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Abstract 

Face processing algorithms are becoming more popular in recent days due to the great 
domain of application in which they can be used. As a consequence, research about the quality 
of face images is also increasing. The current approach to Face Image Quality Assessment 
(FIQA) is focused on improving the performance of face recognition systems, as a result, 
current FIQA algorithms don’t provide an indication of quality, but a performance estimation 
for face recognition algorithms. This approach makes the FIQA algorithms potentially unsuited 
for other scenarios regarding face images, and susceptible to inherit the limitations of face 
recognition. The present work tackles the main limitations of the current FIQA algorithms by 
proposing a new approach based on the distortions affecting the images. We developed two 
models based on Convolutional Neural Networks (CNN), to classify facial images according to 
the type and the degree of the distortion present in them. The models’ output provides 
qualitative information about the quality of facial images, useful for face recognition systems, 
as well as other face processing algorithms. Additionally, the proposed method can be a starting 
point to image enhancement processes like denoising, and deblurring. Two other contributions 
can be outlined from this work: a comprehensive study about the impact of blur, noise, 
brightness, contrast, and JPEG compression in face processing algorithms; and a new dataset 
for image quality assessment and distortion classification in face images. 

Keywords: CNN. Distortion classification. Image quality. FIQA.  

 

  



 
 

 

Resumo 

Os algoritmos de processamento facial estão se tornando mais populares nos últimos 
dias devido ao grande domínio de aplicação em que podem ser usados. Como consequência, as 
pesquisas sobre a qualidade das imagens faciais também estão aumentando. A abordagem atual 
para Avaliação da Qualidade da Imagem Facial (FIQA) é focada em melhorar o desempenho 
dos sistemas de reconhecimento facial, como resultado, os algoritmos FIQA atuais não 
fornecem uma indicação de qualidade e sim uma estimativa de desempenho para algoritmos de 
reconhecimento facial. Essa abordagem torna os algoritmos FIQA potencialmente inadequados 
para outros cenários relacionados a imagens faciais e suscetíveis a herdar as limitações do 
reconhecimento facial. O presente trabalho aborda as principais limitações dos algoritmos 
FIQA atuais ao propor uma nova abordagem baseada nas distorções que afetam as imagens. 
Desenvolvemos dois modelos baseados em Redes Neurais Convolucionais (CNN), para 
classificar as imagens faciais de acordo com o tipo e o grau de distorção nelas presente. A saída 
dos modelos fornece informação qualitativa sobre a qualidade das imagens faciais, útil para 
sistemas de reconhecimento facial, bem como outros algoritmos de processamento facial. Além 
disso, o método proposto pode ser um ponto de partida para processos de aprimoramento de 
imagem, como remoção de ruído e desfoque. Duas outras contribuições podem ser delineadas 
a partir deste trabalho: um estudo detalhado sobre o impacto de desfoque, ruído, brilho, 
contraste e compressão JPEG em algoritmos de processamento facial; e um novo conjunto de 
dados para avaliação de qualidade de imagem e classificação de distorção em imagens faciais. 

Palavras-chave: CNN. Classificação de distorção. Qualidade da imagem. FIQA. 
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1 Introduction 

Face processing algorithms are becoming more popular in recent days due to the great 
domain of applications in which they can be applied. Face identification, face verification, and 
face antispoofing are widely used for security and access control. Other methods like gender 
classification, age estimation, and emotion detection are also gaining attention thanks to their 
application in advertising and recommendation systems. As a consequence, research about the 
quality of face images is also increasing. Several studies have tackled this issue from different 
perspectives: either studying the quality requirements to achieve acceptable performance or 
focussing on improving said performance in the presence of low-quality images. 

Face Image Quality Assessment (FIQA/FQA) is a subset of Image Quality Assessment 
(IQA), specifically dedicated to evaluating face image quality. Like IQA methods, FIQA 
algorithms can be classified as Full Reference (FR), Reduce Reference (RR), and No-Reference 
(NR), depending on the need and availability of original undistorted images (YOGITA; PATIL, 
2015). FR methods require both the image to assess and an original image to compare to, to 
provide a quality measure. RR does not need the original image, but information concerning its 
characteristics. Finally, NR methods are capable of providing an image quality measure without 
any extra information apart from the image itself. Because of its nature, NR methods constitute 
the main focus of the recent publications in this domain, with Deep Learning (DL) architectures 
as the most promising approach (OKARMA, 2019). 

One important characteristic of IQA methods is that regardless of the type, the image 
quality is described by a score. Said score is set to replicate the human notion of image quality. 
To achieve that, IQA datasets come with Mean Opinion Score (MOS) values or Differential 
MOS values, obtained as a result of processing the opinion of human observers. The goal of the 
IQA methods is to increase their correlation with the human scores (OKARMA, 2019). 

FIQA methods differ from traditional IQA algorithms in that they are limited in terms 
of datasets. According to our research, there is only one dataset for face image quality currently 
available, the IDEAL-LIVE dataset (GUNASEKAR; GHOSH; BOVIK, 2014), where 215 
reference images were used to create distorted ones, however, the authors aren’t clear about the 
total amount of images generated, and only the original images are available for download. An 
important annotation is that most publications on FIQA are targeted to improve face recognition 
performance, and the datasets used to train and validate such methods are the same ones used 
to benchmark face recognition algorithms. As a consequence, they don’t count with MOS or 
Differential MOS values, instead, a score representing the performance of a specific face 
recognition algorithm is generated as ground-truth. In other words, current FIQA algorithms 
don’t provide an indication of quality, but a performance estimation for face recognition 
algorithms. 

This is an important limitation, and although current FIQA methods can be useful for 
face recognition, their application in other scenarios is limited. Additionally, using face 
recognition datasets to train and test FIQA algorithms bounds their generalization to the 
conditions of these datasets. In that regard, a recent paper by (TERHÖRST et al., 2020) 
demonstrated that current FIQA algorithms have a demographic bias similar to the one observed 
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in face recognition systems. As stated in (TERHÖRST et al., 2020), one of the limitations of 
face recognition algorithms is their bias against specific demographics, which is mostly 
attributed to the ethnic distribution within the datasets used for training and testing. As a 
consequence, FIQA algorithms are inheriting said bias, making them susceptible to unfair 
results. 

Besides that, the traditional approach to image quality is also limited. A score-based 
system can replicate human quality assessment, however, it doesn’t provide much information 
about the image properties in terms of quality. At best, one can infer the general condition of 
the image, but with the score alone is not possible to know whether the image has noise, blur, 
compression artifacts, or any other distortion. That information could be beneficial not only to 
image enhancement algorithms but to other image processing systems that deal with images of 
different quality. 

Furthermore, in a recent paper by (BLAU; MICHAELI, 2018), the authors 
mathematically demonstrated that distortion metrics and perceptual quality measures are anti-
correlated, posing a problem to evaluate the results of enhancement algorithms like denoising, 
deblurring, and super-resolution. In their experiments, they proved that both traditional and 
modern distortion metrics such as Peak Signal to Noise Ratio (PSNR) (OKARMA, 2019), Root 
Mean Square Error (RMSE), Multiscale Structural Similarity Index (MS-SSIM) (OKARMA, 
2019), Information Fidelity Criterion (IFC) (OKARMA, 2019), Visual Information Fidelity 
(VIF) (SHEIKH; BOVIK, 2006) are not reliable to correctly assess image quality in terms of 
distortion. 

One alternative to solve the aforementioned limitations is to assess the image quality in 
terms of the distortions present in the image. A distortion classification method able to classify 
the type and degree of the distortion affecting the images, provides qualitative information 
useful for face recognition algorithms, as well as for other face processing systems. 
Additionally, can be a starting point to image enhancement processes like denoising, deblurring, 
and super-resolution. At the moment, such an approach hasn’t been proposed to assess the 
quality of face images, so there is room for experimentation and innovation on that front. 

 

1.1 Motivation 

As stated in the introductory section, there is a great demand for research and 
deployment of face processing algorithms like face recognition, age estimation, emotion 
recognition, among others. Although their tasks are different, all these algorithms take face 
images as their input signal, and like any signal processing system, the input quality plays an 
important role in the final performance of the algorithms. A recent study carried on by 
(DODGE; KARAM, 2016) evaluates the impact of image quality in DL algorithms by analysing 
the performance of well-known image classification methods under different levels of blur, 
noise, contrast, JPEG, and JPEG 2000 compressions. The methods selected for the study were: 
the Caffe Reference Model (JIA et al., 2014), the VGG-CNN-S (CHATFIELD et al., 2014), the 
VGG-16 (SIMONYAN; ZISSERMAN, 2015), and the GoogleNet (SZEGEDY et al., 2015a). 
The images used correspond to a subset of the ImageNet 2012 database (KRIZHEVSKY; 
SUTSKEVER; HINTON, 2017), from which the authors generated the distorted ones. 
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The study concluded that blur and noise have a relevant influence on deep learning 
performance, while contrast and compressions only affect performance when the images reach 
very low quality. Another important conclusion is that even if the models only detect small 
changes in the first layers of the networks, they propagate throughout the architecture causing 
a bigger impact on the output. 

Even though this study doesn’t focus on face processing algorithms, the fact that the 
state-of-the-art algorithms dedicated to processing face images are based on DL architectures 
makes the aforementioned results very important to understand their behaviour under these 
distortions.  

In a publication by (DUTTA; VELDHUIS; SPREEUWERS, 2012), the authors review 
the impact of image quality on face recognition performance. The authors focused on face 
recognition for forensic evaluation, where the images available usually come from CCTV 
cameras, with low quality. To assess the impact of image quality in this scenario, the authors 
used a commercial face recognition system1 and simulated the open set recognition scenario in 
a way that not all individuals in the test set are present in the reference set. The database used 
for this purpose was the Multi Pose, Illumination, and Expression (MultiPIE) dataset (GROSS 
et al., 2010), and the distortions taken into consideration were pose variation, motion blur, 
illumination, resolution, and gaussian noise. In this study, each image was distorted varying 
just one parameter at a time. The conclusions of the paper placed the difference in pose between 
the test image and the reference image as the main factor affecting face recognition 
performance, with a 50% decrease in performance. Once the pose is the same, Gaussian noise 
and resolution account for a 35% decrease, whereas the influence of motion blur and 
illumination account for a 20% decrease. 

A paper on the impact of image distortions in face recognition by (JATURAWAT; 
PHANKOKKRUAD, 2017), evaluated the face recognition accuracy of three well-known 
algorithms: Eigenfaces (TURK; PENTLAND, 1991), Fisherfaces (BELHUMEUR; 
HESPANHA; KRIEGMAN, 1997), and LBPH (KADIR et al., 2015), under unconstrained 
conditions. The experiments considered a variety of poses and expressions, as well as different 
light exposures, noise levels, and resolution. The results showed that all three algorithms were 
severely affected by the considered distortions, with an emphasis on resolution and light 
exposure as the distortions which caused the greater effects. 

Focusing on image quality, the authors of (LI et al., 2019) surveyed the approaches to 
deal with low-quality images in face recognition. They stated that the main challenges lay in 
the first stages of the face recognition pipeline: face detection and face alignment. According 
to this survey, face detection is particularly impacted by low-resolution images, and for the case 
of face alignment, the best performing algorithms aren’t trained to consider image distortions, 
so it could be concluded that in the presence of low-quality images, their performance will 
suffer. 

Their survey showed two main approaches for dealing with low-quality images: pre-
processing algorithms oriented to enhance the image’s quality: restoration methods, deblurring, 
denoising, super-resolution methods; and DL algorithms that comprise several stages of the 

 
1 https://www.cognitec.com/facevacs-technology.html 
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face recognition pipeline. According to the authors, the most promising approach to improve 
face recognition with low-quality images is DL, however, the research is still not clear as to 
how to address specific issues like blur, noise, and low-resolution representation. 

Another study by (MEHMOOD; SELWAL, 2020) made a review of face recognition 
methods and the factors affecting their accuracy. The study divided the algorithms into 
appearance-based methods, feature-based methods, and hybrid methods, and evaluated their 
strengths and limitations while listing the main factors affecting face recognition. According to 
this paper, there are intrinsic and extrinsic factors that impact face recognition accuracy. The 
main intrinsic factors are aging, facial expressions, and plastic surgery; while illumination, pose 
variation, occlusion, noise, and low-resolution account for the major extrinsic factors. The 
conclusions of this study show that there are multiple approaches to improve performance under 
the presence of specific intrinsic and/or extrinsic factors: namely pose correction, super-
resolution, image enhancement, and DL. Although some methods have shown promising 
results, there is no clear path towards a face recognition method strongly enough to perform 
well in both constrained and unconstrained conditions. 

Research has also been made about the influence of image quality in other face 
processing algorithms like age estimations and facial expression classification. In (TIAN; 
CHEN, 2012), the authors study the effect of image resolution in facial expression recognition. 
The authors used two databases: Cohn-Kanade (LUCEY et al., 2010) and FABO (GUNES; 
PICCARDI, 2006), and modified the images to obtain five different resolutions. Since facial 
expression recognition algorithms are composed of three main stages: face acquisition, face 
feature extraction and representation, and facial recognition, the authors decided to evaluate the 
performance of the available methods in each stage. Several methods were evaluated in each 
stage. The results obtained in this study were consistent across all stages, a decrease in 
performance in the selected methods was observed when dealing with low-resolution images. 

Focused on age estimation algorithms, (NGUYEN; CHO; PARK, 2015) and (NGUYEN 
et al., 2015) proposed methods to overcome the effects of optical and motion blur in age 
estimation. According to the authors, the main studies and proposals for age estimation haven’t 
dealt with blurred images, which makes them susceptible to this kind of distortion. Both 
methods are based on the same approach, which consists in first identifying the type and degree 
of blur affecting the images, and then applying the adequate age estimator for the type of blur 
detected previously. The results obtained in both papers showed that age estimation accuracy 
is enhanced when using this approach, compared with the traditional methods that don’t 
consider blurring effects. 

Several conclusions can be drawn based on the previously cited literature. First, image 
quality does influence face processing algorithms, constituting an important factor to take into 
account when deploying such systems. Second, among the properties that describe image 
quality, image resolution seems to be the main factor affecting performance. Third, although 
there are several investigations about improving performance under certain image conditions, 
there is a lack of comprehensive studies focused in analysing the impact of specific distortions, 
like blur, noise, contrast, and compression, on the performance of face processing algorithms 
and to what extent that impact is relevant to the different tasks within the face processing 
domain. Fourth, there is no one approach to deal with the effect of image quality, several 
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methods have been proposed to tackle this issue, with the most common being image pre-
processing to decrease the degree of a specific distortion, distortion-specific algorithms, and 
end-to-end systems based on DL. 

Deep Learning has been successfully used to deal with distorted images in image 
classification tasks involving natural scene images. The best performing algorithms registered 
in the literature were proposed by (ZHOU; SONG; CHEUNG, 2017) (DIAMOND et al., 2017) 
(KIM et al., 2017) (DODGE; KARAM, 2018) (SANDLER et al., 2018) (BYUN et al., 2019), 
all consisting in very deep CNNs (DCNN). However, a recent paper by (HA et al., 2019) 
suggested the use of distortion-specific deep neural networks, also known as expert networks 
or dedicated networks, to correctly process images according to the distortions affecting them. 
According to (HA et al., 2019), the accuracy levels reached by these expert networks are 
comparable if not higher than the ones showed by the aforementioned DCNN architectures, 
with the advantage of requiring considerably less computational cost, making it easier to deploy 
in different platforms. 

The adoption of either one of these approaches can be greatly benefited by the 
knowledge of the distortion affecting the images as well as the degree to which it is present. 
This constitutes the main motivation for this work. A distortion classification method for face 
images can be the first step for many of the face processing algorithms currently deployed in 
real-world environments, providing qualitative knowledge about the face image’s quality in a 
way that isn’t now available. 

 

1.2 Problem 

The domain of image processing applications, specifically face processing algorithms, 
has increased considerably, and with it, the interest in algorithms to assess and enhance face 
images. In recent years, different proposals have been made for dealing with images of varying 
qualities, with promising results. However, there still room for improvement and new 
approaches. Distortion classification in face images is a topic of little research, with a need for 
a method that can identify the distortions present in face images and provide qualitative 
information about them. 

 

1.3 Objectives 

The main objective of this work is to develop a CNN-based method that can correctly 
classify distortions in face images, as well as to estimate the degree to which a particular 
distortion is affecting the images. 

To accomplish the said objective, the present work is divided into specific objectives 
and associated tasks: 

1) Study the impact of blur, noise, brightness, contrast, and JPEG compression in the 
performance of face processing algorithms: three face processing algorithms will be 
evaluated under different levels of gaussian blur, motion blur, gaussian noise, contrast, 
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brightness, and JPEG compression. The obtained results will be the basis for the design of 
the final distortion classification method. 

a) Select and implement three different face processing algorithms for evaluation. 

b) Apply ten levels of the aforementioned distortions into the validation databases for each 
of the selected algorithms. 

c) Evaluate the results obtained in each algorithm for each of the distortions applied. 

2) Create the database to train and test the distortion classification method: using the results 
obtained in the previous tasks, a set of distortions and distortions levels will be selected to 
be the target of the distortion classification method, and a dataset with distorted and 
undistorted images will be created: 

a) Choose the type and degree of the distortions to be classified. 

b) Select a set of high-quality face images with variations in gender, ethnicity, and age. 

c) Apply the established degrees of previously selected distortions to the original set. 

3) Design and implement the distortion classification method: 

a) Design a CNN architecture for distortions classification in face images. 

b) Train the designed architecture with a subset of the dataset created before. 

c) Test the obtained model in the remaining subset of images from the dataset created 
before. 

4) Validate the method: 

a) Evaluate the performance of the distortion classification method in another set of 
images. 

b) Evaluate the potential of our distortion classification model as a previous stage for face 
processing algorithms. 

At the end of this investigation, it is expected to obtain the following results: 

 A comprehensive study analysing the impact of image quality on face processing 
algorithms. 

 A dataset of distorted and undistorted images to be used for face quality assessment 
algorithms. 

 A distortion classification method for face images that can accurately recognize both 
the distortion affecting the images, as well as its magnitude.  
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1.4 Methodology 

To achieve the aforementioned objectives, the next methodology will be followed: 

 Review the state of the art of face quality assessment methods as well as distortion 
classification methods 

 Study the impact of several image distortions in the performance of face processing 
algorithms. 

 Select the type and degree of the distortions for the distortion classification method. 

 Create a dataset for training and testing the classification method. 

 Design the architecture of the classification method based on the review of previous 
distortion classification algorithms. 

 Implement the proposed method. 

 Validate the method in a public IQA dataset design for face images. 

 Create a Proof Of Concept (POC). 

 

1.5 Thesis Outline 

The remaining part of the text is structured as follows: 

Chapter 2 contains a summary of the state of the art of face image quality assessment 
algorithms (FIQA), as well as their limitations. The state of the art of distortion classification 
methods is also presented. 

Chapter 3 presents a study of the impact of image quality in three face processing 
algorithms. The study analyses the performance of the algorithms under Gaussian blur, 
Gaussian noise, motion blur, low brightness, high brightness, contrast degradation, and JPEG 
compression. 

Chapter 4 describes the proposal for the distortion classification architecture, as well as 
the methodology for the creation of the dataset. 

Chapter 5 describes the results of the training and testing processes. 

Chapter 6 exposes the results obtained during our method’s validation on the 
IDEAL_LIVE_DFD. 

Chapter 7 presents a use case scenario where our model is used as a previous stage to a 
face processing algorithm. An experiment is performed to assess its suitability in the 
aforementioned scenario. 
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Chapter 8 is dedicated to the conclusions of our work. 
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2 State of the Art 

2.1 Introduction 

Section 2.2 of this chapter contains a review of the main approaches proposed in the last 
two decades to assess the quality of face images. Even though face quality assessment has 
become a subject of great interest, almost all its efforts have been towards improving face 
recognition performance in real-life environments, so the proposals are set in this domain, and 
as such, have its intrinsic biases. A discussion about the current solutions is presented in 2.2.1. 

Section 2.3 of this chapter exposes a review of the state-of-the-art methods for distortion 
classification in images. Little research has been made for distortion classification in face 
images, and so, the methods reviewed in this section are not particularly dedicated to face 
images but to natural scene images, however, they represent the state of the art in the distortion 
classification task. 

 

2.2 FIQA 

The first FIQA methods focused on assessing and verifying the image's compliance with 
the requirements of the ISO/IEC 19794-5 for facial biometrics (HSU; SHAH; MARTIN, 2006). 
According to the ISO/IEC 19794-5, there are five categories in which face images should be 
evaluated to meet said requirements: Format, Digital, Photographic, Scene, and Others. In 2006, 
the authors of (HSU; SHAH; MARTIN, 2006), proposed a framework to assess face images 
according to the aforementioned requirements to improve face recognition performance. To 
develop the framework the authors looked into the specific requirements of each category and 
used different methods to measure each property, for example, measuring spatial sharpness and 
linear motion blur to quantify focus. They tested three models to combine all the metrics into a 
final quality score, obtaining the best results with neural networks. Given the goal of this work, 
the quality score is closely related to the performance estimation of a face recognition system 
with the assessed image. In this case, the authors used the FaceIt (VISIONICS, 2004) to validate 
the previous statement. 

In (ABDEL-MOTTALEB; MAHOOR, 2007), the authors presented several algorithms 
for assessing the quality of facial images concerning the effects of blurring, lighting conditions, 
head pose, and facial expressions. The authors developed individual metrics to measure each 
property and then computed the correlation between the metrics and the expected performance 
on face recognition algorithms based on the Eigenface technique (TURK; PENTLAND, 1991). 
To validate the proposed algorithms for face quality assessment, the authors used several face 
databases such as the Facial Recognition Technology database FERET) (PHILLIPS et al., 
1998), the face database from West Virginia University2, and the Cohn-Kanade face database 
(LUCEY et al., 2010). The focus of this work was to provide quality scores for face images that 
ultimately indicate the expected performance of a face recognition algorithm. An important 

 
2 https://biic.wvu.edu/data-sets/multispectral-dataset 
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distinction is that the authors proposed individual algorithms to assess face quality depending 
on specific properties like focus, illumination, pose, and expression. 

The authors of (GAO et al., 2007) recognized that the main cause for poor performance 
in biometric tasks is low-quality samples. To address this issue, they proposed a method to 
standardize face image quality on defects categories. From the basis that the acquisition process 
results in imperfect images, the authors defined four aspects to categorize image defects or 
distortions: defects caused by the environment, defects caused by camera conditions, defects 
caused by user face conditions, and defects caused by user-camera positioning. The proposed 
methodology consists of evaluating the images according to each category, computing a face 
quality score for each one. All the scores are later normalized and mapped to obtain an overall 
quality score that indicates how good a sample is for biometric recognition. The authors did not 
mention a validation methodology for the proposed approach. 

A statistical-learning-based assessment scheme to evaluate face image quality is 
presented by (LIAO et al., 2012). The facial features are extracted using a Gabor filter (CLARK; 
BOVIK, 1989), and a hierarchical binary decision tree based on Support Vector Machine 
(SVM) (AWAD et al., 2015) is later employed as a classifier. The images are labeled into five 
categories: excellent, good, average, fair, and poor. For training, the authors constructed a 
database of 22720 images of mainly digital scanned face pictures, originally taken using film. 
Each image was assessed by 10 persons with five-level labels. According to the authors, the 
performance of the proposed metric is consistent with the Human Visual System (HVS), The 
main advantage of this approach to the previously presented, is that the focus is face image 
quality, independently of the future use of the image, however, they did not test their method 
in public databases. Additionally, there isn’t much information about the dataset in terms of 
image size or image distortions to correctly assess the efficacy of the method. The image 
examples presented in the paper showed grey scale images of poor quality.  

An approach for assessing face image quality from video is proposed by 
(RAGHAVENDRA et al., 2014). The author’s major interest was to develop a software to act 
as a previous stage for face recognition systems. The proposal consists of using Gray Level Co-
occurrence Matrix (GLCM) to measure the statistical features of face images. The justification 
for that is in the author’s belief that accurately measuring variations that are present in the face 
skin texture should reflect the overall quality of the face image, and the GLCM provides that 
measure (RAGHAVENDRA et al., 2014). An important aspect of this work is that images with 
no frontal faces are automatically categorized as having “bad quality”, whereas the rest are 
categorized as “fair quality” and/or “good quality”. This is not the only algorithm that employs 
pose estimator to assess quality, however, in this case, only non-frontal images are considered 
to be bad. 

In (BOURLAI et al., 2014), the authors proposed a face quality metric based on 
photometric measures for efficient face recognition. The properties measured were: brightness, 
contrast, sharpness, focus, and illuminations. The authors studied the available photometric 
measures and compared their performance to ultimately choose the better ones for their purpose. 
The authors integrated the photometric measures with a neural network to obtain the final 
overall classification: good (0) or bad (1). To test the efficiency of face recognition with face 
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quality, five face recognition algorithms were chosen: PittPatt3, Local Ternary Pattern (LTP) 
(SHARMA; ARORA, 2013), Local Binary Pattern (LBP) (ZHAO, 2011), Independent 
Component Analysis (ICA) (BARTLETT; MOVELLAN; SEJNOWSKI, 2002), and Principal 
Component Analysis (PCA) (FUKUI, 2014). The results obtained showed an increase in face 
recognition performance when selecting only good images from the face quality metric results. 

A paper by (CHEN et al., 2015) proposed a face quality assessment framework based 
on the learning to rank methodology, for face recognition purposes. The learning to rank 
methodology is based on the assumption that if a face recognition algorithm performs better 
with one image than with another, the first one must have better quality (CHEN et al., 2015). 
Applying this premise, a series of equations and constraints are formulated to estimate an 
image’s quality. Several experiments were carried on to test the proposed framework. The 
authors formed three datasets DB1, DB2, and DB3. The images from the first set had better 
quality than the second and the third sets, and the images from the second set were better than 
the ones in the third set. To create the first set the authors used images from the FERET 
database, the Face Recognition Grand Challenge (FRGC) dataset (PHILLIPS et al., 2005), and 
a Chinese ID card photo database. The Labeled Faces in the Wilds (LFW) (HUANG et al., 
2007) and the Annotated Facial Landmarks in the Wild (AFLW) (KÖSTINGER et al., 2011) 
datasets were used to create DB2. DB3 consisted of non-face natural images in which the face 
detector generates false positive detection results. The results obtained with the experiments 
showed good accuracy when selecting high-quality images for face recognition, however, an 
important limitation of this work is that it only considers non-face images as bad quality images. 

In (VIGNESH; PRIYA; CHANNAPPAYYA, 2016), the authors proposed a face quality 
assessment method for face recognition in surveillance video. The authors propose to measure 
the image quality by mimicking the recognition capability of a given FR algorithm using a 
CNN. The goal of this research is to efficiently select the best images for face recognition 
among the pool of images available from surveillance videos, defining the image quality as the 
potential performance of the face recognition system with that image. This configuration 
ensures that the face quality assessment method can adapt to the needs of the specific face 
recognition system. A CNN is used to model the performance of a FR system. In the conducted 
experiments, the authors used LBP and Histogram of Oriented Gradients (HOG) (DALAL; 
TRIGGS, 2005), as features extractor, and Mutual Subspace Method (MSM) (SAKANO; 
MUKAWA, 2000) for face image set matching. The authors validated their proposal in the 
ChockePoint dataset (WONG et al., 2011), and achieved state-of-the-art results in improving 
face recognition performance in the surveillance scenario. 

Another face image quality assessment method focused on the surveillance video 
scenario is proposed in (KHRYASHCHEV et al., 2017). The image quality score was computed 
considering eight measures: image resolution, sharpness, symmetry, a measure of the symmetry 
of landmarks points S, a quality measure K (based on learning to rank) (CHEN et al., 2015), 
and two no-reference image quality metrics NRQ LBP, and the Blind/Referenceless Image 
Spatial Quality Evaluator (BRISQUE). The learning to rank methodology was used to classify 
the images according to these measures. The database used for testing was the 60 Person Face 
Comparison Database (60PFCD) (KHRYASHCHEV et al., 2017), composed of 600 images of 

 
3 https://www.crunchbase.com/organization/pittpatt 
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60 subjects. To test the efficiency of their proposal in face recognition, the Openface library4 
was used as a facial recognition system. The results obtained by the authors showed that by 
applying their proposed method for face quality, they achieved a 15-18% increase in face 
recognition performance. 

In a paper by (KHASTAVANEH; EBRAHIMPOUR-KOMLEH; JOUDAKI, 2018), a 
face image quality assessment method based on photometric features and classification 
techniques is proposed. This study aims to provide a face quality assessment method that 
effectively selects the images that have enough quality for face recognition systems. The 
method consists in extracting a series of photometric features, normalize the results, and then 
feed them into a classifier. The features extracted correspond to measures of brightness, 
contrast, focus, and illumination. For the classification process, five different techniques were 
studied: K-Nearest Neighbors (KNN) (KAUR; JINDAL, 2016), Multilayer Perceptron (MLP) 
(KAUR; JINDAL, 2016), SVM (KAUR; JINDAL, 2016), Decision Tree (DT) (TCHENDJOU 
et al., 2016) and Gaussian Process Classifier GPC (RASMUSSEN; WILLIAMS, 2006). The 
experiments carried on showed that the MLP outperforms the other classifiers in terms of f1-
score and accuracy measures. The dataset used in the experiments was the National Laboratory 
of Pattern Recognition (NLPR) face dataset (KHASTAVANEH; EBRAHIMPOUR-
KOMLEH; JOUDAKI, 2018), composed of 450 frontal face images of different lighting and 
background conditions. 

A face quality assessment framework based on face features is proposed in 
(BHATTACHARYA; ROUTRAY, 2018). The main goal of the research is to provide an easy-
to-use method to evaluate face image quality to improve face detection and recognition 
performance. The framework is composed of a deep neural network whose input are feature 
vectors previously obtained using four different techniques: LBP, HOG, Efficient Data 
Encoding for Deep Neural Network Training (GIST) (JAIN et al., 2018), and CNN with transfer 
learning (HUSSAIN; BIRD; FARIA, 2018). The output is a qualitative classification of the 
image quality: “good”, “bad”, and “average”. The authors used several datasets for the training 
and testing processes, images from the Yale dataset5, the FERET, and the AT-T Face Dataset 
(ORL) (ABBAS; SAFI; RIJAB, 2017) conformed the good quality images subset, the average 
subset was obtained by combining images from the Celeb-Face dataset (CAO; LI; ZHANG, 
2018) and LFW dataset, and finally, the bad quality images subset was conformed of false-
positive results of face detection algorithms. The results obtained in the validation experiment 
are comparable with the ones in (CHEN et al., 2015), also having the limitation of only 
considering false-positive results of face detection algorithms as bad quality images. 

The authors of (BEST-ROWDEN; JAIN, 2018) proposed and compared two models for 
the prediction of face image quality, one based on human quality ratings (HQV) and the other 
one based on quality values computed from similarity scores, named MQV. The models 
proposed were trained and tested over a variety of unconstrained face images from the LFW 
database, and the IARPA Janus Benchmark A (IJB-A) dataset (GROTHER; NGAN, 2017). The 
extraction of the image features was carried out using a CNN initially trained for face 
recognition purposes.  This paper had several conclusions, the most important are (1) human 

 
4 https://awesomeopensource.com/project/cmusatyalab/openface 
5 http://vision.ucsd.edu/~iskwak/ExtYaleDatabase/Yale Face Database.htm 
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ratings are correlated with face recognition performance of unconstrained images, and (2) 
automatic prediction of human quality ratings (HQV) is more accurate than a prediction of 
score-based face quality values (MQV).  

In (ZENG et al., 2018), a face image quality assessment method is proposed to improve 
face verification tasks in forensic science. The authors proposed a quantitative analysis based 
on the verification performance of the face verification system, as a measure of the face image 
quality. The method is Full Reference as it needs reference or neutral images to compute a 
verification performance score that will be established as a benchmark for the other images. 
The similarity between the verification performance score is computed, and from that, a quality 
score is calculated. The method takes into consideration different factors that affect the 
verification performance like imaging angles, facial expressions, face occlusion among others. 
Besides the important bias that face recognition oriented FIQA methods have, this works adds 
the limitation of being full reference, making it difficult to implement in a wider range of 
scenarios. 

A paper by (HERNANDEZ-ORTEGA UAM et al., 2019), proposed a CNN to predict 
face images suitability for face recognition purposes. The system is non-reference, uses a 
performance-based ground-truth, and has a numerical output between 0 and 1. According to the 
authors, “(…), the quality measure is directly proportional to the expected accuracy of the 
recognition process when using a specific face image”. The authors used the BioLab framework 
(MALTONI et al., 2009) to generate the quality scores (ground-truth) and fine-tuned a pre-
existing CNN trained for face recognition to obtain their regression model. The VGGFace2 
database (CAO et al., 2018) was used to fine-tune and validate the model. All images were 
collected in unconstrained conditions. The main advantage of this proposal is the use of 
automatically generated quality scores to form a database, which avoids bias introduction from 
human operators. However, it has a big limitation, which is that the image quality is closely 
related to a specific face recognition algorithm, making the model potentially unsuited for other 
face recognition systems. 

In (ZHUANG et al., 2019), the authors proposed a face image quality assessment 
framework for face recognition purposes. To develop the framework the authors trained a 
DCNN to output a general facial quality metric that considers brightness, contrast, blurriness, 
occlusion, and pose. The FERET database and the KinectFaceDB database (MIN; KOSE; 
DUGELAY, 2014) were used to train and test de proposed framework. The developed 
framework is capable of providing measurements for brightness, symmetry, contrast, and 
sharpness, as well as an overall quality metric composed of the weighted sum of said 
measurements. The results obtained showed well within-database performance as well as cross-
database. The experiments also showed that the overall quality score was closely correlated to 
face recognition performance. However, the paper doesn’t provide a comparison with other 
FIQA approaches. 

In (LIJUN et al., 2019), multi-task learning is employed to assess face image quality. 
The authors propose a CNN architecture consisting of two modules. The first module is 
responsible for the feature extraction step, using a lightweight CNN. The second one, called the 
Quality Score Fusion Module, takes the features extracted before and computes the alignment 
score, the corrosion score, the deflection score, and the clarity score. Said scores are later fused 



26 
 

 
 

together to output an overall quality score. The authors pointed out the lack of databases for 
this type of research, which led them to collect images and labeled them following a specific 
methodology described in (LIJUN et al., 2019). The experiments conducted led to satisfactory 
results, as they compared their method to two other face quality assessment algorithms and 
obtained the best accuracy and the least execution time. Another set of experiments showed the 
increase in face recognition performance when applied to the proposed method as a previous 
stage. These last experiments were carried on the CASIA-Webface (YI et al., 2014) and the 
Ms-Celeb-1M database (GUO et al., 2016). 

2.2.1 Limitations of FIQA methods 

The previous section reviews the state of the art of the face image quality assessment 
methods, and in such, their evolution throughout the years. Although the majority of the 
methods registered good results in their respective publications, neither one of them has been 
widely adopted for face quality assessment purposes. Additionally, important limitations of 
these works can be outlined. 

First, given that their focus is to improve face recognition related tasks, their deployment 
is limited to that domain. For most of these methods, the quality score is actually a measure of 
the expected performance for a specific face recognition algorithm, so they act more like a 
performance estimator than as a quality assessment system. As a consequence, their usage is 
highly dependent on the selected face recognition method.  

Secondly, given that their focus is face recognition, face pose is often considered as a 
distortion, and in some cases, it is the only condition for bad quality images. Similarly, false-
positive results from face detection methods, meaning images with no faces, are often classified 
with low-quality scores or as bad images. This poses a problem in that images are been 
classified as having bad quality regardless of the actual properties that define image quality, 
like focus, brightness, contrast, etc. 

Finally, the datasets used for training and testing most of the aforementioned methods 
weren’t created for face quality assessment, but for face recognition benchmarking. This is a 
great limitation because these methods are based on machine/deep learning architectures, which 
means that their generalization capabilities are highly dependent on the training data. If the 
datasets aren’t good enough to represent the different conditions of image quality, the methods 
won't be able to generalize to those conditions, and thus their application will be limited. 
Additionally, using these datasets for image quality assessment can lead to bias introduction 
when generating the ground-truth. 

 

2.3 Distortion classification methods 

In 2010, the authors of (CHETOUANI; BEGHDADI; DERICHE, 2010) published a 
paper that deals with a limitation present in most IQA methods, that is their inability to 
effectively predict the image quality for all degradations. According to the authors, this 
limitation exists due to the direct link between the distortion’s specificities and the efficiency 
of IQA algorithms. To solve said limitation, this paper proposes an IQA method that first 
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classifies the distortion and then applies the corresponding image quality evaluator according 
to the results of the first step. 

The authors considered eight different degradations or distortions, such as gaussian blur, 
image denoising, JPEG compression, additive Gaussian noise, spatially correlated noise, 
impulse noise, quantization noise, and JPEG2000 compressions. The distortion classification 
method consists of two steps: feature extraction, and classification. The feature extraction step 
was done using existing IQA metrics like PSNRM (PONOMARENKO et al., 2007), SSIM 
(OKARMA, 2019), and SNR (OKARMA, 2019). An ANN is used to classify the image 
distortion according to the features previously extracted. The authors used an MLP as 
architecture for the ANN and the TID2008 database (PONOMARENKO et al., 2009) for 
training and testing. The results obtained in the testing stage showed high accuracy levels for 
the majority of the degradations. 

A paper by (KANG et al., 2015) proposed a Multi-Task CNN to simultaneously assess 
the image quality as well as identify its distortions. The proposed architecture is loosely based 
on the work of (KANG et al., 2014), the authors modified it to obtain a multitasking CNN. The 
network is formed by two convolutional layers, each with a pooling operation, two fully 
connected layers, and one output layer with two output functions, linear regression for IQ and 
logistic regression as a multiclass output for the distortion identification. To evaluate the 
method`s performance, the authors used three databases, the LIVE dataset (SHEIKH et al., 
2006), the TID2008 (PONOMARENKO et al., 2009), and the CSIQ database (LIU; 
PEDERSEN; HARDEBERG, 2014). The results obtained with the experiments were 
satisfactory as the IQA prediction levels were similar to the best-known methods: PSNR 
(OKARMA, 2019), SSIM (OKARMA, 2019), FSIM (OKARMA, 2019), DIIVINE (KRISHNA 
MOORTHY; CONRAD BOVIK, 2011), BLIINDS-II (SAAD; BOVIK; CHARRIER, 2012), 
and BRISQUE (MITTAL; MOORTHY; BOVIK, 211AD). As for the classification task, the 
proposed method outperformed the aforementioned algorithms. 

Another approach for IQA was proposed by (ALAQL; GHAZINOUR; CHANG, 2016) 
consisting of an improvement on the BIQI framework (MOORTHY; BOVIK, 2010) to achieve 
better results in image distortion classification. The BIQI framework consisted of a two-step 
IQA method that first classified the distortion present in the images and then applied a 
distortion-specific IQA method to estimate its quality. This paper proposes a set of features to 
classify image distortion more efficiently. The authors focused on the same distortions in the 
LIVE database (SHEIKH et al., 2006): JPEG, JPEG2000 (JP2K), white noise (WN), Gaussian 
Blur, and Fast Fading. A total of 197 features are collected using different IQA algorithms such 
as BIQI (MOORTHY; BOVIK, 2010), SSEQ (LIU et al., 2014), DIVINE (KRISHNA 
MOORTHY; CONRAD BOVIK, 2011), BRISQUE (MITTAL; MOORTHY; BOVIK, 
211AD), BLIINDS-II (SAAD; BOVIK; CHARRIER, 2012), among others. The classification 
task was carried on with several techniques to evaluate their efficiency, finally stating that the 
best performing classifier on the Laboratory for Image & Video Engineering (LIVE) dataset 
was the multiclass classifier with logistic regression as a base classifier (MultiClassClassifier-
Logistic ECC), obtaining an accuracy of 96.41%.  

A CNN for distortion classification is presented in (BUCZKOWSKI; STASINSKI, 
2019). The authors proposed two similar CNN architectures differing only on the number of 
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trainable parameters. The network is formed by three convolutional layers each followed by a 
max-pooling layer and a dropout layer, and all followed by two fully connected layers, where 
the last one has 4 neurons indicating the four classes considered: blur, additive noise, JPEG 
compression, and JPEG2000 compression. The dataset employed for the training and testing 
was composed of images from three IQA databases: the Categorical Image Quality (CSIQ) 
(LIU; PEDERSEN; HARDEBERG, 2014), LIVE2006 (SHEIKH et al., 2006), and VCL@FER 
(ZARIC et al., 2012). The results obtained in the testing stage showed good levels of accuracy 
for both models, with 92.12% and 94.14% respectively. The CNNs proposed were 
benchmarked against the Blind Image Quality Index (BIQI) framework (MOORTHY; BOVIK, 
2010), where both CNNs outperformed said method by at least 10%. 

In recent years, image classification under low-quality images has been the object of 
much research. Different approaches have been proposed, with two main directions: very large 
neural networks that can deal with images with different qualities; and two steps systems that 
firstly classify the distortions and then compute image classifications with dedicated networks 
for the particular distortion. Both approaches have demonstrated good performance and high 
accuracy levels, however, the latter approach comes with the additional advantage of requiring 
less computational power. In (HA et al., 2019), the authors proposed a low-cost classification 
method for distorted images using the two-steps approach. The CNN architecture used for the 
first stage is formed by four blocks of convolution layers and max-pooling layer of sizes 3*3 
and 2*2 respectively, and two fully connected layers. The network was trained to distinguish 
between clear and distorted images with blur, noise, and low light, each distortion with three 
degrees, making a total of 10 classes. The authors call this network a Tiny CNN because of its 
simple architecture and relatively low hardware requirements. The databases used for training 
and testing were the Canadian Institute for Advanced Research (CIFAR-100) dataset 
(KRIZHEVSKY, 2009), the Caltech-256 (GRIFFIN; HOLUB; PERONA, 2007), and the Street 
View House Numbers (SVHN) dataset (NETZER et al., 2011). 

 

2.4 Summary 

As reviewed in previous sections, traditional FIQA algorithms are mainly focused on 
improving face recognition performance, and as a consequence, are limited in terms of their 
applicability outside of the face recognition domain. Nevertheless, reviewing their evolution is 
important to evaluate the best techniques available at the moment. From section 2.2 it is possible 
to extract the most common approaches: SVM and similar ML techniques, the learning to rank 
methodology, and deep neural network architectures with an emphasis on CNNs. From those, 
the latter seems to be the one with better performance and with more promising results. 

On the other hand, the state-of-the-art methods for distortion classification in natural 
scene images are also based on CNN architectures. The last two reviewed methods are very 
interesting as they achieve high levels of accuracy and have relatively simple architectures 
Another important remark about the method proposed by (HA et al., 2019) is that their network 
is optimized for low-cost deployment, which makes it very attractive for real-time solutions. 
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2.5 Conclusions 

This chapter presented a review of the state-of-the-art algorithms for FIQA and 
distortion classification, where the main proposals of both fields were described and analysed. 
Important annotations were made in subsection 2.2.1 about the limitations of the current FIQA 
methods available. Section 2.4 summarized the main aspects of both reviews, from what was 
decided to use the proposals of (BUCZKOWSKI; STASINSKI, 2019) and (HA et al., 2019) as 
the bases for our distortion classification method for face images. 
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3 Impact of image distortion in face processing algorithms 
3.1 Introduction 

This chapter is dedicated to analysing to what extent a selected group of distortions 
affects face processing algorithms. To achieve that goal, three different face processing 
algorithms were tested with images under different conditions of blur, noise, contrast, 
brightness, and compression.  

The methodology adopted for the study is based on the work of (DODGE; KARAM, 
2016). However, a few changes were made to adapt it to our goal. The main differences in our 
approach are that the selected algorithms are focused on different tasks as opposed to one, and 
that each algorithm was tested with a dataset and a set of metrics corresponding to the task in 
question. Also, three additional distortions were considered as a part of our study: motion blur, 
low brightness, and high brightness. 

Sections 3.2, 3.3, and 3.4 contain details about the algorithms, the datasets, the metrics, 
and the distortions analysed in our study. In Section 3.5, a discussion of the results obtained 
with the experiments is presented. Finally, section 3.6 contains the conclusions of this chapter. 

 

3.2 Face Processing Algorithms 

3.2.1 FaceNet 

FaceNet is a deep learning system that generates face embeddings for face recognition 
tasks, such as face identification and face verification, proposed by (SCHROFF; PHILBIN, 
2015) in 2015. Since then, the proposed methodology has been widely used thanks to its good 
results in benchmark datasets like LFW and YouTube Faces DB (WOLF; HASSNER; MAOZ, 
2011).  

The main contribution of FaceNet is the introduction of a new loss for deep learning 
architectures, specifically made for face recognition purposes: the triplet loss. The authors 
described their motivation for this loss as follows “(…) we strive for an embedding 𝑓(𝑥), from 
an image 𝑥 into a feature space 𝑅ௗ, such that the squared distance between all faces, (…), of 
the same identity is small, whereas the squared distance between a pair of face images from 
different identities is large.”. 

FaceNet uses two DCNN as base architectures: the Zeiler&Fergus (ZEILER; FERGUS, 
2014) style networks and the Inception (SZEGEDY et al., 2015b) type networks. The authors 
proposed different variations of the aforementioned architectures in order to evaluate their 
performance under different image conditions and with different configurations. The results 
showed that the Inception model trained with 224*224 images achieved the best results with a 
fraction of the parameter of the Zeiler&Fergus based architectures. 

The authors used accuracy (1), and the validation rate at a fixed False Acceptance Rate 
(FAR) of 0.001 as metrics to measure performance. The FAR is the probability that two images 
of different identities are classified as the same (2) (SCHROFF; PHILBIN, 2015). The 
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validation rate @FAR = 0.001 indicates the proportion of face image pairs that FaceNet can 
correctly identify as the same identity (3) (SCHROFF; PHILBIN, 2015) while keeping the FAR 
to 0.001. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
்௉ା ்ே

்௉ାி௉ା ்ேାிே
 

( 1) 

 𝐹𝐴𝑅 =  
ி௉

ி௉ା ்ே
 

( 2) 

 

 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 =  
்௉
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( 3) 

 

 𝑇𝑃 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠, 𝑇𝑁 = 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠, 𝐹𝑃 = 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠, 𝐹𝑁 = 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 

 

For this study, an implementation of the FaceNet system based on the Inception 
architecture was chosen, and the performance of the algorithms was evaluated using accuracy, 
and validation rate under the same FAR used by the authors. Table 3.2-1 shows the details of 
the model used for the study.  

 

3.2.2 Deep Expectation (DEX) 

The DEX algorithm consists of a deep learning architecture for age estimation from a 
single face image and without the use of facial landmarks (ROTHE; TIMOFTE; VAN GOOL, 
2018). The pipeline of the entire system consists of four main stages: face detection, face 
alignment and resize, feature extraction, and age estimation. 

The face detection stage is done by applying a face detector both in the original image 
and the image rotated in 5 degrees steps from -60 to 60, plus an additional detection with -90, 
90, and 180 degrees. The face with the best detection score across all the operations gets 
selected as the face image. The alignment stage is made simply by rotating the image according 
to the rotation angle of the image with the highest face score. 

The feature extraction stage is achieved with a VGG-16 based CNN previously trained 
with the ImageNet dataset for image classification. The CNN network has a total of 16 layers, 
13 convolutional, and 3 fully connected. The authors finetuned the VGG-16 architecture using 
a new dataset for age estimation called IMDB Wiki Faces Dataset (IMDB-WIKI) (ROTHE; 
TIMOFTE; VAN GOOL, 2018). 

For the age prediction stage, the authors reformulated the problem as a classification 
task instead of a regression one. Being a classification problem, the authors defined age classes 
that covered a range of ages. According to the authors, this formulation “increases robustness 
during training and accuracy during testing”. 
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The authors carried on several experiments to validate their proposal. The datasets used 
were the IMDB-WIKI, the Face and Gesture Recognition Network (FG-NET) (PANIS et al., 
2016), the MORPH (K. RICANEK JR. AND T. TESAFAYE, 2006), the Cross-Age Celebrity 
Dataset (CACD) (CHEN; CHEN; HSU, 2014), and the Looking At People (LAP) dataset 
(ESCALERA et al., 2015). To measure the model’s performance the authors used the mean 
absolute error (MAE) (4) in years and the e-error (5) (ESCALERA et al., 2015) for the datasets 
where there is no ground-truth. The results showed state-of-the-art results in the FG-NET and 
the MORPH datasets for real age, and in the LAP dataset for apparent age. The method was 
also validated in the APPA-REAL dataset by (CLAPES et al., 2018). Table 3.2-1 shows the 
details of the model. 
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( 5) 

 

3.2.3 Deep Alignment Network (DAN) 

The DAN method consists of a CNN for image alignment proposed by (KOWALSKI; 
NARUNIEC; TRZCINSKI, 2017). The proposal is inspired in the Cascade Shape Regression 
(CSR) (XIONG; DE LA TORRE, 2013) framework, which consists of a combination of a 
sequence of regressors to approximate nonlinear mapping between the initial shape of the face 
and the desired frontal face (XIONG; DE LA TORRE, 2013). Like the CSR framework, the 
DAN method starts with an estimation of the face shape. From that, the model substitutes each 
CSR iteration for a deep neural network for both feature extraction and regressions. The authors 
stated that the main difference between the two approaches is that the DAN method extracts 
features from the entire face rather than the patches around the landmark positions. This is 
achieved by adding an extra input to each DAN stage, consisting of a landmark heatmap that 
indicates the current landmark locations within the face image. Each DAN stage takes three 
inputs: the face image, a landmark heatmap, and the feature image from a dense layer connected 
to the penultimate layer of the previous stage. 

The authors performed several validation experiments using the 300W private test set 
(SAGONAS et al., 2013) and the 300W public test subsets (SAGONAS et al., 2013): the 
Intelligent Behaviour Understanding Group (IBUG), the Labeled Face Parts in the Wild 
(LFPW), and the Helen Facial Feature Dataset (HELEN). They used “the mean distance 
between the localized landmarks and the ground truth landmarks divided by the inter- ocular 
distance” as a measure of error, and evaluated their model’s performance by computing the 
average of such error (mean error). According to the authors, they considered each image with 
an inter-ocular normalized error of 0.08 or greater as failure. Having that definition, they also 
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calculated the failure rate (5) and used it as another measure of performance. The results showed 
that the proposed model decreased the state-of-the-art failure rate by a margin of over 70%. 

𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑅𝑎𝑡𝑒 =  
𝑇𝑜𝑡𝑎𝑙 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
 

( 6) 

 

Table 3.2-1. Face Processing Algorithms 

Architectures Task Metrics Framework 

DEX6 
Age 

Estimation 
MAE (years) Keras 

DAN7 
Face 

Alignment 
Mean Error, Failure Rate Theano 

FaceNet8 
Face 

Recognition 
Accuracy, Validation 
Rate @FAR = 0.001 

Tensorflow 

 

3.3 Datasets 

The LFW (HUANG et al., 2007) will be employed to evaluate the performance of the 
FaceNet algorithm. The LFW dataset is composed of 13233 face images corresponding to 5749 
individuals. All images were extracted from the internet, available as 250x250 pixel JPEG 
images, most of them in colour. The images are the result of the Viola-Jones (VIOLA; JONES, 
2001) face detection algorithm and have been rescaled and cropped to the aforementioned size. 
The dataset comprehends a variety of scenarios with different head poses, resolutions, facial 
expressions, ages, genders, ethnicities, accessories, make-up, occlusions, and background. Due 
to the diversity of its composition, the LFW dataset has been widely used as a benchmark 
dataset for face recognition algorithms such as FaceNet. 

To evaluate the performance of the DEX algorithm, the Real and Apparent Age (APPA-
REAL) dataset (CLAPES et al., 2018) was used. The dataset contains 7591 images of 7000 
individuals with ages ranging from 0 to 91 years, in unconstrained environments, and with 
varying resolutions. The APPA-REAL allows testing age estimation algorithms in both real and 
apparent age. For the study, only the validation set, was used, containing 1500 images.  

Lastly, the challenging subset of the 300W dataset was used to assess the performance 
of the DAN method. This subset is called IBUG (SAGONAS et al., 2013) and consists of 135 
images obtained from the Internet, with large variations of poses, expressions, and resolutions. 
The dataset provides landmark annotations for face alignment, obtained employing the Multi-
PIE annotation scheme (GROSS et al., 2010). 

 
6 https://github.com/yu4u/age-gender-estimation 
7 https://github.com/MarekKowalski/DeepAlignmentNetwork 
8 https://github.com/davidsandberg/facenet 



34 
 

 
 

Table 3.3-1. Datasets selected for the study 

Datasets Purpose No. of Images Resolution 
LFW Face Recognition 13233 250*250 
IBUG Face Alignment 135 variable 
APPA-REAL Age Estimation 1500 variable 

 

3.4 Distortions 

Digital images may be subjected to several distortions from the acquisition stage of any 
image processing system. To illustrate the effects of image quality in face processing 
algorithms, five different distortions were contemplated: noise, blur, contrast, brightness, and 
JPEG. 

Noise can be caused by low-quality camera sensors, or by the environmental conditions 
at the moment of the acquisition (MEHMOOD; SELWAL, 2020). For this study, we modelled 
the noise as a Gaussian distribution using the Gaussian function of the Scikit-image9 library for 
Python, with mean equal to 0 and variance ranging from 0.01 to 0.1 in steps of 0.01. Figure 3.4-
1 shows examples of the obtained images for the different datasets used. 

Blur can result from unfocused camera lenses or moving targets (DODGE; KARAM, 
2016). For this study, we simulated both motion blur and Gaussian blur. The first one was 
achieved by filtering the images with different sized kernels with value 1/(kernel size). Figure 
3.4-2 shows examples of the output images. For the latter, the Scikit-image library was also 
used to model the Gaussian blur, where we varied the standard deviation of the kernels from 1 
to 9 in order to obtained different levels of blur (Figure 3.4-3), with the most degradation 
corresponding to the largest standard deviations. 

 

 

 

 

 

 

 
9 https://scikit-image.org/ 
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𝒗𝒂𝒓 = 𝟎. 𝟎𝟏  

   

𝒗𝒂𝒓 = 𝟎. 𝟎𝟓 

   

𝒗𝒂𝒓 = 𝟎. 𝟏𝟎 

   

Figure 3.4-1. Examples of the images resulting from Gaussian noise degradation. From left to 
right: LFW, APPA-REAL, IBUG. 

 

𝒔𝒕𝒅 = 𝟏  

   

𝒔𝒕𝒅 = 𝟓 

   

𝒔𝒕𝒅 = 𝟏𝟎 

   

Figure 3.4-2 Examples of the images resulting from Gaussian blur degradation. From left to 
right: LFW, APPA-REAL, IBUG. 
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𝒌_𝒔𝒊𝒛𝒆 = 𝟑  

   

𝒌_𝒔𝒊𝒛𝒆 = 𝟏𝟏 

   

𝒌_𝒔𝒊𝒛𝒆 = 𝟐𝟏 

   

Figure 3.4-3. Examples of the images resulting from motion blur degradation. From left to 
right: LFW, APPA-REAL, IBUG. 

 

To evaluate the effect of reduced contrast in face processing, we used the Pillow10 
library for Python and simulated different levels of contrast by changing the contrast factor in 
the images from 1 to 0, where 0 means no contrast. Figure 3.4-4 shows examples of the obtained 
images. 

Illumination is an important aspect of image quality, affecting both the human and the 
machine capacity of recognizing details. One way to simulate low and high illumination 
conditions is through image brightness. In that sense, we simulated 10 stages of high and low 
brightness by altering the brightness factor of the images using the Pillow library in Python. 
For low brightness, we altered the brightness factor from 1 to 0, in steps of 0.1. For high 
brightness, the established range was 1.2-3.0 with steps of 0.2. Figure 3.4-5 shows the obtained 
images. 

JPEG compression is often cited as a distortion to study due to its intrinsic 
characteristics, meaning, it is a type of compression that provokes loss in the final result. As 
was stated in the study carried on by (DODGE; KARAM, 2016), it is interesting to analyse if 
the algorithms are affected by the quality of the compression and in what measure it is relevant. 
To evaluate the influence of JPEG compression in the performance of the algorithms, the Pillow 
library was used to obtain 10 levels of quality ranging from 5 to 95 in steps of 10. Examples of 
the obtained are shown in Figure 3.4-6. 

 
10 https://pillow.readthedocs.io/en/stable/ 
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𝒄_𝒇𝒂𝒄𝒕𝒐𝒓 = 𝟎. 𝟓 

   

𝒄_𝒇𝒂𝒄𝒕𝒐𝒓 = 𝟎. 𝟏 

   

Figure 3.4-4. Examples of the images resulting from contrast degradation. From left to right: 
LFW, APPA-REAL, IBUG. 
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𝒃_𝒇𝒂𝒄𝒕𝒐𝒓 = 𝟐. 𝟒 

   

Figure 3.4-5. Examples of the images resulting from brightness degradation. From left to 
right: LFW, APPA-REAL, IBUG. 
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𝒋𝒑𝒆𝒈_𝒇𝒂𝒄𝒕𝒐𝒓 = 𝟗𝟓 

   

𝒋𝒑𝒆𝒈_𝒇𝒂𝒄𝒕𝒐𝒓 = 𝟓𝟓 

   

𝒋𝒑𝒆𝒈_𝒇𝒂𝒄𝒕𝒐𝒓 = 𝟓 

   

Figure 3.4-6 Examples of the images resulting from JPEG quality degradation. From left to 
right: LFW, APPA-REAL, IBUG. 

 

3.5 Results 

To comprehend the results obtained with the experiments, it is important to understand 
their methodology. The DEX and DAN algorithms have only one task each, so the experiments 
consisted of evaluating their performance on the specific task, under images with different 
distortions at different magnitudes. However, FaceNet is a more complex system designed to 
generate embedding for face recognition tasks such as face identification and face verification. 
Face identification consists in assigning an identity to a face through a one-to-many operation, 
where the embeddings of the unknown face are compared with the ones in the dataset in order 
to output the corresponding identity. Face verification, on the other hand, is a one-to-one 
operation, where the task is to check if the person’s embeddings are close enough to the 
embeddings of the identity he or she claims to be. 

To evaluate the FaceNet performance under different quality conditions, the 
experiments followed the same methodology proposed by (HUANG et al., 2007), where the 
system has to classify a pair of images as belonging to the same person or different ones, 
according to previously established pairs of matched and mismatched persons from the dataset. 
In other words, the experiments will be evaluating the algorithm’s performance in a 
verification-like operation.  

The website for the LFW dataset states that it is “very difficult to extrapolate from 
performance in verification to performance in 1:N recognition”, although, given the nature of 
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these two tasks, it is safe to assume that any changes in the algorithm performance during 
verification operations, will be more noticeable during identification. 

 

3.5.1 Noise 

Figure 3.5-1 shows the behaviour of both accuracy and validation rate at a FAR = 0.001 
for the FaceNet algorithm, across the different levels of Gaussian noise. The behaviour 
represented in the graph demonstrates that both metrics are affected by the noise, however, 
there is a significant difference between the overall accuracy of the model and the validation 
rate when the FAR is set to 0.001. Even at the lowest variance levels, the validation rate suffers 
considerably more compared to the accuracy. The algorithm appears to be robust in terms of 
accuracy, however, as was stated before, a bigger impact could be seen in the identification 
task. Both metrics get worst as the variance increase, with the accuracy reaching a little less 
than 80% in the highest level of noise, and the validation rate getting to 5%. The exact values 
can be seen in Table 10.1-1 in the Appendix section.  

The behaviour of the DEX algorithm under the different levels of noise can be seen in 
Figure 3.5-2, where both classifications, apparent and real age, seem to be equally affected. The 
graph shows how the error in both estimations significantly increases even at the lowest noise 
levels. It is also noticeable how both curves plateau with variance = 0.06 and higher, reaching 
a MAE of approximately 16 years for the case of the real age, and 15 years for the apparent 
age.  

Finally, Figure 3.5-3 shows how the DAN algorithm behaves across different levels of 
noise. Similar to the previous algorithms, its metrics worsen under the presence of noise, with 
the failure rate being the most affected metric. The degradation observed in the mean error is 
still noticeable, as can be seen in Table 9.1-2, the mean error reported for a variance of 0.01 
represents a 43.7% increase compared to the value achieved without distortions. For the case 
of the failure rate, the results are very alarming, as it reached a maximum of 0.985 (Table 10.1-
1). 

 

 

Figure 3.5-1. FaceNet behavior across noise levels. 

0,00
0,20
0,40
0,60
0,80
1,00

0,00
0,20
0,40
0,60
0,80
1,00

0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,10

Va
lid

at
io

n 
Ra

te

Ac
cu

ra
cy

Gaussian Noise Variance

FaceNet

Accuracy Validation Rate



40 
 

 
 

 

Figure 3.5-2. DEX behavior across noise levels. 

 

 

Figure 3.5-3. DAN behavior across noise levels. 

 

3.5.2 Blur 

3.5.2.1 Gaussian Blur 

Figure 3.5-4 shows the behavior of the FaceNet algorithm as the images get increasingly 
blurred with a gaussian distribution. Similar to the graph in 3.5-1, the results of the validation 
rate at a fixed FAR of 0.001 are worse than the overall accuracy. However, in this case, the 
accuracy reached lower levels than in the previous experiment, with the final value below the 
70% mark. A significant decline in both accuracy and validation rate is observed after a standard 
deviation of 3.0, where up to that point the accuracy stayed above the 95% mark, and the 
validation rate was approximately 85%, however, from that on, both metrics started decreasing 
at a higher rate. 

Figure 3.5-5 shows the curves corresponding to the MAE values for the apparent and 
the real age classification with the DEX algorithm. As can be seen in the graph, both curves 
behave in the same way. It is interesting to observe a slight improvement in both metrics under 
a gaussian blur with a standard deviation of 1.0. Since blurring techniques are used for 
denoising, might be the case that some of the images in the dataset were noisy, and the 
smoothness caused by that level of blur helped achieve better results. From that point on, both 
metrics worsen, reaching MAE values of approximately 14 for the real age, and 13 for the 
apparent.  
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The DAN behaviour across the ten levels of Gaussian blur is shown in Figure 3.5-6. 
Both the error and the failure rate curves present similar behaviours, however, under a standard 
deviation of 1.0, the error stayed practically the same, where the failure rate almost doubled 
(Table 10.1-3). Similar to the noise experiments, the DAN performance worsens under the 
presence of blur, however, the mean error reached higher values with blurred images than with 
noisy images, in turn, the failure rate was less affected compared with the previous experiment. 

 

 

Figure 3.5-4. FaceNet behavior across gaussian blur levels. 

 

 

Figure 3.5-5 DEX behavior across gaussian blur levels. 

 

 

Figure 3.5-6. DAN. behavior across gaussian blur levels. 
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3.5.2.2 Motion blur 

Figure 3.5-7 shows the curves of the accuracy and the validation rate obtained with this 
experiment for the FaceNet algorithm. Contrary to the results observed with noise and gaussian 
blur, the motion blur impacted significantly less than the previous distortions. The overall 
accuracy stayed almost constant across all kernel sizes, slightly decreasing towards the bigger 
ones. The validation rate at FAR = 0.001 shows a bigger decrease rate than the overall accuracy, 
reaching a minimum value of approximately 68%, which is significantly higher than the values 
obtained in the previous experiments. 

Motion blur also had a lesser impact on the DEX algorithm than the previous distortions. 
Figure 3.5-8 shows how both metrics increase as the kernels get bigger, reaching MAE values 
of approximately 9 years for the apparent age, and 10 for the real. The graph shows a slight 
improvement in both metrics under the smaller kernel, as was the case with gaussian blur 
distortions. 

The performance of the DAN algorithms is shown in Figure 3.5-9. Both metrics increase 
as the kernels get bigger. For the mean error, little variation is observed for kernel sizes of 3, 5, 
and 7, where the performance shows similar results to the undistorted images (Table 10.1-5). 
The same effect is observed towards the end of the curve, where the value of the error with 
kernel sizes of 19 and 21 remains practically the same. On the other hand, the values reached 
by the failure rate are significantly smaller than the ones obtained in the previous experiments. 

 

 

Figure 3.5-7. FaceNet behavior across motion blur levels. 

 

 

Figure 3.5-8. DEX behavior across motion blur levels. 
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Figure 3.5-9. DAN behavior across motion blur levels. 

 

3.5.3 Contrast 

The impact of contrast in the FaceNet and the DAN algorithms is very similar, as is 
shown in Figures 3.5-10 and 3.5-12, respectively. Both algorithms show good and stable 
performance across most of the contrast factors, worsen only with contrast factors of 0.2 and 
0.1. As was shown in section 3.4, such low contrast factors produce highly degraded images. 
For the case of the DEX algorithm, the contrast’s impact is more noticeable, as can be seen in 
Figure 3.5-11. For the real age, the MAE reached 15 years, and for the apparent age estimation, 
the maximum MAE was 14 years. 

 

 

Figure 3.5-10. FaceNet behavior across contrast degradations. 

 

0,00
0,10
0,20
0,30
0,40
0,50
0,60

0,00

0,05

0,10

0,15

0,20

0 3 5 7 9 11 13 15 17 19 21

Fa
ilu

re
 R

at
e

M
ea

n 
Er

ro
r

Kernel Size

DAN

Error Failure Rate

0,00

0,20
0,40
0,60

0,80
1,00

0,00

0,20
0,40
0,60

0,80
1,00

1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1

Va
lid

at
io

n 
Ra

te

Ac
cu

ra
cy

Contrast Factor

FaceNet 

Accuracy Validation Rate



44 
 

 
 

 

Figure 3.5-11. DEX behavior across contrast degradations. 

 

 

Figure 3.5-12. DAN behavior across contrast degradations. 
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Figure 3.5-13. FaceNet behavior across low brightness. 

 

 

Figure 3.5-14. DEX behavior across low brightness 

 

 

Figure 3.5-15. DAN behavior across low brightness 
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The failure rate and the mean error of the DAN algorithm are graphed in Figure 3.5-18. 
The mean error curve shows good behaviour, increasing only up to 0.082 in the highest 
brightness value (Table 10.1-11). The failure rate curve denotes a bigger impact from high 
brightness; however, its failure rate under the most degraded images is the lowest the algorithm 
had reached at similar points in the previous experiments. 

 

 

Figure 3.5-16. FaceNet behavior across high brightness. 

 

 

Figure 3.5-17. DEX behavior across high brightness. 

 

 

Figure 3.5-18. DAN behavior across high brightness. 
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Figures 3.5-19, 3.5-20, and 3.5-21 show that the three algorithms are robust under different 
compression qualities. The only noticeable impact occurred, in all three of them, at the lowest 
quality factors. 

 

 

Figure 3.5-19. FaceNet behavior across JPEG quality levels. 

 

 

Figure 3.5-20. DEX behavior across JPEG quality levels. 

 

 

Figure 3.5-21. DAN behavior across JPEG quality levels. 
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3.6 Summary 

The results obtained with the experiments show that even though the algorithms don’t 
behave exactly the same, patterns can be observed. In that sense, a series of remarks can be 
outlined regarding the impact of each distortion in these algorithms.  

First, noise and blur, in their Gaussian distribution, constitute the bigger threats to face 
processing performance in terms of image quality. Both distortions noticeably impacted the 
algorithms metrics even at the lowest levels of degradation. 

Second, even though Gaussian blur severely impacted the performance of the 
algorithms, motion blur didn’t have the same effect. The results show significantly less 
influence throughout the majority of kernel sizes. This is an interesting result because it 
indicates that not all blur constitutes a threat to performance, unfocused images and lack of 
detail have a bigger impact on performance than motion. 

Third, contrast, low brightness, and JPEG compression all seem to have a small impact 
on performance. According to the graphs, metrics worsen only with the highest levels of 
degradation in each distortion. 

Fourth, high brightness had a bigger impact on the low to middle levels of degradation, 
than the behaviour observed with low brightness at similar levels. However, at their highest 
levels of degradation, low brightness had a bigger effect on performance than its counterpart. 

 

3.7 Conclusions 

The focus of this chapter was to study the behaviour of three different face processing 
algorithms under the presence of noise, blur, contrast, brightness, and JPEG compression, at 
different levels. The goal was to draw conclusions about the impact of these distortions on face 
processing algorithms and obtain a more insightful understanding of the influence of quality in 
these types of algorithms.  

Based on the results, a series of remarks were summarized in the previous section. From 
those remarks, we can conclude that the analysed algorithms, and potentially others, are 
unsuited for unconstrained environments where noise and blur, resembling Gaussian 
distributions, might be present. On the positive side, their deployment in scenarios with 
different conditions of contrast, JPEG compression, and brightness, would not be compromised 
unless the images are severely distorted. 

Additionally, the information presented in this chapter might be useful to develop 
adequate solutions for face image quality assessment methods, oriented to improve face 
processing performance with images of different qualities. In that sense, we believe that 
identifying the type and degree of the distortion affecting face images, in conjunction with the 
information presented in this chapter, could lead to the development of more robust face 
processing systems. 
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4 Model description 

This chapter is dedicated to describing the methodology adopted in the implementation 
of the distortion classification method. 

Section 4.1 contains an explanation of the Deep Learning technology and its intricacies, 
as well as a detailed characterization of the Convolutional Neural Networks. Based on that, 
section 4.2 introduces the architecture and specification of the proposed CNN model. An 
analysis of the available datasets is presented in section 4.3, as well as the methodology for the 
creation of a new one. Section 4.4 describes the methodology that will be adopted to validate 
the model. Finally, section 4.5 summarizes the chapter and illustrates the progress made to 
achieve the final goal of this work. 

 

4.1 Deep Learning 

Machine Learning (ML) is a subsection of Artificial Intelligence (AI) intended to 
replicate human behaviour to perform specific tasks. It depends on concepts and knowledge to 
design features from which it can make inferences (LECUN; BENGIO; HINTON, 2015). This 
very characteristic constitutes a limitation when we as humans, are incapable of translating our 
knowledge into features. Tasks like face recognition, image classification, and language 
translation fall under that scenario. A solution for that is Deep Learning, a subsection of ML 
that learns high-level, abstract features from simpler representations, establishing a hierarchy. 
DL uses neurons as the fundamental logistic units, which take different signals as inputs and 
process them with nonlinear operations as they transfer each output to the next layer of neurons 
(SCHMIDHUBER, 2015). A key component in the learning process is the backpropagation 
operation, which updates the network’s weights in order to obtain the model that best describes 
the particular scenario. To perform that, a loss function is defined to measure how close are the 
results obtained in each forward pass, to the ground-truth. From that, the cost function of the 
entire network is computed, and the network’s weights are updated using the gradient of the 
cost function with respect to each weight. This way of updating the weights is called Gradient 
Descent (GOODFELLOW; BENGIO; COURVILLE, 2016). 

DL algorithms can be categorized according to their approach to the learning process as 
supervised, semi-supervised, and unsupervised (LECUN; BENGIO; HINTON, 2015). There is 
also a subset of algorithms following the technique of Reinforcement Learning (RL), usually 
within the group of semi-supervised or unsupervised learning (ALOM et al., 2019). 

The supervised learning approach consists on training the DL algorithm using labeled 
data. This type of architecture needs a set of inputs, and their correspondent labels or desire 
outputs. The goal of the training is to optimize the DL network to achieve maximum 
approximation with the ground-truth labels (LECUN; BENGIO; HINTON, 2015). 
Architectures like Deep Neural Networks (DNN), Convolutional Neural Networks (CNN), 
Recurrent Neural Networks (RNN) such as Long Short Term Memory (LSTM), and Gated 
Recurrent Units (GRU), are examples of architectures that use the supervised learning approach 
(ALOM et al., 2019). 
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Semi-supervised learning is a technique in which the training process occurs with a set 
of labeled data, and a set of unlabelled data. When using semi-supervised learning, it is common 
to assume that points that are close to each other in a region are more likely to share the same 
labels, and that data tends to form clusters that separate inputs with similar labels (CHAPELLE; 
SCHÖLKOPF; ZIEN, 2006). Some architectures used for this approach are LSTM, GRU, and 
Generative Adversarial Networks (GAN). 

The unsupervised learning approach is used when there is no labeled data. In this case, 
the network needs to learn the unknown relations within the input data (LECUN; BENGIO; 
HINTON, 2015). Examples of unsupervised tasks are clustering, dimensionality reductions, 
and generative techniques. Auto-Encoders (AE), Restricted Boltzmann Machines (RBM), and 
GAN architecture are some of the usually employed networks for these types of tasks. RNNs 
like LSTM and GRU can also be used with this approach (ALOM et al., 2019). 

As mentioned above, many types of architecture can be used with DL, depending on the 
desired task. Our case falls into the category of image classification, and as described in section 
2.3, the state-of-the-art results in distortion classification, as well as other computer vision tasks, 
are achieved with CNN. For that reason, we chose that type of architecture as the base for our 
model. The following section details the characteristics of the CNN, as well as the required 
techniques and parameter configurations. 

 

4.1.1 CNN 

The CNN architecture consists in a combination of three types of layers: convolution, 
max-pooling, and fully connected (also called dense). Figure 4.1-1 shows an example of a 
typical CNN architecture. The convolution layers extract features from the input images, and 
as they propagate through deeper layers, the network learns higher-level representations. The 
pooling layer reduces the size of the feature maps, and a set of fully connected layers are often 
used as classifier. (GOODFELLOW; BENGIO; COURVILLE, 2016) 

 

 

Figure 4.1-1. Example of a typical CNN architecture. (GOODFELLOW; BENGIO; 
COURVILLE, 2016) 
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The behaviour of a convolutional layer is defined in Equation 6 (GOODFELLOW; 
BENGIO; COURVILLE, 2016), where 𝑥௝

௟ represents the output of the layer, 𝑥௜
௟ିଵ represents a 

feature map from the previous layer, which is convolved with the kernel for the 𝑙௧௛ layer 𝑘௜௝
௟ , 

𝑏௝
௟ represents the 𝑙௧௛ layer bias, and 𝑀௝ stands for the number of kernels to convolve the previous 

feature maps with.  

𝑥௝
௟ = 𝑓(෍ 𝑥௜

௟ିଵ ∗ 𝑘௜௝
௟ + 𝑏௝

௟

௜∈ெೕ

) ( 7) 

 

As stated before, the pooling layer performs a dimensionality reduction. The amount of 
feature maps stays the same, but their size is reduced following the layer configuration. Usually, 
the pooling kernels are of size 2*2 with a stride of 2, which results in output matrices of half 
the size as they were before. The dimensionality reduction is achieved by taking either the 
minimum, maximum or the average value of the numbers in the feature maps within the area 
formed by the pooling kernel (GOODFELLOW; BENGIO; COURVILLE, 2016). 

The classification portion of the network is performed by a combination of fully 
connected layers, also called dense layers, which take the flattened representation of the feature 
maps obtained with the convolution operations as their input. These layers apply a non-linear 
function to their inputs, usually sigmoid, tanh, or ReLU (GOODFELLOW; BENGIO; 
COURVILLE, 2016). There is no rule for the amount of fully connected layers needed to 
perform classification, it mostly depends on the architecture itself, however, is common to see 
between two and four layers. 

 

4.1.2 Hyperparameters 

When designing a DL network, it is important to configure a set of hyperparameters that 
define the network architecture. For the case of CNNs, it is important to set the number of 
convolutional kernels in each layer, as well as the size, the stride, and the padding. The stride 
is the step that the convolution kernels take, and the padding refers to the desired output size 
after the convolution (GOODFELLOW; BENGIO; COURVILLE, 2016). If configured as 
‘same’, padding will be added so the output feature map is the same size as the input, when 
‘valid’ is set, no padding will be added. It is also important to set up the hidden units in the fully 
connected layers and the kernel size of the pooling layer. 

After configuring the network’s architecture, it is also important to configure the 
hyperparameters that will determine the behavior of the training process. For this, the learning 
rate is the most important hyperparameter to configure since it determines how fast the network 
learns. However, a large learning rate doesn’t guaranty fast and successful training, instead, is 
common for the network to diverge when the learning rate is set to a large value 
(SCHMIDHUBER, 2015). With smaller learning rates the network takes longer to train, but it 
tends to be more stable, unless the value is too small, in which case the network could get stuck 
at a local minimum (SCHMIDHUBER, 2015). A common configuration is to gradually 
decrease the learning rate during training. 
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Other important hyperparameters are 𝛽ଵ and 𝛽ଶ, which are optimization parameters, 
namely momentum, and the magnitude of the gradient. Optimization methods are used to 
improve the network’s weights update in the backpropagation step. The main optimizers 
available are Stochastic Gradient Descend (SGD), Adagrad, AdaDelta, RMSprop, and Adam 
(GOODFELLOW; BENGIO; COURVILLE, 2016). Of them, the Adam method has achieved 
the best results over the years, improving accuracy and helping the training process converge 
better. It uses both 𝛽ଵ and 𝛽ଶ, and it considers the direction of the gradient instead of its absolute 
value when updating the network’s weights, and also calculates the adaptative learning rate 
(ALOM et al., 2019). These two hyperparameters are usually configured to 0.9, and 0.999 
respectively, since good results are obtained with that configuration (GOODFELLOW; 
BENGIO; COURVILLE, 2016). 

Another important hyperparameter to configure before training is the batch size. Several 
studies indicate that performing weights update after each training example doesn’t lead to 
successful results. In the same way, performing said update after all the training examples have 
been processed is also detrimental (LECUN; BENGIO; HINTON, 2015). The authors suggest 
using batches instead, where the backpropagation is done after a subset of examples is fed 
forward. Choosing the right size for the batches is important to avoid overfitting and achieve 
rapid convergence. The batches need to be supported by the CPU/GPU memory of the hardware 
used for training, and they are usually set to a power of 2: 32, 64, 128, etc (GOODFELLOW; 
BENGIO; COURVILLE, 2016).  

The two main challenges of ML problems, and therefore of DL, are underfitting and 
overfitting. Underfitting occurs when the model is unable to learn the patterns and relations 
within the training data, and therefore cannot perform adequate predictions in new data. It is 
characterized by a large training error (or loss), and it usually means that the model is not 
complex enough (GOODFELLOW; BENGIO; COURVILLE, 2016). 

Overfitting, on the other hand, occurs when the model learns the patterns and relations 
within the training data too well, to the point of not being able to generalize to unseen data. 
Overfitting can be recognized when the gap between the training error (or loss) and the test 
error is too big. A model that is too complex, or a small training set, are some of the main causes 
of overfitting (GOODFELLOW; BENGIO; COURVILLE, 2016). 

Given that the quality and the quantity of the available data is usually a constraint when 
developing DL architectures, and that this is also a main cause of overfitting, several techniques 
have been proposed to avoid overfitting from happening. L2 regularization, Dropout, and Early 
Stopping are amongst the most popular ones (GOODFELLOW; BENGIO; COURVILLE, 
2016). L2 regularization, also known as weight decay, uses a regularization parameter λ that 
modifies the cost function to obtain smaller network weights after backpropagation. Dropout is 
a simpler regularization technique that consists of setting to zero a random set of activations, 
the number of activations to be modified in this manner is calculated with the 𝑘𝑒𝑒𝑝_𝑝𝑟𝑜𝑏 
hyperparameter, which establishes the activation percentage that will be kept unmodified. The 
early stopping technique consists in stopping the training process whenever a condition is 
reached, usually lack of improvement in the metrics (GOODFELLOW; BENGIO; 
COURVILLE, 2016). 
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4.2 Model Overview 

4.2.1 Class definition 

Our model was designed to classify six distortions: Gaussian noise, Gaussian blur, 
motion blur, low brightness, high brightness, and JPEG compression. All distortions were 
divided into levels, to provide additional information about the degradation suffered by the 
images. The distortions were selected according to the results obtained in Chapter 3. As the 
Gaussian noise and Gaussian blur showed the biggest impact on performance, three levels were 
defined for both distortions. For the others, two levels were defined. Including undistorted 
images, a total of 15 classes were defined to be the target of our distortion classification system. 
In the classes representing distortions, the higher the level the bigger the degradation. Table 
4.2-1 summarizes the classes and parameter definitions. The parameters observed in the table 
are the same as the ones used in Chapter 3 to generate distorted images: variance (Gaussian 
Noise), standard deviation (Gaussian Blur), kernel size (Motion Blur), brightness factor, and 
JPEG quality factor. 

 

Table 4.2-1. Classes definition according to type and degree of distortion. 

Classes Definition 
Clean Undistorted images 
Gaussian Noise 1 var ϵ (0.005-0.02) 
Gaussian Noise 2 var ϵ (0.05-0.065) 
Gaussian Noise 3 var ϵ (0.1-0.25) 
Gaussian Blur 1 std ϵ (0.5-2.5) 
Gaussian Blur 2 std ϵ (4.5-6.0) 
Gaussian Blur 3 std ϵ (8.5-10.0) 
Motion Blur 1 k_size ϵ (7-13) 
Motion Blur 2 k_size ϵ (17-23) 
Low Brightness 1 f ϵ (0.8-0.5) 
Low Brightness 2 f ϵ (0.3-0.05) 
High Brightness 1 f ϵ (1.6-1.9) 
High Brightness 2 f ϵ (2.7-3.0) 
JPEG 1 q ϵ (80-35) 
JPEG 2 f ϵ (20-5) 

 

4.2.2 Model Architecture 

The initial architecture of the model was based on the one proposed by (HA et al., 2019) 
for their Tiny CNN. As was described in Chapter 2, that Tiny CNN architecture was trained to 
classify natural scene images according to the presence or absence of three main distortions, at 
three levels. Since our goal is to identify more distortions, some changes were made. Our initial 
architecture had five blocks of convolutional and max-pooling layers, instead of the four 
proposed by (HA et al., 2019). 
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The kernel sizes were kept to 3 for each convolutional layer, with a stride of 1 and no 
padding. The number of kernels was initially set to 128, 256, 512, 128, and 64, in that order. 
The size of the max-pooling layer was 2*2, with a stride of 2. After each block, a dropout layer 
was added to perform regularization, with a 𝑘𝑒𝑒𝑝_𝑝𝑟𝑜𝑏 of 0.9. The last max-pooling layer was 
a global max-pooling layer, which in addition to reducing the dimensionality of the feature 
maps, also flattens the data and prepare it for the fully connected layers. The first fully 
connected layer had 256 hidden units with ReLU activation, and the last one had 15 units and 
Softmax activation. Softmax is a type of activation function commonly used in multi-class 
classification problems to compute the probability distribution of the numbers generated by the 
FC layers. The output of this function is the probability of each class (number between 0 and 
1), with the target class having the highest value. The sum of all probabilities is equal to 1. Its 
mathematical formulation is shown in Equation 8 (GOODFELLOW; BENGIO; COURVILLE, 
2016).  

𝑓(𝑥௜) =  
exp (𝑥௜)

∑ exp (𝑥௝)௝
 

( 8) 

The model’s initial architecture is shown in Table 4.2-1, and its training configuration 
is described in Table 4.2-2. 

 

 

Figure 4.2-1. Initial CNN architecture. (Source: Author) 

 

Table 4.2-2. Initial configuration for training 

Hyperparameter Configuration 
Metrics Loss, Accuracy 
Learning rate 0.0001 
Learning rate decay 0.1 at loss plateau 
Batch size 64 
Early stopping After no change in validation loss for 20 epochs 
Optimizer Adam 
Loss function Categorical cross-entropoy 
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The implementation and the training of the proposed architecture were done using the 
Keras11 framework with Tensorflow12 as backend. Image pre-processing consisted in 
normalizing the inputs to [0, 1]. The same operation is needed in deployment. 

 

4.3 Dataset creation 

As stated in subsection 2.2.1 of chapter 2, one of the limitations of traditional FIQA 
algorithms is that they are trained and validated with datasets designed for face recognition 
tasks. Some of the most popular datasets are the FERET dataset, the LFW dataset, and the 
Celeb-Face dataset. These datasets are used as a benchmark for face recognition tasks because 
of their composition: face images usually gathered from the internet, with individuals of 
different genders, ages, and ethnicity. They are created to resemble real-world environments, 
and as such, have images with different quality levels. The problem with that is that those 
datasets weren’t created for image quality assessment, so even if they have images of different 
quality levels, they are not properly distributed and don’t have the annotations to relate the 
images with a particular distortion at any given magnitude. In conclusion, those datasets are not 
suited for training and testing a distortion classification method. 

In (GUNASEKAR; GHOSH; BOVIK, 2014), the authors created the IDEAL-LIVE 
Distorted Face Database (DFD) for face image quality assessment. The dataset is composed of 
215 reference images gathered from the internet, each with one or more frontal faces. According 
to the authors, all the images are of good quality and without any visible distortions. The images 
were resized so the faces occupy a space of approximately 80*64 pixels, and then distorted 
images were obtained considering Gaussian noise, Gaussian blur, and JPEG compression. The 
authors aren’t clear about the total amount of images generated, and only the original images 
are available to download. 

Given the lack of datasets for quality assessment in face images, we decided to create 
our own dataset of face images for distortion classification. The first step was to select a group 
of undistorted high-quality images containing one frontal face to be the reference images. To 
that end, a subset of images from the Flickr Faces HQ dataset (FFHQ) (KARRAS; LAINE; 
AILA, 2019) was selected. The FFHQ dataset is composed of 70 000 high-quality images of 
1024*1024 pixels, each containing one aligned frontal face. The images were collected from 
the Flickr13 site, and have a variety of ages, genders, and ethnicity. 

A general rule of thumb when working with DL and images, is to train with a minimum 
of 1000 examples per class for image classification. This rule is based on the first ImageNet14 
contest, where 1000 different classes were represented by 1 million images (RUSSAKOVSKY 
et al., 2015). For the purposes of our dataset, a subset of 6000 images was carefully selected to 
guaranty a balanced representation of ages, genders, and ethnicities. Having that set as a 
reference, 84 000 images were obtained through the application of the functions described in 

 
11 https://keras.io/ 
12 https://www.tensorflow.org/ 
13 https://www.flickr.com/ 
14 https://image-net.org/challenges/LSVRC/ 
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Chapter 3 for Gaussian noise, Gaussian blur, motion blur, brightness, and JPEG compression. 
The final dataset has a total of 90 000 images. All images were resized to 256*256 pixels to 
reduce the computational cost. The dataset was divided in the following manner: 85% for 
training, 10% for validation, and 5% for testing. Figure 10.2-1 in the Appendix section shows 
examples of the obtained images. 
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5 Results 

5.1 Training Process 

The training process for the distortion classification model consisted in experimenting 
with different configurations of the initial model described in Chapter 4, where one or more 
hyperparameters were changed in each iteration until the desired performance was achieved. 
Said performance was measured through the loss and the accuracy in both training and 
validation sets. 

Another aspect of the training process was the reduction of the model’s parameters once 
the metrics reached good values. This was mainly achieved by decreasing the number of filters 
in each convolution layer. Figure 5.1-1 shows the final model, its architecture is similar to the 
one described in chapter 4, but with fewer convolution filters and only two dropout layers. As 
a result, the final model has 531 887 trainable parameters, while the initial one had 2,183,631. 

 

 

Figure 5.1-1. Final CNN model. 

 

Both the training set and the validation set were used during training. Figure 5.1-2 shows 
the behaviour of the loss and the accuracy in both sets. The loss was approximately 0.05 in the 
training set and around 0.07 in the validation set. As for the accuracy, the model reached 
approximately 0.98 in both sets. 

The training process was implemented in the Google Colaboratory15 environment with 
a setup consisting of a dual-core Intel Xeon 79 CPU, an NVIDIA Tesla T4 GPU, 12.72 GB of 
RAM, and 76GB of available storage. Each epoch took approximately 5 minutes to complete. 

 

 
15 https://colab.research.google.com/notebooks/ 
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Figure 5.1-2. Loss and Accuracy during training. 

 

5.1.1 Second Model 

After obtaining satisfactory results with the model from Figure 5.1-1, a second model 
targeting images of 128*128 pixels was also trained. The intuition behind this is that image 
distortions are very susceptible to resizing (HA et al., 2019) (AHN; KANG; SOHN, 2018), and 
information might be lost and/or artificially created when transforming an image to a specific 
size. Given that CNN models need a fixed input size, resizing is a must, however, its effects 
can be mitigated if the scale of the transformation is small enough (AHN; KANG; SOHN, 
2018). In that sense, a distortion classification model trained with 128*128 images was 
obtained. This second model will be used in images smaller than 256*256 but bigger than 
64*64.  

Figure 5.1-3 and Figure 5.1-4 show its architecture and the behaviour of the loss and the 
accuracy during training. The number of parameters is the same as the model trained with 
256*256 images since the only alteration was the elimination of the max pool layer after the 
first convolution. 

 

 

Figure 5.1-3. Final model for 128*128 images. 
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Figure 5.1-4. Loss and Accuracy during training. 

 

As can be seen in Figure 5.1-4, both loss and accuracy have similar behaviours as the 
previous model. Loss in the training set was also around 0.05, however, its value in the 
validation set was higher, approximately 0.09. Accuracy in both sets reached values above 0.97 

The training process was carried in the same environment as the previous model, this 
time requiring around 3 minutes per epoch. 

 

5.2 Tests Results 

Once the models were fitted in the training and validation set, they were tested on the 
test set, which consists of 4500 images from the dataset created with the images from the FFHQ 
database. 

5.2.1 256*256 model 

The results of the model trained with 256*256 images are consistent with the ones 
obtained during training. The overall accuracy was approximately 0.9766, which was expected 
considering the three subsets have the same distribution. The average prediction confidence 
was 0.9642. 

Table 5.2-1 shows the classification report generated with the scikit-learn16 library. The 
metrics shown are Precision (9), Recall (10), and F1-Score (11). The results show good and 

 
16 https://scikit-learn.org/stable/ 
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consistent behaviour across all classes, with a slight decrease in performance with images 
classified as HB1 and HB2, which correspond to images with different levels of excess 
brightness. 

 

Table 5.2-1.Classification Report for the 256*256 model 

Classes Precision Recall F1-Score Images 
CL 1.00 0.97 0.98 300 
GB1 1.00 1.00 1.00 300 
GB2 1.00 1.00 1.00 300 
GB3 1.00 1.00 1.00 300 
GN1 1.00 1.00 1.00 300 
GN2 1.00 1.00 1.00 300 
GN3 1.00 1.00 1.00 300 
HB1 0.88 0.91 0.89 300 
HB2 0.91 0.88 0.89 300 
JP1 1.00 0.93 0.97 300 
JP2 0.94 1.00 0.97 300 
LB1 0.97 0.99 0.98 300 
LB2 0.99 1.00 1.00 300 
MB1 1.00 0.97 0.99 300 
MB2 0.97 1.00 0.99 300 
     
Macro average 0.98 0.98 0.98 4500 
Weighted Average 0.98 0.98 0.98 4500 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

( 9) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

( 10) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

( 11) 

 

Figure 5.2-1 shows the model’s normalized confusion matrix obtained in the test set. 
Similar to the results obtained above, the model has almost perfect performance on all classes, 
with the exception of HB1 and HB2. 

Another metric usually used when assessing classification models, is the top k accuracy, 
which consists in measuring the accuracy of the model when the correct class is within its k 
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first predictions (SAWADA; KANEKO; SAGI, 2020). The top 1 accuracy is the same as overall 
accuracy, 0.9766, the top 2 accuracy was 0.999, and the top 3 accuracy was 1.0. 

 

 

Figure 5.2-1. Normalized Confusion Matrix for the 256*256 model in the test set. 

 

An error analysis was also conducted, Table 5.2-2 shows the details. There were 105 
images misclassified from the test set, with images with excess brightness representing 61.9% 
of all errors. On the other hand, almost half of the classes had zero errors, which constitutes 
excellent results. 
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Table 5.2-2. Error analysis for the 256*256 model 

Classes Errors Percentage (Total 
Errors) 

Percentage 
(Within Class) 

CL 8 7.61% 2.67% 
GB1 1 0.95% 0.33% 
GB2 1 0.95% 0.33% 
GB3 0 0.00% 0.00% 
GN1 0 0.00% 0.00% 
GN2 0 0.00% 0.00% 
GN3 0 0.00% 0.00% 
HB1 28 26.7% 9.33% 
HB2 37 35.2% 13.3% 
JP1 20 19.0% 6.67% 
JP2 0 0.00% 0.00% 
LB1 0 0.00% 0.00% 
LB2 11 10.4% 3.67% 
MB1 8 7.61% 2.67% 
MB2 0 0.00% 0.00% 

 

5.2.2 128*128 model 

The results obtained with the second model were also good, although a slight decrease 
in performance was noticed compared with the model trained with 256*256 images. The overall 
accuracy was 0.9737, and the average prediction confidence was 0.9685. 

Table 5.2-3 shows the results from the classification report generated using the scikit-
learn library. The results are similar to the ones in Table 5.2-1 in that the model shows good 
performance in most classes, with the exception of HB1 and HB2. However, the decrease in 
performance in these classes is more noticeable with this model. A similar phenomenon is 
observed in the normalized confusion matrix in Figure 5.2-2. 

The top 1 accuracy is the same as the overall accuracy, 0.9737, the top 2 accuracy and 
top 3 accuracy had the same values as the ones obtained with the model trained with 256*256 
images. 

Table 5.2-4 shows the details of the error’s distribution, this time a total of 154 images 
were misclassified, with 55.19% corresponding to images with high brightness. Given that this 
model is similar to the one targeting 256*256 images, these results were expected. 
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Table 5.2-3. Classification Report generated with the 128*128 model in the test set. 

Classes Precision Recall F1-Score Images 
CL 1.00 0.98 0.99 300 
GB1 1.00 1.00 1.00 300 
GB2 1.00 1.00 1.00 300 
GB3 1.00 1.00 1.00 300 
GN1 1.00 1.00 1.00 300 
GN2 1.00 1.00 1.00 300 
GN3 1.00 1.00 1.00 300 
HB1 0.95 0.76 0.84 300 
HB2 0.80 0.96 0.87 300 
JP1 1.00 0.96 0.98 300 
JP2 0.96 1.00 0.98 300 
LB1 0.98 0.99 0.99 300 
LB2 0.99 1.00 0.99 300 
MB1 1.00 0.97 0.99 300 
MB2 0.97 1.00 0.99 300 
     
Macro average 0.98 0.97 0.97 4500 
Weighted Average 0.98 0.97 0.97 4500 

 

Table 5.2-4. Error Analysis for the 128*128 model. 

 

Classes Errors Percentage (Total 
Errors) 

Percentage (Class) 

CL 7 4.55% 2.33% 
GB1 0 0.00% 0.00% 
GB2 1 0.65% 0.33% 
GB3 0 0.00% 0.00% 
GN1 0 0.00% 0.00% 
GN2 0 0.00% 0.00% 
GN3 0 0.00% 0.00% 
HB1 73 47.4% 24.33% 
HB2 12 7.79% 4.00% 
JP1 12 7.79% 4.00% 
JP2 1 4.55% 2.33% 
LB1 4 2.60% 1.33% 
LB2 0 0.00% 0.00% 
MB1 8 5.19% 2.67% 
MB2 0 0.00% 0.00% 
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Figure 5.2-2. Normalized Confusion Matrix for the 128*128 model in the test set. 

 

It is clear that the models' main weakness is recognizing excess brightness, which might 
be due to the way brightness alterations were simulated. To obtain low and high brightness 
images, the brightness factor is modified to increase or decrease the intensity of each pixel. The 
drawback of this approach is evident when dealing with face images with different skin tones, 
where it becomes hard to differentiate if a person has light or dark skin colour, or if the image 
is lacking or exceeding brightness.  

 

5.3 Conclusions 

This chapter exposes the results obtained during the training and testing of our distortion 
classification model. To ensure good results in images with different sizes, a second model 
targeting 128*128 images was also trained and tested. 
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The obtained results are very satisfactory, the overall accuracy reached by both models 
shows great performance in all classes, with the exception of high brightness. It is important to 
say that even though the decrease in performance in the HB1 and HB2 classes is noticeable 
when compared with the other classes, the results are still good. As mentioned above, the cause 
of this phenomenon might be associated with the way the images are generated. A different 
approach, one where the images are acquired in real-life scenarios with different lighting 
conditions, might result in better performance. 
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6 Validation 

 

6.1 Validation dataset 

The main limitation for the development of this work is the lack of publicly available 
datasets for quality assessment in face images. According to our research, the IDEAL-LIVE 
DFD is the only one, however, only the original images are available to download when using 
the provided link. The absence of previous works dedicated to distortion classification in face 
images, and the lack of pre-trained models for distortion classification in natural scene images, 
makes it impossible for us to conduct a comparison to validate our proposal. Given these 
circumstances, it was considered best to use the original images from the IDEAL-LIVE DFD 
and follow the details provided in (GUNASEKAR; GHOSH; BOVIK, 2014) to obtain the 
distorted versions. According to (GUNASEKAR; GHOSH; BOVIK, 2014), three MATLAB 
functions were used to generate the distorted images. For the Gaussian noise, the authors used 
the imnoise() function and configured the variance with the values shown in Table 6.1-1. For 
the Gaussian blur, the imfilter() function was used, and the standard deviation of the kernels 
was set up as it is shown in Table 6.1-1. Finally, the JPEG compression distortion was achieved 
using the imwrite() function, configuring the quality factor as illustrated in Table 6.1-1. 

 

Table 6.1-1. Parameter configuration of the functions used in (GUNASEKAR; GHOSH; 
BOVIK, 2014). 

Function Parameter Configuration 
imnoise() 𝑣𝑎𝑟 = {4.5 ∗ 10ିହ, 0.0001, 0.0003, 0.0009, 0.0025, 0.0065, 0.02, 0.05, 0.15, 0.36} 
imfilter() 𝑠𝑡𝑑 =  {0.4, 1.0, 2.3, 3.6, 4.5, 6.0, 7.4, 12.0, 20.0, 32.0} 
imwrite() 𝑞 = {90, 60, 40, 25, 15, 10, 7.5, 5.0, 3.0, 2.0} 

 

The validation process was focused on identifying the type and degree of the distortion 
present in the images. In that sense, the accuracy, precision, recall, and F1-Score were 
measured. In (GUNASEKAR; GHOSH; BOVIK, 2014), the authors did not assign levels to 
their degraded images, however, using Table 6.1-2, it is possible to label the distorted images 
according to our class definition and the parameters configuration provided by the authors. 
Table 6.1-2 shows said mapping. 
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Table 6.1-2. Mapping from parameter configuration to distortion magnitude 

Labels Parameters 
Clean Original images 
Gaussian Noise 1 𝑣𝑎𝑟 = {4.5 ∗ 10ିହ, 0.0001, 0.0003, 0.0009, 0.0025, 0.0065, 0.02} 
Gaussian Noise 2 𝑣𝑎𝑟 = {0.05} 
Gaussian Noise 3 𝑣𝑎𝑟 = { 0.15, 0.36} 
Gaussian Blur 1 𝑠𝑡𝑑 =  {0.4, 1.0, 2.3} 
Gaussian Blur 2 𝑠𝑡𝑑 =  {3.6, 4.5, 6.0} 
Gaussian Blur 3 𝑠𝑡𝑑 =  {7.4, 12.0, 20.0, 32.0} 
JPEG 1 𝑞 = {90, 60, 40} 
JPEG 2 𝑞 = {25, 15, 10, 7.5, 5.0, 3.0, 2.0} 

 

6.2 Validation Results 

To create our validation set, only the images with one frontal face were selected as 
references. The final dataset contains 431 images belonging to 9 classes: CL, GB1, GB2, GB3, 
GN1, GN2, GN3, JP1, and JP2. 

Figure 10.2-2 in the Appendix section, shows examples of the dataset. The difference 
in quality between the reference images from the FFHQ dataset (Figure 10.2-1), and the ones 
in the IDEAL-LIVE DFD is quite noticeable, so a drop in performance is expected. 

6.2.1 256*256 model 

The overall accuracy obtained with this model was 0.8515, the top 2 and top 3 accuracies 
were also calculated, obtaining 0.8955 and 0.9396, respectively. The mean prediction 
confidence was 0.9580. 

Table 6.2-1 shows the classification report for this model on the validation dataset. The 
results show GB2, GB3, GN1, GN2, GN3, and JP1 as the classes where the model exhibits the 
best performance, with perfect scores in most metrics. On the other hand, poor performance 
was achieved when classifying clean images, as well as images with gaussian blur and JPEG 
compression in their lower levels. A closer look at Table 6.2-1 indicates two main problems. 
The first, recognizing clean images (recall), with only 8% of them correctly classified. The 
second problem is related to the precision, as the model classified more images with GB1 and 
JP1 than the actual number of images having these distortions. 
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Table 6.2-1. Classification Report for the 256*256 model in the validation set. 

Classes Precision Recall F1-Score Images 
CL 0.80 0.08 0.15 49 
GB1 0.59 1.00 0.74 48 
GB2 1.00 1.00 1.00 48 
GB3 1.00 1.00 1.00 48 
GN1 1.00 0,93 0.96 48 
GN2 1.00 1.00 1.00 49 
GN3 1.00 1.00 1.00 48 
JP1 0.57 0.69 0.62 48 
JP2 0.96 0.98 0.97 48      

Macro average 0.88 0.85 0.83 431 
Weighted average 0.88 0.85 0.83 431 

 

Table 6.2-2 shows the error analysis. A total of 64 images were misclassified, with 45 
belonging to the clean class (reference images). A more in-depth analysis of these errors 
revealed that, of those 45 clean images, 20 were classified as having Gaussian blur level 1 
(GB1), 24 with JPEG compression level 1 (JP1), and 1 with low brightness level 1 (LB1). From 
this, is easy to understand that the results of the classification report from Table 6.2-1. Most 
errors come from the misclassification of the reference images, mainly as images with GB1 and 
JP1 distortions, which are the classes with lower precision scores. These results are expected 
since the reference images have significantly lower quality than the ones the model was trained 
with. 

 

Table 6.2-2. Error analysis for the 256*256 model in the validation set. 

Classes Errors Percentage (from 
total errors) 

Percentage (within 
class) 

CL 45 70.0% 91.8% 
GB1 0 0.00% 0.00% 
GB2 0 0.00% 0.00% 
GB3 0 0.00% 0.00% 
GN1 3 4.69% 8.33% 
GN2 0 0.00% 0.00% 
GN3 0 0.00% 0.00% 
JP1 15 23.4% 31.2% 
JP2 1 1.56% 2.22% 

 

6.2.2 128*128 model 

The results obtained with the model targeted to 128*128 images were slightly better 
than the ones shown above. The overall accuracy was 0.8608, the top 2 and top 3 accuracies 
were 0.9304 and 0.9629, respectively, and the mean prediction confidence was 0.9606. 
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Table 6.2-3 shows the classification report for this model, its behavior is similar to the 
one in Table 6.2-1. The best performing classes were GB2, GB3, GN1, GN2, GN3, and JP2, 
and the worst were CL, GB1, and JP1. 

 

Table 6.2-3. Classification Report for the 128*128 model in the validation set. 

Classes Precision Recall F1-Score Images 

CL 0.80 0.24 0.37 49 

GB1 0.59 1.00 0.74 48 

GB2 1.00 1.00 1.00 48 

GB3 1.00 1.00 1.00 48 

GN1 1.00 0.92 0.96 48 

GN2 1.00 1.00 1.00 49 

GN3 1.00 1.00 1.00 48 

JP1 0.65 0.69 0.67 48 

JP2 0.95 0.91 0.93 48      

Macro average 0.89 0.86 0.85 431 

Weighted average 0.89 0.86 0.87 431 

 

Table 6.2-4 shows the results obtained from the error analysis. A total of 60 images were 
misclassified, from which 37 belonged to the clean class (reference images). Of those 37, 18 
were classified as GB1, 17 as JP1, 1 as JP2, and 1 as LB1. 

 

Table 6.2-4. Error analysis of the 128*128 model in the validation set. 

Classes Errors Percentage (from 
total errors) 

Percentage (within 
class) 

CL 37 61.7% 75.5% 

GB1 0 0.00% 0.00% 

GB2 0 0.00% 0.00% 

GB3 0 0.00% 0.00% 

GN1 4 6.67% 8.33% 

GN2 0 0.00% 0.00% 

GN3 0 0.00% 0.00% 

JP1 15 25.0% 31.2% 

JP2 4 6.67% 8.89% 

 

6.3 Conclusions 

The focus of this chapter was to illustrate the validation process of our distortion 
classification models. To that end, a set of face images with Gaussian blur, Gaussian noise, and 
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JPEG compression was generated from the images provided by the IDEAL_LIVE_DFD. The 
set obtained allowed us to assess our models’ performance in 9 out of the 15 classes our models 
were trained to output. 

Both models exhibited the same behaviour in that they struggled to correctly classify 
the reference images. Between the two, the model targeting 128*128 images showed better 
performance, according to its overall accuracy, precision, recall, and F1-score results. As was 
stated before, given the differences in quality between the images used for training and the ones 
provided by the IDEAL_LIVE DFD as reference images, a drop in performance was expected. 
As we look closer into Table 6.2-1 and Table 6.2-3, we can see that the models can correctly 
recognize most distorted images, showing high recall and precision scores in most classes. 
Similarly, the error analysis in Table 6.2-2 and Table 6.2-4, show zero errors in most classes. 
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7 Distortion classification as previous stage for face processing: 
use case. 

As was stated in the introductory section, the information of the distortion affecting a 
given face image, as well as the level of the degradation, might be useful in several scenarios. 
Face processing algorithms, with known quality restrictions, can use this information to filter 
the images that comply with the established requirements from the ones that don’t.  

In that sense, we have decided to conduct an experiment using our distortion 
classification model in combination with a face processing algorithm. The goal behind this 
experiment was to test its suitability in this type of scenario. The following sections describe 
the experiment setup, as well as our results. 

 

7.1 Experiment Setup 

The DEX algorithm, focused in age estimation, was used as our face processing 
algorithm. The experiment was carried on the test set of the APPA-REAL dataset, which 
contains 1978 images of different sizes and qualities. The images were not artificially distorted 
for this experiment, they were just resized to comply with the input restrictions of both models. 

From the results illustrated in Chapter 3, we know that the DEX algorithm is heavily 
affected by noise and blur in their gaussian distributions, even at their lowest levels. We also 
know that the impact of brightness and JPEG compression is less noticeable unless the images 
are heavily degraded. Additionally, we ran our distortion classification models throughout the 
test set to see which distortions were present in the test set, the results are as follows: GB1, 
GB2, MB1, LB1, LB2, HB, JP1, and JP2. Considering that, we defined 8 scenarios in which 
we filtered out face images according to the output of our distortion classification models and 
the requirements of each scenario. Table 7.1-1 shows a description of the defined scenarios. 

Our experiment consisted in two main stages: a distortion classification stage, and an 
age estimation stage. The first part of the experiment consisted in classifying the images 
according to the 15 classes our models were trained to output. Having that information, we 
filtered the images according to the constraints of the previously defined scenarios and then 
performed the age estimation with the DEX algorithm. 

To measure the performance of the DEX algorithm we used the Mean Absolute Error 
(MAE) in years, which was also the metric used in Chapter 3 to assess performance (See 
equation 4). Given that the APPA-REAL dataset allows us to evaluate the performance of age 
estimation models in both the real age and the apparent age, we assess the DEX algorithm by 
calculating the MAE value for the real and the apparent age estimations. To compare the DEX 
performance in the different scenarios, we also ran the DEX algorithm throughout the entire 
test set and took the obtained MAE values as our references for comparison. 
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Table 7.1-1. Scenarios description 

Scenario Description 

No GB Test set without images classified as GB1 or GB2 

No MB1 Test set without images classified as MB1 

No LB2 Test set without images classified as LB2 

No JP2 Test set without images classified as JP2 

No GB & MB Test set without images classified as GB1, GB2, MB1 

No GB &MB & LB2 Test set without images classified as GB1, GB2, MB1, LB2 
No GB & MB & LB2 & 
JP2 

Test set without images classified as GB1, GB2, MB1, LB2, 
JP2 

Only CL Only images classified as clean (CL) 

 

7.2 Results 

As stated in the previous section, the metric used to measure performance was the MAE 
in years, therefore a performance improvement means a decrease in that value. 

The results obtained with our experiment are shown in Figure 7.2-1. The first two 
columns correspond to the MAE values obtained when using all the images from the test set. 
To their right, the graph shows the MAE values obtained in every scenario. As can be seen, the 
MAE values decreased whenever distorted face images were filtered out, when compared with 
the results obtained with the entire test set. 

For the cases of images classified as MB1, LB2, and JP2, their exclusion from the set 
did not significantly improve performance. However, when excluding images classified as GB1 
or GB2 (No GB scenario), a notable decrease in the MAE values is observed for both the real, 
and the apparent age estimation errors. The results obtained for that scenario represent a 14.76% 
improvement for the apparent age estimation and an 11.18% improvement for the case of real 
age estimation. Similarly, when filtering out images according to more than one distortion, as 
is shown in the last four scenarios, the results improved considerably. The best performance 
was achieved in the last scenario, where choosing only clean images caused a 22% decrease in 
the MAE value corresponding to the apparent age estimation and a 20% decrease for the case 
of the real age estimation MAE. 
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Figure 7.2-1. Experiment Results. 

 

7.3 Conclusions  

This chapter focuses on evaluating the suitability of our models to function as a previous 
stage for face processing algorithms. To that end, we used the DEX algorithm in combination 
with our models and defined 8 different scenarios to filter out face images according to specific 
distortions. Using the MAE values as a measure of performance, we evaluated the DEX 
algorithm across all the scenarios and compared the results with the MAE values obtained when 
running the DEX algorithm throughout the entire test set. 

The results of the experiment were satisfactory, as it shows how the performance of the 
DEX algorithm improved whenever distorted images were filtered out. As was outlined in the 
previous section, not all distortions have the same impact, therefore their exclusion did not 
improve the DEX’s performance in a similar way. However, for the case of Gaussian blur, as 
well as for the scenarios that filtered out face images according to more than one distortion, the 
performance improvement was noticeable. This constitutes a good endorsement of the benefits 
of using our distortion classification models as part of the face processing pipeline. 

Although these results are promising, more tests are needed to ensure the suitability of 
this approach across the different tasks within the face processing domain. 
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8  General conclusions 
8.1  Summary 

The purpose of this work was to provide a different approach to face image quality 
assessment through distortion identification. Our main objective was to develop a model 
capable of classifying face images according to the distortion affecting them, in order to output 
qualitative information about their quality. 

To achieve that goal, we first conducted a study to comprehend the impact of specific 
distortions on the performance of face processing algorithms. Based on the study’s findings, 
described in Chapter 3, we defined the output of our distortion classification model to identify 
undistorted images, as well as images degraded by Gaussian blur, Gaussian noise, motion blur, 
low brightness, high brightness, and JPEG compression, at different degrees. Having that, we 
created a dataset for training and testing, using a subset of high-quality face images from the 
FFHQ dataset as references. 

As stated in Chapter 5, resizing is a necessary part of image pre-processing for deep 
learning models. However, its effect could potentially diminish our model’s ability to correctly 
identify distortions. In that sense, two models of similar architecture but different input 
configurations were trained and tested, in order to choose the best one for a given image size. 

The results obtained during testing were very satisfactory, as our models achieved over 
97% of accuracy in the test set. The classification report generated as part of our assessment 
also showed good performance in metrics such as Precision, Recall, and F1-Score. 

We also tested our models' performance in the IDEAL_LIVE_DFD, where the results 
were also satisfactory. A drop in performance was observed when compared with the results 
obtained in our test set, however, it is attributable to the notable difference in quality between 
the reference (clean) images of the IDEAL-LIVE_DFD, and the ones in the FFHQ dataset. 

Given that these distortion classification models constitute, to the best of our knowledge, 
a new approach for face image quality assessment, we were unable to compare their 
performance against other models. Instead, we conducted an experiment to show the advantages 
of using our models as a previous stage for face processing algorithms. The obtained results 
validate our initial premise about the models' usability since a notable increase in performance 
was achieved when processing only the images classified as clean, or having small 
degradations. Although these results are very promising, further experiments should be carried 
out to assess its suitability with other face processing algorithms. 

 

8.2 Limitations 

With this work, we have tackled some of the limitations outlined in Chapter 2 about the 
state of the art in face image quality assessment. However, our models also have some 
limitations that need to be handled in future works. 
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The main limitations of our work are mostly related to the images used to train our 
models. Firstly, we only considered images affected by one distortion. In real-world 
environments, images can have several distortions, and in those cases, our models might not be 
suited to process them. We also assumed that the distortion is present in the entire image, which 
is not always the case in real-world scenarios. Lastly, the fact that our training dataset is 
composed of artificially distorted images is also a limitation, since it is not the best 
representation of real images. 

The other main limitation is given by the novelty of our approach in the face processing 
domain. Comparisons with similar models, as well as the evaluation of our models in publicly 
available datasets, could greatly contribute to improving our results. Since at the time of our 
research, we did not find other models focused on distortion classification in face images, or 
publicly available datasets for face image quality, this task will be performed as part of our 
future work. 

 

8.3 Conclusions 

The main goal of this work was to develop a CNN-based method to classify face images 
according to the type and degree of the distortion present in them. We achieved that by training 
and testing two CNN models able to identify different degrees of the following distortions: 
Gaussian noise, Gaussian blur, motion blur, low brightness, high brightness, and JPEG 
compression; as well as undistorted images. 

We conducted several experiments to evaluate our models' performance, as well as their 
suitability as a previous stage for face processing algorithms. The results were satisfactory, as 
the models showed good performance both in the test set and in the IDEAL-LIVE-DFD. As for 
the results obtained in Chapter 7, the performance improvement showed by the DEX algorithm 
constitutes a good endorsement of the potential of our approach to improve face processing. 

Our work has several contributions. First, our approach to FIQA tackled several of the 
current limitations outlined in Chapter 2. The models developed in this work provide us with 
information regarding the quality of face images without carrying in the biases of face 
recognition algorithms, this makes them suitable for other tasks inside the face processing 
domain. 

Secondly, the findings presented in Chapter 2 about the impact of the aforementioned 
distortions in face processing performance constitute valuable information for the development 
of more robust face processing algorithms. 

Lastly, as a result of our work, we also created a dataset for FIQA purposes with images 
containing faces of different ethnicities, genders, and ages, and a variety of types and degrees 
of distortions. 
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8.4 Future work 

Our future work will be focused on tackling the limitations outlined in Section 8.2. The 
main goal will be to evaluate our models' performance in different sets of face images, where 
images can be degraded by more than one distortion. According to the results obtained during 
this assessment, modifications and improvements will be made to our models. 

Another future work will be to develop a distortion detection method that besides 
identifying the type and degree of the distortion(s), can also find its (their) location in the image. 
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10 Appendix 

10.1  Tables 

 

Table 10.1-1. Metrics results from the noise experiment 

NOISE 
VARIANCE 

ACCURACY VALIDATION 
RATE 

 MAE 
APPARENT 

MAE 
REAL 

ERROR FAILURE 
RATE 

0,00 0,9965 0,98567  6,46788 7,6086 0,052 0,0518 

0,01 0,989 0,926  11,835 12,659 0,075 0,237 

0,02 0,977 0,853  13,219 14,062 0,108 0,415 

0,03 0,965 0,751  14,087 14,940 0,134 0,556 

0,04 0,948 0,618  14,511 15,361 0,164 0,659 

0,05 0,924 0,393  14,757 15,551 0,197 0,763 

0,06 0,897 0,330  14,958 15,778 0,233 0,844 

0,07 0,876 0,183  15,096 15,913 0,255 0,867 

0,08 0,845 0,109  15,112 15,948 0,289 0,911 

0,09 0,825 0,052  15,196 16,012 0,312 0,963 

0,10 0,782 0,048  15,129 15,956 0,342 0,985 

 

Table 10.1-2. Metrics degradation from the noise experiment in percentage 

NOISE 
VARIANCE 

ACCURACY VALIDATION 
RATE 

MAE 
APPARENT 

MAE 
REAL 

ERROR FAILURE 
RATE 

0,00 0,997 0,986 6,468 7,609 0,052 0,052 

0,01 0,8 6,0 83,0 66,4 43,7 357,1 
0,02 1,2 13,5 104,4 84,8 106,7 700,0 
0,03 3,1 23,8 117,8 96,4 155,2 971,4 
0,04 4,9 37,3 124,4 101,9 213,6 1171,4 
0,05 7,2 60,2 128,2 104,4 276,9 1371,4 
0,06 10,0 66,6 131,3 107,4 345,8 1528,6 
0,07 12,1 81,4 133,4 109,1 387,0 1571,4 
0,08 15,2 88,9 133,6 109,6 451,4 1657,1 
0,09 17,2 94,8 135,0 110,4 496,5 1757,1 
0,10 21,5 95,1 133,9 109,7 552,5 1800,0 
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Table 10.1-3. Metrics degradation from the Gaussian blur experiment 

STANDARD 
DEVIATION 

ACCURACY  VALIDATION 
RATEE 

MAE 
APPARENT 

MAE REAL ERROR FAILURE 
RATE 

0 0,9965 0,9857 6,4679 7,6086 0,0524 0,0519 

1 0,9957 0,9747 6,3348 7,5249 0,0553 0,1111 

2 0,9899 0,9348 7,7535 8,6961 0,0866 0,2222 

3 0,9758 0,8490 8,7475 10,0413 0,1508 0,4148 

4 0,9587 0,6483 9,7207 11,0002 0,2484 0,5138 

5 0,9192 0,4717 10,5318 11,8231 0,3410 0,5630 

6 0,8515 0,2130 11,1935 12,4259 0,4268 0,6296 

7 0,7840 0,0920 11,7378 12,9049 0,4960 0,7407 

8 0,7388 0,0610 12,2777 13,3167 0,5495 0,7926 

9 0,7055 0,0437 12,6175 13,6724 0,5942 0,8222 

10 0,6792 0,0390 12,9041 13,9599 0,6312 0,8596 

 

Table 10.1-4. Metrics degradation from the Gaussian blur experiment in percentage 

STANDARD 
DEVIATION 

ACCURACY VALIDATION 
RATE 

MAE 
APPARENT 

MAE 
REAL 

ERROR FAILURE 
RATE 

0 0,997 0,986 6,468 7,609 0,052 0,052 

1 0,083 1,116 -2,058 -1,100 5,609 114,286 
2 0,661 5,165 19,877 14,293 65,423 328,571 
3 2,074 13,866 35,246 31,973 188,058 700,000 
4 3,790 34,226 50,291 44,575 374,527 890,826 

5 7,760 52,147 62,832 55,390 551,390 985,714 
6 14,551 78,390 73,063 63,313 715,236 1114,286 

7 21,325 90,666 81,478 69,608 847,411 1328,571 
8 25,858 93,811 89,826 75,020 949,667 1428,571 
9 29,202 95,570 95,079 79,695 1035,06 1485,714 
10 31,844 96,043 99,511 83,474 1105,61 1557,786 

 

Table 10.1-5. Metrics degradation from the motion blur experiment 

KERNEL 
SIZE 

ACCURACY VALIDATION 
RATE 

MAE 
APPARENT 

MAE REAL ERROR FAILURE 
RATE 

0 0,9965 0,9857 6,4679 7,6086 0,0524 0,0519 

3 0,9953 0,9853 6,2926 7,4780 0,0527 0,0593 

5 0,9942 0,9767 6,3769 7,6107 0,0548 0,0889 

7 0,9927 0,9650 6,6799 7,9063 0,0624 0,1556 

9 0,9925 0,9417 7,0470 8,2531 0,0730 0,2296 

11 0,9890 0,9240 7,4316 8,6433 0,0875 0,2963 

13 0,9852 0,9043 7,7827 9,0208 0,1028 0,3556 

15 0,9810 0,8623 8,1101 9,3635 0,1207 0,3926 

17 0,9748 0,7930 8,4178 9,6787 0,1399 0,4444 

19 0,9663 0,7397 8,7187 9,9900 0,1584 0,5037 

21 0,9583 0,6803 8,9849 10,2712 0,1546 0,5333 
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Table 10.1-6. Metrics degradation from the motion blur experiment in percentage 

KERNEL 
SIZE 

ACCURACY VALIDATION 
RATE 

MAE 
APPARENT 

MAE 
REAL 

ERROR FAILURE 
RATE 

0 0,997 0,986 6,468 7,609 0,052 0,052 

3 0,117 0,034 -2,710 -1,717 0,758 14,286 

5 0,234 0,913 -1,406 0,027 4,583 71,429 

7 0,384 2,097 3,277 3,913 19,279 200,000 

9 0,401 4,464 8,954 8,470 39,386 342,857 

11 0,753 6,257 14,900 13,599 67,044 471,429 

13 1,137 8,252 20,328 18,560 96,452 585,714 

15 1,555 12,513 25,390 23,064 130,499 657,143 

17 2,175 19,547 30,147 27,207 167,142 757,143 

19 3,028 24,958 34,800 31,298 202,519 871,429 

21 3,830 30,978 38,915 34,994 195,263 928,571 

 

Table 10.1-7. Metrics degradation from the contrast experiment 

CONTRAST 
FACTOR 

ACCURACY  VALIDATION 
RATE 

MAE 
APPARENT 

MAE REAL ERROR FAILURE 
RATE 

1,0 0,9965 0,9857 6,4679 7,6086 0,0524 0,0519 

0,9 0,9963 0,9857 6,6334 7,8000 0,0524 0,0593 

0,8 0,9958 0,9863 6,8245 7,9865 0,0528 0,0667 

0,7 0,9957 0,9847 7,0662 8,2576 0,0530 0,0741 

0,6 0,9952 0,9837 7,5076 8,6945 0,0538 0,0815 

0,5 0,9953 0,9790 8,0324 9,2205 0,0552 0,0963 

0,4 0,9945 0,9683 8,7966 9,9751 0,0588 0,1481 

0,3 0,9917 0,9407 9,8673 11,0236 0,0709 0,2000 

0,2 0,9798 0,8323 11,3151 12,4393 0,1102 0,3037 

0,1 0,8543 0,0273 13,5935 14,5980 0,3308 0,7926 

 

Table 10.1-8. Metrics degradation from the contrast experiment in percentage 

CONTRAST 
FACTOR 

ACCURACY  VALIDATION 
RATE 

MAE 
APPARENT 

MAE 
REAL 

ERROR FAILURE 
RATE 

1,0 0,997 0,986 6,468 7,609 0,052 0,052 

0,9 0,017 0,000 2,559 2,515 0,185 14,286 

0,8 0,067 -0,067 5,513 4,966 0,910 28,571 

0,7 0,083 0,101 9,251 8,530 1,304 42,857 

0,6 0,133 0,203 16,075 14,272 2,707 57,143 

0,5 0,117 0,677 24,188 21,185 5,490 85,714 

0,4 0,201 1,759 36,005 31,102 12,336 185,714 

0,3 0,485 4,565 52,558 44,882 35,385 285,714 

0,2 1,673 15,557 74,943 63,489 110,463 485,714 

0,1 14,267 97,227 110,170 91,861 531,864 1428,571 
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Table 10.1-9. Metrics degradation from the low brightness experiment 

BRIGHTNESS 
FACTOR 

ACCURACY VALIDATION 
RATE 

MAE 
APPARENT 

MAE REAL ERROR FAILURE 
RATE 

1,0 0,9965 0,9857 6,4679 7,6086 0,0524 0,0519 

0,9 0,9963 0,9850 6,7060 7,8234 0,0525 0,0519 

0,8 0,9965 0,9850 6,8995 8,0156 0,0528 0,0667 

0,7 0,9963 0,9830 7,1050 8,2215 0,0529 0,0667 

0,6 0,9962 0,9760 7,4271 8,5286 0,0534 0,0667 

0,5 0,9960 0,9753 7,6763 8,8173 0,0543 0,0963 

0,4 0,9953 0,9683 8,1112 9,2502 0,0558 0,0963 

0,3 0,9935 0,9610 8,7266 9,8644 0,0627 0,1407 

0,2 0,9857 0,9267 9,6779 10,8681 0,0878 0,2815 

0,1 0,5475 0,0003 12,3576 13,4337 0,2446 0,7556 

 

Table 10.1-10. Metrics degradation from the low brightness experiment in percentage 

BRIGHTNESS 
FACTOR 

ACCURACY VALIDATION 
RATE 

MAE 
APPARENT 

MAE 
REAL 

ERROR FAILURE 
RATE 

1,0 0,997 0,986 6,468 7,609 0,052 0,052 

0,9 0,017 0,068 3,681 2,823 0,277 0,000 

0,8 0,000 0,068 6,673 5,348 0,809 28,571 

0,7 0,017 0,271 9,851 8,055 1,104 28,571 

0,6 0,033 0,981 14,831 12,091 2,055 28,571 

0,5 0,050 1,049 18,684 15,886 3,763 85,714 

0,4 0,117 1,759 25,408 21,574 6,572 85,714 

0,3 0,301 2,503 34,923 29,647 19,794 171,429 

0,2 1,087 5,986 49,630 42,839 67,719 442,857 

0,1 45,058 99,967 91,061 76,559 367,188 1357,143 

 

Table 10.1-11. Metrics degradation from the high brightness experiment 

BRIGHTNESS 
FACTOR 

ACCURACY  VALIDATION 
RATE 

MAE 
APPARENT 

MAE 
REAL 

ERROR FAILURE 
RATE 

1,0 0,9965 0,9857 6,4679 7,6086 0,0524 0,0519 

1,2 0,9952 0,9863 6,4763 7,6331 0,0524 0,0444 

1,4 0,9942 0,9767 6,8012 8,0657 0,0532 0,0667 

1,6 0,9920 0,9480 7,4323 8,6951 0,0547 0,0741 

1,8 0,9822 0,8830 8,1965 9,4396 0,0591 0,0963 

2,0 0,9695 0,7690 9,0058 10,2465 0,0623 0,1111 

2,2 0,9540 0,6890 9,7599 11,0076 0,0651 0,1333 

2,4 0,9318 0,5743 10,3806 11,6264 0,0687 0,1778 

2,6 0,9085 0,4737 10,8840 12,0786 0,0729 0,1926 

2,8 0,8882 0,3850 11,2700 12,4501 0,0764 0,2148 

3,0 0,8618 0,3043 11,6299 12,7698 0,0819 0,2667 
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Table 10.1-12. Metrics degradation from the high brightness experiment in percentage 

BRIGHTNESS 
FACTOR 

ACCURACY VALIDATION 
RATE 

MAE 
APPARENT 

MAE 
REAL 

ERROR FAILURE 
RATE 

1,0 0,997 0,986 6,468 7,609 0,052 0,052 

1,2 0,133 -0,067 0,131 0,322 0,051 -14,286 

1,4 0,234 0,913 5,153 6,007 1,552 28,571 

1,6 0,452 3,822 14,910 14,279 4,419 42,857 

1,8 1,438 10,416 26,727 24,064 12,921 85,714 

2,0 2,709 21,982 39,238 34,669 18,924 114,286 

2,2 4,265 30,098 50,898 44,672 24,375 157,143 

2,4 6,490 41,732 60,495 52,805 31,276 242,857 

2,6 8,831 51,944 68,278 58,749 39,284 271,429 

2,8 10,871 60,940 74,245 63,631 45,876 314,286 

3,0 13,514 69,125 79,810 67,833 56,474 414,286 

 

Table 10.1-13. Metrics degradation from the JPEG experiment 

JPEG QUALITY ACCURACY  VALIDATION 
RATE 

MAE 
APPARENT 

MAE REAL ERROR FAILURE 
RATE 

100 0,99650 0,98567 6,46788 7,60864 0,05235 0,05185 

95 0,99583 0,98567 6,48624 7,62542 0,05239 0,05185 

85 0,99617 0,98500 6,64621 7,76626 0,05248 0,05185 

75 0,99567 0,98433 6,47174 7,61167 0,05267 0,05185 

65 0,99600 0,98733 6,88184 7,98198 0,05282 0,05185 

55 0,99567 0,98367 7,35502 8,42648 0,05295 0,05926 

45 0,99550 0,98367 6,57975 7,79789 0,05303 0,07407 

35 0,99583 0,97933 6,69005 7,85361 0,05361 0,06667 

25 0,99550 0,98300 7,30135 8,40854 0,05352 0,05926 

15 0,99317 0,96700 7,42562 8,62706 0,05519 0,07407 

5 0,95067 0,53700 10,22565 11,37077 0,08484 0,28889 

 

Table 10.1-14. Metrics degradation from the JPEG experiment in percentage 

JPEG QUALITY ACCURACY VALIDATION 
RATE 

MAE 
APPARENT 

MAE 
REAL 

ERROR FAILURE 
RATE 

100 0,997 0,986 6,468 7,609 0,052 0,052 

95 0,067 0,000 0,284 0,221 0,067 0,000 

85 0,033 0,068 2,757 2,072 0,239 0,000 

75 0,083 0,136 0,060 0,040 0,610 0,000 

65 0,050 -0,168 6,400 4,907 0,886 0,000 

55 0,083 0,203 13,716 10,749 1,149 14,286 

45 0,100 0,203 1,730 2,487 1,299 42,857 

35 0,067 0,643 3,435 3,220 2,399 28,571 

25 0,100 0,271 12,886 10,513 2,227 14,286 

15 0,334 1,894 14,808 13,385 5,427 42,857 

5 4,599 45,519 58,099 49,445 62,053 457,143 
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10.2 Datasets samples 
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Figure 10.2-1. Samples of the datatset created for distortion classification in face images. 
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Figure 10.2-2. Samples of the images obtained from the IDEAL_LIVE_DFD. 
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