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"Every day sees humanity more victorious in the struggle with space and time."

Guglielmo Marconi (born April 25, 1874)

"To every thing there is a season, and a time to every purpose under the heaven:

A time to be born, and a time to die; a time to plant, and a time to pluck up that which

is planted; A time to kill, and a time to heal; a time to break down, and a time to build

up; A time to weep, and a time to laugh; a time to mourn, and a time to dance; A time

to cast away stones, and a time to gather stones together; a time to embrace, and a

time to refrain from embracing; A time to get, and a time to lose; a time to keep, and a

time to cast away; A time to rend, and a time to sew; a time to keep silence, and a time

to speak; A time to love, and a time to hate; a time of war, and a time of peace. What

profit hath he that worketh in that wherein he laboureth?"

Ecclesiastes 3:1-9

"The FBI has a database consisting of some 200 million fingerprint records... As

part of a modernization program, the FBI is digitizing these records as 8-bit grayscale

images, with a spatial resolution of 500 dots per inch. This results in some 10

megabytes per card, making the current archive about 2,000 terabytes in size."

C.M. Brislawn (BRISLAWN, 1995)

“Big data isn’t about bits, it’s about talent.”

Douglas Merrill

"After all, a person is herself, and others. Relationships chisel the final shape of

one’s being. I am me, and you."

N. K. Jemisin (JEMISIN, 2016)
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RESUMO

Detecção de fraude de identidade baseada em anomalias consiste em construir
perfis com base nos comportamentos frequentes dos usuários e compará-los com
novos dados. A ideia subjacente é que um comportamento diverso pode indicar uma
possível fraude, ou seja, alguém tentando se passar pelo usuário original. A maio-
ria das pesquisas na área visa usar dados espaço-temporais amplamente disponíveis
coletados por sensores de localização onipresentes, tais como GPS, telefonia móvel,
beacons e sistemas de controle de acesso físico. Por outro lado, muitos estudos al-
cançaram bom desempenho na descoberta de relações sociais entre os usuários.
No presente trabalho, combinamos conceitos de pesquisas anteriores e propusemos
um novo modelo de perfis denominado Group-T-Patterns, publicado originalmente em
(SILVA; SICHMAN, 2022), que utiliza grupos sociais para construir perfis de mobili-
dade a fim de melhorar a detecção de anomalias. Em particular, desenvolvemos um
algoritmo para minerar padrões de grupos chamado GTPM (Group Trajectory Pattern
Mining) e implementamos um detector de fraude de identidade totalmente funcional
para sistemas de controle de acesso físico. Conduzimos uma análise empírica us-
ando dois conjuntos de dados do mundo real, e os resultados mostram que adicionar
informações de grupos sociais a perfis de mobilidade melhora a detecção de ataques
de representação baseados em anomalias.

Palavras-chave: Edifícios inteligentes, fraude de identidade, mineração de dados,
mineração de padrões de trajetória, controle de acesso físico, detecção de grupos
sociais, detecção de anomalias.



ABSTRACT

Anomaly-based impersonation detection consists of constructing profiles based on
users’ frequent behaviors and comparing them with new data. The underlying idea is
that a diverse behavior may indicate possible fraud, i.e., someone trying to impersonate
the user. Most research in the area aims to use spatio-temporal data broadly available
from ubiquitous location sensors, like GPS, mobile telephony, beacons, and physical
access control systems. On the other hand, many studies achieved good performance
in finding social bonds among users. In the present work, we combined concepts
from previous research and proposed a new model of profiles called Group-T-Patterns,
originally published in (SILVA; SICHMAN, 2022), that uses social groups to construct
mobility profiles and enhance anomaly detection. In particular, we developed an algo-
rithm to mine Group-T-Patterns named GTPM (Group Trajectory Pattern Mining) and
implemented a fully functional impersonation fraud detector for physical access control
systems. We conducted an empirical analysis using data from two real-world datasets,
and the results show that adding companion activities information to mobility profiles
enhances anomaly-based impersonation attack detection.

Keywords: Smart buildings, impersonation fraud, data mining, trajectory pattern
mining, physical access control, social groups detection, anomaly detection.
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1 INTRODUCTION

Modern organizations’ facilities rely on technologies that enhance energy-

efficiency, comfort, and security, with various integrated cyber-physical systems that

offer close interaction between physical components and computing. These Smart

Buildings (SB) are increasingly gaining notoriety among companies, governments, and

organizations that depend on computer systems to perform their operations (KLEISSL;

AGARWAL, 2010). SBs integrate information about energy, heat exchange, airflow,

water use, security, and, notably, Physical Access Control Systems (PACSs) (CIHO-

LAS et al., 2019). These later are an essential part of organizations’ security as they

prevent unauthorized people from getting access to sensitive resources, assets, and

information; they provide monitoring, surveillance, and control of people’s movements

within organizations’ facilities. Impersonation frauds are constant threats to PACSs,

and happen when some person pretends to be another one to get undue access to the

facility and may include loan, spoofing, cloning, or theft of credentials.

As a study of human attitudes within organizations, organizational behavior can

contribute to the detection of typical behavior profiles in work environments, notably

smart buildings. Organizational behavior has two dimensions, namely individual and

group behavior (HUCZYNSKI; BUCHANAN; HUCZYNSKI, 2013). Individual behavior

is related to people’s schedules and personal attributions, and refers to the activities

that the members develop alone in the workplace. On the other hand, work activities

are often performed by formally designated work-groups defined by the organizational

structure. Informal groups can also emerge when there is a mutual liking of the group

members, when people have interactions based on shared interests, value systems,

and social bondage they develop, sharing the highest level of sentiments or affinity

among them.

In summary, it is a possibility that PACSs can thus capture people’s individual and

group behaviors within organizations. Human individual and group trajectories show

a high degree of temporal and spatial regularity (BARBOSA et al., 2018); people are

highly sociable in general and perform certain activities regularly together. In this work,

we hypothesize that both individual and group activities can be included in users’ pro-
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files to enhance the performance of an anomaly-based impersonation detection sys-

tem. We can reasonably assume that when a credential is under impersonation attack

by a malicious entity, its individual and group behaviors will change significantly from

the original behaviors. Monitoring the credential audit data may be useful for detecting

anomalous credentials activities in the system. Although the primary goal of a PACS is

to anticipate threats, it is humanly impossible to monitor all actions from all the users

in real-time, due to the large volume of data. The time needed to manually search and

analyze the data, aiming to observe any malicious situations, turns the task impracti-

cable. However, with the power of computers and current data mining algorithms, we

believe that such detection can be done automatically.

1.1 Motivation

Impersonation fraud is the crime of using the personal information or credentials

of another person and use his identity to get unauthorized access to resources. In

2018, about 9% of all U.S. residents aging 16 or older reported that they had been vic-

tims of identity theft during the prior 12 months (HARRELL; LANGTON, 2018). There

are many studies in detecting frauds in other domains, such as finance (TRIPATHI;

PAVASKAR, 2012) and mobile networks (YAZJI et al., 2014); however, detecting frauds

in PACSs lacks further research. Even though some fraud detection approaches are

very efficient in some contexts, they may not apply to mobility data from indoor position-

ing technologies, since (i) access control audit logs are usually sparse because some

users may have more access than others, and (ii) when approaching to doors, users

sometimes take advantage of a door already open by a previous user, thus creating

missing data.

Although PACSs are vital components to organizations’ protection, physical access

control systems are aging and becoming vulnerable, which causes an overall lack of

awareness, especially when compared to virtual access control technologies in straight

development, such as those applied to Blockchains or Internet of Things, to name a

few.

Data mining is a field of research that consists in discovering useful and interest-

ing information from raw data that helps the understanding of many phenomena and
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improve decision-making processes. Many techniques emerged from data mining re-

search, among those we may highlight:

• Anomaly detection is a data mining task that aims to discover unusual and suspi-

cions observations that, when applied to PACSs, could raise impersonation fraud

alarms;

• Group Pattern Mining techniques output users that are frequently moving to-

gether;

• Sequential Pattern Mining aims to find frequent events that are delivered in se-

quence, e.g., trajectories, that are sequences of locations.

Challenged by the task of detecting impersonation fraud in PACSs, we propose in

this work an architecture for an automated impersonation fraud detector that combines

these three data mining techniques.

1.2 Objectives

This dissertation’s primary goal is to present a possible solution to the problem of

detecting potential identity theft in physical access control systems.

More specifically, we propose a model for profiling users’ behaviors based on their

frequent trajectories that include their social groups. We also suggest a similarity mea-

sure between profiles and future trajectories to build a classifier that outputs if a trajec-

tory is anomalous and hence a potential theft.

We evaluate the classifier on real-world datasets and compare its performance

against existing methods, and perform a sensitivity analysis of the model to its param-

eters.

After reaching the presented objectives, the following research questions will be

answered:

RQ1 Is it possible to enhance impersonation fraud detection in PACSs by incorporating

social group information?

RQ2 How the definition of frequent trajectory of the model affects its outputs?
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1.3 Method

In order to reach the proposed objectives and answer the research questions, we

first conducted a literature review to identify the state-of-the-art of the related topics

and possible gaps. Then, after understanding the underlying subjects, we constructed

a novel model of trajectory pattern called Group-T-Pattern (Group Trajectory Pattern),

that adds the concept of groups to the concept of trajectory patterns. By doing that, we

brought together in the same model the notion of trajectory patterns and social groups.

Some existing concepts formed building blocks to our model, as shown in Figure 1:

• Frequent Sequential Patterns study trajectories as sequences of Locations, and

the algorithm considered is Prefix-Span (HAN et al., 2001);

• Trajectory Patterns adds the concept of transition times to the frequent sequential

patterns, and the algorithm to mine these Trajectory Patterns is called MiSTA

(GIANNOTTI; NANNI; PEDRESCHI, 2006);

• Group Patterns consider more than one element in the trajectory. The chosen

model is Swarm, and the mining algorithm is named ObjectGrowth (LI et al.,

2010).
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Group Trajectory Pattern
Trajectories that include Groups of 

users

Group Pattern

(LI et al., 2010)
Groups of objects that move together -

Users

Sequential Pattern

(HAN et al., 2001)
Sequences of elements - Locations

Trajectory Pattern

(GIANNOTTI; NANNI; 

PEDRESCHI, 2006)
Sequences of Locations with 

Temporal Annotations - Trajectories

Users

Locations

Typical Transition

Times intervals

[t1L,t1H] [t2L,t2H]

[tnL,tnH]

[t1L,t1H] [t2L,t2H]

Figure 1: Mobility Patterns Evolution

With the use of this new model, we built users’ profiles that are based on their

spatio-temporal and social trajectories. We after proposed a Trajectory and Profile

similarity measure that includes these added social groups in order to evaluate if new

trajectories are consistent with the Profiles.

Additionally, we implemented the model with a new algorithm named GTMP (Group

Trajectory Pattern Mining) and performed experiments with two real-world databases,

from a multi-office building and from a hospital. We then conducted an extensive sen-

sitivity analysis of the parameters of the model and came up with some conclusions

and possible future research work.



Introduction 6

1.4 Contributions

Our first contribution is a novel model of trajectory pattern model called Group-T-

Pattern, which adds information about social groups to users’ trajectory patterns.

Furthermore, we also proposed a new algorithm denominated GTPM (Group Tra-

jectory Pattern Mining) that implements the concept of Group-T-Pattern. We believe

that this notion is easily extendable to other applications that need to find frequent

temporally annotated sequences of groups.

We also proposed similarity measures that describe users’ regularity in their paths,

schedules, and social groups. The proposed similarity measures are based on the

concept of all common subsequences (ACS), as originally proposed by (WANG, 2007).

Although the focus of this work is to solve the specific problem of impersonation

detection in physical access control systems, the concepts we developed have the

potential to solve other real problems and can be easily abstracted for application in

other domains that require patterns detection of movement of groups. Some examples

of these applications are: detecting the movement of cars in convoys, vessels in the

open sea, and groups of people in sports stadiums. The contribution of this work

can have wide application not only in the detection of frauds and anomalies, but in

urban planning, combating piracy and terrorism, organization of events and consumer

relations.

Our fourth contribution is an implementation of a fully functional potential identity

theft detector. The open source implementation of the model and detector is available

in Github: https://github.com/gabrielmariano1/GTPM

Finally, this work has originated three publications:

(SILVA; SICHMAN, 2018) - SILVA, G. M. de C.; SICHMAN, J. S. Identity theft

detection using trajectorypatterns. In: Anais do VII Workshop de Pós-Graduação

em Engenharia de Computação – WPGEC. PCS/POLI/USP, 2018. p. 69–72.

(SILVA; SICHMAN, 2019)- SILVA, G. M. de C.; SICHMAN, J. S. Using social group

trajectories for potential impersonation detection on smart buildings access con-

trol. In: Proc. of the 8th Brazilian Conference on Intelligent Systems (BRACIS).
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IEEE Computer Society, 2019.p. 389–394.

(SILVA; SICHMAN, 2022)- SILVA, G. M. de C.; SICHMAN, J. S. Impersonation

fraud detection on building access control systems: An approach based on

anomalous social and spatio-temporal behaviors. Applied Soft Computing, vol.

188, pg. 108310, 2022

1.5 Text organization

This dissertation is organized as follows. Chapter 2 presents an overview of the

state-of-the-art of the related topics, while chapter 3 introduces some basic concepts of

the literature; it also provides a more detailed conceptual description of the related work

on which we have based our model, as illustrated in Figure 1. In the sequence, Chapter

4 proposes our formalization of the problem and describes our proposed Group-T-

Pattern model to solve it. Chapter 5 details the GTPM algorithm that implements our

model. Chapter 6 describes experiments conducted with two real-world datasets along

with a sensitivity analysis of the method, and a comprehensive evaluation of obtained

results. Finally, Chapter 7 brings up our conclusions and indicates the directions for

future work.
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2 LITERATURE REVIEW

This chapter provides an overview of the current knowledge, including substan-

tive findings and theoretical and methodological contributions, related to our research

problem and questions. It allowed us to identify relevant theories, methods, and gaps

in the existing research. We divided this chapter into four sections related to the main

research topics: Section 2.1 describe works that addressed the same problem of de-

tecting intrusion detection in PACS. The following sections, i.e., Sections 2.2, 2.3 and

2.4, present works that addressed the underlying subjects of the main task, respec-

tively trajectory patterns, group pattern mining and anomaly detection.

2.1 Intrusion detection in physical access control systems

Detecting intrusion by analyzing physical access control’s audit logs is not a new

idea, although works published in this area are relatively scarce. This section presents

some works that addressed the same problem but from a entirely different perspective.

The pioneering work (MIROWSKI; HARTNETT, 2007) uses statistical methods to

look for anomalies in access control events datasets. The authors define users’ Lo-

cation Frequency Profiles (LFP) to look for behaviors that may indicate a change of

credential ownership, and the system triggers an alarm if the frequency of use in a

determined time-window exceeds a certain threshold that they called Deviations from

Mean (DFM).

Garri et al. (2011) use Kohonen’s maps are built to profile the normal behavior of

the users of an active RFID-enabled access control system. A position is said to be

anomalous and may indicate spoofing/cloning or robed tag if it does not belong to any

classification defined during the training. In the referred study, users’ locations were

monitored continuously based on signal strength.

More recently, the work (YIN et al., 2016) presents a real-time intrusion detection

system based on a Complex Event Processing (Esper) tool in the RFID middleware. It

calculates the probability of a proximity card to be used in each reader at each time-

window, and whenever a new event arrives, it checks the likelihood of occurrence of the
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event. If the probability is lower than a preset threshold, the system triggers an alarm.

Geepalla e Asharif (2020) developed a Graph-based method for analysis of PACS

log data to detect normal and abnormal behavior.

Some other works do not use data mining methods to detect intruder attacks.

Specifically, regarding RFID proximity cards, card, or reader level may be used to store

data in the card to detect cloned tags or analyze the reader signal patterns when the

user presents the card. None of these works, however, included social ties in the

profiles. Other existing works (SETIAWAN; YAHYA, 2018) (KANG; LIU; QU, 2017)

(FOROUGH; MOMTAZI, 2021) mentioned the discovery of human behavior based on

sequential pattern mining rules, but aiming to solve different problems and not consid-

ering activity companions.

2.2 Trajectory patterns

People, when in motion, vary their position in space over time. The path taken

by any moving object is called trajectory. Trajectory data is collected in a variety of

ways, either passively from GPS devices, smartphones, and RFID readers or more ac-

tively like when the user sends geo-referenced messages on social networks, makes

a phone call, or uses its credit card to pay a bill at a store. With so much data increas-

ingly available, an entirely new research field in trajectories became feasible, and many

techniques aiming to extract information from trajectory data have emerged. Mazim-

paka e Timpf (2016) review and classifies existing work that used trajectory data to

solve real-world problems. Discoveries concluded that human trajectories have a high

degree of spatio-temporal regularity and follow simple, reproducible patterns (GONZA-

LEZ; HIDALGO; BARABASI, 2008).

Unlike previous work that tried to solve the same problem of impersonation detec-

tion in PACSs, we used user trajectories to model users’ behaviors. Profiling users

based on their past movements is useful for a series of applications, especially in

anomaly detection, location prediction, friendship recommendation, and social ties pre-

diction.

Trajectories are sequences of locations in time. Sequential Pattern Mining helps to
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extract the sequences which reflect the most frequent behaviors. Frequent Sequential

Patterns (FSP) mining was introduced by Agrawal, Srikant et al. (1994) with Apriori-

All, AprioriSome, and DynamicSome algorithms. Other approaches of FSP discovery

are Sequential PAttern Discovery using Equivalence classes (SPADE) and SPADE-like

algorithms (ZAKI, 2000) (ZAKI; J, 2001) that works on databases with a vertical id-

list format, where a list of (user-id, transaction-time) pairs are associated with each

location, and the pattern candidates are counted by intersecting the id-lists.

The work (HAN et al., 2001) proposed an efficient sequential pattern mining method

called PrefixSpan (i.e., Prefix-projected Sequential pattern mining). The main idea is

to analyze only the prefix subsequences and project only their corresponding postfix

subsequences into the projected database.

Giannotti et al. (2007) introduces the concept of trajectory patterns (T-Patterns) as

an extension of sequential patterns. They represent a set of users trajectories including

the same sequence of places, with similar transition times. In their previous work

(GIANNOTTI; NANNI; PEDRESCHI, 2006), the authors extend Apriori algorithm to

describe MiSTA, an algorithm to mine Temporally Annotated Sequences, mainly based

in PrefixSpan, described in the work of Han et al. (HAN et al., 2001).

Other works (CAI; LEE; LEE, 2018) (CHEN; PANG; XUE, 2014) (CHEN et al.,

2014b) rely on the concept of T-Pattern introduced in (GIANNOTTI et al., 2007) to

perform specific tasks without changing the model itself.

2.3 Group pattern mining

The task of mining objects that move together is performed in a diverse range of

phenomena, such as habitat and migration of animals using satellite radio transpon-

ders, vehicles in fleet management, tourists using public transportation, agents simu-

lating people for modeling crowd behavior, and soccer players on a football match.

The conceptual work described in (LAUBE; IMFELD, 2002) aimed to relate one

object motion attributes over space and time to all other objects, and called this analy-

sis concept as RElative MOtion (REMO). In REMO analysis, motion parameter values,

such as direction, speed, and speed change at each timestamp, are grouped into dis-
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crete classes and arranged in a matrix and compared qualitatively. The objective was

to use the data matrices to find patterns across objects, e.g., concurrence, opposition,

dispersion, convergence, and divergence of flocks. In their following work (LAUBE;

KREVELD; IMFELD, 2005), the authors quantitatively defined flock as being a group

of objects that have the same direction and are close to each other, within a distance of

radius R in two-dimensional space, at any timestamp. Benkert et al. (2008) expanded

the previous definition of flocks by considering that a minimum number of objects m

from a set of object trajectories O have to be within a distance of radius R for consec-

utive k timestamps. One important concept in group pattern mining techniques is a

cluster. Clustering is a task with the final objective of defining if objects are spatially

next to each other at the same time. In (KALNIS; MAMOULIS; BAKIRAS, 2005), the

notion of moving cluster is proposed, which is a sequence of spatial clusters appearing

during consecutive timestamps, so the members are allowed to leave the cluster and

new members to join the cluster during the lifetime of a cluster. Being ct a cluster at

time t, the portion of common objects in any two consecutive clusters cannot be less

than a threshold parameter θ, i.e., |ct ∩ ct+1|/|ct ∪ ct+1| ≥ θ.

The definition of group pattern in (WANG; LIM; HWANG, 2006) is very similar to

flocks, but in the three-dimensional space. In group patterns, the distance between any

two moving objects in the cluster is not larger than a predefined variable for at least k

consecutive timestamps.

The convoy pattern is introduced in (JEUNG; SHEN; ZHOU, 2008) and extended in

(JEUNG et al., 2008). With the argument that the chosen radius size in flock definition

has substantial effects on the results of the discovery process, the later work employs

the notion of density connection (ESTER et al., 1996) between the objects to consider

them as part of the same group, so that groups may have different formations, not

only circles. Two objects in a cluster are density-connected if exists a sequence of

objects that connects the two objects and the distance between consecutive objects

is not larger than a user-specified distance. Given a set of object trajectories O, a

convoy is a set of minimum m objects density-connected with a distance threshold e for

k consecutive timestamps.

In (LI et al., 2010), the authors introduced the swarm pattern, in which objects may

move together not necessarily in consecutive timestamps. The clustering method is
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not fixed in swarm patterns, which turns it into a more general pattern. The notion of

swarm is a set of minimum size m of objects that move together for at least k possible

nonconsecutive timestamps. Given a set of trajectories, a closed swarm is defined

as a swarm that cannot be enlarged in size or duration. The authors described Ob-

jectGrowth, a Depth-first search (DFS) algorithm with pruning strategies to find closed

swarms.

The concept of traveling companion, presented in (TANG et al., 2012), is almost the

same concept as a convoy pattern, the main difference being that the pattern discovery

algorithm is faster and outputs results incrementally. The sequel (TANG et al., 2013)

relaxes the continuity constraint.

Another possible application of group patter mining is discussed in (ZHENG et

al., 2014), where the authors introduce gathering patterns which represent big events

occurring in a city, such as celebrations, parades, protests, and traffic jams.

Weakly Consistent Group Movement Pattern (WCM) (WANG et al., 2015) is an-

other group movement pattern in which each w continuous clusters should contain at

least mC persistent members (those who are connected at w continuous timestamps),

and also each member can leave the whole for lC time intervals.

The Loose Travelling Companion Pattern (LTCP) (NASERIAN et al., 2018) brings

a novel approach by including subgroups. They argue that one group, e.g., a family in

an airport, may sometimes be divided into subgroups, such as parents and children.

An LTCP group is a sequence of cluster-sets at continuous time-slots. Unlike other

algorithms that find only subgroups, they solve the problem of partial discovery by

considering as subgroups those that do not get mixed up with other subgroups and

whose members also stay together for a certain number of time-slots. Another issue

is that clustering methods that generate overlapped clusters (one user participates in

more than one cluster in the same time-slot) are not applicable for the LTCP model.

In (ZHU et al., 2019), the authors aimed to find groups of tourists from phone call

detail records (CDRs). Trajectory similarity was one of the features used to accomplish

this task, along with the province of origin of the phone. Trajectory similarity is obtained

by counting what they call matching points, which are stay points close to each other

that users stay for almost the same time. They compare the users two by two to find
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groups. For example, if in a candidate group {a, b, c, d} they find two pairs of traveling

companions, namely a, b and b, c, they consider the real group as {a, b, c}.

The first work that aimed to infer friendship from mobility data is (EAGLE; PENT-

LAND; LAZER, 2009). The authors used data collected from mobile phones and per-

formed 95% of accuracy in discovering friendships, where pairs of friends demonstrate

distinctive temporal and spatial patterns in their physical proximity and calling patterns.

They confirmed the discovered friendship supported by surveys taken by the users.

Friendship recommendation based in spatio-temporal data is also an extensive field

of research, and most of the methods consider context and/or co-occurrence. In works

based on co-occurrence, the intuitive idea is that people who have been in the same

place at the same time on multiple occasions are likely to know each other. This was

proved by the experiments described in (CRANDALL et al., 2010) and performed over a

data set of 38 million geotagged photos from the social network Flickr. The authors con-

cluded that the probability of a social bond increases as the number of co-occurrences

increases and the temporal range decrease. In particular, we describe in the sequence

how recommendation and prediction applications based in Location-Based Social Net-

works (LBSN) data helped to leverage trajectory-based user profiling research.

2.4 Anomaly detection over trajectories

Detecting anomalies in indoor location data is a more recent field of research.

The pioneering work (LIU et al., 2012) proposed a stochastic model for context-aware

anomaly detection in indoor location traces in the context of a hospital environment,

where medical devices are tracked with sensors. The work focus on the missing event

detection that may indicate that devices had been stolen. Other applications (DU et al.,

2018) (GU et al., 2019) aimed to detect pick-pocketing in public transportation.

In (KONTARINIS et al., 2019), the authors aimed to model indoor trajectories by

combining aspects of state-of-the-art semantic outdoor trajectory models. They test

their model and have discussions using the Louvre Museum plant.

Detecting anomalous outdoor trajectories is, on the other hand, more explored by

literature. Yazji et al. used mobility profiles from mobile networks to detect intrusion
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detection (YAZJI et al., 2014). They proposed two ways of modeling the behavior:

the first model is based on the empirical cumulative probability measure of location

and time, while the second is based on the Markov transition property. An anomaly

is detected when the probability evolution matching reflecting a normal behavior falls

below a threshold. As attacker behavior traces were not presently available, they tested

their methods with traces from different users, that is, each user’s profile has been

compared with trajectories from all other users to calculate the performance indicators,

notably False Acceptance Rate (FAR).

Mazumdar et al. propose a common Patterns Distribution-based Similarity mea-

sure (PDS) to compute the similarity between any two users and subsequently find the

effective K-neighbors (MAZUMDAR et al., 2016). The novelty in the approach is to

consider the distribution of check-ins recorded each day on which a common pattern

is obtained.

The authors in (TRASARTI et al., 2017) combined three strategies for location pre-

diction: the individual strategy uses only the user individual mobility profile, the col-

lective strategy considers the routines of all users exploiting the possibility that a user

could follow a path that is systematic for another user but atypical for the first user and

the hybrid strategy that is a combination of the previous two. They also provide an

excellent revision of the literature regarding trajectory prediction.

In (NJOO et al., 2017), the authors proposed a framework called SCI (Social Con-

nection Inference) framework, which quantified three key features: diversity, stability,

and duration, and aggregated co-occurrence features using machine learning algo-

rithms to predict the friendships between users.

The method described in (XU et al., 2018) considers location context, temporal

context, and co-occurrence, combined with periodic mobility. The authors claim that

temporal context is included in their method, which is not involved in previous works.

In (LIN et al., 2019), a word embedding technique is used to compute the semantic

distance between two stay regions, bringing relative importance to them. They argue

that proposed distance metric axioms are satisfied by this technique.

A key for anomaly detection success is the chosen similarity measure. As we con-

sider trajectories as sequences, we were inspired by state-of-art sequence similarity
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measures from the literature. In (YING et al., 2010), the authors proposed a trajec-

tory similarity measurement, namely, Maximal Semantic Trajectory Pattern Similarity

(MSTP Similarity), where the similarity between two trajectory patterns is measured by

considering the longest common subsequence (LCS) between two patterns. The au-

thors applied frequent sequential pattern mining technologies from (HAN et al., 2001)

to extract the sequences of places that a user frequently visits. In (CHEN; PANG;

XUE, 2014), the authors improve the method by adding transition times between re-

gions of interest to the calculation of similarity, with the argument that if two users are

similar, not only their sequences of regions of interest but also the time elapsed be-

tween them should also be similar. In the sequence of their work (CHEN et al., 2014b),

they extended this notion of common subsequence: instead of considering just the

longest common patterns, they considered all common patterns sets (CPSs) of two

users, arguing that the original similarity metrics do not capture all the aspects of users

similarity, especially when users’ mobility profiles are subsets of other users mobility

profiles. The length and support of the common patterns are used to compute their

relative importance. In (CHEN et al., 2014a), they provide a tool to manage trajectory

datasets and construct and compare users’ trajectory patterns.

2.5 Discussion

As previously mentioned in Section 1.3, our model Group-T-Pattern uses a combi-

nation of the concepts: Frequent Sequential Patterns, Trajectory Patterns, and Group

Patterns, as illustrated in Figure 1.

Due to the nature of the data, which is sparse and have missing data, as discussed

in Section 1.1, we needed a group pattern that can deal with nonconsecutive time-slots

and multiple cluster sets for the same time-slot. In our work, we will use the concept of

Swarms (LI et al., 2010) to develop our Impersonation fraud detection because it is the

best suitable group pattern given these constraints.

Still considering some characteristics of the datasets, we use the concept of Tra-

jectory Patterns from (GIANNOTTI; NANNI; PEDRESCHI, 2006), as many works in

literature, because it is the most established way of representing trajectories as se-

quences of locations with time annotations. Being the algorithm that mines Trajec-
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tory Pattern (MiSTA) an extension of the Frequent Sequential Pattern mining algorithm

called Prefix-Span (HAN et al., 2001), we also adopted some ideas of this algorithm.

In a first attempt to solve the problem (SILVA; SICHMAN, 2019), we have proposed

the notion of groups of users, similarly as proposed by Li et al. (2010)1, and hypoth-

esized that impersonation frauds could be detected by observing new trajectories of

people in a Smart Building and comparing them to users’ historical behavior. We ex-

panded the individuals’ mobility profiles described in (CHEN; PANG; XUE, 2014) with

the insertion of the notion of groups, aiming to detect impersonation attacks. We tested

our approach with a dataset from a multi-office building and demonstrated that we im-

proved the performance of the detection by adding groups to the mobility profiles. The

second attempt advances our research, explains some changes in models and exper-

imental framework, and expands the previous formal description presented in (SILVA;

SICHMAN, 2019). This extended model, as well as a second experiment using a hos-

pital dataset, was originally published in (SILVA; SICHMAN, 2022).

In the next chapter, we will show the basic concepts and algorithms that we used

to build our model.

1In their work, they called this concept as a swarm.
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3 BACKGROUND

In the next sections, we present the main concepts and vocabulary extensively

used in related literature, including this work. We also introduce a detailed description

of the models that inspired the construction of Group-T-Pattern model, that we believe

will help the understanding of the model. As mentioned in the previous chapters, our

model is based in MiSTA (GIANNOTTI; NANNI; PEDRESCHI, 2006), which in turn is

based in Prefix-Span (HAN et al., 2001). The novelty is that we added to MiSTA of

the concept of Group Pattern, particularly the concept of a pattern called Swarm (LI

et al., 2010). In this chapter, we detail the underlying topics that are needed to the

comprehension of these base works and consequently of our model.

3.1 Basic concepts and definitions

Timestamps 1 are an essential concept of our model. In some systems, trajectory

data collection may be done in regular steps, that may not be the same for every moving

object, so data collected at almost the same time are grouped in timestamps. In other

systems (including PACSs), timestamps are recorded when users reach some point of

control, whereby they present their credentials to the credential reader. In this manner,

data are often sparse, and we have a different number of records from each user.

Clustering is a preprocessing task with the final objective of defining if objects are

spatially next to each other at the same timestamp.

The concept of "location" varies depending on the domain of application. A com-

mon concept is that of stay points (ASHBROOK; STARNER, 2003) (a.k.a. stop points),

which are geographic regions where users stay for over a time threshold. These stay

points are points of interest (POI) in semantic trajectories. The time users spend in a

POI and its labels (that can be the user’s home, work, a hospital, restaurant, a meeting

room) may be featured for some applications. In the present work, we are going to use

Checkpoints to determine locations. Checkpoints are the sensors in points of control,

and in our case, they will be groups of credential readers that control the access to the
1Sometimes called time-slot.
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same room. They may be, for example, a set of turnstiles installed side by side, giving

access to the same building. Indoor environment spaces have natural semantics, such

as the labels "room B and "building 2", and indoor semantic hierarchy may establish

semantic trajectories, as "to reach building 2 from room B, one needs to use lift C".

As trajectories are sequences of checkpoints, the trajectory pattern mining prob-

lem is often reduced to a frequent sequential pattern (FSP) problem. These fre-

quent checkpoint sequences occurrences are not necessarily consecutive. Consider

a dataset D where a user travels the sequence Home −→ University −→ Hospital in

one day, and the next day he travels Home −→ O f f ice −→ University. We can find

the pattern Home −→ University in this trajectory set even if in the second day the

user goes to the O f f ice before going to the University. On the other hand, if the

user travels O f f ice −→ University −→ Home on a third day, we can not find the pattern

Home −→ University in this trajectory: even if both the checkpoints appear, they do not

appear in the same order.

Trajectory Pattern is a checkpoint sequence that frequently appears in users’ tra-

jectories, and the task of discovering these frequent occurrences in trajectory data is

called Trajectory Pattern mining.

Other common concept is that of pattern containment. A trajectory may (or may not)

contain a pattern if it is observed in the trajectory. The pattern Home −→ University is a

sequence of checkpoints that is contained in both first and second trajectory sequences

in the previous example. Formally,

Definition 3.1: A sequence sa = ⟨a1, a2, ..., ap⟩ is contained in another sequence sb =

⟨b1, b2, ..., bq⟩, defined by sa ⪯ sb, if there are integers 1 ≤ j1 < j2 < ... < jp ≤ q such that

a1 = b j1 , a2 = b j2 , ..., ap = b jp. If sa is contained in sb, then sa is a subsequence of sb and

sb is a supersequence of sa.

A subsequence is obtained from a sequence by removing 0 or more checkpoints,

and a common subsequence of a set of sequences is a subsequence of every se-

quence in the set.

Pattern support is the number of trajectories that contain the pattern in a trajectory

set. It can be presented in terms of relative frequency: the number of trajectories that

contain the pattern divided by the number of trajectories in the dataset, represented by
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|D|. The pattern Home −→ University in the previous example have support = 2/3 = 67%

as it appears in two out of three trajectories from the trajectory set. If the pattern

appears more than once in the same trajectory, only one occurrence is counted.

Minimum Support σ is a user-defined variable the stands for the least number of

times that a trajectory must be found in the trajectory set to be considered as a pattern.

Frequent Pattern is a pattern that has support above the minimum support.

3.2 Prefix-Span

Prefix-Span is an algorithm originally proposed in (HAN et al., 2001) that aims

to find frequent sequential patterns in a sequence dataset. The idea of Prefix-Span

method is that if a sequence is frequent, if we add any checkpoint at the end of this

sequence, thus making a supersequence, we have to search this supersequence only

in the sequences where the original sequence appears in the dataset.

Recalling the example in Section 3.1, consider the following dataset D:

D :

Day 1 : Home −→ University −→ Hospital

Day 2 : Home −→ O f f ice −→ University

Day 3 : O f f ice −→ University −→ Home

In this trajectory dataset, we have four checkpoints: Home, University, O f f ice, and

Hospital. It is possible to see that O f f ice, as a sequence of lenght = 1, occurs only

in Day 2 and Day 3, so if we want to find any sequence starting with O f f ice, we

should search for it only in these trajectories. The strategy is to make a prefix-projected

dataset, where we remove the occurrence of the prefix O f f ice and everything before it

from the original dataset. On the other hand, only sequences frequent enough shall be

extended. For example, if some define that the minimum support threshold is σ = 50%,

sequences starting with Hospital will not be extended because it appears only in one
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sequence of the dataset, thus have support = 1/3 = 33% < σ, and there is no point in

searching for sepersequences of it. By doing this process of projecting the dataset D

with respect to O f f ice, we obtain the projection D|O f f ice:

D|O f f ice :

Day 2 : University

Day 3 : University −→ Home

In Prefix-Span, a projection is a simplification of the data which (i) contains only

the trajectories of the original dataset that the checkpoint under analysis appears, (ii)

contains only frequent checkpoints, and (iii) on each trajectory, the first occurrence of

the checkpoint and all the sequence elements that precede it are removed.

Notice that we may obtain many projected datasets D|checkpoint from the original

dataset D, one for each frequent checkpoint. The fundamental idea is that any pat-

tern starting with checkpoint can be obtained by analyzing only D|checkpoint.

Now, the projected dataset D|O f f ice, has only two checkpoints: Home and University,

so we can potentially obtain the prefixes O f f ice −→ University and O f f ice −→ Home from

it. As the support value is calculated by considering the size of the original dataset |D| =

3, and in this case the checkpoint Home appears in only one trajectory of the projected

dataset, support = 1/3 < σ. Thus, the sequence O f f ice −→ Home is not frequent and

does not generate any projected dataset. On the other hand, the sequence O f f ice −→

University have support = 66% ≥ σ, hence it is frequent, and the projected dataset with

respect to the prefix O f f ice −→ University will result in:

D|O f f ice−→University :

Day 3 : Home

Since the occurrence of O f f ice and all checkpoints that precede it are removed,

trajectory Day2 is empty and removed from the projected dataset. There is no need to

store it since it will not produce any longer sequences. There is only one checkpoint
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Home, and the support 1/3 for the remaining sequence is smaller than σ; therefore,

there are no more projections to generate. The process shall be repeated to all pos-

sible prefixes and projections until there are no more projections to extend. All the

discovered prefixes are frequent sequence patterns found in the trajectory dataset.

3.3 MiSTA

MiSTA (GIANNOTTI; NANNI; PEDRESCHI, 2006) adopts and extends Prefix-Span

with the addition of transition times information. Besides having a sequence of check-

points, it considers a sequence of transition times between any two checkpoints. The

goal is to find frequent checkpoint sequences that have similar transition times among

them.

When added the concept of transition times to the pattern, it is necessary to modify

the concept of pattern containment. Suppose that the dataset D from the example in

Section 3.2 is now time annotated2 and have Day 4 added to it, as seen in D2:

D2 :

Day 1 : Home
5
−→ University

3
−→ Hospital

Day 2 : Home
5
−→ O f f ice

3
−→ University

Day 3 : O f f ice
4
−→ University

7
−→ Home

Day 4 : O f f ice
5
−→Home

6
−→ University

The transition times between checkpoints are annotated above the arrows. We can

use Prefix-Span described in Section 3.2 to determine that the sequence of check-

points O f f ice −→ University is frequent in this dataset.

Maximum time threshold τ is a time tolerance that determines if a trajectory con-

tains a pattern. The pattern will be τ-contained in a trajectory if: (i) the trajectory con-

tains the sequence of checkpoints of the pattern, and (ii) the transition times between

the checkpoints similar. Two transition times are considered similar if the difference

between the transition time of the pattern and the transition time of the trajectory is
2We have stressed the O f f ice −→ University sequence by representing it in red.
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smaller than the maximum time threshold τ. If the checkpoints are not consecutive in

the checkpoint sequence, the transition times between them must be all summed. In

Day 4, for example, the checkpoint sequence O f f ice −→ University has transition time

5 + 6 = 11, thus O f f ice
11
−→ University must be considered.

A pattern is now being considered a frequent pattern if it is τ-contained in at least

σ times the number of trajectories in the dataset. A formal definition of τ-containment

is presented in 3.2.

Definition 3.2: a sequence s = (s, α) = s0
α1
−→ s1

α2
−→ ...

αn
−→ sn is τ-contained in a

sequence s′ = (s′, α′) = s′0
α′1
−→ s′1

α′2
−→ ...

α′m
−−→ s′m if

1. s ⪯ s′ (s is a subsequence of s′, Definition 3.1)

2. ∀1≤k≤n, |αk − α∗k| ≤ τ, where α∗k =
∑

ik−1< j<ik α
′
j

In order to illustrate this concept of τ-containment, let us assume that the pat-

tern O f f ice −→ University has transition time equals 5.5, represented by O f f ice
5.5
−−→

University, and that the tolerance time τ is set to 2. This pattern will be contained in tra-

jectory "Day 3", as O f f ice −→ University is a subsequence of the checkpoint sequence

of the trajectory, and the difference between pattern transition time and trajectory transi-

tion time is smaller than τ (|4−5.5| = 1.5 < τ). On the other hand, even though the check-

point sequence in trajectory "Day 2" is also a supersequence of O f f ice −→ University,

it does not contain the pattern O f f ice
5.5
−−→ University because the difference between

pattern transition times and trajectory transition times are higher than the maximum

time threshold |3 − 5.5| = 2.5 > τ. Similarly, this pattern is not contained in "Day 4", as

|11 − 5.5| = 5.5 > τ.

On the other hand, assuming a second pattern O f f ice
3
−→ University, we can see

that it is contained in trajectories of "Day 2" (|3− 3| = 0 < τ) and "Day 3" (|4− 2| = 1 < τ),

that is 2 out of 4 trajectories in the dataset and if σ is set to 50%, this pattern is

considered a frequent pattern. Notably, the possible transition times from patterns

O f f ice −→ University that satisfy the τ-containment conditions in D2 form transition a

time interval. Any sequence O f f ice −→ University annotated with transition time be-

tween 2 and 5 is τ-contained in trajectories Day 2 and Day 3 from D2 and hence is

frequent in this dataset. A T-Pattern (Trajectory Pattern) represents all the (infinite)
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time annotated checkpoint sequences τ-contained in at least σ times the number of

trajectories in the dataset, and is noted as:

s0
[l1,h1]
−−−−→ s1

[l2,h2]
−−−−→ ...

[ln,hn]
−−−−→ sn

Being s the sequence of checkpoints and [l, h] the sequence of time intervals. In

this example:

O f f ice
[2,5]
−−−→ University

In order to find the T-patterns contained by the trajectories, MiSTA adds and sub-

tracts the maximum time threshold τ to the transition times of all the occurrences of

the frequent checkpoint sequences to obtain the edges of the influence region of each

trajectory. In the intersection region with support larger than the minimum support

threshold σ, we will find all possible T-Patterns contained in the trajectory dataset. Fig-

ure 2 shows this process for the sequence O f f ice
α
−→ University of the dataset D2 from

the example. It is possible to imagine that if we had a larger dataset, more influence

regions could occupy the interval [2,5] and the intersection regions would be denser.

The influence regions shall be dense enough to become a pattern.

3 4210 5 6

Influence region of Day 2

Influence region of Day 3

7

Intersection

x x

8 9 10 11 12 13

x

Influence region of Day 4

Figure 2: Influence regions of checkpoint subsequence O f f ice
α
−→ University in MiSTA
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If we have a checkpoint sequence one element longer, it will have two transition

times and the influence regions will have dimension 2. A similar, more complex ex-

ample is D3 that is graphically represented in Figure 3, where all occurrences of the

checkpoint sequence Home
α1
−→ O f f ice

α2
−→ University from dataset D3 are plotted.

D3 :

Day 1 : Home
20
−−→ O f f ice

10
−−→ University

3
−→ Hospital

Day 2 : Home
10
−−→ O f f ice

20
−−→Hospital

15
−−→ University

Day 3 : O f f ice
4
−→ Home

22
−−→ O f f ice

22
−−→ University

Day 4 : Home
35
−−→Hospital

10
−−→ O f f ice

5
−→ University

Day 5 : Home
50
−−→ O f f ice

40
−−→ University

30
−→ Bar

Day 6 : Home
38
−−→ O f f ice

50
−−→ University

33
−→ Hospital

Day 7 : Home
70
−−→ O f f ice

30
−−→Hospital

35
−−→ University

Day 8 : Hotel
4
−→ Home

65
−−→ O f f ice

50
−−→ University

Day 9 : Home
5
−→Hospital

5
−→ O f f ice

70
−−→ University

Day 10 : Home
59
−−→ O f f ice

67
−−→ University

30
−→ Club

The dataset D3 contains ten trajectories, and each one presents exactly

one occurrence of the checkpoint sequence Home
α1
−→ O f f ice

α2
−→ University.

If we map these occurrences to dataset points (α1, α2) in R2, we will ob-

tain {(20, 10), (10, 35), (22, 22), (35, 15), (50, 40), (38, 50), (70, 65), (65, 50), (10, 70), (59, 67)}.

These points will be the center of of the squares in figure 3. The influence regions

of these dataset points will be squares of edges 2τ centered in the dataset points. Fig-

ure 3 graphically shows the influence regions, which are limited by the red squares,

while the colored regions are dense, regions, that is, where the influence regions over-

lap. The darkest (blue) regions correspond to the infinitely many transition times α1

and α2 that make the checkpoint sequence a frequent pattern for σ = 0.3 and τ = 10.

Similarly, the lighter (green) regions (plus the darkest/blue ones, implicitly) represent

frequent transition times for σ = 0.2, and outlined regions correspond to frequent tran-
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sition times for σ = 0.1. It is possible to see that small values of σ result in more and

larger regions that correspond to frequent patterns transition times. On the other hand,

larger values of σ produce fewer and smaller regions.

0
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0 20 40 60 80

α 2
 (

s)

α1 (s)

x

x

x

x

x

x

x
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σ=0.1    

σ=0.2     

σ=0.3    

(α1,α2)

Figure 3: Influence regions of checkpoint subsequence Home
α1
−→ O f f ice

α2
−→ University

in MiSTA
Source: Adapted from (GIANNOTTI; NANNI; PEDRESCHI, 2006)

While MiSTA algorithm uses prefix-span to find checkpoint sequences that are one

checkpoint longer at each step, dense regions get one dimension higher. Thus, what

are areas in R2 become cubes in R3 that turns into hypercubes in the hyperspace RN.

Therefore, MiSTA reduces a trajectory pattern mining task to a geometry problem in the

hyperspace. The algorithm splits this task of finding dense regions in the hyperspace

into smaller tasks:

1. Extract Annotation Blocks: this task builds the influence regions, i.e., the hyper-

cubes centered in coordinates given by the transition times from the dataset with

edges 2τ;

2. Compute Density Blocks: splits regions of homogeneous density in hyper-

rectangles and selects those with a sufficiently high density. The output of the



Background 26

task is a set of hyper-rectangles of different densities that may cover large dense

regions;

3. Coalesce Density Blocks: merges hyper-rectangles that cover adjacent regions

with different densities but still have a density higher than the minimum support.

The output is a smaller set of hyper-rectangles that covers the same volume as

the original set so that the output of the whole process is a more concise set of

patterns;

4. Annotation-Based Prune: if some trajectory did not contribute to the generation

of dense regions for a given prefix, it will not contribute to any extension of a

prefix by the addition of one checkpoint. Hence, this trajectory is removed from

the projected dataset to save computational effort in the next iterations.

The model proposed in the present work is essentially based in MiSTA, and these

tasks and the corresponding algorithms are further described in detail in Chapter 5,

where we explain our proposed algorithm.

3.4 ObjectGrowth

In our model, we use the concept of Swarm, a Group Pattern introduced in (LI et

al., 2010), that also proposes an algorithm to mine Swarms called ObjectGrowth.

Swarm as a Group Pattern definition, relaxes the constraint of the clusters to re-

main for consecutive timestamped access events, so cluster members move together

for certain timestamps that are possibly non-consecutive. Figure 4 shows an example

of input database extracted from (LI et al., 2010), with clusters and associated times-

tamps.

Figure 4: Example of moving clusters
Source: (LI et al., 2010)
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There are 4 users and 4 timestamps (UDB = {o1, o2, o3, o4}, TDB = {t1, t2, t3, t4}).

Each sub-figure is a snapshot of user clusters at each timestamp. We can ob-

serve that o1, o2, and o4 travel together for most of the time, and o2 and o4 form

an even more stable swarm since they are close to each other in the whole time

span. Given mino = 2 and mint = 2, there are totally 15 swarms: ({o1, o2}, {t1, t2}),

({o1, o4}, {t1, t2}), ({o2, o4}, {t1, t3, t4}), and so on. Some swarms are redundant. For exam-

ple: ({o2, o4}, {t1, t2}) and ({o2, o4}, {t2, t3, t4}) are not time-closed since both of them can

be enlarged to form another swarm: ({o2, o4}, {t1, t2, t3, t4}). Similarly, ({o1, o2}, {t1, t2, t4})

and ({o2, o4}, {t1, t2, t4}) are redundant (not object-closed) since both of them can be en-

larged as ({o1, o2, o4}, {t1, t2, t4}). There are only two closed swarms in this example:

({o2, o4}, {t1, t2, t3, t4}) and ({o1, o2, o4}, {t1, t2, t4}).

A pair (O,T ) is said to be a swarm if all objects in O are in the same cluster at any

timestamp in T .

Definition 3.3: Given two minimum thresholds mino and mint, for (O,T ) to be a swarm,

where O = {oi1 , oi2 , ..., oip} ⊆ UDB and T ⊆ TDB, it needs to satisfy three requirements:

1. |O| ≤ mino: There should be at least mino users;

2. |T | ≤ mint: Users in O are in the same cluster for at least mint timestamps;

3. ∀ti ∈ T , Ct1(oi1) ∩Ct2(oi2) ∩ ... ∩Ctn(oin) , ∅ : there is at least one cluster containing

all the users in O at each timestamp in T . Cti(o j) denotes the set of cluster that

user o j is in timestamp ti.

A swarm (O,T ) is object-closed if fixing T , O cannot be enlarged (∄O′ s.t. (O′,T )

is a swarm and O ⊊ O′). Similarly, a swarm (O,T ) is time-closed if fixing O, T cannot

be enlarged (∄T ′ s.t. (O,T ′) is a swarm and T ⊊ T ′) Finally, a swarm (O,T ) is a closed

swarm if it is both object-closed and time-closed.

In (LI et al., 2010), the authors describe an efficient algorithm to mine closed

swarms called ObjectGrowth, that is basically a depth-first search algorithm that starts

with one cluster of size 1 (in this example, the clusters {o1}], {o2}], {o3}], {o4}]), and

checks if it lasts for at least mint timestamps. If so, the algorithm then adds one user

to that cluster in order to have clusters of size 2. Expanding the node {o1}] would give
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the branches {o1, o2}, {o1, o3}, {o1, o4}. The algorithm then checks if each new branch

lasts for mint and continues expanding each branch and testing until all possibilities are

exhausted. There are two pruning strategies in ObjectGrowth: (i) Apriori pruning rule

considers that if a cluster with n users does not last for mint, there is no superset of this

cluster by adding one more user that is a swarm, and (ii) Backward pruning prevents

the DPS algorithm from revisiting a cluster that has already been found as a swarm.

We have been inspired by and modified the ObjectGrowth algorithm to extend pro-

jections in the Prefix-Span algorithm. The new algorithm will be explained in detail in

Chapter 5.

3.5 All Common Subsequences

The concept of All Common Subsequences (ACS) as a similarity measure is firstly

described in the work (WANG, 2007). ACS similarity measure is applied by counting

the number of all common subsequences, so two sequences are more similar to each

other if they have more common subsequences. In order to illustrate ACS, consider

two sequences:

D4 :

Day 1 : Home −→ University −→ Hospital

Day 2 : Home −→ O f f ice −→ University

The set of all common subsequences of "Day1" and "Day2" is (ignoring the empty

sequence) is Home, University, Home −→ University. Therefore these two sequences

have a similarity equals to 3.

We can normalize the similarity according to the length of the sequences. For a

sequence of length |α|, the number of its subsequences is
∑|α|

i=1

(
i
|α|

)
= 2|α| − 1, which

does not include the empty sequence. If we compare sequences of different lengths,

the length of the smaller sequence shall be considered. In the case of the example, the

sequences have length equals 3. Being the number of common subsequences equals
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3, the normalized ACS score is: 3/(23 − 1) = 3/7 = 0.43.

3.6 Anomaly detection

Supervised anomaly-based detection (also known as outlier detection) consists in

observing the regular operation of a system and alarm if some abnormal activity that

may suggest an attack is observed (BADDAR; MERLO; MIGLIARDI, 2014). In many

applications, behavioral profiles model the regular use of a system to further compare

them with future users’ behavior and detect possible anomalies.

Two main concepts have to be defined when adopting an anomaly-based detection

approach:

• Profiles model the regular use of the system by each user. We adopted a profile

model that summarizes frequent trajectories: sequences of checkpoints, transi-

tion times, and groups.

• Similarity measures are then taken to compare if new captured behaviors are

consistent with previous behavior summarized by the profile. The output of a

similarity measure is a single score. Lower scores mean a high probability of

the trajectory being an anomaly. It is necessary to set a threshold to define the

minimum score for a trajectory to be rejected as an anomaly.

Effectiveness of an anomaly detection systems is usually measured by two error

rates, namely False Acceptance Rate (FAR), in which the system say that a trajectory

is an anomaly when it is not, therefore generating a false alarm, and False Rejection

Rate (FRR), when the system accepts an intruder as a legitimate user. Accuracy is em-

ployed to quantify the detection performance in a single number. Another method em-

ployed to quantify classification performance in terms of FAR and FRR is the area under

the Receiver Operating Characteristic Curve (ROC). Area Under the Curve (AUC) is

scale-invariant: it measures how well predictions are ranked, rather than their absolute

values. AUC larger than 0.5 means that the classifier under evaluation is better than a

random classifier. AUC equals 1 means a perfect classifier.
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3.7 Discussion

Having introduced the main concepts, we can now present the proposed model of

Group-T-Pattern. The ideas of T-Pattern and Swarm are incorporated into our model,

as well as the ideas from the algorithms MiSTA and ObjectGrowth, respectively de-

signed to mine these two patterns.

In this work, we adopted the concept of All Common Subsequences (ACS) de-

scribed in the work (WANG, 2007) to measure similarities. We extended this concept

of ACS to consider similarities regarding checkpoint sequences, transition times, and

group sequences.

Figure 5 shows the evolution of the models and how Group-T-Pattern incorporate

the already presented concepts.

GTPM
Mine Group-T-Patterns and detect 

anomalies

ObjectGrowth

(LI et al., 2010)
Mine Swarms

Prefix-Span

(HAN et al., 2001)
Mine Sequences of Locations

MiSTA

(GIANNOTTI; NANNI; 

PEDRESCHI, 2006)
Mine T-Patterns

Users

Locations

Typical Transition

Times intervals

[2,5] [7,10]

[tnH,tnL]

ACS

(WANG, 2007)
Similarity Measure

3 2

[2,5] [7,10]

Similar subsequences

Figure 5: Algorithms Evolution

In Chapter, 4, we formally describe the Group-T-Pattern model, as well as the new
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proposed similarity measure. Chapter 5 details the Group Trajectory Pattern Mining

(GTPM), the algorithm that implements Group-Trajectory-Pattern model.
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4 GROUP-T-PATTERNS MODEL

In this chapter, we formally introduce our Mobility Profile model called Group-

Trajectory-Pattern. We have used some ideas of the works described in Chapter 3

regarding the construction of mobility profiles, in particular (GIANNOTTI; NANNI; PE-

DRESCHI, 2006) and (LI et al., 2010), but the novelty in our approach is the insertion

of groups to individuals’ mobility profiles. Groups describe an abstraction of systematic

companions that can let us infer social bonds.

4.1 Preprocessing

The proposed model uses Audit Logs from smart buildings access control systems

to construct mobility profiles. Typically, these datasets are composed by events that

have at least three attributes, which are: who performed the access request, when,

and to where. Users are often enrolled with many pieces of information: their full

name, social security or driver license numbers, address, and other personal data. We

worked with anonymized datasets, so only the user id, a unique and random numeric

identifier for each user, is used for identification. In order to request access, users

present their credentials to credential readers, so we know the exact location of the

users by looking at the name of the readers. The system also stores a timestamp,

indicating when the credential was presented to the reader. Table 1 shows an example

of how these data are stored, with each line corresponding to an event: the moment

when the user presents a credential to a credential reader.

The main challenge in using such datasets for identity theft is that we have few data

to explore. Other application domains, such as credit cards (TRIPATHI; PAVASKAR,

2012), have much more data to work with, for example: users’ home addresses, de-

livery address, network IP address, and amount of purchasing. The work (ZHU et al.,

2019) uses call duration, origin and destination provinces. In order to make possible

the use of groups in the presented model, some preprocessing steps are taken to build

new features: checkpoints and clusters. The result of this preprocessing step is shown

in Table 2.
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Table 1: PACS raw events data.

User Timestamp Credential Reader
u1 8:30:04 Turnstile 1
u2 8:30:22 Turnstile 2
u3 8:30:48 Turnstile 2
u4 8:31:57 Turnstile 3
u5 8:32:01 Turnstile 1
u6 8:38:12 Turnstile 2
...

...
...

u2 12:13:55 Warehouse
...

...
...

u2 13:07:15 Back gate
...

...
...

u2 17:30:38 Main exit
...

...
...

4.1.1 Checkpoints

In the presented model, firstly, we have to aggregate readers that are physically

very close to each other and provide access to the same room. In our experiments,

experts with in-depth knowledge about the environment did this task. Checkpoint is a

group of readers that has the same semantic context, for example, a set of turnstiles

installed side by side that control access to the same hall.

Definition 4.1: Checkpoint is a set of credential readers that give access to the same

room.

In the example dataset from Table 1, Turnstile 1, Turnstile 2, and Turnstile 3 provide

access to the same entrance hall and can be aggregated together as "Entrance". The

other credential readers are the only ones that control access to the rooms they are

installed in, and were not aggregated. The capital letters E, W, B, and X respectively

designate the Entrance, Warehouse, Back gate, and main eXit checkpoints in Table 2.

4.1.2 Users clustering

The second task is finding clusters. Clustering is a preprocessing step that aims to

find users that are moving together. We have adopted the concept of time window to
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Table 2: PACS events after preprocessing for t_window = 30s

User Timestamp Checkpoint Cluster
u1 t1 = 8:30:04 E c1 = {u1, u2}

u2 t2 = 8:30:22 E c1 = {u1, u2}, c2 = {u2, u3}

u3 t3 = 8:30:48 E c2 = {u2, u3}

u4 t4 = 8:31:57 E c3 = {u4, u5}

u5 t5 = 8:32:01 E c3 = {u4, u5}

u6 t6 = 8:38:12 E c4 = {u6}
...

...
...

...
u2 t7 = 12:13:55 W c5 = {u2}
...

...
...

...
u2 t8 = 13:07:15 B c6 = {u2}
...

...
...

...
u2 t9 = 17:30:38 X c7 = {u2}
...

...
...

...

build clusters: Cluster is a set of users that reached the same checkpoint within a time

window t_window.

Let D denote the whole events dataset from a PACS. TDB denote the set of all

timestamps in D, UDB denote the set of all users in D, and S DB denote the set of all

checkpoints in D.

Definition 4.2: Given a maximum time window threshold t_window, U′DB =

{ui1 , ui2 , ..., uin}, U′DB ⊆ UDB, is a cluster if there is T ′DB = {ti1 , ti2 , ..., tin}, T ′DB ⊆ TDB, be-

ing tiq a timestamp from an event of user uiq, such that ∀tio , tip ∈ T ′DB, |to − tp| ≤ t_window

Notice that users may belong to more than one cluster at the same event times-

tamp. If we consider t_window = 30s, we can see in Table 2 that user u2 in t2 belongs

to cluster c1 = {u1, u2} because |t2 − t1| = 18 ≤ 30s, and t1 is a timestamp from an

event performed by u1. Similarly, u2 in t2 also belongs to cluster c2 = {u2, u3} because

|t2 − t3| = 26 ≤ 30s. On the other hand, u1 and u3 doesn’t belong to the same cluster,

since |t1 − t3| = 44 > 30s. Clusters mined for the same event will form a cluster set 1.
1We adopt lowercase letters to represent elements of a sequence, even though sometimes these

elements represent sets of single elements. Hence, we will use the lowercase letter c to represent a
cluster, which is a set of users {u0, ..., un}, cs to represent a cluster set {{ua, ..., ub}, ..., {uc, ..., ud}}, and g to
represent a group, which is also a user set {ue, ..., u f }. On the other hand, we are going to adopt capital
letters to represent sequences of these elements, in particular CS for a sequence of Cluster Sets and G
for a sequence of Groups.
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4.2 Constructing profiles

The mobility profile is the key concept of our framework. It summarizes all users’

systematic movements regarding space, time, and travel companions (groups). Users’

movements are represented by a set of trajectories that describe their paths, i.e., their

routines.

4.2.1 Trajectory

Let TDB = {t1, t2, ..., tt} be the set of all timestamps, S DB = {s1, s2, ..., sm} be the set of

all checkpoints, UDB = {u1, u2, ..., un} be the set of all users, and CS DB = {cs1, cs2, ..., cst}

is the collection of all user cluster sets in a PACS dataset.

A temporal annotation αn represents the elapsed time that a user has taken to

navigate between checkpoints sn and sn+k, k ∈ N: if the user was respectively detected

in sn and sn+k at timestamps tn and tn+k, the corresponding temporal annotation is αm =

tn+k − tn.

Definition 4.3: A Trajectory T = ⟨S , A,CS ⟩ is a temporally-annotated sequence of

length n > 0, where S = (s0, ..., si) is called the checkpoint sequence, A = (α1, ..., αn) ∈ Rn
+

is called the (temporal) annotation and CS = (cs0, ..., csi) is called the cluster set se-

quence, and ∀0≤i≤n, si ∈ S DB, csi ∈ CS DB.

A Trajectory can also be represented as follows:

(s0, cs0)
α1
−→ (s1, cs1)

α2
−→ ...

αm
−−→ (si, csi)

Considering again the dataset presented in Table 2, a more concrete example of a

trajectory for user u2 is shown in Equation 4.1. The temporal annotation is expressed

in minutes.

T u2
1 = (E, {{u1, u2}, {u2, u3}})

223
−−→ (W, {{u2}})

53
−→ (B, {{u2}})

263
−−→ (X, {{u2}}) (4.1)
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4.2.2 Group-T-Pattern

As mentioned before, the contribution of our work is to extend the mobility profiles

with the addition of social context, i.e, considering group profiles. In our model, a

Group g = {u1, u2, ..., un}, ui ∈ UDB is a set of users. In short, the notion of cluster

represents users in a checkpoint in a specific moment in time, while the notion of group

captures whether these users are frequently together. The final outputs of the method

are frequent Group-T-Pattern, i.e., Group-T-Patterns contained in many trajectories.

Definition 4.4: For a user u j, a Group-T-Pattern is defined as a triple ⟨S , A,G⟩ where

S = (s0, ..., sn) is a sequence of checkpoints, A = (α1, ..., αn) is the sequence of temporal

annotations between checkpoints, and G = (g0, ..., gn) is the sequence of groups g =

{u0, ..., u j, ..., um} to which the user u j belongs to at each checkpoint of the sequence.

A Group-T-Pattern (we will sometimes call pattern, for short) can be contained in a

trajectory. This is ultimately the main contribution of our work.

Definition 4.5: Given a maximum tolerance time threshold τ, a Group-T-Pattern

⟨S , A,G⟩ = (s0, g0)
α1
−→ (s1, g1)

α2
−→ ...

αn
−→ (sn, gn) is fully contained in the trajectory

T = (s′0, cs0)
α′1
−→ (s′1, cs1)

α′2
−→ ...

α′m
−−→ (s′m, csm) (denoted by ⟨S , A,G⟩ ⪯F T ) if and only if

exists a sequence of integers 0 ≤ i0 < ... < in ≤ m such that:

1. ∀0≤k≤n, sk = s′ik : the sequence of checkpoints from the pattern is a subsequence of

those from the trajectory, i.e, the trajectory is a supersequence of the pattern;

2. ∀0≤k≤n, ∃ c ∈ csik s.t. gk ⊆ c: for all the groups of the pattern, there is at least one

cluster c from the corresponding cluster set csik from the trajectory that contains

all the users of the corresponding group gk;

3. ∀1≤k≤n, |αk − α∗k| ≤ τ, where α∗k =
∑

ik−1< j<ik α
′
j: transition times differences are not

greater than the maximum time threshold τ.

By definition, in the particular case of the length of ⟨S , A,G⟩ is equals 1, that is,

A = ∅, being the conditions 1 e 2 satisfied, ⟨S , A,G⟩ is contained in the trajectory.

For instance, given τ = 10, we can say that the Group-T-Pattern ⟨S , A,G⟩ presented

in Equation 4.2 is contained in the trajectory T introduced in Equation 4.1.
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⟨S , A,G⟩ = (E, {u2, u3})
216
−−→ (W, {u2})

55
−→ (B, {u2})

272
−−→ (X, {u2}) (4.2)

We can remark that a trajectory may contain infinitely many Group-T-patterns. For

instance, considering the trajectory T u2
1 in Equation 4.1 and assuming the checkpoint

sequence E −→ W, and τ = 10, for any t such that 213 ≤ t ≤ 233, g ∈ {{u2}, {u1, u2}, {u2, u3}},

the pattern (E, g)
t
−→ (W, {u2}) will be contained in T u2

1 . The time interval 213 ≤ t ≤ 233 is

obtained by subtracting τ from the transition time 223 to get the lower limit and adding

τ to it to get the upper boundary.

In order to better represent this situation, we use [tL, tH] to respectively represent

the lower and upper bounds of the time interval. Thus, {(E, {u2})
[213,233]
−−−−−−→ (W, {u2}),

(E, {u1, u2})
[213,233]
−−−−−−→ (W, {u2}), (E, {u2, u3})

[213,233]
−−−−−−→ (W, {u2})} represent the set of all Group-

T-patterns with the checkpoint sequence E −→ W contained in T u2
1 given τ = 10.

In our model, we adopt the concept of closed Group-T-Patterns. The strategy is

to consider only Group-T-Patterns containing the larger groups (removing those con-

taining group subsets), aiming to have a more concise set of Group-T-Patterns. In the

case of the example, only the patterns (E, {u1, u2})
[213,233]
−−−−−−→ (W, {u2}), (E, {u2, u3})

[213,233]
−−−−−−→

(W, {u2})} would be considered. Further, we are going to describe this concept in detail.

4.2.3 Mobility Profile

Having introduced the concepts of Trajectory and Group-T-Pattern, we can now

introduce the notion of Mobility Profile, as shown in Equation 4.3.

Definition 4.6: Given a maximum tolerance time threshold τ and a minimum support

threshold σ, the mobility profile PS Tu
τ,σ of a user u is the set of frequent closed Group-T-

patterns ⟨S , A,G⟩ contained in user’s trajectories.

PS Tu
τ,σ = {⟨S , A,G⟩|supportTu

τ,σ⟨S , A,G⟩ ≥ σ}. (4.3)

A mobility profile (hereafter referred simply as profile for conciseness) is a set of all

frequent Group-T-Patterns contained in a set of trajectories from a user. It represents a

digest of the user’s social and spatio-temporal behavior. The frequency of occurrences

of patterns in a set of trajectories can be quantified by the ratio of trajectories in which
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the pattern is contained, which is called the support value denoted by σ. The support

function returns the number of trajectories in which a given pattern ⟨S , A,G⟩ is contained

in relation to all user’s trajectories from a trajectory set Tu.

Occasionally, many patterns made of subsets of groups from ⟨S , A,G⟩, G =

(gi0 , ..., gin) satisfy the containment restriction, leading to many redundant patterns.

Technically, if ⟨S , A,G⟩ is contained in the trajectory T, any ⟨S , A,G′⟩, G′ = (g′i0 , ..., g
′
in)

is also contained in T if for all k, 0 ≤ k ≤ n, g′ik ⊆ gik . In order to avoid finding redundant

patterns, our method will output only closed Group-T-Patterns, i.e., by removing any

user from any group from the sequence, support does not change, and by adding any

user to the groups, support will be reduced. The conceptual idea is having a more

concise set of Group-T-Patterns by keeping only the largest groups. This concept is

derived from the idea of closed swarm from (LI et al., 2010) and helped the creation of

a pruning rule for GMTP algorithm, showed in Chapter 5.

For simplification of notation, in the rest of the manuscript, we denote the profile

PS Tu
τ,σ simply as PS u.

4.3 Mobility Profile Extraction

As we adopted Prefix-Span as the base of our method of extracting the profiles,

both share many similarities. Prefix-Span was detailed in Section 3.2. In this section,

we are going to explain the new prefix-projected sequential pattern that was developed,

named GTMP (Group-T-Pattern Mining).

In the following we present an example of profile extraction from a trajectory

dataset. Consider the trajectory dataset from the user u1 illustrated in Figure 6. For

simplicity of explanation, cluster sets in these trajectories have only one cluster each.

The set of trajectories of the user to build his profile is Tu = {T1,T2,T3}.

Figure 6: Example Trajectories Tu.

T1 = (A, {{u1, u2, u3}})
3
−→ (B, {{u1, u3, u4}})

4
−→ (C, {{u1, u2, u3}})

T2 = (A, {{u1, u2, u9}})
4
−→ (B, {{u1, u3, u6}})

9
−→ (C, {{u1, u3, u4}})

T3 = (A, {{u1, u2, u5}})
2
−→ (D, {{u1, u3, u4}})

6
−→ (C, {{u1, u2, u4}})

Let us define τ = 2 and σ = 0.5 as inputs, and PS Tu
τ,σ = ∅ as the output of the method.



Group-T-Patterns Model 39

The mining process starts by checking if checkpoint sequences (s0, g0) of length

[equals 1 are frequent. It considers a random checkpoint from S DB, lets say A, and

the group containing the user u1 itself, thus forming the checkpoint-group sequence

(A, {u1}). This checkpoint-group sequence is contained in all the trajectories (have

support = 1), therefore it is frequent, so it is added to PS Tu
τ,σ.

Finding Groups is a depth-first search task inspired in ObjectGrowth described in

Section 3.4. The next step is to add a new user to (A, u1) and check if the new the

checkpoint-group sequence is still frequent. In the example, if we add u2 to the group,

thus forming the checkpoint-group sequence (A, {u1, u2}), it is still frequent and still have

support = 1. If we add any other user from UDB, σ will be reduced, so we conclude that

(A, {u1, u2}) is a closed Group-T-Pattern and remove the originating sequence (A, {u1})

from the output PS Tu
τ,σ, avoiding redundant checkpoint-group sequences. Therefore, we

can define the Group-T-Pattern P1:

P1 = (A, {u1, u2})

For each frequent checkpoint-group sequence (s0, g0), starting with (A, {u1, u2}) in

this example, a projection of the initial trajectory dataset T u can be created, denoted

as T u|(A,{u1,u2}). A projection is a simplification of the data which (i) contains only the

trajectories from T u where (A, {u1, u2}) is contained, that is, checkpoint is A and {u1, u2}

is a subset of at least one of the clusters in the cluster set, (ii) contains only frequent

checkpoints and groups, and (iii) on each trajectory, the first occurrence of (A, {u1, u2})

and all the sequence elements that precede it are removed. In this case, the single-

element sequence (A, {u1, u2}) is called the prefix of T u|(A,{u1,u2}). The projected dataset is

shown in Figure 7.

Figure 7: Projections of Tu with the prefix (A, {u1, u2}): T u|(A,{u1,u2})

(B, {u1, u3, u4})
4
−→ (C, {u1, u2, u3})

(B, {u1, u3, u6})
9
−→ (C, {u1, u3, u4})

(D, {u1, u3, u4})
6
−→ (C, {u1, u2, u4})

Any pattern starting with (A, {u1, u2}) can be obtained by analyzing only T u|(A,{u1,u2}),

which is smaller than T u. Then, each new pair (s1, g1) that is frequent in T u|(A,{u1,u2}), can

be found by executing the same explained search. We can say (B, {u1, u3}), for example,
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will correspond to a frequent pattern (A, {u1, u2}) −→ (B, {u1, u3}) in T u, and a new, smaller

projection T u|(A,{u1,u2})−→(B,{u1,u3}) can be recursively computed and used for finding longer

patterns starting with T u|(A,{u1,u2})−→(B,{u1,u3}).

Figure 8: Projection T u|(A,{u1,u2})−→(B,{u1,u3})

(C, {u1, u2, u3})
(C, {u1, u3, u4})

The prefix (A, {u1, u2}) −→ (B, {u1, u3}) is a frequent checkpoint-group sequence

(support = 0.66 > σ), but it is still not a Group-T-Pattern. Outputting sequences with

length > 1 to PS Tu
τ,σ = ∅ requires them to have typical transition times. The steps to

calculate typical transition times are inspired in MiSTA, detailed in Section 3.3.

For each of the occurrences of (A, {u1, u2}) −→ (B, {u1, u3}) in the dataset, we take

their lower and upper bounds by adding ±τ to the transition times and then find the

intersection regions among them.

From T1 : [1, 5]

From T2 : [2, 6]

The lower limit of the intersection region is given by the highest lower boundary (2),

and the higher limit is given by the lowest upper limit (5), so we have:

P2 = (A, {u1, u2})
[2,5]
−−−→ (B, {u1, u3})

, that is contained in T1 and T2. After keep running the method, we will also find:

P3 = (B, {u1, u3})

, that is contained in T1 and T2.

P4 = (A, {u1, u2})
[6,9]
−−−→ (C, {u1, u4}),

that is contained in T2 and T3.

P5 = (C, {u1, u4}),
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that is contained in T2 and T3.

P6 = (C, {u1, u3}),

that is contained in T1 and T2.

P7 = (C, {u1, u2}),

that is contained in T1 and T3.

The user profile will be hence PS Tu
τ=2,σ=0.5 = {P1, P2, P3, P4, P5, P6, P7}. Notice that

there is not any pattern with the checkpoint sequence A −→ B −→ C, neither B −→ C, as

there is not any transition time that match simultaneously B
4
−→ C and B

9
−→ C in T1 and

T2, considering the maximum tolerance time threshold τ = 2.

4.4 Similarity measures

After constructing mobility profiles based on users’ historical data, we propose an

anomaly detector that will identify users’ trajectories that do not correspond to their

profiles. The anomaly detection method can be classified as supervised since it incor-

porates a training step in which all existing trajectories will be pre-classified as normal.

The similarity of a new trajectory and the user profile will include four different notions

of similarity: checkpoint sequences, transition times between checkpoints, groups with

whom the user was at each checkpoint, and full similarity, when checkpoints, transition

times and groups match the profile.

Given that the trajectory and the Group-T-pattern both consist of a sequence of

checkpoints, in order to calculate the similarity between these sequences, we argue

that the more common checkpoints the sequences have, the more similar they are. In

our first work (SILVA; SICHMAN, 2019), similarity calculation considered only the max-

imum sequences of the profiles, i.e., patterns that had no supersequences. However,

this approach would not give good results if some patterns were contained in several

different larger ones. For instance, consider the case when a user always arrives at

and leaves the building at the same time with the same groups, but during the day, he

travels different trajectories. If a new trajectory is considered, in which the user arrives
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and leaves according to the pattern, but during the day travels a trajectory that does

not contain the maximum pattern, this new trajectory would not be evaluated as similar,

although it could fit other smaller patterns from the profile. Hence, in the sequence, we

will enhance our definition of similarity to deal with this issue, also described in the

second work (SILVA; SICHMAN, 2022).

A new trajectory TN may contain many patterns from the profile. As we could show

in Definition 4.5, a Group-T-Pattern must be a subsequence of the trajectory. In or-

der to maximally capture the common information between sequences TN and PS u,

we assumed a new measure of sequence similarity, the number of all common sub-

sequences (ACS) described in (WANG, 2007). The use of all possible common infor-

mation between a new observed trajectory and all the profile trajectories is intuitively

appealing and may provide a fuller picture of the sequences’ similarity relationship. As

the profile PS u is a set of sequences, we will use the concept of ACS as the set of

common subsequences between the profile PS u and the trajectory TN.

A trajectory T = ⟨S , A,CS ⟩, as we have shown in Definition 4.3, is formed by three

sequences, composed of checkpoints, annotations and cluster sets. However, the

groups and annotations depend on the checkpoint sequence. Consequently, a new

trajectory T will have similarity with a profile ⟨S , A,G⟩ ∈ PS u if they share any common

checkpoint subsequence.

However, to propose a richer measure of similarity between trajectories and pro-

files, we also want to represent separately other similarity measures concerning groups

and transition times. To this end, we consider the four separated containment defini-

tions, derived from Definition 4.5.

Definition 4.7: A trajectory checkpoint-contains a pattern ⟨S , A,G⟩ ⪯C TN if the pattern

is contained in the trajectory when ignoring groups and transition times, that is, meets

only the requirements of rule 1 of Definition 4.5.

Definition 4.8: A trajectory group-contains a pattern ⟨S , A,G⟩ ⪯G TN if the pattern is

contained in the trajectory when ignoring transition times, that is, meets only the re-

quirements of rules 1 and 2 of Definition 4.5.

Definition 4.9: A trajectory time-contains a pattern ⟨S , A,G⟩ ⪯T TN if the pattern is

contained in the trajectory when ignoring groups, that is, meets only the requirements
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of rules 1 and 3 of Definition 4.5.

Definition 4.10: A trajectory fully-contains a pattern ⟨S , A,G⟩ ⪯F TN if the pattern is

contained in the trajectory according to Definition 4.5.

Lets call AUS (PS u) the set all unique subsequences of all patterns in the profile.

If a sequence ⟨S ′, A′,G′⟩ is a subsequence of more than one pattern in the profile, it

will appear only once in AUS (PS u). For a sequence of length |TN |, the number of its

subsequences is
∑|TN |

i=1

(
i
|TN |

)
= 2|TN | − 1, which does not include the empty sequence.

Definition 4.11: The similarity of checkpoints simC(TN , PS u) between a new trajectory

TN and the profile PS u is defined in Equation 4.4.

simC(TN , PS u) =
|{⟨S ′, A′,G′⟩ ⪯C TN |⟨S ′, A′,G′⟩ ∈ AUS (PS u)}|

2|TN | − 1
(4.4)

where |TN | is the length of the trajectory..

Intuitively, the more unique subsequences from the profile match those from the

trajectory, the more the trajectory is similar to the profile. Notably, if a sequence from

the profile is contained in the trajectory, all its subsequences will also be contained.

Definition 4.12: The similarity of groups simG(TN , PS u) between a new trajectory TN

and the pattern ⟨S , A,G⟩ is defined in Equation 4.5.

simG(TN , PS u) =
|{⟨S ′, A′,G′⟩ ⪯G TN |⟨S ′, A′,G′⟩ ∈ AUS (PS u)}|

2|TN | − 1
(4.5)

We can analogously define simT and simF using the same concept but in terms of

time containment and full (group and time) containment.

Definition 4.13: The similarity of Transition Times simT (TN , PS u) between a new tra-

jectory TN and the user profile PS u is defined in Equation 4.6.

simT (TN , PS u) =
|{⟨S ′, A′,G′⟩ ⪯T TN |⟨S ′, A′,G′⟩ ∈ AUS (PS u)}|

2|TN | − 1
(4.6)

Definition 4.14: The full similarity simF(TN , PS u) between a new trajectory TN and the

user profile PS u is defined in Equation 4.7.
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simF(TN , PS u) =
|{⟨S ′, A′,G′⟩ ⪯F TN |⟨S ′, A′,G′⟩ ∈ AUS (PS u)}|

2|TN | − 1
(4.7)

Notice that, if a subsequence of the pattern is entirely contained in the trajectory,

it will also be time-contained, group-contained and group-and-time-contained in the

trajectory as well.

Finally, the similarity of the new trajectory to the user’s profile will be the average of

the similarities simC(TN , PS u), simG(TN , PS u), simT (TN , PS u) and simF(TN , PS u), which

we will write respectively simC, simG, simT and simF, for short.

Definition 4.15: The similarity sim(TN , PS u) between a new trajectory TN and the user

profile PS u is defined in Equation 4.8.

sim(TN , PS u) =
simC + simG + simT + simF

4
(4.8)

4.5 Detecting anomalous trajectories

Having defined a measure of similarity, we are able now to define whether a new

trajectory TN may be considered a threat.

Definition 4.16: A new trajectory TN is considered a threat if its similarity with the user

profile PS u is less than a certain minumum support threshold ϵ, as depicted in Equation

4.9.

threat(TN , PS u) =


1, if sim(TN , PS u) < ϵ

0, otherwise
(4.9)

4.6 Example

Let us consider the dataset Tu from the example of Section 4.3, and a new trajec-

tory TN to be compared to the user profile.

TN = (A, {{u1, u2, u4}})
3
−→ (B, {{u1, u3, u8}})

8
−→ (C, {{u1}})
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This trajectory has 7 checkpoint-clusterset subsequences:

(A, {{u1, u2, u4}}),

(B, {{u1, u3, u8}}),

(C, {{u1}}),

(A, {{u1, u2, u4}})
3
−→ (B, {{u1, u3, u8}}),

(A, {{u1, u2, u4}})
11
−→ (C, {{u1}}),

(B, {{u1, u3, u8}})
8
−→ (C, {{u1}}), and

(A, {{u1, u2, u4}})
3
−→ (B, {{u1, u3, u8}})

8
−→ (C, {{u1}}).

And the mobility profile PS Tu
τ=2,σ=0.5 is formed by:

P1 = (A, {u1, u2}),

P2 = ((A, {u1, u2})
[2,5]
−−−→ (B, {u1, u3}),

P3 = ((B, {u1, u3}),

P4 = ((A, {u1, u2})
[6,9]
−−−→ (C, {u1, u4}),

P5 = ((C, {u1, u4}),

P6 = ((C, {u1, u3}), and

P7 = ((C, {u1, u2}).

By analyzing each one of the trajectory’s subsequences, we notice that the

subsequence (A, {{u1, u2, u4}}) of the new trajectory TN fully-contains the pattern P1,

the subsequence (B{{u1, u3, u8}}) fully-contains the pattern P3, and the subsequence

(A, {{u1, u2, u4}})
3
−→ (B, {{u1, u3, u8}}) fully-contains the pattern P2. Therefore, 3 out of 7

subsequences of the trajectory contain one or more Group-T-Patterns from PS Tu
τ=2,σ=0.5,

leading to simF = 3/7

Similarly, the subsequence (A, {{u1, u2, u4}}) group-contains the pattern P1, the

subsequence (B, {{u1, u3, u8}}) group-contains the pattern P3, and the subsequence
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(A, {{u1, u2, u4}})
3
−→ (B, {{u1, u3, u8}}) group-contains the pattern P2. Hence, simG = 3/7.

Likewise, the subsequence (A, {{u1, u2, u4}}) of the new trajectory TN time-contains

the pattern P1, the subsequence B{{u1, u3, u8}} time-contains the pattern P3, the subse-

quence C{{u1}} time-contains the pattern P5, and the subsequence (A, {{u1, u2, u4}})
3
−→

(B, {{u1, u3, u8}}) time-contains the pattern P2, thus simT = 4/7.

Finally, the subsequence (A, {{u1, u2, u4}}) checkpoint-contains the pattern

P1, the subsequence (B, {{u1, u3, u8}}) checkpoint-contains the pattern P3, the

subsequence (C, {{u1}} checkpoint-contains the pattern P5, the subsequence

(A, {{u1, u2, u4}})
3
−→ (B, {{u1, u3, u8}}) checkpoint-contains the pattern P2, andhe subse-

quence (A, {{u1, u2, u4}})
11
−→ (C, {{u1}}) checkpoint-contains the pattern P4. Accordingly,

simC = 5/7.

There is no pattern contained by neither the subsequence (B, {{u1, u3, u8}})
8
−→

(C, {{u1, u4}}) nor the one identical to TN. Thus, we can assume simC = 5/7, simT = 4/7,

simG = 3/7 and , simF = 3/7 that would give us sim(TN , PS u) = (5/7+4/7+3/7+3/7)/4 =

0.536.

If this trajectory is anomalous or not, it depends on the value of ϵ. If ϵ is set to 0.6,

this results possibly indicates an anomalous trajectory (0.536 < 0.6).

In the sequence, we detail the algorithms that implement this model.
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5 GTPM ALGORITHM

This chapter details the algorithms that implement the model described in Chapter

4. The algorithm that we created to extract mobility profiles, named GTPM, is pre-

sented in Section 5.1. Its first part is essentially based in MiSTA (GIANNOTTI; NANNI;

PEDRESCHI, 2006), with modifications to support the concept of groups, while the

second part is inspired by PrefixSpan (HAN et al., 2001), to which we added a concept

of group, similar as the concept of swarm proposed by the ObjectGrowth algorithm

(LI et al., 2010), thus creating a new algorithm named ProjectionGrowth, presented in

Algorithm 2.

We also developed an algorithm to calculate similarity between a new trajectory

and a profile based in the concept of All Common Subsequences (WANG, 2007), that

is described in Section 5.4

5.1 Main algorithm

The main algorithm (Algorithm 1) is composed of two complementary parts:

searching checkpoints-group frequent sequences (handled by Steps 16–20), and han-

dling temporal annotations (described in Steps 5–15). Each of these two parts are

respectively detailed in Sections 5.2 and 5.3. However, we have developed a Pro-

jectionGrowth procedure, which incorporates our notion of groups, detailed in the se-

quence.

ProjectionGrowth in line is a central part of GTPM algorithm. It is responsible for

outputting frequent checkpoint-group pairs from a projection, thus creating a list of

prefixes 1 element longer.
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Algorithm 1: Group Trajectory Pattern Mining (GTPM).
Input: Tu: a set of trajectories from the user u, σ: minimum support threshold, τ: maximum

tolerance time threshold, UDB: users in the database

Output: user profile PS Tu
τ,σ

1 L← 0, P0 ← {Tu × {⟨⟩}}, smin ← σ × |Tu|;

2 while PL , ∅ do

3 PL+1 ← ∅;

4 foreach P ∈ PL do

5 if length(P.pre f ix) ≥ 2 then

6 A← Extract_annotation_blocks(P);

7 D← Compute_density_blocks(A);

8 D∗ ← Coalesce_density_blocks(D);

9 P∗ ← Annotation-Based_prune(P,D∗);

10 PS Tu
τ,σ ← PS Tu

τ,σ ∪ (P.pre f ix,D∗);

11 end

12 else

13 P∗ ← P;

14 P.pre f ix.A← ∅ PS Tu
τ,σ ← PS Tu

τ,σ ∪ (P.pre f ix,D∗);

15 end

16 foreach checkpoint s ∈ P∗ do

17 last ← 0, P′ ← {}, PL ← {}, G < −{};

18 PL+1 ← PL+1 ∪ {Pro jectionGrowth(P,G, s, P′, PL, last, smin,UDB)};

19 L← L + 1;

20 end

21 end

22 end

23 return PS Tu
τ,σ

5.2 Mining frequent checkpoints-group sequences

The task of mining frequent checkpoint-group sequences is performed by

ProjectionGrowth Algorithm. Given a projected, time-stamped sequence S =

⟨(s1, t1, cs1), ..., (sn, tn, cs1)⟩, obtained as projection of sequence S 0 with respect to the

prefix s∗ (i.e., S = S 0|s∗ ), we define a temporal checkpoint-group sequence for S as

the triple (S, A, CS), where (S ,G) will be called the checkpoint-group sequence, and

A = ⟨(a1, e1), ..., (am, em) is the annotation sequence: each couple (ai, ei) represents an

occurrence of the prefix s∗ in the original sequence S 0, ai being the sequence of times-
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tamps of such an occurrence, and ei being a pointer to the element of S where the

occurrence terminates, or the symbol ∅ if such element is not in S .

Notice that annotation sequences contain timestamps and not transition times, in

contrast with Definition 4.3. When needed, the latter are simply computed on-the-fly

from the former.

Steps 16–20 of Algorithm 1 generate all sub-projections of the current projection,

that add the new checkpoint and all possible groups (swarms) as the last element of

the prefix. Steps 5–15 handle temporal annotations.

Algorithm 2: Pro jectionGrowth(P,G, s, P′, PL, last, smin,UDB)
Input: P: projection to be extended, G: current group, s: checkpoint , P′: projection P extended

w.r.t. s and G, PL: list of projections to be outputted, last: index of the latest user added
into G, smin: minimum threshold parameter, UDB: users in the database

Output: PL: a list of Projections extended from P
/* Apriori Prunning */

1 if |P′| < smin then return;
/* Backward Prunning */

2 backward_prunning←− f alse;
3 foreach Pprev ∈ PL do
4 if Pprev.pre f ix ⪯ P′.pre f ix ∧ |Pprev| = |P′| then
5 backward_prunning←− true;;
6 break;
7 end
8 end
9 if backward_prunning then return;

10 f orward_closure←− true;
11 forall u ∈ {ulast+1, ..., u|UDB |} do
12 G′ ← G ∪ {u};
13 P′′ ← extend_pro j(P, s,G′);
14 last ← last + 1;

/* Forward Closure Checking */
15 if P′′ = P′ then f orward_closure←− f alse;

/* Recursive call */
16 PL ←− Pro jectionGrowth(P,G ← G′, s, P′ ← P′′, PL, last, smin,UDB);
17 end
18 if forward_closure then PL ←− PL ∪ {P′};
19 return PL;

When visiting the node with with the checkpoint-group pair P′.pre f ix = (s,G), Step

1 checks whether (s,G) can pass the Apriori Pruning. Next, we check whether the

current node can pass the Backward Pruning (Steps 2-8). This is made by checking if

any of the previously mined prefixes Pprev.pre f ix = (sprev,Gprev) contain the current prefix

P′ = (s,G), denoted by Pprev.pre f ix ⪯ P′.pre f ix, that is, sprev = s and G ⊆ Gprev, and

checks simultaneously if the projected datasets have the same number of projections

|Pprev| = |P′|.
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After both pruning, we will visit all the child nodes in the DFS order. Step 13 calls

extend_pro j algorithm, that returns all the projections that contains (s,G′). Finally, af-

ter visiting the subtree under the current node, if the node passes Forward Closure

Checking we can output P′ as an extended projection.

Algorithm 3: extend_pro j
Input: A projection P, a checkpoint s, and a group of users G

Output: A list of Projections P′′ w.r.t. s and G

1 foreach sequence T = (S , A,CS ) ∈ P, s ∈ S ,U ⊂ CS do

2 (S ′,CS ′) = (S ,CS )|(s,U) and A′ = ⟨⟩;

3 foreach annotation(a, e) ∈ A do

4 foreach (s, t, cs) ∈ (S ,CS ) s.t. i = s ∧ ∃c ∈ cs|U ⊆ c ∧ t > e do

5 A′ = append(A′, (append(a, t),−→ t));

6 P′ = P′ ∪ {(S ′, A′,CS ′)};

7 end

8 end

9 end

10 return P′;

5.3 Handling temporal annotations

Steps 16–20 are originally described in MiSTA (GIANNOTTI; NANNI; PEDRESCHI,

2006) that we previously described in Section 3.3, and they handle temporal anno-

tations. Mine Profiles algorithms process temporal annotation if a previously mined

checkpoint-group sequence has length 2, obviously because you have a temporal an-

notation that represents the transition time between at least 2 checkpoints (s0, g0)
α1
−→

(s1, g1). The whole process can be seen in Figure 9 for the prefix (s0, g0)
α1
−→ (s1, g1)

α2
−→

(s2, g2) that yields 2-dimensional graphs for ease of understanding.
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Figure 9: Handling Temporal Annotations steps
Source: (SILVA; SICHMAN, 2022)

Extracting Annotation Blocks is the task of the procedure called in line 6 of Algo-

rithm 1. Algorithm 4 first draw the influence areas for the transition times of the prefix,

hyper-cubes with center α = (α1, α2) and edge 2τ. If a trajectory has many occur-

rences of the same pattern, its influence areas will overlap, and this overlapped region

would be incorrectly considered dense. That is the reason why their influence areas

are divided into non-overlapping hyper-rectangles called Annotation Blocks that are

illustrated in Figure 9a.

After then, we can find the dense regions where hyper-rectangles overlap (line 7

in Compute Density Blocks) that calls Algorithm 5). In order to do that, we first divide

the annotation space in regions of homogeneous density by collecting the extreme

coordinates of each annotation block along some dimension d, then split the space
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in correspondence of such values, and recursively re-apply the same process on the

result for all the other dimensions. We then remove hyper-rectangles that are not dense

enough and would result in patterns under the minimum support. The result can be

seen in Figure 9b, where the σ value was adjusted to result a minimum density equal

to two.

Notice that this computing density blocks process can yield excessively many den-

sity blocks that cover the a large area. When we Coalesece density blocks, we merge

these hyper-rectangles, resulting in a more concise set of patterns. The process can

be seen in Figure 9c.

For coalescing density blocks we used a different approach than described in (GI-

ANNOTTI; NANNI; PEDRESCHI, 2006). Whereas there is a randomness in the original

algorithm, we preferred a simple approach of ordering the set of dense blocksD picking

the first hyper-rectangle from the density blocks set D, checking if there are neighbor

blocks adjacent to it, and if so, merging blocks into a new hyper-rectangle. The result

is shown in Algorithm 6.

The process’s output is an (infinite) set of frequent annotations where any annota-

tion having components within the hyper-rectangles is frequent.

Algorithm 4: Extract_annotation_blocks(P)
Input: A projection P
Output: A set of hyper-rectangles, representing the influence areas of each sequence in P

1 A ← ∅;
2 foreach (S , A,G) ∈ P do
3 H ← ∅;
4 foreach annotation (a, e) ∈ A do
5 Derive annotation α from time-stamps a;
6 h← hyper-cube with center α and edge 2τ;
7 Merge h with H;
8 end
9 Partition H into a set of hyper-rectangles H′;

10 A ← A∪ H′;
11 end
12 return A;
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Algorithm 5: Compute_density_blocks(A)
Input: A set of hyper-rectangles in Rd

Output: A set of hyper-rectangles D and their density.
1 D = ∅;
2 Recursive_density(A,d,⟨⟩, D);
3 return D;
4 Def Recursive_density(A,d,⟨⟩, D):
5 B← {x|[l1, h1] × ... × [ln, hn] ∈ A, x ∈ {ld, hd}};
6 B̂← sorted_sequence(B)
7 for i = 1; i < |B̂|; i + + do
8 Ai ← {[l1, h1] × ... × [ln, hn] ∈ A|[ld, hd] ∩ [B̂i, B̂i+1] , ∅;
9 if |Ai| then

10 Ĥ′ ← append((ld, hd), Ĥ);
11 if d = 1 then
12 ĥ← [l1, h1] × ... × [ln, hn] given that
13 Ĥ′ = ⟨(l1, h1), ..., (ln, h)⟩ ;
14 ĥ.density← |Ai|;
15 D ← D∪ {ĥ};
16 end
17 Recursive_density(Ai,d − 1,Ĥ′, D);
18 end
19 end
20 return D;

Algorithm 6: Coalesce_density_blocks(D)
Input: A set of dense hyper-rectangles D

Output: A sequence of hyper-rectangles, covering the same volume as D but yielding a better

approximation series

1 Ĥ ← sorted_sequence(D);

2 Ĥ′ ← ∅

3 for i = 1; i < |H| − 1; i + + do

4 ĥ1 ← Hi;

5 for j = i + 1; j < |H|; j + + do

6 ĥ2 ← H j;

7 if ad jacent(ĥ1, ĥ2) then

8 ĥ′ ← merge(ĥ1, ĥ2);

9 Ĥ′ ← Ĥ′ ∪ ĥ′;

10 end

11 end

12 end

13 return Ĥ′;

As implicitly shown in Algorithm 5 (lines 8 and 12 of the recursive procedure), the n-

dimensional hyper-rectangles obtained by the algorithm can be written as the cartesian

product of n 1-dimensional intervals: h = [l1, h1] × ... × [ln, hn]. Therefore, each output
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sequence (sn, gn) −→ ...
α1
−→ (sn, gn) with any of its dense hyper-rectangles is essentially

ready for presentation to the user in a compact, written form as follows:

(sn, gn)
[l1,h1]
−−−−→ ...

[ln,hn]
−−−−→ (sn, gn)

5.4 Calculating similarity

The algorithm for calculating similarity is presented in Algorithm 7. The algorithm’s

input is a profile PS Tu
τ,σ that we are going to write as PS for simplicity of notation, and

a trajectory T . The algorithm has a projection-based approach that starts seeking

common subsequences of size 1 and is recursively called to seek more extensive se-

quences in a projected Profile.

Algorithm 7: Compute_similarity(PS , T )
Input:
Output:

1 r ← (simS ← 0, simT ← 0, simG ← 0, simF ← 0);
2 r ← S imilarity_ACS (T, PS , r);
3 return (r.simS + r.simG + r.simT + r.simF)/4;
4 Def Similarity_ACS(T, PS , r):
5 f ound ← (simS ← 0, simT ← 0, simG ← 0, simF ← 0);

/* Given that T = {(sT
0 , , csT

0 ), (sT
1 , α

T
1 , csT

1 ), ..., (sT
|T |, α

T
|T |, csT

|T |)} */

6 foreach i = 1;i ≤ |T |; i + + do
7 foreach pattern Pt ∈ PS do

/* Given that Pt = {(sPt
0 , [], g0), (sPt

1 , [l1, h1], g1), ..., (sPt
|Pt|, [l|Pt|, h|Pt|], g|Pt|)} */

8 foreach j = 1;i ≤ |Pt|; j + + do
9 [l j, h j]← Reduce([l1, h1], ..., [l j, h j]);

10 if sT
i = sPt

j then
11 f ound.simS ← 1;
12 if l j ≤ αi ≤ h j then f ound.simT ← 1;
13 if ∃ c ∈ csi | g j ⊆ c then f ound.simG ← 1;
14 if f ound.simT = 1 ∧ f ound.simG = 1 then f ound.simF ← 1;
15 Pt′ ← Pt − {(sPt

0 , [], g0), ..., (sPt
j , [l j, h j], g j)};

16 PS ′ ← PS ∪ Pt′;
17 end
18 end
19 end
20 r ← r + f ound;

/* Recursive call if any pattern is found */
21 if f ound.simS = 1 then
22 T ′ ← T − {(sT

0 , , csT
0 ), ..., (sT

i , αi, csT
i )};

23 r ← r + S imilarity_ACS (T ′, PS ′, r);
24 end
25 end
26 return r;
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The return object r stores simS , simT , simG, and simF similarities. In Step 9, the

function Reduce() sums the transition times from the beginning of the sequence to the

checkpoint under analysis to have a proper transition time. Depending on the common

subsequence found in the Profile, if checkpoints, transition time, groups or all, the

pattern the object f ound is filled with the respective flag simS , simT , simG, or simF, and

a scalar sum between r and f ound is made, finally returning the count of all common

subsequences found.

In the sequence, we present the algorithm’s obtained results in two experiments

using real-world datasets.



56

6 EXPERIMENTS

This chapter describes the experiments that aimed to evaluate our method’s per-

formance when applied on datasets from two real-world PACSs: (i) from a Multi-office

Building and (ii) from a Hospital. All data were anonymized to protect the privacy of the

users.

6.1 Description

The experimental framework is illustrated by Figure 10.

WWWDB

Group readers

Extract Trajectories

User 1 
Training set

TDB

Events w/ 
Checkpoints

User 1
Test set

Profile Extraction

User 1 
Profile

Select users

User 1
Trajectories

User 2
Test set

User 2
Training set

Profile Extraction

User 2 
Profile

User 2
Trajectories

ROC

AUC

Calculate similarity

Figure 10: Experimental framework
Source: (SILVA; SICHMAN, 2022)

First, readers were grouped by their location and direction (entry or exit). Then, we

clustered users who accessed the same checkpoint at almost the same time, according

to the time window preset, and extracted their trajectories, a sequence of chronolog-

ically ordered and annotated checkpoints with clusters associated with them. Then,

each user trajectory set was split by five (5-fold validation), so that one part was se-

lected as the test set, and the other four were used as the training set. The choice k = 5
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was made considering the literature (JAMES et al., 2013), that have shown empirically

that this value of k yields test error rate estimates that do not suffer from excessively

high bias. In time series cross-validation, the corresponding training set generally con-

sists only of observations that occurred before the observation that forms the test set

so that no future observations should be used in profile construction. This is the best

approach to conduct our tests due to our method’s proposed application (detecting

future anomalies).

After splitting each user’s trajectory set, profiles were extracted for all of them, and

each of the users’ profiles (represented as "User 1" in Figure 10) was tested against

trajectories from their own test set and against trajectories from the test set of one ran-

dom user (represented by "User 2"). This approach enables balancing between posi-

tive and negatives instances of data (anomalous and regular trajectories, respectively),

so we had approximately 50% instances of each class. Balancing datasets in machine

learning experiments is necessary to avoid bias in the results. For example, if we test

each user profile against all other users’ trajectories, we would have a large number

(larger than 99.9%) of positive instances, which means that if our system classifies all

trajectories as anomalies, it will present 99.9% of accuracy. We used the results to

build ROC curves and then to calculate the Area Under the Curve AUC. Results were

used to construct the ROC curve and then to calculate AUC.

Some trajectories were not useful for building profiles because: (i) the user had

only one trajectory in his training set, (ii) the trajectory had only one checkpoint, or (iii)

the training set did not have any frequent pattern, so the number of profiles is smaller

than the number of users. Each trajectory from the test set was tested against the user

and a random user, so the number of tests is twice the number of trajectories in the

test sets.

All the experiments were implemented using language R 3.4 and run on RStu-

dio Version 1.1.463 on an Intel Core CPU i7-6700K 4.00GHz machine with 16GB

of RAM running Microsoft Windows 10. The following libraries were used: (i) Ma-

trix (ii) arules (iii) arulesSequences (iv) qualV (v) pROC (vi) foreach (vii) doParallel

(viii) parallel (ix) doSNOW (x) doMPI (xi) R.utils.
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6.2 Multi-office building (MOB) scenario

We empirically evaluated the proposed system’s performance with a real-world

dataset from a PACS of a smart building that hosts several companies and organi-

zations. The PACS from which this data was collected has proximity cards, readers,

and a database. Each user is assigned a proximity card that contains a unique serial

number. A card is a passive Mifare ISO 1K in conformity with ISO/IEC 14443 transpon-

der. Any user has to present their proximity card at the reader mounted next to the

door to unlock the door. The database records the activity of requesting access to a

doorway with a proximity card. The raw dataset has 84k access events occurring in 30

days, and more details are shown in Table 3.

The first step was finding trajectories. Each trajectory is a sequence of access

events generated by one user within one day, from 12:00 AM to 11:59 PM, counting

20641 sequences from 1324 users. Parameters were set to σ = 0.1 and τ = 1200,

considered as the best values as we explain in more details further in this section. The

resulting ROC curve is shown in Figure 11. This curve has Area Under the Curve (AUC)

0.79, and the best threshold may be defined by the user considering wanted FAR and

FRR. In the figure, we highlighted the threshold 0.154 that maximizes the distance to

the identity (diagonal) line, a method known as Youden’s method (YOUDEN, 1950), and

maximizes FAR−FRR. In this point of the ROC curve, FAR = 0.685 and 1−FRR = 0.753,

hence FRR = 0.247.
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Figure 11: ROC Curve for Multi-Office Building
Source: (SILVA; SICHMAN, 2022)

6.3 Hospital (HSP) scenario

We also evaluated our method with data from a PACS of a Hospital that uses the

same type of cards as the Multi-Office Building. More details about the dataset are

found in Table 3, and Figure 12 shows the resulting ROC curve. Different from the

MOB, this Hospital works 24/7, and people work overnight. According to the local

regulations, workers have to rest at least 12 hours between work journeys, so we

considered a new trajectory only if events intervals were larger than this gap. Data

were collected from March 1st to March 31st of 2020.

This ROC has AUC 0.90, which indicates that our method applied to the hospital

performs better than when applied to the multi-office building. We can reasonably

explain that by observing that the hospital has more checkpoints than the MOB, so the

sequences are more extended, making trajectories more distinguishable.
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Source: (SILVA; SICHMAN, 2022)

Table 3: Multi-Office Building (MOB) vs. Hospital (HOSP) datasets.

MOB HOSP
Users 1324 3307
Checkpoints 15 207
Events 83988 358822
Trajectories 20641 23271
Avg. Trajectory length 4.1 15.41
Profiles 1150 928
t_window 30 30
σ 10% 10%
τ 1200 60
Tests 8526 4803
AUC 0.79 0.90

Source: (SILVA; SICHMAN, 2022)
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6.4 Sensitivity analysis

The following described experiments will evaluate our model’s sensitivity to its three

key parameters: time window used for clustering t_window, minimum support threshold

σ, and maximum time threshold τ. In order to carry out the sensitivity analysis, we

estimated a sample size of 300 profiles that leads to a 95% confidence interval with

a 5% margin of error, and the tests were always performed with the same profiles.

Sometimes we plotted results only for MOB because graphs would appear very alike

for Hospital, thus avoid providing redundant information.

6.4.1 Maximum time window threshold t_window

Parameter t_window defines that users that reached the same checkpoint within

the time window are clustered together. This parameter influences how many groups

will be mined and their sizes, and consequently, the number of patterns that form the

profile. A too-small t_window will result only in groups of size 1 (the user himself) and

patterns regardless of companions, while a too-big t_window may incorrectly result in

many groups that are not effectively frequent companions, but were together by coin-

cidence. In order to confirm this predicted behavior for t_window, we fixed σ = 0 and

τ = ∞ (any pattern should appear in at least two trajectories to be considered frequent,

regardless of its transition times) and tested many values for t_window. The more

groups are found, the more patterns the profiles will have. The results are presented

in Figure 13.
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Figure 13: Impact of t_window in patterns extraction
Source: (SILVA; SICHMAN, 2022)

Figures 13a and 13b plot the average number of patterns for many t_window, where
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the disc diameter represents the average group size. We can see that, for t_window ≈

30s in the MOB experiment, the number of patterns and group sizes almost do not

change. Figure 13c and Figure 13d show the variation in the number of patterns while

Figure 13e and Figure 13f show the variation of average group size. We assume

that this inflection point in Figures 13c and 13d reveal the optimum t_window for each

experiment.

6.4.2 Minimum support threshold σ

The choice of the minimum support threshold σ affects the performance of the

anomaly detector, thus the resulting score AUC. For instance, if we consider σ as

100%, a new pattern would only be derived if it has appeared in all the trajectories.

Clearly, restrictively big threshold values of σ ignore important patterns that could dis-

tinguish users. In Figures 14 and 15, we first explored this behavior of σ by ignoring

the τ value. As we expected, we can see that with σ ≈ 100%, the overall performance is

close to 0.6, slightly better than a random detector that would score 0.5. In sequence,

we explored in detail the behavior of σ for many different τ values, as presented in

Section 6.4.3. Since we considered that a minimum frequent pattern is contained in at

least two trajectories, the fact that the results are almost the same in MOB for the σ

interval between 0 and 10% is justified by the size of our MOB dataset, which contains

data from only one month and the average number of trajectories ≈ 20. For HSP sce-

nario, when ignoring τ, the best performance is achieved when σ is between 20% and

50%. The order of magnitude that we have obtained for σ is similar on related work

(CHEN; PANG; XUE, 2014) (GIANNOTTI et al., 2007).
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6.4.3 Maximum tolerance time threshold τ

The maximum tolerance time threashold τ is a key concept of the model. Low

values of τ will produce a very few number of patterns. Figure 16 shows annotation

blocks for τ = 100 from 2-dimensional patterns of an example dataset for the sequence

A
α1
−→ B

α2
−→ C. If the minimum support threshold is set to σ = 0.1, at least 2 annotation

blocks (squares centered in the transition times from the original dataset) need to cover

the same region, i.e., they need to overlap. It is possible to see that none of the

annotation blocks overlap. By increasing the value of τ to 300, some blocks start to

overlap (Figure 17a), so they will produce blocks with sufficiently high density (Figure

17c) that can be coalesced (Figure 17e). The whole process outcome is a set of Group

T-patterns in the form A
[l1,h1]
−−−−→ B

[l2,h2]
−−−−→ C, where l1, h1, l2 and h2 are given by the edges of

the coalesced density blocks. If we increase the maximum time threashold even more

to τ = 600, we will see much more annotation blocks, density blocks and coalesced

density blocks, hence more patterns that cover larger areas.

10
00

30
00

50
00

70
00

10000 12000 14000 16000 18000 20000 22000

α 2
 (

s)

α1 (s)

Figure 16: Annotation Blocks for τ = 100
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Figure 17: Impact of the maximum time threshold τ in patterns extraction

6.4.3.1 Effects of τ parameter

This influence of the maximum time threshold τ in the number of patterns will in-

fluence the overall performance of the detector. We conducted a sensitivity analysis
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of the system with respect to τ for the Multi-Office Building environment and saw how

it influences in Area Under the ROC Curve of the whole system. As we can see in

Figure 18, for both scenarios, raising τ improves the performance of the anomaly de-

tector: the larger τ is, the more patterns are found, and more accurate the system is

in terms of AUC. In a further analysis, we demonstrate that at some point, increasing τ

does not improve the system’s performance because all relevant patterns have already

been discovered. If we increase τ even more, the detector’s overall performance de-

creases as the tolerance is so big that the system cannot accurately distinguish groups

from users that were coincidentally together. Figure 22a shows this behavior, where

we fixed σ = 10% and variate τ in steps of 60 seconds until AUC starts to decrease.

On the other hand, Figure 18a shows that as we increase τ, profile extraction times

increase exponentially, so it is better to set τ as small as possible.
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For the hospital environment, the best τ value is 60 seconds, as seen in Figure

18b. As this environment has more checkpoints and longer trajectories, transition times

between checkpoints are shorter, and, naturally, time tolerance should be shorter. We

also can see a peak in the curve in τ = 500s. It means that, in some situations, there

are new groups discovered when using a larger maximum time threshold (that is still

under the maximum performance in 50s). The order of magnitude of transition time in

some routes are larger than others.

By observing this behavior, we also conducted a sensitivity analysis with the

change in the maximum threshold τ definition to be time-variant, and this analysis

is presented next.

In order to graphically illustrate this analysis, we highlight the behavior of the AUC

vs. σ for the MOB scenario, where the score increases until τ = 1200: the larger τ is,

the more patterns are found, and more accurate the system is in terms of AUC. After,

if we increase τ even more, AUC starts to decrease, until a threshold defined by τ = ∞

(ignored) is reached, as we can see in Figure 19.
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6.4.3.2 Constant τ vs. relative τ

We also experimented a relative value of τ instead of a constant τ, so the maximum

tolerance time was not fixed, but a percent of each transition time from the trajectories

from the test dataset. In order to do that, we modified the definition of containment

(Definition 4.5) in a way that the maximum time threshold given by a relative parameter

τ

Definition 6.1: Given a maximum time threshold τ, a Group T-Pattern ⟨S , A,G⟩ =

(s0, g0)
α1
−→ (s1, g1)

α2
−→ ...

αn
−→ (sn, gn) is fully contained in the trajectory T = (s′0, cs0)

α′1
−→

(s′1, cs1)
α′2
−→ ...

α′m
−−→ (s′m, csm) (denoted by ⟨S , A,G⟩ ⪯F T ) if and only if exists a sequence

of integers 0 ≤ i0 < ... < in ≤ m such that:

1. ∀0≤k≤n, sk = s′ik : the sequence of checkpoints from the pattern is a subsequence of

those from the trajectory, i.e, the trajectory is a supersequence of the pattern;

2. ∀0≤k≤n, ∃ c ∈ csik |gk ⊆ c: for all the groups of the pattern, there is at least one

cluster c from the corresponding cluster set csik from the trajectory containing all

users of the group;

3. ∀1≤k≤n, |αk−α∗k| ≤ τ×α∗k, where α∗k =
∑

ik−1< j<ik
α′

j
: transition times differences

are not greater than a maximum time threshold calculated by multiplying

the trajectory transition time α′
k

by τ.

Accordingly, as Definition 4.9 of time similarity relies on Definition 4.5, this first is

also changed.

The results in Figure 20b show that there are not significant differences in the max-

imum detector’s performance for the Hospital environment when compared to Figure

18b (approximately 0.89). For the MOB environment, the overall performance is lower

than when using the original τ. We assume that it happens because MOB is much

more controlled regarding schedules, so people hardly change the arrival and atten-

dance times, while for HSP environment, workers usually have different and changing

work shifts, and the arrival time and transition times (intervals for lunch, etc.) may

change according to predefined schedules.
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(a) τ (%) vs. AUC for MOB (b) τ (%) vs. AUC for Hospital

Figure 20: Sensitivity to τ variated in percent

6.4.4 Relevance of the similarity measures

One approach for feature importance analysis is Linear Regression approach. It

assigns the score of each feature based on their importance to predict the output.

More the features will be responsible to predict the output more will be their score.

We conducted a linear regression with the feature under analysis (simS , simT , simG,

and simF) an the results are presented in Figure 21. In order find the features, we

assigned weight coefficients to the equation 4.8 thus having the equation 6.1, where w

are the coefficients.

sim(TN , PS u) =
wC · simC + wG · simG + wT · simT + wF · simF

4
(6.1)

We then fed the dataset built with the process described in Figure 10 to a linear

model, with the targeted value of prediction sim(TN , PS u) being 1 when users’ profiles

are compared to their own trajectories and equals 0 when compared to someone else’s.

We then trained the model and made the prediction to get the values of the coefficients.

These values of coefficients were tested as weights for the similarities and the AUC

score were 0.8 for MOB and 0.92 for HSP.
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(a) τ (%) vs. AUC for MOB (b) τ (%) vs. AUC for Hospital

Figure 21: Relevance of similarity measures when τ variates in percent

It is possible to see that simG is the most relevant feature for the MOB environment

but is not so distinctive for HSP. We hypothesize that this occurs because there are

fewer social bonds in this kind of environment.

6.5 Comparison with previous methods

As our approach is an extension of MiSTA (GIANNOTTI et al., 2007), we are driven

to compare the results of our algorithm with it. The original MiSTA does not address the

problem of the context where the trajectories occurred, i.e., the companions. Adding

group information to the model enable the use of a new feature that can be used for

a broad variety of applications. For example, by adding group information to the task

of impersonation in access control, we capture if the impersonating user is alone and

not with her regular companions. This situation would be ignored if only MiSTA was

considered.

This new approach brings also differences to performance. The main difference

is that, while MiSTA seeks only for sequences of checkpoints and transition times,

the addition of groups in our method will lead to many more patterns, as each of the

checkpoints unfolds different tuples considering the user in the same checkpoint but

with different groups. Besides that, when the sequences are big, the time taken to

compute density blocks is significantly higher than to the other steps, making the time

take for group extraction task by ProjectionGrowth algorithm (Algorithm 2) less relevant.

Compute density blocks task has complexity O(nd), exponential to the length of the

pattern (d) in the worst case; therefore, as raising τ turns the model more tolerant
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and makes it discover more and more lengthy patterns, the total extraction time raises

exponentially as well. The Hospital environment has longer trajectories, and even for

small τ, computing density blocks is the most significant tasks in terms of execution

time.
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Figure 22: Relative performance vs. MiSTA: ProjectionGrowth performance
Source: (SILVA; SICHMAN, 2022)

We also explored how would MiSTA and the PrefixSpan perform in comparison to

the proposed method. For doing that, we have implemented both algorithms, which the

main differences between them are that:

1. PrefixSpan profiles have only for sequences of checkpoints;

2. MiSTA ones have sequences of checkpoints and transition times; and

3. our method GTPM is MiSTA enriched with group information, i.e., considers se-

quences of checkpoints, transition times and groups.

When the feature does not exist, similarities simT or simG are set to zero, so AUC

shows how well ranked are the trajectories in terms of simC only for PrefixSpan or

simC + simT for MiSTA. Results for many σ and τ = 1200 can be seen in Figure 23.

We can notice that our method performs better for σ values lower than 40%; this is

an excellent results, since typical σ adopted values are around 10%. By these re-

sults, we can argue that the profiles constructed with our method, incorporating group

information, present more useful information for this particular task.
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Figure 23: Comparison vs. MiSTA and PrefixSpan for MOB
Source: (SILVA; SICHMAN, 2022)
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Figure 24: Comparison vs. MiSTA and PrefixSpan for HSP
Source: (SILVA; SICHMAN, 2022)

By analyzing the performance of our GTPM Algorithm in comparison with the ex-

isting algorithms, PrefixSpan and MiSTA, for MOB scenario, shown in Figure 23, we

notice that the performance curve for GTPM and MiSTA seems linear and decreasing

because if we increase the restrictions to consider the patterns contained in the tra-

jectories (in this case, more restrictive σ), a pattern needs to appear more often within

the trajectories, with the same social group and with the same time intervals. There-

fore, it is natural that there are fewer patterns to compare, and that new trajectories

will be incorrectly classified. PrefixSpan is more stable as it has fewer restrictions (only

checkpoint sequences). On the other hand, the HSP scenario has more checkpoints

than MOB, so checkpoint sequences are more relevant than MOB scenario and AUCs

are higher for all the three models, considering the same σ (Figure 15. Also and as

a consequence of this largest number of checkpoints, the transition times for HSP are

shorter, and hence more regular than in MOB scenario, so that both MiSTA and GTPM,

that incorporate transition times to the models, always perform better than PrefixSpan.

Other observation is that in the Hospital environment, employees usually work in differ-
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ent and changing shifts, have less social bonds, and this is a possible explanation why

incorporating groups does not improve so much the results when comparing to MiSTA.



76

7 CONCLUSIONS AND FURTHER WORK

Over the last half-century, data mining techniques have been developed to find

patterns, connections, correlations, or anomalies in large amounts of data, allowing

you to find problems, hypotheses and opportunities more quickly.

Especially when modeling human behaviors that fit in widely available data, such as

trajectory data, research in this field can help to solve real-life problems. In the present

work we, for the first time, included the notion of traveling companions to users’ trajec-

tory profiles aiming to detect anomalies. The central concept is that social groups are

a human attribute and can be noticed in users’ trajectories to form a new feature that

comes from relations of all trajectory observations and not only features from isolated

data instances.

Although the focus of this work has been detecting anomalies that could indicate

potential identity fraud in physical access control systems, the concept of social group

information in trajectory profiles can be easily extended to other real problems. For

example, during the year 2020, the COVID-19 pandemic rage killing millions of people,

and the best way to prevent the virus dissemination was to isolate infected people,

and the companions they had contact in the period of the disease. Knowing these

companions could help to control isolation more effectively.

Another possible extension of our model can be monitoring people’s movements in

large cities and helping authorities to improve transport systems. If they know which

people go to the same place at the same approximate time, they can suggest users

take the same cab, reducing traffic and pollution. Many other applications can take

advantage of the concepts developed, such as fraud in mobile networks, detecting

anomalies in vessels to prevent theft and piracy, and profiling tourist patterns, to name

a few.

On the other hand, the addition of social group information leverage the potential

of the technology developed. Our experiments with real-world datasets from a smart

commercial multi-office building and a hospital showed that our group similarity mea-

sure enhanced the detector’s performance.
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After performing all two experiments, the research questions presented in this dis-

sertation introduction were answered as follows:

RQ1 Is it possible to enhance impersonation fraud detection in PACSs by incorporating

social group information?

In both scenarios, the performance was increased with the addition of group in-

formation and the maximum score of the detector was achieved only when using

GTPM. We conclude that in our tested scenarios, adding social groups informa-

tion to mobility profiles enhances anomaly-based impersonation attack detection.

RQ2 How the definition of frequent trajectory of the model affects its outputs?

In Section 6.4, we conducted a sensitivity analysis of the parameters of the model.

In particular, the concepts of maximum tolerance time threshold τ and minimum

support threshold σ were extensively stressed and have led us to came up with

some conclusions. The higher the τ value, the fewer are the restrictions for con-

sidering the trajectory as frequent and the better the results. If we increase τ even

further, a maximum threshold is reached so that the results start to get worse, and

the anomaly detector starts to classify incorrectly the trajectories. Inversely, the

higher the σ value, the more are the restrictions, and in both studied scenarios,

there is an optimum σ such that the score AUC is maximum.

In this work, we have considered a system for preventing a certain type of crime

that relies on users’ personal data, an approach with some ethical issues that have to

be addressed. One meaningful discussion is the use of the data for purposes other

than the ones specified. Although experiments were conducted with anonymized data,

in a real-life system, important information about users’ behavior may be exposed, to

cite a few: the typical time the user is out of his workstation, frequent companions, and

work absences. The misuse of such information may lead to biased decisions about

the user specifically or even compromise the whole organization.

Another dangerous premise is that an anomalous trajectory is a potential imper-

sonation fraud, which may lead to further, maybe intrusive investigation if a crime is

under development. Anomalies can happen anywhere at any time, and they are not
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necessarily related to someone doing something wrong. The presumption of guilt is

against the major criminal justice system assumptions.

In the future, we will extend our feature analysis by considering the following issues:

• Implement a preprocessing step to handle missing data in Profiles extraction.

Usually, users take advantage of an open door and enter a room without present-

ing their cards, thus creating missing data. Pattern information may help to fill out

these missing data;

• We foresee the use of optimization methods such as evolutionary algorithms and

neural networks, to find the best adjustment and combinations of the proposed

similarity measures (checkpoints, transition times, and groups);

• We want to associate with every user a different maximum tolerance time thresh-

old τ and a minimum support threshold σ that strikes a right balance between the

FAR and FRR values, similar to the approach proposed in (YAZJI et al., 2014).

• We plan to explore other group definitions different than Swarm.
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