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ABSTRACT

Floating o↵shore structures are maintained in the desired position by mooring lines
attached to the seabed of the location. These systems are among the main components
that guarantee not only the safety of the crew but also the various operations carried out
on the platforms. In this thesis, the objective is to detect the rupture of the mooring lines
of platforms with di↵erent levels of draft (load) based on the measurements of the plat-
form motion provided by the Di↵erential Global Positioning System (DGPS) and Inertial
Measurement Unit (IMU) sensors. For this, a Neural Motion Estimator (NeMo) system
was developed. NeMo consists of two modules: a motion prediction module comprising
of a feed forward neural network (Multilayer Perceptron – MLP), which uses previous
data from platform motions to predict future motion, and a multi-class classifier module,
which uses the di↵erence between predicted motion and measured actual motion as inputs
to indicate whether or not there has been a failure, for various groups of mooring lines.
The system was trained and tested using simulated data from a time- domain platform
motion simulator. Results of the implemented NeMo system showed it is able to detect
the occurrence of failure in the mooring lines, with errors between the forecast and the
measured movements when there was a line breakage. These errors are such that the
developed multi-class classifier had a 99% accuracy prediction rate when classifying the
platform motions.

Keywords – Mooring lines breakage, Classification, Machine learning, Neural net-
works, O↵shore Platforms.
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RESUMO

Estruturas flutuantes o↵shore são fixadas no local desejado por meio de cabos de
amarração ancorados no fundo do mar. Esses sistemas estão entre os principais com-
ponentes que garantem não só a segurança da tripulação, mas também das diversas
operações realizadas nas plataformas. Nesta tese, o objetivo é detectar a ruptura dos
cabos de amarração de plataformas, com diferentes ńıveis de calado (carga), com base nas
medidas do movimento da plataforma fornecidas pelos sensores do Sistema de Posiciona-
mento Global Diferencial (DGPS) e da Unidade de Medição Inercial (IMU). Para isso, foi
desenvolvido o sistema “Neural Motion Estimator” (NeMo). O sistema é composto por
dois módulos: um módulo de previsão de movimento composto por uma rede feed forward
(Multilayer Perceptron – MLP), que usa dados prévios dos movimentos da plataforma
para prever o movimento futuro, e um módulo classificador, que usa a diferença entre o
movimento previsto e o movimento real medido como entradas para um classificador mul-
ticlasse que indica se houve ou não uma falha, para vários grupos de cabos de ancoragem.
Os resultados do sistema NeMo mostram que ele é capaz de detectar a ocorrência de
falhas nos cabos de ancoragem, mostrando erros entre os movimentos preditos e medidos
quando houve um rompimento de cabo. Esses erros são tais que o classificador multi-
classe desenvolvido teve uma acurácia de previsão de 99% ao classificar o movimento da
plataforma.

Palavras-Chave – Rompimentos de Cabos de ancoragem, Classificação, Aprendizado de
Máquina, Redes Neurais, Plataformas o↵shore.

IV



LIST OF FIGURES

1 Two platform draft comparison . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Simulated platform motion response under two draft setting. . . . . . . . . 3

3 FPSO platform and mooring lines configuration. . . . . . . . . . . . . . . . 4

4 The six degrees of freedom motion (6DoF) of a platform in 3D plane. . . . 5

5 The six degrees of freedom (6DoF) of platform motion . . . . . . . . . . . 6

6 An illustration of multi-step prediction . . . . . . . . . . . . . . . . . . . . 11

7 Dynasim Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

8 An example of the Dynasim simulation output . . . . . . . . . . . . . . . 15

9 Diagram of Perceptron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

10 MLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

11 Decision Tree structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

12 Binary Linear Support Vector Classifier (SVC) . . . . . . . . . . . . . . . . 25

13 P50 Line groups illustrated in Dynasim interface . . . . . . . . . . . . . . . 35

14 Proposed General Architecture . . . . . . . . . . . . . . . . . . . . . . . . 36

15 Comparison of MLP and LSTM in the problem . . . . . . . . . . . . . . . 37

16 MLP Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

17 LSTM encoder-decoder architecture . . . . . . . . . . . . . . . . . . . . . . 38

18 MLP prediction for mild environmental condition with all mooring lines

intact. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

19 MLP prediction for stormy environmental condition with all mooring lines

intact. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

20 LSTM prediction for mild environmental condition with all mooring lines

intact. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

21 LSTM prediction for stormy environmental condition with all mooring lines

intact. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



VI

22 MLP prediction of FPSO-P50 motions with breakage in mooring line BL1

at time step 5000 seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

23 LSTM prediction of FPSO-P50 motion with breakage in mooring line L1

at time step 5000 seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

24 Second architecture proposed . . . . . . . . . . . . . . . . . . . . . . . . . 48

25 Comparison of di↵erent architecture performance via a Critical Di↵erence

diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

26 An illustration of an six degrees of freedom (6DoF) motion of a platform

without line breakage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

27 The six degrees of freedom (6DoF) of platform motion . . . . . . . . . . . 53

29 Error calculator module location in the NeMo system . . . . . . . . . . . . 56

30 RMSE Scatter Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

31 Mean (Mean Error (ME)) Scatter Plot . . . . . . . . . . . . . . . . . . . . 59

32 Median (Median Error (MedE)) Scatter Plot . . . . . . . . . . . . . . . . 60

33 Architecture of the Initial Classifier module. . . . . . . . . . . . . . . . . . 61

34 K-nearest Neighbour (KNN) classifier prediction on mooring line status. . . 62

35 Decision Tree (DT) classifier prediction on mooring line status. . . . . . . . 63

36 Support Vector Classifier (SVC) classification on mooring line status. . . . 63

37 Architecture of the Multi-Group Classifier module. . . . . . . . . . . . . . 65

38 Pipeline of the predictor module of NeMo . . . . . . . . . . . . . . . . . . 66

39 Data generation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

40 Histogram of the 7000 Environmental condition selected from the six clusters 68

41 Histogram of the 7000 Environmental condition selected from the six clus-

ters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

42 An example of transient motion removed from the Dynasim simulation

output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

43 Example of filtering on surge and sway signals. . . . . . . . . . . . . . . . . 73

44 Motion predictor Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



45 Illustration of prediction process . . . . . . . . . . . . . . . . . . . . . . . . 77

46 Comparing motion predictors trained on 3 and 4 drafts . . . . . . . . . . . 78

47 Box plot of surge RMSE of 300 platform motions with intact and broken

mooring lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

48 Box plot of surge Mean error of 300 platform motions with intact and

broken mooring lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

49 Box plot of surge Median error of 300 platform motions with intact and

broken mooring lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

50 Illustration of the MLP prediction on draft 8 for the environmental condi-

tion with index 6489, with intact mooring lines. . . . . . . . . . . . . . . . 82

51 Illustration of the MLP prediction on draft 12 for the environmental con-

dition with index 6489, with intact mooring lines. . . . . . . . . . . . . . . 82

52 Illustration of the MLP prediction for environmental condition 6489 . . . . 83

53 Illustration of the MLP prediction on draft 8 for the environmental condi-

tion with index 6489, with breakage in mooring line 1. . . . . . . . . . . . 84

54 Illustration of the MLP prediction on draft 12 for the environmental con-

dition with index 6489, with breakage in mooring line 1. . . . . . . . . . . 84

55 Illustration of the MLP prediction for the environmental condition with

index 6489, with breakage in mooring line 1 . . . . . . . . . . . . . . . . . 85

56 Classifier Pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

57 Min and Max average RMSE scores of platform motion surge for each draft,

with lines intact. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

58 Average RMSE surge Min and Max scores for each draft with breakage in

line 01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

59 Surge RMSE Max score for each draft with breakage. . . . . . . . . . . . . 91

VII



LIST OF TABLES

1 Environmental measurements dataset features . . . . . . . . . . . . . . . . 14

2 Platform dimension and configuration. . . . . . . . . . . . . . . . . . . . . 14

3 Confusion Matrix for two classes. . . . . . . . . . . . . . . . . . . . . . . . 26

4 Summary of ML models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 FPSO-P50 Mooring line groups. . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Training Data Composition for the MLP and LSTM Network . . . . . . . 39

7 Two environmental conditions selected . . . . . . . . . . . . . . . . . . . . 39

8 Comparison between the two predictor models. 6DoF refers to sway, surge,

heave, roll, pitch, and yaw, and 3 DoF stands for sway, surge, and yaw. . . 46

9 Parameters used for the Bayesian Optimization (BO) experiments. . . . . . 49

10 Current architecture and those resulting from optimization. HL stands for

Hidden Layer in the MLP architecture. . . . . . . . . . . . . . . . . . . . . 50

11 Fixed Hyper-parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

12 Average RMSE error of the three models tested on 1000 platform motions. 52

13 Error score comparison between models . . . . . . . . . . . . . . . . . . . . 54

14 Root Mean Square Error (RMSE) Multilayer Perceptron (MLP) Error Scores 57

15 Median and Mean MLP Error Scores . . . . . . . . . . . . . . . . . . . . . 57

16 Error score of 500 test data with intact mooring line cases. . . . . . . . . . 58

17 Error score of 500 test data with compromised mooring lines cases. . . . . 58

18 Data for classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

19 Environmental condition dataset features . . . . . . . . . . . . . . . . . . . 68

20 Example of Environmental Conditions . . . . . . . . . . . . . . . . . . . . 70

21 Environmental condition scaled between 0 and 1 . . . . . . . . . . . . . . . 70

22 Mooring line groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



23 Analyzed Environmental conditions . . . . . . . . . . . . . . . . . . . . . 80

24 RMSE of the NeMo MLP predictor error scores for test environment index

6489 on di↵erent drafts, with and without Broken Line (BL). . . . . . . . . 86

25 Mean error scores of the NeMo MLP predictor for test environment index

6489 on di↵erent drafts, with and without Broken Line (BL). . . . . . . . . 86

26 Median error scores of the NeMo MLP predictor for test environment index

6489 on di↵erent drafts, with and without Broken Line (BL). . . . . . . . . 86

27 All simulated platform motions from Dynasim. . . . . . . . . . . . . . . . . 92

28 Training data for classification . . . . . . . . . . . . . . . . . . . . . . . . . 92

29 Testing data for classification . . . . . . . . . . . . . . . . . . . . . . . . . 92

30 MLR Confusion Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

31 Error metrics of the MLR classifier . . . . . . . . . . . . . . . . . . . . . . 93

32 Count of Total Number of Misclassified Platform Motion Group . . . . . . 93

33 A sample of MLR misclassified platform motions. . . . . . . . . . . . . . . 94

34 Sample of misclassified environmental conditions measured. . . . . . . . . . 95

35 All simulated platform motions from Dynasim. . . . . . . . . . . . . . . . . 109

36 Example of training data for classification . . . . . . . . . . . . . . . . . . 110

37 Example of testing data for classification . . . . . . . . . . . . . . . . . . . 110

38 Complete Misclassified Motions from the MLR Classifier . . . . . . . . . . 111

39 Complete Misclassified Enviromental Conditions Measured . . . . . . . . . 112

IX



LIST OF ACRONYMS

3DoF Three Degree of Freedom – Surge, Sway and Yaw.

6DoF Six Degree of Freedom – Surge, Sway, Pitch, Heave, Roll and Yaw.

ANN Artificial Neural Network.

AutoML Automated Machine Learning.

BD Breakage Detection.

BO Bayesian Optimization.

BP Back-Propagation.

CNN Convolutional Neural Network.

DGPS Di↵erential Global Positioning System.

DLP Damage Location Prediction.

DT Decision Tree.

EI Expected Improvement.

FN False Negative.

FP False Positive.

FPSO Floating Production Storage and O✏oading.

GI Gini Index.

IMU Inertial Measurement Unit.

KNN K-nearest Neighbour.

LR Logistic Regression.



XI

LSTM Long Short Term Memory.

ME Mean Error.

MedE Median Error.

ML Machine Learning.

MLP Multilayer Perceptron.

MLR Multinomial Logistic Regression.

MSE Mean Squared Error.

NAS Neural Architecture Search.

NeMo Neural Motion Estimator.

NN Neural Network.

RBF Radial Basis Function.

ReLU Rectified Linear Unit.

RL Reinforcement Learning.

RMSE Root Mean Square Error.

ROV Remote Operated Vehicles.

RS Random Search.

SA Simualted Annealing.

SL Supervised Learning.

StD Standard Deviation.

SVC Support Vector Classifier.

TN True Negative.

TP True Positive.

UL Unsupervised Learning.

VRM Vessel Response Monitoring.



CONTENTS

Acknowledgement II

Abstract III

Resumo IV

List of Figures V

List of Tables VIII

List of Acronyms X

1 Introduction 1

1.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Organization of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background 10

2.1 Time Series Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Dynasim simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Neural Network Principles . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Multi-Layer Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.3 Normalizing Inputs for an NN . . . . . . . . . . . . . . . . . . . . . 18

2.3.4 Hyper-parameter Optimization . . . . . . . . . . . . . . . . . . . . 19

2.3.5 Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22



XIII

K-nearest Neighbour (KNN) classifier . . . . . . . . . . . . . . . . . 22

Decision Tree (DT) classifier . . . . . . . . . . . . . . . . . . . . . . 23

Support Vector Classifier (SVC) . . . . . . . . . . . . . . . . . . . . 24

Multinomial Logistic Regression (MLR) . . . . . . . . . . . . . . . 25

2.3.6 Evaluating classifier performance . . . . . . . . . . . . . . . . . . . 26

3 Related Work 29

4 Neural Motion Estimator (NeMo) 34

4.1 General Architecture of our Proposed System . . . . . . . . . . . . . . . . 34

4.2 Predictor Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.1 Improved Predictor Module . . . . . . . . . . . . . . . . . . . . . . 47

4.2.2 Architecture Optimization . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.3 Ablation study of input to the Network . . . . . . . . . . . . . . . . 51

4.3 Error Calculator Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.1 Scatter Plot Visualization . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Classifier Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Experiments and Results 66

5.1 Data Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1.1 Data Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1.2 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Motion Predictor Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2.1 Train and Test Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2.1.1 Error Calculation Module . . . . . . . . . . . . . . . . . . 76

5.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Line breakage classifier module . . . . . . . . . . . . . . . . . . . . . . . . 87



XIV

5.3.1 Prediction Error Exploratory Analysis . . . . . . . . . . . . . . . . 88

5.3.2 Train and Test Datasets . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 Conclusion and Future Work 96

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

References 100

Appendix A – Academic Achievements 105

Appendix B – NeMo training unit 107

B.1 MLP Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Appendix C – NeMo MLR Classifier Additional Materials 109

C.1 Complete misclassified motions from the MLR classifier . . . . . . . . . . . 111



1

1 INTRODUCTION

Floating platforms have been used over the years to safely traverse to o↵shore locations

with oil deposit for extraction and production of these deposits (MA et al., 2019). These

platforms allow for storage of extracted crude oil on-board and are kept in the desired

location using mooring lines that are attached to the platform and to the sea bed of the

location.

Mooring systems are part of the key components that provide safety to personnel

on-board the platform and they allow for the di↵erent operations conducted such as

drilling, production and o✏oading of crude oil on the platform. These structures normally

operate in deeper waters, where the need for continuous monitoring of the integrity of

the platforms’ mooring system is crucial, as system failure can result in the platform

being deviated from the desired location, which can jeopardize the personnel on-board

the platform and cause environmental pollution such as oil spillages. In the oceans, these

platforms continuously experience stress and strain caused by waves, current and wind. As

a consequence, the structural integrity of the platform and mooring lines are diminished

during the life time of these components.

Studies by Ma et al. (2013) and Fontaine et al. (2014) have shown around 45% of

mooring system failures are either single line failures or multiple line failures which can be

attributed to corrosion and fatigue. In some cases of single-line mooring failure, additional

mooring lines may be damaged due to the increased load, stress and strain experienced by

the remaining lines, as single-line failure inadvertently increases the rate of degradation

of the remaining mooring lines. Identifying mooring line damage is predominantly done

through visual inspection of the mooring lines at a scheduled time within a scheduled

time frame. However, it is di�cult to identify damage because inspection operations by a

Remote Operated Vehicles (ROV) are economically costly and also the resolution of the

images is often relatively low (AYERS; O’HEAR, 2007).

To overcome these limitations, damage detection by mooring line monitoring methods

based on sensors have been proposed in recent years. In those methods, damage is detected



2

by analyzing the responses, line tension and inclination obtained through monitoring

the mooring lines using inclinometers and load-cells (GAUTHIER; ELLETSON, 2014).

However, when sensors are attached for mooring line monitoring, the results may include

noises from the underwater environment and the frequency in which these sensors fail

makes maintenance costly, thus, lowering the economic e�ciency of the methods.

Damage detection by platform motion monitoring, instead of mooring lines, has also

been proposed. Since these methods require sensors installed on the platform only, the

monitoring results include less environmental noise and are more economical. However,

as the platform response does not significantly change in proportion to the mooring lines

damage and exhibits a very complicated trend due to the influence of the sea environment

(such as waves or winds), local damage to the mooring lines may be di�cult to detect by

platform motion monitoring.

Recent improvements in technology and increase in processing capacity of computer

systems with new techniques, algorithms, and theories feature solutions based on Machine

Learning (ML) for real-time monitoring and failure detection of mooring system, bringing

new possibilities for monitoring performed directly through the platform motion.

ML, a subset of Artificial Intelligence in which the models are built based on data by

an algorithm with no explicit instructions being provided, is a good alternative for use in

monitoring mooring systems. The availability of large amount of data measured from the

platforms sensors, motion monitoring systems and environmental measurements in recent

years with great quality can be used to train ML algorithms.

Nevertheless, Platform motions in the o↵shore with an intact mooring system and

a single mooring line damage show subtle variation in their response to environmental

measurements making it challenging to know when mooring line failure has occurred

assertively. Therefore, ML models that are useful for identifying subtle di↵erences in

intricate patterns can be implemented to detect these changes.

1.1 Problem description

The platform we studied are located o↵shore and, therefore, are subject to di↵er-

ent environmental conditions, which a↵ect their motion. Another contributing factor to

changes in platform motion is related to the draft level, which is the amount of crude oil

and ballast water stored on the platform. Figure 1 illustrates how a platform with two

draft levels displaces the surrounding water around the platform, causing it to sink deeper
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depending on the platform draft as shown in figure (1a), a platform with high load (fully

loaded), and figure (1b), a platform with empty tanks (ballasted).

Figure 1: Platform with two drafts, (a) fully loaded and (b) Ballasted. Source:(MEYER
et al., 2016)

Figure 2 shows how each extreme level of draft, 8 meters (ballasted) in blue and 21

meters (fully loaded) in orange, a↵ects the platforms’ response for the same environmental

conditions by exhibiting di↵erent motions.

Figure 2: Simulated surge motion response of the platform for two draft levels. In blue is
the ballasted surge platform motion response and in orange is the surge platform motion
response with load (fully loaded).

Bearing in mind that the mooring lines used to secure the platform have to withstand
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high tension and stress loads, breakage can occur at any time. Therefore, the problem that

we have to identify whether there was a line breakage or not also involves other factors

that influence the motion of the platform, such as the draft level, weather conditions, and

which of the lines was ruptured, for example.

In this thesis, a Floating Production Storage and O✏oading (FPSO) platform named

P50 (see figure (3a)), with 18 mooring lines attached for station-keeping and 78 risers

attached for extraction of crude oil and natural gas illustrated in figure (3b), stationed at

the Campos Basin (Bacia de Campos) of Rio de Janeiro, RJ, Brazil is used.

(a) FPSO P50 Platform. (b) P50 mooring lines & riser configuration.

Figure 3: Figure (3a) shows an FPSO P50 platform in the sea. Figure (3b) shows the
P50 mooring lines and riser configuration. The green lines are the risers connected to the
FPSO while the green lines with blue tips are the mooring lines anchored to the seabed.

The Floating Production Storage and O✏oading (FPSO) platform has sensors that

monitor its motion. In particular, Di↵erential Global Positioning System (DGPS) and an

Inertial Measurement Unit (IMU). A Global Positioning System (GPS) is a satellite-based

navigation system which is used to give location information via a network of orbiting

satellites. However, the GPS signals can be distorted by atmospheric conditions leading

to erroneous location data. Thus, leading to the development of DGPS which improves

GPS accuracy by using a network of stationary reference receivers with known positions

to compare the GPS signals received by a mobile receiver, and it then compares the GPS

signals from the reference receivers to those gotten from the mobile receiver and uses

that to determine the errors caused by atmospheric conditions. The DGPS system then

applies these corrections to the GPS signals received by the mobile receiver, resulting in

much more accurate location information.

On the hand, Inertial Measurement Unit (IMU) are devices that provide information

of a platform/ object’s motions along the Six Degree of Freedom – Surge, Sway, Pitch,

Heave, Roll and Yaw (6DoF) motions (shown in Figure 4), using accelerometers and

gyroscopes in real-time. By combining these two system; DPGS and IMU, more precise
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and accurate platform location are gotten (CHIANG et al., 2004).

The 6DoF are defined as follows:

Surge: is the longitudinal movements,

Sway: is the lateral movements,

Yaw: is the rotation about the vertical axis,

Pitch: is the rotational motion about the transverse axis,

Roll: is the rotation about the longitudinal, and

Heave: is the vertical motion,

Which are measured at a fixed vessel reference frame, in this work, the 6DoF motions are

generated using a simulator. The simulator takes into account the position of the platform

and other configurations, such as draft setting, to simulate the platform’s response to

di↵erent environmental conditions.

Figure 4: The six degrees of freedom motion (6DoF) of a platform in 3D plane.

A single mooring line breakage manifest itself in form of the platform experiencing a

change in motions. Figure 5 illustrates how the 6DoF motions are a↵ected after breakage.

As it can be seen, there are sudden modifications in the 6DoF motions after breakage at

time 5000 seconds demarcated by the red rectangle box, with transient oscillations and a

new equilibrium position, due to the broken line.

For a single line break, as shown, the motions can change only slightly on some degree

of freedom, which makes it di�cult to detect a mooring line break. As these variations in

the overall platform motions can also be attributed to other factors, such as environmental

condition and level of platform draft, it is di�cult to clearly define when there was a break

in the mooring line, requiring a more sensitive and elaborate method for the process.
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Figure 5: The six degrees of freedom (6DoF) of platform motion. The red rectangle
highlights how the motion changes before time 4000 seconds and after line breakage at
time 5000 seconds happens.

1.2 Objectives

The main objective of this work is to develop a system that can detect mooring line

failure in real time for o↵shore platforms that utilizes mooring system for station-keeping.

In particular, we aim to detect breakage of the mooring lines of FPSO P50 as early

as possible using Machine Learning (ML) models to make predictions of the platform,

monitoring the di↵erence between predicted and measured motion to detect mooring line

failure for multiple line groups with di↵erent drafts. The interest is to use only the data

provided by the platform’s DGPS and IMU sensors and its estimated draft. We also aim

for the system to not be limited to only FPSO P50 but other types of o↵shore platforms.

For example, on 09/24/2019, a Petrobras P50 Platform had three moorings broken1.

The production of the FPSO, of around 20,000 barrels of oil and 500,000 cubic meters

of natural gas daily, was immediately interrupted by Petrobras, and a state of alert was

issued. There were 178 people working on board the unit and there was the possibility

of evacuating the vessel. Fortunately, the platform remained stable and secure, anchored

by another 15 moorings and a temporary holding vessel. The repair could be carried out

quickly, however, the stoppage of production caused a great loss. Petrobras has about 40

1https://mobile.clickpetroleoegas.com.br/amarras-se-rompem-e-petrobras-paralisa-a-producao-da-
p50-na-bacia-de-campos/
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proprietary platforms installed, which encompass around 590 mooring lines. The need for

early mooring line breakage detection is critical.

Thus, the following research questions were formulated:

RQ1 Can a break in the mooring system of an o↵shore platform be detected using only

the data regarding the motion and draft of this platform?

RQ2 Is a machine learning system based on Multilayer Perceptron (MLP) neural net-

works capable of predicting the future motions of a moored platform having as

information only the previous motion and the platform draft?

RQ3 Would a classifier be able to detect which mooring group a broken line belongs to

based solely on the discrepancy between the motion predicted by the MLP and that

measured on the platform?

In this thesis we seek to answer these questions. This work aims to develop a system for

identification of failures of mooring lines on platforms because it is not only of high impact

in the o↵shore engineering industry, but also because it is complex enough to justify the

use of advanced ML techniques.

1.3 Contribution

The concept of Digital Twins for stationary oil and gas production units o↵ers many

opportunities to increase oil production and reduce risks in the operation of o↵shore

platforms. With digital twins, a virtual replica of a physical asset, such as an FPSO

platform, can be created and modeled. The behavior of the platform in real-time can

be simulated using data from sensors, equipment, and other sources. By using digital

twins, valuable insights such as the platform’s performance can be obtained, including

identifying potential equipment failures or maintenance needs. By analyzing the data

from the digital twin.

However, the availability of a large amount of historical data in real-time creates many

challenges. Within this context, ML techniques can significantly contribute to solving

problems of prediction, analysis, planning, operation, and maintenance of oil platforms.

The advantage of ML methods over traditional techniques is the scalability for complex

problems and large amounts of data because instead of programming the solutions, the

idea is to create programs that “learn” the representation of the solutions from the data
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available. Thus, the benefits of this work for the oil, natural gas, and energy sector will be

numerous, such as the reduction of operational bottlenecks and risks in decision making

due to the e↵ective use of available data, both historical and online. Other impacts

include the reduction of subjectivity in decision-making .i.e., deciding if line breakage has

occurred, better data trace-ability, and more e↵ective planning for the various operations

of the platforms.

Finally, this work provides a contribution to the field of computer engineering by

demonstrating how techniques and methodologies from this field can be utilized for the

purpose of detecting failures in mooring lines. Specifically, a neural network-based system

was developed to detect the occurrence of mooring line failure, with the system being

designed in sub-modules to enable the individual fine-tuning of each module with minimal

downtime to the entire system.

During the development of this thesis, the following articles were published:

1. Saad, A. M., Schopp, F., Barreira, R. A., Santos, I. H., Tannuri, E. A., Gomi, E.

S., & Costa, A. H. R. (2021). Using Neural Network Approaches to Detect Mooring

Line Failure. IEEE Access, 9, 27678-27695. DOI: 10.1109/ACCESS.2021.3058592

2. Saad, A. M., Schopp, F., Queiroz Filho, A. N., Cunha, R. D. S., Santos, I. H.,

Barreira, R. A., Tannuri, E. A., Gomi, E. S., & Costa, A. H. R. (2021, June).

FPSO Mooring Line Failure Detection Based on Predicted Motion. In Interna-

tional Conference on O↵shore Mechanics and Arctic Engineering (Vol. 85116, p.

V001T01A002). American Society of Mechanical Engineers. DIO:10.1115/OMAE2021-

62413

3. Suller, T. M., Gomes, E. O., Oliveira, H. B., Cotrim, L. P., Sa’ad, A. M., Santos, I.

H., Barreira, R. A., Tannuri, E. A., Gomi, E. S., & Costa, A. H. R (2021, Novem-

ber). Evaluation of Neural Architecture Search Approaches for O↵shore Platform

O↵set Prediction. In Anais do XVIII Encontro Nacional de Inteligência Artificial e

Computacional (pp. 326-337). SBC. DOI:10.5753/ENIAC.2021.18264

These published articles present the incremental steps taken in the refinement of

our proposed system for detecting mooring line failures. In Saad et al. (2021a), the de-

velopment and comparison of two Machine Learning (ML) networks: a feed-forward net-

work (Multilayer Perceptron (MLP)) and a recurrent network (Long Short-Term Memory

(LSTM)) were presented. These networks were configured to detect mooring line failure,
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based on the comparison between measured and predicted motion for platform motion

with a single draft setting of 16m.

In Saad et al. (2021b), we focused on improving the MLP network developed in

Saad et al. (2021a) by refining the dataset used for training and testing the network and

introducing a binary decision tree classifier, to further confirm the occurrence of mooring

line failure. The Multilayer Perceptron (MLP) network developed in Saad et al. (2021a)

had di�culties in predicting platform motions under stormy environmental conditions

due to the small amount of data in this situation. The methodology used in Saad et al.

(2021b) was adopted in this article where in the MLP network implemented was then

trained to estimate the platform’s future motion based on its motion’s temporal data

without failure, the di↵erence between the predicted and the measured motions was then

used as inputs to the binary decision tree classifier to classify whether or not there is a

failure in the mooring system.

Finally in Suller et al. (2021), a comparative analysis of three techniques for optimiz-

ing neural networks hyperparameters was performed, Bayesian optimization (Bayesian

Optimization (BO)), Random Search (Random Search (RS)) and Simulated Annealing

(Simualted Annealing (SA). This optimization process is called Neural Architecture Search

(Neural Architecture Search (NAS)), a sub-field of AutoML, which focuses on automating

the ML architecture design, reducing the need for manual architecture design by human

expert. Lessons learnt from each article provided useful insights, which have been incor-

porated in the development of the final version of the proposed system.

1.4 Organization of this thesis

The remainder of this thesis is organized as follows. We present the fundamentals to

methods and algorithms used in this thesis in chapter 2, Background, which covers the

foundation for understanding our work. In chapter 3, Related Work, literature review and

discussion about the articles found is presented. In chapter 4, Neural Motion Estimator

(NeMo), we introduce and describe our proposal. In chapter 5, Experiments and Results,

we explained how data was generated for training and testing of our proposed neural

network model. We also present the architecture of neural network model implemented

and results of the implemented system in this chapter. In chapter 6, Conclusion and

Future Work, we provide a conclusion of the developed system, and we close this thesis

pointing to future works.
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2 BACKGROUND

This chapter provides a summary of the basic concepts needed to understand the

problem of interest and presents the methods that will be explored in the development

of the proposal. We start by defining what time series predictions entails in section 2.1,

given this is the type of data used in this work. We then describe how platform motions

subject to di↵erent environmental conditions are generated and modelled using Dynasim,

a time-domain platform motion simulator in section 2.2. Next, in section 2.3 we provide

an introductory explanation of the concept of machine learning (ML), with a focus on

neural networks, in particular, Multi-layer Perceptron (MLP). Then, we provide a brief

introduction on hyper-parameter optimization techniques explored in this thesis, and we

conclude this chapter with an introductory explanation of the classifiers used, as well as

the metrics used to evaluate classifiers.

2.1 Time Series Prediction

Time series data is a sequence of numerical measurements hx1, ...., xti, recorded at

equal space time interval over time t. This kind of data can be obtained from vari-

ous source, such as stock exchange market, seismometer readings, and electrocardiogram

(ECG) measurements. There are two types of time series data, discrete and continuous.

Discrete time series data are obtained when data are recorded at fixed time intervals,

while continuous time series are measurements recorded continuously for a time period.

Furthermore, time series data can be either univariate or multivariate. A univariate time

series is a series with a single time-dependent observation, while a multivariate time series

has more than one time-dependent observations (BROCKWELL; DAVIS, 2002).

Time series prediction involves developing a model that uses previously recorded data

points to predict future points. There are di↵erent approaches used for time series pre-

diction such as one-step forecast and multi-step forecast. The number of previous data

points used is known as input window or sliding window, and the number of data points
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predicted is known as the horizon or forecast window (wf ). In one-step forecast, a model

M uses k+1 previous data points as the input window to make one data point prediction

xt+1,

xt+1 = M(xt, xt�1, ...., xt�k). (2.1)

In multi-step forecasting, the forecast window wf of the model M has f data points,

(xt+f , ...., xt+1) = M(xt, ...., xt�k). (2.2)

An example of multi-step prediction is shown in figure 6, where the input window

comprises of 600 previous seconds and the forecast window (wf ) is 100 seconds. In this

work, multi-step forecasting of continuous time series is employed.

Figure 6: An illustration of multi-step prediction of a FPSO-P50 surge motion. The im-
plemented model uses an input window of 600 seconds to predict 100 seconds, demarcated
in the yellow background. Each data point refers to 1 second.

However, predicting large forecast window negatively impacts the accuracy of the

model. Therefore, finding the optimal width of both the sliding window and forecast

window is important and is investigated in this work.

Time series can be stationary or non-stationary. In the stationary case, the parame-

ters of the distribution remain constant over time, i.e., all observations are sampled from

the same distribution, which does not depend on the temporal dimension. On the other

hand, non-stationary series have a more complex temporal dynamics, where the distribu-

tion from which we take the samples evolves with time (BISHOP, 2006). Dealing with
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non-stationary data is very di�cult because one must have information about how the

distribution changes over time. In this thesis we will consider that the motion series data

are stationary.

The most popular ML models were not created specifically for time series forecasting.

The great strength of ML models comes from having access to several samples of the same

phenomenon. A large number of samples are needed so that the ML model can identify,

by itself, characteristics intrinsic to the data. If the phenomenon is observed over a long

period of time and there is good quality data derived from these observations, ML models

become very attractive to be used in prediction.

2.2 Dynasim simulator

Dynasim is a time-domain numerical simulator created by the collaboration of Univer-

sidade de São Paulo1 and Petrobras2 and others (NISHIMOTO; FUCATU; MASETTI,

2002). We used the Dynasim simulator to simulate the motion of floating vessels and

platforms subjected to forces provided by the environment, mooring lines and propellers.

Figure 7 shows the Dynasim interface. The simulator allows for analyzes of the dy-

namic behavior of moored platforms subjected to wind, wave, current and swell plus

platform design specification to produce time-series data of the platforms’ 6DoF motion

– surge, sway, heave, pitch, roll and, yaw.

In this work, real environmental conditions were collected from a weather station

located in Campos Basin (Bacia de Campos) of Rio de Janeiro, Brazil from 2003 to 2006.

These environmental conditions were recorded at an interval of 3-hours, making 18, 000

distinct environmental conditions and it is used as input to the simulator. Table 1 shows

the features present in the dataset of environmental conditions.

The Dynasim model of the P50 platform with specifications presented in Table 2

is used to generate motion data through the dynamic simulation of the vessel for the

recorded environmental conditions (wave, swell, wind and current) and draft conditions.

The simulations were carried out for the P50 platform subjected to di↵erent environmental

conditions and di↵erent drafts, from 8m (ballast condition) to 21m (fully loaded condition)

– with increments of 1m.

It is also possible to configure the simulator so that there is a rupture in a specific

1
hhttp://tpn.usp.br/i

2
hhttps://petrobras.com.br/en/i
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Figure 7: Dynasim Interface.

line of the mooring system, at a specified time. The output of the simulator consists of

the 6DoF motion of the platform for each environmental condition simulated, with and

without line failure, for all the 18 mooring lines. Figure 8 presents an example of the

output of the surge motion time series generated by the simulator. The time series at the

beginning, from 0 seconds to 3600 seconds in the figure, is composed of transient motion,

which do not represent the actual motion of the platform. These occur because at time

0 seconds the simulator has not yet applied the e↵ects of the environmental conditions,

and after applying these e↵ects, it takes some time to calibrate the platform’s motion

response. In this thesis, experiments were conducted with simulated platform motion

time series excluding transient motions .

2.3 Machine Learning

Machine Learning (ML) is a subset of artificial intelligence, in which a machine

learns from data without being issued explicit instruction on how to solve a given task

(DOMINGOS, 2012). ML has been applied in various domains such as for fraud detec-

tion (CHADEGANI et al., 2013), medical diagnostic (LUNDERVOLD; LUNDERVOLD,

2019) and in the automotive sector it is used for autonomous driving (AL-QIZWINI et

al., 2017). ML can be divided into three categories: Supervised Learning (SL), Unsu-

pervised Learning (UL) and, Reinforcement Learning (RL). Supervised Learning (SL) is
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Table 1: Environmental measurements dataset features

Feature Name Unit

Date data DD/MM/YY
Hour hora HH:MM

Wave Height hs1 Meters [m]
Wave Period tp1 Seconds [s]

Wave Direction dir1 Degrees [º]
Swell Height hs2 Meters [m]
Swell Period tp2 Seconds [s]

Swell Direction dir2 Degrees [º]
Wave Total Height hstotal Meters [m]

Wind Speed vento vel Meters per Second [m/s]
Wind Direction vento dir Degrees [º]
Current Speed corr vel Meters per Second [m/s]

Current Direction corr dir Degrees [º]

Table 2: Platform dimension and configuration.

Variable Hull Dimensions

Beam (m) 54.5
Depth (m) 27.8

Number of risers 78
Number of mooring lines 18

Length overall (m) 337.4
Length between prep. (m) 320.0
Draft(ballast condition (m)) 8.0

Draft(fully loaded condition (m)) 21.0

explained because we will employ it in this thesis while more on UL and RL can be found

at (JAMES et al., 2013; DOMINGOS, 2012; SUTTON; BARTO, 2018).

Supervised Learning (SL) involves training an algorithm to be able to generate a map-

ping function that can predict output for a given input. The algorithm trains on labeled

data until it achieves a reasonable level of accuracy in making accurate predictions. SL

can be sub-divided into two categories namely: classification and regression. Supervised

classification algorithms attempt to generate a mapping function that classifies input into

categorical output based on input features, while regression algorithms attempts to gener-

ate a mapping function that predicts numeric or continuous output from input variables.

Both categories will be used in this thesis. We will use an SL regressor model to predict

the future motion of the platform, and an SL classifier model to classify whether there

was a break and which group of lines the break occurred, based on the di↵erence between

the movement predicted by the regressor and the movement measured.
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Figure 8: An example of the surge motion time series output generated by the Dynasim
simulator. The first 3600 seconds (in yellow) represents the range dropped due to simu-
lation transients.

2.3.1 Neural Network Principles

Many of the successful ML algorithms today are based on Neural Network (NN)s

implemented in di↵erent architectures. NNs are able to change their structure based on

incoming internal or external information, which allows them to learn patterns in data.

NNs are composed of models of neurons called perceptrons.

A single unit of perceptron takes in inputs x, given by hx1, x2, x3, .., xni where each

input (i) is connected to a node (j) with weights w, hw1, w2, w3, .., wni assigned to each

input respectively. The node (j) generates a weighted sum of all the inputs values plus

bias:

mj =

 
nX

i=1

wi.xi + b

!
, (2.3)

where n is the number of nodes in the input, xi is the input value in node i, wi is the

weight in the connection from i to j, b is the bias. The result of the weighted sum (mj)

is passed through an activation function h to generate an output ŷj,

ŷj = h(mj). (2.4)

The activation function h can be referred to as a gate which allows information to flow

through or not. There are di↵erent types of activation functions available. The Rectified

Linear Unit (ReLU) is a non-linear activation function commonly used to handle complex
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data due to its simplicity and e�ciency. ReLU whose formula is h(z) = max(0, z), allows

values from the weighted sum (here z = mj) greater than 0 to flow through and all values

less than 0 are clipped at 0 and propagated forward as output ŷ (GLOROT; BORDES;

BENGIO, 2011). Figure 9 presents a unit of perceptron.

Figure 9: A single unit of a perceptron, where ŷ is the output, h is the activation function,
mj is the weighted sum, b is the bias, x is the input, and w is the weight.

The perceptron learns by using the Back-Propagation (BP) algorithm which finds

the weights w combination that minimizes a loss function, that is the error di↵erence

between the perceptron output ŷ and the actual value y, i.e., the label for a given input

in the labeled dataset. BP works by iterating between three steps. The first is a forward

pass step which involves the flow of information from input to the activation function

to produce an output (Figure 9). Then, there is a loss function calculation step, where

the output of the perceptron ŷ is compared against the actual value y, given this is a

supervised learning were the actual output (or label) is known before hand in a training

set consisting of pairs hx, yi. A common performance metric used to gauge the di↵erence

between the model prediction and the actual value is the Mean Squared Error (MSE),

MSE = (ŷ � y)2.

Finally, the backward pass step occurs and the error di↵erence calculated is back

propagated to adjust the weights of the perceptron starting from the output layer back

to the input layer.

These steps are done iteratively until a stopping criteria is met, which can be either

allowing the network to iterate n number of epochs or stopping the training when the

error di↵erence between the network predictions and the true label is minimal. Epoch

refers to the number of times the network is instructed to cycle through the whole data

set.
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2.3.2 Multi-Layer Perceptron

A Multilayer Perceptron (MLP) is a feed forward neural network (FFNN ) in

which information propagates uni-directionally. These type of networks do not posses the

ability to use a feedback loop in which the outputs of the networks is cycled back into

itself. An MLP is created when multiple perceptrons are structured in layers to solve

complex problems. These layers are the input layer, one or more hidden layers, and an

output layer. Following the same principle of a unit of perceptron, information flows from

the input layer through the hidden layer(s) after which it passes to the output layer to

make a prediction. The BP algorithm is used to train MLPs. Figure 10 presents a 2 x 2

x 2 MLP with one input layer, 1 hidden layer and an output layer.

Figure 10: A Multi-layer Perceptron with two inputs, x1 and x2, one hidden layer with
two perceptrons, H1 and H2, and bias b1, and two outputs, y1 and y2 and bias b2.

Formally, consider an input vector x 2 RN and a single-hidden-layer MLP fw(x), pa-

rameterized by weights w = {w(1)
,w(2)

}, where w(1)
2 RM⇥N are the weights associated

with connections from input layer to hidden layer, and w(2)
2 RK⇥M are the weights

associated with connections from hidden layer to the output vector y 2 RK . In this thesis

the MLP model is used to make time series predictions and for this a regression model is

used. For a regression MLP with activation function h1 in the hidden layer and h2 in the

output layer, the network’s k-th output, ŷk, is given by:

ŷk = fk(x|w) = h2

⇣
w

(2)
k0 +

MX

j=1

w
(2)
kj h1

⇣
w

(1)
j0 +

NX

i=1

w
(1)
ji xi

⌘⌘
, (2.5)

where the weights w(1) = {w
(1)
ji } and w(2) = {w

(2)
kj } are shown in scalar form in eq. 2.5 in

order to explicitly illustrate the calculation of output ŷk.

As said, given a dataset D = {x(i)
,y(i)

}
ND
i=1 comprised of ND samples and with known

inputs x(i)
2 RN and outputs y(i)

2 RK , the process of training an MLP consists in
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finding the weights w that minimize a loss function L, typically the Mean Squared Error

(MSE) given by:

L(w) =
1

ND

NDX

i=1

h 1
K

KX

k=1

�
ŷ
(i)
k � fk(x

(i)
|w)
�2i

, (2.6)

where K is the number of output neurons and fk is given by Eq.(2.5). This can be done by

performing gradient descent on the loss function and updating the weights in the direction

that minimize it: w  w � ↵rL(w), where ↵ is the learning rate. The gradient of the

loss function with respect to the weights rL(w) is found by back-propagation of the error

through the network.

2.3.3 Normalizing Inputs for an NN

It is important that the network inputs have the same ranges of values. To avoid

using angles in the input quantities, it is important to project the angle of the quantities

into their x and y components so that the values have no numerical discontinuity. The

x-component is calculated by x = v · cos(�), and the y-component by y = v · sin(�), where

v is the magnitude value and � is its direction.

Since di↵erent inputs come with di↵erent value ranges it is important to normalize

the value ranges. The data are scaled so that their values are in the range between 0

and 1. If no scaling is done di↵erent characteristics gains more influence than others.

Therefore scaling distributes not only the values to a normalized range but also get rids

of possible o↵sets. Here in this Thesis, for each variable, the minimum and maximum

values are calculated and the data are then standardized by:

Xscaled =
X �Xmin

Xmax �Xmin
, (2.7)

in which Xmin and Xmax are the minimum and maximum values of the original variable

X, and Xscaled is the scaled result.

Standardization consists of subtracting an amount relative to a measure from a mea-

sure on the scale, with z-score being one of the most used standardization score:

Z =
X � µ

�
(2.8)

in which Z is the standardized result and X is the input, whose mean is µ and standard

deviation is �. The z-score transforms the original data to obtain a new distribution with

mean 0 and standard deviation 1 from the mean.
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2.3.4 Hyper-parameter Optimization

Building a neural network involves finding the right set of hyper-parameters that will

lead to the best error loss for the given data. Hyper-parameters are user specified pa-

rameters whose values are used to control the learning process and are not derived via

training. The process of fine-tuning an ML model consists in the determination of appro-

priate hyper-parameters for the desired application, resulting in faster convergence time,

higher prediction accuracy, model generalization capability and e�cient use of computa-

tional resources. These hyper-parameters are:

Finding the right number of neurons to use for the network. Having too many

neurons in a layer leads the network to over-fitting and having a small number of

neurons leads to under-fitting.

Finding the right number of layers to use. Layer composition can be either shallow

or deep. Shallow network means a small number of layers while deep network means

many hidden layers. A shallow network may or may not be adequate to get the best

error loss and a deep network can lead the network to over-fitting and the gradient

vanishing problem.

Choosing the right activation function and optimizer. Currently, the Adam op-

timizer is used in the ML community, but others may prove interesting for some

problems (KINGMA; BA, 2017). Activation functions are used to determine how

information should be propagated to the next layer, and di↵erent types may be

more suitable in some situations.

Choosing the right learning rate (↵). The learning rate is dependent on the type of

problem being solved by the NN.

Choosing the right batch size and number of epochs. Batch size is the number of

training samples to work through before the model’s internal parameters are up-

dated. Number of epochs is the number of times the entire training dataset is

passed to the network during training.

Methods used to find the right set of hyper-parameter values are usually based on

a trial and error approach where di↵erent models’ performances on a validation dataset

are compared in order to determine appropriate hyper-parameters, as they are highly

dependent on the problem being addressed. Novel methods have been developed to auto-

mate model hyper-parameter optimization, thus greatly reducing reliance on the manual,
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painstaking human experimentation required to produce high quality models (FEURER;

HUTTER, 2019). These new approaches constitute the field of Automated Machine

Learning (AutoML).

A subset of AutoML, known as Neural Architecture Search (NAS), has gained

more attention recently. In this field, automatic engineering of neural network architec-

tures are studied. NNs with architectures obtained via NAS have achieved better results

when compared to NNs whose network architecture was manually configured for problems

such as regression or classification (MÄRTENS; IZZO, 2019; ZOPH et al., 2017).

Neural Architecture Search

NAS methods are defined by three dimension: a Search space SS , which bounds the

possible architectures evaluated during the NAS process; a Search strategy, which de-

termines how the optimization algorithm explores the search space; and a Performance

estimation strategy, which defines an objective function C used to evaluate the model

performance during the search process (ELSKEN; METZEN; HUTTER, 2019).

The search space and performance estimation strategy are manually defined with the

intent of obtaining the best optimization performance for the shortest execution times,

and of ensuring models generated by this process are able to perform adequately on data

which was neither used during architecture search nor during model training.

The search strategy is generally defined by iterative algorithms that follow the same

general structure: they depend on a search history H, which is an initially empty data

structure that stores models architectures M and their performance, obtained by evalu-

ating C(M). The search process consists of a predetermined number n of iterations, also

called trials, whose high-level overview is presented in Algorithm 1.

Various iterative search strategies can be employed in NAS, two of which were studied:

Random Search and Bayesian Optimization. An overview of each algorithm follows.

Random Search. Random Search (RS) is implemented by sampling architectures (mod-

els M) randomly from SS , aiming to find the architecture which most closely reaches the

goal of the optimization process, as described in Algorithm 2. RS is most commonly used

as baseline for comparison with other methods, yet has been shown to achieve perfor-

mance similar to that of state-of-the-art NAS algorithms on some specific problems (YU

et al., 2019).
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Algorithm 1: NAS Trial
Input: search space SS , objective function C, initial architecture M0, number of

iterations n
Output: search history H

C(M0) Evaluate(M0);
H0  {hM0, C(M0)i};
for i = 1, 2, . . . , n do

Mi  Search on SS from Mi�1;
Train Mi;
C(Mi) Evaluate(Mi);
Hi  Hi�1 [ {hMi, C(Mi)i};

end

Algorithm 2: Random Search
Input: search space SS , objective function C, initial architecture M0, number of

iterations n
Output: search history H

C(M0) Evaluate(M0);
H0  {hM0, C(M0)i};
for i = 1, 2, . . . , n do

Mi  random(SS) ;
Train Mi;
C(Mi) Evaluate(Mi);
Hi  Hi�1 [ {hMi, C(Mi)i};

end

Bayesian Optimization. Bayesian Optimization (BO) consists of two key components:

a probabilistic surrogate model S of the objective function C; and a policy P , denoted

as acquisition function, for selecting new architectures based on the surrogate model. In

each trial, an evaluation of C updates the surrogate model S, allowing P to select a new

architecture M most likely to achieve the objective of the optimization for the next trial.

The general procedure is shown in Algorithm 3.

The surrogate model is used as an estimate of the objective function C, and can be

generated in a number of ways. In this work, Tree-structured Parzen Estimator (TPE)

was employed, as it is able to scale to bigger search spaces with a smaller computational

cost and has been shown to achieve better performance than other methods often em-

ployed such as Gaussian Process regression (FRAZIER, 2018). There are di↵erent choices

available for the acquisition function, the most common being Expected Improvement

(EI). EI is an iterative process were models with the best estimated performance are

selected sequentially. EI is calculated using the surrogate model, and the architecture

with the largest EI is selected for evaluation in the next trial. An in-depth of Bayesian
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Algorithm 3: Bayesian Optimization
Input: search space SS , objective function C, initial architecture M0, surrogate

model S, acquisition function P , number of iterations n
Output: search history H

C(M0) Evaluate(M0);
H0  {hM0, C(M0)i};
Initialize the surrogate model S;
for i = 1, 2, . . . , n do

Mi  arg maxM02SSP (M0
, S);

Train Mi;
C(Mi) Evaluate(Mi);
Hi  Hi�1 [ {{Mi, C(Mi)}};
S  updateSurrogate(S, {Mi, C(Mi)}});

end

Optimization can be found in (FRAZIER, 2018; BERGSTRA et al., 2011).

2.3.5 Classifiers

In ML, classification is the problem of identifying the class label to which a new input

observation belongs. A brief introduction to the di↵erent supervised classifiers used are

presented.

K-nearest Neighbour (KNN) classifier

K-nearest Neighbour (KNN) is a supervised learning algorithm used for classification

of categorical or continuous data. It functions by classifying an unknown data sample

based on known data samples group, meaning the KNN calculates the distance of an

unknown sample to all known samples. Based on the k nearest neighbours it then classifies

the unknown label into the label that the majority of the neighbours have.

The KNN classifier is an easy-to-use classifier. There are only two KNN parameters:

(1) the number of K nearest neighbours the classifier takes into account when classifying

an unknown data sample; and (2) the distance metric to use. Here, Euclidean distance

metric is used to calculate the distance,

Euclidean distance =

vuut
nX

i=1

(xi � yi)2. (2.9)
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Decision Tree (DT) classifier

Decision Tree (DT) is another type of algorithm used in supervised classification of

categorical or continuous data. The DT algorithm has a tree like structure consisting of

nodes, branches and leafs. An example of DT is illustrated in figure 11. The nodes of a

decision tree represent features or attributes of a dataset, the branches represent decision

rules made at the node and each leaf represents the outcome of the nodes where there

is no further decision that can be made. The leaf is also known as the terminal node

which means the data points present in this leaf node belong to a group of similar values

(MITCHELL, 1997).

Root node

Leaf Decision node

Decision node

Leaf Leaf Leaf

Leaf

Figure 11: Decision Tree structure.

When building a tree the algorithm aims at splitting a data set based on some attribute

or feature. This splitting decision is made in every node, starting from the top which is

called the root node, where all the data points of a data set provided is found. An

attribute or feature is chosen and a binary question is asked. Based on the response the

data set is split into two groups.

This process of binary questioning is then recursively carried out until a subset where

all data points present have the same values or labels is reached – this subset then becomes

a leaf node. To build a tree, splitting decisions are made in the decision node. In order

to find the best attribute or feature on which a splitting decision for dividing the data set

is made, di↵erent approaches can be used. Di↵erent selection measures, such as entropy-

based information gain, are used to find the best attribute (MITCHELL, 1997).

The Gini Index (GI) is another way used to decide on which attribute to use for

getting the best splitting of the data set that leads to the correct classification of a data
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point. It is used to determine the homogeneity of a splitting decision, given by:

GI(D) = 1�
cX

1=i

P (ki|D)2 (2.10)

and it measures the degree of probability of a data point being wrongly assigned to a group

when it is randomly selected. If a split is pure or of similar values, then the probability of

the majority class becomes one and the probability of remaining classes is zero, and thus

the GI is zero. However, for equally represented classes with probability P (ki|D) = 1
c ,

the GI then has the value c�1
c . The goal is to have a low GI value, which means that the

data points are correctly classified (ZAKI; JR, 2019).

To build a tree, DT algorithm such as Iterative Dichotomiser 3 algorithm (ID3), C4.5

(successor of ID3) and Classification and Regression Tree algorithm (CART) are employed.

ID3 uses a top-down, greedy search method to split and build trees. The ID3 employs

entropy and information gain when deciding on which attribute or feature to split a data

set and it is the core algorithm most decision tree are built using. The Classification and

Regression Tree algorithm (CART) uses GI as attribute selection metric for building a

tree(LOH, 2011).

Support Vector Classifier (SVC)

A support vector classifier is a discriminative classifier defined by a separation hyper-

plane. Given the labeled input data, i.e., the correct label for each observation, the

training algorithm, in a SL approach, generates an optimal hyper-plane that separates

observations (inputs) in categories based on its features. In the two-dimensional space,

this hyper-plane is a line that separates each class, where each class can be on one side.

Given a known training set T of n observations, each one represented by p features

and y labels. In a binary linear Support Vector Classifier (SVC) each observation belongs

to one of two classes, either �1 or 1,

T = {(xi, yi), ..., (xn, yn)},with xi 2 Rp
, and yi 2 {�1, 1},

and the goal of the algorithm is to find a hyper-plane that separates the observation

correctly. In this case the hyper-plane can be described as: w · xT
i + b = 0, with w

meaning weight and b meaning bias. The observation that falls to the right side of the

hyper-plane has label 1:

w · xT
i + b > 0, if yi = 1,
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and the observation that falls to the left side of the hyper-plane has label �1:

w · xT
i + b < 0, if yi = �1.

However, since there can be more than one hyper-plane that separates the data, SVC

algorithm finds the support vector for each hyper-plane. Support vectors are the closest

observations to a hyper-plane from both classes. SVC computes the distance between

each hyper-plane and its respective support vector, known as margin. The hyper-plane

with the maximum margin is chosen as the optimal hyper-plane.

Figure 12 presents a binary linear SVC , illustrating training observation separated

into classes. However, in cases where the problem being solved is non-linear, a kernel

function can be implemented to transform the problem into a linear one by implicitly

mapping the inputs into high-dimensional feature spaces (JAMES et al., 2013).

y

x

w
·
x
T +

b =
0

w
·
x
T +

b >
0

w
·
x
T +

b <
0

M
a
rg
in

Figure 12: Binary linear Support Vector Classifier. There are two classes of training
observations, presented in black and gray. The hyper-plane is presented as a solid line
separating the classes. Observations on the dotted lines (unfilled circles) are the support
vectors.

Multinomial Logistic Regression (MLR)

An MLR classifier is an extension that generalizes Logistic Regression (LR) to multi-

class problems – more than three or more class. LR are models that have a certain fixed

number of parameters that depend on the number of input features, and they output

categorical prediction, for example if an email is a spam or not, this means that our data

has two kinds of observations (class 1 and class 2 observations). The LR model fits an S
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shape curve, called Sigmoid function,

�(x) =
1

1� e�x
(2.11)

to our observations. The sigmoid function (�) squashes the weighted sum of values of the

input features x into the range between 0 and 1, which in turn gives the probability of an

observation falling into one of the two classes. Observations with values closer to 1 are

predicted to belong to class 1 and observations with values close to 0 belong to class 2

(MOUNT; ZUMEL, 2019).

The MLR classifier works by creating multiple LR models on K number of classes

using the one-vs-all approach. In this approach, the classifier trains a single classifier per

class, with the samples of that class as positive sample and all other samples as negatives.

The assumption is that there are K independent classification problems, meaning K

classes, and for each class we learn a logistic (probability) model. The key assumption is

that each of these problems is independent of the other K�1 logistic regression problems.

Therefore, for each sample we either classify this as class Yi or not. This is repeated for

all classes.

2.3.6 Evaluating classifier performance

A confusion matrix is a table used to access the performance of a classification

model on a set of test dataset in which the true value (i.e., the actual class or group or

label) is known. This is generally used in supervised learning problem. Each column

of the matrix table represents the instances in an actual group while the rows represent

the instances of the predicted class. Figure 3 presents a binary classification confusion

matrix. The confusion matrix is not limited to binary class classification – it is also used

for multi-class classification. Here binary class classification is shown (ZAKI; JR, 2019).

Actual Group

True (t1) False (t2) Total

Predicted Group
True (t1) True Positive (TP ) False Positive (FP ) TP + FP

False (t2) False Negative (FN) True Negative (TN) FN + TN

Total TP + FN FP + TN N

Table 3: Confusion Matrix for two classes.

The confusion matrix puts data into classes. There are four groups in the table which

together are used to measure the accuracy of a classifier. These four groups are:
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1. True Positive (TP): number of data correctly predicted by the classifier as positive,

TP = |{xi|ŷi = yi = t1}|.

2. True Negative (TN): number of data correctly predicted by the classifier as negative,

TN = |{xi|ŷi = yi = t2}|.

3. False Positive (FP): number of data predicted by the classifier to be positive, which

in reality belongs to the negative group,

FP = |{xi|ŷi = t1 and yi = t2}.

4. False Negative (FN): number of data predicted by the classifier to be negative, which

in reality belongs to the positive group,

FN = |{xi|ŷi = t2 and yi = t1}|.

By combining these groups, accuracy, precision or recall of a classifier can be measured.

The accuracy metric in ML can be misleading when used alone. For example in cases

where there is miss-balance of data, where one class has more instances of data than other

class. To prevent this issue, metrics such as recall and precision are used to measure the

model performance.

Accuracy: is the portion of correctly predicted test results of the total dataset:

Accuracy =
(TP + TN)

(TP + FP + FN + TN)
⇤ 100%.

Precision: is the fraction of relevant instances among the reclaimed instances. It is used

to gauge how accurate the classification is, i.e., out of those predicted positive, how

many of them are actual positive:

Precision =
TP

TP + FP
.

Recall: is the fraction of relevant instances that have been reclaimed over the total

number of instances. It calculates how many of the Actual Positives instances the

classification result classified, it belongs to the True positive class:

Recall =
TP

TP + FN
.
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F1 Score: is a weighted combination of Recall and Precision:

F1 score = 2⇥
Precision⇥Recall

Precision+Recall
=

2TP

2TP + FP + FN
.
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3 RELATED WORK

Researchers in diverse domains are increasingly adopting ML techniques, and this

is also true for the o↵shore industry. We present di↵erent approaches adopted in the

literature toward detection of mooring line breakage using use neural networks as their

primary ML technique.

A summary of the articles published in the last 12 years retrieved focusing on FPSO

with query

“(machine AND learning OR neural AND network OR artificial) AND (vessel

OR platform OR fpso OR floating production storage and o✏oading ) AND (

mooring OR line AND breakage OR Failure OR damage AND detection)”

on the title, abstract and keywords fields of Scopus1, Google Scholar2, and Onepetro3

database are presented in Table 4. The table details the paper year, inputs used, type

of ML network and application target, which is the method of mooring line monitoring

carried out, for each paper, respectively.

Mooring system monitoring using NNs in the o↵shore industry are implemented for

various application target within the context of failure detection such as monitoring and

predicting mooring line tension (GUMLEY; HENRY; POTTS, 2016), mooring line fa-

tigue prediction (SIDARTA et al., 2017), complete mooring line breakage detection (BD)

(SIDARTA; O’SULLIVAN; LIM, 2018), mooring line damage location prediction (DLP)

where segments of a mooring line, i.e., top, middle or bottom location, are predicted (LEE

et al., 2021) and vessel response movements (VRM) monitoring, where di↵erences between

the 6DoF movements of a platform readings before and after breakage are monitored.

From the list of articles cited, it can be seen there is no standard set of ML network

model, input variables and application target used for detecting mooring line failure. This

1
hhttps://www.scopus.com/i

2
hhttps://scholar.google.com/i

3
hhttps://onepetro.org/i
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Table 4: Summary of ML models

Paper (year) ML Model Model Input Model Output Target
Multi Draft No. of Mooring
Detection Lines

(MAZAHERI et
al., 2003)

MLP

Wave height and direction, wind
velocity and
direction, and current velocity and
direction

The surge, sway and total
FPSO’s o↵set

VRM No Not provided

(GUMLEY;
HENRY; POTTS,
2016)

MLP
Wave height, period, direction,
wind velocity,
current velocity and vessel draft

The mean o↵set of a vessel,
maximum o↵set and, signifi-
cant o↵set

VRM No 1

(JAMALKIA;
ETTEFAGH;
MOJTAHEDI,
2016)

MLP
Global Positioning System (GPS)
& FPSO draft

Classify mooring line status of
3 mooring lines, i.e., damaged
or intact

BD No 3

(SIDARTA et al.,
2017)

MLP 6DoF movements of the FPSO
Predict mooring tension of
four mooring lines of the
FPSO

BD No 4

(PRISLIN;
MAROJU, 2017)

MLP
Meta-ocean measurements &
6DoF movements

Classification-based output,
indicating whether or not
there was a line break, and
regression-based output, es-
timating which mooring line
is broken from nine mooring
line

BD & DLP No 12

(SIDARTA;
O’SULLIVAN;
LIM, 2018)

MLP
Global Positioning System (GPS)
& FPSO draft

Classify mooring line status of
3 mooring lines, i.e., damaged
or intact

BD No 3

(SIRÉTA;
ZHANG, 2018)

MLP & LSTM
Surge, yaw, pitch, roll, heave
movements of the FPSO

Sway movement BD No 21

(JAISWAL;
RUSKIN, 2019)

CNN

Statistics of the horizontal posi-
tion parameters of the vessel and
the root mean square values of the
6DoF accelerations

Classify mooring line status,
i.e., damaged or intact

BD No 21

(WANG et al.,
2020)

RBF

O↵set of the surge and heave
movements, pitch movements of
the FPSO & mooring line tension
readings at the fairleads

Damage severity of mooring
lines

DLP No 12

(CHUNG et al.,
2020)

MLP
Mean and standard deviation of
meta-ocean measurements & 6DoF
of the FPSO

Predict location where moor-
ing line damage occurred, i.e.,
top, middle or bottom loca-
tion

DLP No 8

(QIAO et al.,
2021)

LSTM 6DoF movements of the FPSO
Predict top tension and dip of
mooring lines

DLP No 9

(LEE et al., 2021) MLP
6DoF movements & wind, wave,
and current measurements

Predict location where moor-
ing line damage occurred for
12 mooring lines, i.e., top,
middle or bottom location

DLP No 12

Our proposal MLP
6DoF movements of the P50-
FPSO

Classify mooring line status,
i.e., damaged or intact

BD Yes 18

Note: Where meta-ocean measurements are mentioned we refer to wave height, peak wave period, and direction, swell
height, swell peak period, and direction, wind velocity, direction, current velocity and, direction. 6Dof refers to surge, sway,
yaw, pitch, heave, and roll movement of the platform obtained from sensors. Vessel Response Monitoring (VRM), Breakage
Detection (BD) and Damage Location Prediction (DLP).

is because ML models require di↵erent inputs variables and architecture design depending

on the target application and they are often obtained via trial and error or hyperparameter

optimization (see section 2.3.4). This is illustrated by di↵erent input variables and ML

models used by the di↵erent authors. However, common attributes can be seen depending

on the type of detection considered, and one can also observe the prevalence of the MLP

model used in many solutions.

For models where vessel response monitoring is the target, a combination of meta-

ocean measurements of the wave, wind and current variables plus vessel specifications,

i.e., draft or vessel dimension, are used as input to their respective model. Here in an

abstract level, the aim is to train a neural network to learn the response of a platform to

a set of incident meta-ocean measurements, to predict vessel response such as o↵set and
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6DoF movements, where the di↵erence between the predicted variables and the true vari-

able measurements are used to indicate the possibility of mooring system failure. Works

by Mazaheri et al. (2003) and Gumley, Henry and Potts (2016) showed the successful

application of ML models for vessel response monitoring. In the former, a 1 hidden layer

MLP network was used to predict the surge, sway and total o↵set of an FPSO, using 6

meta-ocean measurements, wave height and direction, wind velocity and direction, and

current velocity and direction as input to the MLP network. The authors highlighted the

MLP developed could calculate the responses of an FPSO for 1000 sets of meta-ocean

measurements in less than 1 minute, whereas when using hydrodynamic modelling sim-

ulator such as SAMRES, an in-house simulator, it takes up to 80 days to model on the

same computer. This is beneficial to mooring system design as engineers will be able

to model di↵erent mooring line setups for di↵erent meta-ocean conditions. In the latter

(GUMLEY; HENRY; POTTS, 2016), wave height, period and direction, wind velocity,

current velocity, and vessel draft were used as input to a 1 hidden layer MLP network to

output the mean o↵set, maximum o↵set, and significant o↵set of a vessel.

For models where breakage detection or mooring line damage location prediction is the

target application, neural networks are trained to learn the di↵erence between movements

without and with breakage. Most networks trained use a combination of 6DoF readings,

vessel specification and meta-ocean measurements as input to their models, unlike ship

monitoring where meta-ocean measurements and ship specification are the main data used

as input.

In the mooring line breakage detection approach, the FPSO’s 6DoF movements sub-

ject to meta-ocean conditions such as calm, mild, and stormy are monitored. (SIDARTA

et al., 2017; JAISWAL; RUSKIN, 2019; KWON et al., 2020; SIDARTA et al., 2021; LEE

et al., 2021) all used a combination of the 6Dof movements and meta-ocean measurements

as input to their system. For example, Sidarta, O’Sullivan and Lim (2018) trained two

types of ML models: a feed forward network (MLP) and a recurrent network (Long Short

Term-Memory – LSTM), to predict the sway movements of an FPSO using previous move-

ments of surge, heave, roll, pitch, and yaw movement of a simulated FPSO. Both models

were able to forecast the sway movements of the FPSO and also detect mooring line

breakage by showing a strong change in the direction of sway movements after breakage.

Prislin and Maroju (2017) proposed a novel concept for mooring system integrity moni-

toring by training an MLP, which they referred to as Position Response Learning System

(PRLS). Inputs to the system were the 6DoF movements of a simulated vessel, and the

system provided two forms of outputs: classification-based output, indicating whether or
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not there was a line break, and regression-based output, estimating which mooring line is

broken from nine mooring line groups. Sidarta et al. (2017) showed that using just Global

Positioning System (GPS) readings from an FPSO and the draft of the FPSO as input

to an MLP with two hidden layers was enough for the network to predict the status of 20

mooring lines, and the network accurately detected that 3 of the 20 mooring lines were

broken, in di↵erent sea states.

Another approach used in mooring system integrity monitoring is damage location

detection, that is early identification of segments of individual mooring lines where

damage is suspected to have occurred i.e. top, middle or bottom. In this approach, the

focus is on monitoring the mooring line sti↵ness, not the complete mooring line breakage,

as the reduction in sti↵ness can be attributed to early signs of failure and, based on

which line and section of the mooring line reduction occurs, the vessel’s response changes

accordingly. Successful implementation of this approach can be seen in the works of

(CHUNG et al., 2020; JAMALKIA; ETTEFAGH; MOJTAHEDI, 2016; QIAO et al.,

2021; LEE et al., 2021; KWON et al., 2020; UDDIN et al., 2012; WANG et al., 2020).

Chung et al. (2020) in their paper used an MLP model with 5 hidden layers to detect

mooring line damage and indicate which part of the mooring line is damaged, i.e., top,

middle or bottom. Inputs to the MLP were the mean and standard deviation of wind and

wave environmental measurements and the floater’s 6DoF responses. The output of the

network consisted of binary classification of the mooring line status, that is, compromised

or not compromised and it also indicated which part of the mooring line was damaged.

The developed MLP was trained and tested on simulated data generated by CHARM3D

software from Texas A&M University. During training the MLP was trained on data

without a compromised mooring system and tested with data containing damaged mooring

lines. Random noise was added when data was being generated in order to replicate real-

life weather conditions. The MLP model developed was able to detect when a mooring

line damage occurred.

In conclusion, mooring system monitoring using Artificial Neural Network (ANN)’s

as shown can be conducted using di↵erent approaches, however, given we are interested

in detecting complete mooring line breakage and not detecting location where breakage

along the mooring line has occurred and, we only have FPSO-P50 6DoF movements data,

we are thus limited to adopting the breakage detection approach.

The work by Siréta and Zhang (2018) in which they developed two ML models; an

MLP and a LSTM model was found to closely resemble the problem we intend to solve,

therefore, we drew inspiration from their work, by combining the auto correlation and
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cross correlation approach they implemented of the 6DoF movements of their platform

where only RMS error was used to identify the occurrence of mooring line breakage. We

on the other hand, use two more errors, making three errors; RMSE, mean and median

to complement and a�rm the occurrence of mooring line failure.

In their implementation for both the cross correlation and auto correlation approaches

the LSTM model used a time lag of 1 second of input to the network to predict the

subsequent second while the time lag window for the MLP model for both approaches

had two windows 10 and 100 respectively, it was found using a longer window for the

MLP decreases it performance overall.

Our proposed network in comparison has a long prediction window. Their works also

focused on identifying mooring line breakage of a platform with a single draft and also

in all the articles cited none attempted mooring failure identification for platforms with

multiple drafts, while our developed network identifies mooring line breakage of a platform

with multiple platform drafts.

In the literature thus far creation of training and test data of the ML models in all the

papers mentioned were done using hydrodynamic simulators such CHARM3D software

from Texas A&M University (CHUNG et al., 2020), AQWA and OrcaFlex4 numerical

simulator software (QIAO et al., 2021) among others, and we also used Dynasim simulator

to generate the 6DoF motion of our platform. Note so far in the literature space, no real

life platform motion data have been used to develop ML models.

Our main contribution is that our developed ML network uses only the 6DoF move-

ments of the FPSO-P50 platform as input, to indicate the occurrence or not of failure in

the mooring line as output, for di↵erent draft cases in the FPSO. Our proposal is detailed

in the next chapter.
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4 NEURAL MOTION ESTIMATOR (NEMO)

This chapter details our proposal for implementing a solution towards mooring failure

detection using Machine learning algorithms. We split this chapter into sections represent-

ing the di↵erent sub-modules of the proposed system in detail, describing the incremental

steps carried out for developing each sub-module.

Section 4.1, provides the general overview of our proposed system named Neural

Motion Estimator (NeMo). Section 4.2 presents the evolution of the first sub-module

named predictor module of the NEMO system, starting from the implementation and

evaluation of two ML models and, ending in section 4.2.1, where we chose the final ML

model to represent the predictor module. Next, in section 4.2.2, we implemented Neural

Architecture Search (NAS) methods to investigate and optimize the network architecture

composition of developed predictor ML network, followed by an ablation study evaluating

the minimum number of variables of the 6DoF motions required to develop a network

capable of detecting mooring line failure in section 4.2.3. Section 4.3, describes the second

module of the NEMO system, named Error Calculator module, which is responsible for

producing di↵erent error metrics used to determine the condition of a platform motion.

Section 4.4 details the evolution of the final submodule of the NEMO system, named

Classifier Module, from the implementation and evaluation of di↵erent binary classifier

algorithms and ends with the steps necessary to extend the classifier module to handle

multiclass classification.

4.1 General Architecture of our Proposed System

Our proposed ML based system, named Neural Motion Estimator (NeMo), has

as a specified prerequisite that its inputs use only information derived from the time

series measurements of the Di↵erential Global Positioning System (DGPS) and Inertial

Measurement Unit (IMU) sensors, and from the estimation of the platform draft level to

detect mooring line failure. The platform model used is FPSO P50 with 14 di↵erent draft
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levels (draft level 2 {8, 9, . . . , 21} meters), whose dimensions are described in Table 2 (see

Chapter 2). The P50 platform has a mooring system with 18 lines, arranged in 4 groups,

as illustrated in Figure 13 and described in Table 5.

Figure 13: P50 Line groups illustrated in Dynasim interface. Group 1 (red), group 2
(blue), group 3 (green) and group 4 (yellow). The green lines with blue tips are the
mooring lines anchoring the P50 platform and the platform is positioned in the middle.

Table 5: FPSO-P50 Mooring line groups.

Mooring Line Groups

Group 1 L1, L2, L3, L4, L5
Group 2 L6, L7, L8, L9
Group 3 L10, L11, L12, L13
Group 4 L14, L15, L16, L17, L18

NeMo’s general architecture is composed of three modules that work together: a

predictor module, an error calculator, and a classifier model, as illustrated in Figure 14.

A combination of Di↵erential Global Positioning System (DGPS) and IMU measure-

ments (surge, sway, heave, roll, pitch, and yaw), making the 6DoF of the platform motion,

is used as inputs to the predictor module whose outputs are used as input to the error
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Figure 14: Proposed general architecture: a predictor module predicts the motion of a
platform without failure based on its previous motion; the di↵erence between the pre-
dicted value and the one measured by the sensors is then classified by a classifier module,
indicating whether there was a failure or not.

calculator module which compares the error di↵erence between the predictor modules’

prediction and the motions of the platform and stores the scores which are then used as

inputs to the classifier module of NeMo system to provide status of the mooring lines

of the platform.

A hypothesis is made that, depending on the status of the mooring line, a significant

di↵erence between the predictor modules’ prediction and the value measured by the DGPS

and IMU platform sensor will exits, signifying a change in the platform line status.

Our proposed solution breaks the mooring line detection problem into smaller com-

ponents, allowing for independent solutions and fine tuning of the sub-modules to be

possible. In the following sections the three modules of the NeMo system are described.

4.2 Predictor Module

In this section, we explain the incremental steps conducted in developing the predictor

module of the NeMo system.

We initially developed and compared the e�cacy of two machine learning models:

a feed-forward network–(Multilayer Perceptron (MLP)) and a recurrent neural network

specifically a Long Short-Term Memory (LSTM) network, to access whether machine

learning model were capable of mooring line failure detection (SAAD et al., 2021a). These

networks were configured to use the previous 6DoF motions of FPSO-P50 platform to

forecast the motion of the platform with a single draft.

The di↵erence between the networks’ prediction and the motions of the platform are

then used to determine the status of the mooring system, hypothesising the di↵erence
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between the predictions of the network and the actual motions of the platform can be

used as an indicator of the mooring system being compromised.

Figure 15 presents the first iteration of the general architecture of the mooring line

failure detection system. These two ML networks used function di↵erently, as the MLP

Platform´s motion -
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FPSO-P50 model in
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Figure 15: In a first step, the MLP and LSTM models were evaluated and compared.

network is a feed forward model that processes information unidirectional and previously

seen information is not retained within the network; on the other hand, the LSTM network

has the ability to retain previously seen information and uses it to adjust the weights and

biases of the network thus making it a suitable network for time series data prediction.

Di↵erent architectures composition, input window length, forecast window length,

number of the 6DoF platform motion variables to use as input and forecast for both the

MLP and LSTM network were evaluated and the best architecture composition found is

presented here.

For the MLP network, the architecture consisting of an input layer which receives 600

seconds of the 6DoF motions of the platform as input, making 3600 data points, with 3

fully connected hidden layers consisting of 7200, 3600 and 1800 neurons respectively in

each layer and an output layer that predicts 100 seconds of 3DoF– surge, sway and yaw

motions was the best architecture found and it is illustrated in Figure 16.

For the LSTM network, an encoder-decoder network with 200 LSTM units at the

encoder and decoder layers with a repeat vector layer between the encoder and decoder

layers and two fully connected feed forward layers was the best LSTM architecture found.

The LSTM network used as input 1000 previous seconds of the 3DoF motions and it

predicted 400 seconds of the same 3DoF motions. Figure 17 illustrates the architecture

of the LSTM network .

Data Generation: To training and test the two ML networks, 18, 000 real environmental

conditions measured in the Campos Basin, in Rio de Janeiro, Brazil, were collected plus
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Figure 16: MLP Architecture

Figure 17: LSTM encoder-decoder architecture

FPSO-P50 specifications with a single draft load of 16 meters was used as input to Dy-

nasim simulator to generate the 6DoF motions of FPSO-P50, for motions comprising of all

the 18 mooring lines anchored to the platform intact and motions with a single mooring

line broken. Using the simulator, each environmental condition measured was simulated

for 3 hours, for all the combination i.e., motions with broken and intact mooring lines.

The general data creation pipeline is described in the next chapter.

From these simulated movements, three distinct subsets were used for training, val-

idating and testing both networks. Table 6 details parameters used. The two networks

were trained on platform motion without mooring line breakage and they are used to

predict the motions of platform without and with mooring line breakage.

Results: To compare and access the prediction accuracy of these networks, they were eval-

uated on several platform motions with diverse environmental conditions. For illustration

purpose, two simulated platform motions with di↵erent environmental conditions, which
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Table 6: Training Data Composition for the MLP and LSTM Network

Network Training data No. Validation data No. Test data No. Training epochs No.

MLP 5000 intact motions 1000 intact motions Remaining platform motions 3000
LSTM 1000 intact motions 200 intact motions Remaining platform motions 1500

we classified to be mild and stormy based on the wave height, are presented in Table 7.

These results were used to evaluate the prediction accuracy of both networks under the

same environmental conditions.

Prediction under intact mooring line conditions: The prediction performance of the

MLP and LSTM networks were evaluated under two di↵erent conditions whose respective

conditions are shown in Table 7.

Table 7: Two environmental conditions selected

Sea Condition Index
hs1 tp1 dir1 hs2 tp2 dir2 wind vel wind dir current vel current dir

(meters) (seconds) (deg) (meters) (seconds) (deg) (m/s) (deg) (m/s) (deg)

Mild 600 1.68 8.48 47.2 1.33 5.4 191.9 8.21 195.3 0.2 288.84
Stormy 8818 2.84 17.04 192.2 0.0 0.0 0.0 7.77 208.6 0.45 216.93

We started by accessing the performance of these networks on mild and stormy en-

vironmental conditions where the mooring system of the platform is intact. Figure 18

shows the MLPs’ prediction for platform motions without mooring line failure for sce-

nario with mild environmental conditions, and Figure 19 shows the prediction for stormy

environmental conditions. Figures 20 and 21 show the LSTMs’ prediction for platform

motions without mooring line failure for scenarios with mild and stormy environmental

conditions, respectively.

Prediction under compromised mooring line conditions: The prediction performance

of the two ML networks for platform motion with mild environmental conditions with a

broken mooring line are presented in Figures 22 and 23 for the MLP and LSTM network,

respectively.

Discussion: As can be seen in Figure 18 and 19, the MLPs’ prediction for the two scenar-

ios, mild and stormy are presented, showing the network could predict the oscillation of

the simulated platform in mild environmental conditions (see Figure 18a), but for stormy

environmental condition, it found it di�cult to predict the rapid motions of the platform

as shown in Figure 19a while in Figure 20 and 21, the LSTMs’ prediction for the same

two scenarios, mild and stormy are presented, showing the network could also predict the

oscillation of the simulated platform in mild environmental conditions (see Figure 20a)
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(a) Illustration of the MLP predictor of a platform motion under a mild scenario with all
mooring lines intact.

(b) A zoomed illustration of the MLP predictor of a platform motion under a mild scenario
with all mooring lines intact.

Figure 18: MLP prediction for mild environmental condition with all mooring lines intact.
The simulated data is in blue and the predicted in orange. Top: surge, middle: sway, and
bottom: yaw motions.
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(a) Illustration of the MLP predictor of a platform motion under a stormy scenario with
all mooring lines intact.

(b) A zoomed illustration of the MLP predictor of a platform motion under a stormy
scenario with all mooring lines intact.

Figure 19: MLP prediction for stormy environmental condition with all mooring lines
intact. The simulated data is in blue and the predicted in orange. Top: surge, middle:
sway, and bottom: yaw motions.
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(a) Illustration of the LSTM predictor of a platform motion under a mild scenario with all
mooring lines intact.

(b) A zoomed illustration of the LSTM predictor of a platform motion under a mild scenario
with all mooring lines intact.

Figure 20: Long Short Term Memory (LSTM) prediction for mild environmental condition
with all mooring lines intact. The simulated data is in blue and the predicted in green.
Top: surge, middle: sway, and bottom: yaw motions.
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(a) Illustration of the LSTM predictor of a platform motion under a stormy scenario with all
mooring lines intact.

(b) A zoomed illustration of the LSTM predictor of a platform motion under a stormy scenario
with all mooring lines intact.

Figure 21: LSTM prediction for stormy environmental condition with all mooring lines
intact. The simulated data is in blue and the predicted in green. Top: surge, middle:
sway, and bottom: yaw motions.
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but for a stormy environmental condition, it also found it di�cult to predict the rapid

motions of the platform as shown in Figure 21a.

Furthermore, comparing the prediction performance between these two networks shows

the LSTM network performed a little better than the MLP network. This is illustrated by

how close the LSTM network was able to predict the platforms’ 3DoF oscillations for mild

environmental conditions as shown in Figure 20b while for the MLP network there are

prediction windows where the network prediction does not closely match the simulation

motions as shown in Figure 18b.

Figure 22: Illustration of breakage in mooring line L1 at time step 5000 seconds. The
orange line is the MLPs’ prediction and the blue line is the simulated platform motion.
Top: surge, middle: sway, and bottom: yaw motions of the platform.
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Figure 23: Illustration of breakage in mooring line L1 at time step 5000 seconds. The
green line is the LSTM prediction and the blue line is the simulated platform motion.
Top: surge, middle: sway, and bottom: yaw motions of the platform.
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These networks were also evaluated on scenarios where the simulated motions had a

single broken mooring line. For illustration purpose, motions with mild environmental

condition were used. Here the goal was to access whether the implemented networks were

able to detect platform motions with compromised mooring system.

Figure 22 for the MLP model and Figure 23 for the LSTM model show the networks

prediction performance on platform motion with mooring line failure in line 1 (L1) of the

mooring system. It can be seen that after mooring line breakage happens at time step

5000 seconds, an o↵set in the platform position occurs, where both models were unable

to predict the motions of the platform henceforth, indicating the occurrence of mooring

line breakage.

Comparison between MLP and LSTM Predictor Modules: The results of the de-

veloped and trained MLP and LSTM networks showed that both networks were able to

detect the occurrence of mooring line failure for all test scenarios presented to the models.

Despite demonstrating a somewhat low accuracy in the prediction of movement when un-

der a stormy sea state, it is still observed that they were able to detect cases with failure

in these conditions. Table 8 shows a comparison between the two trained predictors.

Table 8: Comparison between the two predictor models. 6DoF refers to sway, surge,
heave, roll, pitch, and yaw, and 3 DoF stands for sway, surge, and yaw.

Characteristic MLP LSTM

Input variables 6DoF 3 DoF
Input 600 seconds 1000 seconds

Output 100 seconds 400 seconds
Output variables 3 DoF 3 DoF

Training units 55,000 units 10,000 units
Validation units 11,000 units 2,000 units

Trainable parameters 58,872,900 485,227
Training time short (⇡ 5h) long (⇡ 24h)

Execution time (one prediction) negligible (real time)

It can be seen that the LSTM model is able to handle a larger input (i.e., more time

steps at the input) than the MLP network, and it was also able to forecast a longer output.

The forecast time for the LSTM network (400 seconds) was also four times larger than the

100 second forecast time for the MLP network. Therefore, the LSTM model can be used

for longer platform motion forecasts than the MLP model. The LSTM network also used

fewer platform motion variables as inputs (3 horizontal platform motion variables) than

the MLP network, which used surge, sway, yaw, roll, pitch and heave as input. However,

they both predicted the same three platform motion features (surge, sway and yaw). As
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the LSTM training process is slower than the MLP, the number of training units was

significantly lower than the MLP training units without a↵ecting the performance of the

LSTM in the execution phase. The LSTM model performed better in all cases when

compared to the MLP model. Both models are equally quick to predict once they are

trained. Although the LSTM network was better than the MLP network in all test cases,

one of the disadvantage of using this network was the long training time in contrast to

MLP network. This can greatly impact the real application, as several changes can occur,

such as changes in sensors or in the platform mooring system.

Furthermore, as shown in Figure 23 the LSTM network has a tendency to associate

the mooring line breakage as an artifact after which it begins to learn to predict movement

sometime after the breakage, absorbing the change. On the other hand, the MLP network

cannot recover after the failure, being unable to predict the platform movements unless the

failure is repaired. Thus, the MLP shows a clearer di↵erence between platform movement

with and without a compromised mooring system.

Hence, the MLP network was the preferred ML model to be use and to be further

refined. The MLP model used all the 6DoF motion of the platform as input, it had a

shorter training window which allows for faster evaluation and tuning of the network and

finally the di↵erence between the MLP prediction accuracy and that of the LSTM network

was negligible.

4.2.1 Improved Predictor Module

Due to the fact that both investigated networks (MLP and LSTM) found it di�cult

to accurately predict the simulated platform movements under sea conditions that were

classified as stormy, an investigation was carried out into the number of sea conditions

with stormy sea conditions. It was noted that of the 18, 000 environmental conditions

measured, only 100 were in the stormy sea category, prompting a review of the data to

be used to develop the predictor module.

The revision conducted comprised of grouping the entire 18, 000 environmental con-

ditions into clusters and sampling equal number of environmental conditions, according

to their severity embracing calm to stormy conditions. In this way, the database was

balanced between the possible categories, both in training and test data. More on the

revision of the data is discussed in chapter 5. Nevertheless, using the new dataset the

predictor module was retrained.
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In the project phase described in this section, the MLP network was retrained with

the now balanced data and new tests were performed. A binary classifier was also added

to the architecture that indicates whether or not there was a break in a line based on the

di↵erence between the predicted and measured motions, as shown in Figure 24.
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Figure 24: Second architecture proposed: mooring line failure identification is based on
the prediction of FPSO-P50 platform motions

The MLP network hyper-parameters such as number of layers, number of neurons,

activation functions used, were all kept the same like that used in the first proposed MLP

architecture configured in section 4.2.

Results of the revision implemented showed the data refinement done improved the

prediction accuracy of the MLP network and the binary classifiers were able to classify

platform motions into the group it belong to accurately on test data (SAAD et al., 2021b).

More on the classification performance is provided in section 4.4.

In the next section, network architecture optimization is investigated.

4.2.2 Architecture Optimization

In order to determine if the MLP architecture used in the first version of NeMo (SAAD

et al., 2021b) was optimal, Neural Architecture Search (NAS) methods were employed in

order to optimize the number of neurons in each of the three hidden layers of the proposed

network.

Given the dependence on a good quality surrogate model to act as an objective func-

tion estimate, the model evaluation hyper-parameters can be especially relevant in the

execution of Bayesian Optimization (BO). Due to the lack of literature on the optimal

configuration for such hyper-parameters, three configurations were evaluated regarding

the amount of data available and the number of training epochs during the optimization,

as detailed in Table 9.

The following hyper-parameters were kept constant: inputs to the MLP were 600s

of the 6DoF movements of the FPSO-P50 platform and outputs were 100s of the 3DoF
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Table 9: Parameters used for the Bayesian Optimization (BO) experiments.

Experiment Data used Training epochs

BO1 40% 1600
BO2 80% 1600
BO3 40% 5000

motions; for each of the 3 hidden layer, a maximum of 9000 neurons and a minimum of

100 neurons, were set with a step size of 100 neurons for each trial (e.g 100, 200,....,9000);

batch size of 64, and Mean Squared Error (MSE) was used as the loss function.

Data preparation for NAS: Simulated platform motions of FPSO-P50 with draft 16m,

sampled from the clusterization step (described before and detailed in section 5.1.1) was

used to conducted the NAS experiments. The simulated motions is comprised of 7000

P50s 6DoF movements, the first 3600 seconds of each simulated motion were removed

(transients) and a third order Butterworth low-pass filter (BUTTERWORTH, 1930) with

a cuto↵ frequency of 0.02Hz was applied to the remaining 7400s time-series motion, which

were then split into windows of 700 seconds for each environmental condition simulated

(details in section 5.1.2). The windows generated were randomly shu✏ed to form the

dataset used for training and testing of the ML network.

NAS Experiments: We started the NAS optimization using the Random Search (RS)

algorithm. RS has a policy of random choice of models and does not guarantee that it

will arrive at an optimal model. Despite this, the literature reports good results, often

comparable to those of state-of-the-art algorithms. Therefore, RS was used as a baseline

to evaluate the model e�ciency. However, this approach was considered time consuming

to converge, managing to evaluate only a small number of architectures.

BO was then implemented to explore newer architectures during trials. The use of a

surrogate model by BO accelerates the search process in the hyperparameter space, thus

converging to optimal regions of the search space faster than RS. In BO, neural network

architectures are iteratively chosen in trials to maximize the Expected Improvement (EI)

of the objective function which, in our case, is the Average Cross-Validation MSE. The

implementation and default parameters of both algorithms provided by the Optuna library

were used (AKIBA et al., 2019).

NAS Optimization Result:

The models that presented the smallest error (i.e., smallest di↵erence between the
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expected outputs and those predicted by the model) were trained using 80% of the data

and 5000 epochs and evaluated on the holdout test set. The optimized, as well as the

current, architectures are detailed in Table 10.

Table 10: Current architecture and those resulting from optimization. HL stands for
Hidden Layer in the MLP architecture.

Model Neurons per HL

1 2 3

Current 7200 3600 1800
RS 6100 2300 1800
BO1 9000 0300 8500
BO2 8700 1000 5500
BO3 8500 0500 6800

The performances of the architectures were compared and a Wilcoxon signed-rank

test (REY; NEUHÄUSER, 2011) – a nonparametric statistical test which compares two

paired groups – was used to verify the statistical significance of the di↵erences between

architecture error distributions. Test results are presented in Figure 25 via a Critical

Di↵erence (CD) diagram (FAWAZ et al., 2019a) of the holdout test MSE of each model.

The Current model is represented here as Base. In the CD diagram, models with statisti-

cally similar MSE distributions are connected by a horizontal line (which is not present in

Figure 25), and those with better performance (i.e. lower MSE) present a higher statistic.

Figure 25: Comparison of di↵erent architecture performance via a Critical Di↵erence
diagram.

Overall, no models presented statistically equivalent performances, and, contrary to

expectations, the optimization process did not find an architecture with smaller error

than the current one. Furthermore, even though the execution of BO2, using 80% of

the data, reached the second smallest error, the remaining executions BO1 and BO3

resulted in statistically worse models than the one found by RS, and no architecture had

performance comparable to that of the current one (Base in figure). Thus, the manually

determined architecture developed was validated.
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4.2.3 Ablation study of input to the Network

In this section, we conducted an ablation study to examine the impact of input to the

network. Ablation studies in ML involve disabling or removing individual components

of a model to evaluate their impact on the model’s overall performance. The goal of

ablation study is to better understand how individual components of the model a↵ect its

performance, which can inform improvements by removing unnecessary components or

adding new ones (MEYES et al., 2019).

Therefore, in this study the goal was to determine the minimum number of platform

motion variables required and the time required to train the network to detect line break-

age. Additionally, we evaluated whether a network trained with fixed yaw motions at 210�

while allowing normal motion of the remaining platform degrees of freedom can identify

mooring line rupture.

In ML, a trade o↵ between model accuracy and training time is always present. This

requires a compromise to be made so that a model is trained just enough to solve the

problem at the desired accuracy.

In this study, draft of 16m without mooring line breakage was selected based on feed-

back from experts (Petrobras personnel) that indicated, the FPSO-P50 platform normally

stays with draft between 14m to 16m. Thus, draft of 16m was used for this study.

Three MLP networks were trained and tested on the same number of data. For

training, 3000 random environmental conditions and for validation 1500 di↵erent envi-

ronmental conditions were used. 1000 environmental conditions were used as test data.

The network hyper-parameters such as number of layers, batch size, number of epochs for

training were kept the same (see Table 11), with the only di↵erence being the number of

platform motion variables fed to the input layer of the networks.

Table 11: Fixed Hyper-parameters

Setting Number

Training Dataset 3000
Validation Dataset 1500

Test Dataset 1000
Number of Layers 5

Batch size 32
Epochs 2000

The three models trained are:
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• Model A which uses all 6DoF motions as inputs to the model to predict the hori-

zontal motions – surge, sway and yaw of the platform,

• Model B had only the horizontal motions of the platform as inputs and it predicted

the same motions and,

• Model C uses surge, sway and yaw, the latter being fixed to 210�, as inputs to

predict horizontal movements.

The average Root Mean Square Error (RMSE) error of the models and training time

are presented in Table 12.

Table 12: Average RMSE error of the three models tested on 1000 platform motions.

Models Average RMSE Error Input Neurons Training Time

Model A 1,21E+16 3,600 1 day 18 hours and 53 minutes
Model B 1,06E+16 1,800 13 hours and 11 minutes
Model C 1,18E+16 1,800 5 hours and 47 minutes

Note: Experiments were perform on a desktop station with 32GB RAM and GTX 1080 GPU card
running Ubuntu 20.04.

The result shows Model B which used only the Three Degree of Freedom – Surge,

Sway and Yaw (3DoF) had a lower average error score. This is counter intuitive to result

expected. We expected Model A which uses 6DoF motions to have a lower error, as

the network has the complete platform motion to utilize. It can be hypothesised that the

heave, pitch and roll motions were negatively impacting the learning ability of the model.

As they are related to the vertical motions of the platform, they can be considered noises

at the input of the model, negatively impacting not only the interpretation of the model,

but also unnecessarily increasing its complexity (by having more inputs, the model has

many more weights to learn).

In Figure 26, the 6DoF movements of a sample test case without any mooring line

breakage are depicted. The heave, pitch, and roll motions can be observed to oscillate

rapidly, which makes it challenging for the network to learn e↵ectively. On the other

hand, Figure 27 demonstrates that even in the presence of mooring line breakage, it is

di�cult to precisely identify the moment when the breakage occurs in the heave, pitch,

and roll motions. However, for the surge, sway, and yaw motions, it is apparent that the

breakage happens at approximately 5000 seconds.

Model C also showed that, even with yaw motion constant, it was able to generalize

to unseen data but the average error was higher than Model B with a small margin,
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Figure 26: An illustration of an six degrees of freedom (6DoF) motion of a platform
without line breakage.

Figure 27: The six degrees of freedom (6DoF) of platform motion. The red rectangle
highlights how the motion changes before time 4000 seconds and after line breakage at
time 5000 seconds happens.

which is understandable because in reality it was only using to 2Dof motion – surge and

sway.

For training time, Model A had the longest training time. This can be attributed



54

to the model having more parameters to learn than the other models with less inputs to

the network.

Thus it can be concluded that using only the 3DoF horizontal motion as input is

su�cient for detecting line breakage and the training time is not too expensive when

compared to model A.

Figure 28 shows the mooring failure detection ability of the models, in figure 28a,

Model B– which used only the 3DoF for input and predicts the same motion is shown

and in figure 28b, Model C–which uses the surge, sway and a fixed yaw at 210� as inputs

to predict the horizontal movements is also shown. Since the 3 models were all predicting

the same horizontal motion, model A prediction was not included.

As it can be seen, both models were able to detect when mooring line failure occurs

by showing an o↵set between the models’ prediction and the actual simulated platform

motion for the same environmental condition. Although they were able to detect mooring

line rupture, the error score for the same platform motion presented in Table 13 shows

Model C had a higher error score values when compare to Model B.

Table 13: Error score comparison between model B with a normal yaw and model C with
a fixed yaw

Error score
Model B (Yaw Normal) Model C (Yaw Constant)

RMSE Mean Median RMSE Mean Median

Surge 5.618 -5.289 -5.495 7.177 -6.537 -6.335
Sway 4.285 -4.163 4.158 3.064 -2.870 -2.852
Yaw 0.00821 0.00795 0.0085 0.0034 0.0034 0.0033

The next step will be to extend the functionality of the prediction module to handle

mooring line fault identification for platform motions with various draft levels. The in-

terest here is to train a single MLP model that is capable of detecting the mooring line

break for all possible draft levels. Thus, the need to train individual networks for each

draft level would be eliminated, reducing the computational cost and time associated with

training each network.

4.3 Error Calculator Module

After the ML model is trained, it is used to predict platform motion based on the

previous motion. Here the idea is to compare the error score generated between the

predicted motions with the simulated ones, measuring the disparity between them. Figure
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(a) Model B breakage detection. The orange line is the model B prediction and the blue line is
the simulated platform motion.

(b) Model C breakage detection. The orange line is the model C prediction and the blue line is
the simulated platform motion.

Figure 28: Illustration of breakage in mooring line L1 at time step 5000 seconds, demar-
cated with the red vertical line. The orange line is the models’ prediction and the blue line
is the simulated platform motion. Top: surge, middle: sway, and bottom: yaw motions
of the platform
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29 shows where the Error Calculator module fits in the architecture of the NeMo system.

Assuming that a mooring line failure leads to a irregular motion, the disparity be-

tween prediction and simulation can then be used to identify mooring line failures. To

improve the reliability of these error scores, the calculation is based on multiple predic-

tions. Additionally di↵erent error scores are calculated to lower the influence of outliers

and inaccurate conditions.

Using the error calculator module, error scores RMSE, Mean Error (ME) and Median

Error (MedE) are calculated for each simulated platform motion and are then used to

discerning the status of the mooring lines of the platform.

Platform´s motion -
 DGPS and IMU 

sensors
FPSO-P50 model in

Dynasim

Intact mooring 
lines

Compromised
mooring lines

Binary
Classifier   

Error 
Calculator
module  

Predictor module xt+

xt+Δxt-  ~xt+

Figure 29: Error calculator module location in the NeMo system highlighted in green.

The error scores presented here are based on the result gotten from the second version

of the MLP module discussed in section 4.2.1. The trained network was validated on

di↵erent platform motions with di↵erent mooring line configurations based on a single

draft setting.

Table 14 presents the RMSE error scores for test sample with six di↵erent configura-

tions, listed below:

1. Test sample with mild environmental condition with intact mooring lines.

2. Test sample with stormy environmental condition with intact mooring lines.

3. Test sample with mild environmental condition with line 1 broken.

4. Test sample with mild environmental condition with line 9 broken.

5. Test sample with mild environmental condition with line 12 broken.

6. Test sample with mild environmental condition with line 18 broken.

Table 15 details the ME and MedE error scores of the same aforementioned test

sample cases.
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Table 14: RMSE MLP Error Scores

RMSE Surge Sway Yaw

Mild Sea State 0.257 1.656 5.483 e-04
Stormy Sea State 0.748 0.579 2.066 e-04

Failure L1, Mild Sea State 6.061 6.289 3.594 e-03
Failure L9, Mild Sea State 5.761 10.038 4.594 e-03
Failure L12, Mild Sea State 7.756 5.802 4.523 e-03
Failure L18, Mild Sea State 10.425 1.780 3.241 e-03

Table 15: Median and Mean MLP Error Scores

Case
Median Error Mean Error

Surge Sway Yaw Surge Sway Yaw

Mild Sea State 0.240 -0.982 -2.445 e-04 0.232 -0.878 -2.058 e-04
Stormy Sea State -0.438 -0.555 -1.255 e-04 -0.472 -0.546 -1.288 e-04

Failure L1, Mild Sea State -5.296 -6.086 3.097 e-03 -5.415 -6.225 3.143 e-03
Failure L9, Mild Sea State 5.478 -9.869 -4.486 e-03 5.766 -9.913 -4.827 e-03
Failure L12, Mild Sea State 7.430 5.398 4.265 e-0 7.430 5.609 4.512 e-03
Failure L18, Mild Sea State. -10.026 -1.010 -3.007 e-03 -10.019 -08.416 -3.102 e-03

As can be seen in Table 14 and Table 15, the error scores for motions with intact

mooring line setup, that is mild and stormy case, are one order of magnitude smaller

than motions with broken mooring line. This disparity between error scores confirms the

breakage has occurs and can be detected.

Also, the mean and median error scores, Table 15 reveals the error score signs, i.e.,

positive or negative, changes depending on which mooring line is broken, highlighting they

could be used to determine which line of the platform mooring system was compromised.

Further tests were carried out to investigate the spread of error scores between plat-

form motions with intact mooring line configuration and compromised mooring system

which can used as a threshold for considering the occurrence of mooring line failure. For

this test 500 di↵erent platform motions were sampled and the test samples used to rep-

resent cases with broken mooring line were based on platform motions with breakage in

line 1. Table 16 shows the Standard Deviation (StD) and Mean (ME) of the surge, sway

and yaw motions of these platform with intact mooring lines.

Table 17 details the StD and ME of the surge, sway and yaw motion of 500 platform

motions with one mooring line breakage and it reveals the error score spread is small,

indicating a good chance of detection of mooring line breakage.

Comparing the two Tables 16 and 17, we can see that the error scores for motions
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Table 16: Error score of 500 test data with intact mooring line cases.

Error score
RMSE Mean Median

Mean StD Mean StD Mean StD
Surge 0.715 0.769 0.119 0.972 0.119 0.972
Sway 0.454 0.316 -0.107 0.413 -0.107 0.414
Yaw 6.2183e-4 4.506e-4 1.023e-4 3.291e-4 1.023e-4 3.291e-4

Table 17: Error score of 500 test data with compromised mooring lines cases.

Error score
RMSE Mean Median

Mean StD Mean StD Mean StD
Surge 8,935 1,604 -8,848 1,656 -8,848 1,656
Sway 5,958 0,649 -5,599 0,667 -5,599 0,667
Yaw 1.050e-2 3.704e-4 3.704e-4 6.290e-4 9.596e-3 6.289e-4

with mooring line breakages were 10 times higher than error scores for motions with

intact mooring lines. Hence, a stark contrast is evident amongst platform motions with

and without a compromised mooring system.

4.3.1 Scatter Plot Visualization

Following the computation of all error scores for all simulated environmental condition

with all the di↵erent mooring line configurations, the results are presented in a 3D scatter

plot. Each axis of the graph belongs to one of the platform motions: surge, sway and

yaw.

Using the RMSE error scores of 500 test environmental conditions with and without

a compromised mooring system, a 3D scatter plot is presented in Figure 30, illustrating

how distinct the error scores of these motions without mooring failure and with mooring

line are. Given RMSE depends on the quadratic di↵erence between the conditions, it

is impossible to assess the signs of changes when a line fails. However, clear division

is observed between platform motion with and without a compromised mooring system

using the error metric in the plot.

Figure 31 presents the mean (ME) error score scatter plot of 500 test environmental

conditions with and without a compromised mooring system. Here it can be seen there are

five groups in the plot which corresponds to which mooring line is broken. The plot reveals

that the use of multiclass classification in the error score ME can allow the identification

of which mooring line is compromised, since ME provides the error signals that solve the
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Figure 30: RMSE error score of platform motions; surge, sway and yaw for 500 test
environmental conditions. Red dots correspond to intact lines and blue dots to broken
lines.

problem encountered using only the RMSE error score.

Figure 31: Mean (ME) error score of platform motions surge (x), sway (y) and yaw (z)
for 500 test environmental conditions. Red dots represent non-breaking lines, dots circled
in yellow are motions with a break on line 1, circled in green are motions with a break
on line 9, circled in blue are motions with a break on line 12, and circled in black are
motions with a break on line 18.

Figure 32 presents the median (MedE) error score scatter plot of 500 test environ-

mental conditions with and without a compromised mooring system. Here it can also be
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seen that there are five groups in the plot which corresponds to which mooring line is

broken. Red dots represent no breaks and blue dots are breakages. The plot also reveals

using the MedE error score, multi-class classification can be done as the error scores are

distinct enough, allowing for identification of which mooring line is compromised.

Figure 32: Median (MedE) error score of platform motions; surge, sway and yaw for 500
test environmental conditions.

In conclusion, the scatter plots for RMSE error in Figure 30, and the Mean and

Median errors in Figures 31 and 32, respectively illustrate the clear separation that exists

between the platform motions with all the mooring lines intact and the platform motions

that have a failure on the mooring line. As the RMSE error depends on the quadratic

di↵erence between the conditions, it is impossible to assess the signs of changes when a

line fails. This issue no longer occurs with mean and median errors. There is also a clear

separation between the four groups of mooring lines of the platform used, indicating that

there is a possibility to identify which group the failure belongs to.

However, as these errors are based on the platform with a single draft configuration,

further investigation should be done for the case where multiple drafts exist.
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4.4 Classifier Module

Classification is the problem of identifying the class label to which a new input ob-

servation belongs. In this thesis, the final component of the NeMo system is a supervised

classifier module. This module uses the three error scores, RMSE, mean and median com-

puted by the error score calculator module as input to classify the status of the platform

mooring system. The initial implemented version of this module was a binary classifier

that classifies platform motions into two groups, as “failure” and “no-failure”. Di↵er-

ent classifiers were implemented and compared to find the most capable binary classifier.

Figure 33 presents the general architecture of the first implemented classifier module.

Figure 33: The input and output format of the classifier module used to classify mooring
line status using the di↵erent error scores calculated by the error score calculator module

The three ML classifier implemented were a K-nearest Neighbour (KNN) classifier,

Decision Tree (DT) classifier and, a Support Vector Classifier (SVC) (see Chapter 2 for

details). These classifiers were trained and tested on error scores of platform motions

without and with mooring line failure, under di↵erent simulated environmental conditions

and mooring line configurations for platform FPSO-P50 with a single draft setting (16

meters). The total number of training and test data used are detailed in Table 18.

Table 18: Data for classification

Line Number of training data Number of testing data Status

No Failure 2000 5000 no failure
Failure L1 2000 5000 failure
Failure L5 2000 5000 failure
Failure L6 2000 5000 failure
Failure L9 2000 5000 failure
Failure L10 2000 5000 failure
Failure L12 2000 5000 failure
Failure L15 2000 5000 failure
Failure L18 2000 5000 failure

Total number of platform motions 18000 45000

These classifiers were trained on 2, 000 platform motions without mooring line failure

and on another 16, 000 platform motions with mooring line failure, making 18, 000 di↵erent
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platform motions. For testing the classifiers were test on 45, 000 platform motions. Results

of the trained classifiers are as follows:

K-nearest Neighbour (KNN) classifier: The first binary classifier implemented was

a K-nearest Neighbour (KNN) classifier, which used K = 100 nearest neighbours to

determine the group in which a platform motion belongs to: “failure ” or “ no failure ”

group. The euclidean distance metric was the distance metric for the KNN. Figure 34

presents the result of the trained KNN classifier on 40, 000 platform motions with mooring

line failure into the group “Failure” while for the “No-Failure” group, out of 5, 000 motions,

it misclassified 106 motions into the “Failure” group. The prediction accuracy of the KNN

classifier was 0.9976, however since the accuracy metric is not always a good indicator of

the performance of a classifier, the recall, F1-score and precision score were also calculated.

The recall score of the KNN was 1, precision score was 0.9788 and F1-score was 0.9893.

Figure 34: K-nearest Neighbour (KNN) classifier prediction on mooring line status.

Decision Tree (DT) classifier: The second classifier implemented was a DT classifier.

The classifier was configured to use the gini index measure for attribute selection metric

and the classifier used the Classification and Regression Tree algorithm (CART) approach

for classifying the motions of the platform. The DT classifier was trained on 18, 000

platform motion and tested on 40, 000 platform motions with mooring line failure where

it correctly classified all the motions into the group “Failure” while for the “No-Failure”

group, out of 5, 000 platform motions, it misclassified 6 motions into the “Failure” group

as shown in Figure 35. The prediction accuracy of the DT classifier was 0.9999, the recall

score was 1, precision score was 0.9988 and F1-score was 0.9994.
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Figure 35: Decision Tree (DT) classifier prediction on mooring line status.

Support Vector Classifier (SVC): The third classifier implemented was a SVC clas-

sifier. The SVC classifier implemented was also trained on 18, 000 platform motions to

assign platform motions into two groups: Failure or No-Failure group. Result of the

trained SVC is presented in Figure 36 and it shows that the classifier correctly inferred

the group to which the 40, 000 platform motions with anchor line failure belonged, whereas

for the 5, 000 motions of the “No-Failure” group, it incorrectly classified 131 motions in

the group “Failure”. The prediction accuracy of the SVC classifier was 0.9971, the recall

score was 1, precision score was 0.9738 and F1-score was 0.9867.

Figure 36: Support Vector Classifier (SVC) classification on mooring line status.



64

The three binary classifiers implemented in the initial phase of the classifier module

were able to assign the group to which platform motions belong to accurately with low

misclassification rate. Platform motions without failure were discovered to be misclassified

in all cases; nevertheless, it is important to note that false-negative classification did not

occur in all of the classifiers. This is very important because, if an anchor line collapse

does occur, despite the classifier’s prediction that nothing has happened, the results can

be disastrous both for the structural integrity of the platform and for the safety of the

user.

A comparison between the three binary classifier designed and implemented showed

the DT classifier had the lowest misclassification rate, followed by the KNN classifier and,

lastly the SVC classifier.

The next step is extending the classifier module functionality to handle multi-class

classification. In this phase the objectives are :

• To implement a classifier capable of classifying the status of platform motions into

five groups: No break, Failure Group 1, Failure Group 2, Failure Group 3 and

Failure Group 4 as illustrated in Figure 37.

• To implement a classifier capable of providing the probabilities for each possible line

status.

• Implement a classifier capable of handling di↵erent levels of drafts of a platform

without the need to train several classifiers for each of the possible drafts.

In this way, more information will be made available to assist in decision making and

scheduling the physical inspection of the mooring cables, giving more safety to the floating

platforms. In the next section, experiments and results of our proposed system NeMo are

presented.
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Figure 37: The input and output format of the multi-class classifier module used to classify
mooring line status using the di↵erent error scores calculated by the error score calculator
module.
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5 EXPERIMENTS AND RESULTS

This chapter is split into three sections representing the di↵erent parts necessary for

implementing the proposed system (NeMo): firstly, in Section 5.1, we describe the data

generation and engineering process for NeMo. Secondly, in Section 5.2, the predictor

module of the NeMo system is discussed – we present the preparation steps done for

the simulated motions for training and evaluating of the predictor module; and then the

training and test dataset used in developing the predictor module are provided; and finally,

we detail experiments and results obtained. Figure 38 presents the phases executed for

the predictor modules.

Figure 38: Pipeline of the predictor module of NeMo.

Finally, in Section 5.3, the classifier module of NeMo is discussed — we start with a

prediction error analysis ( Section 5.3.1), followed by detailing the training and testing

dataset composition in Section 5.3.2, the result of the implemented classifier is provided

in Section 5.3.3 and finally, Section 5.3.4 concludes indicating topics for future research

for the module.

5.1 Data Engineering

The data used in this work are simulated motion data which are described in the

next sections, starting with the generation of simulated data, then describing how the

data is prepared and divided making it adequate to be understood by the ML model

implemented.
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5.1.1 Data Simulation

In this work, the Dynasim simulator was given environmental conditions, specifica-

tions of P50-FPSO and other parameters such as draft, breaking time and line to be

broken to generate times-series motions of the 6DoF motions of platform under the vari-

ous environmental conditions. The general pipeline for this phase of data preparation is

shown in Figure 39.

Figure 39: Generation of training and test data: Initially real data of environmental
conditions are analyzed and sampled, feeding the simulator that then generates motion
data for the specified platform.

Real Environmental Conditions: Real environmental condition readings were collected

from a weather station located in Campos Basin (Bacia de Campos) of Rio de

Janeiro, Brazil from 2003 to 2006. These environmental conditions were recorded

at an interval of 3-hours, making 18, 000 distinct environmental conditions. The

features of the environmental conditions recorded are described in Table 19.

In order to ensure that the dataset contained an equal proportion of each possible

environmental condition severity (e.g., calm or stormy), the recorded environmental

conditions were pre-processed as described below.

Environmental Condition Clustering: The aforementioned 18, 000 recorded environ-

mental conditions were then grouped into clusters, according to their severity, ap-

plying a K-means clustering algorithm (MACQUEEN, 1967). Silhouette scoring

(ROUSSEEUW, 1987) was used to assess the quality of clusters created by the K-

means algorithm, and define the best number of clusters – here, six distinct clusters

– in terms of how similar the clustered samples were and the distances between the

clusters, in which 1, 167 di↵erent environmental conditions were randomly sampled

from these six clusters, making 7, 000 conditions. Figures 40 and 41 presents the dis-

tribution of the 7, 000 randomly sampled environmental conditions from the 18, 000

environmental conditions.
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Table 19: Environmental condition dataset features

Feature Name Unit

Date data DD/MM/YY
Hour hora HH:MM

Wave Height hs1 Meters [m]
Wave Period tp1 Seconds [s]

Wave Direction dir1 Degrees [º]
Swell Height hs2 Meters [m]
Swell Period tp2 Seconds [s]

Swell Direction dir2 Degrees [º]
Wave Total Height hstotal Meters [m]

Wind Speed vento vel Meters per Second [m/s]
Wind Direction vento dir Degrees [º]
Current Speed corr vel Meters per Second [m/s]

Current Direction corr dir Degrees [º]

(a) Current Direction Distribution (b) Current Velocity Distribution

(c) Swell Direction Distribution (d) Swell Height Distribution

Figure 40: Histogram distribution of the 7, 000 randomly sampled environmental condi-
tions from the 18, 000 environmental conditions after clustering, for the following variables:
current direction (Fig. a) and velocity (Fig. b), as well as swell direction (Fig. c) and
height (Fig.d).
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(a) Swell Period Distribution (b) Wave Period Distribution

(c) Wave Direction Distribution (d) Wave Height Distribution

(e) Wind Direction Distribution (f) Wind Velocity Distribution

Figure 41: Histogram distribution of the 7, 000 randomly sampled environmental condi-
tions from the 18, 000 environmental conditions after clustering, for the following variables:
swell period (Fig. a), wave period (Fig. b), direction (Fig. c), and height (Fig. d), as
well as wind direction (Fig. e) and velocity (Fig. f).

Note: the zero values of each measurement were replaced with the mean.

Environmental Condition Preprocessing: A sample from the 7000 environmental

conditions is shown in Table 20, which shows wave, swell, wind and current. Wave
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and swell are characterized by their height, period, and direction, while wind and

current are characterized by their speed and direction.

Table 20: Example of Environmental Conditions

Current Current Wind Wind Wave Wave Wave Swell Swell Swell
Date Time

Velocity Direction Velocity Direction Height Period Direction Height Period Direction

0.18 321.17 6.90 87.20 1.73 11.51 179.80 1.11 5.05 97.40 4/ 8/2006 09:00:00
0.48 228.11 5.01 120.60 2.00 9.63 187.50 0.58 3.77 133.20 25/ 8/2004 06:00:00
0.37 216.58 3.90 60.50 2.07 15.99 129.60 0.36 3.30 66.00 10/ 6/2007 09:00:00
0.27 163.09 9.67 20.40 2.34 13.07 191.30 1.34 5.98 39.30 18/ 1/2007 03:00:00
0.26 216.56 6.30 107.40 2.72 14.40 177.10 1.00 4.56 112.00 2/ 5/2008 15:00:00
0.35 219.37 5.80 64.20 2.09 10.44 175.50 0.73 4.51 74.80 2/11/2008 12:00:00
0.43 197.07 9.36 44.0 1.44 5.44 54.30 0.42 6.14 136.40 26/11/2004 21:00:00

The angles that indicate velocity directions have been projected onto their x and y

components, as described in Section 2.3.3. For the wave and the swell, their angles

are multiplied by the height.

All conditions were normalized (see Section 2.3.3) before the simulation. The result

can be seen in Table 21.

Table 21: Environmental condition scaled between 0 and 1

Wave Period Swell Period Wave Height x Wave Height y Swell Height x Swell Height y Wind x Wind y Current x Current y

0.19 0.16 0.53 0.62 0.42 0.46 0.40 0.41 0.44 0.56
0.22 0.24 0.59 0.43 0.47 0.29 0.30 0.52 0.56 0.54
0.22 0.34 0.34 0.36 0.72 0.56 0.43 0.81 0.42 0.52
0.26 0.40 0.64 0.43 0.36 0.62 0.51 0.86 0.41 0.53
0.28 0.44 0.20 0.53 0.71 0.49 0.89 0.58 0.51 0.62
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.20 0.36 0.21 0.53 0.57 0.58 0.91 0.65 0.79 0.58
0.21 0.34 0.40 0.24 0.38 0.53 0.89 0.58 0.74 0.35
0.21 0.00 0.52 0.25 0.52 0.48 0.31 0.29 0.55 0.23

Simulation Cases: The simulator Dynasim takes as input the 7000 sampled environ-

mental conditions resulting from the K-means clustering and the platform speci-

fication and draft setting to produce simulated platform motion data under these

conditions. The platform specification and draft settings are shown in Table 2. Using

the Dynasim simulator, platform motions with and without mooring line breakage

for platform with drafts ranging from 8m to 21m (14 drafts) were generated. For

motions with line breakage, one of its specified mooring line was broken at time step

5000 seconds during the simulation.

Mooring Line Breakage: The P50-FPSO model used by the Dynasim has 18 mooring

lines attached to it. These 18 mooring lines were divided into 4 groups (see Figure

13) and one line from each group was broken in the simulations (see Table 22).
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Table 22: Mooring line groups. Lines in bold were broken during simulation

Line Groups

Group 1 L1, L2, L3, L4, L5
Group 2 L6, L7, L8, L9
Group 3 L10, L11, L12, L13
Group 4 L14, L15, L16, L17, L18

5.1.2 Data Preparation

The output of Dynasim simulations consist of motion times series for each of the

6DoF of the platform – surge, sway yaw, roll, heave and pitch – subject to the selected

environmental conditions. This section outlines the necessary steps to prepare these time

series for adequate analysis. First we explain the transformation of the coordinate system

and standardization of the simulated platform motions, and then we describe how time

series are transformed into a format suitable for model training.

Time Series Processing: Dynasim simulations are subject to transient e↵ects that do

not reflect actual platform motions and thus need to be removed. A cuto↵ period of

3600s was selected, meaning the first hour of the three-hour simulation is removed,

leaving two hours or 7200s of useful data for each simulated condition (See Figure

42). Therefore, for the simulated motions with line breakage at time step 5000,

after removing the transient motion, the breakage time adjusts to time step 1400

seconds.

Dynasim also provides platform motion data based on its global frame of reference,

which is not aligned with that of the platform. Therefore, these motions are rotated

so that e.g. motion data in the x-axis becomes the actual platform surge motion.

In order to facilitate model convergence during training, the resulting motion time

series are standardized. This process consists of standardizing each variable from

each time series separately, using the z-score calculation (see Section 2.3.3). For the

i-th time series (i = 1, 2, . . . , 7000), the j-th DoF of the platform (j = 1, 2, . . . , 6) is

thus standardized by calculating its z-score (see Section 2.3.3).

Windowing: These simulated time series are partitioned into multiple sections to facil-

itate their analysis by machine learning and statistical models, as processing the

complete time series at once would require complex models which are also resilient

to changes in the underlying trend of the series.
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Figure 42: An example of the surge motion time series output generated by the Dynasim
simulator. The first 3600 seconds (in yellow) of the 3 hour (10,800 seconds) simulation
represents the range dropped due to transient motions and the remaining 7200 seconds
are used to training and test the predictor module of NEMO.

Each of these sections is called a window. The time-series generated are divided

into windows that share a common duration or width w and which may or may not

overlap (i.e. contain a period of time which is also contained in another window).

The window generation procedure is bound by a parameter s denoted stride, which

is the distance between the beginning of one window and that of the next one. The

k-th window of a time series is thus generated by taking data from the k · s to the

k · s + w instant in the series. This definition highlights how window overlap is

controlled by the stride: a stride s < w implies there is overlap between adjacent

windows.

Window width and stride need to be carefully determined so that the model have

enough information to make predictions about global trends in the time series while

also supplying information on the short- and mid-term variations in the series and

balancing model computational cost.

Filtering: A third order Butterworth low-pass filter (BUTTERWORTH, 1930) with a

cuto↵ frequency of 0.02Hz was applied to the remaining 7200s time-series motion

in order to smooth out high frequency oscillations that do not provide relevant

information about platform dynamics and that are detrimental to model training.

Figure 43 shows a sample of the surge in blue and sway in red motions before and
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after filtering.

Figure 43: Sample of the surge motion in blue and the sway motion in red before (a) and
after (b) filter application.

This concludes the data engineering and preparation phase conducted.

5.2 Motion Predictor Module

This section focuses on the predictor module of the NeMo system. The predictor

module is composed of an MLP neural network model (as described in Section 4), which

is trained with simulated platform motion data (generated as described in Section 5.1.1)

and then used to forecast these motions. The hypothesis is that, as the predictor is trained

with the simulated FPSO-P50 motions without failures, di↵erences detected between the

predicted series and the conditions indicate failures in the platform’s mooring system.

The MLP network that plays the role of predictor was implemented to use the previous

600 seconds of horizontal motions – surge, sway and yaw – to predict the next 100 seconds

of the same horizontal motions, as shown in Figure 44. We call forecast window, wf , the

future period predicted by the predictor. Here, w = 600s and wf = 100s.
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Predictor Module Configuration

The predictor module is composed of an input layer, 3 hidden layers and an output

layer, whose nodes are fully connected to those of the preceding and following layers, as

described in Section 4. An illustration of the predictor architecture is shown in Figure 44.

The input layer receives 600 seconds of horizontal motions (surge, sway and yaw), which

amount to 1800 data points (1 point for every second). The output layer predicts 100

seconds of the same motions, which is equivalent to 300 data points. The first to third

hidden layers have 7200, 3600 and 1800 neurons in each layer, respectively.

Figure 44: Motion predictor model. The MLP network receives 600s input of the surge,
sway and yaw motions (3DoF) and predicts 100s of the same motions. The numbers
under the layers represent the number of neurons in the best-known MLP architecture.

The rectified linear (ReLU) activation function was used in all the layers with the

exception of the output layer, which used linear activation function to make the prediction.

The Adam optimizer algorithm with a learning rate of 1 · 10�7 was used to optimize the

MLP network. The model training was stopped at epoch 3000 when the model started

over-fitting.

5.2.1 Train and Test Dataset

An adequate sampling methodology is critical to guarantee the ML model’s ability

to learn and generalize to new data. Therefore, from the 7000 simulated environmental
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conditions as explained in Section 5.1.1, a subset of 3000 random environmental conditions

were used for training and 1500 for validation, both selected from multiple platform drafts

and the remaining environmental conditions separate from those used for training and

validation were used as the test dataset. From these motions, the time series values

associated with the three horizontal degrees of freedom – sway, surge and yaw – were

employed and the first 3600s were removed and the remaining 7200s were filtered as

described in Section 5.1.2.

For each environmental condition, parts of the time series that depict the platform

motion generated by the Dynasim were sampled. Each of these parts comprises a data

window that corresponds to a training unit. A training unit comprises of a set of <

input � output > unit, which is defined by a partition of the time series of the data

window. Here, a training unit comprises of an input window of w = 600s and an output

window of wf = 100s, making a data window of 700s. The procedure of creating training

units entails sliding the data window over the Dynasim-generated time series, with strides

s of 100s. Windows were defined in Section 5.1.2. The set of all data window input-output

pairs from the selected simulated motions form the training and validation sets for the

MLP network.

In the training phase, data windows are independent of one another and can be drawn

at random within the remaining 7400 seconds period from the same environmental condi-

tion. Similarly, data windows are collected from other selected environmental conditions,

and the collection of all these training units forms a training set.

The MLP predictor module training data were composed of 3000 di↵erent platform

motions, selected from di↵erent environmental conditions from di↵erent drafts, which

generated 213, 000 windows. Similarly, the validation data were composed of 1500 di↵erent

environmental conditions, consisting of 106, 500 windows were used to validate the network

(See Appendix B for more on data window creation).

The MLP predictor module was trained for 3000 epochs, where an epoch defines the

number of time the MLP model is trained on the entire training data set, and early

stopping API from Keras1 was employed in the training phase to stop the MLP model

from over-fitting. After training, the trained MLP model is used to predict platform

motion without and with mooring line breakage in the testing phase.

In our proposal, a batch consists of 32 training units, i.e., 32 pairs of input-output

time windows.
1https://keras.io/
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The test phase of the MLP network also requires preprocessing the selected simu-

lated environmental conditions di↵erent from those selected for training and validation of

the MLP network into test sets, consisting of input-output pairs and creating test data

windows of equivalent training window size .i.e., 700 seconds. Test data windows with

input window (w) of 600s are fed into the trained MLP network which then makes a 100s

forecast of the output for the given test window.

For every test environmental condition 10 testing units were used and they are pro-

vided as input to the trained MLP network. For each test unit the error calculator module

compares the networks forecast with the actual simulated motion and uses the di↵erence

to make error metric indexes. This process is repeated for all the sets of test data.

5.2.1.1 Error Calculation Module

Di↵erent metrics need to be generated to detail the di↵erence between predicted and

simulated motions in order to evaluate the performance of the proposed MLP model, since

these same metrics are used as input for the line breakage classifier. In order to generate

representative statistics about the complete time series, the model is used to generate

continuous motion predictions for the duration of the 7200s time series.

As illustrated in Figure 45, for every w = 600s input (represented in blue), a wf = 100s

prediction (represented in orange) is calculated (Figure 45a) and the input is subsequently

shifted by s = 100s to generate the next prediction (Figure 45b). The resulting predicted

motions are grouped into 200 second intervals without overlap (Figure 45c) for error

metric calculation, in order to average out transient e↵ects that arise when line breakage

occurs and thus facilitate breakage detection.

Thus, for each 200 seconds of predicted Ypred and corresponding simulated Ysim hori-

zontal motions, their di↵erence � is calculated for each point by

� = Ypred � Ysim. (5.1)

For each �, the Root Mean Squared Error (RMSE), mean (ME) and median (MedE) are

calculated. MedE is found by ordering the set of � values from lowest to highest and

finding the exact middle. RMSE and ME are widely used error metrics in ML and are

defined as

RMSE =

vuut 1

n

nX

i=1

�i
2
, ME =

1

n

nX

i=1

�i. (5.2)
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Figure 45: Illustration of the continuous prediction generation process and subsequent
partitioning.

In cases where line breakage occurs, although MLP predictions generally di↵er sig-

nificantly from simulated motions with breakage, erratic behaviour may occur and the

network may temporarily generate predictions that follow these motions, which makes it

necessary to consider error metrics from a longer time span than that of a single window.

Therefore, the metrics belonging to the window with greatest RMSE are chosen to rep-

resent the entire 7200 second time series, and are used both to report MLP performance

and to serve as input for the line breakage classifier.

5.2.2 Results

After the model architecture search step (see Section 4.2.2), di↵erent draft combina-

tions during training was tested, in order to assess which group of drafts was optimal

to train the predictor module of the NeMo system, to learn the complex motions for all

drafts motion generated. Therefore, to evaluate the model’s capacity to generalize, the

test set included all possible drafts, that is, drafts from 8m to 21m.

As training with all possible drafts (total of 14 di↵erent drafts, considering meter to

meter variations) would be very costly, two di↵erent draft combinations were tested to

find the minimum number of drafts needed that allows the predictor module to learn and

generalize to every draft. One model was trained with motions for drafts 8, 16 and 18,

while another model was trained with drafts 8, 12, 16 and 20.

3-draft model: This model had its training data constituted by 1,000 random move-
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ments of each draft, 8, 16 and 18, making 3,000 platform movements. The validation data

consisted of 1,500 random movements of the same drafts, that is, resulting in 500 move-

ments of each draft.

4-draft model: This model had its training data constituted by 750 random move-

ments of each draft, 8, 12, 16 and 20, making 3,000 platform movements and was validated

in 1,500 random movements of the same drafts, that is, 375 movements of each draft.

These two models were trained and tested on drafts motions without breakage. Figure

46 shows the average surge RMSE error score obtained for all the drafts of the two motion

predictor models trained with 3 drafts (8, 16, 18) and 4 drafts (8, 12, 16, 20).
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Figure 46: Comparing motion predictors trained on 3 and 4 drafts. The surge average
RMSE error scores for the model trained with 3 drafts are illustrated in red, and for the
model trained with 4 drafts they are in blue.

As it can be seen in Figure 46, the model trained with 4 drafts (in blue) had better

scores when compared to the model trained with 3 drafts (in red) overall. Thus, it was

asserted that the minimum number of drafts needed is 4, as this choice achieved an

adequate performance for all drafts. Therefore, the MLP predictor trained with 4 drafts
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was chosen to be used during the next steps in this work.

Figure 47 shows a box plot of the RMSE for the surge motion prediction of 300

platform motions with intact and broken mooring lines, encompassing every draft from

8 to 21 m. The model used to generate the predictions was trained with drafts 8, 12,

16 and 20, as described previously. The figure shows that the trained model was able

to generalize for drafts not included during the training phase, and it was also able to

distinguish between motions with and without breakage for the di↵erent drafts, since

there is a large di↵erence between the RMSEs for motion with intact and broken lines.

For motions with intact mooring lines, the error was consistently smaller than 3, this is

demarcated by the area enclosed in a red rectangle in the figure; moreover, for motions

with breakage the error score was regularly greater than 3. Breaks were made in lines

L1, L9, L12 and L18 for each of the drafts. Therefore, there is a clear separation between

scenarios with and without line failure.

In the figure, it also shows that as the platform becomes heavier, the range between

the minimum and maximum values of each boxplot increases. This can be seen when

comparing the boxplot of draft 8 with breakage in line 1, annotated as d8-bl01 in the

legend, with the boxplot of draft 21 with breakage in line 1, denoted as d21-bl01.

Figure 47: Box plot of surge RMSE of 300 platform motions with intact and broken
mooring lines, evaluated for the model trained with drafts 8, 12, 16 & 20m. The motions
without breakage are enclosed in the red rectangle and the motions with breakage (L1,
L9, L12 and L18 for each draft) are above it.

Figures 48 and 49 shows a box plot of the mean error and median for the surge of
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300 platform motions with intact and broken mooring lines respectively. In these figures

there is also a good separation between the scenarios with and without line failure. It can

also be observed that line failures from di↵erent lines lead the error score to be positive

or negative. For motions with intact mooring lines the errors are between ±3, this can

be seen enclosed in a red rectangle in the figure. For motions with breakage in line 1 and

18, for all the drafts used during the test, the error scores are negative, while for motions

with breakage in line 9 and 12 the error scores are positive. This can be attributed to the

physical configuration of the platform mooring lines.

Figure 48: Box plot of mean error for the surge of 300 platform motions with intact
and broken mooring lines for the trained predictor. The motions without breakage are
enclosed in the red rectangle and motions with breakage lead to error scores with positive
or negative values. Each draft is grouped by a distinct color.

In order to further examine the model e�ciency, the motion predictions on drafts

8, 12, 16 and 20 for the environmental condition with wave height of 1.57 meters, swell

height of 0 meters and wind velocity of 5.79 meters per second (see Table 23), with intact

mooring lines, was represented.

Table 23: Analyzed Environmental conditions

Index
Current Current Wind Wind Wave Wave Wave Swell Swell Swell
Velocity Direction Velocity Direction Height Period Direction Height Period Direction

6489 0.12 172.65 5.79 152 1.57 8.01 167.5 0 0 0

In the figures representing the predictions, the orange line represents the predictor

modules prediction, while the blue line is the simulated platform motion. Figure 50 shows
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Figure 49: Box plot of Median error for the surge of 300 platform motions with intact
and broken mooring lines for the trained predictor. The motions without breakage are
enclosed in the red rectangle and motions with breakage lead to error scores with positive
or negative values. Each draft is grouped by a distinct color.

predictors’ prediction on draft 8, Figure 51 on draft 12, Figure 52a on draft 16 and Figure

52b on draft 20. The result shows it was able to predict the frequency and amplitude of

the platform motions, serving as a good predictor of platform motion.

For motions with mooring line breakage in line 1, MLPs predictions on draft 8, 12,

16 and 20 are shown in Figure 53, Figure 54, Figure 55a and Figure 55b respectively. In

these figures, the orange line is the MLP prediction, and the blue line is the simulated

platform motion; furthermore, the red line shows when breakage occurred, at time step

1400s. This result shows that predictor was able to predict the platform motion closely

before mooring line breakage occurs at time step 1400s, after which it was not able to

predict the motions properly. As it can be seen in these figures, an o↵set occurs after

breakage; therefore, NeMo can use this information to detect when mooring line breakage

happens.

The error scores for di↵erent draft settings of the same environmental condition with

intact and broken mooring line L1 are shown in Table 24. It is noticeable that the RMSE

of the surge, sway and yaw motions for all drafts with intact mooring lines are one order of

magnitude smaller than those with breakage. This behaviour also holds true for Mean and

Median error scores calculated for these motions, as shown in Table 25 and 26: the error

scores for all drafts with intact mooring lines are one order of magnitude smaller than
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Figure 50: Illustration of the MLP prediction on draft 8 for the environmental condition
with index 6489, with intact mooring lines.

Note: the first 3600 seconds (transient motions) have been removed, and thus the prediction is done on
the remaining 7200 seconds for all subsequent tests.

Figure 51: Illustration of the MLP prediction on draft 12 for the environmental condition
with index 6489, with intact mooring lines.
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(a) Draft 16

(b) Draft 20

Figure 52: Illustration of the MLP prediction for the environmental condition with index
6489, with intact mooring lines, for draft 16 in Figure (52a) and for draft 20 in Figure
(52b).
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Figure 53: Illustration of the MLP prediction on draft 8 for the environmental condition
with index 6489, with breakage in mooring line 1.

Note: The first 3600 seconds (transient motions) have been removed, resulting in a change in the timing
of the line breakage from occurring at time step 5000 seconds to occurring at 1400 seconds for all tests
with line breakage.

Figure 54: Illustration of the MLP prediction on draft 12 for the environmental condition
with index 6489, with breakage in mooring line 1.

those with breakage. Therefore, it is clear that there is always a significant di↵erence

between error scores in situations with intact and compromised mooring lines under a
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(a) Draft 16 with breakage in line 1

(b) Draft 20 with breakage in line 1

Figure 55: Illustration of the MLP prediction for the environmental condition with index
6489, with breakage in mooring line 1 for draft 16 in Figure (55a) and for draft 20 in
Figure (55b).

certain environmental condition.



86

Table 24: RMSE of the NeMo MLP predictor error scores for test environment index 6489
on di↵erent drafts, with and without Broken Line (BL).

Draft Surge Sway Yaw

Draft 8 0.39 0.67 7.48e-4
Draft 12 0.41 0.85 8.26e-4
Draft 16 0.34 0.89 8.51e-4
Draft 20 0.59 0.99 8.57e-4

Draft 8 with BL 01 5.07 4.65 1.03e-2
Draft 12 with BL 01 6.32 4.95 1.14e-2
Draft 16 with BL 01 5.96 5.20 9.85e-3
Draft 20 with BL 01 8.69 5.35 1.10e-2

Table 25: Mean error scores of the NeMo MLP predictor for test environment index 6489
on di↵erent drafts, with and without Broken Line (BL).

Draft surge sway yaw

Draft 8 0.26 -0.54 -5.90e-4
Draft 12 0.19 -0.57 -5.67e-1
Draft 16 0.17 0.67 5.64e-4
Draft 20 0.26 0.79 6.23e-4

Draft 8 with BL 01 -4.39 -4.42 9.22e-3
Draft 12 with BL 01 -5.22 -4.60 1.02e-2
Draft 16 with BL 01 -4.91 -4.85 9.10e-3
Draft 20 with BL 01 -7.22 -5.01 1.06e-2

Table 26: Median error scores of the NeMo MLP predictor for test environment index
6489 on di↵erent drafts, with and without Broken Line (BL).

Draft surge sway yaw

Draft 8 0.23 -0.56 -6.86e-4
Draft 12 0.22 -0.47 -5.72e-4
Draft 16 0.17 0.56 3.44e-4
Draft 20 0.31 0.62 3.48e-4

Draft 8 with BL 01 -4.96 -4.60 9.37e-3
Draft 12 with BL 01 -5.85 -4.72 1.05e-2
Draft 16 with BL 01 -5.34 -4.85 9.50e-3
Draft 20 with BL 01 -8.61 -5.13 1.10e-2

5.2.3 Discussion

In chapter 4 we proposed to build the NeMo system, hypothesizing that the change

in platform motions can be a good indicator of when mooring line failure occurs. Results

presented in Section 5.2.2 support the made hypothesis. It is assumed that the platform

motion changes in its intensity as well as in its frequency after a line failure occurs. Since
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the predictor model was only trained to respond well to platform motions with all mooring

lines intact, this irregular motion causes a di↵erence between the simulated and predicted

motions, leading to a significantly higher error score in case of line failure.

The box plot in Figure 47, generated based on the RMSE error scores, shows a clear

separation between the cases with intact and broken mooring lines. As this error depends

on the quadratic di↵erence between the conditions, it is not possible to assess how di↵erent

line breakages influence this error to be positive or negative. This issue no longer occurs

when using the mean errors, as shown in Figure 48. For this metric, the error score sign

changes depending on which line is broken. This test with the predictor trained on 3000

random environmental conditions from 4 drafts and tested on every draft shows that the

model was able to generalize for all drafts and detect the di↵erence in motion between

situations with compromised and intact mooring lines.

A test sample on the MLP prediction accuracy in Figures 50, 51, 52a and 52b showed

the model was capable of predicting the platform motions adequately for di↵erent draft

settings in a specific set of test data; in Figures 53, 54, 55a and 55b NeMo is able to

detect when line breakage occurs, as it exhibits an o↵set between its predictions and

the simulated platform motions. After mooring line breakage, the model was unable to

predict the platform motions properly because the platform motions with a compromised

mooring system are unknown to the model.

The predictor error scores in Tables 24, 25 and, 26 show a clear separation between

the cases with intact and broken mooring lines, since the error score calculated for motions

with breakage are approximately 10 times bigger than those without breakage.

It can be concluded that the mean and median errors can be used for multi-group

mooring line failure detection, while the RMSE error can be used for binary mooring line

breakage detection. Therefore, all these metrics will be used as input to the classifier

module of the NeMo system, since all of them provide useful information.

5.3 Line breakage classifier module

The predictor described in Section 5.2 is trained to predict platform motion for di↵er-

ent environmental conditions and based on past motions without line breakage. It is then

used to predict these motions for any mooring system state (with or without broken lines).

Since training was performed only on motions without breakage, a significant di↵erence

between predicted and simulated motions is expected, which should allow for breakage
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detection and classification.

A classifier is used to determine whether a line breakage occurred in a particular

simulated platform motion, and, if failure is detected, to indicate in which line group it

occurred. This model takes as input the error scores of the MLP predictors, and outputs

breakage probability for each line group, as well as probability of no line breakage, as

shown in the Figure 56. A multinomial logistic regression (MLR) model which uses the

one vs rest approach was chosen to implement the aforementioned classifier.

Figure 56: A classifier is used to define whether a platform motion indicates a line failure,
it also indicates the group where breakage happened, by generating probabilities for each
possible line state.

The classifier input consists of the error scores (RMSE, mean and median), for each

of the three horizontal motions. The desired output consists of the class the platform

motion belongs to, either with no line failure present (referenced as class No B) or with

failure in Group 1, Group 2, Group 3 or Group 4 (see Table 22).

5.3.1 Prediction Error Exploratory Analysis

The minimum (Min) and maximum (Max) values of the surge RMSE were explored

under all environmental conditions for all drafts to better understand the error score

correlation with both the draft and line failure groups. Figure 57 shows these statistics for

all motions in group No B, which highlight the proximity between the smallest maximum

RMSE – 3.26, obtained for draft 9 – and the greatest maximum RMSE – 4.82, obtained

for draft 21 – di↵ers by 1.56.

Figure 58 illustrates the Min and Max RMSE for motions in Group 1 (with breakage
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Figure 57: Min and Max average RMSE scores of platform motion surge for each draft,
with lines intact. The blue bar is for the Min values of each draft and the red bar is the
Max values for the same draft.

in line 1) across all simulated drafts. These error scores exhibit a positive correlation with

draft, increasing as the platform becomes heavier. In this case, the di↵erence between

the smallest Max – 12.01, obtained for draft 8m – and the biggest Max – 17.32, obtained

for draft 21m – was 5.31, well above the 1.56 di↵erence reported for motions without

breakage. This di↵erence can be attributed to the load of platform with it being light

weighted in draft 8 and heavy weighted in draft 21m.

This pattern of the error score increasing as the platform becomes heavier holds true

for the Max and Min platform motion error scores obtained for cases with breakage in

lines 12 and 18 as well. Figure 59 shows a complete picture of the surge Max RMSE

for each draft with breakage in each of the selected lines (represented by bars), along

with the Max RMSE obtained for the same draft with intact mooring lines (at the top

of each box), allowing for a better comparison of the Max score obtained for cases with

and without mooring line breakage. The clear separation between error scores for cases
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Figure 58: Average RMSE surge Min and Max scores for each draft with breakage in line
01. The blue bar are for the Min values of each draft and the red bar are the Max values
of the same draft.

with and without failure suggests the classifier will be able to di↵erentiate between these

conditions.

5.3.2 Train and Test Datasets

Dynasim was used to simulate a total of 490,000 platform motions (7000 for each

draft), with and without breakage as listed in Table 27. In the simulations with breakage,

the line failure occurred in the time 5000 seconds.

To train and test the MLR classifier, a subset of all these simulated platform motions

was used. Using the train test split function from the Scikit-learn (PEDREGOSA et

al., 2011) Python library, the complete dataset (see Table 27) was stratified such that
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Figure 59: Surge RMSE Max score for each draft with breakage in lines 01, 09, 12, and
18. Blue bars are for breakage in line 01, orange bars for breakage in line 09, green bars
for breakage in line 12, and purple bars for breakage in line 18, for each draft (8m – 21m).
The Max error score for each draft without breakage is presented at the top of each box
representing each draft.
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80% of the platform motions, resulting in 392,000 motions (see Table 28), were used for

training and the remaining 20%, resulting in 98,000 motions (see Table 29), for testing the

classifier. A detailed explanation of how the training and testing datasets were obtained

using the stratified sampling method can be found in Appendix C. The stratified sampling

method adopted aims to randomly sample equal or close to equal number of samples

from each class of a given population. MLP prediction error metrics for each of the

selected environmental conditions, along with mooring status (i.e without breakage or

with breakage in one of the four lines selected in each group) composed the input-output

pairs for both training and test sets.

Table 27: All simulated platform motions from Dynasim.

Draft Number of platform motions Line Status Group
Drafts 8 – 21 98,000 (7000/draft) No Failure No B
Drafts 8 – 21 98,000 (7000/draft) Failure L1 1
Drafts 8 – 21 98,000 (7000/draft) Failure L9 2
Drafts 8 – 21 98,000 (7000/draft) Failure L12 3
Drafts 8 – 21 98,000 (7000/draft) Failure L18 4

Total number of platform motions 490,000

Table 28: Training data for classification

Group Drafts
No of Samples from Total Sample for

each Draft each Group
No B 8 - 21 5,600 14 * 5,600 = 78,400
1 8 - 21 5,600 14 * 5,600 = 78,400
2 8 - 21 5,600 14 * 5,600 = 78,400
3 8 - 21 5,600 14 * 5,600 = 78,400
4 8 - 21 5,600 14 * 5,600 = 78,400

Total no. of platform motions 392,000

Table 29: Testing data for classification

Group Drafts Total Sample For Each Group
No B 8 - 21 19,600 (1400/draft)

1 8 - 21 19,600 (1400/draft)
2 8 - 21 19,600 (1400/draft)
3 8 - 21 19,600 (1400/draft)
4 8 - 21 19,600 (1400/draft)

Total no. of platform motions 98,000

5.3.3 Experiments and Results

Results of the trained MLR classifier, represented by a confusion matrix, is show in

Table 30. The confusion matrix illustrates model accuracy and it should be interpreted
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such that numbers in the main diagonal of the matrix represent correct classification, and

numbers in the vertical axis of other cells represent incorrect classification.

Table 30: MLR Confusion Matrix

A
ct
u
a
l
L
a
be

l

1 19589 2 0 8 1
2 3 19597 0 0 0
3 0 0 19600 0 0
4 7 0 0 19593 0

No B 8 2 0 0 19590
1 2 3 4 No B

Predicted Label

In one instance, when the classifier predicted the simulation to belong to GroupNo B,

it misclassified a simulation which actually belonged to Group 1. For predictions to Group

4, it misclassified 8 simulations which belonged to Group 1. For predictions to Group 3,

there were no misclassifications. For prediction to Group 2, it misclassified 4 platform

simulations: 2 belonging to Group No B and 2 to Group 1. Finally, for predictions to

Group 1, the classifier misclassified 18 simulations: 8 belonging to Group No B, 7 to

Group 4 and 3 to Group 2.

The MLR classifier misclassified only 31 out of 98000 motions (see Table 31). Table 32

shows the total count of misclassified motion and it shows the classifier found classifying

motions of group 1 most di�cult.

Table 31: Error metrics of the MLR classifier

Class No B Class 1 Class 2 Class 3 class 4
Accuracy 99.99 99.99 99.99 1 99.99
Precision 1 1 1 1 1
Recall 1 1 1 1 1
F1-score 1 1 1 1 1

Table 32: Count of Total Number of Misclassified Platform Motion Group

Misclassified Group Count
1 18
2 4
3 0
4 8

No B 1
Total 31

A sample of the misclassified platform motion drafts and mooring line status, together

with the probabilities assigned by the MLR classifier, and the final prediction for each
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motion, along with the actual group the motions belong to are shown in Table 33. The

complete misclassified motions can be found in Table 38 in Appendix C

It is worth noting that the classifier is often in doubt between the di↵erent groups,

demonstrating this doubt in the form of the probabilities associated with each group.

For example, in Table 33, the first misclassified condition had a predicted probability of

0.589 for it to belong to Group 1, when in reality it belonged to Group No B. However,

note that the classifier also believes that Group No B may be the correct group, but

demonstrates less certainty in this fact. The presentation of the classification results were

quite conservative, as it was decided to o↵er a sharp answer to the classes, despite the

doubt shown by the classifier. Classification errors would be reduced if it were allowed to

provide answers, for example for case No.1 of the Table 33, such as: ”There is a possibility

that there was a break in line 1, but there is also a good possibility that there was no

break.”

Table 33: A sample of MLR misclassified platform motions.

Assigned group probability
No. G.1 G.2 G.3 G.4 No B Sum Predicted group Actual group Draft
1 0.589 0.008 0.000 0.000 0.403 1 G.1 No B d-9
2 0.362 0.485 0.000 0.000 0.153 1 G.2 No B d-14
3 0.823 0.000 0.000 0.000 0.177 1 G.1 No B d-15
4 0.544 0.000 0.000 0.000 0.456 1 G.1 No B d-19
5 0.586 0.000 0.000 0.414 0.000 1 G.1 G.4 d-8-bl18
6 0.715 0.285 0.000 0.000 0.000 1 G.1 G.2 d-10-bl09
7 0.783 0.000 0.000 0.217 0.000 1 G.1 G.4 d-13-bl18
8 0.523 0.477 0.000 0.000 0.000 1 G.1 G.2 d-12-bl09
9 0.159 0.000 0.000 0.841 0.000 1 G.4 G.1 d-17-bl01
10 0.482 0.000 0.000 0.518 0.000 1 G.4 G.1 d-21-bl01

Analysis of the measured environmental conditions recorded for the 31 misclassified

motions shows the classified platform motions all come from random period of time. A

sample of the conditions is shown in Table 34, the complete measured conditions can

be found in Table 39 in Appendix C.1. It was hypothesized that the wrong classifica-

tions result from erroneous motion prediction by the MLP model for these environmental

conditions.

5.3.4 Discussion

The implemented classifier, taking the error scores of the predictor MLP as input, had

an accuracy of nearly 100%, misclassifying 31 out of 980, 000 platform motions. Analysis

of the misclassified motions revealed the classifier found classifying motions belonging to
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Table 34: Sample of misclassified environmental conditions measured.

Current Current Wind Wind Wave Wave Wave Swell Swell Swell
Date Time

Velocity Direction Velocity Direction Height Period Direction Height Period Direction

0.18 321.17 6.90 87.20 1.73 11.51 179.80 1.11 5.05 97.40 04/08/2006 09:00:00
0.48 228.11 5.01 120.60 2.00 9.63 187.50 0.58 3.77 133.20 25/08/2004 06:00:00
0.37 216.58 3.90 60.50 2.07 15.99 129.60 0.36 3.30 66.00 10/06/2007 09:00:00
0.27 163.09 9.67 20.40 2.34 13.07 191.30 1.34 5.98 39.30 18/01/2007 03:00:00
0.26 216.56 6.30 107.40 2.72 14.40 177.10 1.00 4.56 112.00 02/05/2008 15:00:00
0.35 219.37 5.80 64.20 2.09 10.44 175.50 0.73 4.51 74.80 02/11/2008 12:00:00
0.43 197.07 9.36 44.0 1.44 5.44 54.30 0.42 6.14 136.40 26/11/2004 21:00:00
0.53 172.44 9.41 27.60 1.72 6.63 28.80 0.59 8.96 143.10 16/11/2009 00:00:00
0.64 173.91 10.49 29.90 2.51 7.10 30.00 1.93 12.95 195.70 18/10/2005 00:00:00
0.45 194.00 9.63 15.60 1.57 5.71 34.40 0.93 8.00 95.10 01/12/2005 06:00:00
0.48 175.25 12.330 18.40 2.24 6.39 24.40 0.67 8.55 114.10 15/01/2009 09:00:00

Group 1 most di�cult.

This is hypothesized to be caused by the fact that the Max surge RMSE of draft 13m

to 21m without breakage (see Figure 57) were bigger than the Min surge RMSE of draft

21m with breakage in line 1 (see Figure 58), which could lead to misclassification of these

motions.

Analysis of the measured environmental conditions recorded for the 31 misclassified

motions showed they come from random periods of time and environmental cs.

Having a low number of false-negative classification is very important, because in

the event there is mooring line failure and the classifier predicts there isn’t, it could be

disastrous for the safety of the personnel and the structural integrity of the platform. The

classifier had some false-negative predictions, which means it still needs improvements.

However, it is worth mentioning that it was chosen to present classification results in

a very conservative way, simply adopting as the estimated class the one with the highest

probability in the MLR output. A more careful look could also be given to the output

that presents the second highest probability, indicating more than one possible decision

and showing the degree of certainty in the class provided by the classifier. With this

consideration, the number of false-negatives could be further relegated.
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6 CONCLUSION AND FUTURE WORK

In this thesis, we proposed to build a machine learning (ML) model, capable of iden-

tifying mooring line breakage. Our proposed system which we refer to as NeMo, was

developed to detect mooring line failure of FPSO-P50 with 14 di↵erent draft levels (from

8 to 21 meters) and also make a multi-class mooring line failure classification for five

mooring line groupings.

Our implemented NeMo system divides the mooring failure identification problem into

sub-modules, by first training an MLP network to predict future motions of FPSO-P50,

using previous motions. The di↵erence between the MLP prediction and the actual motion

is then used as input to a classifier module which classifies and indicates the probability

of the platform mooring system status, that is broken or not broken. For cases with line

break NeMo indicates which line group was broken, showing the break probabilities of

each group.

A hypothesis was made that the platform motion changes its intensity as well as its

motion frequency after a line failure occurs. Since NeMo was only trained to respond well

to platform motions with all mooring lines intact, this irregular motion can then be seen

as a di↵erence between the simulated and predicted motions, leading to a significantly

higher error score in case of line failure.

We summarize below our main findings and contributions :

1. The implemented NeMo system was able to predict the platform motions for the

test data given to it under normal conditions, where the platform mooring lines were

intact for 14 di↵erent draft levels, and for test data where there was a failure in the

mooring line. The predictor module was able to detect the occurrence of failure by

displaying an o↵set between the prediction of the model and the simulated platform

motions, for all motions and all 14 platform drafts.

2. An ablation study was carried out regarding the impact of network entry, with the

objective of finding the minimum number of platform motion variables necessary to
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have the desired accuracy, and also to determine the necessary number of di↵erent

drafts that should be used to train networks to detect line breaks. Three models

were investigated and the average RMSE error of 1000 test motions were used to

compare the performance of these models. Model A used all the 6DoF motion as

input to the network when training, Model B used only 3DoF and Model C used

surge, sway, and a yaw constant at 210� as input when training. Model B was the

best model out of the three models and it revealed that using only the horizontal

motions as input was su�cient for mooring line breakage identification. The error

di↵erence between the three models were minimal which showed even with only the

surge, sway and a constant yaw motion, it is possible to train a network to detect

mooring line failure. Furthermore, it was found the Model A which used all the

6DoF motion as input to the model had the longest training time.

3. A study to find the optimal number of neurons for each hidden layer of the pre-

dictor module of the NeMo system was investigated. Optimization method such as

Bayesian Optimization, state-of-the-art in neural network hyperparameter optimiza-

tion (FEURER; HUTTER, 2019); and Random Search were used. The manually

determined number of neurons in the hidden architecture developed was found to

be the best, thus validating the selected number of neurons in each hidden layer to

be optimal.

4. A study to find the minimum number of platform draft motion combinations that

would be su�cient for the NeMo motion predictor module to learn the complex

platform motions for all set of draft, that is, drafts from 8m to 21m was conducted.

The result showed that using only 4 draft combination (8m, 12m, 16m and 20m

draft data) was su�cient to train a network that is able to generalise to unseen

data.

5. The error scores of the model on all the test data were used to generate box plots

of the errors – RMSE, mean and median of the 3 motion variables; sway, surge

and yaw. The box plots generated based on the RMSE error scores show a clear

separation between the cases with all mooring lines intact for all the draft levels and

the cases that had mooring line failures, showing to be a great solution for binary

classification.

6. The box plots generated with the mean and median error scores also show a clear

separation between the cases with all of its mooring lines intact and the cases with

mooring line failures. The result of the plot indicates the mean and median error
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scores can be used to detect which group of mooring lines shows a failure. It can

be concluded that the mean and median error can be used to detect multi-group

mooring line failure.

7. The Multinomial Logistic Regression (MLR) classifier developed used the error

scores – RMSE, mean and median of the 3 motion variables; sway, surge and yaw –

of all the test data gotten from the NeMo predictor module as input, to classify the

mooring line status from platform motions in 14 di↵erent drafts. The classification

provides the motion’s probability of belonging to each of the five groups: No B (in-

tact mooring lines), G1 (Line 1 broken), G2 (Line 9 broken), G3 (Line 12 broken)

and G4 (Line 18 broken). The MLR classifier classified the motion accurately except

for 31 motions which it misclassified out of 98, 000 test motion.

The following research questions were posed in Section 1.2. Answers to these questions

were derived from the result of the developed and implemented NeMo system:

RQ1 Can a failure in the mooring system of an o↵shore platform be detected using only

the data regarding the motion and load of this platform?

Ans1 Yes, the various platform motions generated by the Dynasim simulator, for dif-

ferent environmental and platform loading conditions, revealed a notable di↵erence

between the response of a platform with an intact mooring system and with a com-

promised mooring system.

RQ2 Is a machine learning system based on Multilayer Perceptron Neural Networks

capable of predicting the future motion of a vessel having as information only the

previous motion and the platform load?

Ans2 Yes, the implemented NeMo system showed that it is possible to predict the future

motion of a vessel (in our case, a FPSO-P50) having as information only the previ-

ous motion and the platform load. The motion predictor submodule of the NeMo

system, composed of a fully connected 3-hidden-layer MLP network, showed that

using only 600 seconds of previous platform motions, it is possible to predict 100

seconds of future motion.

RQ3 Would a classifier be able to detect which mooring group a broken line belongs to

based solely on the discrepancy between the motion predicted by the MLP and that

measured on the platform?
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Ans3 Yes, the results of the implemented classifier module showed that a classifier can

not only detect which mooring group a broken line belongs to based only on the

discrepancy between the motions, but it can also provide probability estimates of

which group of lines it belongs to.

As a final observation, it is also conceivable to use this platform motion mechanism

for other marine applications, as it is not restricted to the shape of o↵shore platforms but

can be used for any dynamic floating objects with any mooring system.

In conclusion, the objective of this work was achieved.

6.1 Future Work

For the NeMo predictor model, as future work, it would be interesting to carry out

an evaluation of state-of-the-art ML models, such as Temporal Fusion Transformers (LIM

et al., 2021) and Exponential Smoothing Neural Networks (SMYL; DUDEK; PELKA,

2021), in order to assess whether they are suitable for detecting mooring line break. If

appropriate, comparative analyzes with the current MLP model can be performed.

In addition, one should also evaluate end-to-end models that directly classify whether

or not a group of mooring lines fails. In this case, the model input would be the observed

window of the platform motion series and the model would directly indicate the status

of the mooring lines. The InceptionTime model (FAWAZ et al., 2019b) could be an

alternative for this study.

For the line breakage MLR classifier, the result showed the classifier made good multi-

label classifications, identifying which group of lines that failed belongs to with very few

false negatives. As a next step, an ensemble of classifiers should be investigated to increase

the confidence of the classification prediction.

Finally, training, testing and evaluating the NeMo predictor on real full scale data

would be of great interest to be carried out in future work. The di�culty here lies in

obtaining real quality data for training and evaluating models. It is worth noting that

real annotated data on the breaking of mooring lines is extremely di�cult to obtain,

but that would provide an excellent opportunity for the development of new systems

based on machine learning and artificial intelligence, which could bring a great increase

in performance and safety of existing o↵shore platforms.
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Credits: 8, Grade: B.

• PMI5926-1/3 Aplicação de ROVs em Engenharia de Petróleo e de Minas,
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APPENDIX B – NEMO TRAINING UNIT

A good training set is critical to the success of the models ability to learn. This

section describes how training and testing dataset window was calculated. Using the

same procedure as explained in Section 5.2.1, a subset of 3000 di↵erent environmental

conditions was used for training and another 1500 conditions for validation were selected

for the proposed MLP predictor module.

A NN learns by the iterative process of feeding the input of a data unit to a network

and comparing the calculated output to the expected output. The network changes its

weights and biases until the error di↵erence between the networks’ output and the ex-

pected output is minimal. The adaption is done using back-propagation (BP) algorithm

to reduce the networks’ error.

B.1 MLP Training

In this work, the proposed network predicts 100 seconds based on the last 600 seconds

of horizontal platform motion , i.e., each unit consisted of 700 seconds, with an input of

600 s and an output of 100 s. The training stride was 100 s. The number of training units

for each environmental file can be calculated by the formula

ku = (TrTotal � Trout)/TrStride (B.1)

where ku is the number of training units, TrTotal is the total simulation time, Trout refers

to the output partition time of the training unit and TrStride is the training stride.

After the first 3600s from the 3 hr simulation generated using dynasim is removed as

described in Section 5.1.2 applying the formula results in 71 training units for a single

environmental conditions:

ku = (7200s� 100s)/100s = 71 (B.2)
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In total, 71 units x 3000 environmental conditions = 213, 000 training units for all environ-

mental conditions were used as the training data set. The validation data was composed of

1500 environmental conditions. Each environmental condition consisted of 71 validation

units, adding up to a total of 106, 500 validation units.
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APPENDIX C – NEMO MLR

CLASSIFIER

ADDITIONAL

MATERIALS

An overview of how data balancing for the NeMo MLR classifier implemented in

section 5.3 is detailed in this section.

Dataset Balancing for MLR classifier: The amount of simulated platform motions is

imbalanced. Platform motions labeled No-failure has a smaller number of simulated

motion data than those with line failures when combined(see Table 35). To balance the

number of platform motions, a stratified sampling approach was employed, the method

aims to randomly sample equal or close to equal number of samples from each class of a

given population.

Table 35: All simulated platform motions from Dynasim.

Draft Number of platform motions Line Status Group

Draft 8 – 21 98,000 No Failure No Break
Draft 8 – 21 98,000 Failure L1 A
Draft 8 – 21 98,000 Failure L9 B
Draft 8 – 21 98,000 Failure L12 C
Draft 8 – 21 98,000 Failure L18 D

Total number of platform motions 490,000

Since there are 14 drafts (8 to 21) with 7000 platform motion error scores for each

draft, and for each draft there are 5 platform motions simulated; motion without breakage

and 4 motions with breakage in lines 1, 9, 12, 18. Therefore for each draft, there are 7000

* 5 scores which amounts to 350000 error scores, by multiplying 35000 by the 14 drafts

a total of 490000 scores is gotten (see Table 35). Hence, 80% of 490000 scores making

392000 scores was used for training of the classifier (see Table 36) and 20% of 490000
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making 98000 motions was used for testing the classifier. Table 37 shows the platform

motions used for testing.

The stratified sampling method samples by randomly selecting 1, 120 scores from

each draft. For example, it selects 1, 120 scores from draft 8 motions for each mooring

line status. Given there are 5 mooring line status (no failure, failure in lines 1, 9, 12 and

18), 1, 120 scores by 5 this gives a total of 5, 600 scores then by multiplying 5, 600 scores

by the total number of drafts which is 14, the total becomes 78, 400 and by multiplying

78, 400 by the 5 groups (No Break, Group A, Group B, Group C and, Group D) we get

392, 000 which was used for training of the classifier (see Table 36).

Table 36: Example of training data for classification

Group Drafts
No of Samples from Total Sample for

each Draft each Group

No Break 8 - 21 5,600 14 * 5,600 = 78,400
Group A 8 - 21 5,600 14 * 5,600 = 78,400
Group B 8 - 21 5,600 14 * 5,600 = 78,400
Group C 8 - 21 5,600 14 * 5,600 = 78,400
Group D 8 - 21 5,600 14 * 5,600 = 78,400

Total no. of platform motions 392,000

Table 37: Example of testing data for classification

Group Drafts Total Sample For Each Group

No Break 8 - 21 19,600
Group A 8 - 21 19,600
Group B 8 - 21 19,600
Group C 8 - 21 19,600
Group D 8 - 21 19,600

Total no. of platform motions 98,000
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C.1 Complete misclassified motions from the MLR
classifier

The table shows the complete 31 platform motions the MLR in Section 5.3 misclas-

sified. The table shows the MLR prediction for each misclassified motion, labeled as

predicted group, together with the actual group the motions belongs to and draft of the

misclassified sample. It also shows the probability of each sample it predicted to belong

to a particular group.

Table 38: Complete Misclassified Motions from the MLR Classifier

A B C D No B sum predicted Group actual Group Draft

0.481582 0.000 0.000 0.518418 0.000 1 D A d-21-bl01
0.523100 0.476888 0.000 0.000010 0.000002 1 A B d-12-bl09
0.543884 0.000 0.000 0.000014 0.456102 1 A No B d–19
0.714743 0.285257 0.000 0.000001 0.000 1 A B d-10-bl09
0.588754 0.008088 0.000 0.000002 0.403157 1 A No B d–9
0.015532 0.000 0.000 0.984468 0.000 1 D A d-14-bl01
0.822961 0.000 0.000 0.000005 0.177034 1 A No B d–15
0.585678 0.000 0.000 0.414322 0.000 1 A D d-8-bl18
0.782901 0.000 0.000 0.217099 0.000 1 A D d-13-bl18
0.159140 0.000 0.000 0.840860 0.000 1 D A d-17-bl01
0.362308 0.484746 0.000 0.000001 0.152945 1 B No B d–14
0.932041 0.060170 0.000 0.000 0.007788 1 A No B d–21
0.239460 0.000 0.000 0.760540 0.000 1 D A d-17-bl01
0.293493 0.706507 0.000 0.000 0.000 1 B A d-19-bl01
0.152633 0.847367 0.000 0.000 0.000 1 B A d-20-bl01
0.861314 0.104325 0.000 0.000 0.034360 1 A No B d–14
0.851781 0.148202 0.000 0.000017 0.000 1 A B d-13-bl09
0.579196 0.000 0.000 0.420804 0.000 1 A D d-11-bl18
0.950370 0.006540 0.000 0.000 0.043090 1 A No B d–17
0.468475 0.000 0.000 0.531525 0.000 1 D A d-16-bl01
0.460407 0.000 0.000 0.000 0.539593 1 No B A d-8-bl01
0.146590 0.853250 0.000 0.000 0.000160 1 B No B d–17
0.768183 0.000 0.000 0.231817 0.000 1 A D d-8-bl18
0.004694 0.000 0.000 0.995306 0.000 1 D A d-14-bl01
0.000487 0.000 0.000 0.999513 0.000 1 D A d-20-bl01
0.764241 0.000 0.000 0.000010 0.235749 1 A No B d–20
0.873650 0.006486 0.000 0.000006 0.119859 1 A No B d–11
0.784140 0.000 0.000 0.215860 0.000 1 A D d-9-bl18
0.219683 0.000 0.000 0.780317 0.000 1 D A d-15-bl01
0.538073 0.000 0.000 0.461927 0.000 1 A D d-14-bl18
0.599952 0.000 0.000 0.400048 0.000 1 A D d-14-bl18

The Table 39 shows the complete misclassified environmental conditions misclassified

by the MLR classifier.
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Table 39: Complete Misclassified Enviromental Conditions Measured

Combination ID Current Current Wind Wind Wave Wave Wave Swell Swell Swell
Date Time

Velocity Direction Velocity Direction Height Period Direction Height Period Direction

165 0.18 321.17 6.90 87.20 1.730 11.51 179.80 1.11 5.05 97.40 4/ 8/2006 09:00:00
170.0 0.480 228.110 5.010 120.600 2.0 9.630 187.500 0.580 3.770 133.200 25/ 8/2004 06:00:00
483.0 0.370 216.580 3.900 60.500 2.070 15.990 129.600 0.360 3.300 66.0 10/ 6/2007 09:00:00
492.0 0.270 163.090 9.670 20.400 2.340 13.070 191.300 1.340 5.980 39.300 18/ 1/2007 03:00:00
548.0 0.260 216.560 6.300 107.400 2.720 14.400 177.100 1.0 4.560 112.0 2/ 5/2008 15:00:00
983.0 0.350 219.370 5.800 64.200 2.090 10.440 175.500 0.730 4.510 74.800 2/11/2008 12:00:00
1281.0 0.430 197.070 9.360 44.0 1.440 5.440 54.300 0.420 6.140 136.400 26/11/2004 21:00:00
1548.0 0.530 172.440 9.410 27.600 1.720 6.630 28.800 0.590 8.960 143.100 16/11/2009 00:00:00
1983.0 0.640 173.910 10.490 29.900 2.510 7.100 30.0 1.930 12.950 195.700 18/10/2005 00:00:00
2179.0 0.450 194.0 9.630 15.600 1.570 5.710 34.400 0.930 8.0 95.100 1/12/2005 06:00:00
2259.0 0.480 175.250 12.330 18.400 2.240 6.390 24.400 0.670 8.550 114.100 15/ 1/2009 09:00:00
2781.0 0.470 179.950 8.110 14.500 1.820 11.350 119.700 1.450 5.240 23.200 1/ 8/2004 09:00:00
2915.0 0.830 194.620 6.740 354.800 1.500 9.180 121.800 0.970 4.200 9.300 3/12/2007 09:00:00
2983.0 0.440 191.010 7.190 12.0 1.390 6.820 87.400 1.290 5.110 1.200 28/ 2/2004 12:00:00
3048.0 0.170 147.090 9.200 22.600 1.500 10.400 151.100 1.380 4.750 42.200 16/ 4/2005 09:00:00
3170.0 0.320 194.750 8.430 13.600 1.790 15.220 116.200 1.690 5.720 18.0 23/ 5/2007 06:00:00
3181.0 0.100 113.700 4.580 21.0 1.750 14.010 153.400 0.490 3.340 12.600 12/ 4/2008 00:00:00
3190.0 0.510 178.330 7.620 30.0 1.920 10.590 115.300 1.360 5.660 39.200 2/ 2/2005 03:00:00
3259.0 0.290 196.280 7.730 12.500 1.690 10.690 168.900 1.070 4.510 30.200 29/ 7/2005 12:00:00
3483.0 0.260 199.680 6.170 61.700 1.200 7.590 115.600 0.750 5.030 65.300 25/10/2009 00:00:00
3499.0 0.490 195.370 8.330 21.500 1.340 13.300 178.200 1.330 5.360 25.100 15/ 5/2004 18:00:00
3559.0 0.230 166.660 5.450 159.400 1.480 8.020 109.0 0.0 0.0 0.0 1/ 4/2009 00:00:00
3625.0 0.380 208.430 9.730 126.700 2.020 6.510 121.100 0.830 7.090 70.0 12/12/2006 21:00:00
3659.0 0.280 226.830 7.410 142.700 2.050 8.060 142.100 0.0 0.0 0.0 5/ 5/2005 15:00:00
4155.0 0.390 172.960 5.810 25.500 1.620 7.480 57.300 0.0 0.0 0.0 1/12/2006 03:00:00
4548.0 0.200 209.310 8.090 120.600 2.770 14.110 146.400 0.0 0.0 0.0 21/ 5/2007 00:00:00
4659.0 0.340 200.120 9.520 123.500 1.580 7.070 100.0 1.210 11.990 209.900 13/11/2007 03:00:00
4681.0 0.410 167.260 6.400 281.700 1.560 8.340 65.800 0.670 3.390 304.200 10/ 4/2004 18:00:00
4687.0 0.500 142.600 11.010 304.900 2.150 8.060 53.700 1.720 5.540 332.800 12/ 7/2009 15:00:00
4759.0 0.130 64.410 5.840 208.500 1.570 9.190 93.100 0.850 4.120 221.700 12/ 6/2009 18:00:00
4983.0 0.270 199.230 5.550 285.400 1.660 8.380 36.400 0.550 3.530 295.400 14/ 1/2007 09:00:00
4999.0 0.440 178.610 3.930 282.200 1.520 9.360 158.0 0.280 2.890 259.100 11/12/2004 09:00:00
5172.0 0.350 169.350 6.0 209.700 1.0 7.130 52.900 0.660 4.720 220.300 10/12/2004 18:00:00
5559.0 0.310 198.260 4.320 226.300 1.900 14.490 83.300 0.180 2.170 248.700 25/ 6/2007 03:00:00
5675.0 0.150 163.080 6.900 236.600 1.930 13.0 177.800 1.070 5.120 240.500 22/ 1/2007 12:00:00
5983.0 0.570 213.710 11.120 161.100 2.570 8.0 180.0 0.0 0.0 0.0 14/ 9/2005 06:00:00
6059.0 0.190 282.120 11.200 183.500 1.940 6.050 185.200 1.330 8.700 53.0 17/ 1/2004 09:00:00
6103.0 0.140 289.010 7.560 168.200 3.280 11.920 185.700 0.0 0.0 0.0 27/ 4/2005 21:00:00
6148.0 0.200 5.210 7.320 196.300 2.620 10.430 198.200 0.0 0.0 0.0 6/ 5/2006 18:00:00
6155.0 0.260 358.330 8.640 207.800 2.420 10.470 187.400 0.0 0.0 0.0 5/ 5/2006 15:00:00
6159.0 0.240 229.480 10.880 157.500 2.600 6.040 174.900 0.0 0.0 0.0 28/ 7/2007 15:00:00
6175.0 0.160 229.690 10.470 169.400 2.770 7.520 162.300 0.0 0.0 0.0 6/ 2/2005 15:00:00
6548.0 0.260 196.140 6.240 200.0 2.130 10.780 186.200 0.0 0.0 0.0 15/ 5/2006 06:00:00
6624.0 0.240 243.570 8.920 195.600 1.730 6.390 207.500 1.170 7.470 58.700 21/11/2005 09:00:00
6655.0 0.220 243.380 7.590 175.200 3.760 14.090 205.500 0.0 0.0 0.0 17/ 6/2008 12:00:00
6690.0 0.370 220.130 8.480 185.200 1.580 6.180 194.400 1.290 10.660 139.0 17/ 9/2005 21:00:00


