
VINICIUS CLEVES DE OLIVEIRA CARMO

A framework for closed domain question answering
systems in the low data regime

São Paulo
2023



VINICIUS CLEVES DE OLIVEIRA CARMO

A framework for closed domain question answering
systems in the low data regime

Revised Version

Thesis submitted to the Polytechnic School

of the Universidade de São Paulo in partial

fulfillment of the requirements for the

degree of Master of Science.

São Paulo
2023



Name: CARMO, Vinicius Cleves de Oliveira

Title: A framework for closed domain question answering systems in the low data regime.

Thesis submitted to the Polytechnic School of the Universi-

dade de São Paulo in partial fulfillment of the requirements

for the degree of Master of Science.

Approved in:

Jury members

Prof. PhD.

Institution:

Judgment:

Prof. PhD.

Institution:

Judgment:

Prof. PhD.

Institution:

Judgment:



VINICIUS CLEVES DE OLIVEIRA CARMO

A framework for closed domain question answering
systems in the low data regime

Revised Version

Thesis submitted to the Polytechnic School

of the Universidade de São Paulo in partial

fulfillment of the requirements for the

degree of Master of Science.
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RESUMO

CARMO, V. C. O. A framework for closed domain question answering systems in the
low data regime / V. C. O. Carmo. 63p. Dissertação (Mestrado) – Escola Politécnica.
Universidade de São Paulo - São Paulo, 2022.

Sistemas de resposta a perguntas (Question Answering – QA) que operam sobre conjuntos
de documentos visam melhorar os sistemas tradicionais de recuperação de informações;
enquanto estes recuperam documentos relevantes de uma base de documentos, aqueles
também localizam e apresentam respostas diretas aos usuários. Melhorias recentes em QA
tem sido baseadas em redes neurais, porém tais redes exigem grandes volumes de dados
rotulados para treinamento. A maioria dos conjuntos de dados existentes contêm con-
hecimentos gerais e, embora existam alguns conjuntos de dados para domı́nios espećıficos
(como biomedicina), na maioria dos domı́nios não há dispońıveis conjuntos de dados rotu-
lados ou fáceis de rotular. Isso cria um obstáculo para o desenvolvimento de sistemas de
QA de domı́nio espećıfico. Neste trabalho, propomos um esquema para desenvolvimento
de sistemas de QA de domı́nio espećıfico utilizando aprendizado não supervisionado, de
modo a evitar os custos relacionados à rotulagem de grandes conjuntos de dados. Nossa
contribuição tem duas formas. Primeiro, aplicamos a técnica de pré-treino adaptativo
ao domı́nio para melhorar o desempenho fora do domı́nio em sistemas de compreensão
de leitura e QA. Essa técnica atinge o estado da arte em dois conjuntos de dados de
compreensão de leitura, e supera a performance de técnicas de adaptação de domı́nio no
estado da arte na literatura por uma margem significativa: 2,3 em correspondência exata
e 5.2 em F1-score no BioASQ. Em seguida, propomos um framework para QA em domı́nio
espećıfico em regime de escassez de dados. Para recuperação de documentos, aplicamos
uma combinação do BM25 junto com um pipeline de processamento de texto personal-
izado. Descobrimos que, em um regime de escassez de dados, modelos estat́ısticos de
recuperação de documentos superam os modelos neurais, conforme os dados no domı́nio
desejado diferem dos dados utilizados durante o treinamento. Para a seleção de respostas,
aplicamos um leitor neural treinado com a técnica de pré-treino adaptativo ao domı́nio
para melhorar a generalização no domı́nio desejado. Também realizamos um estudo de
caso aplicando o framework proposto ao domı́nio da engenharia oceânica.

Palavras-Chave – Sistemas de questões e respostas, recuperação de informação, redes
neurais, aprendizado computacional.



ABSTRACT

CARMO, V. C. O. A framework for closed domain question answering systems in the
low data regime / V. C. O. Carmo. 63p. Thesis (Master’s Degree) – Polytechnic School.
Universidade de São Paulo - São Paulo, 2022.

Question Answering (QA) systems that operate over textual databases aim at improving
traditional information retrieval systems; while the latter recover a number of relevant
documents from a document pool, the former can also find and present direct answers
to users. Recent improvements on QA have been based on deep neural networks; such
networks require large volumes of labeled data for training. Most existing datasets target
general knowledge and, even though there are a few datasets for specific domains (such
as biomedicine), for most domains there is no labeled, or easy to label, dataset available.
This creates an obstacle for the development of domain-specific QA systems. We propose
a framework for developing domain-specific QA systems by leveraging unsupervised learn-
ing so as to avoid the costs related to large scale dataset labeling. The contributions of this
work are twofold. First, we apply domain-adaptive pretraining to improve out-of-domain
performance of reading comprehension and question answering systems. This technique
achieves state-of-the-art results on two Reading Comprehension datasets, and it exceeds
the performance of state-of-the-art domain adaptation techniques in the literature by a
significant margin: 2.3 exact match and 5.2 F1-score on BioASQ. Then, we propose a
framework for domain-specific question answering in the low data regime. For document
retrieval, we apply a combination of BM25 along with a custom text processing pipeline.
We find that, in a low data setting, statistical document retrieval models outperform neu-
ral models as the data on the desired domain differ from the data used for training. For
answer selection, we apply a neural reader trained with domain-adaptive pretraining to
improve generalization on the desired domain. We also perform a case study by applying
the proposed framework to the offshore engineering domain.

Keywords – Question answering systems, information retrieval, neural networks, ma-
chine learning.
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1 INTRODUCTION

There is an ever growing amount of text data produced around the world. This data

can be mined so as to extract information that drives productivity, assist in decision-

making, improve customer satisfaction and a wide range of other enterprise activities.

Just as an example, a report from the McKinsey Global Institute in 2011 [2] highlighted

the economic value that can be derived from Big Data, including text mining: according

to this report, the US Health care sector could create more than $ 300 billion in value

every year by using data to drive efficiency and quality; likewise, in the private sector,

retailers, for example, could improve their operating margin by more than 60%.

Itto et al. [3] review the literature on text mining and Natural Language Process-

ing (NLP) in the context of industrial applications. The authors present a set of chal-

lenges and desiderata related to such applications. Among the challenges are: (1) the

heterogeneity of the data sources, with different formats, languages and text lengths; (2)

the use of technical abbreviations and informal language; (3) the brevity of texts; (4)

the imbalance of classes; (5) the lack of annotated data; (6) the need for “velocity” as

some applications require fast responses or process large streams of text. The desiderata

identified by them are: (1) flexibility to accommodate for the heterogeneity of the data

sources; (2) robustness; (3) minimal supervision, taking into account the difficulty in ob-

taining annotated data and the costs involved in this process; (4) human intervention,

where users who are experts in the application domain stay at the heart of the process; (5)

easy of use, as users are not expected to be experts in text mining or NLP; (6) velocity;

(7) extrinsic evaluation based on the effectiveness and usability of the application.

An example of a practical application of NLP in the industrial sector is the work by

Tanguy at al. [4]. They describe four different systems, in increasing order of complexity,

to assist aviation safety experts with text classification and information retrieval. The

systems rely on a database of aviation incident reports. These reports are made of a free

text section describing the incident together with metadata such as time, location and the

equipment involved. The first proposed system is a learned classifier to assist with report
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classification from an existing set of categories. The second system extracts topics from

the data in order to find patterns that might not be covered by the existing categories.

The third system retrieves reports that are similar to a given report, and displays them

in a time line in order to show similar events over time. Finally, the fourth system builds

an information retrieval system where the user is at the center or the process, working

with the system in an interactive fashion.

Information Retrieval (IR) can greatly benefit from NLP. The goal of IR is to find,

within a large document pool, a small set of documents that supply the information need

expressed by a user query. Perhaps the most popular application of such information

retrieval systems are web search engines, like Google,1 Yahoo,2 and Bing.3 Such systems

range from e-commerce product search to enterprise document retrieval.

Question Answering (QA) is an application of NLP that is directly related to IR. While

IR looks for whole documents in response to an information need, QA is concerned with

finding short and direct answers to user queries that are expressed in natural language

and may be of different types. QA systems have the potential to provide better user

experience and drive productivity in the search for information, when compared to IR

systems.

QA systems can then be classified according to the source of knowledge they use to

answer questions. They may be based on Knowledge Bases (KB), on text, or on mixed

sources.

In KB-based QA systems the source of information is a Knowledge Base. In such

structures, entities are represented as nodes and relations between them are represented

as edges. A pair of entities connected by a relation forms an unit of knowledge. For

example, in the unit <e1, r, e2 > = <Brasilia, capital of, Brazil >, the entities e1 =

Brasilia and e2 = Brazil are connected by the relation r = capital of, representing the

knowledge that Brasilia is Brazil’s capital. Formal query languages, such as SPARQL,

have been developed to interact with KBs. These query languages are very useful to

experts interacting with KBs; however, they require programming ability and technical

knowledge about the specific structures in the KBs to interact with them. Due to this, QA

systems based on KBs have been designed that allow non-expert individuals to interact

with KBs [5].

In text-based QA systems, the source of information are documents, for example,

1www.google.com
2search.yahoo.com
3www.bing.com
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books, articles, tweets, social media posts. QA systems may also draw knowledge from

multiple sources, mixing KBs and document pools; we classify the latter systems as mixed

QA systems.

Text-based QA systems are often split in two modules. The first module, the Re-

triever, is an IR system. It recovers from the large document pool a set of documents

it considers more relevant to the user query. The number of retrieved documents can be

larger than what is expected for the user to read, as these documents will not be presented

directly to the user, but rather to the second module in the pipeline. The second module,

the Reader, generates or extracts the most likely answers based on the information on the

retrieved documents and the query.

This work focuses on text-based QA, so, unless otherwise noted, when referring to

QA systems we mean text-based QA systems.

Reading Comprehension (RC) is a NLP task where, given a passage and a question,

the model must select a span in the passage that answers the question. This task can

be seem as a close and simplified version of text-based QA. While in QA the system

must process a collection of document with each query, in RC there is usually only one

document to read along with each question.

QA systems can also be classified with respect to the application domain. A general-

domain QA system is designed to answer questions about general knowledge. These

systems can use, as information sources, documents from Wikipedia, for example. On

domain-specific QA systems, on the other hand, the system is expected to answer ques-

tions about specific fields of knowledge, e.g., civil law, relativistic physics, offshore engi-

neering.

Most research on domain-specific QA systems is based on linguistic approaches. Of-

ten, it requires custom pattern crafting or manual creation of ontologies. While these

approaches may lead to high precision, they significantly reduce recall, as it is difficult for

humans to identify all possible questions in advance. Another concern is that patterns

or ontologies can be too specific for a domain, so patters designed for a domain may be

useless for another domain [6].

The current state-of-the-art in general-domain QA research has moved towards the

semantic representation of questions and documents using neural networks. In this ap-

proach, the system learns to answer questions based on examples, therefore avoiding the

challenges and limitations on manual pattern crafting. The effectiveness of neural net-

works in capturing semantics and producing answers for questions has been demonstrated
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on benchmarks like SQuAD [7] and Natural Questions [8].

Motivated by the improvements in general-domain QA, researchers have introduced

machine learning approaches also for domain-specific QA. These are run in domains with

significant available textual data, as is the case of biomedicine [9], as machine learning

approaches requires a large amount of data for training.

The ability of neural networks to generalize — that is, to produce correct results on

examples that were not seen during training — is closely related to how similar the new

examples are from the ones in the training set. The performance of such models tends

to degrade as new examples drift from the examples observed during training. For this

reason, creating a good QA model for a specific domain is not as simple as training a model

on any large scale dataset available, since the train/test mismatch can hurt considerably

the performance of the final system.

In order to improve generalization, researchers have studied domain adaptation for

QA systems [10]. In such configuration, models learn from datasets from one domain, e.g.,

the Wikipedia, and are evaluated on datasets from another domain, e.g., biomedicine. The

goal is to make these models more robust to the diversity of questions and documents

they may find, including when facing examples from different domains than the ones seem

during training.

QA systems can also be designed to answer specific types of questions. Kolomiyets

and Moens [11] classify questions in 10 major categories: factoid, list, definition, descrip-

tive, opinion, hypothetical, causal, relationship, procedural, and confirmation questions.

Factoid questions require a fact expressed in a document as an answer. These questions

usually start with a wh-word (what, when, where, who). List questions require a list

of entities or facts as answers. Definition questions ask for a definition of terms in the

question. Descriptive questions ask for description of events, while opinion questions ask

for opinions about entities or events. Hypothetical questions require information about

hypothetical events, e.g, “what if” questions. Causal questions require an explanation for

an event or artifact, e.g., “why” questions. Relationship questions ask about relations

between entities. Procedural questions requires a list of instructions as answers. Con-

firmation questions require a yes/no answer. Much of the literature on text-based QA

focuses on factoid questions, as their answers can be usually found as a text span in given

documents.
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1.1 Objectives

This work focuses on building a framework for Question Answering systems in closed

domain applications. Such systems usually require a large amount of training data, pat-

tern crafting or ontology creation efforts. We focus on factoid type questions, where the

answer is a fact expressed in a text document. We propose a framework with relatively

little crafting labor involved, where a QA system is split in two parts: the Retriever and

the Reader.

For the Retriever, we have compared a state-of-the-art neural retriever trained on the

general-domain against a strong statistical retriever with the appropriate pre-processing

steps for indexing and retrieval. We recommend our best attained configuration for the

Retriever. For the Reader, we propose a neural model trained with Domain-Adaptive Pre-

training (DAPT) to improve in-domain performance when using out-of-domain annotated

data and in-domain text data.

We developed and tested our ideas using a case study in offshore engineering. A

complete QA system in that domain is as another key contribution of this work.

To summarize, our main contributions are: (1) we apply DAPT for QA and show

that it achieve state-of-the-art performance on domain adaptation, outperforming more

complicated techniques in the state-of-the-art; (2) we propose a framework for domain-

specific question answering in a low data regime. Other key contributions include: (1) a

QA System in the offshore engineering domain; (2) the Offshore QA Dataset, a factoid

QA dataset on the offshore engineering domain and (3) OffshoreBert, a BERT pretrained

model specialized on the offshore engineering domain.

1.2 Document structure

The remaining of this document is organized as follows: Chapter 2 reviews the lit-

erature and related work in linguistic and neural QA and domain adaptation for QA

systems. Chapter 3 explains our methodology and presents the two main contributions of

this work: the application of DAPT for domain adaptation of QA systems and our pro-

posed framework for closed domain QA. Chapter 4 presents our experiments and results

to validate our proposed domain adaptation approach.

Chapters 5, 6 and 7 are built around our case study on offshore engineering. Chapter

5 describes a small QA dataset that was built in this work and used to validate exper-
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iments in our case study. Chapter 6 describes the experiments designed to understand

the best configuration for the Retriever module and to justify our design choices. Chap-

ter 7 presents OffshoreBERT, a language model specialized in offshore engineering (a

by-product of DAPT), and a complete Reader module for that domain. Together, these

Chapters represent the full implementation of the framework for closed domain QA pro-

posed in this work applied on the offshore engineering domain. Finally, Chapter 8 presents

our conclusions and comments on possible future work.
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2 LITERATURE REVIEW

This chapter reviews the literature on text-based QA systems.

Section 2.1 reviews linguistic approaches to QA. Section 2.2 presents the reasoning

and progress that has produced state-of-the-art semantic neural approaches. A few neural

architectures are presented; in particular, the Transformer, the backbone for many state-

of-the-art architectures on NLP tasks.

One key aspect regarding the use of machine learning is the need for training data.

Section 2.3 discusses the automatic generation of QA pairs. Section 2.4 summarizes work

that attempts to overcome the lack of training data in some domains by finding ways to

use only unsupervised data.

2.1 Linguistic question answering

The linguistic approach to QA systems is based on question analysis using NLP tools

such as Named Entities Recognition (NER) [12,13] and morphological and syntactic anal-

ysis [12,14,15]. Entities and relationships can be identified in questions and embedded in

the search request sent to the structured knowledge bases to find answers. Query rewriting

techniques can be applied to improve the requests sent to document search engines when

dealing with unstructured sources [16]. The selected passages can also be analyzed with

NLP tools and possible responses can be ranked based on frequency and suitability [12].

These systems have yet to deal with the issue of different words representing the same

idea in questions, documents or labels in the database, a problem known as lexical gap.

WordNet is a tool applied in this context [17], as it organizes words with similar meaning

in groups called synsets, and organizes synsets in a hierarchy of concepts, thus enabling

words to be matched at a semantic level [18].

For instance, Abdi et al. [14] created an ontology-based QA system for the Electricity

and Electromagnetism domains. They use an ontology designed for these domains to
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extract entities and relations from text and store this information on a database. They

also collect a large number of questions based on the information provided by the ontology

and extract patterns that are mapped to SQL queries and grouped in clusters with the

same SQL query patterns. Upon receiving a new question, the system interprets the

question according to the ontology and searches for its corresponding query cluster based

on similarity. If a cluster is found, the SQL query is used to retrieve the answer.

The Natural Language Question Answering (NLQA) system [12] uses a set of NLP

techniques along with a domain ontology to retrieve answers to questions. The system

processes questions using semantic and syntactic analysis and employs the domain on-

tology to reformulate the input question into a query to a retrieval engine. This engine

makes use of conceptual indexing that allows for the semantic role label to be indexed

along with the corresponding word in the inverted index, accounting for the semantics

in the retrieval process [19]. Once a set of documents are retrieved, they are syntactic

and semantically analyzed and the answers are ranked based on semantic similarity or

generated with help from the ontology.

Damiano et al. [13] uses NLP techniques to understand the information need in

factoid questions and to formulate a query to an information retrieval engine. The system

identifies named entities, question keywords (such as nouns, verbs and dates), answer

types; then the system uses that information to formulate a query. For example, for the

question

When was the Colosseum built?

the corresponding query would be

LAT: Date, Named Entity: Colloseum, Verbs: built,

where LAT stands for Lexical Answer Type. From the relevant documents retrieved,

they extract passages and use answer type information, named entity matching, keyword

overlapping, and local proximity between matching terms to filter and score the answer

sentences.

2.2 Neural question answering

Recent work on NLP has explored semantic but numeric representations for words,

sentences, and documents. In particular, word embeddings have been very popular.
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Figure 1: Two dimensional Principal Component Analysis projection of word-embeddings
for countries and their capital cities.
Source: Ref . [20].

Word embeddings are vector representations of words, where each word is represented

by a vector in a n-dimensional space that is learned based on word proximity in a text

corpus [20]. Word embeddings can even be used to capture relationships between the

meaning of words: for example, the operation

“Berlin” - “Germany” + “France”

may lead to the vector for “Paris” (Figure 1). The space in which these vectors are

represented is often referred to as a semantic space. Representations for larger units

of text can be built from the representation of words. For instance, a straightforward

representation is to take the average of the words in a sentence [21]. Other approaches

involve using Convolutional Neural Networks [22], Recursive Neural Networks [23], and

Recurrent Neural Networks [24] to reduce the set of word vector in a sentence to a single

vector representation.

In the neural approach to QA, instead of embedding linguistic knowledge into the

system, the designers focus on building an architecture such that the system can learn
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whatever is important to find answers to questions. In this setting, a key idea is to find

a function that maps queries and its answers to similar locations in the semantic space,

thus reducing the problem of finding the best answer to a query to the problem of finding

closest vectors in the semantic space.

Tay et al. [21] take pre-trained word embeddings and use a feedforward layer to

build a task specific representation for words. These representations are summed and

projected into a unit ball, and similarities between questions and answers are calculated

on a hyperbolic space. Qiu and Huang [22] use a Convolutional Neural Network (CNN)

to build a tensor layer that matches question and answers. Lukovnikov et al. [24] use

a RNN/GRU to get vector representations for words by starting from characters. These

character-level representations are concatenated with word-level embeddings and fed to

another RNN/GRU to build the final sentence representation. The character-level rep-

resentation allows the network to deal with out-of-vocabulary words. Tay et al. [25] use

multilayered RNN/LSTMs to encode the questions and answers from word vectors. These

representations interact on a correlation layer followed by two fully connected layers. A

bilinear similarity score and some hand-crafted features, like word overlap, are appended

before the fully connected layers; the justification for the hand-crafted features is that

such features are hard to be learned autonomously by the model.

Tran and Niedereée [26] apply RNN/BiLSTMs and attention layers to match question

and answers (a RNN/BiLSTM consists of a pair of RNN/LSTM networks, one that goes

forward on the sentence, and another one that goes backwards). The advantage of using

RNN/BiLSTMs is that they can model forward and backward dependency on text. One

drawback of RNNs is that they have difficulty in modeling long term dependency on text.

On every interaction, RNNs “forgets” a little about the data they have processed. Atten-

tion layers, or attention mechanisms, can instead model these long term dependencies on

text. There are several types of attention, e.g., dot-product, additive, bilinear, sequential,

self (Ref. [26] offers a detailed description of the last four techniques).

Taking the dot-product attention as an example, let P = {p1, ...,pN} ∈ RN×E and

Q = {q1, ...,qM} ∈ RM×E be two sequences of word vectors, where E is the embedding

size. The word pi generates the vector v ∈ RM and the attention vector a ∈ RM :

v = [pi · q1, ...,pi · qM], (2.1)

a = softmax(v), (2.2)

where · denotes the inner product. The new representation for pi is result of words in Q
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weighted by a:

p
′

i =
∑
j

aj · qj. (2.3)

The procedure above describes the process for a single token. By applying the same

procedure to every token in P we get:

P ′ = softmax(P ∗QT ) ∗Q, (2.4)

where ∗ denotes matrix multiplication.

An important advance in neural networks for NLP has been the Transformer architec-

ture [27]. It dropped the use of CNNs and RNNs in favor of an attention-based architec-

ture. As attention mechanisms have no built-in ways to represent order, the Transformer

introduces the concept of positional encoding: an array of values, learned or hard-coded,

added to the regular word embeddings to represent word positions on a sentence. This

migration from RNNs to attention mechanisms has also simplified the parallelization of

computations.

Figure 2 shows the Transformer architecture. It has a modular encoder-decoder struc-

ture that is well suited to its original machine translation task. First the input is encoded

by Nx blocks in the encoder. Then, the output is generated (one element at a time) in

the decoder by going through Nx block of self-attention and attention over the output of

the encoder.

Part of the Transformer-based model success can be attributed to its training with

transfer learning [28]. The neural model is first subjected to a pretraining step, where it

learns a language modeling task. Then, this model goes through a finetuning step, where

it is transferred to another task with a small amount of training. Transfer learning had

already shined in other areas of machine learning, such as computer vision, but it was not

very successful in NLP until the Transformer architecture was proposed.

Transformer-based architectures have set new levels of performance in a variety of

tasks. For instance, BERT (Bidirectional Encoder Representation from Transformer)

[28] is a model equivalent to the Transformer encoder. Inputs to BERT are tokenized

using subword units, and two special tokens are added to the sentence. The [CLS] token

is added as first token, and represents the beginning of a sequence; to allow BERT to

represent a pair of sentences, the [SEP ] token is added at the end of the first sentence.

BERT is pretrained simultaneously on the task of masked language modeling and next

sentence prediction.
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Figure 2: The Transformer architecture.
Source: Ref . [27].

In Masked Language Modeling (MLM), some tokens are masked from the input and

are predicted by the language model. Next Sentence Prediction (NSP) is the task of

predicting whether or not the second sentence follows the first one in the corpus. The

classification for NSP is built from the BERT output for the [CLS] token. While the

MLM task captures the structure of language, the NSP task builds representations for

relations between sentences. BERT established state-of-the-art results on eleven NLP

tasks, including SQuAD v1.1 [7] and v2.0 [29] for question answering.

RoBERTa [30], a Robustly optimized BERT approach, introduces a series of changes

on the BERT pretraining approach. Notably, RoBERTa: (1) drops on the use of the NSP

task, (2) uses dynamic masking for the MLM objective, where different tokens are masked

every time a sequence is fed to the model, (3)increases training batch sizes, (4) pretrains

longer and (5) increases the diversity of data during training. In addition to the two

corpora used in BERT pretraining, english Wikipedia and BookCorpus, RoBERTa is also

pretrained with CC-News, containing 63 million English news articles, OpenWebText,
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with documents extracted from URLs shared on Reddit with at least three upvotes, and

Stories, containing texts to target common sense reasoning.

Another notable model is GPT-2 [31], a language model based on the Transformer

decoder. The model is trained for next token prediction, making it a suitable model for

natural language generation. GPT-2 has established new state-of-the-art results on several

language modeling datasets on a zero-shot setting, where no fine-tuning is performed on

the testing dataset.

The DPR Reader [32] is an example of a Transformer-based QA system. Given a

small set of passages (up to 100 in the original article) and a question, DPR Reader ranks

the passages in order of relevance and selects the answer spans inside them. It uses three

feed-forward layers on top of a pretrained BERT model to score the relevance of each

sentence and the probability of each token being the start or end of the answer span.

Embedding-based semantic representations on QA have been applied to the second

part of the question answering pipeline, that is, to sentence or answer selection. The same

semantic representations can be used in the first part, information retrieval, to encode

the whole set of documents and to select them based on the proximity with the query.

This retrieval strategy has been shown to improve question answering when applied on

datasets such as Natural Questions (NQ) [8], for example, built from Google queries [33].

In particular, the Dense Passage Retriever (DPR) [32] splits documents in 100-word

passages and uses a BERT model to encode the passages into vector representations. This

representation is indexed using FAISS [34], an efficient indexer for dense vector spaces. At

querying time, the question in natural language is encoded using another BERT model and

the output from the [CLS] token is matched by dot-product similarity with the passage

vectors indexed in FAISS. On a server with Intel Xeon CPU E5-2698 v4 @ 2.20GHz and

512GB memory, DPR can process 995.0 questions per second, returning top 100 passages

per question from 21 million indexed passages from Wikipedia.

REALM (Retrieval-Augmented Language Model Pre-Training) [35] jointly models the

retrieval and answer extraction task of question answering in an end-to-end implementa-

tion. Similarly to DPR, REALM splits the documents in passages of 288 tokens. Let y

be the prediction objective (masked token for pre-training and answer span for QA), x

the input (masked sentence for pre-training and question for QA) and z a passage from a

corpus Z. Then the probability p(y | x) is decomposed as

p(y | x) =
∑
z∈Z

p(y | z, x) p(z | x), (2.5)
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where p(z | x) corresponds to the retriever and is modeled using two BERT models in

a similar fashion to DPR, with the exception that the representations to questions and

passages are linearly projected for dimensionality reduction. For pre-training, p(y | z, x)
is modeled using BERT:

p(y | z, x) =
Jx∏
j=1

p (yj | z, x) , (2.6)

p (yj | z, x) ∝ exp
(
w⊤

j BERT (x, z) [MASK (j)]
)
, (2.7)

where MASK(j) denote the position of the jth masked token in the training example,

BERT(x, z)[k] denotes the BERT output for kth token from the inputs (x, z), Jx is the

number of masked token on x and wj is the learned word embedding for token yj. For QA

fine-tuning, p(y | z, x) is modeled using BERT and a MLP to classify the answer spans:

p(y | z, x) ∝
∑

(s,e)∈S(z,y)

exp (MLP ([BERT(x, z)[s]; BERT(x, z)[e]])) , (2.8)

where S(z, y) is the set of spans matching y in z represented by the start (s) and end (e)

token positions.

Open Retrieval Question Answering (ORQA) [33] follows an approach similar to

REALM to model the retriever and the reader with BERT. ORQA pre-training, though,

is done on the Inverse Cloze Task, which consist in predicting the sentences that are close

to another, and pre-trains only the retriever. During fine-tuning, the retriever passage

encoder is frozen and only the retriever question encoder and reader are trained. Similar

to REALM, documents are split in passages of 288 BERT tokens.

Yang et al. [36] examine whether the improvements brought by Neural IR models

are effective or if they are just the result of weak baselines. They study results reported

in the literature in the TREC 2004 Robust Track (Robust04) test collection from 2005

to 2018 and also add a strong BM25 with query expansion baseline. They observe that

articles often report weak baselines and that the best result reported in the Robust04

was non-neural. Most Neural IR results were below the traditional BM25 algorithm with

query expansion baseline and only one out of five neural reranking models was able to

improve baseline performance. The authors acknowledge the limitations of their study

as it considers only a single IR dataset; also neural IR models may benefit from other

settings with much more data available, such as data from search logs, for example.

BM25 is one of the most often used similarity functions for IR models. It is the

default similarity function both on Solr and Elasticsearch, arguably the two most popular
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enterprise search engines. The intuition behind BM25 is that words that appears on a

document more times (i.e., have a high term frequency) are more informative about the

content of that document. Also, words that appears in many documents (i.e., have a low

inverse document frequency) are not discriminative of the content of a particular document

in relation to others in the document collection. Therefore, BM25 favors documents in

the collection that have many terms from the query that are rare in the collection. Some

variations of the BM25 formula can be found on the literature. The following is adapted

from Robertson and Zaragoza [37]:

BM25score =
∑
i

wBM25(qi), (2.9)

wBM25(qi) = wTF(qi) · wIDF(qi), (2.10)

wTF(qi) =
tf(qi)

k1
(
(1− b) + b dl

avdl

) , (2.11)

wIDF(qi) = ln
N − n(qi) + 0.5

n(qi) + 0.5
, (2.12)

where qi is the ith term in the query, n(qi) is the number of documents containing qi,

N is the total number of documents, tf(qi) is the term frequency of word qi in the

document, dl is the document length, avdl is the average document length in the collection,

wBM25(qi) is the score of the term qi, wTF and wIDF are the term frequency and the

inverse document frequency components of the BM25 score, respectively, and k1 and b

are configurable parameters. The model provides no guidance on how k1 and b should be

set, but experiments suggest that values between 0.5 < b < 0.8 and 1.2 < k1 < 2 usually

do well in many settings [37].

2.3 Question generation to improve training

The quantity of training data plays a big role in the quality of deep learning models

[38]. Klein and Nabi [39] show that models trained by replacing some of the training data

by synthetic data can reach performance close to models trained on the whole training

set. This implies that automatic question generation is a viable strategy to perform data

augmentation in a low-data regime QA. Klein and Nabi use a GPT-2 and a BERT models

to automatically generate questions from SQuAD. They propose to improve GPT-2 ability

to generate good questions by evaluating the generated questions with a BERT model for

QA.



29

To generate question from documents, it is often necessary to first select answer

phrases from documents [40, 41]. These are segments of the sentence that can serve as

target for questions. It might be tempting to use entities, e.g., dates, people names,

locations, as answer phrases; but even though entities correspond to over 50% of SQuAD

v1.1 answers, for example, not all documents contain entities and not all entities are

answers [40]. Subramanian et al. [40] use a pointer network to extract answer phrases

from SQuAD. The pointer network is an RNN that learns to sequentially point to the

start and end points of the answer segments. To generate the questions, they use a

sequence-to-sequence framework with pointer-softmax decoder. This network allows to

both generate new text on a generative fashion as well as copy tokens from the input to

the output.

Alberti et al. [41] decompose question generation in three steps. First, a BERT model

selects an answer phrase from the document. Then, conditioned on the selected answer

phrase, a modified BERT or an original transformer model generates questions. The third

step uses a BERT model trained for question answering and validates the questions by

trying to answer it given the context. Questions that get the right answer are kept, the

ones with the wrong answer are discarded. They show that using such synthetic data for

training improves the results on both SQUAD v2.0 and NQ. In fact, using the synthetic

data from the model trained in NQ improves also the results on SQuAD v2.0, but the

reverse is not true.

Nema et al. [42] use a cascade approach to question generation. First, one network

learns to create a draft question conditioned on a document and an answer. Then, a

second network takes the question draft and refines it, generating the final question.

This generation can be guided using a reward that promotes specific goals, like fluency

and answerability. The networks are implemented using RNN/LSTMs and attention

mechanisms.

2.4 Domain adaptation in question answering sys-

tems

Domain adaptation is any scheme where models are trained on source domains, for

which we have labeled datasets available, and then evaluated on target domains, for

which there is no labeled data available. The Machine Reading for Question Answering

(MRQA) 2019 Shared Task [10] was designed to measure the performance of machine

reading models on domain adaptation. Eighteen datasets where organized on a single
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format: six dedicated for training, six for development/validation and six for evaluation.

D-NET [43] achieved the best performance in MRQA 2019. It uses an ensemble of XL-

NET [44] and ERNIE [45], both transformer-based architectures. They apply multi-task

leaning to train the network simultaneously on question answering and Masked Language

Modeling (MLM) on an additional set of documents. The authors report that model

selection is the most important aspect to improve generalization. Also, ensembles from

models pre-trained on different sets of documents improves generalization performance,

as well as the auxiliary MLM task.

Talmor and Berant [46] also study the performance of machine reading models on

domain adaptation. They measure the performance of models trained on one or more

datasets and transferred to another domain, with an optional fine-tuning phase. Results

show a gap between in-domain and out-of-domain performance in most datasets. The

performance in the target dataset is also dependent on the training dataset used. That

could be a problem, since there is no way to know a priori which training dataset to choose,

but results also show that the union of different training datasets performs similarly to

the best single training dataset on domain adaptation.

Shakeri et al. [47] address domain adaptation from a question generation perspective.

They propose a new model for question generation, based on the language model BART,

that learns to generate QA-pairs in two stages. First, a context is fed to the model to

produce a question. Then, both context and question are fed to the same model to produce

a generative answer. If the answer is found in the context and its answer likelihood, as

scored by the model, is among the top-50% QA-pairs produced by the context, it is added

to the generated dataset. They show that their question generation model trained on

SQuAD can generate questions on other domains, like biomedical articles in BioASQ,

that improve performance when used during fine-tuning.

One research question that can be drawn from the domain adaptation by question gen-

eration technique presented above is how much of the performance gains can be attributed

to the language modeling abilities learned by the model for facing question-answer-context

examples in the target domain. In fact, the inclusion of target domain documents for pre-

training, a technique called Domain-Adaptive Pretraining (DAPT), has been shown to

improve out-of-domain performance in other NLP tasks [48].

In this work, we investigate how language modeling in the target domain improves

generalization for QA Systems. Although the inclusion of domain documents for pretrain-

ing in QA has been investigated in previous work [1], we suspect that language models
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were heavily under-trained with passages in the target domain. Therefore, we make a

distinction between DAPT and the work of Nishida et al. [1], where DAPT relies on

extensive pretraining of the language model on the target domain. In this work, we inves-

tigate how DAPT performs for QA and how it ranks in relation to the question generation

approach of Shakeri et al. [47].
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3 PROPOSAL AND CASE STUDY

This chapter describes our proposed framework for designing closed domain QA sys-

tems; experiments, comparisons, and implementations are described in later chapters.

Section 3.1 provides a formal structure for the main problem we have to tackle. Section

3.2 discusses the methodology and the reasoning applied throughout this work. Section

3.3 presents a central part of our work: the application of DAPT for QA, later applied

to train the Reader. Finally, Section 3.4 presents our proposed architecture for domain-

specific QA systems in the low data regime, and Section 3.5 describes our case study.

3.1 Reducing the cost of building a QA system

Finding labeled data for QA in specific domains can be challenging. Apart from some

domains with already consolidated datasets, like biomedicine [49], news [50] and cinema

[51], most domains do not have abundant labeled data available. One possible abundant

source of QA pairs is search logs [8]. For instance, in our case study, Petrobras had a

search engine in place for internal usage, from where a search log was collected. How-

ever, engineers resorted mostly to simple keyword-based queries. This probably reflects

the engineers awareness that the current system could not handle semantic meaning.

Keyword-based queries are not suitable as training data for QA, since they do not form

a valid sentence in natural language.

Another option is to create labeled data from crowd workers. This was the approach

taken by SQuAD when creating a large scale dataset for machine comprehension from

Wikipedia articles. This approach does not generalize well to every domain, though. As

the domain gets more specialized, as in our case study in offshore engineering, the skill

level required to create interesting questions grows and so does the cost of creating the

dataset.

We wish to create a framework for domain-specific factoid question answering that
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does not require high initial costs into building the system. Hence, we frame our problem

within a domain adaptation setting. We must label only the necessary data for evaluation,

and leverage general domain and other domain datasets along with domain adaptation

techniques to create a QA system on our target domain.

3.2 Our overall strategy

Following the literature, we divided our framework into two modules with distinct

responsibilities: Retriever and Reader.

The Retriever is responsible for selecting potentially relevant documents from the

document pool. It has to search among a large number of documents in a short period of

time. It must have a good recall, as the system cannot recover from a failure in delivering

an answer bearing document. It is also desirable for the Retriever to have a good precision,

as this makes the work of the Reader easier.

The Reader is responsible for outputting the answers given a question and the relevant

documents provided by the Retriever. We opted for extractive question answering in our

framework: displaying the extracted answer together with its context is more interpretable

than displaying generated text from a neural network, and therefore inspires more trust

on the system. In an extractive QA setting, the Reader re-ranks the documents returned

by the Retriever and selects inside those documents the spans that contain the answers.

The Reader is less constrained in respect to time efficiency, since it has a small set of

documents to process. It can spend more time reading at each document, so the ranking

produced by the Reader can better capture the semantics of questions and passages than

the ranking produced by the Retriever.

Figure 3 presents an overview of the information flow in our framework. The Retriever

accepts, as inputs, texts from documents and questions, and outputs a small set of relevant

documents for each question. The Reader takes relevant documents from the Retriever

and questions from users and re-ranks documents and pin-points the answer in them.

We have studied, as described in later chapters, two approaches for the Retriever:

statistical and neural. The statistical approach is based on BM25, the standard ranking

function employed in two of the main text search software available on the market, Solr

and ElasticSearch. The neural approach is based on DPR, a state-of-the-art neural IR

system based on BERT.
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Figure 3: High-level overview of our framework. Dashed arrows represent operations prior
to the system availability for users. Regular arrows represents the flow of information on
the system when users issue questions.

BM25 uses the bag-of-words model for searching. By providing tolerance about small

variations in words, text normalization can improve BM25 performance. We analyzed

the effects of lowercasing, stemming, lemmatization, stopword removal and interrogative

word (wh-word) removal. The bag-of-words model does not consider the position of words

in a sentence. To mitigate this problem, we investigated the use of 2-grams and 3-grams

while indexing.

The neural approach, on the other hand, searches for the semantic meaning of the

sentences, and benefits from a well formed sentence. It can deal with variations of words

and considers word positions in sentences and how each word relates to the others. There-

fore, for the neural approach, we normalized text with lowercasing as the model has seen

during training. We experiment with the trained model released by the original authors

of DPR.

As discussed later, we settled for BM25 in the Retriever as it displayed better perfor-

mance.

For the Reader, we assumed a neural approach based on DPR Reader and applied

domain-adaptive pretraining for QA, which we describe in detail in the next section.

3.3 Domain-adaptive pretraining for QA

Most of the success of recent transformer-based neural networks can be attributed

to powerful language representations built during pretraining. The model learns, during

pretraining, relationships between words such that the model can, during finetuning,
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Figure 4: Domain-Adaptive Pretraining for QA.

better generalize from fewer examples.

Given that during pretraining the model learns relationships between words in the

training corpus, we propose here the application of DAPT for QA (DAPT-QA). DAPT-

QA consists of including, during pretraining, corpora on both source and target domains.

By creating a joint representation for both domains, the model can better generalize

to examples on the target domain even when presented, during finetuning, only with

examples on the source domain. Figure 4 illustrates the changes introduced by DAPT-

QA.

Without domain adaptation, the model is usually trained in two steps: first pretrained

with a general knowledge corpus, then finetuned with the general knowledge QA pairs.

This same model is used to answer questions in a specific domain.

In DAPT-QA, the model is presented with domain specific documents during pre-

training, so as to learn a common semantic space between general knowledge and the

domain at hand. In contrast with Gururangan et al. [48], we do not constraint the target

domain sentences to a second pretraining phase. Models pretrained in two phases, as

well as models trained in just one phase with documents involving the target domain, are

treated equally.

It is well known in the literature that increasing the diversity of pretraining corpora

favors the quality of pretrained language models [30]. It is also known that including

documents related to the relevant domain improves performance when finetuning with

in-domain data (i.e., not in a domain adaptation setting) [9]. DAPT-QA emphasizes the

relevance of including target domain corpora when training a model in domain adaptation

for QA.
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Nishida et al. [1] have explored the use of target domain texts for language modeling

to improve performance in domain adaptation. Shakeri et al. [47] have shown that their

Question Generation approach can outperform the approach by Nishida et al. Our work

differs from the work of Nishida et al. [1] as we invest in more deep pretraining with

documents in the target domain. We show later that, by investing more effort in the

unsupervised language model training, DAPT-QA outperforms the Question Generation

approach while displaying a simpler training process.

3.4 The Low Data QA Framework

To summarize, as a result of our experiments we propose the following Low Data

QA Framework. For the Retriever module, we propose an integration of BM25 with a

custom text and query pipeline involving lowercasing, stemming, 3-grams and wh-words

removal. In a low data setting, BM25 has the advantage of being an unsupervised retrieval

model, and, therefore, it does not need training. The linguistic gap problem is a major

concern in applications of BM25, since slightly variations of words can prevent BM25 from

scoring passages correctly. We address that with selected text preprocessing and n-grams

techniques.

For the Reader module we propose an association of the DPR Reader architecture

and the DAPT-QA technique for training. DPR Reader training works by finetuning a

transformer-based model for selecting the correct answer span among a set of passages

and producing a rank. We propose pretraining the base language model on both the

source and target domains, instead of using a default language model trained on general

knowledge domain.

3.5 Case study: QA in offshore engineering

We ran a case study on the offshore engineering domain. This case study is an-

other contribution of this work and functions both as motivation and as an experimental

laboratory for our framework.

To develop and test objectively an IR system based on natural language questions and

answers, we must have a set of relevant question/answer pairs that is related to the domain

of interest. Several public repositories are available with question/answer pairs for open

domain question answering, e.g., SQuAD [7,29], Natural Questions [8] and WikiQA [52].
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That is, these repositories contain general questions about a variety of subjects. Due to

this, these repositories are not well suited for a closed domain question answering system;

that is, a system that focuses on a specific domain such as offshore engineering. For this

reason, we decided to build the Offshore QA Dataset, a dataset with question-answer

pairs that we expect to see in production. This allows us to guide the development, track

advances, and benchmark performance.

We followed a set of steps to perform our case study, namely:

• Creating the Offshore QA Dataset for evaluation of our framework;

• Implementing an IR engine to retrieve candidate documents from a document pool

in offshore engineering;

• Implementing a Reader module to extract answers from candidate documents in

offshore engineering;

• Validating the system using the Offshore QA Dataset.

The execution of each of these steps is covered in the remainder of this document.
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4 VALIDATION OF DOMAIN-ADAPTIVE

PRETRAINING FOR QA

In this chapter, we describe experiments to validate our approach for domain adap-

tation for QA (that is, DAPT-QA). Even though this domain adaptation strategy is

only applied to the offshore engineering domain in Chapter 7, the application of domain-

adaptive pretraining for QA is conceptually one of our main contributions, so we present

its empirical validation here. We performed our validation experiments on the RC task, a

NLP task close to QA but simpler and with more established literature and benchmarks.

4.1 Experiments

We use three datasets of different domains to validate DAPT-QA: SQuAD, on the

general knowledge domain, NewsQA, on the news articles domain, and BioASQ, on the

biomedical domain.

Pretraining of language models is very expensive due to the computation power re-

quired for the task. For this reason, we leverage three existing pretrained models trained

on different sets of domains for our experiments: BERT-Base1, RoBERTa-Base2, and

BioBERT-v1.1 3 [9], a BERT model specialized on the biomedical domain. Our goal is

to validate our hypothesis that, in a domain adaptation setting, RC models trained from

language models that know both source and target domains out-perform models trained

from LMs that do not know the target domain.

Table 1 presents the corpora on which each model was pretrained by the original au-

thors. The English Wikipedia is an online encyclopedia created and edited by volunteers.

The BookCorpus is a corpora of novel books. CC-News is a corpora containing 63 mil-

lion news articles. OpenWebText contains web-documents extracted from urls on Reddit

with at least three upvotes. Stories contains texts to target common sense reasoning; and

1huggingface.co/bert-base-uncased
2huggingface.co/roberta-base
3huggingface.co/dmis-lab/biobert-base-cased-v1.1
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Table 1: Corpus used for pretraining on each pretrained model.

Corpus BERT RoBERTa BioBERT

English Wikipedia X X X

BookCorpus X X X

CC-News X

OpenWebText X

Stories X

Pubmed X

Source: Refs. [9], [28] and [30]

Pubmed is a corpus of abstracts from scientific articles on biomedicine.

In order to evaluate how the different choices of pretraining corpora affects domain

adaptation, we finetune each model in one of the two large datasets, SQuAD and NewsQA,

and evaluate in all three datasets in order to measure in domain and out-of-domain

performances. We train for 4 epochs, with batch size 24, learning rate 3× 10−5, AdamW

optimizer [53] and gradual layer unfreezing in order to stabilize training and prevent

over-fitting.

We hypothesize that a base LM pretrained on both source and target domains can

better correlate the domains and, therefore, produce better results in the domain adapta-

tion setting. Hence, we expect RoBERTa to yield the best performing model in NewsQA,

as it has seem documents from news articles during pretraining, and BioBERT to yield

the best model on BioASQ, as it has seem biomedical documents during pretraining.

We report Exact Match(EM) and F1-score metrics as defined by Rajpurkar et al.

[7]. EM measures the percentage of predictions that match any one of the ground truth

answers exactly. F1-score measures the average overlap between the prediction and ground

truth answer. It treats prediction and ground truths as bag of tokens, and compute their

F1. The maximum F1 over all ground truths for each question is computed, and its

average among all questions produces the F1-score.

All three base language models mentioned above were trained with massive amounts

of data. Moreover, increasing the volume and diversity of data seems to be an important

player regarding the quality of a language model [30].

A major concern regarding our approach for domain adaptation can, therefore, be

the volume of text available for pretraining. To address this issue, we further pretrain
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BERT-base uncased on the biomedical domain using different proportions of the PubMed

corpus: one sixteenth, one quarter, one half and the totality of the corpus. On each trial,

we train the model for 200k steps, which corresponds to about one epoch on the complete

PubMed corpus. Our goal is to measure the performance of the model in a more text-data

restricted scenario in comparison with the text-data abundant scenario.

We use an adaptation from the original BERT script to generate the training examples

and use duplication factor equals to four for the run with one sixteenth of PubMed

and one for the others. Unless otherwise noticed, we use the same hyperparameters as

BioBERT v1.0.

4.2 Results

Table 2 presents the Exact Match (EM) and f1-scores produced by BERT, RoBERTa

and BioBERT finetuned on SQuAD or NewsQA and evaluted on all datasets. RoBERTa

has the best in-domain performance in both SQuAD and NewsQA, but, for domain adap-

tation on the biomedical domain, BioBERT outperform the other two models in both

settings. RoBERTa, the only model to include the news domain, also is the best model

in adapting from SQuAD to NewsQA.

When trained with SQuAD, BERT and BioBERT have similar performance both

in-domain and on NewsQA, a domain not seen during training for both, but, when trans-

ferred to the biomedical domain, BioBERT outperformed BERT by a large margin (10

pts EM).

These results provide empirical evidence to our hypothesis that models trained on both

source domain and target domain will be able to generalize better to the target domain.

Table 3 compares our DAPT-QA approach to the literature. Our approach establishes

new state-of-the-art scores for domain adaptation from SQuAD to both NewsQA and

BioASQ.

Regarding the volume of data required for DAPT-QA, Figure 5 shows our resulting

learning curve on data for our trials. The metrics are reported for each model finetuned

on SQuAD and evaluated on BioASQ. Also, to observe the influence of training time, we

evaluate each model at 100k and 200k training steps.

No clear trend can be observed regarding the availability of data for training. Even

using only one sixteenth of the training corpus, which corresponds to 243M words, the

performance does not degrade. This observation reinforces the feasibility of our approach
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Table 2: In-domain and out-of-domain performance when trained on source and evaluated
on target datasets. Columns represent the dataset and base language model used for
training. Exact Match and F1 (in parenthesis) are reported. Best values for domain
adaptation for each target dataset on each source dataset are highlighted in bold.

SQuAD NewsQA

Target BERT RoBERTa BioBERT BERT RoBERTa BioBERT

SQuAD - - -
63

(78)

70

(84)

65

(79)

NewsQA
38

(55)

45

(63)

37

(53)
- - -

BioASQ
41

(55)

48

(61)

51

(63)

33

(52)

34

(55)

36

(60)

In-domain
80

(88)

84

(91)

81

(88)

52

(68)

58

(73)

51

(66)

Table 3: Comparison of DAPT-QA with the state-of-the-art when performing domain
adaptation from SQuAD. DAPT-QA achieve better performance on both datasets. Note
that Nishida et al. [1] does not use the MRQA version of NewsQA, so it is not directly
comparable with the other results.

NewsQA BioASQ

EM F1 EM F1

Nishida et al. [1] - - 45.4 57.8

Shakeri et al. [47] 45.04 60.79 48.40 58.33

DAPT-QA (ours) 45.06 62.74 50.73 63.48
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Figure 5: Learning curve for the DAPT-QA approach from SQuAD to BioASQ using
data from PubMed to further pretrain BERT-base uncased. Each point in the plot is the
result of the sequence of first further pretraining BERT-base on a subset of #N words from
Pubmed and then using this LM as base for RC finetuning with SQuAD and evaluating
on BioASQ. As reference, the metrics obtained from other models in the same domain
adaptation settings are represented in dashed lines.

for real life scenarios, where domain corpus might not reach billions of words.
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5 THE OFFSHORE QUESTION ANSWERING

DATASET

The evaluation of any Question Answering technique or system requires a dataset

containing questions and answering for testing. In this work such a dataset was built and

used in many experiments related to the offshore engineering domain. In this chapter we

describe the dataset; the contents here are not directly related to the main contributions

but the dataset is relevant in several later discussions.

Two approaches for building a question answering dataset were studied. The first,

based on the SQuAD methodology [7], produces questions about specific paragraphs of

documents. The second, based on the Natural Questions methodology [8], collects ques-

tions from search logs and finds answers among the results returned by a given information

retrieval system.

Questions generated with the Natural Questions method are known to be better at

representing the nature of QA, where users have incomplete information when issuing a

query [33]. Hence we started with this method. We first analyzed logs gathered from the

existing system at Petrobras. They are mostly populated with keyword-based searches,

so they did not help in building a dataset representative of natural language questions.

We believe that the keyword-based behavior is prevalent due to the fact that users have

significant knowledge of the current system, that operates with a very limited semantic

understanding of any query.

We thus decided to build a dataset following the SQuAD methodology. That is,

given a text paragraph, we formulated questions that have as response a segment of

that paragraph. The questions were formulated using articles from the International

Conference on Ocean, Offshore & Arctic Engineering (OMAE), keeping in mind the kind

of information a person not looking at that exact article would be looking for. Therefore we

avoided asking questions about information that would be too specific about a particular

paper. Two annotators were designated to build this dataset. Due to time constraints,

we kept this dataset to a very limited size, with 100 question-answer pairs. Table 4 shows
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Table 4: Samples from our manually constructed question answering dataset based on
OMAE papers. Questions styled according to their corresponding answers in the passage.

P1 Polyester ropes were first introduced for offshore mooring applications in
the mid 1990ies, piloted by Petrobras. Nowadays polyester ropes are
used worldwide, particularly for deep-water applications where catenary
systems become heavy and inefficient. (...)

Q1 When did polyester ropes start being used for mooring?

Q2 Who was the first company to start using polyester ropes for
mooring?

P2 A jack-up rig has to be designed for extreme storm conditions in its
elevated mode during operations. Guidelines of ISO 19905-1 and
SNAME TR-5-5A for site specific assessment of jack-up rigs explain
in detail such analysis and assessment requirements. (...)

Q3 Which norms regulate the construction of jack-up rigs?

samples of the question-answer pairs obtained for this dataset.

From our experiments, we noticed that the QA system can return multiple answers

that are correct but are not the golden answer in the dataset. For instance, for the

question:

When have polyester ropes started being used for mooring?

the system finds the answer (in bold):

The world-first polyester synthetic rope TMS was installed in 1997 by Petro-

bras Brazil

which answers the question but is different from the golden answer “mid 1990ies”. An-

other situation is when answers are found in different variations of the text. For instance,

for the question:

What is the temperature difference required for ocean thermal energy genera-

tion?

with golden answer “20 C”, the system finds the answers:

• 20 degree centigrade,

• at least 20oc,
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Figure 6: Distribution of the first three words in the Offshore Question Answering Dataset.

• > 20 degrees celsius.

These answers all represent the same information. It is easy for a human to verify

they are correct, but it is hard to judge them correctly based on automatic evaluation

metrics, like exact match or F1-scores.

In our dataset, it is important that evaluation metrics can be calculated without hu-

man supervision so we can test and compare different approaches to the QA system of

interest. Taking into account the answer diversity stated above, we take a compromise

between efficiency and reliability. The most reliable measurement is obtained when a

human verify the answers for each question. The most efficient measurement is obtained

when answers are judged automatically. We run manual evaluations for top-5 answers

in a few experiments and save the alternative answers found as part of our answer set

in the dataset. This extended answer set enable later automatic evaluations to better

resemble human evaluation on answer diversity. We refer to the dataset with only the

original golden answers as original dataset, and to the one with additional found an-

swers as extended dataset. Unless otherwise noticed, we use the extended dataset in our

experiments.

Table 4 shows samples from the dataset we built, the Offshore QA Dataset. Figure 6

show the distribution of the first three words in questions. It is evident the presence of the
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Table 5: Metrics for random retrieval of 100 paragraphs using 1,000 Monte Carlo trials.

Answer set MAP MRR

Original 0.01 0.02

Extended 0.02 0.03

words what, how, who, where and which in the beginning of questions, which emphasizes

the factoid nature of these questions. Figure 7 shows the distribution of the answer

exact occurrences on paragraphs in the document collection, both for the original golden

answer set as for the extended golden answer sets. This can help understand how prone

our automatic evaluation system is to score passages retrieved as relevant just by chance.

We also calculate MAP and MRR for a random retriever for both sets of answers (original

and extended) and report on Table 5. The results are very close to zero, indicating that

the answers are rare in the corpus and, therefore, the automatic evaluation is unlikely to

provide good scores just by chance.
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Figure 7: The number of occurrences of answers in paragraphs for the original (top) and
extended (bottom) Offshore QA Dataset; there is a total of 446,838 paragraphs.
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6 THE RETRIEVER: BM25 VS. DPR

In this chapter we describe the experiments we performed so as to reach our proposed

Retriever strategy. In short, we compared a statistical (BM25) and a neural (DPR) strat-

egy in the context of offshore engineering so as to grasp the behavior of these techniques

in a specific domain question answering setting. Our conclusion was that BM25, with

properly tuned resources, is the best retrieving strategy. Even though our conclusion is

obviously restricted to a particular domain, it seems possible to generalize some of our

insights to other domains and to adopt them as a sensible practical path.

6.1 Experiments

We use 12,890 papers from OMAE 1998-2019 conferences as documents for retrieval.

We extract text from pdf files as reported by Gomi et al. [54]. Queries used on the

experiments are questions in the Offshore QA Dataset, and documents are judged relevant

when they contain the exact string of the answer.

We used Mean Average Precision (MAP) as a metric. Precision is the proportion

of relevant results for a query. Average Precision (AP) is the average of the precision

considering only the documents ranked up to each relevant document. Mean Average

precision is the average AP among queries. Let Q be the total number of questions, mi

the number of correct results in the ith question, and pij the ranking position of jth correct

result of the ith question. Then MAP is:

MAP =
1

Q

Q∑
i=1

(
1

mi

mi∑
j=1

.
j

pij

)
(6.1)

We also report Mean Reciprocal Ranking (MRR) and Hit@N metrics. Reciprocal

Ranking (RR) is one over the ranking of the first relevant results, or zero, if no relevant

result is found. MRR is the average RR among queries. Hit@N is the proportion of queries

that have at least one relevant document up to ranking position N. MRR is calculated as
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follows:

MRR =
1

Q

Q∑
i=1

1

pi1
. (6.2)

Both MAP, MRR and Hit@N have the worst value at zero and the best value at one.

While all of these metrics represents the quality of the ranking, MRR only cares about

the ranking of the first relevant documents. Hit@N only measures the presence of the

results, demanding the use of several N values in order to get a feeling of how the ranking

behaves. MAP, on the other hand, captures both the ranking and the position of every

relevant result in a single number. For this reason, we choose MAP as the main metric

for our evaluations.

6.1.1 DPR vs BM25

Our first experiment aims at evaluating the performance of state-of-the-art neural and

statistical retrievers. For BM25, we use Elasticsearch.1 Elasticsearch is based on Apache

Lucene under the hood, which is responsible for indexing and retrieving documents. For

DPR, we use the pre-trained models available through Hugginface’s Transformers library

[55].

For this experiment, we split documents in paragraphs and paragraphs in passages

of 100 words, following the procedure used in DPR. DPR is bound by 512 BERT tokens

while BM25 does not have a limit in document size. However, in order to establish a fair

comparison between DPR and BM25, we index the same passages in both retrieval engines.

Allowing BM25 to retrieve whole documents would increase drastically the probability of

the answer being present just by chance, as it would be retrieving much more text, and

indexing by document and retrieving just to match the number of words retrieved by

DPR would limit the flexibility of BM25 and therefore give an advantage for DPR.

We use default index parameters for Elasticsearch, which only lowercases text before

indexing. For DPR, we experiment using document title and passage as well as an empty

title and passage. We report the best result.

6.1.2 BM25: documents units

For this experiment we aim to evaluate how different document units (document,

paragraph, 100-word passage) affects the performance of the Retriever. Larger units of

1https://www.elastic.co/elasticsearch/
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text tend to perform better on the metrics, for the reasons cited on section 6.1.1. So,

we also report the average total words (Words@N) on retrieved documents at different

numbers of documents.

We index whole documents, documents split in paragraphs and paragraphs split on

100 word passages on Elasticsearch and compare the performance of retrieval according

to MAP, MRR, Hit@N and Words@N.

6.1.3 BM25: text and question pre-processing

When indexing with DPR, there is not much flexibility about how to input docu-

ments into the Retriever. DPR accepts a passage and the document title and builds the

index. It automatically deals with word variations and lexical mismatch between query

and passages. BM25, on the other hand, requires much more tuning regarding text nor-

malization, dealing with the lexical gap problem and custom engineered texts pipelines

in order to approach the query from the relevant passages style. Therefore, for BM25,

we study how different text normalization, indexing options and question pre-processing

affects performance. For text normalization we evaluate how lowercasing and stemming

affects the system. We also investigate on stopword removal and n-grams. For question

preprocessing, we study wh-word removal.

6.2 Results

Table 6 shows the results for the comparison between DPR and BM25. BM25 performs

significantly better than DPR in our domain. This may be due to the differences between

documents used during DPR training and documents from our case study. Machine

learning systems tend to degrade when applied in settings distinct from training. Articles

from OMAE are different from Wikipedia articles, and DPR seems not to be able to

generalize well to this new set of documents. BM25 does not face such problems as it is a

purely statistical retriever. On the other hand, the construction of the QA dataset may

favor BM25 retrieval [33]. Questions created with knowledge of the answer passage tend

to have a higher overlap of words with the passages than questions created otherwise.

This word co-occurrence favors BM25, which relies on this information for retrieval. In

absence of further evidence that the performance gap between DPR and BM25 is due

to the limitations in dataset construction, we conclude that BM25 is a better approach,

although this comparison can be reviewed in the future in case a search-log QA dataset
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Table 6: DPR and BM25 performance on the Offshore QA Dataset. BM25 does better
than DPR according to all metrics.

Metrics

Hit at

Sistema MAP MRR 1 5 10 100

DPR 0.15 0.27 0.16 0.41 0.45 0.72

BM25 0.31 0.48 0.37 0.60 0.68 0.87

Table 7: BM25 performance with different document units. For all experiments, 100
units are retrieved for each question. Note that while metrics using the unit Document
provides better results, it does so because of the much larger volume of text retrieved
when indexing whole documents.

Metrics

Hit at Words at

Doc. Unit MAP MRR 1 5 10 100 1 5 10 100

Document 0.41 0.60 0.50 0.71 0.79 0.94 3931 18725 37289 398012

Paragraph 0.31 0.48 0.36 0.61 0.66 0.88 112 506 1003 9820

Passages 0.32 0.50 0.39 0.65 0.71 0.88 89 437 865 8583

is constructed.

Table 7 shows the retrieval metrics for indexing different document units in BM25.

The MAP for the documents is much larger that the other units, but this comes at a

cost of retrieving a much larger volume of text from the document pool. The role of

the Retriever is to select relevant information. An excess of text can hurt performance

downstream, on the Reader module, and also slow the response, as the Reader module

takes some time to process each document. For the same volume of text, retrieving

with paragraphs or passages can recover more information, as evidenced by the passage

retrieving that recovers an average of 8,583 words as 100 passages and brings answers

to 88% of questions while document retrieving recovers an average of 18,725 words at 5

documents and brings answers to only 71% of questions. For that reason, we consider

paragraph and passage indexing to be better than document indexing, as they recover

more relevant information given a limited amount of text.

Using paragraphs or passages as document units seems to be very close in effectiveness

for retrieval, but passages perform slightly better. Therefore, we select passages as the

document unit for retrieval.

Table 8 shows the results of the experiments with different pre-processing parameters

for indexing with BM25. In these experiments, we index documents split in passages.

Figure 8 shows the improvements of each parameter for retrieval. Each improvement is
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calculated based on the results with the parameter set in relation to the same configuration

but with the parameter unset. So, for example, from the first and second rows in Table

8, we derived a point that wh-words removal improves MRR by 0.01. From Figure 8, it

can be noted that lowercasing always improves performance. Stemming also helps most

of the time. These can be expected, since text normalization assists into solving the more

shallow lexical gap problems. Wh-words removal is also always helpful. Wh-words are

highly linked to queries, and, even if they are found in the documents, they are most

likely being used with another meaning, so including these words in queries only mislead

the Retriever. 2-grams also helps most of the time and it is also noticeable that using

3-grams does not provide further benefits to 2-grams. Stopword removal consistently

hurt performance. This can be due to some of the default english stopwords used by

Elasticsearch being useful for retrieval.

Figure 8: Improvements with respect to different parameter choices in BM25. Each point
represents the retrieval improvement produced by setting the parameter in relation to the
same configuration but with the parameter unset. Values are calculated from Table 8.
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Table 8: Experiments with text and query pre-processing with BM25. Best performance
is achieved when using lowercasing, stemming, n-grams and wh-words removal. Figure 8
gives a better idea of the particular contributions of each of those pre-processing steps in
the overall result.

Parameters Metrics

Document Processing
Question

Processing
Hit at

Lower-

casing

Stopword

Removal
Stem N-grams

Wh-words

Removal
MAP MRR 1 5 10 100

0.29 0.45 0.33 0.58 0.64 0.84

X 0.29 0.46 0.33 0.59 0.64 0.84

2 0.32 0.48 0.37 0.60 0.65 0.85

2 X 0.34 0.49 0.39 0.60 0.66 0.86

3 0.33 0.48 0.37 0.60 0.67 0.85

3 X 0.34 0.49 0.39 0.60 0.68 0.85

X 0.28 0.44 0.33 0.57 0.63 0.84

X X 0.29 0.45 0.34 0.58 0.63 0.84

X 2 0.29 0.46 0.38 0.56 0.65 0.83

X 2 X 0.30 0.46 0.39 0.56 0.65 0.83

X 3 0.28 0.43 0.34 0.55 0.61 0.82

X 3 X 0.29 0.44 0.35 0.55 0.61 0.82

X 0.32 0.48 0.37 0.62 0.70 0.87

X X 0.32 0.50 0.40 0.63 0.70 0.87

X 2 0.35 0.52 0.43 0.62 0.69 0.88

X 2 X 0.36 0.54 0.45 0.65 0.69 0.88

X 3 0.35 0.51 0.40 0.63 0.69 0.88

X 3 X 0.36 0.54 0.45 0.65 0.69 0.88

X X 0.33 0.50 0.40 0.61 0.69 0.87

X X X 0.34 0.52 0.43 0.63 0.70 0.89

X X 2 0.33 0.51 0.37 0.65 0.71 0.89

X X 2 X 0.36 0.55 0.45 0.67 0.73 0.90

X X 3 0.33 0.51 0.37 0.67 0.71 0.88

X X 3 X 0.36 0.55 0.45 0.69 0.73 0.90

X X 0.31 0.47 0.36 0.61 0.67 0.87

X X X 0.31 0.48 0.38 0.61 0.68 0.87

X X 2 0.30 0.46 0.38 0.57 0.64 0.86

X X 2 X 0.31 0.47 0.39 0.57 0.66 0.86

X X 3 0.29 0.44 0.35 0.55 0.62 0.86

X X 3 X 0.30 0.45 0.36 0.56 0.63 0.86

X X X 0.31 0.48 0.37 0.60 0.68 0.87

X X X X 0.33 0.50 0.39 0.63 0.72 0.88

X X X 2 0.31 0.44 0.33 0.62 0.66 0.89

X X X 2 X 0.32 0.45 0.34 0.62 0.68 0.89

X X X 3 0.30 0.43 0.32 0.58 0.63 0.90

X X X 3 X 0.30 0.44 0.33 0.59 0.64 0.90
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7 THE READER: OFFSHOREBERT AND

OFFSHOREREADER

The Low Data QA Framework is composed of two modules: Retriever and Reader. In

Chapter 6, we presented the experiments that led to the selection of the statistical BM25

for the Retriever module. In Section 3.2, we presented DAPT-QA and, in Chapter 4, we

have shown experiments to validate this approach and shown that it achieves state-of-

the-art performance in domain adaptation. In this chapter, we complete the Low Data

QA Framework in the context of offshore engineering.

In the experiments described on Chapter 4, we applied DAPT for RC. As mentioned

in Section 3.2, RC is a task close to QA. The difference between them is that, while in RC

the model has only one document where to find the answer, in QA you have a collection

of documents. In the extractive QA setting, the model must rank the documents and

points the answers inside them, such that the most relevant documents are at the top,

and the answer inside them are marked correctly.

The essence of DAPT-QA is in leveraging the underlying pretrained language mod-

els trained on both source and target domains to improve out-of-domain performance.

Therefore, this principle can be applied to any model that uses the pretraining-finetuning

approach of training transformers. In our case study, for the Reader module, we use

DPR Reader. First, we further pretrain BERT on documents on the offshore engineering

domain. We call the language model outcome of OffshoreBERT. We then use Offshore-

BERT as base language model for DPR Reader training. In doing so, we close our question

answering pipeline.

7.1 OffshoreBERT

We collected 3 corpora so as to pretrain OffshoreBERT:

OMAE: a corpus of full-text scientific papers from OMAE conference from 1998 to 2019

containing a total of 12,890 documents and 39 million words.



55

Table 9: NSP + MLM loss for language modelling with BERT and OffshoreBERT.

Train Dev OffshoreBooks OffshoreTechnical

BERT 5.0616 5.0919 5.5035 7.602
OffshoreBERT 1.4714 1.5523 2.0835 2.1558

ScienceDirectOffshore: a corpus of full-text scientific papers from 13 journals under

the “Ocean Engineering” subdomain in Science Direct. Full-text for 43,080 documents

are collected, totaling 199 million words.

ScopusOffshore: a corpus of articles abstracts from 191 publications under the “Ocean

Engineering” subject area in Scopus. Abstracts for 257,790 entries are collected, from

which 222,310 are not empty and 207,300 do not appear in the ScienceDirectOffshore

corpus.

We access the quality of OffshoreBERT by using a 1% holdout dev set on the previous

corpora and also two other corpora used only for the final evaluation:

OffshoreBooks: a corpus with content extracted from text books on offshore engineering

totaling 741 thousand words.

OffshoreTechnical: a corpus of norms and technical documents on offshore engineering

consisting of 61 thousand words.

We pretrained BERT starting from the checkpoint released by original BERT authors

in two phases, following recommendations from the official repository1. On the first phase,

we train using 128-token sequences and 768 batch size for 180k steps, 5e-5 learning rate

with linear decay and 18k warm-up steps. On the second phase, we train using 512-token

sequences, 192 batch size, therefore keeping the same number of tokens per batch, for 20k

steps, 2e-5 learning rate with linear decay and 2k warm-up steps.

Table 9 show the comparison between the language modelling performance of BERT

and OffshoreBERT. We report the joint NSP + MLM loss for the training and dev sets

as well as the two evaluation corpora. Perplexity is a common metric used for measuring

language model performances. However, perplexity is not fit for BERT since BERT is not

an autoregressive model. We report on Table 10 the exponential of the MLM loss for the

two evaluation corpora instead, which has the same dimension as the perplexity and can

be also be interpreted as the inverse of the geometric mean of token probabilities in the

sentence.

1https://github.com/google-research/bert#pre-training-tips-and-caveats . Accessed on Dec. 12, 2021,
commit eedf5716ce1268e56f0a50264a88cafad334ac61



56

Table 10: Exponential of the MLM loss for language modelling with BERT and Offshore-
BERT in the two evaluation corpora.

OffshoreBooks OffshoreTechnical

BERT 35.6193 32.2608
OffshoreBERT 6.5972 5.1169

Table 11: DPR Reader and OffshoreReader performance on the Offshore Question An-
swering Dataset. Metrics on the ranking produced by the Retriever are displayed for
reference. P-values are obtained using paired t-tests on DPR Reader and OffshoreReader
results.

EM@N F1@N
MAP MRR 1 5 10 100 1 5 10 100

Retriever 0.36 0.55
DPR Reader 0.41 0.56 0.3 0.42 0.48 0.58 0.39 0.55 0.6 0.73
OffshoreReader 0.48 0.64 0.26 0.42 0.48 0.54 0.39 0.58 0.63 0.75
p-value 0.016 0.054 0.348 1 1 0.374 0.905 0.450 0.414 0.437

OffshoreBERT shows a significant improvement for language modeling in the offshore

engineering domain even when presented with documents with different formats from

the ones seen during training, like on the OffshoreTechnical corpus. This shows that

OffshoreBERT modelling is not tied to a specific document structure, but it is actually

modelling the language in offshore engineering.

7.2 OffshoreReader

To create the Reader module for our case study, we train DPR Reader starting from

OffshoreBERT as base language model. We train it for 18 epochs, choosing the best

model based on the validation set. We use the same labeled data - Natural Questions

dataset - and training regime as in the original DPR Reader. We call the resulting model

the OffshoreReader.

Table 11 shows the comparison between DPR Reader and OffshoreReader on the Off-

shore Question Answering Dataset. Both models are fed with outputs from the Retriever

module. OffshoreReader shows statistically significant improvement over the ranking

produced by DPR Reader. The quality of the pin pointed answers within the documents

seems to remain the same. Nevertheless, the increase in ranking performance is an ad-

vantage of OffshoreReader and it is directly associated with the better comprehension of

the domain enabled by OffshoreBERT.
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8 CONCLUSION

In this work we proposed a framework for closed domain QA systems design in the

low-data regime: the Low Data QA Framework. The framework is composed of two main

modules: (1) the Retriever, an IR system, responsible for finding relevant documents

in a large document pool, and (2) the Reader, responsible for ranking the documents

provided by the Retriever and pinpointing answers in them. We studied two approaches

for the Retriever, one statistical and one neural, and proposed a Retriever composed

of a BM25 index along with a custom text and query processing pipeline according to

results observed in our experiments. For the Reader, we approached the problem from

a domain adaptation perspective in order to avoid the costs associated with building

an specialized training set for the target domain. We applied DAPT for QA, in which

domain adaptation is performed by pretraining the underlying language model of the

Reader on both documents on the source and target domains. We showed that this

approach outperforms recent results on the literature, and that its performance does not

degrade even with modestly sized corpora - in the order of 200 million words.

As case study, we applied our framework on the offshore enginnering domain. We

built a small QA dataset specialized on the offshore domain, the Offshore QA Dataset,

used for benchmarking. We collected 5 corpora in offshore engineering and pretrained

a specialized language model: OffshoreBERT. OffshoreBERT was used as base language

model for finetuning the Reader, in a DAPT-QA fashion. OffshoreBERT can also be

employed in other tasks of NLP regarding the offshore engineering domain. We leave this

exploration to future work.

Despite the recent progress in neural information retrieval, its models are sensitive to

document type and degrade as input documents depart from documents used for training.

This is a general difficulty with approaches based on machine learning, and its impact

can be seen when comparing the performance of BM25 and of DPR in the Offshore QA

Dataset. Even though DPR is able to retrieve relevant documents for most questions,

BM25 displays much higher performance. Indexing with BM25 yields more flexibility
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with respect to the indexed document units; however, it also requires more hand-designed

processes for text normalization and for matching queries and documents. We showed

that indexing 100-word passages performs similarly to indexing paragraphs and better

than indexing whole documents (given the large amount of “noise” retrieved in the latter

case). We also run a detailed analysis on how lowercasing, stopwords removal, stemming,

n-grams and wh-word removal in queries affects our retrieval system. Lowercasing and

wh-words removal consistently improve performance. Stemming and n-grams seem to

help in most cases, and removing stopwords consistently hurts performance. The best

combination we found consists of applying lowercasing, stemming, 3-grams and wh-words

removal.

The interaction between question and documents in retrieval is very shallow. For

performance reasons, they are only allowed to interact through a vector similarity function:

euclidean distance, dot product, cosine similarity, etc. The real power of Transformer-

based architectures lies in allowing the words to interact together in multiple layers of

attention . This level of interaction demands execution time that is not available for the

Retriever, but is available for the Reader module. Therefore, it is in the Reader module

that the benefits of applying deep learning are most promising.

We showed on our case study that the ranking produced by the Reader improves MAP

in 0.12 and MRR in 0.11, which corresponds to 33% and 16%, respectively, in relation

to the ranking by the Retriever. Regarding the pin-point of answers within documents,

considering the top 10 passages for each question, the Reader was capable of correctly

marking the answers for 48% of the questions. This combination of better ranking and

a objective tag of the answers within document leads to more productivity and overall

better search experience for the user.

The DAPT technique applied in this work for QA reinforces the power of the unsu-

pervised representation of language learned by pretraining Transformers. Including target

domain documents during pretraining consistently improves the final model performance

on a domain adaptation setting. This simple, yet powerful, adaptation is capable of

outperforming more complex approaches proposed on the literature, such as automatic

question generation.

Future work should explore the effectiveness of long-sequence Transformers [56] [57]

on the Reader such that it can perform cross attention among passages. Also, on the

Retriever module, it is important to apply DAPT on DPR to study the effect of this

technique on retrieval. DPR training is much more extensive than DPR-Reader, so we
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suspect that DAPT will be less effective, as DPR tends to forget more of the information

from pretraining than DPR-Reader. This must be investigated empirically.
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