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ABSTRACT

Conversational agents or chatbots are increasingly employed in commercial applica-
tions to answer questions and to recommend items. Despite their success, they usually
behave as black-boxes from the user perspective, typically failing to produce high qual-
ity human-computer interactions. Thus interpretability is a major concern for the next
generation of recommendation systems. This work addresses challenges related to the
development of a recommendation system that can explain its own suggestions. Fur-
thermore, this work evaluates the impact of different explanation generation techniques
both in simulated interactions and in tests with human subjects. This work present novel
model-agnostic methods that address challenges of explanation generation in the context
of knowledge embedding based conversational recommendation systems, such as: expla-
nation fidelity, graph incompleteness, time to response constraints and reasons against
generation. Finally, this research evaluates the technical feasibility of such methods with
simulated experiments and shows preliminary on user perception of the generated expla-
nations.

Keywords – Conversational Recommendation System, Explanation, Recommendation
System, Interpretability, Knowledge Graph, Knowledge Embedding.
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1 INTRODUCTION

“Causal explanation takes the form of
conversation and is thus subject to the rules of

conversation.”

-- Hilton

We all need to make a number of decisions everyday. What recipe should I cook?

Should I buy X instead of Y? What movie should I watch? While most of these decisions

are harmless, e.g. a poor movie choice to watch on a Saturday night, some of them may

have serious implications. For example, the physician’s decision whether to operate on a

patient or not, or the HR recruiter’s choice among all applicants of whom will be hired

or not. These are examples of high stake decisions that must not be taken lightly.

Unfortunately, high stake decisions are not restricted to positions of power, such as

those of a physician or a recruiter, but they are also a part of common daily routine.

Suppose, for instance, that you are an undergraduate student and you need to choose

which subjects apply for the next semester. If you register into a class that does not

fit your interests, you will likely have a sub-optimal learning experience and your next

application window will only be open next semester. A bad application decision can be

very expensive both in terms of time spent and learning experience.

One could argue that the solution for high stake scenarios should simply be to evaluate

all the available options carefully. In fact, this could work well when the set of options is

small; however, in most real-world cases the set of options is too large to be completely

inspected within acceptable time.

A Recommendation System (RS) can be used to play the role of an expert that

filters the available options to only contain the most promising ones, so that users can

focus their attention and make assertive decisions more efficiently. RSs typically employ

algorithms that behave as black-boxes from the user perspective. It is commonly stated

that performance and interpretability are opposing goals in machine learning [1]; however,

matters are more delicate in the context of RSs, as performance itself depends on trust [2]

and high interpretability is bound to increase trust — when interpretation fails, existing

RSs may fail in surprising ways [3]. It is hard to expect any user to blindly follow the

recommendations of a black-box when an important decision is at stake. In such scenarios,
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the user wishes to understand the rationale for recommendations in order to trust them.

To achieve high performance while maintaining interpretability, previous proposals

have explored explanation generation methods [4,5]. Such methods are typically indepen-

dent from the RS algorithm, so that the RS can remain complex while its recommendations

are escorted by proper explanations.

In this work, we investigate explanation generation in one type of RS, the Conver-

sational Recommendation System (CRS). Such systems resort to dialogue to grasp the

user needs and to build accurate recommendations. Differently from traditional RSs that

typically operate in an offline manner, a CRS is subject to the strong time constraints of

interactive applications; if an explanation is to be provided, it must be produced quickly.

No user will wait a minute to grasp the reasons why a particular product has been sug-

gested. The research on explainable AI often pays little attention to the time required to

generate explanations and its viability in interactive applications; existing methods may

take dozens of seconds to explain a single decision [1, 6]. In this work, we consider these

circumstances.

Explanations presumably enhance transparency and trust. However, explanation gen-

eration techniques now in use in RSs focus solely on advocacy for the recommended op-

tions. By describing only the benefits of those options, they may fail to offer a balanced

perspective to the user, ultimately generating some mistrust. A user may grow suspicious

of an explanation that is not transparent about possible downsides of the recommenda-

tions. We here argue that an RS should provide responsible explanations in the sense

that both reasons for and reasons against explicitly escort recommendations. We take

Snedegar’s theory of reasons for/against [7], a philosophical theory of practical reasoning,

and realize it in the context of CRSs. For this, we start with existing procedures that

generate reasons for by analyzing paths in knowledge graphs and their embeddings [4,8].

We then modify such procedures so as to detect paths (or their absence) that count as

reasons against. Snedegar’s theory relies on five schemes of reasons against; we examine

their computational implementation in an interactive dialog application and identify the

most promising strategies. We also describe a CRS we have implemented and its practical

operation with reasons for/against. We additionally, carried out experiments with human

subjects that show our approach to responsible recommendations to yield higher overall

trust in the explanations generated.
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1.1 Goal

The main goal of this research is to improve explanation generation methods for

conversational recommendation systems. We cover two major research topics:

• Online Explanation Generation: we focus on explanation generation under time

constraints; we address the challenges of interpretability methods in online applica-

tions such as interactive dialog systems.

• Responsible Explanations: we offer explanations for recommendations that lead

to a more trustworthy and transparent human-computer interaction.

To address the first topic, we argue that methods based on knowledge embeddings

(instead of large-scale knowledge graphs) can lead to efficient explanation generation while

maintaining high fidelity, model-agnosticism and coverage. To approach the second topic,

we rely on a conversational model [9, 10] coupled with reasons for and against, so as to

produce improvements in the user’s trust and transparency perception.

The expected outcome of this research includes the development of model-agnostic

explanation generation methods for knowledge-embeddings in the context of recommen-

dation systems that provide faithful and high coverage explanations while dealing with

time to response constraints. We hope this work will represent a step forward trustworthy

conversational recommendation systems that effectively assist its user’s decision-making

process. The trust dimension, which we expect to improve with this research, may increase

the social acceptance of conversational commerce and contribute to the development of

this emergent industry.

1.2 Organization of this Manuscript

This document is organized as follows: Chapter 2 presents the main conceptual aspects

and relevant background to our research, such as conversational recommendation systems,

knowledge graphs and interpretability. In Chapter 3 we discuss our proposals, with their

strengths and weaknesses. Then Chapter 4 describes the machinery used in this work

implementation, alongside with our evaluation methods. Finally, Chapter 5 shows our

preliminary results and Chapter 6 summarizes our contributions and suggests future work.
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2 BACKGROUND

“If I have seen further than others, it is by
standing upon the shoulders of giants.”

-- Sir Isaac Newton

This section presents notation and terminology, and some theoretical foundations

about the main concepts needed in this work. Firstly, we briefly describe the common-

est taxonomy for recommendation systems and highlight the class of knowledge-aware

content-based recommendation systems; there lies the focus of this research. Next, we ex-

plore the underlying mechanisms of knowledge-aware recommendation systems, discussing

in detail their core components: knowledge graphs and embeddings.

Once we have covered the building blocks of recommendation systems and knowledge

graphs, we dive into the limitations of these embedding-based models from an inter-

pretability perspective. We focus on explanation generation strategy as source of inter-

pretability for opaque models such as embeddings. Next, we discuss the strengths and

weaknesses of the commonest approaches involved in the explanation process.

2.1 Recommendation Systems

Recommendation systems provide suggestions for items so as to support user decision-

making [11]. User interests are usually expressed as a historic profile of actions or ratings.

Despite their success [12] (Amazon’s CEO reported in 2006 that almost 35% of their sales

originated from recommendations), recommendation systems often face difficulties with

cold starts and changes in user interests. Recent efforts have explored adaptive behavior,

reinforcement learning and dialogue systems [13,14].

Recommendation systems can be classified into six groups [11]: Content-based (CB),

Collaborative filtering (CF), Demographic, Knowledge-based, Community-based and Hy-

brid. Content-based systems are built under the assumption that a given user would

prefer similar items rather than different ones. While intuitive, the CB assumption may

not hold if user preferences are too diverse or drifts over time. In contrast to CB ap-

proaches, collaborative filtering assumes a given user would prefer items previous selected
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by other users with similar tastes to hers.

All RSs, from the six categories, aim at identifying similarities, but their targets

are different. While content-based systems are based on item description, collaborative

filtering, on the other hand, considers similarities between users interests, so that it recom-

mends items regardless of whether they are similar or not to the user profile. Knowledge-

based recommendation relies on expert beliefs about how items meet users needs and

preferences. Community-based and demographic systems are based on features of the

user herself. Hybrid RSs simply combine strategies.

Even though collaborative filtering techniques are the most popular among traditional

applications, content-based systems are notably powerful techniques in domains where

data about users preferences is scarce. Consider a scenario where you do not have a

historical record of user choices, e.g. a new user starts using your recommendation system,

it would be impossible to use a collaborative filtering system due to the lack of data; this

challenge is known as cold-start [15]. As content-based systems do not depend exclusively

on user profiles, they can avoid difficulties like cold-starts; besides, they can be associated

with collaborative filtering techniques [16,17].

An emergent class of state-of-the-art content-based techniques, knowledge-aware ones,

typically benefit from heterogeneous information networks or general knowledge graphs

to model item contents [18, 19]. These graph-like structures provide enough flexibility

to incorporate item descriptions from multiple sources and formats (e.g. tabular, image,

text, etc) so that the recommendation content can be modeled more expressively than

traditional user-item interaction matrices.

One way to build content-based systems is to rely on latent feature models that map

semantically rich features into numerical vectors. Such embeddings are expected to map

similar items to nearby vectors; thus one can select items that are similar to any given

item.

In this work we analyze graph-like approaches from the unified perspective of knowl-

edge graphs and their related latent feature models, called knowledge embeddings. Both

concepts are discussed in detail in Section 2.2.

2.2 Knowledge Graphs

In this work, we loosely follow the RDF notation [20], focusing on datasets where a

triple representing a fact is written as 〈h, r, t〉 where h, r and t are, respectively, the subject
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(head), predicate (relation) and object (tail). A knowledge graph KG consists of the set

of all entities E = {e1, . . . , eNe}, and the set of relations R = {r1, . . . , rNr}, where Ne and

Nr represent the number of entities and relations in the knowledge graph, respectively.

The existence of a triple xh,r,t = 〈h, r, t〉 is indicated by a random variable yh,r,t ∈ {0, 1}.

To illustrate, the statement:

Jane Doe’s parents, John and Mary Doe, are married to each other.

can be expressed via the set of facts represented by the triples in Table 1. We can combine

all these triples into a knowledge graph (see Figure 1), where nodes represent entities and

directed edges represent relationships between them. The direction of an edge indicates

whether an entity stands as subject or tail in the given relationship.

triple

〈jane doe, parent,mary doe〉
〈jane doe, parent, john doe〉
〈john doe, spouse,mary doe〉
〈mary doe, spouse, john doe〉

Table 1: Sample knowledge base. Repre-
sent triples of type 〈subject, relation, tail〉.
Analogous to the Figure 1 knowledge graph. Figure 1: Sample knowledge graph.

Large-scale knowledge graphs (KG), such as Freebase [21], are often built by auto-

matic knowledge base construction [22]. Automatic knowledge base construction aims at

extracting factual information from unstructured or semi-structured textual data typically

using natural language processing (NLP) techniques. A KG built automatically, although

less dependent on human experts than curated KGs, has usually limited applicability due

to missing or incorrect facts. The collaborative construction of KGs may also lead to

missing or incorrect data that may be unknown by the volunteers filling the KG.

While existing triples encode known true or positive relationships between entities,

there is no explicit representation for false relationships in a knowledge graph. For in-

stance, the statement: “Jane Doe has a sibling called Bob” can be encoded by the triple

〈jane doe, sibling, bob doe〉. However the exact opposite, i.e. “Jane Doe doesn’t have

a sibling called Bob”, typically, can only be efficiently encoded by the absence of the

triple. Therefore, there is no clear distinction between false and unknown facts in a KG.
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Indeed, there are two paradigms for the interpretation of non-existing triples: the open

world assumption (OWA) or closed world assumption (CWA) [22]. The OWA considers

a missing triple as simply unknown, whilst CWA considers missing facts as negative.

Knowledge graphs are often incomplete, i.e. many triples representing true relation-

ships are missing. For instance, the place of birth attribute is missing for 71% of all

people in Freebase in 2012 [23], a KG that was constructed collaboratively. Be it due to

the limitations of KG building techniques in extracting all knowledge from unstructured

sources or due to the inherent incompleteness of the source itself, it is hard to guarantee

that all true facts are mapped and that the absent triples are composed by only false

relationships.

It is really hard to assume closed-world for a large-scale KG, such as NELL [24],

because it would imply an NLP technique able to capture all the knowledge textually

described in the web and that the web has no missing information — two assumptions

that are unlikely to hold. In this work we adopt the OWA for KGs.

Several approaches have been developed to address the task of Knowledge Base Com-

pletion (KBC), i.e. to distinguish between true and false facts among the unknown triples

in a KG. The main assumption behind those methods is that it is possible to predict new

facts from a statistical model based on existing facts (triples) [22]. There are two major

approaches for KBCs: the first one focuses on observable graph features, while the second

one works by converting semantically rich factual information into low-dimensional vector

spaces. We now examine both approaches.

2.2.1 Graph Feature Models

These models aim at predicting new facts by extracting features from the observed

graph [22]. To illustrate, consider again our example about Doe’s family tree (see Fig-

ure 1). Assume we have a knowledge graph representing several family trees and we want

to predict parenthood relationships. Imagine that the triple 〈jane doe, parent, john doe〉
is one of the missing facts in our KG and our task is to predict if John is parent of Jane.

Graph feature models leverage patterns from existing relationships in the KG to pre-

dict missing facts. In our toy example, it means to go through all other family trees in

the graph and see what relationships typically connect people with their parents. For

example, it reasonable to expect that married parents are a common pattern. Thus, the

fact that John is the spouse of Jane’s parent, Mary, suggests a parenthood relationship
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between them.

A popular graph feature model is the Path Ranking Algorithm (PRA) [25]. PRA

searches for paths in the graph connecting entities whose relationship we are trying to

predict. We say that path πl is PRA-styled if it consists in a number l of arbitrary

relations (directed edges of the graph) in the form r1 → r2 → ... → rl. In our example,

the married parents pattern, parent→ spouse, is a PRA-styled path of length 2 because

it connects father and daughter in the graph.

A number of popular techniques based on graph feature models are inspired by the

Path Ranking Algorithm (PRA) [25]. In particular the Subgraph Feature Extraction (SFE)

[26] method has displayed promising performance and computational efficiency. SFE

operates by performing random walks in the knowledge graph to extract PRA-styled

features, to latter construct a feature matrix where the existence of each path is the

feature value. Then, the feature matrix is used to train a classifier. The SFE classifier

attributes a weight to each feature, corresponding to how relevant it is to the prediction

task. To illustrate, it is expected that suggestive paths like the married parents pattern,

parent→ spouse, will receive a highly positive weight while spurious paths will be zeroed.

The features extracted by SFE are taken to be easily interpretable [22].

Alternatively to the PRA-styled features, a more expressive approach, known as one-

sided path features, consists in relaxing the condition where the path must connect both

head and tail entities present in the predicted relationship. Consider the task of predicting

if the triple 〈eh, r, et〉 holds. While the path πl needs to connect both eh and et to be

considered a PRA-styled feature, we might only require it to connect a single one of them

to be a one-sided feature. To illustrate one-sided features expressiveness, imagine that our

task now is to predict Jane’s religion based on her family and other demographic attributes

(e.g. gender, profession, etc). Now, lets focus on the profession attribute. We could

model the correlation between religion and profession using either the PRA-styled feature

profession ← profession → religion or the one-sided path profession → ei, where ei

represents any entity in the graph. While the first tells whether people with the same

profession usually have the same religion, the later measure the correlation between people

who have a specific profession ei and their religion. While the profession information is

irrelevant overall, it can be highly correlated with religion for a few particular cases. For

instance, if we know in advance that Jane is an engineer, it does not tell much about her

religion, however, if she is a nun, it is reasonable to predict her religion as catholic. Unlike

the PRA-styled features that cannot differentiate professions with high correlation (e.g.

nun, rabbi, pope, etc) from the overall, one-sided paths are expressive enough to capture
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these patterns.

Despite being valuable techniques in the field of knowledge base completion, graph

feature models heavily rely on feature engineering and on intensive computing to operate.

Besides PRA-styled and one-sided features, the literature is filled with other feature de-

signs, each one more appropriate than the other depending on the specific domain. It is

thus hard to generalize. Furthermore, the applicability of graph feature models is limited

by the incompleteness of knowledge graphs. As we discussed, these models are intended

to address incompleteness by predicting new facts; however, the models themselves rely

on observable features from the original graph to make predictions. When the graph is

severely incomplete, it is not unlike to find that most triples without a single feature

value [27].

The performance of graph feature models has recently being surpassed by a new class

of techniques based on knowledge embeddings. In the next section we will discuss how

embeddings operate and their key limitations.

2.2.2 Knowledge Embeddings

Approaches based on knowledge embeddings (KE) now display state-of-the-art per-

formance in knowledge base completion [28]. The main intuition behind embeddings

is that interactions betweem latent features capture actual relationships [22]. Embed-

dings operate by learning such latent features from observed data and using them to

infer missing facts in the original knowledge graph. To illustrate, consider again our

knowledge graph representing family trees. We could encode the entities in the triple

〈jane doe, parent, john doe〉 using a bi-dimensional real-valued embedding ei ∈ R2 where

the two latent features are “kin” and “age”, as follows:

ejane =

[
0.1

0.2

]
, rparent =

[
0.0

0.2

]
, ejohn =

[
0.1

0.5

]
. (2.1)

Here, we say the first dimension of the embedding corresponds to “kin” while the

second is directly related to “age”. In our toy embedding model, we can tell that both

Jane and John are of the same kin since their embedding first dimension has the same

value 0.1. In addition, by looking at the other dimension, we can also say that John is

older than Jane (0.5 > 0.2). We say that kin and age are latent because they cannot be

directly observed from data (there is no explicit relation in the KG representing them).
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Note that unlike our toy example, embedding dimensions typically do not carry explicit

meaning and are hard to interpret.

Because modeling techniques can be both diverse and complex, many embeddings

have been proposed, each one with distinct characteristics [29,30].

Typically, a model based on an embedding defines a particular scoring function fr(h, t |
Θ) to measure the plausibility of fact 〈h, r, t〉, where Θ is a set of parameters or dimensions.

The greater the plausibility score for a given fact, the more likely it is to hold. For example,

in our toy example, we might infer parenthood relationships by looking at people with

the same kin but older. This simple rule can be modeled as a linear translation of the

age dimension. For instance, to tell whether John is Jane’s parent, we can increase the

Jane’s age dimension while maintaining her kin (rparent = [0.0, 0.2] ) and see if John’s

embedding is anywhere near, i.e. ejane + rparent ≈ ejohn. If we apply euclidean norm as

distance measure, this translational inference model can be described by the plausibility

function − ‖ h + r− t ‖ 1
2
, which corresponds to the TransE [29] model. There we have:

fparent(jane, john | Θ) = − ‖ ejane + rparent − ejohn ‖ 1
2

= −

∥∥∥∥∥
[

0.1

0.2

]
+

[
0.0

0.2

]
−

[
0.1

0.5

]∥∥∥∥∥
1
2

= −
√

(0.1 + 0.0− 0.1)2 + (0.2 + 0.2− 0.5)2

= −0.1.

Embedding models build the latent features through an optimization process that

maximizes the total plausibility of all known facts. It thus has to find, for each entity,

the optimal embedding representation that leads to a positive inference for all (or at least

most) triples in the KG. The plausibility score should be a measure of how likely a given

triple is to hold; however, by looking at the value alone we miss a comparison scale to tell

whether a fact has high or low plausibility. For example, we can tell that the plausibility

of John being Jane’s parent is −0.1, but that does not answer whether John is indeed

Jane’s father. One approach to effectively answer that question is to fit a plausibility

threshold δr, specific for each relation r, that represents the minimum plausibility score

for a triple to hold or to be told true; i.e. holds(h, r, t) when fr(h, tN | Θ) > δr. For

example, if we observe on a validation set that parenthood relationships that presents

plausibility greater than −0.15 are likely to hold, we can infer that John is Jane’s father.

This inference procedure is known as triple classification (TC).
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Despite being originally proposed for knowledge base completion, we should note

that embeddings are also used to produce recommendations [19, 31] and to answer ques-

tions [32]. While triple classification is enough for tasks related to knowledge base com-

pletion, these other applications rely on plausibility ordered entity rankings. For example,

consider a system that employs a knowledge embedding to recommend films. Even if the

embedding is accurate at triple classification, i.e. telling whether a given user would like a

movie or not, the system is more concerned if the embedding is able to rank order among

the ones the user will enjoy the most. This task of rank ordering entities accordingly to

the plausibility score is known as link prediction (LP) or entity ranking.

So far we have discussed inference mechanisms over knowledge graphs and their em-

beddings. As we mentioned, embeddings operate on a latent-feature space to make in-

ferences. Because the latent features or embedding dimensions are specified as a result

of an optimization process and carry no explicit meaning, the plausibility function or the

embedding itself is a rather opaque model.

2.3 Interpretability

Opaque models, such as the ones produced by embeddings, create obstacles to the

interpretability of recommendations [33]. Here we take interpretability as the degree to

which a human can understand the cause of a decision [9]. A device may be transparent

in that the user can access all elements of its operation, yet its output may have low inter-

pretability. When interpretability is low, one possible strategy is to generate explanations

for the decisions.

An explanation can be perceived as the answer to a “why” question [9]. From this

definition, the act of explaining takes the form of a social interaction between at least

two agents: the explainer and the explainee. The explanation model proposed by Miller

(Figure 2) argues that the explanation is a compound process with two elements, the

cognitive and the social. While the first describes the process of identifying the causes

why a given decision was made, the second is the process of conveying or communicating

such reasons to the explainee. We now examine both processes.

2.3.1 The Cognitive Process

Several techniques have been developed to shed light on opaque models by generating

explanations. These techniques can be divided in two groups: model-specific and model-
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Figure 2: Visual representation of the explanation processes.

agnostic. The first one is bound to specific classes of models; these techniques usually

have access to internal or structural information about the explained device. On the other

hand, the model-agnostic techniques can be applied to any machine learning model, as

they consider the explained device as a black-box, i.e. do not make any assumptions

about its internal behavior.

A popular model-agnostic approach is the construction of interpretable surrogate mod-

els. These surrogate techniques vary in scope: some aim to explain the model of interest as

a whole (a global or holistic approach) while others focus on a single or a set of predictions.

2.3.1.1 Global Surrogate

The global surrogate technique consists of training an intrinsically interpretable model

using the black-box predictions as ground truth, so that the global surrogate mimics the

black-box model. If the global surrogate is intrinsically interpretable, explanations about

the black-box model can be drawn from it. However, because the black-box model is

presumably complex, it is not to be expected that another model (the global surrogate)

can mimic its behavior in a faithful manner while remaining simple and interpretable;

Figure 3 depicts the global surrogate method in high-level. Also, if a faithful interpretable

model is achieved, one could ask why keep the black-box model itself.

2.3.1.2 Local Surrogate

One popular model-agnostic strategy consists of reducing the scope of the surrogate

model [1]. The interpretable model is then expected to mimic the black-box behavior

only partially.

The main intuition behind local surrogates is that an interpretable and simple model

should be faithful to a complex model at least locally. Here, intuitively, the simple model

extracts the part of black box behavior that explain the particular prediction in hand. So,
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Figure 3: Global surrogate high-level schema.

even though each local-surrogate is only able to explain a single or a few cases, their value

consist in being able to faithfully untangle the complex black box and summarize only its

behavior of interest. For instance, suppose that one intends to use a local surrogate to

explain a single prediction of a black-box. First, the input data of interest is perturbed,

generating a set of variations of the original data (a “neighborhood”). This set of data

points around the original input are then fed to the black-box model that provides labels.

Finally, an interpretable surrogate model is trained with the data points around the

original input and their respective labels given by the black-box. Figure 4 depicts the

local surrogate method in high-level.

Figure 4: Local surrogate high-level schema.

Often, local surrogate models with complexity constraints are defined as follows:

explanation(x) = arg min
g∈G

L(f, g, dx) + Ω(g). (2.2)

The explanation given for the instance x is the interpretable model g∗ ∈ G, where G
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is the set of all possible models that minimizes the loss function L and the complexity

constraint Ω. The loss function measures the unfaithfulness of the surrogate model g

to the black-box function f considering the neighborhood around instance x limited by

the distance parameter dx. The complexity function Ω balances the trade-off between

interpretability and fidelity; it may be for instance a measure of model sparsity.

It is worth noting that if Expression (2.2) covers the entire training set instead of the

neighborhood dx, the resulting model g∗ corresponds to a global surrogate.

One of the most popular local surrogate techniques is LIME [1]. Roughly speaking,

LIME runs a sensitivity test around the instance of interest, then it presents as explana-

tions the most significant features for each label. Even though it is effective in producing

explanations virtually for all kinds of data, e.g. tabular, textual or visual data, LIME

is limited to non-relational classifiers. LIME explains based on the assumption that fea-

tures themselves are interpretable, a weak assumption in the context of embeddings. For

instance, LIME, when applied to a binary text classifier, produces explanations such as

“Word XYZ is significant for the prediction”; similarly, when applied to embeddings,

LIME explanations would be such as “Dimension 123 is significant for the prediction” —

a sentence that is hard to interpret because the dimensions are latent features and, thus,

convey no meaning for users.

The dimensions of an embedding are part of the underlying structure of the model, so

explanations should rely only on features from the semantic field instead. Multi-relational

classifiers require techniques for mapping real-valued latent features to the semantic field

in order to produce human-friendly explanations.

Furthermore, local-surrogate based methods are often time expensive because they

demand a new interpretable model to be trained from scratch to explain a single deci-

sion. The operations for generating the neighborhood around the instance to be explained

and, consecutively, for training the surrogate model represent an overhead that may be

unfeasible for domains that require low response time, notably online and interactive

applications. For instance, Listwise Explainer (LISTEN) [6], which is based on LIME,

explains rankings faithfully by training an local-surrogate model – similarly to LIME [1].

Despite promising results, LISTEN is not suitable for explanation generation at scale in

real-time environments due to the high computational cost at online training a surrogate

model for each recommendation. Alternatively, Hoeve et. al (2018) proposes Q-LISTEN,

where a Neural Network learns the underlying explaining function: while the time to

produce an explanation decreases considerably, the surrogate itself becomes a black-box.
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2.3.2 Social Processes in Explanation

The techniques we discussed earlier in the Section 2.3.1, alongside with most of the

research work available in the literature, focus on the cognitive step of the explanation

generation but do not completely address the underlying social process involved. For

instance, LIME claims to be able to explain the predictions of any classifier to lay users,

however it does not fully consider to whom its explanations are directed or in what

contexts. LIME depicts its explanation as an array of weighted features in a visual form.

While this format may be appropriate for a machine learning practitioner debugging a

model offline, it may not provide all the details needed for instance by a regulator.

The social process includes the act of explaining as the interaction between agents

unfolds; thus, while designing an explanation, it is important to take into account what

is the target audience, the communication channel where the interaction takes place and

which social roles these agents (the explainer and the explainee) play. To address these

questions, we examine below the explanation conversational model and briefly discuss

some ethical concerns related to the social process.

2.3.2.1 Conversational Model

The conversational model of an explanation [10], which the Miller framework is built

upon, argues that an explanation is inherently a form of dialogue, thus it is tied to the

rules of a conversation as stated in Grice’s maxims [34]. In short, to say an explanation

is conversational means that it is faithful to the explainer beliefs about what caused

the given decision, it is relevant, simple and presented in a meaningful manner to the

explainee. It is worth noting that even though the term “conversational” may suggest

natural language, this model is not restricted to it.

Further extensions of the explanation conversational model incorporate argumentation

in the explanatory dialogue [35–38]. These works claim that explanations are not only

intended to communicate the causes behind a given decision but also to justify why it is

the correct one. Notably, when the explainer is the same agent who made the decision

or is bounded to it, the explanation is likely to be designed so that it presents reasons

supporting its own claims.

This argumentative model highlights that the explainer and the explainee might dis-

agree or have conflicting interests about the decision being explained, so that the ex-

planation serves to defend one or another claims. Moreover, one could argue that the
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persuasive property of explanations might be exploited by the explainer to convince the

explainee even when the decision should in fact be refuted; indeed, this is a concern we

discuss in the next section.

2.3.2.2 Responsible Explanations

In Section 2.1, we discussed that interpretability, and consequently explanations, are

desirable when it is necessary to establish a trust relationship between an AI system

and its end user. However, it is hard to expect any user would trust a system whose

explanations are designed to persuade her into agreeing with its decisions. The system

would be like the salesperson who always proposes products with complimentary words,

as opposed to the salesperson who frankly discusses the advantages and disadvantages of

products. We conjecture that a perceptive customer will gradually favor a salesperson

who chooses sincerity over persuasion. Indeed, in the marketing and retail literature,

empirical studies [39–42] suggest that negative reviews tend to be more effective than

uniformly positive ones.

The conversational model for explanations does offer useful information to the user;

however, we argue that it runs into a difficult balancing act [43]. For instance, lets

assume that while the company’s interest lies in increasing its own sales, the client wants

to make the best purchase. The company and the client goals may oppose each other if

no product available fits the client interests because the best purchase would be not to

buy anything at all. In such a scenario, if the explanation is designed to persuade the

client to buy a product that does not fit her interests, it potentially leads to mistrust and,

thus, jeopardize the explanation’s own purpose. For example, in retail industry, there

is evidence that customers do trust more online reviews from other buyers than seller’s

statements [44].

We refer to responsible explanation generation techniques as those techniques that

avoid mistrust due to conflicts of interest. In Section 3.3 we address this issue with a

novel proposal.

2.4 Related Work

In this section we investigate the literature on interpretability of knowledge graph

embeddings and on recommendation systems. We first discuss the insights and limita-

tions of explanation generation techniques focused on knowledge embeddings and, then,
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we address the work on explainability of recommendation systems related to knowledge

graphs. Finally, we sum up the limitations of the most relevant references in a qualitative

comparative table and identify a research gap.

2.4.1 Interpretability of Knowledge Embeddings

Many proposals related to the interpretability of knowledge embeddings follow the

model-specific approach, e.g. ITransF [45], SimplE [46] and CrossE [47].

SimplE asssumes that each dimension of an entity embedding can be considered a

feature and the corresponding element of a relation representation is a measure of how

important that feature is to the relation. Even though this characteristic provides a certain

degree of transparency, it does not seem to be really interpretable. The model allows one

to include background knowledge into the embeddings, however since its interpretability

focuses on embedding dimension, it is not possible to drawn meaningful explanations for

its predictions.

Similarly to SimplE, ITransF also deals with interpretability on the latent feature

level. ITransF proposes a sparse attention mechanism to represent shared concepts among

relations. For instance, both relations “nominated for” and “honored for” represent a

concept of high quality work even as they are distinct. The attention mechanism of

ITransF allows the identification of latent features, or concepts, however as these features

are given in the embedding level, they are not really interpretable. Back to our example,

even though we identify a strong link between the relations “nominated for” and “honored

for”, it is hard to infer what is the actual concept shared. Despite SimplE and ITransF

techniques provide a certain degree of interpretability, as their insights are mostly related

to the embedding internal structure and are given in terms of real-valued vector or heat

maps, their explanations are only understandable by data scientists or by experts.

On the other hand, CrossE exploits a particular type of interaction between relations

and entities called crossover interactions (CI) to explain embedding predictions in the

semantic field instead of the real-valued one. For instance, suppose one has to explain

the triple 〈personX, isFatherOf, personZ〉. An explanation that supports this triple

could be the path
hasWife−−−−→ hasChild−−−−−→ connecting head and tail entities. Despite being highly

interpretable [26] and faithful, once these support paths are reconstructed considering

not only the embedding, but also the knowledge graph, which is often incomplete, CrossE

method cannot explain all predicted triples; it is also not affected by negative instances,

i.e. cannot explain why a given triple is not true. Furthermore, CrossE restricts its search
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to crossover interactions only, while other proposals in the literature suggest that more

expressive types of graph features can produce better explanations [27] [26].

In contrast to the model-specific approaches described previously in this section, the

XKE method [27] is model-agnostic. XKE consists of training a global surrogate logistic

regression on SFE graph features while using the embedding labels, so that explanations

can be drawn from the interpretable classifier. Even though XKE is easy to interpret, it

displays relatively low fidelity [27].

2.4.2 Interpretability of Recommendation Systems

Apart from more traditional surrogate techniques like LISTEN (discussed in Section

2.3.1.2), there are recommendation systems that rely on large-scale knowledge graphs

for explanation generation; for instance, ExpLOD [4] and ASEMF UIB [8]. Both employ

semantic information about items to find similarities between user profiles (e.g., previously

liked items). For example, consider that an hypothetical recommendation system suggests

“Titanic” to someone who has watched “Avatar.” If the knowledge base contains the fact

that “James Cameron” directed both movies, then ExplLOD might utter: “I recommend

you Titanic because you are fond of movies directed by James Cameron like Avatar.”

The explanation might be even more transparent:“I recommend you Titanic because you

have been watching James Cameron’s movies lately.”

Despite producing human-friendly explanations, this sort of approach relies on com-

pleteness to work properly, a strong assumption considering the incompleteness of large-

scale knowledge graphs [22, 23]. If the graph does not contain the fact that “James

Cameron” is the director of “Titanic”, the recommendation system may fail to produce

an explanation.

Both ExpLOD and ASEMF UIB are based on an external source of knowledge, i.e.

knowledge graphs, to produce explanations and, thus, do not make any assumptions

about the RS internal mechanisms. These approaches are model-agnostic but may not

be faithful if the knowledge graph used to explain is not also being considered by the

recommendation system.

2.4.3 Research Gap

Table 2 highlights a research gap: explanation methods that are suitable for inter-

active, real-time settings, that display high coverage, that are both model-agnostic and
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faithful. This is exactly where the contributions in this work fit in. Also, note that none

of the related work provides responsible explanations as they do not discuss the social

aspects that impact trust in RSs.

Table 2: Comparative summary of related works

Method Lay User Model-Agnostic Faithful Real-Time High Coverage

SimplE [46] No No - No Yes
ITransF [45] No No - No Yes
CrossE [47] Yes No Yes Yes No
XKE [27] Yes Yes No Yes No
LISTEN [6] Yes Yes Yes No Yes
ExpLOD [4] Yes Yes No Yes No
ASEMF UIB [8] Yes Yes No Yes No
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3 PROPOSAL

“To achieve great things, two things are needed:
a plan, and not quite enough time.”

-- Leonard Bernstein

Before we examine our proposals, consider the following abstract recommendation

system based on knowledge graph embeddings. First, while interacting with the recom-

mendation system, the user must inform her preferences. Suppose that these preferences

are related to an entity eh in an available large-scale knowledge graph and that the KG

is built so that the edges of eh constitutes known interactions between items with the

given preference. For instance, we should find in the KG triples 〈eh, r, et〉 that links items

of interest to user preferences. Assume that our base recommendation system runs link

prediction using an embedding (built from the same graph) and returns the Top-N ranked

entities as recommendations. So, in our set up, the recommended items are the entities

in the graph that yields the highest plausibility score fr(eh, et | Θ). This is a conceptual

scheme that corresponds to the vast majority of recommendation procedures.

We propose the following use case, consider a recommendation system that suggests

a ranked set of University disciplines to a student based on her informed subject of

interest. In our use case, a University proposes this recommendation system to support the

enrollment process, the goal is to help students find disciplines that teach a given subject.

To illustrate the assumed recommendation mechanism, suppose class Exoplanets101 is

recommended to a student whose preference lies in astronomy. In this toy example, T is

the list containing plausibility values for all entities in E . We sort T in descending order,

and identify that Exoplanets101 is more related to astronomy than Aeronautics101 and

so on. Figure 5a presents this toy example in a bi-dimensional TransE embedding, where

the recommended items are ranked by their proximity to the translated vector. Note that

the recommendation mechanism in Equation 5b is agnostic to any embedding model since

it only assumes a generic plausibility function.

The recommendation procedure basically recommends the N entities that best fit as

a tail entity in the triple 〈h, r, ?〉, where r is a relation modelling how tail entities meets

user preferences h. For instance, in our example on astronomy, the user desires classes

about a theme of interest, so the relation r in this case could be “subject”.
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(a) Bi-dimensional TransE embedding.

T =

 fsubject(ea, e1 | Θ)
. . .

fsubject(ea, em | Θ)


(b) Ranking mechanism via plausibility score.

Figure 5: Abstract recommendation mechanism toy example.

We now present three interpretability methods. These proposals start from the ab-

stract recommendation mechanism described previously.

3.1 Faithful Explanations through Local Surrogates

Our first proposal is a novel model-agnostic explanation method for knowledge em-

beddings inspired by the local-surrogate approach adopted by LIME [1]. We address a

series of challenges due to the complex nature of embedding techniques and provide a

method to effectively produce faithful explanations for link predictions.

Explanations drawn from local surrogates usually are given in the form of weighted

features, which implies that the feature itself must be meaningful to the user. Even though

this is true for most traditional classifiers, in some cases, e.g. knowledge embeddings, the

features considered by the model to realize their predictions are too complex to be under-

standable or bear no explicit meaning for the target audience. In short, latent features

or embedding dimensions are inappropriate for human-friendly explanations. Features in

the explanations need to be different from the features (real-valued vectors) used by the

knowledge embedding.

To address this issue, we argue that the knowledge embedding itself should be used

to extract interpretable representations for entity embeddings, so that we can generate

meaningful explanations while remaining faithful to the model. This feature extraction

procedure is described below, but first consider some important definitions.

A knowledge embedding, for the top-1 tail prediction task, can be defined as a set of

black-box classifiers gr ∈ G, one for each relation r ∈ R, where gr(h|Θ) returns the tail
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entity et ∈ E that gives the greatest plausibility score fr for the triple 〈eh, r, et〉. That is,

gr(h|Θ) = arg max
ei∈E

fr(eh, ei | Θ). (3.1)

As there exists a real-valued vector representation for each entity ei ∈ E in the knowl-

edge embedding parameters Θ, we can define the classifier function gr so that it takes as

input the head entity embedding. That is,

gr(eh) = arg max
ei∈Θ

fr(eh, ei). (3.2)

We have defined gr(eh) as a classifier that takes the head entity embedding eh (or

tabular data) and outputs the most plausible tail entity (or label), thus gr and a tabular

data traditional classifier are alike.

Example 1. To illustrate our definitions, consider the toy example where we are interested

in the tail prediction for the triple 〈astronomy, topic of class, ?〉. Let us define:

T = [ftopic(eastro, ei | Θ), ei ∈ E ],

sort desc(T) =


f(eastro, eexoplanets101|Θ)

f(eastro, eaeronautics102|Θ)
...

f(eastro, em|Θ)

 , gtopic(astro|Θ) = exoplanets101. (3.3)

The list T represents the plausibility score calculated for all entities. Thus, to discover

the most plausible candidates for courses about astronomy, we sort T in descending order

and identify that the class most presumably related is exoplanets101, then aeronautics102

and so on. Our function gr returns only the top 1 ranked entity, in this case exoplanets101.

At this point, we should be able to train a local surrogate to gr. However, as its input

is given in terms of latent features, i.e. embedding dimensions, we still cannot extract

meaningful explanations. Thus, to proceed we need to answer the following questions:

1. Q1: What should be considered an interpretable representation for embeddings?

2. Q2: How to extract these interpretable representations from the embedding space?

To answer the first question we take graph feature models as alternatives [26]. Al-

though other feature types could be used, e.g. PRA-style features, we opted for one-sided
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path features due to their simplicity. As adopted in Section 2.2.1, the interpretable

representation provided by one-sided path features for an certain entity eh is simply

φh = [eπ : π ∈ ΠL]. Note the parameter L, which represents the maximum number of

relations in the path, enforces a complexity constraint, because it limits both the path’s

maximum length and the number of features.

Example 2. For instance, consider the comparison between the interpretable representa-

tion of astronomy φastro, and its real-valued vector eastro:

Π2 =


topic of class

difficulty
...

from category

 : φastro =


exoplanets101

hard
...

astrophysics

 , eastro =


0.9

1.2
...

0.1

 . (3.4)

In order to answer the second question, we propose to use the knowledge embed-

ding itself to extract the graph features. Formally, a path πl is a sequence of relations

{r1, r2, ...rL}. Since each path πl consists of a sequence of relations
r1−→ r2−→ ...

rl−→, where

ri ∈ R, we can use our classifiers gr (the knowledge embedding itself) to extract the

interpretable features for a given entity embedding.

Example 3. Back to our example, the embedding feature extraction for the compound

feature category − topic of the entity astronomy. First we discover the category of as-

tronomy using the function gcategory, then we inquire for her classes using gtopic. That is,

gcategory(astro|Θ) = astrophysics→ gtopic(astrophys|Θ) = mechanics101. (3.5)

Once we know how to map the embeddings to their interpretable representations, we

are ready to proceed. Suppose we wish to explain why et is a plausible tail entity for

the triple 〈eh, r, ?〉. First, we sample K data points around eh, similarly to LIME applied

to tabular data [1], thus generating a dataset Z of perturbed samples ẑk. It is worth to

mention that unlike LIME, we sample around the input original representation, instead

of its interpretable one.

Next, for each perturbed sample ẑk ∈ Z we realize the feature extraction procedure

previously described. That is,

φk = [eπ : gπ(ẑk), π ∈ ΠL]. (3.6)
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As a result of the previous step, we have the interpretable representation φk ∈ Φ for

each perturbed sample z ∈ Z. Finally, we train a intrinsically interpretable classifier,

such as a sparse logistic regression (SLR), g′r ←− SLR(Φ) and draw explanations from it

in terms of feature importance, e.g. the top n high-valued coefficients (Algorithm 3.1).

Algorithm 3.1 Local-Surrogate Explanation Generation

1: procedure extract-features(ẑk: perturbed sample, ΠL: explanatory path set)
2: φk = {}
3: for all π ∈ ΠL do . Equivalent to Equation (3.6)
4: eπ ← ẑk
5: for each edge rj ∈ π do
6: eπ ← grj(eπ)

7: φk ← φk ∪ eπ
8: return φk

9: procedure explain-instance(xh,r,t: query, L: path length, Θ: embedding)
10: 〈h, r, t〉 ← xh,r,t
11: eh ← h|Θ . Retrieve embedding for head entity
12: Φ ← {}
13: ΠL ← graph-features(L) . Generate set of path features
14: for k ∈ 1, 2, 3, ..., K do
15: ẑk ← sample-around(eh) . Generate perturbed sample
16: φk ← extract-features(ẑk,ΠL,G)
17: Φ ← Φ ∪ 〈φk, gr(ẑk), d(eh, ẑk)〉
18: g′r ← SLR(Φ) . Train interpretable classifier with φk as features and t as target
19: Draw explanations from g′r in terms of feature importance

3.2 High Coverage Explanations through Embeddings

Even though the method described in the previous section is able to provide faithful

explanations for a recommendation system based on knowledge embedding, it is expensive

in terms of computational cost. As we discussed in Section 2.3.1.2, local-surrogate models

based on LIME require a new model to be trained for every explanation, typically requiring

a prohibitive overhead in online applications.

Now we examine a simplification of the previous approach that produces faithful

explanations in a time scale feasible for interactive applications. In addition, this second

method enhances the interpretability techniques discussed in Section 2.4.2 by addressing

the incompleteness of large-scale knowledge graphs.

Now, we take an explanation to be a PRA-styled path of length L composed of

relations ri ∈ R connecting eh and et. For instance, the explanation for our toy example
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(the explanation that Exoplanets101 is about exoplanets, and exoplanets is a topic of

astronomy) could be modeled as the path of length 2:

astronomy
subject−−−−→ exoplanets

subject−−−−→ Exoplanets101

We must specify the set of possible explanatory paths π ∈ ΠL that, if found, are taken

to be explanations. We assume that such a set is specified by declaring the sequences

of relations that are permissible. It is important to adequately specify ΠL because there

might exist paths that do not provide any sensible explanation, even though they connect

eh and et; such meaningless paths should not be included in ΠL. Also, the more paths

we have in ΠL, the higher the computation time required. In small domains, i.e., KG

with a small number of relations, an expert may define ΠL manually; however in bigger

ones, we expect that automated approaches will be useful, such as graph feature selection

methods [26].

It is worth mentioning that when we filter the paths included in ΠL, we may end

up missing explanations. So, we must consider a trade-off between coverage and time

efficiency while conducting an explanation search. In any case, we assume that ΠL is

available.

To generate an explanation, we go through every path π ∈ ΠL starting from eh, using

a depth-first search (DFS), and if at the end of the path we find et, the sequence of nodes

visited from eh to et is taken as an explanation. Here the search-tree height is known

beforehand and equal to the path length L; for this reason we use DFS instead of say

breadth-first search.

It is important to recall that, due to KG incompleteness, we run this search in the

space of all completions of the KG as produced by the given embedding. However, the

KE is a real-valued continuous latent space and not a graph; how can we perform DFS

on it?

Clearly, a graph Ĝ can be build using the knowledge embedding. With triple classifi-

cation (TC) alone, we can build Ĝ by merely classifying all possible relationships between

entities E ×R×E , but we go further. With link prediction, we can also assign plausibility

scores to each edge in Ĝ so that we can discriminate which links are stronger. We assume

that the more plausible an edge is, the more expected or obvious is the relationship it

describes. As we want our explanations to be easy to understand, we prioritize edges with

a high plausibility in the DFS. This procedure is similar to the one described in Section

3.1, with the difference that previously we used one-sided paths as features and now we
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consider PRA-styled ones.

Again, we formally define a path as a sequence of relations π = {r1, r2, ...rL}. A path

exists only if we can find a sequence of entities Ω = {e1, e2, ..., eL}, where for all entities

ei ∈ Ω, each triple 〈ei−1, ri, ei+1〉 holds. We consider that a triple holds if the plausibility

score for it is greater than a given threshold δr, the same as in Triple Classification task.

That is,

fri(ei−1, ei) > δr, ∀ei ∈ Ω;

e0 = eh, eL+1 = et.

We start by assigning the head entity eh as the root node. Then we expand its

outgoing edge with the highest plausibility score considering the first relation r1 in the

path. We then repeat the procedure for the expanded node and the second relation in

the path, and so on.

To illustrate this procedure, consider the example of a depth-first search in Figure 6.

The nodes are sorted from the highest plausibility score in the left to lowest in the right.

The numbers in the arrows represent the order each node is visited. In this particular

example, an explanation is the path eh → e2 → et.

Figure 6: Depth-First Search toy example.

In short, in our first proposed method we had to train a surrogate model and compute

feature importance to know which features could explain the knowledge embedding pre-

diction. Now we assume that the important set of features ΠL is available beforehand and,

thus, avoid the step of re-training the surrogate model for every instance. To illustrate

the final result, consider the explanation example depicted in Figure 7; it tells us that

Exoplanets101 is recommended as it is about Exoplanets, which is a topic of Astronomy.
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3.3 Responsible Explanations through Reasons-Theory

At this point, we have a model-agnostic method that generates faithful explanations

(i.e. grounded on embedding inference mechanism) in acceptable response times while

keeping high coverage (i.e. able to explain most cases). However, these explanations only

offer justifications of the system choices. Because they do not shed light on the possible

downsides of recommendations, a perceptive user may feel that the explanations were

designed to solely persuade her into agreeing with the recommendation system choices,

as we discussed in Section 2.3.2.2. We claim that both reasons for and reasons against

should at least be explicitly presented to the user if we expect her to trust the suggestions.

So far we have been discussing proposals more tied to the cognitive process of an

explanation, i.e. focused on extracting reasons why the system predicted its recommen-

dations. Now, we enter in the social process of the explanation whose input are the reasons

collected in the cognitive step.

Suppose a system suggests item et for the user preference eh. We define as γ the

function that starts with the knowledge embedding parameters Θ and the path π, takes

inputs eh and et, and returns a set of reasons for the recommendation of et to eh. The

function γ represents the cognitive process of an explanation and, in the context of this

work, it is the DFS algorithm described in the previous Section 3.2.

We thus focus on the main technical challenge in this work: how to generate reasons

against a particular recommendation. To do so, we resort to the literature on practi-

cal reasoning in Philosophy, where we find Snedegar’s rather comprehensive theory of

reasoning [7], a philosophical study of reasons-theory.

Snedegar presents five schemes by which reasons against can be generated by an agent

contemplating competitive options:

1. (S1): a reason against an item A is a reason for a competing option;

2. (S2): a reason against an item A is only a reason for NOT A (not for any particular

other option);

3. (S3): a reason against an item A is just a reason for the disjunction of the other

options (say B ∨ C ∨D);

4. (S4): a reason against an item A is a reason for all of its alternatives.
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5. (S5): a reason against an item A explains (or is part of the explanation as to) why

A promotes or respects some objective less well than some other option.1

These schemes have been defined by Snedegar at a highly abstract level; we must

translate them to a concrete level. We present our implementations in the remainder of

this section.

Figure 7: Sub-graph highlighting reasons for Exoplanets101 (a turquoise) and Aeronau-

tic101 (b purple and c dark blue). For example, the turquoise path Exoplanets101
subject−−−−→

Exoplanets
topic of−−−−→ Astronomy is a reason for Exoplanets101.

Our implementation of S1 generates a reason against a given item by generating rea-

sons for other options. For instance, take the case where the system has recommended

two courses — Exoplanets101 and Aeronautics102 — as in Figure 7. A reason against

Exoplanets101 then would be that Aeronautics102 is about “Rocket Science”. The intu-

ition behind S1 is similar to the concept of opportunity cost. If you choose Exoplanets101

instead of Aeronautics102, you will miss the opportunity to learn about rocket science.

Scheme S2 is more delicate: how to define the negation of an item in the context of

recommendations? The vague nature of this question led us to skip this scheme.

1This scheme requires one to specify a quantitative objective.
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Our implementation of S3 goes through all competing options, collecting reasons for

them that are not reasons for the option of interest; we then trim the list of reasons

against to an arbitrary small number of reasons (e.g. 3). In our running example we

can imagine there is a third recommended course Astrobiology101 and as reasons against

Exoplanets101 we have that Aeronautics102, Astrobiology101 or both of them are about

rocket science. In practice, in our approach both S1 and S3 produce identical reasons

against.

The implementation of S4 is similar to that of S3 to the extent that S4 takes reasons

for all competing options into account (reasons against according to S4 are also reasons

against according to S3). An example of reason against Exoplanets101 using S4 would be

that both Astrobiology101 and Aeronautics102 from the example above are about rocket

science. The stringent nature of this scheme, where the intersection of reasons is required,

makes it hard to generate reasons against in practical circumstances.

To better illustrate the differences between S1, S3 and S4, consider a toy example

where a system recommended three options (1, 2 and 3) and produced multiple reasons

for each one of them, as showed in Figure 8. Note the sets of reasons for each option

are not necessarily disjoint, so intersections are possible, i.e. the same reason for may

be applied to multiple options. For S1, the reasons against option 1 are the union of

the reasons for its alternatives (option 2 and 3) that are not reasons for itself, which

is represented by the dashed area in Figure 8a. On the other hand, for S4, it is the

intersection, as presented in the Figure 8b.

(a) S1 and S3 (b) S4

Figure 8: Venn diagram representing the set of reasons for each option. Reasons against
option 1, according to schemes S1, S3 and S4, are dashed.

Scheme S5 depends on a quantitative objective that can be the basis of explanations;
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this objective is used to determine whether a reason is for or against an option. Consider

in our toy example that the user has the objective of learning about exoplanets; with

that piece of information, the RS can present the user with the reason against choosing

Aeronautics102 because it is less related to exoplanets than Exoplanets101, even though

Aeronautics102 addresses the subject marginally. The implementation of S5 is quite

different from the other schemes; we examine it in detail later in this section.

To illustrate the implemented algorithms for S1, S3 and S4, suppose an RS recom-

mended N items in an ordered set I : {i1, i2, ...iN} to user u. In scheme S1 (and S3) we

define as reason against an item ir the union of reasons for each of its alternatives I\{ir}
that are not reasons for ir itself. Hence we must iterate over the alternatives, extracting

reasons for each one of them Φ← Φ∪Φu,i ∀i ∈ I\{ir}. Note that at this point we assume

that the function representing the cognitive process of explanation γ, as described earlier

in this section, is available. We then remove from Φ the reasons for our recommendation

of interest, if any. The remaining reasons Ω = Φ/Φu,ir are the reasons against ir – as

presented in the Algorithm 3.2.

Algorithm 3.2 Explanation Generation using Scheme S1

1: procedure reasons-for(i: rec. item, u: user, Π: paths, Θ: parameters)
2: Φu,i = {} . Set of reasons for i
3: for all π ∈ Π do
4: φ ← γ(u, i, π|Θ) . Function describing the cognitive process
5: Φu,i ← Φu,i ∪ φ
6: return Φu,i

7: procedure reasons-against-S1(ir: rec. item, u: user, I: rec. set, Π: paths)
8: Ωu,ir ← {} . Set of reasons against ir
9: Φ = {}

10: Φu,ir ← reasons-for(ir, u, Π, Θ) . Set of reasons for ir
11: for i ∈ I\{ir} do . Iterate over ir alternatives
12: Φu,i ← reasons-for(i, u, Π, Θ)
13: Φ ← Φ ∪ Φu,i

14: Ωu,ir ← Φ\Φu,ir

15: return Ωu,ir

Regarding the implementation of Scheme 4 (S4), we follow a very similar procedure,

except that instead of considering the union of reasons for its alternatives, we take the

intersection. That is, we just replace the line 13 of Algorithm 3.2 so as to take the

intersection of sets Φ← Φ ∩ Φu,i ∀i ∈ I\{ir}.

In the remainder of this section we discuss Scheme S5.

While all the other schemes are implemented by modeling reasons as an unweighted
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directed graph, in scheme S5 we must consider weights. To illustrate, consider again our

toy example in Figure 7. If we model these reasons disregarding weights, we are limited

to categorical comparisons, i.e. one can only tell “Aeronautics102 teaches about rocket

science, but Exoplanets101 does not”. This limitation imposes difficulties when we need

more granular information to compare two recommended items. For example, we can

tell that both Exoplanets101 and Aeronautics102 are about exoplanets, but we cannot

compare them since we do not have information about how strong is the link relating

each course to its subjects. On the other hand, if we model relations with weights, we

can capture that “Exoplanets101 is more related to exoplanets than Aeronautics102”.

Therefore, using a more sophisticated weighted directed graph model to represent our

reasons, we can leverage the expressiveness of our explanations while improving coverage

and support.

We propose to use the plausibility scores from the knowledge embedding itself, the

function f , to rank the the recommended entities according to the quantitative objective,

available beforehand. While user’s objectives are subjective and, thus, hard to generalize,

we assume that in the context of our abstract recommendation mechanism, users pursue

strong links connecting their recommended items to their preferences. Thus, in our ex-

planatory framework, the “available objective” for scheme S5 takes the form of paths in

the graph while the embedding plausibility score represents a measure of how well each

path meets the user goal. For instance, back to our example where a student, who wants

to learn about astronomy, finds herself in the position of choosing between two disciplines:

“Exoplanets101” and “Aeronautics101”. We know both disciplines are about exoplanets,

which is a topic of astronomy, and we know that the fact a discipline is about a topic of

astronomy is a compelling reason for choosing that particular discipline. In this example,

our proposal for scheme S5 considers that the “available objective” is to learn about top-

ics of astronomy and that the predicted strength of the links connecting a discipline and

topics of astronomy (the embedding plausibility score) is the measure of how well each

discipline meets this objective.

Formally, first, we collect all the reasons for the recommended item being explained ir

and we rank ir for each reason according to the embedding plausibility score; this is where

we calculated the weights. Secondly, we iterate over all the alternatives to ir repeating

the same procedure we described. If the alternative is better ranked than ir, it means

the alternative is more related to that reason than ir, so it is a reason against ir. This

procedure is described in Algorithm 3.3.
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Algorithm 3.3 Explanation Generation using Scheme S5

1: procedure rank(Φ: reasons for, u: user, i: item, Θ: parameters)
2: r = φi ∈ Φ . The quantitative objective relation
3: Ψ ← fr(u, i|Θ) . Assess the quantitative objective as the plausibility score
4: return Ψ . Measured plausibility score value

5: procedure scheme-S5(ir: rec. item, u: user, I: rec. set, Π: paths, Θ: parameters)
6: Ωu,ir ← {} . Set of reasons against ir
7: Φu,ir ← reasons-for(ir, u, Π, Θ) . Set of reasons for ir
8: Ψir ← rank(Φu,ir , u,Θ)
9: for i ∈ I\{ir} do . Iterate over alternatives to ir

10: Φu,i ← reasons-for(i, u, Π, Θ)
11: Ψi ← rank(Φu,i, u,Θ) . Measure of how well ir meets user’s objective
12: if (Ψir < Ψi) then . Compare if i better meets the objective than ir
13: Ωu,ir ← Ωu,ir ∪ (Φu,i\Φu,ir)

14: return Ωu,ir
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4 IMPLEMENTATION AND EVALUATION

METHOD

“Instrumental or mechanical science is the
noblest and, above all others, the most useful.”

-- Leonardo da Vinci

4.1 Implementation

We developed a system that recommends courses offered by USP to undergraduates so

as to test our proposals. Our recommendation system is built upon a real-world large-scale

knowledge graph of our own making, called USPedia. Firstly, we describe the process of

data gathering we carried out. Next, we present USPedia development in detail. Finally,

we list the technologies, platforms and toolkits used in the development.

All the experiments and processes for this research were conducted using the computa-

tional infrastructure from the Centro de Ciência de Dados at the USP Innovation Center

(C2D-Inova). In addition, all the code and data used in this project is open sourced at

github (https://github.com/gustapoll/calisto-backend).

4.1.1 Data Sources

All the specific data from USP, such as undergraduate courses and teachers, were

gathered from the undergraduate support platform Jupiterweb.1 Even though these data

are public, by the time this work was done (from 2019 to 2020), no open access API was

available. Given manual gathering was unfeasible due to the scale of data, we implemented

a web scraper using Python 3.7 language and the Selenium library 2 to access Jupiterweb

and extract information about all the 1740 undergraduate courses available at the Escola

Politécnica da Universidade de São Paulo (EPUSP) as of May 20 of 2019.

The information available in Jupiterweb is semi-structured, i.e. while some of of it

can be mapped to primitive types, others are presented in Brazilian Portuguese. In this

work we concatenated all textual information (course description, program and syllabus)

1https://uspdigital.usp.br/jupiterweb/
2https://www.seleniumhq.org/
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into what we will refer from now on as description. To illustrate, Figure 9 shows the

wordcloud for the course descriptions.

Figure 9: Wordcloud for the course descriptions of all collected EPUSP undergraduate
courses.

Besides the description, we also collected 543 teachers names for the undergraduate

courses. We consulted the Elsevier academic data respository Scopus 3 to collect informa-

tion about research articles published by EPUSP teachers. In spite of the fact that Scopus

does not have public access, it can be consulted under USP institutional affiliation.

The data collection was executed by a Python script of our own authorship using

pybibliometrics 4, which is a popular toolkit to access Scopus API. First, we retrieve the

Scopus author id using the teacher’s name from our collected database using the query:

authfirst(<NAME>) and authlast(<SURNAME>) and af-id (60008088)

The fields authfirst and authlast are filled with the teacher’s name, the af-id is the

affiliation code from USP. When more than one author id for the same teacher is retrieved,

we used the least Jaro distance [48] between teacher’s name (from our base) and author’s

full name (from Scopus) as disambiguation criteria. Next, for each author id, we retrieved

all their associated publications in Scopus. We collected the abstracts in English for 7648

research articles as of Jun 15 of 2019. It is worth mentioning that we could not find any

publication for 90 of the consulted teachers.

It is important to highlight that a clear limitation of this method lies in abbreviations

and common names. For example, if a given teacher name is very common (e.g. “João

3https://www.scopus.com/home.uri
4https://pybliometrics.readthedocs.io/en/stable/
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Silva”) or is abbreviated (e.g. “João N G da Silva”), we expect to retrieve multiple author

ids that will correspond to other researchers with very similar names. In such cases, since

our disambiguation is simply lexical, it is reasonable to expect that false matches will

arise. In addition, our procedure links only one author id to each teacher, so we disregard

cases when the same researcher has multiple accounts.

The undergraduate course’s descriptions went through a data pipeline (of our own

authorship) implemented in Python 3.7 using the packages nltk 5 and spacy6. Consider

the course descriptions pipeline. First, we employ regex to remove all punctuation, tags,

special characters and digits. Next, we use nltk to tokenize and remove stopwords (we

employed the default set of predefined stopwords from nltk). Then, we realize POS tagging

using spacy and filter only tokens classified as nouns. We applied a spelling 7 to reduce the

impact of typos and misspelling. Also, since some descriptions pre-dated the Portuguese

spelling reform, we noticed the use of some deprecated language resources, e.g. dieresis.

While some of these orthographic inconsistencies were addressed with the spelling (e.g.

idéia), words with dual spelling (e.g. idielétrico, idieléctrico) or dieresis (e.g. freqüencia)

were manually solved. Finally, we applied spacy’s lemmatizer on the remaining tokens.

Our pipeline did not contemplate compound words, like artificial intelligence, machine

learning, etc. In order to capture these concepts, we applied a bigram identification

procedure. We employed nltk to calculate the likelihood ratio [49] for all word pairs

in tokenized documents. We then took the top 200 pairs with highest likelihood as

collocations. Finally, we applied a keyword identification procedure to select only the

most relevant concepts. We considered as keyword the top 15 tokens in each document

with the highest TF-IDF [50]. Regarding the article’s abstract, we did not employ any

text mining technique; instead we used directly the keywords from the article metadata.

The cleaned and structured data was stored in Firestore8, a document cloud database.

The code used in this processing pipeline is available at github9.

4.1.2 USPedia

Besides the data collected from Jupiterweb and Scopus, we also used the open domain

large-scale knowledge graph DBpedia [51]. DBpedia is an encyclopedic database that

5https://www.nltk.org/
6https://spacy.io/
7https://pyspellchecker.readthedocs.io/
8https://firebase.google.com/docs/firestore
9https://github.com/gustapp/uspedia
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stores the knowledge available at Wikipedia10 in a structured and accessible manner. As

undergraduate courses teach concepts that are tied to common domains (e.g. engineering,

physics, etc), such concepts should be available in DBpedia and there is no need for us

to build an ontology from scratch. In order to select only the subset of DBpedia that

contains the ontology needed for this research, we employed a script written in Python

3.7 of our own authorship that queries the DBpedia SparQL API11.

The USPedia structure consists of five types of entities: learning-object, lecturer, con-

cept, and category. The learning-object includes both graduation courses offered by the

university and articles authored by faculty members. Concepts and categories represent

an ontology for the learning-objects content. In addition, we built our knowledge graph

with 3 relations: involved, subject and is topic of. Thus, we say that a faculty member is

involved in multiple learning-objects in which he or she can either teach a course or au-

thor an article and that each learning-object has multiple concepts as subjects. USPedia

incorporates an hierarchy of concepts where one or more concepts are topics of a category,

and categories are topics of other categories.

To build the KG, we opted for using an automated semi-structured approach [22] as it

has also been employed by many popular large scale knowledge graphs, such as DBpedia.

The selected approach aims at automatically extracting information from semi-structured

data, like infoboxes, via rules or regular expressions. We performed entity linking to

DBpedia 12 using the articles keywords and course description content, so the hierarchy

of concepts and categories were incorporated from DBpedia. The entity linking procedure

consisted of consulting DPedia (see query in Figure 22 on Appendix) for each document

keyword and check for entities with matching names. A match or hit is assumed only

if the entity label’s name, or any of its synonyms, is exactly the same as the keyword.

For every keyword, we tested its plural form and, in the case of compound words, we

also tested inserting middle prepositions or hyphen. To illustrate, consider the keyword

rede computador and its corresponding DBpedia entity rede de computadores. While the

keyword is composed by a bigram whose words are in lemma form, the entity has one

word in plural form and a preposition. In order to match them, our entity linking method

will iterate over all combinations of plural form and prepositions.

Because it is costly, both in terms of time and computation, to perform this entity

linking procedure for all keywords, we opted for limiting the number of evaluated key-

10https://pt.wikipedia.org/
11https://dbpedia.org/sparql/
12http://dbpedia.org/
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words. We evaluated the top 10 keywords, according to their TF-IDF score, by document.

With this configuration, we were able to link at least one keyword for 99% of all courses.

After this entity linking process, we extracted the relevant ontology from DBpedia

using the following relations: dct:subject13 and skos:broader14. The first represents

an attribute of the entity and the second relates to categories and sub topics. To extract

our ontology, firstly we expanded the “subject” relation to retrieve the categories for each

linked entity. Then, we expanded the nodes from the previous step 5 times using the

relation “broader”. To illustrate this procedure, consider Figure 10.

Figure 10: Ontology building sample. Pink nodes (ML, DL and AI) are reached after the
first expansion, Turquoise node (Tech) is reached in the second expansion. “kw” stands
for keyword. The dashed node (Exam) represents an unlinked keyword.

New concepts, not previously recovered in the entity linking, are retrieved from DB-

Pedia as a result of the node expansion. For instance, the node “Tech” from the example

in Figure 10 is present in the graph even though it is not linked to any course. Thus,

relevant concepts that are unlikely to be found during keyword extraction, e.g. trigrams,

are included in our ontology. In order to properly link them to their respective courses,

we executed a lexical search for the course descriptions.

We executed an analogous entity linking process for the articles and their keywords.

We thus obtained two distinct graphs, one for course descriptions and another for

articles. As each graph has entities in different languages (Brazilian Portuguese for courses

and English for articles), we opted for using the relation owl:sameAs15, which tells if two

entities are the same even if described in different languages, to unify both graphs. When

13https://dublincore.org/
14https://www.w3.org/2009/08/skos-reference/skos.html
15https://www.w3.org/2002/07/owl
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there is no equivalent match in Brazilian Portuguese, we opted to keep the entity described

in English.

The whole knowledge process here described resulted in a Knowledge Graph with

34182 entities, 3 relations, and 152468 triples. Table 3 presents USPedia compared to

other popular large-scale knowledge graph benchmarks from the literature. Figure 11

shows a sample sub-graph of USPedia.

Figure 11: Sample sub-graph of USPedia.

Dataset ‖ E ‖ ‖ R ‖ ‖ T ‖

USPedia 34, 182 3 152, 468
FB13 75, 043 13 345, 873
NELL186 14, 463 186 41, 134
WN18RR 40, 943 11 93, 273

Table 3: Statistics of other knowledge graphs as compared to USPedia; ‖ E ‖, ‖ R ‖ and
‖ T ‖ are the total number of entities, relations and triples respectively.

Despite being a large-scale knowledge graph, USPedia still have some limitations and

room for improvement. One clear restriction is its inability to handle words with dual

meaning. Our entity linking procedure was only lexical, so if multiple entities match the

same word, the disambiguation is done randomly, which could potentially lead to false

facts. For example, a course about telecommunication could be mistakenly linked to the

chemical element “Radio”. In addition, USPedia is only partially described in Portuguese

and this clearly limits its application.

Finally, we used the OpenKE 16 toolkit to train the knowledge embeddings used in this

research. This Python package contains the implementation of state-of-the-art embedding

16https://github.com/thunlp/OpenKE
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models and is built upon tensorflow 17.

4.1.3 Recommendation System Set-Up

Once we constructed our knowledge graph, we trained a TransE [29] knowledge em-

bedding model with 500 dimensions for 1000 epochs. We opted for using a batch size of

500, 0.001 as alpha, 1.0 as margin and the optimizer ADAGRAD to perform the training.

We selected TransE because it is commonly used as benchmark in the literature [27,28].

Using the trained knowledge embedding, we implemented a neighborhood-based rec-

ommendation system. Our recommendation system performs the link prediction task

〈head, relation, ?〉, in which the head is a conceptual entity representing a preference of

theme provided by the user, relation is the “subject” relationship modeling learning-

objects content. Therefore, we consider the plausibility score provided by the knowledge

embedding to rank entities and, then, realize a Top-N recommendation following the

abstract mechanism described earlier in our proposal.

4.1.4 Dialogflow

We opted for using the Dialogflow18 chatbot development platform. Dialogflow has

support for Brazilian Portuguese, is free and offers acceptable performance in natural

language processing tasks [52].

4.2 Evaluation Method

Our work focus on improving the interpretability of recommendation systems through

novel approaches for explanation generation. To evaluate interpretability, we consider

three levels (Figure 12): functional, human and application [33]. These levels grow in

complexity and implementation cost. The functional level is the cheapest because it

evaluates the explanation in objective terms based on a proxy task and, thus, does not

require human subjects. However, the functional level alone is inappropriate for testing the

subjectivity of explanations, which rely inherently on the perception of users. While the

human level provides insights about user perception, the application level tests the system

as whole and, thus, considers practical aspects, e.g. response delays, in the evaluation.

Furthermore, we highlight in the following sections some of the limitations related to each

17https://www.tensorflow.org/
18https://dialogflow.com/
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evaluation level in the context of this work and discuss approaches from the literature to

mitigate the observed caveats [53, 54].

Figure 12: Interpretability evaluation levels.

In this work we explore the three interpretability evaluation levels. At first, we employ

functional level tests to evaluate the practical feasibility of our proposals. The methods

that pass the functional tests move forward for the human level evaluation. We run a

survey where users were asked to compare examples from different explanation methods.

Such examples were simplified simulations of interactions with the real application. Addi-

tionally, we have carried out a preliminary application level evaluation. We integrated the

most promising explanation methods into actual conversational recommendation systems,

which were then compared in a survey with real users from our application domain.

Now we examine in detail each one of these evaluation steps and the metrics used.

4.2.1 Functional Level

An online system, such as conversational recommendation systems, cannot impose

long delays on its users, as it is an interactive application. In addition, a good inter-

pretability method should be able to explain most if not all the recommendations, i.e.

ideally no decision should remain unexplained. None of these characteristics rely on hu-

man subjectivity and, thus, they can be evaluated in a functional level.

We define the following three metrics to be evaluated in this level:

1. Coverage or Recall : The fraction or percentage of recommendations for which the

interpretability method can find at least one explanation.

2. Support : The arithmetic mean number of explanations the interpretability method

can find for each recommendation.

3. Response or Execution Time: The arithmetic mean time the interpretability method

takes to find explanations for each recommendation.
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The main goal of our functional level is to evaluate the feasibility of an interpretability

method. Therefore, we want to verify if the method achieves high coverage while coping

with the strong execution time constraints of interactive applications. Support is an aux-

iliary metric that tells us how the method scales in scenarios where multiple explanations

are required.

To realize our functional level evaluation, firstly, we built a dataset of simulated

user-interactions from 10% randomly selected entities of USPedia. Next, we run each

interpretability method in an offline manner and recorded the metrics of interest.

In the remainder of this section we discuss the limitations and caveats related to our

functional level evaluation:

• Domain Generalization: We carried out all experiments in the single application

domain of USP discipline recommendation, so we cannot ascertain the generalization

of our methods towards other domains.

• Simulation Generalization: We built simulations randomly selecting entities

from USPedia, so we didn’t account for any popularity bias that may appear in

real world scenarios. It is reasonable to expect that students will ask for recommen-

dations of some subjects (popular) more often than others. Thus, we could possibly

observe worse results in real applications if our methods perform poorly for the most

popular subjects.

4.2.2 Human Level

The human level evaluation is intended to offer preliminary insights or early validation

of an interpretability method from the user perspective. In order to translate the subjec-

tive user perception into quantifiable measures, we adopt the following five explanation

aims [5]: transparency, trust, persuasion, engagement e effectiveness. Each one of them

represents a particular goal of an explanation and are commonly used as benchmark in

the RS domain [4, 5].

The evaluation was carried out with undergraduate engineering students at USP. Each

subject ranked each interpretability method with respect to each explanation metric using

a survey-based Likert psychometric scale [55] from 1 to 5 (standing for “Strongly disagree”,

2 “Disagree”, 3 “Neither agree nor disagree”, 4 “Agree”, and 5 “Strongly agree”). This

scale was used to reduce central tendency and social desirability biases where subjects
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do not want to be identified with extreme positions. Finally, each subject could write a

short free text with thoughts about the method.

In the remainder of this section we discuss the limitations and caveats related to our

human level evaluation other than the ones already discussed in the previous section; the

following list was inspired by previous human studies in the literature [53]:

• Sample Generalization: We used a few handpicked recommendation examples to

build the surveys used in our human level evaluation, so we cannot ascertain how

our proposed methods would generalize for different ones.

• Demographic Generalization: All surveys were targeted towards engineering

students from USP, so our results are still very limited to a young, male community

from southeast Brazil.

• History and Maturation: To mitigate the effects of time passage, we ensured

that all participants had to complete the survey in one go.

• Instrumentation: To reduce the impact of learning effects on our results, i.e.

participants improving over repetition, we randomized the order of questions they

were asked to answer. Thus, we expect an overestimation due to learning effects

but equally distributed, allowing relative comparisons.

• Experimenter Bias: To mitigate any unconscious bias being conveyed to partici-

pants, experimenters were only allowed to answer technical questions.

• Misunderstanding: To reduce the risk of participants misunderstanding the sur-

vey instructions due to lack of clarity, we asked some volunteers, without any contact

to the actual participants, to fill the survey. In addition, we required every partic-

ipant to answer correctly a series of practice questions before moving forward with

the experiment.

• Technical Variance: To reduce variance due to participants using different hard-

ware and software, we asked in advance for preparing an environment with stable

internet connection and implemented the survey in a google forms to avoid compat-

ibility issues.

• Multiple Submissions: Participants were allowed to answer the survey only once.

• Selection: Participants were asked to join in the experiment as an optional re-

warded task in an USP engineering course. So, even though the participants had
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to volunteer, there were incentives in place. Since our results were drawn from this

self-selected population, they might not generalize. On the other hand, all partic-

ipants were potential real users from our application domain, what strengthen our

results.

• Ecological Validity: The fact that our surveys were carried out remotely, instead

of a physical environment like a laboratory, increases their ecological validity. Since

participants were in their usual surrounding, the effects of being in an unfamiliar

setting were mitigated.

• Drop out: Even though participants were free to drop out the experiment, this

effect was mitigated due to the incentive of receiving an additional grade in USP

engineering course.

4.2.3 Application Level

Since our target audience, USP undergraduate students, was directly accessible, the

application level evaluation was similar to the human level one. However, in the applica-

tion level subjects were asked to interact with a real recommendation system instead of a

mocked scenario. Thus, functional factors such as response time and coverage impacted

the user perception evaluation.

About the limitations and caveats related to our application level evaluation, while

the concerns regarding sample and simulation generalization are mitigated (i.e. users can

freely interact with the system as in a real world scenario), the following issues become

much more evident:

• Instrumentation: Since users can freely interact with the system, we have little

or no control of learning effects as they can ask and evaluate multiple instances.

• Misunderstanding: While freely interacting with a conversational system, users

are more likely to misunderstand the purpose of the system and, thus, struggle with

its limitations. For example, users may get frustrated after asking for recommenda-

tions based on discipline difficulty, what is not in the scope of our system.

• Technical Variance: Users are much more likely to struggle with internet connec-

tion, response delays and compatibility issues while interacting with a real system.
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5 RESULTS AND DISCUSSION

“To achieve great things, two things are needed:
a plan, and not quite enough time.”

-- Leonard Bernstein

In this section we describe experiments with simulated and real users. First, we present

some anecdotal examples that highlight the strengths and weakness of our explanation

method in the current set up. Next, we examine the feasibility of our techniques in

Section 5.2 and then we discuss the reaction of human users to our approach in Section 5.3.

5.1 Anecdotal Examples

To illustrate the explanations generated by our proposals, Figure 13 depicts a real

explanation example generated by our method. Entities and relations found in the graph

appear in the figure, while the textual explanation derived from them appears in the

caption. In this particular case, the system recommended the discipline entitled “Le-

gal Engineering” to attend the requested preference about “History” subject. Here, the

system explains by arguing that the recommended discipline is about “Law”, which is

a “Humanities” topics just like “History”. This example highlights the ability of our

methods to leverage ontological connections to offer a rationale for recommendations. In

addition, in this example, the relationship between the discipline “Legal Engineering”

and “Law” was inferred by the embedding and was not present in the original knowledge

graph due to its inherent incompleteness. The characteristic of being able to benefit from

the embedding capacity of inferring missing relationships in the graph and using them to

formulate explanations, besides increasing coverage, can potentially shed light on what

relationships were considered important by the embedding for producing its recommen-

dations.

On the other hand, the ability of leveraging inferred relationships can have drawbacks.

Since the reasons produced by our explanation methods can employ relationships that are

not necessarily grounded on known facts, i.e. absent in the original graph but predicted by

the embedding, explanations may incur into false facts, which can be often easily spotted
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History Legal Engineering

LawHumanities

subject

is topic of

is topic of

subject

Figure 13: “Legal engineering is recommended as it is about Law and both Law and
History are topics of Humanities”

by the system’s end user. Notably when the system is forced to explain a bad recom-

mendation, i.e. a suggestion that poorly fits the preference subject, weak or clearly false

relationships tend to arise in the system explanations. For instance, Figure 14 explains

the connection between the recommendation of a discipline entitled “Heavy Construction”

and the subject of interest “Medicine” by saying that both “Medicine” and “Work Acci-

dent” are correlated themes. Despite hurting the chance of a user following the system’s

choice, we argue that even non-sense explanations serve the purpose of empowering the

user to critique and disregard bad recommendations.

Medicine Heavy Construction

Work AccidentHealth

subject

is topic of

is topic of

subject

Figure 14: “Heavy Construction is recommended as it is about work accident and both
accident and medicine are topics of health”

5.2 Simulated Experiments

In this section we report on functional level experiments that were designed to address

the following research questions:

1. Are our explanation schemes feasible from an implementation perspective?

2. Can we find at least one explanation for a greater fraction of recommendations

when we search the knowledge embedding than the original graph given timeout

constraints?

3. How long does it take to find explanations using the knowledge embedding? Is

time-to-response acceptable?
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We designed user-simulated experiments to evaluate the fraction of recommendations

that our proposed method can find at least one explanation for — we call it Recall or

Coverage. Also, we evaluated the time our proposal takes to find multiple explanations

for recommendations — we call it Support.

Regarding reasons for, Table 4 shows the overall coverage and support for our proposed

DFS interpretability method using the knowledge embedding as source for explanations

(referred as PRED) compared to the baseline using the original incomplete knowledge

graph (referred as TRUE). The results show that we obtained 79.33% coverage and a

support mean of 2.0 for the embedding-based approach, compared to 42.3% coverage and

1.8 support in the graph-based. We can observe that indeed our proposal of replacing the

original KG by the KE improves coverage significantly.

As for reasons against, we ran our experiments considering schemes S1, S4 and S5; all

schemes were implemented considering the embedding-based approach. Both the coverage

(85.1%) and support (2.3) obtained for S1 (the same for S5) are higher than those from

reasons for. This result was expected since S1 implementation considers more aggregated

reasons for alternatives than it removes from the recommendation being explained. On

the other hand, scheme S4 could not generate a single reason against at all (coverage

0%!). As scheme S4 requires that a reason against an option must be a reason for all of

its alternatives, it imposes a restriction so rigorous that it is in fact unfeasible in practice.

Type Scheme Coverage Support

Reason For
TRUE 42.3% 1.8± 1.0
PRED 79.3% 2.0± 1.0

Reason Against
S1 85.1% 2.3± 1.4
S4 0% -
S5 83% 1.0± 0.5

Table 4: Coverage and Support for reasons for using the embedding-based (PRED) and
the graph-based approach (TRUE), and reasons against using schemes S1, S4 and S5.
Note Support for each Scheme is presented with its respective standard deviations.

Figure 15 presents the behavior of the recall for our reasons for proposed method

PRED (embedding recall) compared to the baseline TRUE (graph recall). It also shows the

average number of explanations found (avg. explanation number) and average execution

time (avg. exec. time) for our proposed method, when varying time constraints (timeout).

We did not include the local-surrogate proposed method, described in Section 3.1, in this

analysis because we observed that its average response time is around 2-3 minutes, which

is clearly unfeasible for online applications.
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Figure 15: Recall comparison between our proposal (embedding recall) and the baseline
(graph recall). Also present average explanation number found (avg. explanation no.)
and average execution time (avg. exec. time) for our proposal

While the baseline method, which uses only the original graph to search for expla-

nations, is by far faster than our proposed method, we observe that the graph recall

achieves a certain degree of “saturation” at 42%, which is a significantly lower level than

the embedding one at 99%. Here we consider “saturation level” the point where one does

not have timeout constraints, i.e., virtually infinite time to search for explanations. Thus,

we verify that the original knowledge graph cannot find explanations for less than half of

recommendations in our experiment; also, it is not sensitive to time constraints, i.e. satu-

rates into a flat line within milliseconds. On the other hand, the embedding recall, despite

having a slow start (close to 0 for timeouts shorter than 2.3 seconds), grows greater than

the graph recall for timeouts longer than 3 seconds. Indeed, for a timeout of 5 seconds, a

timeout that can be considered acceptable for an interactive application, we observe that

our proposed method can explain almost two times more recommendations than if using

the original graph. This answers our second research question. Note that the average

number of explanations and the average execution time behave linearly, considering the

timeout value. This points out that it may be expensive, in terms of computation cost,

to find multiple explanations for the same recommendation.

Figure 16 shows the boxplots, with suppressed outliers for better visualization, of

the execution time of our proposed method PRED for different numbers of explanations.

In this experiment, we aim to evaluate how long it takes to find a given number of

explanations for a recommendation. We can observe that all boxplots are skewed down,

and the top whiskers are longer than the bottom ones; also, the variability of execution
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time increases as more explanations are demanded. Considering an acceptable response

time (for instance, 5 seconds), for a small number of explanations (one to three), the

median value is acceptable, and for a single explanation, even the maximum value is

acceptable. Therefore, our approach does produce multiple explanations but not too

many of them, answering the third question.

Figure 16: Execution time of PRED method considering explanation number constraints.

5.3 Tests with Human Subjects

During this work we prepared four user tests. On November 2019 we executed an

application level experiment focused on the reasons for generation and intended to com-

pare the embedding-based approach (PRED) against the graph-based baseline (TRUE).

On July 2020 we realized a human level evaluation to validate our hypothesis about the

introduction of reasons against in explanations. On November 2020 we run the final appli-

cation level test where we compared multiple reasons against schemes against the reasons

for only baseline. Finally, on April 2021 we realized a final human level test to assert the

user perception on multiple reasons against schemes.

We start presenting the results for the human level evaluation in Section 5.3.1 and,

then, we discuss the two application level tests together in Section 5.3.2.
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5.3.1 Human Level Evaluation

In this section we report on human-level evaluation experiments that were designed

to address the following questions:

1. Do users perceive value in the explanations produced by our schemes?

2. If they do perceive value, which scheme performs best?

We conducted a user study involving 54 subjects from the engineering post-graduate

program in EPUSP (88% = male, 78% = born in Brazil’s southeast, 72% = age <= 30,

and 98% = high tech affinity). All demographic data was reported by the subjects.

To run our experiment, we asked the subjects to evaluate explanations generated

using our proposed schemes S1 and S5 for 6 recommendation cases (check the full list in

the Appendices). The set up was designed to run a block-randomized experiment within

subjects. Each user evaluated explanations from both S1 and S5 schemes, according to

a five point Likert-scale, for three explanation aims: persuasion, trust and transparency,

respectively. The order the schemes were presented at each step varied randomly.

Figure 17 depicts the entire experimental set up. Each subject involved in the exper-

iment carried out the following steps:

Figure 17: Diagram representing the human-level experimental set up adopted.

(1) Disclosure Agreement: First, we ask the user to accept a disclosure term

granting access of their data for academic purposes.

(2) Collection of demographic data: Subjects were asked to provide common

demographic information regarding age, gender self-identification, Brazilian macro region

as place of birth and tech affinity; check the Appendices for the full questionnaire. Our

goal was to better understand our sample and scope our experiment within a population

strata.
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(3) Introduction and metrics: We presented all the explanations aims [56] and

asked each subject to read them carefully.

(4) Practice questions: Subjects were asked to answer multiple answer questions

about all the explanation aims. If the user answers all questions correctly, they would

proceed, otherwise they were asked to go back to step 3 and repeat the questionnaire. This

phase was intended to guarantee that all subjects understood the experiment purpose and

metrics.

(5) Explanation scheme evaluation through questionnaire: Subjects were

asked to evaluate the S1 and S5 schemes according to the explanation aims: persua-

sion, trust and transparency, respectively, in a five point Likert-scale. Table 5 contains

the details of the questionnaire presented.

Aim Question

persuasion I feel the explanation persuaded me to follow the recommendation
trust I feel more confidence in the system after receiving the explanation
transparency I feel I better understood the recommendation after receiving the explanation

Table 5: Questionnaire details.

Figure 18 presents the arithmetic mean scores obtained from the survey for each

explanation aim considering the schemes S1 and S5. The confidence intervals were cal-

culated with bootstrapping at 95% confidence. We can observe that mean scores for all

explanation aims were closer to “neutral” or “agree” in the Likert-scale, which indicates

that, at least in our specific set up, users perceived value in the explanations.

In addition, note that scheme S5 (µpersuasion = 3.3 and µtrust = 3.83) received greater

mean scores than S1 (µpersuasion = 2.48 and µtrust = 3.07) for persuasion and trust.

Note the confidence interval whiskers do not overlap; indeed this difference is statistically

significant considering a t-test (persuasion = p 0.000838 < 0.05 and trust = p 0.000971 <

0.05). On the other hand, for transparency, S1 obtained a greater mean value than S5,

however, for this metric we didn’t achieved statistical significance (transparency = p

0.2 > 0.05). All average values are summarized in Table 6. These results indicate that S5

appears to perform better than S1 in persuasion and trust, while having similar results

in transparency.

It is important to reinstate that these results are only exploratory and require large-

scale user studies to properly evaluate and compare our explanation schemes. First,

our sample is biased towards Brazilian southeastern young male post-graduate engineers
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Figure 18: Visual representation for explanation metrics arithmetic mean scores.

Scheme Persuasion Trust Transparency

S1 2.48 3.07 3.41
S5 3.3 3.83 2.8

Table 6: Arithmetic mean scores for explanations from our user study. The highest scores
with statistical significance for each metric are highlighted in bold. Statistical significance
was assessed by t-tests, with p < 0.05.

with high degree of technological affinity. Further research should evaluate whether the

methods proposed in this work would generalize to a broader audience. In addition, the

conclusions of this experiment were drawn from explanations that, despite being actual

outputs of our schemes, are limited to relatively few examples; therefore, it is uncertain

whether they will generalize to real-world scenarios. Finally, our experimental set up

consists of a human-level evaluation and, thus, fails to take into account the impact of

practical circumstances, such as system response time and explanation coverage, in the

user perception.

5.3.2 Application Level Evaluation

In this section we report on experiments that were designed to provide a first glance

on the following research questions:

1. Does the quality of the explanations found using the knowledge embedding deteri-

orate when compared to those using the original graph?

2. Do reasons for/against have value for users in a real application scenario? If yes,

which scheme performs best?
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As described previously, in our first application level experiment (focused on reasons

for only), we produced two conversational recommendation systems, one with the auto-

matically generated knowledge graph as a source of explanations, and the other with our

proposed (embeddings-based search) method as a source of explanations. Our goal was

to compare both techniques.

We conducted a user study involving 26 undergraduate engineering students from

EPUSP, in which each user evaluated two systems, one employing our proposed method

and the other one using the original knowledge graph as a source for explanations. The

users were asked to evaluate the five explanation aims (summarized in Table 7) using a

Likert psychometric scale from 1 to 5 [55]. One interaction consisted of the user asking

for a recommendation for 5 different themes, so we collected a total of 130 interactions.

Aim Question

transparency Did the explanation help you understand the recommendation?
persuasion On the basis of the explanation, would you follow the recommendation?
engagement Did the explanation have a pedagogical effect?
trust Did the explanation contribute to increase your confidence in the RS?
effectiveness Did the explanation sound coherent?

Table 7: Questionnaire details.

Figure 19 depicts the whole experimental set up. Each subject executed the following

steps:

Figure 19: Diagram representing the application-level experimental set up adopted

(1) Disclosure Agreement: First, we ask the user to sign a term accepting to

disclose her data for academic purposes.

(2) Introduction: Next, we present a detailed description of each explanation aim

to be used as evaluation metric. Also, we allow the user to explore a conversational
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recommendation system without explanation facilities as warm up and to get familiar

with the interface.

(3) Evaluation: Finally, subjects start the evaluation by asking a predefined number

N of recommendations and their respective explanations, at the end of the interaction,

the user evaluates all explanation aims. Note the experiment is within subjects and each

scheme is evaluated in order. Thus, this evaluation does not account for learning effects

and can, potentially, lead to positive bias for the later schemes. This step is repeated for

every scheme.

It is important to comment that our experiment set up did not collect demographic

data about its subjects, hence we cannot report on which population strata we are dealing

with. In addition, our sample size was restricted to a few undergraduate students, so all

conclusions here presented are only preliminary and further research is required.

Considering the exploratory nature of the survey, we describe below the performance

indicators from the users’ interaction with the conversational recommendation systems.

Table 8 presents the arithmetic mean scores provided by the students in our user study

for each one of the explanation aims. The upper half of the Table 8 contains the scores ac-

quired in our first application level experiment, where we compared the embedding-based

explanations to the graph-based ones. Figure 20 depicts these scores on a continuum

representing visually the scale. Comparing both algorithms’ overall mean, the knowledge

embedding approach (PRED) was better from the user’s perspective, µ = 2.7 correspond-

ing to the “neutral” evaluation at the Likert scale.

Algorithm Transparency Persuasion Engagement Trust Effectiveness

TRUE 2.21 2.36 2.17 1.92 2.64
PRED 2.92 2.28 2.84 2.52 2.92

PRED∗ 2.87 2.41 2.87 2.58 2.96
S1 2.68 2.50 2.18 2.59 2.40
S5 2.94 2.65 2.68 2.68 2.74

Table 8: Average scores for explanation aims from our user study. The ∗ marker differ-
entiates scores obtained for the same algorithm but in different experiments.

On the other hand, for the graph approach (TRUE) µ = 2.21 is closer to the “disagree”

at the Likert scale. Taking the variable in isolation, effectiveness got the highest average

value for both µpred = 2.92 and µtrue = 2.64. This signals that users perceived the

explanations as coherent. The TRUE approach had a bad evaluation when the trust was

at stake (µtrust = 1.92). As TRUE suffers from knowledge graph incompleteness, it cannot
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Figure 20: Visual representation for explanation aims average scores in our first experi-
ment. TRUE and PRED results are in green and blue, respectively.

posit explanations for every suggestion. When compared to a better performance of the

knowledge embedding approach (µtrust = 2.52), we might conjecture that users prefer any

explanation instead of no explanations at all.

The second half of Table 8 presents the scores from our second application level

test (focused on both reasons for/ against). In this second experiment, we asked 35

undergraduate engineering students from EPUSP to evaluate three conversational recom-

mendational systems, one producing only reasons for as explanations (PRED) and the

other two with both reasons for and reasons against (one using S1 scheme and the other

S5 scheme). The second experiment was carried out using the same questionnaire (see

Table 7) and evaluation procedures as the first one.

The second experiment was focused on comparing multiple techniques of reasons

against generation (S1 and S5), and evaluating the presence of reasons against in an

explanation against the reasons for only baseline. Note that the baseline PRED was the

same embedding-based method as in the first experiment; indeed, we can observe that

the mean arithmetic scores for PRED method in both experiments are similar. Figure 21

depicts these scores on a continuum representing visually the scale. We observe that

the systems employing scheme S5 approach has the lead from the user’s perspective in

terms of transparency (µtransparency = 2.94), trust (µtrust = 2.68) and, notably, persuasion

(µpersuasion = 2.65). Furthermore, the scheme S5 appears to be better than S1 in all the

evaluated metrics.

Figure 21: Visual representation for explanation aims average scores in our second exper-
iment. PRED, S1 and S5 results are in purple, red and yellow, respectively.

As a side effect of introducing reasons against in explanations, we observe a drop in

engagement and effectiveness, i.e. the baseline (PRED) achieved the highest scores in
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both metrics (µeffectiveness = 2.96 and µengagement = 2.87).

If we compare these results with the ones we obtained in the human level evaluation,

from Section 5.3.1, improvements in trust and persuasion were observed, however, the

drop in effectiveness and engagement is unexpected. We imagine the bad performance in

effectiveness and engagement is due to the complexity overhead added in explanations,

i.e. explanations with both reasons for and against are harder to grasp than with reasons

for only.

For both application-level experiments we were unable to obtain statistical signifi-

cance with the t-test p < 0.05 criteria. The results here presented represent an initial

and exploratory analysis to drive further research focused on properly evaluating these

explanation schemes in real-world applications.
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6 CONCLUSION

“All I know is that I know nothing.”

-- Socrates

We here proposed and evaluated several techniques that aim at producing fast, effec-

tive and responsible explanations in the context of recommendation systems. Our exper-

iments provided preliminary evidence that knowledge embeddings, if properly employed,

can increase explanation coverage, while also satisfying reasonable time constraints. In

addition, experiments with human subjects suggested that explanations drawn from em-

beddings may remain coherent and meaningful from the user perspective, while also in-

creasing trust in the system and the perception of transparency. Furthermore, we explored

the generation of reasons for and against in recommendations as a strategy for responsible

explanations. We investigated the hypothesis that a recommendation system, by display-

ing such reasons, not only helps the user to reach the most rewarding decision, but also

acts on its own interest in building trust.

We developed ways to generate reasons for/against adapting Snedegar’s theory of

practical reasoning. By implementing Snedegar’s theory, we addressed practical difficul-

ties with some of his schemes for reasons against and have proposed a novel design based

on knowledge graphs and their embeddings. We evaluated the most promising schemes

both offline and with human users in the contexts of recommendation systems. Our

early results suggest that Scheme 5 is the most appropriate in practice at the moment.

Moreover, our initial experiments with human subjects indicate that reasons against can

potentially increase trust and persuasion. Overall, we advanced the notion that adding

reasons against items does improve recommendation systems.

The present work represents a step towards efficient and responsible explanation gen-

eration methods that are suitable for interactive and conversational recommendation sys-

tems. In the process of pursuing this goal, we also built a new large-scale knowledge

graph, USPedia, which can be a benchmark in the domain of course recommendation.
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6.1 Future Work

We emphasize that this work, while a significant step towards explainable recom-

mendation systems, is a preliminary and exploratory research that should be extended

through future efforts.

We must first recognize that our current experimental set up is very limited. Due to

the limited scale, limited set of participants, and the preliminary nature of this work, we

were not able to properly evaluate our proposals on an application level and our promising

results from both human and functional levels are only early signs instead of actual con-

clusions. Future work should provide a comprehensive evaluation so that we can ascertain

the impact of explanations produced by our proposals on user perception. To achieve this

goal, we suggest a web-based application level experiment whereby students from all over

USP can freely ask for discipline recommendations and explanations, similarly to previous

works from the literature [53].

As we have solely explored a single and very specific domain (discipline recommen-

dation within the context of USP), there is still uncertainty as to whether our results

generalize to other domains. Besides traditional entertainment domains, such as movie

and song recommendation, biomedical domains represent a promising opportunity for fu-

ture work. Recent advances in biomedical hypothesis generation methods, notably for

drug discovery, have led to the adoption of complex knowledge embedding models [57,58],

thus opening a wide interpretability gap.

Another concern related to the generalization of our proposals lies in the fact that all

our results have been based on a single embedding model, TransE. Even though our pro-

posals are model-agnostic by design, their effectiveness (e.g. coverage, response time and

user perception) may differ depending on the underlying embedding model. Future work

should evaluate our explanation generation methods on a broader range of embedding

models. While translational embedding models are similar to TransE, semantic models

differ widely among themselves [59]. Thus, we suggest that future research should evaluate

our proposals on several semantic embedding models.

Finally, we suggest future work should adapt our proposals towards interactive rec-

ommendation systems. Although our proposals suit online applications, they disregard

their sequential aspect, typical of interactive or conversational recommendation systems,

whereby explanations and how users react to them should guide future recommendations.

Future work should adapt our schemes to benefit from this conversational aspect and
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explore argumentative frameworks for sequential recommendation-explanation.

6.2 Research Disclosure

The main peer reviewed papers reporting results of this work are:

1. “Explaining Completions Produced by Embeddings of Knowledge Graphs”, co-authored

paper at 2019 European Conference on Symbolic and Quantitative Approaches to

Reasoning with Uncertainty (ECSQARU)

2. “Explaining Content-Based Recommendations with Topic-Models”, paper at IEEE

2019 Brazilian Conference on Intelligent Systems (BRACIS).

3. “Faithfully Explaining Predictions of Knowledge Embeddings”, runner-up best paper

undergraduate track at 2019 Encontro Nacional de Inteligência Artificial e Computa-

cional (ENIAC).

4. “Conversational Recommendation Systems within Explanations: Improving Cover-

age through Knowledge Embeddings”, paper at 2020 AAAI Workshop on Interactive

and Conversational Recommendation Systems (WICRS).

5. “Why should I not follow you? Reasons For and Against in Responsible Recommen-

dation Systems”, paper at 2020 RecSys Workshop on Responsible Recommendation

(FAccTRec)
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em: <https://doi.org/10.1145/2959100.2959117>.

[4] MUSTO, C. et al. Linked open data-based explanations for transpar-
ent recommender systems. International Journal of Human-Computer
Studies, v. 121, p. 93 – 107, 2019. ISSN 1071-5819. Advances in
Computer-Human Interaction for Recommender Systems. Dispońıvel em:
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A APPENDICES

A.1 USPedia Construction

The entity linking procedure used to link keywords, from USP undergraduate courses

syllabus, to DBpedia entities is the SparQL query depicted in Figure 22. Our procedure

considers a match if the redirects, similar to synonyms, of a given DBpedia entity or

its label itself contains the keyword string. We enforce one-to-one cardinality among

keywords and DBpedia entities by limiting the number of entities a keyword can match

to one. Conflicts where multiple entities contain a given keyword are solved arbitrarily

through alphabetic order. We employed the virtuoso DBpedia SparQL API 1 to run the

queries.

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX dbo: <http://dbpedia.org/ontology/>

PREFIX bif: <bif:>

SELECT DISTINCT ?item ?label ?description

WHERE

{

{

?item rdfs:label ?label .

?label bif:contains "<KEYWORD>" .

?item dbo:abstract ?description .

FILTER (lang(?description) = 'pt')

FILTER (lang(?label) = 'pt')

}

UNION

{

?x rdfs:label ?label .

?label bif:contains "<KEYWORD>" .

?x dbo:wikiPageRedirects ?item .

?item dbo:abstract ?description .

FILTER (lang(?description) = 'pt')

FILTER (lang(?label) = 'pt')

}

}

ORDER BY ?label

LIMIT 1

Figure 22: Entity linking SparQL query for undergraduate courses keywords.

1https://dbpedia.org/sparql/
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A.2 Application-Level Evaluation: November 2019

In this section we present the appendix for the application-level evaluation realized in

November 2019. Figure 23 depicts the mean results from the user survey, in which two

explanation methods PRED (embedding-based) and TRUE (graph-based) where com-

pared among the five explanation aims (engagement, transparency, trust, persuasion and

effectiveness). Even though the mean results for PRED method were consistently higher

among all aims, we were not able to obtain statistical significance to tell whether PRED

outperformed TRUE method in this experiment.

Figure 23: Visual representation for explanation metrics average scores.

Figures 24, 25, 26a, 26b and 26 depicts the survey screens presented to subjects during

the experiment.

Figure 24: Experiment flow first step. Subject is asked to accept disclosure agreement.
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Figure 25: Experiment flow second step. Subject is asked to acknowledge evaluation
metrics.

(a) Links to chatbots.

(b) Chatbot interface.

Figure 26: Experiment flow fifth step. Subject is asked to evaluate two chatbots
with different explanation methods, respectively: embedding-based (PRED), graph-based
(TRUE).
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A.3 Human-Level Evaluation: July 2020

In this section we report on experiments that were designed to address the following

research questions:

1. Do reasons for/against have value for users?

2. Do reasons against reduce persuasion?

3. Do users perceive a conflict of interest in their interaction with an RS?

4. Do reasons for/against influence user choices?

Our experiment took 31 subjects, all of which are engineering undergraduate students

from EPUSP, and asked them to evaluate two recommendation setups, one displaying only

reasons for recommendations, and the other displaying reasons for and against them. Sub-

jects were presented with an e-commerce mock-up where they received recommendations

concerning smartphones. The described experimental procedure is depicted in Figure 27.

First, the user is asked to accept an disclosure agreement granting access to her responses

for the purpose of this research (step 1); this step is mandatory. Next, each subject first

received a recommendation and one reason for, and was asked to select an item (step 2);

then the subject received a recommendation with one reason for and one reason against,

and was again asked to select an item (step 3). Note that we avoided presenting too many

reasons at once. Figure 28 depicts the information presented. It is important to mention

that this experiment purpose was focused solely on the evaluation of user perception of

reasons against in explanations in the context of recommendation, so it does not address

questions about application domain or implementation constraints.

Figure 27: Experiment flow diagram.

Each subject then evaluated the two recommendation systems individually in the five

explanation aims (step 4 33), which are represented by the questionnaire in Table 9. Each

subject ranked each system with respect to each explanation metric using a survey-based
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Figure 28: Experiment: just one reason for (left); one reason for and one reason against
(right).

Likert scale from 1 to 5. Finally, each subject could write a short free text with thoughts

about the experience; this final screen is shown in Figure 34. The screens presented to

the subjects are presented at the end of this section.

Before we move forward, it is important to highlight the key assumptions and lim-

itations of this experiment. First, since this is a within subjects experiment and the

explanation approaches were presented in the same order for all subjects (only reasons

for and reasons for/against respectively) these results disregard any learning effects that

could potentially lead to a positive bias towards the second setup. In addition, since we

do not collect demographic data from our subjects, we cannot tell whether these results

generalize for other populations. Finally, our sample size was limited, so all conclusions

are only preliminary indications and further research is required.

Metric Question

transparency The explanation on the right helped me understand why the items were
recommended better than the explanation on the left

persuasion Based on the explanation on the right, I was more prone to follow the
recommendation than based on the explanation on the left

engagement The explanation on the right helped me learn more about the recom-
mended items than the explanation on the left

trust The explanation on the right contributed more to increase my confidence
in the recommendations than the explanation on the left

effectiveness The explanation on the right made me more confidence about making
the best choice than the explanation on the left

Table 9: The five explanation metrics that subjects had to take into account in the
experiment.

Figure 29 shows the percentage of responses given by subjects. Responses, notably for

engagement, trust and effectiveness, are concentrated around scores 4 and 5. This result
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indicates that users mostly agree that showing reasons against a recommendation adds

value with respect to trust, engagement and effectiveness. Figure 29 shows that there was

a divergence amongst users about whether the proposed explanation paradigm increases

transparency. Indeed, as our method is model-agnostic (it makes no assumptions about

the RS internal behavior), the explanations were unable to shed light on how items were

actually recommended. As the transparency score peaked around 4, this does not mean

reasons for/against were adverse to transparency; it means that they were as good as just

reasons for.

Figure 29: Visual representation for explanation metrics average scores.

We expected a possible drawback of our proposal would be a reduction in persuasion

(as reasons against might make the users less likely to follow recommendations). By

doing a further analysis of textual comments, we found out that persuasion increases are

produced by higher trust in the recommendation system. Consider two comments:

1) I always think that recommendations that bring positive and negative aspects

are fairer, and could influence me more into buying the product, once I feel I

am not being misled.

2) As the first example [the first RS] shows only strong points for each product,

it leads the user to have a certain mistrust about the suggestions.

Comments also indicated that many users expect the recommendation system to try

to lead them into a decision, sensing a conflict of interest in the process. Consider the

following comment:

3) Differently from marketing which always idealize the product, this one seems

to show the reality about it, thus I feel I understand the recommended product

in its real form.
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These comments agree with our hypothesis while suggesting that reasons against have

a significant positive impact on the user decision-making process. Furthermore, a full 45%

of our test subjects changed their initial choices after we presented reasons against.

Figure 30: Experiment flow first step. Subject is asked to accept disclosure agreement.
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(a) Experiment contextual introduction.

(b) Three recommendation options with only
reasons for.

Figure 31: Experiment flow second step. Subject is asked to choose among three recom-
mendation when presented with only supporting reasons.

Figure 32: Experiment flow third step. Subject is asked to choose again after being
presented with reasons against each option.
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Figure 33: Experiment flow fourth step. Subject is asked to evaluate the two explana-
tion scenarios, only reasons for (left) and reasons for/against (right), according to an
explanation aim using a Likert-scale.

Figure 34: Experiment flow final step. Subject is asked to write a general comment about
the experiment.
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A.4 Application-Level Evaluation: November 2020

In this section we present the appendix for the application-level evaluation realized

in November 2020. Figure 35 depicts the mean results from the user survey, in which

two reasons against schemes (S1 and S5) where compared against a reasons for only

baseline among the five explanation aims (engagement, transparency, trust, persuasion

and effectiveness). We were not able to obtain statistical significance to tell whether any

methods outperformed the baseline in this experiment.

Figure 35: Visual representation for explanation metrics average scores.

Figures 36, 37, 38 depicts the survey screens presented to subjects during the experi-

ment.
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Figure 36: Experiment flow first step. Subject is asked to accept disclosure agreement.

Figure 37: Experiment flow second step. Subject is asked to freely interact with a con-
versational recommendation system as a warm up.
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(a) Only reasons for (PRED). (b) Scheme S1.

(c) Scheme S5.

Figure 38: Experiment flow third step. In order evaluation of three explanation schemes,
respectively: only reasons for (PRED), S1 and S5.
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A.5 Human-Level Evaluation: April 2021

In this section we present the appendix for the human-level evaluation realized in

Abril 2021. Figure 39 presents the experiment subjects demographics distribution over

self-declared: age, gender, place of birth and tech affinity. Our sample population was

heavily concentrated on male young (age between 20 and 35) southeasters with high

affinity to technology.

Figure 39: User study subjects demographic distribution according to age, gender, place
of birth (Brazil macro regions) and tech affinity.

Figures 40, 41, 42, 43 and 44 depicts the survey screens presented to subjects during

the experiment.

Figure 40: Experiment flow first step. Subject is asked to accept disclosure agreement.
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(a) Gender. (b) Tech affinity and age.

(c) Place of birth. Each option corresponds to
a Brazil macro region, non-Portuguese speaker
country or other.

Figure 41: Experiment flow second step. Subject is asked to fill forms with her demo-
graphic information.

Figure 42: Experiment flow third step. Subject is asked to acknowledge evaluation met-
rics.
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Figure 43: Experiment flow fourth step. Subject is asked to answer a quiz about evaluation
metrics. All answers correct are required to proceed.
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Figure 44: Experiment flow fifth step. Subject is asked to evaluate two explanation
schemes according to an explanation aim using a Likert-scale.
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