name, limehouse],

usr: [Inform, Hotel, Parking, yes]

agt: [Inform, Hotel, Choice, 6], [Recommend, Hotel, Name, kirkwood house]

usr: [Request, Hotel, Type, ?]

agt: ['Inform', 'Hotel', 'Type', 'guesthouse']

 . . .

. . .

Figure 20: Example of dialogue using the
slot sharing mechanism, resulting in a dia-
logue length 8.

G
oa

l
R

es
ta

ur
an

t

restaurant: info: {area: north, food: indian, pricerange: moderate},
 reqt: {postcode: ?, address: ?},

hotel: info: {parking: yes, pricerange: moderate, stars: 4, area: north},
 reqt: {type: ?}}

usr: [Restaurant, Inform, Price, moderate], [Restaurant, Inform, Area, north]

agt: [Restaurant, Inform, Name, the nirala]

usr: [Restaurant, Request, Addr, ?], [Restaurant, Request, Post, ?]

agt: [Restaurant, Inform, Addr, 7 Milton], [Restaurant, Inform , Post, cb41uy]

H
ot

el

usr: [Inform, Hotel, Starts, 4]

agt: ['Request', 'Hotel', 'Area', '?']

usr: ['Inform', 'Hotel', 'Area', 'north']

agt: ['Request', 'Hotel', 'Price', '?']

usr: ['Inform', 'Hotel', 'Price', 'moderate']

agt: [Recommend, Hotel, Name, limehouse]

 . . .

. . .

Figure 21: Example of dialogue that does
not use slot sharing mechanism, resulting
in a dialogue length 11.

with these constraints. In natural language we could think in this dialogue act as: “Do

you want a hotel in north with a moderate price, right? There is the hotel Limehouse”.

In this way, the user did not need to inform these slots again, saving some turns until

task completion. While in Figure 21 the agent needed to ask again the area and price for

the user, resulting in a redundant dialogue which takes more turns to be completed (11

turns against 8 turns).

One drawback for the DCDA-S2M is the training time required for training all the

agents. Table 11 shows the average training time for each agent. As we can see, the

total amount of time required to train all seven agents (attraction, hospital, hotel, police,

restaurant, taxi, train) is 291.29 minutes, which is approximately 16% more than central-

ized system training (188.97). However, it is worth noting that agents could be trained

in parallel, which would require greater computational power.

Table 11: Training time in minutes for each agent. The hardware used in these experi-
ments was a graphic card NVIDIA GeForce GTX1060 and processor Intel Core i7-7700HQ.

Centralized Attraction Hospital Hotel Police Restaurant Taxi Train
Time

to
Train
(min)

188.97 32.01 28.87 29.97 26.85 32.01 29.77 111.81

55

5.8 Discussion

The results showed that the main goal of this work, the use of a distributed archi-

tecture with multiple agents trained separately for each domain, can leverage the system

performance compared to the same algorithm used to train a single agent for all domains

at once. This is because each agent can specialize in solving its own problem well, which

is much simpler than solving tasks well in all domains, as with the centralized approach

in a single agent. Furthermore, distributed systems can add new domains without the

need to retrain the entire system.

The use of the slot sharing mechanism also proved to enhance system performance,

especially for tasks where the goal has some common slot across domains. Besides im-

proving the system’s success rate, it also decreases the average number of turns, showing

that the system avoided asking for redundant information.

A major disadvantage of DCDA-S2M is the need to train several agents separately

and this can be time and energy consuming. In this sense, for future work we intend to

explore transfer learning techniques in reinforcement learning to accelerate the training

of new agents.

We also made several experiments regarding the reinforcement learning algorithms

applied to single domain systems. The first set of experiments showed that a good balance

between exploration and exploitation can considerably improve the agent’s performance.

In particular that the softmax strategy outperforms the basic ε-greedy one. Indeed, with

the ε-greedy strategy, when exploring, all actions have the same probability to be chosen,

that is, the agent does not use any previous information to favor one action over another.

In other words, bad actions can be equally chosen than good actions, and this can delay

the agent’s learning. On the other hand, with softmax policy, the agent samples an action

following a softmax distribution based on Q-values of each action. Thus, in the beginning

of the learning, when the agent knows nothing about each action and consequently the

Q-values are similar, it tends to explore more. As the agent refines its estimations over

the time, bad actions become less probable to be chosen but always with a possibility to

explore. As the results showed, it improve the performance of the agent.

The next experiments showed how not flushing the replay memory helps the agent to

learn faster. The primary reason for this to happen is that during the first episodes of

the learning phase, the replay memory is still filled with some experiences derived from

pre-defined rules, in which are inherited the designer knowledge. This means that if we

56

flush the memory too early, we would lose these experiences and not make the most of it.

Thus, it is important to keep them enough time until the agent acquires useful learning.

Since the replay memory has limited size, newer experiences will eventually replace them,

avoiding the agent to be biased by the rules.

The experiments regarding POMDP framework showed that intent errors does not

affect significantly the success rate of our agent. One possible explanation is that, since

the intent depends a lot on context, the agent can infer the correct intent, even if it got it

wrong. For example, if the agent’s last action was to request something, then it is quite

likely that the user’s action is to inform something. On the other hand, it does not happen

for the slots errors. This means that the agent has a harder time detecting slot errors

and eventually keeps the conversation going even with the wrong slot. The intuition for

this is that it is difficult to detect if a slot is misclassified, for example, if the user informs

moviename: "Avengers" but DM receives moviename: "Joker" there is no clue that

this is wrong. However, results presents that DRPO obtains better results than DQN.

This could be due to the recurring layer in the network that handles the sequential nature

of the dialogue and retains some historical information to help detect these errors.

In the further experiments, we observed that RL presents better results than SL on

test dataset for both domains, MultiVOZ and the bank virtual assistant. A potential

explanation for this phenomenon resides in the low amount of rules used to train the

supervised agent. This lack of available data for specific domains is a common issue

for task-oriented chatbots. It shows that the supervised agent is more susceptible to

overfit due to its lower performance on unseen data, i.e., although the SL approaches

achieve a good performance on training dataset, it could not generalize well the knowledge

learned and got bad performance on testing dataset. This behaviour is expected since RL

techniques have the capability of exploring the environment and thus can find an optimal

policy with less data. Therefore, as reinforcement learning can handle better with the

lack of data, it presents better results. Furthermore, because of the sequential decision

making nature of RL, the agent can keep track of the history of the interactions with the

state representation and thus it has more information to choose an action.

Finally, with these experiments so far, we have made some improvements on DQN

algorithm for dialogue management and concluded that modular RL approaches presents

better results than simple SL modular approach. Furthermore, we also validated this

comparison on a real-world complex dataset.

57

6 CONCLUSIONS AND FUTURE WORK

In this work, we showed that the slot sharing mechanism enhances the system perfor-

mance, specially for tasks where the goal contains some common slots across domains. In

these scenarios, the system takes advantage of the S2M to transfer knowledge across do-

mains and complete the dialogue successfully. Besides improving the success rate, it also

decreases the average number of turns as the system avoids asking redundant information

in the same dialogue.

Furthermore, the divide-and-conquer approach for multi-domain dialogue systems

proved to achieve good results using basic reinforcement learning algorithms. This is

because each agent can specialize in solving its own problem which is much simpler than

the whole one. The distribute architecture is also good for scaling in the number of

domains since we only need to add a new trained agent instead of retraining the entire

system. Regarding the S2M, it would not know how to transfer slots from/to the new

domain until we have enough data to learn the node embedding. However it’s not a big

problem since we can use the S2M to transfer slots between old domains while collecting

data to learn the embeddings of the new domain.

In addition to these contributions for multi-domain dialogue systems, we also have

improvements for single domain task-oriented dialogue systems, specifically on dialogue

management for those with a pipeline architecture. Using a movie ticket dataset and

the work of Li, Chen and Li (2017) as baseline we handled three important issues: a

better balance between exploration and exploitation for efficient learning (NISHIMOTO;

REALI COSTA, 2019); an enhancement on the use of expert knowledge to speed up the

agent’s initial learning; and a method to handle with noises and errors coming from NLU

(NISHIMOTO; REALI COSTA, 2020). Finally, we perform a comparison between our RL

implementation and a current SL approach, both applied directly in dialog management.

The results show that RL-based methods are more promising than SL-based ones.

For future we can explore the other components of the dialogue system (NLU and

NLG) in order to have a complete system. Another promising path is to explore the trans-

58

fer learning techniques (ZHU KAIXIANG LIN; ZHOU, 2020) to accelerate the training

of new agents.

59

REFERENCES

ACHIAM, J. Spinning Up in Deep Reinforcement Learning. 2018.

AHMED, A. et al. Distributed large-scale natural graph factorization. In: Proceedings of
the 22nd International Conference on World Wide Web. [S.l.: s.n.], 2013. p. 37–48. ISBN
9781450320351.

BAHDANAU, D.; CHO, K.; BENGIO, Y. Neural machine translation by jointly
learning to align and translate. In: BENGIO, Y.; LECUN, Y. (Ed.). 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings. [s.n.], 2015. Dispońıvel em: 〈http:
//arxiv.org/abs/1409.0473〉.

BELLMAN, R. A Markovian Decision Process. Indiana Univ. Math. J, v. 6, p. 679–684,
1957. ISSN 0022-2518.

BOCKLISCH, T. et al. Rasa: Open Source Language Understanding and Dialogue
Management. ArXiv, abs/1712.05181, 2017.

BORDES, A.; WESTON, J. Learning End-to-End Goal-Oriented Dialog. In:
International Conference on Learning Representations (ICLR) 2017. [S.l.: s.n.], 2017.

BUDZIANOWSKI, P. et al. MultiWOZ - a large-scale multi-domain Wizard-
of-Oz dataset for task-oriented dialogue modelling. In: Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing. Brussels, Belgium:
Association for Computational Linguistics, 2018. p. 5016–5026. Dispońıvel em:
〈https://aclanthology.org/D18-1547〉.

CHEN, H. et al. A survey on dialogue systems: Recent advances and new frontiers.
SIGKDD Explor. Newsl., ACM, New York, NY, USA, v. 19, n. 2, p. 25–35, nov. 2017.
ISSN 1931-0145. Dispońıvel em: 〈http://doi.acm.org/10.1145/3166054.3166058〉.

CHEN, L. et al. AgentGraph: Towards Universal Dialogue Management with Structured
Deep Reinforcement Learning. ArXiv:abs/1905.11259, 2019.

CHO, K. et al. Learning phrase representations using RNN encoder–decoder for statistical
machine translation. In: Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP). Doha, Qatar: Association for Computational
Linguistics, 2014. p. 1724–1734. Dispońıvel em: 〈https://aclanthology.org/D14-1179〉.

CUAYÁHUITL, H.; KEIZER, S.; LEMON, O. Strategic dialogue management via deep
reinforcement learning. In: NIPS’15 Workshop on Deep Reinforcement Learning. [s.n.],
2015. Dispońıvel em: 〈http://arxiv.org/abs/1511.08099〉.

CUAYÁHUITL, H. et al. Evaluation of a hierarchical reinforcement learning spoken
dialogue system. Computer Speech & Language, v. 24, n. 2, p. 395–429, 2010. ISSN
0885-2308.

60

CUAYÁHUITL, H. et al. Deep reinforcement learning for multi-domain dialogue
systems. CoRR, abs/1611.08675, november 2016. Dispońıvel em: 〈http://arxiv.org/abs/
1611.08675〉.

CUAYÁHUITL, H. et al. Scaling up deep reinforcement learning for multi-domain
dialogue systems. In: 2017 International Joint Conference on Neural Networks (IJCNN).
[S.l.: s.n.], 2017. p. 3339–3346.

DAI, Y. et al. A Survey on Dialog Management: Recent Advances and Challenges.
ArXiv:abs/2005.02233, 2020.

DHINGRA, B. et al. Towards End-to-End Reinforcement Learning of Dialogue
Agents for Information Access. In: Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). Vancouver,
Canada: Association for Computational Linguistics, 2017. p. 484–495. Dispońıvel em:
〈https://www.aclweb.org/anthology/P17-1045〉.

DODGE, J. et al. Evaluating Prerequisite Qualities for Learning End-to-End Dialog
Systems. In: BENGIO, Y.; LECUN, Y. (Ed.). 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings. [S.l.: s.n.], 2016.

DUCHI, J.; HAZAN, E.; SINGER, Y. Adaptive Subgradient Methods for Online
Learning and Stochastic Optimization. Journal of Machine Learning Research, v. 12,
n. 61, p. 2121–2159, 2011.

ERIC, M. et al. MultiWOZ 2.1: Multi-Domain Dialogue State Corrections
and State Tracking Baselines. CoRR, abs/1907.01669, 2019. Dispońıvel em:
〈http://arxiv.org/abs/1907.01669〉.

GAO, J.; GALLEY, M.; LI, L. Neural Approaches to Conversational AI. In: Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics: Tutorial
Abstracts. Melbourne, Australia: Association for Computational Linguistics, 2018.
p. 2–7. Dispońıvel em: 〈https://www.aclweb.org/anthology/P18-5002〉.

GAŠIĆ, M. et al. Training and Evaluation of the HIS POMDP Dialogue System in Noise.
In: Proceedings of the 9th SIGdial Workshop on Discourse and Dialogue. Columbus,
Ohio: Association for Computational Linguistics, 2008. p. 112–119.

GAŠIĆ, M. et al. Dialogue manager domain adaptation using Gaussian process
reinforcement learning. Computer Speech & Language, v. 45, p. 552–569, 2017. ISSN
0885-2308.

GAŠIĆ, M.; YOUNG, S. Gaussian Processes for POMDP-Based Dialogue Manager
Optimization. IEEE/ACM Transactions on Audio, Speech, and Language Processing,
v. 22, n. 1, p. 28–40, 2014.

GORDON-HALL, G.; GORINSKI, P. J.; COHEN, S. B. Learning Dialog Policies from
Weak Demonstrations. In: Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics. Online: Association for Computational Linguistics, 2020.
p. 1394–1405.

61

GORDON-HALL, G. et al. Show Us the Way: Learning to Manage Dialog from
Demonstrations. ArXiv:abs/2004.08114, 2020.

GRIOL, D. et al. A statistical approach to spoken dialog systems design and evaluation.
Speech Communication, v. 50, n. 8, p. 666–682, 2008. ISSN 0167-6393.

GU, J. et al. Incorporating Copying Mechanism in Sequence-to-Sequence Learning. In:
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Berlin, Germany: Association for Computational Linguistics,
2016. p. 1631–1640. Dispońıvel em: 〈https://aclanthology.org/P16-1154〉.

HAM, D. et al. End-to-End Neural Pipeline for Goal-Oriented Dialogue Systems using
GPT-2. In: Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics. Online: Association for Computational Linguistics, 2020. p. 583–592.
Dispońıvel em: 〈https://aclanthology.org/2020.acl-main.54〉.

HAUSKNECHT, M. J.; STONE, P. Deep Recurrent Q-Learning for Partially Observable
MDPs. In: AAAI Fall Symposia. [S.l.: s.n.], 2015.

HOSSEINI-ASL, E. et al. A Simple Language Model for Task-Oriented Dialogue.
In: LAROCHELLE, H. et al. (Ed.). Advances in Neural Information Processing
Systems. Curran Associates, Inc., 2020. v. 33, p. 20179–20191. Dispońıvel em: 〈https://
proceedings.neurips.cc/paper/2020/file/e946209592563be0f01c844ab2170f0c-Paper.pdf〉.

JUMPER, J. et al. Highly acurate protein structure prediction with AlphaFold. Nature,
v. 596, p. 593–589, 2021.

KAELBLING, L. P.; LITTMAN, M. L.; CASSANDRA, A. R. Planning and acting in
partially observable stochastic domains. Artificial Intelligence, v. 101, n. 1, p. 99–134,
1998. ISSN 0004-3702.

KIEFER, J.; WOLFOWITZ, J. Stochastic Estimation of the Maximum of a Regression
Function. The Annals of Mathematical Statistics, Institute of Mathematical Statistics,
v. 23, n. 3, p. 462–466, 1952.

KINGMA, D. P.; BA, J. Adam: A Method for Stochastic Optimization. In: BENGIO,
Y.; LECUN, Y. (Ed.). 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. [S.l.: s.n.],
2015.

KOMATANI, K. et al. Multi-Domain Spoken Dialogue System with Extensibility and
Robustness against Speech Recognition Errors. In: Proceedings of the 7th SIGdial
Workshop on Discourse and Dialogue. Sydney, Australia: Association for Computational
Linguistics, 2006. p. 9–17.

Lecun, Y. et al. Gradient-based learning applied to document recognition. Proceedings of
the IEEE, v. 86, n. 11, p. 2278–2324, 1998.

LEI, W. et al. Sequicity: Simplifying Task-oriented Dialogue Systems with Single
Sequence-to-Sequence Architectures. In: Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers). Melbourne,
Australia: Association for Computational Linguistics, 2018. p. 1437–1447. Dispońıvel
em: 〈https://aclanthology.org/P18-1133〉.

62

LEVIN, E.; PIERACCINI, R.; ECKERT, W. Learning dialogue strategies within the
Markov decision process framework. In: 1997 IEEE Workshop on Automatic Speech
Recognition and Understanding Proceedings. [S.l.: s.n.], 1997. p. 72–79.

LI, L.; WILLIAMS, J.; BALAKRISHNAN, S. Reinforcement Learning for Dialog
Management using Least-Squares Policy Iteration and Fast Feature Selection. In: 10th
Annual Conference of the International Speech Communication Association. [S.l.: s.n.],
2009. p. 2475–2478.

LI, X.; CHEN, Y.-N.; LI, L. End-to-end task-completion neural dialogue system.
In: Proceedings of the The 8th International Joint Conference on Natural Language
Processing. [S.l.: s.n.], 2017. p. 733–743.

LIPTON, Z. et al. Bbq-networks: Efficient exploration in deep reinforcement learning for
task-oriented dialogue systems. In: . [S.l.]: AAAI Press, 2018. p. 5237–5244.

LIU, B. et al. Dialogue Learning with Human Teaching and Feedback in End-to-End
Trainable Task-Oriented Dialogue Systems. In: Proceedings of the 2018 Conference of
the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers). New Orleans, Louisiana: Association
for Computational Linguistics, 2018. p. 2060–2069.

MNIH, V. et al. Human-level control through deep reinforcement learning. Nature,
Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights
Reserved., v. 518, n. 7540, p. 529–533, fev. 2015. ISSN 00280836.

MO, K. et al. Personalizing a dialogue system with transfer reinforcement learning. In:
The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI 2018). [S.l.: s.n.],
2018.

NISHIMOTO, B. E. et al. Enhancing Designer Knowledge to Dialogue Management for
Real-World Chatbots: A Comparison between Supervised and Reinforcement Learning
Approaches. Accepted at Encontro Nacional de Inteligência Artificial e Computacional
(ENIAC), 2022.

NISHIMOTO, B. E.; REALI COSTA, A. H. Dialogue Management with Deep
Reinforcement Learning: Balancing Exploration and Exploitation. In: 2019 8th Brazilian
Conference on Intelligent Systems (BRACIS). [S.l.: s.n.], 2019. p. 449–454.

NISHIMOTO, B. E.; REALI COSTA, A. H. Deep Recurrent Q-Learning for
Partially Observable Dialog System. In: The Third Workshop on Reasoning and
Learning for Human-Machine Dialogues (Deep-Dial2020) at the Thirty-Fourth
AAAI Conference on Artificial Intelligence (AAAI-20). [s.n.], 2020. Dispońıvel em:
〈https://sites.google.com/view/deep-dial2020/program〉.

OPENAI. OpenAI Five. 2018. Dispońıvel em: 〈https://blog.openai.com/openai-five/〉.
Acesso em: 30-03-2019.

PENG, B. et al. Adversarial Advantage Actor-Critic Model for Task-Completion
Dialogue Policy Learning. In: 2018 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). [S.l.: s.n.], 2018. p. 6149–6153.

63

PENG, B. et al. Deep Dyna-Q: Integrating Planning for Task-Completion Dialogue
Policy Learning. In: Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Melbourne, Australia: Association
for Computational Linguistics, 2018. p. 2182–2192.

POWERS, D. M. W. The total turing test and the loebner prize. In: THE FLINDERS
UNIVERSITY OF SOUTH AUSTRALIA. 98 Proceedings of the Joint Conferences on
New Methods in Language Processing and Computational Natural Language Learning.
[S.l.]: Association for Computational Linguistics, 1998. p. 279–280. ISBN 0-7258-0634-6.

RUMELHART, D. E.; HINTON, G. E.; WILLIAMS, R. J. Learning Representations by
Back-Propagating Errors. Nature, v. 323, p. 533–536, 1986.

SAHA, T. et al. Towards integrated dialogue policy learning for multiple domains
and intents using Hierarchical Deep Reinforcement Learning. Expert Systems with
Applications, v. 162, p. 113650, 2020. ISSN 0957-4174.

SCHATZMANN, J.; YOUNG, S. The hidden agenda user simulation model. IEEE
Transactions on Audio, Speech, and Language Processing, v. 17, n. 4, p. 733–747, May
2009. ISSN 1558-7916.

SCHULMAN, J. et al. High-Dimensional Continuous Control Using Generalized
Advantage Estimation. ArXiv:abs/1506.02438, 2015.

SCHULMAN, J. et al. Proximal policy optimization algorithms. ArXiv, abs/1707.06347,
2017.

SERBAN, I. V. et al. Building end-to-end dialogue systems using generative hierarchical
neural network models. In: Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence. [S.l.: s.n.], 2016. p. 3776–3783.

SHAWAR, B. A.; ATWELL, E. Different measurements metrics to evaluate a chatbot
system. In: ASSOCIATION FOR COMPUTATIONAL LINGUISTICS. Proceedings
of the workshop on bridging the gap: Academic and industrial research in dialog
technologies. [S.l.], 2007. p. 89–96.

SILVER, D. et al. Mastering the game of go with deep neural networks and tree search.
Nature, Nature Publishing Group, v. 529, p. 484–489, january 2016. Dispońıvel em:
〈https://doi.org/10.1038/nature16961〉.

SINGH, S. et al. Reinforcement learning for spoken dialogue systems. In: Proceedings
of the 12th International Conference on Neural Information Processing Systems.
Cambridge, MA, USA: MIT Press, 1999. (NIPS’99), p. 956–962.

SU, P. et al. Continuously Learning Neural Dialogue Management. CoRR,
abs/1606.02689, 2016.

SUTTON, R. S.; BARTO, A. G. Reinforcement learning: An introduction. 1st. ed.
Cambridge, MA, USA: MIT Press, 1998. ISBN 0262193981.

TAKANOBU, R.; ZHU, H.; HUANG, M. Guided Dialog Policy Learning: Reward
Estimation for Multi-Domain Task-Oriented Dialog. In: EMNLP-IJCNLP. [S.l.: s.n.],
2019. p. 100–110.

64

TAKANOBU, R. et al. Is your goal-oriented dialog model performing really well?
empirical analysis of system-wise evaluation. In: Proceedings of the 21th Annual
Meeting of the Special Interest Group on Discourse and Dialogue. 1st virtual
meeting: Association for Computational Linguistics, 2020. p. 297–310. Dispońıvel em:
〈https://www.aclweb.org/anthology/2020.sigdial-1.37〉.

TIELEMAN, T.; HINTON, G. Lecture 6.5-rmsprop: Divide the Gradient by Running
Average of Its Recent Magnitude. 2012. 26–31 p. Coursera course.

TOKIC, M. Adaptive ε-greedy Exploration in Reinforcement Learning Based on Value
Differences. In: Proc. of the 33rd Annual German Conference on Advances in Artificial
Intelligence. Berlin, Heidelberg: Springer-Verlag, 2010. (KI’10), p. 203–210. ISBN
3-642-16110-3, 978-3-642-16110-0.

TURING, A. M. Computing machinery and intelligence. In: Parsing the Turing Test.
[S.l.]: Springer, 2009. p. 23–65.

VASWANI, A. et al. Attention is all you need. In: GUYON, I. et al. (Ed.).
Advances in Neural Information Processing Systems. Curran Associates, Inc.,
2017. v. 30. Dispońıvel em: 〈https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf〉.

VINYALS, O. et al. Grandmaster level in StarCraft II using multi-agent reinforcement
learning. Nature, v. 575, n. 7782, p. 350–354, 2019. ISSN 1476-4687. Dispońıvel em:
〈https://doi.org/10.1038/s41586-019-1724-z〉.

VINYALS, O.; LE, Q. V. A neural conversational model. In: ICML Deep Learning
Workshop 2015. [s.n.], 2015. Dispońıvel em: 〈https://arxiv.org/abs/1506.05869〉.

VLASOV, V.; DRISSNER-SCHMID, A.; NICHOL, A. Few-Shot Generalization Across
Dialogue Tasks. CoRR, abs/1811.11707, 2018.

VLASOV, V.; MOSIG, J. E. M.; NICHOL, A. Dialogue Transformers. ArXiv,
abs/1910.00486, 2019.

WANG, S. et al. Task-completion dialogue policy learning via Monte Carlo
tree search with dueling network. In: Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP). Online: Association
for Computational Linguistics, 2020. p. 3461–3471. Dispońıvel em: 〈https:
//aclanthology.org/2020.emnlp-main.278〉.

WANG, W. et al. Incremental learning from scratch for task-oriented dialogue systems.
In: Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics. Florence, Italy: Association for Computational Linguistics, 2019. p.
3710–3720. Dispońıvel em: 〈https://aclanthology.org/P19-1361〉.

WANG, Z. et al. Policy Learning for Domain Selection in an Extensible Multi-domain
Spoken Dialogue System. In: Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP). Doha, Qatar: [s.n.], 2014. p. 57–67.

WEISZ, G. et al. Sample efficient deep reinforcement learning for dialogue systems
with large action spaces. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, v. 26, n. 11, p. 2083–2097, Nov 2018. ISSN 2329-9290.

65

WEIZENBAUM, J. Eliza - a computer program for the study of natural language
communication between man and machine. Communications of the ACM, New York,
NY, USA, v. 9, n. 1, p. 36–45, 1966.

WEN, T.-H. et al. A network-based end-to-end trainable task-oriented dialogue
system. In: Proceedings of the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume 1, Long Papers. Valencia,
Spain: Association for Computational Linguistics, 2017. p. 438–449. Dispońıvel em:
〈https://www.aclweb.org/anthology/E17-1042〉.

WESTON, J.; CHOPRA, S.; BORDES, A. Memory Networks. In: BENGIO, Y.;
LECUN, Y. (Ed.). 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. [S.l.: s.n.],
2015.

WILLIAMS, J. D.; ASADI, K.; ZWEIG, G. Hybrid Code Networks: practical and
efficient end-to-end dialog control with supervised and reinforcement learning. In:
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Vancouver, Canada: Association for Computational
Linguistics, 2017. p. 665–677.

XU, Y. et al. Meta Dialogue Policy Learning. ArXiv, 2020.

YANG, S.; ZHANG, R.; ERFANI, S. GraphDialog: Integrating graph knowledge
into end-to-end task-oriented dialogue systems. In: Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP).
Online: Association for Computational Linguistics, 2020. Dispońıvel em: 〈https:
//aclanthology.org/2020.emnlp-main.147〉.

ZHANG, Z. et al. Recent Advances and Challenges in Task-oriented Dialog System.
Science China Technological Sciences, 2020. ISSN 1674-7321.

ZHAO, T.; ESKENAZI, M. Towards End-to-End Learning for Dialog State Tracking
and Management using Deep Reinforcement Learning. In: Proceedings of the 17th
Annual Meeting of the Special Interest Group on Discourse and Dialogue. Los Angeles:
Association for Computational Linguistics, 2016. p. 1–10.

ZHU KAIXIANG LIN, A. K. J. Z.; ZHOU, J. Transfer Learning in Deep Reinforcement
Learning: A Survey. ArXiv, 2020.

