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“It is only by drawing often, drawing everything, drawing incessantly, that one fine day

you discover, to your surprise, that you have rendered something in its true character.”

Camille Pissarro





ABSTRACT

Art is the means by which humanity has always expressed itself, as art o↵ers a record

of humanity’s feelings, its ways of life and its conception of the world. Although we are

fortunate to have a vast store of cultural wealth from past generations, the sheer number of

artworks has become an obstacle to their categorization into styles. This research explores

a strategy that maximizes the performance of style classifiers applied to works of art.

Automatically classifying artworks into styles is quite challenging due to the relative lack

of tagged data and the complexity of the class definitions. This complexity is manifested

by the fact that some image augmentation techniques not only do not improve perfor-

mance but may also degrade performance. We propose to resort to Adversary Generating

Networks (GANs). Originally, GANs set out to create images capable of deceiving the

human eye and making us believe that generated images are true images. The proposal

here is not to create art, but rather to use this architecture as a data augmentation tool.

To assess the impact of using GANs on image augmentation, we have studied performance

improvements over E�cientNet B0, a state-of-the-art image classifier. In addition, we

present a Class-by-Class Performance Analysis that can be useful in the study of other

high-complexity image datasets.

Key-words: Computer Vision, Generative Adversarial Networks, Image Classification





RESUMO

Arte é o meio pelo qual a humanidade sempre usou para se expressar, tornando-a um

registro de seus sentimentos, seus modos de vida e sua concepção de mundo. No entanto,

embora tenhamos a sorte de ter uma vasta riqueza cultural proveniente de várias gerações,

a quantidade de obras de arte tornou-se um impedimento para sua categorização em

estilos. Esta pesquisa se propõe a estudar uma estratégia para maximizar o desempenho

dos classificadores de estilo em obras de arte. A classificação automática das obras de

arte em seus estilos é bastante desafiadora devido à relativa falta de dados rotulados e à

complexidade das classes envolvidas. Essa complexidade é refletida no fato que algumas

técnicas de augmentação de imagens não só não agregam ao desempenho do modelo mas

também podem degradar seu desempenho. Por isso, introduzimos neste trabalho o estudo

de Redes Adversárias Geradoras (GANs). Originalmente, as GANs foram propostas para

criar imagens capazes de enganar o olho humano e nos fazer acreditar que as imagens

geradas são imagens verdadeiras. Essa pesquisa não se propõe a criar arte, mas pretende

usar essa arquitetura como uma ferramenta de ampliação de dados. Para avaliar o impacto

do uso de GANs na augmentação das imagens, treinamos a E�cientNet B0 para verificar

a melhoria no desempenho do E�cientNet B0, um classificador de última geração. Além

disso, apresentamos a Análise de Desempenho de Classe por Classe, que deve ser útil no

estudo de outros conjuntos de imagens de alta complexidade.

Palavras-chave: Visão Computacional, Redes Adversárias Geradoras, Classificação de

Imagens
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1 INTRODUCTION

When Frida Kahlo says “I paint flowers so they will not die.”, she highlights the perpetuity

of art. In it, life, thought, and feeling are diligently recorded in order to convey the truths

of the human condition that transcend the capacity of words to describe. In e↵orts to

understand artistic records throughout history, one of the most important issues has to do

with the age of an artwork. If researchers cannot determine the age of a monument, they

cannot place the work in its historical context. To remedy this, scholars rely on four types

of evidence: physical, documentary, internal and stylistic.

Physical evidence refers to the age of the material and the employed technique,

making it possible to define the earliest possible date and the latest possible date of

creation. Documentary evidence refers to writings that in the past could have served

as a service contract between the artist and their patron. Internal evidence is found by

analyzing the integral elements of the artwork, ranging from a depiction of a famous person

to a hairstyle from a specific era. Stylistic evidence refers to the artist’s specific way of

creating art (GREEN et al., 2011). The latter is the best-known way of categorizing art,

which gives a great amount of information about their ideas and intentions for academic

purpose. Furthermore, art style classification goes beyond the domain of art scholars and

serves as an important guide for beginning art aficionados and the general public within

museums and galleries, not only providing context but also for recommendation tools to

improve a museum visitor’s experience.

Despite its importance, the categorization of art style became an almost impossible

task given the vast cultural richness we have inherited from our ancestors. In order to

prevent this quantity from being an impediment to the appreciation of art in an organized

way, this research strives to maximize the performance of the art style classification.

Furthermore, given the complexity of the challenge, the search for solutions to the challenge

can lead to unexpected solutions that could be used in other contexts.

Art style classification falls within image classification in Computer Vision. Automa-

tic artwork style classification was initially approached with pattern recognition techniques

and machine learning algorithms (SHAMIR et al., 2010; ARORA; ELGAMMAL, 2012).

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) enabled the develop-

ment of deep learning techniques for image classification (KRIZHEVSKY; SUTSKEVER;

HINTON, 2012). As a result, not only did the specific architectures for image classification

evolve, but models trained in the competition became the starting point for classifiers

for other domains, including the art domain. Another important milestone for artwork
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studies within Computer Vision was the creation of the WikiArt dataset.1 This dataset

o↵ers a rich source of labeled artwork, and it has become a standard dataset for art style

classification. Figure 1 shows a sample of the WikiArt dataset.

Analyzing the literature on this problem, we see that the complexity of the art

dataset has been mentioned as a challenge to overcome. Beyond the challenge of class

imbalance, style classification is further complicated by aesthetic diversity, a problem that

is not usually met in most image classification models. Some artworks, such as abstract

expressionist paintings (Figure 1a), have neither traditional subjects nor even settings.

The “subject” is the artwork itself – its colors, textures, composition, and size. On the

other hand, Romanticism (Figure 1n) emerged in Europe in the 18th century and its

paintings reflect the context of the industrial revolution and the Enlightenment, which

was an intellectual and philosophical movement based on reason.

Many e↵orts have been made in order to maximize the information obtained from

artwork images, in approaches based on data augmentation. However, none of these e↵orts

have relied on Generative Adversarial Networks (GANs). Augmentation based on GANs

aims to generate label preserving images in the classifier domain; it is a novel way, proposed

here, to add information to a classifier’s training and thus to improve its performance.

In short, this research aims to maximize the performance of art style classifier.

To this end, we present a study of the use of GANs in image augmentation, in order to

add more information about styles in the training phase of a classifier. As a result of this

study, we present the Class-by-Class Performance Analysis strategy that aims to organize

the knowledge developed in this research and to allow extrapolation to other contexts in

which data from a high complexity domain is also involved. These contributions have been

described in the following article:

• Pérez S.P., Cozman F.G. (2021) How to Generate Synthetic Paintings to

Improve Art Style Classification. In: Britto A., Valdivia Delgado K. (eds)

Intelligent Systems. BRACIS 2021. Lecture Notes in Computer Science, vol 13074.

Springer, Cham.

In Chapter 2, we provide the required background knowledge, followed by related

work regarding image classification and Generative Adversarial Networks in Chapter 3.

Then, in Chapter 4, we discuss our contributions, followed by our experiments and results

in Chapter 5. Finally, in Chapter 6 we present our conclusions, future work and timeline.

1 hhttps://www.wikiart.org/i
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(a) Abstract Expressionism (b) Art Nouveau (c) Baroque

(d) Color Painting Field (e) Cubism (f) Early Renaissance

(g) Expressionism (h) Impressionism (i) Minimalism

(j) Naive Art (k) Northern Renaissance (l) Pop Art

(m) Realism (n) Romanticism (o) Ukiyo-e

Figure 1 – An example of each of the art movements in the WikiArt dataset.
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2 BACKGROUND

This chapter provides necessary knowledge to understand this research. It starts with

an introductory explanation of the artistic styles covered in this work. Subsequently, we

summarize the techniques behind modern algorithms of image classification, with special

attention to the classification network used in this research, the E�cientNet B0. Afterward,

we present some important concepts in image oversampling and image augmentation. The

theory behind how GANs work is also presented. Finally, the concepts of Self-Attention

and Wasserstein with Gradient Penalty loss function are shown and its relation to GANs

is explained.

2.1 Art Style

According to Green et al. (2011), art style is an artist’s distinctive manner of producing

an object. Once the artist’s style has been defined, a very challenging task in itself, one

seeks to fit his work into predefined styles. An Art Style can be specific to a span of years

– also known as Period Style – such as Early Renaissance. However, there have been many

periods when stylistic variations were linked to geography, and that leads these styles

to be taken as Regional Styles. Also, a Personal Style may be contemplated, since many

artists end up developing a unique method of producing artistic elements. Furthermore,

an artist’s Personal Style may change dramatically during their life time and the artworks

of some artists end up distributed through di↵erent styles.

The following sections cover the artistic movements of interest to this research (in

alphabetic order). In addition to the aforementioned reference, explanations about the

context and characteristics of the movements are based on The Art Story Guide.1

Abstract Expressionism

Originated in New York, Abstract Expressionism (1943-1965) was an artistic movement

that reflected a post-war mood filled with anxiety and trauma. Visually, it can be identified

by color-centered paintings with abstract forms. These abstract forms may be originated

from the dripping technique of Jackson Pollock. The canvas is huge to match the size of the

statement, filled with profound emotions and universal themes originated from Surrealism.

1 hhttps://www.theartstory.org/i



Chapter 2. Background 26

Art Nouveau

Art Nouveau (1890 - 1905) expressed the desire to modernize design and to evolve

traditional art that took painting and sculpture as superior to craft-based decorative arts.

Artists chose to emphasize linear contours and shapes that highlight elegance, also to

help narrow the gap between what as considered fine art and applied art. Colors took a

secondary role and they were restricted to muted green, browns, yellows and blues.

Baroque

Baroque (1584 - 1723) has its history deeply connected with the Protestant Reformation.

As the Protestant Reformation criticized the Catholic Church, the latter used art as

propaganda to its importance and grandeur within society in order to awaken religious

fervor. Therefore, it is not surprising that Baroque is completely dedicated to the religious

theme. The religious representation were easy to understand and they should impress the

audience with a complex use of light and rich ornaments to induce the feeling of something

elevated and sacred.

Color Field Painting

Similar to Abstract Expressionism, Color Field Painting (1940 - 1960) had color as the main

character, avoiding the suggestion of form or mass standing out in the canvas. Cly↵ord

Still painted fields of colors in opposition: light and dark, that the painter would reference

as “life and death merging in fearful union”.

Cubism

Cubism (1907 - 1922) completely changed the Renaissance depiction of space, using

multiple vantage points to fracture images into geometric forms. The evolution of the

style is the result of the partnership between Picasso and Braque, making it di�cult to

distinguish their work over time. They focused in the genres of portraiture and still life

with earth tones and muted gray.

Early Renaissance

Early Renaissance (1401 - 1490) is the art developed in Italy during the XV century. The

art was mostly influenced by the Humanist philosophy, in which the individual is considered

the center and their relation with God does not belong to the Church. Technically, this

style presented the one point linear perspective, which indicated the importance given to

knowledge of mathematics and architecture.
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Expressionism

Born in Germany, Expressionism (1905 - 1933) was a response to a feeling of lack of

authenticity and spiritually. Distorted form, strong colors and exaggeratedly executed

brushstrokes were considered a way of expressing the widespread anxiety and the feelings

of the overwhelmed individual dealing with urbanization and capitalism.

Impressionism

Impressionism (1862 - 1892) is ground-breaking art movement for the modern painting,

due to its disruptive change in thematic and technique. Painters were now focused on

painting mundane subjects and their impressions of it, with looser brushwork and lighter

colors. Furthermore, they sought to portray the world exactly as it was perceived by them,

depicting imperfections, but, at the same time, not necessarily portraying reality.

Minimalism

Minimalism (1960-1969) can be defined as the denial of expression. These painters aimed

to distance themselves from the Abstract Expressionism excesses and the perception of

references or metaphors of any kind. Geometric forms were used not only to force the

audience to confront arrangements and scale, but also to break down traditional notions

of sculpture and to erase distinctions between painting and sculpture.

Näıve Art

Näıve Art (1890 - 1945) carried the “noble savage” idea, in which the primitive man is

considered good and it is t he society that turns him into a corrupted being. Besides

the innovative aesthetic, it is important to highlight the critique of modernization of the

western society.

Northern Renaissance

Northern Renaissance (1430 - 1580) was also influenced by the Protestant Reformation,

leading the painters to disdain grand idealizations of the Catholic Church. Jan van Eyck

learned the technique of linear perspective of the the Italian Renaissance, however he

applied to realistic and everyday figurative characters in his paintings. While art in Italy

was, at that time, for the rich and powerful, art in northern Europe was for the bourgeois.

Pop Art

Following the popularity of Abstract Expressionism, Pop Art (1950 - 1970) introduced

the art mixed with popular imagery. These artists aimed to transform the images of
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advertisement and cartoons into high art, which earned them the criticism of being in

agreement with capitalism.

Realism

Realism (1840s - 1880s) is considered the first modern movement in art, in which painters

replaced the idealistic images and literary concepts of traditional art with real-life events,

giving to outcasts similar weight as to grand history paintings and allegories. Their choice to

bring everyday life into their canvases was an early manifestation of the avant-garde desire

to merge art and life; their rejection of pictorial techniques, like perspective, prefigured

the many 20th-century definitions and redefinitions of modernism.

Romanticism

Romanticism (1780 - 1830) follows the idealism of the French Revolution, as artists felt

that they lacked freedom. The culprit for this feeling? The Enlightenment and its quest for

reason were considered an a↵ront to artists. As a form of direct combat, scenes of protests

and revolts were painted. Others, more indirectly, embraced the connection between the

individual and their deepest feelings instead of any kind of reason. Furthermore, the

historical events of class struggles spawned nationalist sentiments that inspired artworks

emphasizing folklore, tradition and local nature.

Ukiyo-e

Ukiyo-e (1672 - 1880s) is the famous Japanese painting and woodcut style for the Edo

period, aiming at a representation of the leisure districts of cities. The name of this style

translates to “images of the floating world”, an ancient Buddhist term describing the

transience of human life and the ephemeral nature of the material world. These idyllic

narratives not only document the leisure activities and atmosphere of the time, but also

portray the decidedly Japanese aesthetic of beauty, nature and spirituality.

2.2 Image classification

An image can be viewed as a matrix. The first neural network architectures demanded

that, when an image was the input, the image should be transformed to a flat tensor so

as to be accepted as input. Therefore, notions of spatial distribution were lost, and the

quality of image classifiers was penalized. In Convolutional Neural Networks (CNNs), each

neuron of a network receives input from a region of the previous layer, while a neuron of

a fully connected layer receives input from every element of the previous layer. Figure 2
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Figure 2 – An example of a CNN (HIDAKA; KURITA, 2017).

shows an architecture with convolutional layers. Only the last layer is fully connected so

as to act as a classification layer.

The history of CNNs is deeply connected with the ImageNet Large Scale Visual

Recognition Challenge, an annual competition in which the main goal is to correctly classify

and detect objects and scenes. The winner of 2012 was Krizhevsky, Sutskever & Hinton

(2012) with AlexNet, a network with eight convolutional layers and three fully connected

layers. Since then, several larger and more complex architectures have been created to

win the ILSVRC. For this research, we chose an architecture from the same family of

the winner of the 2019 ILSVRC, the E�cientNet B0. Besides its good performance, it

is a small network; it has 5.3 million parameter versus the 66 million parameters from

the E�cientNet B7, the winner of the 2019 ILSVRC. It was very important to choose

a small network for training agility, which provided the possibility of creating multiple

experiments in a short period of time.

The E�cientNet family is an innovative way of thinking about CNNs building. The

ResNet networks (HE et al., 2016) can be scaled down (ResNet-18) or up (ResNet-200) by

adjusting network depth, and the Inception networks (SZEGEDY et al., 2015; SZEGEDY

et al., 2016) can increase parallel convolution modules and change their width. Instead

the E�cientNet family has a scaling method that uniformly scales all dimensions of depth,

width and resolution (Figure 3) by using a compound coe�cient (TAN; LE, 2019). The

compound coe�cient � captures the following parameters, where ↵ � 1, � � 1, � � 1 and

↵�� ⇡ 2:

depth : d = ↵�,

width : w = ��,

resolution : r = ��.

(2.1)

Tan et al. carried out a Neural Architecture Search (NAS) to create the E�cientNet

B0, so as to maximize accuracy and to minimize computational cost (TAN et al., 2019).

All E�cientNet models were then scaled from the baseline E�cientNet B0 using a di↵erent

compound coe�cient � (Equation (2.1)).
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Figure 3 – Representation of compound scaling (TAN; LE, 2019).

Table 1 – Summary of the composition of the E�cientNet B0.

Stages Operators Resolution # of channels # of layers

1 Conv3x3 224x224 32 1
2 MBConv1, k3x3 112x112 16 1
3 MBConv6, k3x3 112x112 24 2
4 MBConv6, k5x5 56x56 40 2
5 MBConv6, k3x3 28x28 80 3
6 MBConv6, k5x5 14x14 112 3
7 MBConv6, k5x5 14x14 192 4
8 MBConv6, k3x3 7x7 320 1
9 Conv1x1 & Pooling & FC 7x7 1280 1

Table 1 summarizes the stages in the E�cientNet B0 architecture. Stages 2-8

are built with blocks of MBConv (SANDLER et al., 2018), which are combined with a

Squeeze-and-Excitation optimization (HU; SHEN; SUN, 2018). A MBConv denotes mobile

inverted bottleneck convolution and is a combination of operations as follows. All blocks

have a combination of Expansion, a Deepwise Convolution and a Squeeze-and-Excitation

phases. Figure 4 was designed based on the architecture described in Tan & Le (2019) and

shows one of the most common combinations of these operations.

2.3 Image Oversampling

Image Oversampling is a common strategy for dealing with inbalanced datasets. In order

to compare the results obtained in this research with Image Augmentation, the classifier

is also trained with Weighted Class Oversampling. The Weighted Class Oversampling is

oversampling technique to enlarge a dataset at the probability of occurrence of each class.

Many others techniques of oversampling rely on statistical data from each class

to sample the images that best represent each class. However, due to its complexity, it is



Chapter 2. Background 31

Figure 4 – MBConv6, k5x5. BN denotes Batch Normalization. Swish and Sigmoid are
activation functions. 0.25 is the Squeeze-and-Excitation ratio. Source: Prepared
by the author (2021).

another challenging task engineering features for painting images.

2.4 Image augmentation

Image augmentation encompasses a suite of techniques that enhance the size and quality of

training datasets so that better deep learning models can be built using them (SHORTEN;

KHOSHGOFTAAR, 2019). These techniques help deep learning models to better generalize

not only in cases of overfitting but also in case of class imbalance.

It is also important to highlight that the use of image augmentation requires a

careful analysis of the dataset domain. Some changes can result in non-label-preserving

transformations. A classic example is the MNIST handwritten number dataset and the

possibility that the image of the number 6 ends up being transformed into a 9 with the

vertical flip, a very common geometric transformation.

In this section, we discuss the most common image augmentation techniques (geome-

tric transformations, color space transformations) as well as other classical transformations

and image augmentation based on deep learning.

2.4.1 Geometric transformations

A geometric transformation is any transformation that changes size, position and/or

orientation of the image. Some examples of this type of transformation:

• Resize: is the rescaling of an image.

• Flipping: is the horizontal or vertical rotation of an image.

• Cropping: is a cutout of a sector of the original image.
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• Rotation: is the rotation around the axis perpendicular to the image.

• Translation: is the displacement of an image horizontally and/or vertically.

Usually, these methods are used in combination: once an image was cropped, the

resizing technique is used in order to correct the input image size. All these geometric

transformations are expected not only to increase the diversity of the images, but also to

improve the generalization power of the model against changes in position, orientation

and size of the target to be detected. These transformations are quite valuable in the art

domain, as it is possible to maintain the essence of art.

2.4.2 Color space transformations

This type of transformation involves any change to the color of the image, which makes

the color space transformation a very broad category. The most common examples of color

space transformations are cited below:

• Color jittering: it randomly changes the contrast, brightness, and saturation of an

image.

• Histogram matching: it manipulates the pixels of an input image so that its

histogram matches the histogram of the reference image.

• Histogram equalization: it adjusts the contrast of an image by modifying the

intensity distribution of the histogram. When the image has a narrow range of

intensities values, this technique has a large impact on contrast.

Color transformations may discard important color information and thus are not

always label-preserving. For example, when decreasing the pixel values of an image to

simulate a darker environment, it may become impossible to see the objects in the image

(SHORTEN; KHOSHGOFTAAR, 2019). In the context of art, colors are meaningful

and altering them without care can result in a non-label-preserving transformation. The

importance of colors is perceived in the painters’ own speech; Picasso paints sadness

a grayish blue and Edouard Manet believes the true color of the atmosphere is violet

(KASTAN; FARTHING, 2018). And Van Gogh was adamant in saying “There is no blue

without yellow and without orange”.2

2.4.3 Other classical transformations

Here are other techniques that are very important in image augmentation:

2 hhttp://www.webexhibits.org/vangogh/letter/18/B06.htmi
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• Noise injection: is the injection a matrix of random values. A very common type

of noise derives from Gaussian distributions.

• Kernel filters: is a filter that may increase or decrease the sharpness of the image.

A Gaussian filter will result in a more blurred image and a high contrast vertical or

horizontal edge filter will result in a sharper image along the edges .

• Random erasing: is the deletion of some random values of one or more channels of

an image. It was inspired by the mechanisms of dropout regularization (once the

network cannot see the whole image, it is harder for it to overfit).

• Mixing images: is the patching of two images in a blended new image.

Kernel filters, in the context of CNNs, are not very insightful, as the filters have

a very similar interaction with the images as to the internal mechanisms of CNNs. Also,

the technique of mixing images has obtained good results but it is not clear why. One

possible explanation could be the increase in examples of low-level features, such as lines

and borders.

2.4.4 Image augmentation based on deep learning

Here are some image augmentation techniques based on deep neural networks:

• Feature space augmentation: is a type of data augmentation done in the feature

space of an image. This technique introduced by DeVries & Taylor (2017) implies

that an autoincoder structure is able to generate a feature space that generalizes

the class well and than the feature space is modified to generate artificial images.

Once the feature space is changed, another decoder structure is used to generate the

generated images.

• Adversarial training: is a framework for using two or more networks in which

their loss functions encode disputes between them. It is commonly used for creating

images to be misclassified: it finds the minimum possible noise injection needed to

cause a misclassification with high confidence. In the context of data augmentation,

this technique helps to exploit the weaknesses of the classification model by acting

as a search engine.

• GAN-based Data Augmentation: is the use of generative networks for up-

sampling a training dataset. This technique has been widely used in the medical

field, due to the limited access to data or simply because it is a condition that is

rare to occur. Just to name a few examples, it has already been used for simulating

lung nodules (HAN et al., 2019), ECG (YILDIRIM et al., 2018), liver lesions (FRID-

ADAR et al., 2018), chromosomes (WU et al., 2018b), skins lesions (QIN et al., 2020)
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and Covid-19 results (ELDEEN; KHALIFA, 2020; WAHEED et al., 2020). In Suh

et al. (2021), a pipeline is presented as the classification enhancement generative

adversarial network (CEGAN). It is composed of three independent networks - a

discriminator, a generator and a classifier - and the classifier loss is included in the

GAN training process to reduce ambiguity between classes.

The GAN-based Data Augmentation was the chosen strategy for this research

because of its ability to handle and create complex images as opposed to the other

aforementioned techniques. The next section explains in detail all the relevant theory.

2.5 Generative Adversarial Networks

Generative Adversarial Networks o↵er a deep learning architecture that generates synthetic

images (GOODFELLOW; BENGIO; COURVILLE, 2016). A GAN involves two models:

• Generator model: is a function G that takes a fixed-length random vector as input

z, uses ✓(G) parameters and has an output that is a generated image in the trained

domain. This vector z is also called a latent space or a vector space comprised of

latent variables.

• Discriminator: is a function D whose input x is an example of image of the domain

(that could be real sample or a generated sample) and uses ✓(D) parameters; its

output is the binary class label of real or fake.

Figure 5 shows the training dynamic of a GAN. The two models interact with each

other during training following a game theoretic scenario in which the generator network

must compete against an adversary. The generator network produces initially random

samples. Its adversary, the discriminating network, tries to distinguish between samples

taken from training data and samples taken from the generator. From the feedback of the

discriminating network, the generating network learns to draw images that may confuse

the discriminating network. This competition is translated into the loss functions J of the

training of these networks.

J (D)(✓(D), ✓(G)) = �1

2
Ex⇠pdatalogD(x)� 1

2
Ezlogs(1�D(G(z))), (2.2)

J (G)(✓(D), ✓(G)) = �J (D)(✓(D), ✓(G)). (2.3)

The discriminator wishes to minimize Equation (2.2) and it can only control ✓(D).

The generator wishes to minimize Equation (2.3) and it can only control ✓(G). Because
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Figure 5 – GANs’ architecture (WANG; SHE; WARD, 2021).

each player’s cost depends on the other player’s parameters, but each player cannot control

the other player’s parameters, this scenario should not be confused with an optimization,

but should be interpreted as a game as mentioned above. The solution to this game is a

Nash equilibrium. In this context, a Nash equilibrium is a tuple (✓(D), ✓(G)) that is a local

minimum of J (D) with respect to ✓(D) and a local minimum of J (G) with respect to ✓(G).

2.6 GAN challenges

According to Wang, She & Ward (2021), the generation of synthetic images with GANs

faces three major challenges:

• image quality: it refers to generated images that can actually confuse the observer

to whether the image is real or fake;

• image diversity: this captures whether the generator can create a variety of images

of the real images domain, avoiding the mode collapse;

• training stability: this is linked to whether the architecture and the training setup

is able to avoid that the model training does not loose control, a situation known as

vanishing gradient. The vanishing gradient problem can also be defined as when the

error signals flowing backwards are subsequently smaller until it vanishes and model

stops learning as it is unable to change its weights.

The evolution of the architecture of GANs is a sprawling topic, specially because of

their variety of purposes that goes beyond creating synthetic images but also image to image

transfer, image super resolution, image completion and text-to-image generation. Since

the purpose of the GANs in this work is to generate images from a random distribution,

we will focus on references that address this challenge.
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In the work of Mirza & Osindero (2014), an extra parameter was introduced in the

GAN’s architecture, making its generator model capable of creating images according to

its class label. Chen et al. (2016) developed a GAN architecture able to learn disentangled

representations in an unsupervised manner. They introduced a representation learning

algorithm called Information Maximizing Generative Adversarial Networks (InfoGAN), in

which an information-regularized minimax game is used in order to train a multi class

generative model without the label information.

The work of Che et al. (2017) focused on solving one of the GAN deficiencies by

reason of highly unstable training and sensitivity to hyper-parameters, which makes it

prone to miss modes. The idea is to use an encoded version of the real images to produce

the latent variable z, di↵erent from earlier works, in which a random distribution was used

as input to the generative model.

Zhang et al. (2019) work was the first to introduce the concept of self-attention

in GANs (SAGAN). The convolutional architecture processes information better in local

neighborhoods and it has no mechanism to deal with long distance dependencies. The Self-

Attention mechanism has the e↵ect of enabling both the generator and the discriminator

to deal with widely separated spatial regions. Besides the Self-Attention module, this

work uses the spectral normalization technique used in the cGAN (MIYATO et al., 2018)

in both generator and discriminator models and the two-timescale update rule (TTUR)

(HEUSEL et al., 2017) for training stability.

Brock, Donahue & Simonyan (2019) designed a new GAN architecture based

on SAGAN with the aim of creating bigger images. This work explores di↵erent latent

variables z and presents the truncation trick, which involves re-sampling the latent variable

z with values which have a magnitude above a chosen threshold. It leads to improvement

in individual sample quality at the cost of reduction in overall sample variety. This

truncation trick provides a trade-o↵ between image quality or fidelity and image variety.

The main features of the BigGAN are: the Self-attention module, class information via

class-conditional batch normalization and updating the discriminator twice as much as

the generator.

The work of Daras et al. (2020) also is based on the SAGAN construction. The

authors replaced the dense attention layer for a novel module of sparse attention patterns

for two-dimensional grid. They based the latter in the information theoretic framework of

Information Flow Graphs. This assesses how information can be transmitted over multiple

steps and still preserve two-dimensional locality. This architecture is considered the current

state-of-the-art.
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Figure 6 – The self-attention mechanism (ZHANG et al., 2019).

2.7 Self-attention mechanism

The attention mechanism was developed to solve the problem of forgetfulness in Sequence

to Sequence (seq2seq) models dealing with the language challenge of machine translation

(BAHDANAU; CHO; BENGIO, 2015). In the context of text, each word embedding receives

an attention weight that depends on the position of the next word in the translated sentence.

Consequently, the model has more information about the importance of each word in the

sentence. This architecture was originally composed of recurrent or convolutional neural

networks working as encoder and as decoder with the attention mechanism. Vaswani et al.

(2017) proposed Transformers, an architecture that dispenses with the use of recurrences

and convolutions entirely and is based only on an attention mechanism known as self-

attention. The concept of self-attention derived from the intra-attention of Cheng, Dong

& Lapata (2016), in which it calculates the answer at a position in a sequence once all

positions with the same sequence have been checked.

The self-attention mechanism lets inputs to interact with each other and to find

out to which part of the input they should pay more attention. This mechanism was

also translated to the computer vision task, specially in the context of GANs. Zhang

et al. (2019) presented the Self-Attention Generative Adversarial Network (SAGAN), a

generative adversarial network architecture with an attention module. SAGAN has the

attention module on both the generator and the discriminator, which are trained in an

alternating fashion by minimizing the hinge version of the adversarial loss.

Figure 6 shows in detail the mechanism behind the self-attention mechanism.

Transformers are used to create the key, query and value:

f(x) = Wfx, g(x) = Wgx, h(x) = Whx.

The attention map is created after applying a softmax to the dot product of the key and

the query (Equation (2.4)). Another dot product is taken between the attention map and
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the value; the attention map is applied to the value in order to create a self-attention map

oj (Equation (2.5)):

↵i,j = softmax(f(xi)
>g(xj)), (2.4)

oj = Wv

 
NX

i=1

↵i,jh(xi)

!
. (2.5)

The self-attention map ensures that the model learns long range dependencies

within an image, which is a deficiency in convolutional neural networks.

2.8 Loss functions for GANs

A loss function directs a deep learning model during training on how to find its best

parameter values. It is not surprising that in the case of GANs the loss function is very

important, as it is responsible for training two models simultaneously.

The original loss function of Goodfellow (2016) incurs in both mode collapse and

vanishing gradient (WANG; SHE; WARD, 2021). Arjovsky, Chintala & Bottou (2017)

studied these problems and adapted the Earth-Mover (EM) distance to work as a loss

function. The Earth-Mover (EM) distance or Wasserstein-1 is defined as:

W (Pr,Pg) = inf
�2

Q
(Pr,Pg)

E(x,y)⇠�[||x� y||], (2.6)

where
Q
(Pr,Pg) denotes the set of all joint distributions � whose marginals are respectively

Pr and Pg. Intuitively, �(x, y) indicates how much “mass” needs to be transported from x

to y in order to transform the distribution Pr into the distribution Pg. The EM distance

then is the “cost” of the optimal transport plan. Translating this into the image context, Pr

is the probability distribution of a set of real images and Pg is the probability distribution

of generated images. Equation (2.7) presents the loss function introduced by Arjovsky,

Chintala & Bottou (2017):

L = sup
||f ||L1

E
x̃⇠Pg

[D(x̃)]� E
x⇠Pr

[D(x)] , (2.7)

where the supremun is over all the 1-Lipschitz functins. By implementing the Wasserstein

loss function, it is necessary to ensure that the discriminator is in the space of the 1-

Lipschitz functions. This means the norm of the gradients should be as most 1. In order

to guarantee this constraint, one can use the weight clipping technique, which meant

limiting the weights to an interval after each gradient update. The authors highlighted

that enforcing the 1-Lipschitz constraint with the weight clipping was a problematic way

of doing it as it limits the learning ability: if the clipping parameter is small, it may

lead to vanishing gradients; on the other hand, if the clipping parameter is large, it can



Chapter 2. Background 39

take longer for the weights to reach the limit which means that it is harder to train the

discriminator (ARJOVSKY; CHINTALA; BOTTOU, 2017). The solution came with the

work of Gulrajani et al. (2017) with the addition of a Gradient Penalty:

L = E
x̃⇠Pg

[D(x̃)]� E
x⇠Pr

[D(x)] + � E
x̂⇠Px̂

⇥
(||rx̂D(x̂)||2 � 1)2

⇤
. (2.8)

The Gradient Penalty is a regularization term. The x̂ is the interpolated resulting

image distribution between the real image distribution and generated image distribution.

The interpolated image’s gradients are then regularized. This loss function is maximized by

the discriminator and minimized by the generator. The � is the gradient penalty coe�cient

and has its default value of 10 from the original work.

Besides that, the work of Wu et al. (2018a) proposed a loss function called Was-

serstein divergence, which is a relaxed version of the original Wasserstein loss function

and it does not require the k-Lipschitz constraint; and Adler & Lunz (2018) generalized

the theory of WGAN with gradient penalty to Banach spaces.
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3 RELATED WORK

In this chapter, we explore relevant related work in artwork classification. We also present

the Generative Adversarial Networks (GANs) and their use in the art domain.

3.1 Artwork classification

The task of automatically classifying artwork has been extensively studied since 2010.

Following Image Processing classic techniques, initially the research on artwork classification

was focused on feature engineering for machine learning algorithms (SHAMIR et al., 2010;

ARORA; ELGAMMAL, 2012).

The success of Krizhevsky, Sutskever & Hinton (2012) in general image classification

strongly a↵ected strategies in artwork classification. They used the images of the ImageNet

Challenge to train a deep convolutional neural network for object classification. With a

top 5 error of 15.3% in the ImageNet Challenge 2012, CNN scored an error that was more

than 10.8 percentage points below the second position. This work not only proved the

superior performance of CNNs, but also their trained weights with the ImageNet dataset

became an important resource for fine-tuning models for other purposes.

In subsequent works in the field of artwork classification, the studies focused on

testing the superior performance of CNNs compared to resource extraction techniques and

verifying the di↵erence in performance of model training from scratch and with the model

weights trained with the ImageNet dataset as initial weights (KARAYEV et al., 2014;

BAR; LEVY; WOLF, 2015; CONDOROVICI; FLOREA; VERTAN, 2015; TAN et al.,

2016; FLOREA; TOCA; GIESEKE, 2017). It was shown that mid-level features derived

from the ImageNet object datasets are generic for art recognition and they were superior

to any kind of attempt to generate hand-tuned features.

As architectures other than the AlexNet from Krizhevsky, Sutskever & Hinton

(2012) emerged, research in the context of artwork classification was directly benefited. In

the ILSVRC 2015, the Residual Neural Network, a new family of deeper convolutional

networks, won the challenge (HE et al., 2016). In Lecoutre, Negrevergne & Yger (2017), both

the AlexNet and the ResNet50 architectures were used for artistic movement classification.

They also used ImageNet pretrained models as initial weights and started training only

the last layer until they retrained the whole network. They found that the best result was

reached when approximately 20% of the layers were retrained.

Cetinic, Lipic & Grgic (2018a) expanded the tasks involving artwork classification

beyond style, genre, artist and time period classification. They approached the classification
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of the nationality of the painting. Their results showed that scene recognition and sentiment

classification yields better results than fine-tuning networks pre-trained only for object

recognition. They conjectured that the semantic correlation between the former domains

could be inherent in the CNN weights. In later work, they explored the memorability of

artwork within the deep learning architecture. They concluded that abstract styles tend to

be more memorable than figurative and symmetry does not correlate with memorability

(CETINIC; LIPIC; GRGIC, 2018b).

Chu & Wu (2018) study the style classification task focusing on describing image

texture with deep learning using the VGG-19, the 2014 ILSVRC winner. They investigated

the intra-layer and inter-layer correlations in order to create deep features for style

classification. Chen & Yang (2019) presented an adaptive cross-layer correlation for

artwork classification, in which it adaptively weights features in di↵erent spatial locations

based on similarity in a VGG-16, a smaller version of the previous architecture. On the

other side, the work of Elgammal et al. (2018) analyzed the learned representations of a

fine-tuned ResNet-152, the biggest ResNet in that moment. It was shown that some of

the style patterns designed by art critic Heinrich Wöl✏in (1864-1945) correlates with the

PCA decomposition of these learned representations.

In Rodriguez, Lech & Pirogova (2019), five image patches of painting were used for

training and weights for each patch were optimized in order to improve accuracy of the

final model. Sandoval, Pirogova & Lech (2019) also worked with image patches, but in a

two-stage deep learning approach, in which these five patches are trained independently at

a first step. At the second stage, the outcome of these patches are fused to a second shallow

neural network for the final decision. And Bianco et al. (2019) develop a multibranch

approach for exploiting the painting and the crops at di↵erent resolutions. These crops are

extracted with a Spatial Transformer Network trained to identify the most discriminative

subregions of paintings.

The Inception-V3 network was the first runner up in ILSVRC 2015. The work of

Zhu et al. (2019) not only trained a Inception V3 for classifying nine artistic movements,

but also used Grad-CAM heat map for visualizing the areas of the images the model was

focusing for class prediction.

More recently, Zhong, Huang & Xiao (2020) presented a two-channel dual path

network and two inputs are used: the RGB image and four-directional gray-level co-

occurrence matrix for detecting the brush stroke information. Instead of comparing

performance between manually made features and features originating from CNNs, they

developed a Dual Path Network to combine the outputs. In order to obtain good results,

the authors needed to train this architecture from scratch with the ImageNet dataset, and

only then perform the fine-tuning for the art style classification domain, in accordance

with the other works mentioned here.
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It is clear that a great deal of e↵ort has been made to improve art style classification.

However, this is a challenge that many have approached di↵erently: di↵erent datasets,

di↵erent classes and addressing a di↵erent number of classes. Thus, even though some

works consider themselves state of the art, we believe that a comparison between them is

not fair.

3.2 Generative Adversarial Networks and Art

In the art domain, generative adversarial networks have been developed aiming not only

to create art that would convince an audience to it truthfulness but also exploring their

possible creative power. The variety of GANs range from a generator for image style

transfer – also known as the CycleGAN (ZHU et al., 2017) –, an Image-to-Image translator

from art to real images (TOMEI et al., 2019; GAO; TIAN; QI, 2020) to a model specialized

in creating Chinese landscape (XUE, 2021).

Some works aimed to create artwork using the WikiArt dataset. Tan et al. (2017)

created the ArtGAN, a conditional GAN that allows the backpropagation of the label

information of the genre that the generated artwork should belong. Elgammal et al. (2017)

developed the Creative Adversarial Network aiming to creatively generate artwork by

maximizing deviation from established styles and minimizing deviation from art distribution.

Due to its goal of creating original art, these authors found a way to encourage the generator

“to be creative”, which was to penalize it any time that it was too easy for the Discriminator

to identify the synthetic image as being art from a certain style.
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4 IMPROVING CLASSIFICATION

RESULTS WITH GANS

In this chapter we present the main contribution of our work. These are, namely, the

adaptation of the SAGAN training for better learning to capture art images of the WikiArt

dataset with the Wasserstein loss function and gradient penalty; and the creation of a

strategy that we here call Class-by-Class Performance Analysis to improve the performance

of classification models.

4.1 Training GANs Architecture

The original article of the SAGAN architecture employed hinge loss function. For our

dataset, we experienced frequent mode collapse and vanishing gradient with this loss

function. We suspect that this is due the diversity of each of the classes of our dataset. For

this reason, we used the Wasserstein with Gradient Penalty (Wasserstein-GP) loss function

so as to have better control of the values for feedback. In our experiments, the interpolation

between a batch of real images and fake images was enforced and the gradient norm of

its output was limited at 1. The value of the penalty coe�cient (�) was 10, following the

original paper (GULRAJANI et al., 2017).

For this research, we had, as a limiting element, the hardware of two GeForce

GTX 1080 Ti (12 GB) GPUs. Therefore, we trained with a batch size of 32 images, unlike

SAGAN’s original training batch size of 256 images. The process of training a generator of

images of size 128x128 ran for for 200.000 epochs (approximately 34 hours). Each class

was trained independently, using the equivalent training dataset of the classifier, in order

to assure that any data leakage could not occur between the generated images and the

test dataset. The optimizer setup follows the original SAGAN article: Adam optimizer

with �1 = 0 and �2 = 0.9. The learning rate is constant but specific for each model: for

the discriminator is 0.0004 and for the generator is 0.0001 (ZHANG et al., 2019).

4.2 Training E�cientNet B0 Architecture

In order to train the E�cientNet B0 for our purpose, we analyzed in the literature the

best way of training with a relatively small and imbalanced dataset. Several previous

proposals on art style classification achieved best results with ImageNet pretrained weights

as initial weights (KARAYEV et al., 2014; BAR; LEVY; WOLF, 2015; CONDOROVICI;

FLOREA; VERTAN, 2015; TAN et al., 2016; FLOREA; TOCA; GIESEKE, 2017) and



Chapter 4. Improving classification results with GANs 46

most of this same literature shows that better results where obtained when only unfreezing

some layers. We could not find a detailed description of training for E�cientNet; we trained

the E�cientNet architecture in four steps:

1. initiate training with only the last block unfrozen (that is, only parameters of this

block are set to be trained);

2. once training is done, the next block is unfrozen and training starts again;

3. step 2 is repeated until the training does not present any improvement in the

validation dataset;

4. once we learn up to which block to unfreeze to have the best model training, this

block becomes our reference, which we call block N. Since training up to block N

brought the best result, apply the following strategy to all experiments: we train

with all blocks thawed up to block N-1, block N and block N+1.

This last step was adopted to reduce training time. For all training, the Stochastic Gradient

Descent optimizer was used with decay 0.9 and momentum 0.9; initial learning rate of

0.01 with decay after the fifth epoch (lr = lr ⇤ e� 0.1). Images were resized to 224x244

and batch size was 32 images.

4.3 Class-by-Class Performance Analysis

We introduce a strategy that we refer to as Class-by-Class Performance Analysis. This

strategy was developed empirically, guided by trial and error experiments. First, to start

up learning, a baseline model is trained without image augmentation techniques so as to

have a reference of our improvements. Then, the steps required to implement CCPA are:

1. Train a model exploring the benefits of geometric transformations: with

due care, geometric transformations are welcome in the context of art paintings.

A very common type of geometric transformation would be the vertical flip. For

abstract images, this would not be much of a problem, but there are many landscape

and people paintings and the vertical flip in these contexts would not make sense.

That is why we trained a model only using horizontal flips with 50% occurrence

probability, besides some random rotations with not very prominent angulation –

around [�10,+10] degrees – and central and random crops.

2. Analyze the trained model with geometric transformations: once we find

the best model under this training condition, the class-by-class should be performed

in order to inspect the size and the performance of each class.
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3. Train GAN models for each class belonging to the group of the lowest

performing classes: in order to focus our e↵orts in the classes in which the dataset

provides the lowest amount of information, we only trained GAN models for creating

synthetic images of those low performing classes.

4. Train E↵B0 models with generated images: in this step, each E↵B0 model is

trained with the generated images from one of the low performing classes considered

in steps 2 and 3.

To successfully complete step 4, the initial question is: what would be the adequate

quantity of artificial images to maximize the information obtained from the artificial

dataset? In order to ensure a careful choice of the number of generated images to be added,

we implemented two strategies to guide this decision that is directly linked to the number

of images belonging to classes with low performance. These classes may or may not contain

a small number of images. Hence, we suggest two strategies when we sample either:

• low quantity classes: add a multiple of the number of original images;

• high quantity classes: add a fraction of the number of original images.

Here the concern was to prevent the up-sampling of classes with large volumes

from ending up further unbalancing the distribution of images by class. Hence, we define

that a class is considered low quantity when its volume does not exceed 20% of the volume

of the largest class. Thus, we ensure that the low quantity class technique is not at risk of

adding a disproportionate amount of images. Once this is exceeded, the class is treated as

a high quantity class.

The Class-by-Class Performance Analysis is better understood by reading later

Section 5.2, where all the step are illustrated with our results.
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5 EXPERIMENTS

In this chapter we describe our experiments. Initially, we present the artwork dataset used

in all experiments. Afterward, the results related to the classification task are presented

following the steps of the Class-by-Class Performance Analysis. It is also presented the

results for the classification task with weighted class, a traditional technique for data

balancing. Finally, we discuss the results obtained from trained generators with sample of

synthetic images for visual inspection.

5.1 The WikiArt Dataset

We used the Wikiart dataset, which is an online encyclopedia of visual arts commonly

used for the art style classification task. For our research, we used the version that was

discussed by Elgammal et al. (2018), from which we derived the follow combination of art

movements that were greatly correlated:

• New Realism and Contemporary Realism were added to Realism;

• Action Painting was added to Abstract Expressionism;

• Synthetic Cubism and Analytical Cubism were added to Cubism.

Figures 1a-1o depict some of the most significant examples of each class. A total

of 63,659 images are available there; 10% of them were used for testing and 10% of the

remaining dataset was used for validation. The training volumetry of the image distribution

is presented in the last column of Table 2. The training dataset is used both in classifier

training and in GAN training. This restriction was necessary in order to guarantee that any

data leakage could occur between the generated images and the test dataset. All classifiers

were trained five times with di↵erent stratified samples for training and validation. Ideally,

each of the classes would present around 4,250 images, but the class imbalance is apparent

with the quantity of images varying between 10,566 and 940 images.

5.2 Classification results

The result of the E�cientNet B0 baseline trained model is shown in Table 10 (first line).

In the second line, it is presented the E�cientNet B0 model trained with geometric

augmentation. The performance for each class of the latter is shown in Figure 7. From this

analysis, we verified a very unusual behavior: the Ukiyo-e movement – the Japanese style –
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Table 2 – Dataset used in experiments.

Art movement Total of images Training images

Abstract Expressionism 2,783 2,283
Art Nouveau 4,292 3,442
Baroque 4,241 3,448
Color Field Painting 1,615 1,308
Cubism 2,417 1,942
Early Renaissance 1,391 1,134
Expressionism 6,720 5,457
Impressionism 13,060 10,566
Minimalism 1,258 1,009
Näıve Art 2,340 1,917
Northern Renaissance 2,552 2,084
Pop Art 1,460 1,205
Realism 11,400 9,188
Romanticism 6,963 5,640
Ukiyo-e 1,167 940

had the least amount of images and the best f1-score. On the other hand, when verifying

the amount of images of the classes that obtained the worst performance, we found the

Pop Art class, with the worst performance and few images (1205), but it is soon followed

by the Expressionism and Romanticism classes, both with more than 5,000 images in

training. With this, we reinforce the idea that we had intuitively at the beginning of the

research that this dataset is quite complex to the point where the performance of the

classes is not correlated with the amount of training images.

With this first analysis as a guide, we performed the E�cientNet B0 retraining

by adding images generated from only one class at a time and for the class with low

performance and low number of real images we applied the low quantity classes sampling

and low classes performance and high quantity of real images, the high quantity classes

sampling. Finally, we compiled the main classification results of this research.

5.2.1 Sampling low quantity classes

The analysis of the trained E↵B0 shown in Figure 7 points out the Pop Art class as fourth

lowest class in terms of quantity of images, so the low quantity class sampling strategy was

applied. The results are shown in Table 3. The classifier that obtained the best accuracy

score is the same as that obtained the best f1-score for the Pop Art class.

5.2.2 Sampling high quantity classes

Analyzing the others culprits of deterioration of the classifier’s performance, we examined

the Expressionism and the Romanticism art movements. Both classes have a similar
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Figure 7 – Analysis of the trained E�cientNet B0 with geometric augmentation. Source:
Prepared by the author (2021).

Table 3 – Summary of experiments with added synthetic Pop Art images.

Synthetic images Class f1-score (%) Classifier accuracy (%)

1205 (1x) 62.80 ± 2.21 73.98 ± 0.11
2410 (2x) 62.52 ± 1.63 73.60 ± 0.16
3615 (3x) 63.26 ± 2.56 74.05 ± 0.19
4820 (4x) 62.67 ± 2.09 73.87 ± 0.25

Table 4 – Summary of experiments with added synthetic Expressionist images.

Synthetic images Class f1-score (%) Classifier accuracy (%)

682 (1/8) 65.67 ± 1.24 73.74 ± 0.29
1364 (1/4) 67.02 ± 0.43 74.31 ± 0.15
2728 (1/2) 65.01 ± 0.83 73.83 ± 0.09
4092 (3/4) 65.89 ± 0.10 74.18 ± 0.10

behavior to that of our reference model: they have many more images than the average of

4250 images that would be expected for each classes – more than four times Pop Art’s

image quantity – but low performance. It is interesting to observe that for both classes,

the quantity of images that generated the best results was 1/4 of its original training data

quantity. We did not go so far as to point out that this would be a rule, but we believe

that there are two possible explanations: we found the limitation of the mode diversity of

the trained GAN; or the classes by coincidence were only able to bring this amount of

information or at least an approximate amount, since in some cases the measurements are

not that di↵erent considering the margin of error.
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Table 5 – Summary of experiments with added synthetic Romantic images.

Synthetic images Class f1-score (%) Classifier accuracy (%)

705 (1/8) 69.60 ± 0.34 73.77 ± 0.34
1410 (1/4) 70.32 ± 0.82 74.12 ± 0.44
2820 (1/2) 69.43 ± 0.55 73.90 ± 0.27
4230 (3/4) 70.13 ± 0.84 74.04 ± 0.30

Figure 8 – The evolution of performance for each class during experiments. Source: Prepa-
red by the author (2021).

5.2.3 Impact analysis of the synthetic images

Figure 8 shows how each class performed in the best experiment for each class (Pop Art,

Expressionism and Romanticism). Looking at the top, it is clear that the addition of

synthetic images caused the Ukiyo-e class to lose performance. At the same time, the

performance of the Impressionistic and Realistic class were almost unaltered through

all experiments. We believe that this behavior is related to the high amount of images

in both classes. None of the experiments caused the classes with generated images to

reach a similar amount. However, several performance improvements were observed when

analyzing the other classes, as described below. Tables 6, 7, 8 e 9 show for which class the

classifier mostly predicted wrongly the bottom-5 performing classes for each model.

Impact of Pop Art synthetic images

Analyzing the graph in Figure 8, it is possible to see that not only the Pop Art class had

its performance improved against the model with only geometric transformations, but also

Cubism and Color Field Painting. This behavior indicates the indirect benefit of improving
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Table 6 – Bottom-5 performing classes for the model with only geometric transformations

Model classification Model’s most mistaken class

Pop Art Expressionism
Expressionism Realism
Romanticism Realism
Realism Impressionism
Abstract Expressionism Color Field Painting

Table 7 – Bottom-5 performing classes for the model with Pop Art synthetic images

Model classification Model’s most mistaken class

Pop Art Abstract Expressionism
Expressionism Realism
Realism Impressionism
Abstract Expressionism Color Field Painting
Romanticism Realism

the quality of the Pop Art class. Comparing Tables 6 and 7, we notice that the addition of

synthetic Pop Art images has worsened the di↵erentiation between Pop Art and Abstract

Expressionism.

Impact of Expressionist synthetic images

Figure 8 shows that generated Expressionist images helped even more than generated

Pop Art images for improving the Pop Art class performance. The Color Field Painting

class was also benefited by these new information. Analyzing Tables 6 and 8, it is notable

that adding the generated images were not enough for the classifier to stop confusing

Expressionist images as being mostly Realist images. It is speculated that perhaps the

generation of realistic images could add value in this context.

Impact of Romantic synthetic images

By including Romantic images, Figure 8 shows that not only the Romantic class had

its performance improved against the model with only geometric transformations, but

also Northern and Early Renaissance. By visual inspection of Figure 1, these classes are

the once most visually close. Tables 6 and 9 show the same behavior of adding synthetic

Expressionist images: the confusion with Realist images is still an issue.

5.2.4 Summary of results

Finally, Table 10 shows all the relevant results of each E�cientNet B0 model trained

in this research. The strategy of Class-by-Class Performance Analysis allowed us to

improve the classifier accuracy by more than 2%. The experiment with the weighted class



Chapter 5. Experiments 54

Table 8 – Bottom-5 performing classes for the model with Expressionist synthetic images

Model classification Model’s most mistaken class

Pop Art Art Nouveau
Expressionism Realism
Realism Impressionism
Romanticism Realism
Art Nouveau Expressionism

Table 9 – Bottom-5 performing classes for the model with Romantic synthetic images

Model classification Model’s most mistaken class

Pop Art Cubism
Expressionism Realism
Realism Impressionism
Romanticism Realism
Art Nouveau Expressionism

Table 10 – E�cientNet B0 trained models.

Experiment Precision (%) Recall (%) Accuracy (%)

Baseline 73.78 ± 0.43 73.30 ± 0.38 72.21 ± 0.26
GeoAug 75.24 ± 0.52 74.39 ± 0.47 73.59 ± 0.18
GeoAug + weighted class 74.93 ± 0.40 74.89 ± 0.58 73.23 ± 0.47
GeoAug + synthetic Pop Art 75.32 ± 0.17 75.18 ± 0.47 74.05 ± 0.19
GeoAug + synthetic Expressionism 75.93 ± 0.34 75.33 ± 0.13 74.31 ± 0.15
GeoAug + synthetic Romanticism 75.92 ± 0.66 75.39 ± 0.56 74.12 ± 0.44

approach is also added. It shows that the attempt of balancing equally the classes ended

up degenerating the classifier performance.

5.3 Generated image analysis

The generation of images that resemble artwork in this research is restricted to the objective

of improving the performance of classifiers. However, it is interesting to observe how close

the generated images were to some true examples of the artistic movement. Figures 3, 4

and 5 show a sample of the images generated in our experiments. To help in understanding

the quality of these generated images, real images of corresponding artistic styles were

added. By visual inspection, it is noticeable that the generated images retain general

properties of the styles. We observe that for the three styles presented here, the models

are competent in choosing the color palette, even capable of creating grayscale and colored

images, as seen in Figures 4 and 5. It is also noticeable that the models do not perform

well in defining shapes, however we were pleased as we understood since the beginning of
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this research that image augmentation with GANs would help us in the context of color

space transformation.

Also, the same GAN training configuration was used to train the other classes of

the WikiArt dataset. Extending the training to the other classes was important to better

understand the real image quality range of the training setup set for the GAN used in this

research.

In addition to the already observed ability to maintain the correct color combination,

the GAN models were able to generate almost perfect images of the Minimalist and the

Color Field Painting artistic movements (Figures 19 and 15). By visual inspection, it can

be seen that these are the styles with less complex shapes. Abstract Expressionist style

and Cubist style (Figures 12 and 16) were also well portrayed by the GAN model. They

have a more complex pattern of format than the latter, but they are a more repetitive

pattern, especially when compared to specific forms of human representation in other art

movements.

As a result of the generation of images from other classes with a lot of human

representation in their subject, it became quite clear the low performance of the GAN

model to generate human figures when compared to landscapes, for example (Figures 14,

17, 21 and 22). We are able to identify the human figures generated by the GAN models

only because of the characteristic silhouette and the choice of colors close to skin color.

The GAN model trained to generate Ukiyo-e style images (Figure 23) does not

stand out for performance. It is possible to see the distinction of the images – that is, the

generated images are clearly inspired by the Japanese style – but the outline of this style

is too complex for the model to absorb.

Finally, we noticed a good performance in the images of artistic movements in

which black-and-white image style are present. It is interesting to note that this GAN

architecture can have great potential for become a generator of sketch images or simply

images of a more color restricted domain.
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Figure 9 – Pop Art: real images are in the first row and generated images are in the second
row. Source: Prepared by the author (2021).

Figure 10 – Expressionism: real images are in the first row and generated images are in
the second row. Source: Prepared by the author (2021).

Figure 11 – Romanticism: real images are in the first row and generated images are in the
second row. Source: Prepared by the author (2021).
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Figure 12 – Abstract Expressionism: real images are in the first row and generated images
are in the second row. Source: Prepared by the author (2021).

Figure 13 – Art Nouveau: real images are in the first row and generated images are in the
second row. Source: Prepared by the author (2021).

Figure 14 – Baroque: real images are in the first row and generated images are in the
second row. Source: Prepared by the author (2021).
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Figure 15 – Color Field Painting: real images are in the first row and generated images
are in the second row. Source: Prepared by the author (2021).

Figure 16 – Cubism: real images are in the first row and generated images are in the
second row. Source: Prepared by the author (2021).

Figure 17 – Early Renaissance: real images are in the first row and generated images are
in the second row. Source: Prepared by the author (2021).
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Figure 18 – Impressionism: real images are in the first row and generated images are in
the second row. Source: Prepared by the author (2021).

Figure 19 – Minimalism: real images are in the first row and generated images are in the
second row. Source: Prepared by the author (2021).

Figure 20 – Näıve Art: real images are in the first row and generated images are in the
second row. Source: Prepared by the author (2021).
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Figure 21 – Northern Renaissance: real images are in the first row and generated images
are in the second row. Source: Prepared by the author (2021).

Figure 22 – Realism: real images are in the first row and generated images are in the
second row. Source: Prepared by the author (2021).

Figure 23 – Ukiyo-e: real images are in the first row and generated images are in the
second row. Source: Prepared by the author (2021).
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6 CONCLUSION

6.1 Discussion

The di�culty in classifying art styles is directly linked to the characteristics of the artwork

image domain: the imbalance of classes and the high diversity within classes and the

similarities between artwork that make the boundaries between styles to be rather flexible.

The use of GANs for image augmentation was the main tool we employed to

enhance information in this scenario; we had to explore several training architectures

and configurations that resulted in the use of a GAN with self-attention layer and the

Wasserstein-GP loss function. Also, in order to verify the best sampling strategy, we had

to develop a working method called Class-by-Class Performance Analysis. These technical

contributions go beyond the context of art style classification; they should be valuable in

other contexts where the dataset also has complex classes, especially when augmenting

images where color transformation can lead to non-label-preserving transformation.

We verified that our approach and method can actually create better classifiers. In

the case of this research, we found that using only geometric transformations, generating

images with a GAN with self-attention layer and training it with the Wasserstein-GP loss

function allowed us to avoid collapse mode and the vanishing gradient and, consequently,

to increase model accuracy by more than 2%.

It is important to emphasize that creating art is still a task restricted to humans,

as its creation goes beyond learning patterns and colors. Art communicates a temporal

moment, a taste of a specific reality or even the desire not to follow standards – or patterns.

What we want to achieve in this work is an improvement in classification performance by

maximizing the information provided to classifiers. When generating images with GANs,

we are creating new images without the model ever having actually seen real images of

artwork, it only knows how close the probability distribution of generated image is to the

probability distribution of the real images, a very mathematically-minded scheme.1

1 “A work of art which did not begin in emotion is not art”, Paul Cézanne



Chapter 6. Conclusion 62

6.2 Future Work

Some ideas were not explored here, but we believe they would yield future work:

• training classifiers with synthetic images of others classes;

• using style transfer to generate a richer artificial dataset;

• exploring the GAN model’s training settings further – for starters, a more robust

setup that allows for a larger batch size or training for a longer period of time;

• and mixing artificial images from more than one artistic movements.

The last idea was something we tried only with three art styles - Pop Art, Ex-

pressionism and Romanticism. We did not get good results, but maybe this would be a

matter of better exploring the combinations of quantities and artistic movements. Could

it be that mixing other artistic movements that are more distinct from each other would

produce better results?
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