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RESUMO

KOMO, Andrea Erina. An efficient method to provide auditable messages exchanged in instant

messaging applications. 2023. Dissertação (Mestrado em Ciências e Engenharia de Computação)

- Versão corrigida – Escola Politécnica, Universidade de São Paulo, São Paulo, 2023.

A integridade e a autenticidade de mensagens em aplicativos de comunicação móvel tornou-se

uma questão importante, uma vez que esses aplicativos estão sendo usados como ferramentas

corporativas. Em particular, não é incomum que as mensagens trocadas sejam usadas como

documentos de negociação, comprovantes de vendas, ou transações bancárias. No entanto, por

projeto, a maioria desses aplicativos não fornece qualquer recurso de verificação para confirmar

a integridade ou autenticidade das conversas após estas serem entregues aos seus destinos. Na

verdade, existem vários exemplos na litera-tura de como é possível modificar de forma imper-

ceptível registros em aplicativos como WhatsApp, Telegram e outros. Além disso, a maioria dos

aplicativos disponíveis no mercado utiliza uma arquitetura centralizada, que pode levantar dúvi-

das sobre a integridade e autenticidade das mensagens. Afinal, como a entidade central controla

o serviço, esta tem a liberdade técnica para executar um ataque do “homem no meio” (MitM) e

talvez modi-ficar mensagens sem ser detectada. Todas essas características podem comprometer

as negociações feitas nessas plataformas de troca de mensagens. Para resolver esta questão da in-

tegridade das conversas, este trabalho propõe uma estrutura de mensagens composta por hashes

criptográficos encadeados (ou hash chain), garantindo assim uma forma de auditar e verificar as

conversas. Além disso, é proposta a utilização de um sistema distribuído como infraestrutura de

comunicação, levando a um cenário mais independente de qualquer entidade controladora que

possa interferir no fluxo de mensagens. Para isso, o sistema proposto combina tecnologias como

PGP (Pretty Good Privacy), comunicações peer-to-peer (P2P) e um mecanismo de encadeamento

de hashes com privacidade seletiva. Os diferentes módulos que compõem a solução são indepen-

dente de arquitetura e, portanto, podem ser integrados de forma individual a qualquer aplicativo

de mensagem instantânea. Os testes documentados neste trabalho mostraram-se satisfatórios

em termos de tempos de execução inferiores a dois segundos e robustez da solução de auditoria

independente.

Palavras-Chave – Sistema distribuído. Segurança da informação. Hash chain. Aplicativo

celular. Troca de mensagens.



ABSTRACT

KOMO, A. E. An efficient method to provide auditable messages exchanged in instant messaging

applications. 2023. Dissertation (Master of Science) - Corrected version – Escola Politécnica,

Universidade de São Paulo, São Paulo, 2023.

Message integrity in mobile communication apps has become an important issue since such apps

are being used as corporate tools. In particular, it is not uncommon for messages thereby ex-

changed to be used as negotiation documents, sales, bank transactions. However, by design,

most of these applications do not provide any verification feature to confirm the integrity or au-

thenticity of conversations after they have been delivered to their destinations. There are several

examples in the literature of how it is possible to imperceptibly modify records in apps such as

WhatsApp, Telegram, and others. In addition, most applications available on the market use

a centralized architecture, which may raise doubts about messages’ integrity and authenticity.

After all, because the central entity controls the service, it has the technical freedom to execute

a man-in-the-middle (MitM) attack and perhaps modify messages without being detected. All

of these characteristics can compromise the negotiations made on these message exchange plat-

forms. To resolve this issue of conversation integrity, this work proposes a message structure

composed of chained cryptographic hashes (hash chain) that ensure a way to audit and verify

conversations. Also, we propose to use a distributed system as a communication infrastructure,

leading to a scenario that is more independent from any controlling entity that may interfere with

the flow of messages. For this, the proposed system combines technologies such as PGP (Pretty

Good Privacy), peer-to-peer (P2P) communications, and a hash-chaining mechanism with selec-

tive disclosure. The different modules that make up this solution are architecture-independent

and, therefore, can be integrated individually into any instant messaging application. The tests

documented in this work proved to be satisfactory in terms of execution times of less than two

seconds and the robustness of the independent audit solution.

Keywords – Distributed systems. Security. Hash chain. Mobile application. Messages ex-

change.
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1 INTRODUCTION

Seeing the development of computing, Mark Weiser proposed that one-day computer

technologies would be incorporated everywhere in our lives. With this, he created the

ubiquitous computing concept [WEISER, 1999]. Time has passed and the world is more

like Weiser predicted. The technological development enabled industries automation,

autonomous cars, smartphones, smart homes, and Internet of Things (IoT) devices.

Among all these technologies and devices, an essential one in the 21st century is the

smartphone and its applications, having over 6.3 billion users in 20211. Instant mes-

saging applications (IM apps) have changed the way people interact and communicate.

These apps allow daily chat with friends and family, as well allow to do bank transac-

tions, negotiations, sales, and business chats, being very convenient. Some famous apps

like Facebook‘s Messenger have more than 1.3 billion users in 2017 [FACEBOOK, 2017],

WhatsApp reached 2 billion users around the world in 2020 [WHATSAPP, 2020], and

Telegram surpassed 500 million monthly active users in 2021 [DUROV, 2021]. These sys-

tems are very user-friendly and became part of people’s lives, but we have inquiry if those

systems are secure for enterprise use. This work will focus on smartphone apps and secu-

rity, we will analyze the security of some different types of IM apps systems existents and

propose a solution that improves chat integrity and users’ authenticity in these systems.

1.1 Motivation

Instant messaging applications available on the market are systems that provide prac-

tical and efficient communication service. Most of these systems use client–server con-

nection structure [KUROSE; ROSS, 2013] that each system has a server to provide users

(clients) communication. If a user U1 wants to send a message M to another user U2,

first U1 sends M to server S, then this server searches the connection information from

U2 and finally S sends M to U2. The communication between U1, U2, and any other users
1Source: <https://www.bankmycell.com/blog/how-many-phones-are-in-the-world>
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depends fundamentally on the server S and therefore this type of approach is considered

centralized in the server as shown in Figure 1.

Figure 1: Sequence Diagram of Client–Server structure

Source: Authors.

Centralized structures may present a Single Point of Failure (SPOF), if this point

of the system fails, then all system stop working. For this reason, attackers usually see

SPOF as a security vulnerability and target it, for example, doing a Denial-of-Service

(DoS) attack [BROWN; STALLINGS, 2015] in a centralized server affecting the system’s

availability. In Figure 2, a DoS attack target the server and if successful then legitimate

users are no longer able to use the service during the downtime.
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Figure 2: Denial-of-Service attack

Source: Authors.

There are types of DoS attacks that can cause this unavailability:

• Vulnerability DoS: When the attacker exploits a well-known vulnerability of the

system to slow or crash the service.

• Flooding DoS: When the attacker generates a flood of requests that overwork the

system until the service is unable to respond anymore.

– Distributed Denial-of-Service (DDoS): When the attacker generates a flood of

requests using a “zombie” botnet, a group of distributed computers that have

been infected by malware and have come under the control of the attacker.

The temporary judicial blockage of the WhatsApp application in Brazil in 2015 and 2016

[BARRETO; LIMA, 2016] can be seen as the DoS attack because this shut down all

communication of users over the app.

Another centralization vulnerability is based on the premise that the entities respon-

sible for the services are reliable. Because this entity is the server controller, it can

technically carry out a Man-in-the-Middle (MitM) attack [MEYER; WETZEL, 2004]. In

a MitM attack, the attacker is in the middle of the communication capturing information,

as illustrated in Figure 3, this mainly affects users’ confidentiality and privacy. This type

of attack can be performed by any attacker, however, in a centralized system, it is much

easier to make a MitM attack if you are the system’s insider.
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Figure 3: Sequence Diagram of Man-in-the-Middle attack

Source: Authors.

The case Facebook–Cambridge Analytica [MEREDITH, 2018] had repercussions in

the press because the entities had performed a MitM attack in this case. It was found

that Facebook improperly provided data from its users to Cambridge Analytica, a data

analysis company, showing that the service provider company is not always reliable. After

this case, the governments have been concerned more about citizens’ privacy and created

data protection laws, such as General Data Protection Regulation (GDPR) in the Euro-

pean Union [THE EUROPEAN PARLIAMENT; THE COUNCIL OF THE EUROPEAN

UNION, 2016] and Brazil‘s law number 13.709, the General Law on Protection of Personal

Data (LGPD) [BRASIL, 2018]. These laws are important and have changed the way data

are used and stored, including in IM apps.

The vulnerabilities of applications available on the market are not limited to centra-

lized architecture. In a general context, the following security vulnerabilities can also be

observed:

• Lack of confidentiality: Some applications do not have end-to-end encryption me-

chanisms by default for the messages exchanged [TELEGRAM, 2018]. This can be

a problem for companies that use these services to exchange sensitive information
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because it makes it easier to obtain sensitive data through MitM.

• Verification of authenticity: Most applications use unreliable methods to verify the

authenticity of users mainly during initial registration on their systems [SCHRIT-

TWIESER et al., 2012]. In this way, it is necessary to have the active participation

of each user to verify the interlocutors’ authenticity. Unfortunately, many users are

unaware of the risks and potential damage resulting from the exposure of their per-

sonal information, so few are careful to do this type of security check [ABU-SALMA

et al., 2017].

• Integrity and non-repudiation of communication: If the messages exchanged in some

applications can be used as judicial evidence [BRASIL, 2017], it is important to prove

the integrity and non-repudiation of messages and conversation [SCHLIEP; HOP-

PER, 2018]. Not all applications ensure that messages have not been manufactured

or modified and that the conversation has not undergone any changes in content or

order. In a hypothetical situation, if the messages are stored in a central database

and an attacker modifies the records, false evidence can be created. For example,

in Table 1, on the left, we have the authentic chat showing the legitimate messages’

sequence. On the right, we have a modified chat where the messages “Twice a week”

and “No” from B changed order. As we can observe, just this modification changed

all the chat’s meaning.

Table 1: Example of conversation with modified message sequence

Authentic chat
Modified chat

(change order)

A: Do you go to the gym?

B: Twice a week.

A: Do you smoke?

B: No.

A: Do you go to the gym?

B: No.
A: Do you smoke?

B: Twice a week.

Source: Authors.

Even with security vulnerabilities, it is noted that apps have gained greater integra-

tion in the corporate world. In January 2021, BMW Group from Brazil launched a fast

answering service using the Whatsapp application, offering the consumer the opportunity

to ask questions, stay on top of the news, learn about products, check special conditions,

and request proposals [CICHINI, 2021]. In May 2021, Whatsapp allowed payment func-

tion in its IM app system for Brazilians [WHATSAPP, 2021]. The justifications for these
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integrations are popularity, availability, and efficiency of the apps, but security is a sys-

tem characteristic that tends to conflict with others [ELAHI; YU, 2007]. As such, security

often ends up being postponed over usability and performance at systems development.

1.2 Goals

Considering the scenarios described in Section 1.1, this work proposes a solution that

mitigates vulnerabilities and contributes to the security of users and corporations that

use popular instant messaging apps. Thus, the goals of this research are to develop a

communication architecture that is secure and allows to audit the conversations carried

out by smartphones’ IM apps. In particular, it is expected to add the characteristics of

integrity, authenticity, and non-repudiation to the exchanged messages in order to ensure

that the conversations can undoubtedly be audited and validated aiming mainly at the

scenarios of negotiations carried out on the IM platforms. For this, we intend to use

a decentralized instant messaging application [ARAKAKI; LEVY, 2017] and incorporate

some cryptography mechanisms such as public keys and hash chain to allow reliable audits

of the conversations.

1.3 Contributions

As we have seen in Section 1.1, there are some vulnerabilities and points for improve-

ment in the security of instant messaging applications. One of the proposed contributions

is to change this systems architecture to a distributed structure, using peer-to-peer (P2P)

at the connections, then it becomes more independent, resilient, and secure since the ser-

vice is maintained by the network users themselves [KOMO et al., 2018]. However, just

distributing the system does not improve the system’s auditability.

Most instant communication solutions focus on plausible deniability [NELSON; ASKA-

ROV, 2022] , rather than providing auditability among its security services; hence, even in

such a centralized scenario, auditing messages would still not be an easy task (if at all pos-

sible). Then, as a second contribution, we propose a combination of security techniques

in order to obtain integrity, authenticity, and non-repudiation in any instant messaging

app system, whether centralized or distributed. In specific we will use a cryptographic

hash function to create a hash chain, this will generate secure, verifiable, orderly records,

and selective disclosure of messages. An example of a distributed system that uses this

technique to maintain record integrity is the cryptocurrency Bitcoin [NAKAMOTO, 2008]
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and the version control system Git2. Furthermore, we will use PGP digital signatures to

ensure the system’s users’ authenticity and non-repudiation. The first and second con-

tributions are independent and, therefore, can be integrated individually into any instant

messaging application.

1.4 Outline

The remainder of this document is organized as follows. Chapter 2 presents the cryp-

tographic concepts and notations used in the entire document. Chapter 3 defines the

scope of this project and the requirements that must be fulfilled in the work. Chapter 4

comments on the related works present in the literature. Chapter 5 specifies the use cases

necessary to reach this work’s goals. Chapter 6 details the design of the proposed archi-

tecture based on the use cases. Chapter 7 describes a proof of concept (PoC) prototype

implemented. Chapter 8 presents tests results and analyses done with the PoC. Finally,

we conclude in Chapter 9 showing final considerations, publications, and future works.

2<https://git-scm.com/doc>
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2 BASIC CONCEPTS AND NOTATION

In this chapter, we review the building blocks and notation applied in the construction

of our proposed architecture further detailed in Chapter 6. Sections 2.1 to 2.5 explain

security concepts such as cryptographic hash functions, asymmetric-key cryptography,

Diffie–Hellman, and PGP. Section 2.6 present Distributed Hash Table (DHT) used at

network connection. We note that all definitions are quite standard and a reader with a

background in these concepts may skip the following sections.

2.1 Cryptographic Hash Functions

Hash function is a one-way function that can be referred to as a “summary function”.

Given a messageM , the hash function returns a “summary” (or hash)H from this message

M [STALLINGS, 2014]. Hash function presents the following properties:

• Compression: Regardless of the messageM size, the function will return a fixed and

specific size hash H.

• Ease of computation: The computational cost of this function is extremely low. If

you have the message M , it is very easy to calculate your hash H.

Cryptographic hash function has some other properties:

• (First) Preimage resistance: Given the hashH, it must be computationally infeasible

to find the message M that generates H.

• Second preimage resistance: Given a message-hash pair (M ,H), it must be compu-

tationally infeasible to find another message M ′ distinct from M that generates the

same hash H.

• Collision resistance: It must be computationally infeasible to find two different

messages M and M ′ that generate the same hash H.
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Note that the hash depends only on the input data and any minimal changes to it will

result in a completely different output hash. In addition, cryptographic hash functions do

not have secret cryptographic keys, so anyone with the correct input data can generate the

hash. All these characteristics make the cryptographic hash easy to verify, but difficult

to discover the input data.

2.2 Hash Chain

Hash chain is a structure built to ensure the ordering and integrity of a set of informa-

tion. Considering a hash chain with N registered information, if we want to insert some

new information N + 1, we will need to calculate the cryptographic hash of the previous

message N and save this hash together with the new information at the new record of the

chain as illustrated in Figure 4.

Figure 4: Representation of the hash chain structure

Source: Authors.

As mentioned in Section 2.1, any change to the input data of a cryptographic hash

function changes the output hash. Thus, the integrity of each record and the sequence is

guaranteed, because a record depends on these previous records by a cryptographic hash.

2.3 Asymmetric-key cryptography

Also known as public-key cryptography [STALLINGS, 2014], algorithms of this type

have this name because they use two distinct cryptographic keys, one public and one

private. As the name says, all users have a public key that should be widely known by

other users and a secret private key is known exclusively by its owner. A feature of these

keys is that they are logically linked by generation, but it is computationally infeasible to

discover the private key by analyzing its corresponding public key.
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Depending on the key used in the process, the algorithms may perform some actions.

Using the user A’s public key with the algorithms, a user B can encrypt information and

then send a confidential message directed to A. In encrypting information with a public

key, only the correlate private key can decrypt it, as shown in Figure 5.

Figure 5: Asymmetric-key cryptography: encryption

Source: Authors.

The reverse process can also be done and it is known as digital signature. In this

process, the user A uses his private key in encryption algorithms, and using his correlated

public key with the decryption algorithm is possible to verify this signature, as shown

in Figure 6. As everyone can decrypt the information, everyone can check that it was

unquestionably generated by the owner of the private key, thus ensuring the integrity,

authenticity, and non-repudiation of the information.

Figure 6: Asymmetric-key cryptography: digital signature

Source: Authors.

In this context, another important concept is that of digital certificate. This certifi-

cate is an electronic public document that contains information about a public key and its

owner. Based on this document, it is possible to verify the digital signature and link it to

a specific user, so that no one, not even the owner of the key, can deny the authenticity of
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the signature. Therefore, it is important to correctly generate and propagate certificates

among users. An example of a digital certificate is the X.509 standard that is used at

sites with HTTPS protocol.

2.4 Diffie–Hellman key exchange

Diffie–Hellman (DH) key exchange [DIFFIE; HELLMAN, 1976] is a method created to

allow a key agreement over a public network. This method ensures the secure exchange of

information based on discrete logarithm problems that present the following properties:

• Given a, p and x, it is computationally “easy” to calculate y = ax mod p.

• Given a, p and y, it is computationally “hard” to calculate x.

In the Diffie-Hellman key exchange algorithm, the two parties’ users establish an equal

secret using asymmetric-key pair and the discrete logarithm problem. This shared key is

generated using the following parameters:

• q: a prime number;

• p: a prime number such that p− 1 is a multiple of q;

• g: a integer between 2 and p− 2 such that gq mod p = 1

• r: the private key that is an aleatory number between 1 and q − 1;

• u: the public key that is u = gr mod p;

The user A will calculate K = (uB)
rA mod p. And the user B will calculate K =

(uA)
rB mod p. This shared secret K can be used in symmetric-key cryptography for secret

communication between the parts and to ensure privacy. Note that these two calculations

produce identical results by the rules of modular arithmetic.

K = (uB)
rA mod p

= (grB mod p)rA mod p

= (grB)rA mod p

= grBrA mod p

= (grA)rB mod p

= (grA mod p)rB mod p

= (uA)
rB mod p

(2.1)
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2.5 Pretty Good Privacy (PGP)

PGP [ZIMMERMANN, 1995] provides encryption and digital signature mechanisms

through public key cryptography. However, an important feature of this system is that

the authentication of users’ keys is not centralized in a fully trusted Certificate Authority,

like in a Public Key Infrastructure (PKI) model. Instead, it is done in a distributed way,

through a “web of trust” from which the network users themselves verify the authenticity

of each other’s public keys and then sign the certificates they trust. Besides that, each

user can assign a degree of trust to their peers, which indirectly defines the degree of trust

in the public keys contained in the certificates signed by these trusted users.

An example of a web of trust is illustrated in Figure 7.

Figure 7: PGP web of trust

Source: Authors.

In this figure, U1 checks the public keys of users U2 to U5 and then signs the corre-

sponding certificates. Additionally, it assigns a level of trust to each of these users. For

example, when assigning full trust to the user U5, all certificates signed by this user (e.g.,

U9) are automatically trusted. On the other hand, when the level of trust is partial, two or

more signatures are required for the certificate to be considered valid (e.g., the signatures

of U2 and U3 on the U7’s certificate make it be considered valid if the trust in U2 and U3

is 50%). Trust levels are assigned by each user, similar to trust relationships on social

networks.
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2.6 Distributed Hash Table (DHT)

Similar to a common hash table, a distributed hash table (DHT) is a data structure

for efficient storage and search of information organized in the form (K, V), where K is the

indexing key and V is the corresponding value [ZHANG et al., 2013]. A distinguishing

feature of DHTs is that their content is distributed among the various nodes that make up

the network instead of being on a single node. More precisely, nodes whose identifiers are

closest to the indexing keys to be stored are responsible for storing the corresponding data.

This proximity depends on the metric adopted by the algorithm. For greater availability,

storage is usually done with some degree of redundancy (i.e., with data replication); thus,

even if a node leaves the network, DHT information remains available on the remaining

nodes.

Several algorithms can be used to build a DHT network, such as Kademlia [MAY-

MOUNKOV; MAZIÈRES, 2002] and Chord [STOICA et al., 2003]. The main difference

between the algorithms is how the pairs (K, V) are indexed and which is the search strategy

for information on the network.
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3 SPECIFICATION OF PROJECT
REQUIREMENTS

Instant messaging apps have many features beyond just texting. In this chapter, we

will describe the relevant points for this research, define the scope of the proposed work,

and specify the requirements to reach the established goals.

3.1 Scope

Based on the description detailed in Chapter 1, the scope of the project will include:

• Develop a communication architecture with security and integrity mechanisms that

can be incorporated into IM app systems;

• Detail how to allow the IM app’s users to exchange messages using a distributed

P2P communication through DHT;

• Detail how to construct a web of trust using PGP in the IM app system;

• Specify the hash chain content construction detailing how to audit a conversation

chat.

Furthermore, we can add to the project the development of an external system to audit

a chat, checking the hash chain.

The following points present in popular market apps will be excluded from the scope:

• Sending messages containing attached files, photos, videos: This can be abstract as

a text message, then the process to construct the hash chain will be the same;

• Group chats: For this work, we will develop the features for a pair of interlocutors.

However, because of the facility and independency to construct the hash chain, it is

possible to expand our proposal to a group chat, similar to Bitcoin cryptocurrency

blockchain records;
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• Cloud backup system: If the user wants to save a backup of the chats in a cloud

system, it is possible to upload the files from the device. However, our project

will not do this backup by default. The messages’ content privacy will be ensured

because of cryptography. This content just will be exposed when an interlocutor

reveals the messages;

• Web and desktop version: Some IM apps, for example, WhatsApp and Telegram,

present web and desktop versions. For this project, we will not include these fea-

tures. We will focus our architecture on the mobile app version only.

3.2 Requirements

Project requirements are the conditions, features, and tasks that need to be completed

to ensure the success or achievement of the project. Aiming at the proposed goals and the

scope detailed above, we define the following functional and non-functional requirements

for this project.

3.2.1 Functional Requirements

Functional requirements are those that describe the actions that the system must

perform. For this project, the following functional requirements were listed:

• The user must register in the system on its first startup;

• The system must connect the new user to the communication network;

• The system must generate the new user’s keys and announce the public keys to the

network;

• The system must change a user from “OFFLINE” to “ONLINE” status when the

user connects to the communication network;

• User can add a new contact;

• User can chat with a contact;

• In the conversation, the user can send text messages;

• In the conversation, the system must generate the message’s block according to the

hash chain’s rules;
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• When a user A sends a message to a user B ONLINE, user B should receive the

message that should be displayed in the conversation;

• When a user A and a user B send a message simultaneously in the same chat, the

system must handle the conflict in the hash chain construction;

• User can verify the digital certificate of other contacts;

• User can sign the digital certificate of contacts that he trusts;

• The user can verify the integrity of their conversations and prove it to a third party.

3.2.2 Non-Functional Requirements

Non-functional requirements are features and constraints that must be present in the

system, but can not always be achieved by just building code functions. Non-functional

requirements depend on how the system was designed and its physical structure. For this

project, the following non-functional requirements were determined:

• The system must guarantee the integrity of the messages exchanged;

• The system must guarantee the integrity of the conversation records;

• The system must guarantee the confidentiality of messages exchanged on the net-

work;

• The system must guarantee the privacy of the content of the messages until one of

the conversation party expose this content to audit;

• The system must be resilient and resistant to availability attacks;

• The system must present good usability [NAYEBI; DESHARNAIS; ABRAN, 2012]

with an acceptable time performance for communication, in the order of units of

seconds.

• The system must be scalable to support millions of users, similar to the apps avail-

able on the market.
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3.3 Application scenario and target audience

Due to the motivation of this work and the defined requirements, the principal target

audience of this work will be the users of IM apps that use this system for business.

As business, we consider any conversation that involves agreements between the parties,

whether that agreement is financial or not. We will focus on an application scenario when

the parties need a conversation record as proof, so the agreement is not just lip service

based on good faith.

Some application scenarios can be:

• conversation of buying and selling assets;

• official information exchange;

• conversation between customer and service provider that requires protocol record.

Beyond these scenarios, if an IM app user just wants to securely record his conversation

with more integrity and verification mechanisms, this user can use the solution proposed

in this work.
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4 RELATED WORKS

To guarantee the integrity and authenticity of the messages exchanged, most secu-

rity protocols currently used for instant communication do not involve digital signatures,

but only schemes based on symmetric keys [WHATSAPP, 2016; COHN-GORDON et al.,

2017], like Messages Authentication Codes (MACs) and Authenticated Encryption (AE)

[SIMPLICIO et al., 2013]. This is the case with popular apps like WhatsApp [WHAT-

SAPP, 2016], Signal [COHN-GORDON et al., 2017], Telegram [TELEGRAM, 2019], and

Threema [THREEMA, 2021]. For this reason, access to received messages also allows

their manipulation. To manipulate local content, it would be enough:

1. access the memory space where the messages are stored,

2. manipulate the message, and

3. recalculate the authentication data set of the modified message, using the same key

used to verify the original content.

In this case, although it is possible to identify discrepancies between the contents stored

on the devices of the users participating in the communication, it would not be possible

to assess who was responsible for the manipulation (or even if there was a change by more

than one user). This change can be made on purpose or even accidentally, due to la-

tency problems in communication [SCHLIEP; KARINIEMI; HOPPER, 2017; SCHLIEP;

HOPPER, 2018].

In cases where the encryption mechanisms used in communications adopt the client-

server model, in principle, one can verify the occurrence of local manipulations when

comparing them with the data stored on the server itself. However, this is not always

possible in practice, depending on how the application is designed. One example, in

particular, is the case of Telegram, which uses client-server encryption in conversations by

default (i.e., when the "secret chat" feature is not enabled). Although the server actually

stores messages exchanged between users, the application still allows data manipulation

by:
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1. include among its features the ability to delete messages from all users’ devices

and the server, whether those messages are sent by the user who is deleting or not

[TELEGRAM, 2018], and

2. use an authenticated encryption mechanism to protect messages, allowing local ma-

nipulations to be imperceptible after deleting the corresponding messages on the

server [TELEGRAM, 2019].

Figure 8 shows an example of how a conversation could be manipulated using simply

message deletion function and getting a meaning quite different from the original.

Figure 8: Example of conversation with deleted message

Source: Authors using Telegram app.

More complex examples would involve editing messages instead of deleting them.

Figure 9 shows an example of how a conversation’s meaning could be changed just by

editing message’s content.



34

Figure 9: Example of conversation with edited message

Source: Authors using Telegram app.

In the case of applications that use end-to-end encryption, modified conversations

are even more difficult to detect. In particular, one of the main security mechanisms

currently used for this purpose is the protocol developed by the open-source application

Signal, which was formally analyzed in [COHN-GORDON et al., 2017] and is currently

also adopted by other applications, such as WhatsApp [WHATSAPP, 2016]. The main

security feature of this protocol is the high degree of confidentiality of the messages

exchanged: in addition to using end-to-end encryption, the message protection keys are

continually renewed through the mechanism known as “double ratchet" [MARLINSPIKE;

PERRIN, 2016]. As a result of this mechanism, each message is protected by a distinct

and specific key for each pair of users (or, in the case of group conversations, between

each user and the group itself) [MARLINSPIKE; PERRIN, 2016; RÖSLER; MAINKA;

SCHWENK, 2018]. Thus, discovering the key of a message does not allow discovering

keys of past messages, a property known as “forward secrecy” or “future secrecy”; in

addition, the system can “self-regenerate”, preventing future communications from being

compromised even if a key is exposed.

Although this type of mechanism is important for the preservation of users’ privacy, it

compromises the requirements of a corporate scenario where it is wanted to have conver-

sations recorded as reliable documents for later consultations. After all, given end-to-end

encryption, the system does not allow central servers to access the contents of messages, so

there is no tamper-proof environment from which the original messages can be retrieved.
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In reality, some instant messaging applications with end-to-end security even avoid

having a central server, using peer-to-peer (P2P) technologies so that there are no records

of communication metadata (e.g., instants of message sending) [KOMO et al., 2018;

ROGERS et al., 2018; GULTSCH, 2014]. This is the case of Briar app [ROGERS et

al., 2018] that focuses on independence and robustness. They defend server independence

by allowing connection via Bluetooth or Wi-Fi when the Internet is down, and via the

Tor network. Another reason they use the Tor network is to maintain users’ privacy

and avoid possible censorship. Moreover, the messages exchanged in the Briar app are

stored securely just on the user’s device by default, not in the cloud. Conversations app

[GULTSCH, 2014] also focuses on a distributed network system based on XMPP federated

protocol [SAINT-ANDRE, 2011] that allows the user to freely choose a trustworthy server

by themselves while still chatting with contacts that are using other servers. They use

TLS encryption [RESCORLA, 2018] for confidentiality between the user and the chosen

XMPP server and give the user the choice to enable OMEMO [STRAUB et al., 2015] or

OpenPGP [CALLAS et al., 2007] end-to-end encryption mechanisms.

To the best of our knowledge, one of the few works in the literature that takes message

integrity requirements into account after receiving them in instant messaging applications

is the protocol proposed in [SCHLIEP; HOPPER, 2018]. The integrity of the conversation

is guaranteed by the combination of the NAXOS key agreement protocol [LAMACCHIA;

LAUTER; MITYAGIN, 2007] and symmetric encryption protocol authenticated with as-

sociated data, the AES-GCM with random initialization vectors [MCGREW; VIEGA,

2004]. An ephemeral NAXOS key is generated for each message based on the previous

message and then that key is used to encrypt the current message. However, the so-

lution also seeks to provide plausible deniability, i.e., by design it does not provide the

non-repudiation property, leaving an unsatisfactory gap for its use in corporate settings.

The following tables summarize and compare some of messaging apps on the market

mentioned in this section. Table 2 highlights some structural points of the applications.

The first point analyzed is whether the application is open or closed source. From a

security perspective, open sources are better than closed, because it is possible to inspect

them and prevent vulnerabilities and backdoors. The other point highlighted in this table

is the connection architecture adopted. As described in Section 1.1, the system may have

particular vulnerabilities depending on this architecture.
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Table 2: Comparing IM apps structure

App System connection Source code

WhatsApp centralized closed

Telegram centralized open

Threema centralized open

Signal centralized open

Briar distributed open

Conversations distributed open

[SCHLIEP; HOPPER, 2018] distributed –

Source: Authors.

Table 3 focuses on the confidentiality and privacy aspects of conversations. A fact

considered fundamental in this regard is end-to-end (E2E) encryption between the inter-

locutors of the conversation. Among the applications listed, we analyze which ones have

this E2E encryption and which cryptographic algorithms are used.

Table 3: Comparing IM apps confidentiality and privacy mechanisms

App
End-to-end

encryption
Algorithms

WhatsApp
“Yes”

(questionable

implementation)

Signal protocol encryption

(AES256 in CBC mode, HMAC-SHA256, ECDH)

Telegram
Only in

“secret chat”

MTProto’s End-to-End encryption

(SHA-256, AES256 in IGE mode, DH)

Threema Yes
Cryptography library NaCl [BERNSTEIN, 2009]

(ECDH, XSalsa20, Poly1305-AES)

Signal Yes X3DH, HMAC-SHA256, AES256 in CBC mode

Briar Yes
key agreement protocols (BQP and BHP),

BLAKE2b, TLS

Conversations No by default OMEMO, OpenPGP

[SCHLIEP; HOPPER, 2018] Yes AES-GCM with random IV, DH

Source: Authors.

As discussed extensively in this work, Table 4 raises the issue of conversation integrity
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and auditability. In this Table, we analyze if there is a mechanism to verify the integrity

of a conversation, how the users are identified and authenticated at the app network, and

if the system/app has the concern to permit an audit in a conversation.

Table 4: Comparing IM apps audit mechanisms

App
Conversation

integrity

Authenticity

check
Audit

WhatsApp –
Key fingerprint

verification

Plausible

deniability

Telegram –
Key fingerprint

verification

Plausible

deniability

Threema – Threema ID
Anonymity,

Repudiability

Signal --
Key fingerprint

verification

Plausible

deniability

Briar –
Key fingerprint

verification

Plausible

deniability

Conversations –
Key fingerprint

verification

Plausible

deniability

[SCHLIEP; HOPPER, 2018] NAXOS – Deniability

Source: Authors.

In addition to the highlighted features, Table 5 lists some more security features

present in the applications.

Table 5: IM apps others security features

App Others security features

WhatsApp Forward secrecy

Telegram Perfect Forward Secrecy (PFS)

Threema Forward Secrecy

Signal Double Ratchet

Briar Tor unlinkability

Conversations –

[SCHLIEP; HOPPER, 2018] Forward and Backward Secrecy

Source: Authors.
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Based on the goals aimed in Section 1.2, it is noted that the Briar, Conversations,

and [SCHLIEP; HOPPER, 2018] solutions are close to what we want. However, none of

these solutions have all the features we need to comply with the requirements raised in

Chapter 3.
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5 METHODS AND MATERIALS

Based on this work’s proposal, the main materials needed are the following items.

These materials will be used in our proof of concept (PoC) described in Chapter 7.

• A personal computer with access to wireless networks;

• At least three smartphones with Android operating system version 6.0 or higher;

• Wireless network access, for example, using a router with protocol IEEE 802.11g

(Wi-Fi).

Based on this work’s goals, the following use cases were described. They will be

important to model our architecture proposed in Chapter 6.

5.1 Use cases

A use case [GOMAA, 2011] is a software engineering model used to facilitate the

understanding and specification of a system. A use case describes how the user will

interact with the system and how the system will behave. Each use case is represented

as a sequence of simple steps, beginning with a user’s goal and ending when that goal is

fulfilled.

In the following subsections, we describe the main use cases that we want to comply

with in this work. These use cases must agree with the scope and requirements described

in Chapter 3.

5.1.1 Use case: Register new user

This use case will describe the initial registration of a new user in the proposed IM

app system.

Actors: New user.



40

Stakeholders: New user, system users.

Primary actor: New user.

Precondition: New user is not registered in the IM app system.

Poscondition: New user’s connection information is available on the system DHT net-

work for any other user consult.

Trigger: New user starts the IM app for the first time and the system requests a new

register.

Main success scenario:

1. New user starts the IM app for the first time;

2. The IM app requests a username (user ID) and password for the new user;

3. New user informs a user name and password;

4. The IM app generates the new user‘s DSA, PGP, and DH key pairs;

5. The IM app saves safely the new user‘s connection information and public keys at

the DHT network.

Alternative paths:

• If the user name informed is already used (item 3) then the IM app informs that

this user name is not available and requests another user name to continue. The

user name is used as the user‘s identifier which is why its have to be unique in the

network.

• If key pairs can not be generated (item 4) then the IM app presents an error and

cancels the new register.

• If the IM app can not connect with the DHT network, consequently, it can not save

the new user‘s connection information in DHT (item 5), then the IM app informs

connection problem and waits for connection to be established.

5.1.2 Use case: Send a message

This use case will describe what needs to happen to a user sends a message to another

user in the IM app system.
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Actors: Sender, receiver.

Stakeholders: Sender, receiver.

Primary actor: Sender

Precondition: The sender is connected to the IM app DHT network, the receiver is

registered in the IM app’s system and connected to the DHT network, and the sender

knows the receiver’s user ID.

Poscondition: The receiver can read the message that the sender sent.

Trigger: The sender chooses the receiver.

Main success scenario:

1. The sender searches for the receiver on the IM app system’s DHT network.

2. The sender selects the receiver;

3. The sender’s app opens the chat screen;

4. The sender writes the message;

5. The sender hits the send button;

6. The sender’s app prepares the message block;

7. The sender’s app sends the message block;

8. The receiver’s app receives the message block;

9. The receiver’s app decodes and verifies the message block;

10. The receiver’s app shows the message;

11. The sender’s app shows the message;

12. The receiver reads the message.

Alternative paths:

• If the message block can not be generated (item 6) then the system catches an error

and retry to generate the message block.

• If the message block can not be decoded (item 9) then the system catches an error

and informs the sender to resend the message.
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• If the message block check shows as invalid (item 9) then the system discards this

message block and does not shows the message.

5.1.3 Use case: Trust another user

This use case will describe how a user can trust another user and cooperate to create

the PGP web of trust.

Actors: User A who will trust User B.

Stakeholders: All users in the IM app.

Primary actor: User A.

Precondition: User A does not trust User B in the app system.

Poscondition: User A trusts User B.

Trigger: User A verifies who trusts User B.

Main success scenario:

1. User A searches for User B;

2. User A requests to verify who trusts user B;

3. User A’s app shows the User B’s public PGP key and the list of users that trust

User B;

4. User A compares if the User B’s public key is trustworthy or User A believes in the

trust of other users listed;

5. User A confirms that he trusts User B;

6. User A’s app updates the system network;

7. User A is displayed in the list of users who trust User B.

Alternative paths:

• If the public key shown and the public key known are different (item 4) then User

A does not trust User B.

• If there are no users listed that trust User B (items 3 and 4) then User A must

verify User B’s public key before confirming it’s true.
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5.1.4 Use case: Audit a chat

Actors: Interlocutor A and the auditor.

Stakeholders: Interlocutor A, interlocutor B, the auditor, and anyone outside the con-

versation that wants to confirm what was chatted about.

Primary actor: The interlocutor that wants to show the chat for the auditor, in this

case, let’s suppose that is interlocutor A.

Precondition: The auditor does not know the messages exchanged between interlocutor

A and interlocutor B’s chat.

Poscondition: Anyone outside the conversation (represented by the auditor) comes to

confirm the content of the conversation.

Trigger: Interlocutor A wants to prove to the auditor what was chatted between inter-

locutor A and interlocutor B.

Main success scenario:

1. Interlocutor A shows to the auditor the messages that A wants to be audited,

informing messages’ plain text, related hashes, and signatures.

2. The auditor reconstructs the messages’ blocks (hash chain sequence);

3. The auditor compares if the generated hashes are equal to the received hashes;

4. The auditor verifies if the signatures are genuine;

5. The integrity, authenticity, and non-repudiation of the conversation between inter-

locutors A and B are proven.

Alternative paths:

• If the reconstructed and the received hashes chain are different (item 3) then the

reported conversation does not match the real conversation.

• If the signature is fake (item 4) then the information received from interlocutor A
can not be used to audit.
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6 PROPOSED ARCHITECTURE

The proposed architecture has two main parts: the connection network between users

and the underlying cryptographic security structure. The connection network, based on

DHT, is responsible for managing the information that allows the connection between

users. The security structure guarantees the confidentiality, integrity, and authenticity of

messages, as well as the identification of interlocutors and the auditing of conversations.

As it is not a new communication protocol, the proposed architecture can be incor-

porated in parts by others IM app systems. The modules of distributed connection with

DHT, PGP web of trust, and chat integrity with hash chain are all independent and each

one has a specific contribution to meet the requirements.

6.1 Connection network

One of the roles of the central server in existing instant messaging applications is to

facilitate the connection between users. In this work, the connection will be done through

a DHT network in a distributed architecture. This network will store the users’ connection

information and, thus, make P2P communication viable.

More precisely, each user must select a unique username uname on the network. For

each user, two pairs of index keys (K) and value (V) will then be stored:

1. K=Hash (uname): your public domain keyKD is stored in V. This allows the creation

of “protected domains”, in which only the owner of KD can edit the information

stored in the node indexed by KD (e.g., for which K = Hash (KD)). This also

ensures that only one user can be associated with each uname: if the name already

exists, the network refuses to change the corresponding public key KD unless that

change request is signed by KD itself, similarly to what occurs in the Self-certifying

File System (SFS) [MAZIÈRES, 2000].

2. K = Hash (KD): the necessary information is stored in V to establish communication
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with the user and verify his identity, also in the form of a protected domain usingKD.

Specifically, the prototype will store the user’s IP address and port, as well the user

DH and PGP public key and corresponding certificates to protect communications

between users. This gives users support for mobility since the owner of KD (and

only him) can change their connection information at any time.

The following Table 6 summarize the key-value pair of information stored in the

DHT for each user in the app system. Item 2 described above was divided into lines from

2 to 4 of the following table, and each key was differentiated using a keyword (id). This

division was made only by choice of project and organization, these three information can

be stored in a single “object” with three attributes using only the KD key as described in

item 2.

Table 6: Information stored in the DHT

Nº Key3 Value

1 uname User’s ECDSA public key4

2 idAddress + User’s ECDSA public key User’s IP address and connection port4F

3 idPGP + User’s ECDSA public key User’s PGP public key4F

4 idECDH + User’s ECDSA public key User’s ECDH public key4F

Source: Authors
4 Protected write, F Protected read.

Note that ECDSA, PGP, and ECDH algorithms need an asymmetric key pair to

work. This key pair does not necessarily have to be individual to each algorithm, it

is theoretically possible to use the same key pair for all three in the system. However,

we propose separation for convenience reasons, since each key in principle has different

purposes and, therefore, may have different configurations (e.g., expiration dates).

Using this infrastructure, when a user A wants to communicate with B, a DHT search

is executed based on some of the existing algorithms (e.g., Chord, Kademlia). When

obtaining the connection information of user B, A can create a direct P2P connection

via socket, so that all communication goes directly between the parties without a central

server to forward messages. This approach avoids bottleneck problems and protects the

service from possible DoS attacks.

To communicate with any user on the app system, you only need to know at least one
3Remember that the actual key are the hashes of the information presented in key column.
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user on the DHT network. For example, this can be done through the invitation of a user

who already uses the application, or through web pages, to facilitate the sign up of new

users. However, this work’s prototype will use a tracker server, a device commonly used in

P2P networks for this purpose. Thus, the tracker is a node (or set of nodes) with a fixed

IP address known initially to all nodes entering the network, as this information is directly

recorded in the application itself. Although trackers create some degree of centralization

in the network, their unavailability only delays the entry of new nodes (users) in the

network without actually preventing such entries or affecting communications between

previously registered users.

Figure 10 shows how the User A establish a connection with the tracker server to

obtain User B’s information and then establish a connection with the User B. This

diagram also shows how the User C can establish a direct connections with the User B

without using the network tracker.



47

Figure 10: Sequence diagram of proposed app’s connection architecture

Source: Authors.

6.2 Security structure

Using a DHT network, we can remove the dependency of a central server and distribute

the service, improving the availability and resilience of the service, but this does not

guarantee the security of the communications itself. For this, we propose to use a PGP

web of trust whose information (public keys and certificates) will be stored in DHT as

described in Section 6.1. Then these keys will be used to encrypt the messages, sign the

message’s blocks and verify the authenticity of the parties, according to the degree of

trust defined by the PGP user.

In order to ensure auditability in instant messaging systems, this work proposes to use

chained and signed cryptographic hashes [HU; JAKOBSSON; PERRIG, 2005]. Conside-
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ring a sequence with N registered messages, to insert a new message N+1 it is necessary

that the new record presents the new message and the cryptographic hash of the pre-

vious record N . The last information is then signed, allowing any manipulation to be

detectable.

In addition, instead of saving the massage’s plain text in the blocks, we propose to use

a pseudorandom function (PRF) to save messages’ identifiers X , for example, using a hash

function and saving message’s hash in the blocks. This allows a selective disclosure of

messages, improving system privacy, so that only the messages to be audited are exposed

and not the entire conversation. Thus, the chain grows from left to right, as illustrated

in Figure 11.

Figure 11: Hash chain structure for messages. Assuming that user 1 sent messages N and
N+1, only his last signature needs to be stored

Source: Authors.

More formally, we have the following logic for creating the chain of messages of a

conversation (note that each blockn is digitally signed):

1. block0 = (∅, X1), where ∅ is a string of bits filled with zeros, indicating the beginning

of the communication, and X1 = prf(M1+seed+ i1) when M1 is the conversation’s
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first message, seed is the DH key exchanged in the chat, and i is the counter of

messages in this chat;

2. blockn = (hn−1, Xn), for n ≥ 1, where hn−1 = Hash(blockn−1) and

Xn = prf(Mn + seed+ in) when Mn is the conversation’s n-th message.

Notice that we propose to use ∅ zeros values over an Initialization Vector (IV) in the first

block. A reason for this choice is that we do not need a security number in this part to

ensure the security of the system, so the ∅ value is enough and demands fewer computer

resources than an IV. Another reason is that with the ∅ we can be sure that it is the start

of the chain, preventing improper messages to be added before the first register.

Figure 12 shows what happens when a User A sends a message to a User B. First,

we have the processes in A to generate the message. User A will input the message that

he wants to send. Then the system will generate the value X related to this message,

generates this message’s block, and finally signs this block with User A private PGP key.

The message will be end-to-end encrypted using the User B public PGP key and be sent

together with the message’s block and this signature. When User B receives this data,

the system decrypts the message with User B private PGP key and generates the value X
and the message’s block related to this message. Next, it will compare the block received

with the block generated and verify the signature received using User A public PGP key.

If everything is correct, this message is saved and displayed to User B.
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Figure 12: Sequence diagram of proposed app’s conversation dynamics

Source: Authors.

Due to the properties of cryptographic hashing algorithms, any change in the input

data leads to changes in the algorithm’s output hash. In this way, a sequential link is cre-

ated that ensures the integrity of each individual record and also the order of the records.

At the same time, if the last signature in the chain is valid, this is sufficient to ensure

the complete conversation’s non-repudiation, so that previous signatures of the same user

can be discarded, optimizing memory use. Signatures of other users, who sent previous

messages, must be preserved to ensure non-repudiation up to that point of the communi-

cation. By using such structure for exchanging messages between users, it allows reliable

audits of conversations by anyone who has access to a sequence of exchanged messages,

just reconstructing the chain and checking each block’s hashes and final signatures.

If the intention is to reveal only a portion of messages, omitting previous and sub-
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sequent blocks, then the integrity check of the revealed content is still possible as long

as the digital signature for the last block is available. In this case, only the value X of

the omitted messages would be available for analysis, which would not allow the recovery

of the message itself except for possible brute force attacks (e.g., testing several possible

messages).

6.2.1 Analysis of the records’ integrity with the proposed hash
chain

Suppose a small part of the conversation, as illustrated in Figure 13. In this sce-

nario of instant messaging, the following attacks are prevented by the proposed structure,

assuming that at least one of the interlocutors is honest.

Figure 13: Messages chat hash chain

Source: Authors.

• Editing message content : Replacing the message Mn with a message M ′
n, where

Mn 6= M ′
n, we have hn = H(hn−1 +Xn) and h′n = H(hn−1 +X ′n), so that hn 6= h′n.

When calculating the hash of the record n with the edited message M ′
n, you get h′n,

which is different from the value hn saved in the record n + 1 and digitally signed.

Figure 14 presents an example of a scenario in which M2 is changed to M ′
2. When

calculating the hash of record 2, you get h′2, which differs from the value h2 saved

in record 3 with overwhelming probability, it’s evidenced a change between records

2 and 3.
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Figure 14: Conversation with an edited message

Source: Authors.

• Changing the messages’ order : Given the sequence of messages Mn−1, Mn, Mn+1,

and Mn+2, suppose the order change between the messages Mn and Mn+1. The

change generates three points of divergence from the hashes: just before the records

exchanged, between the records exchanged, and just after the records exchanged.

Figure 15 shows as an example a change ofM2 withM3 positions. When calculating

and comparing the hashes sequence, there is an incompatibility between the records,

as illustrated.

Figure 15: Conversation with messages’ order changed

Source: Authors.

• Removing messages : If some messageMn is removed from the conversation, then the

sequence of records would jump fromMn−1 toMn+1. The recordMn−1 generates the

hash hn−1, while the record Mn+1 has the hash hn saved, thus showing the change.

Figure 16 shows the removal of the message M2 as an example. When calculating

the hash of record 1, you get h1, which differs from the value h2 saved in record 3.

Thus, a change between records 1 and 3 is detected.
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Figure 16: Conversation with deleted message

Source: Authors.

• Inserting messages : If the message Mn.5 is inserted in the conversation, then the

sequence of records would be Mn, Mn.5, and Mn+1. The new record of the message

Mn.5 must contain the hash hn to keep the sequence consistent. However, the record

Mn+1 also has the hash hn and not hn.5, showing the change. Figure 17 shows the

insertion of the message M2.5 as an example. When comparing the hash of record 2

with the one saved in record 2.5, it is noticed that they are compatible. However,

the h2.5 hash diverges from the h2 value saved in record 3, showing that there is

some change between records 2.5 and 3.

Figure 17: Conversation with an inserted message

Source: Authors.

It is relevant to note that, in all examples, the architecture is robust for identifying

violations of conversation integrity, although it cannot (and is not its purpose) reverse

the detected changes. Besides, what guarantees that the hashes of the altered messages

cannot replace the original hashes in the chain is the fact that the block at the end of

the chain is always digitally signed by the sender of that message. At the same time, this

guarantees authenticity and non-repudiation in communications.
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6.2.2 Collision case: Agree-to-Disagree algorithm

In addition to all the cases raised before, there is one more case that we need to

consider: messages collision. If User A and User B send messages simultaneously, during

the constructions of these messages’ blocks, both will refer to the same previous block. The

way the system was specified until here, this collision would be considered a wrong block,

and the received messages would be discarded, however, we know that these messages

are authentic and just a collision happened. To handle these cases we propose a solution

named “agree to disagree” (AtD) that will accept a punctual and temporary fork in the

chain.

Figure 18 demonstrates an example of collision and how this is handled with the AtD.

In the first line, we have the order of blocks seen by used A and the second line is the

order from user B’s view. For ease of understanding, in this diagram, we constructed the

blocks with the message text on the left and the previous block pointer on the right. Block

written by User A is identified as An and by User B as Bn. The chain is the same for

both users until block B1 then we detect a collision between blocks A2 and B2, because

both points to block B1 as the previous block. Afterward, recognizing the disagreement

in the chain, the system will generate an "agree to disagree" (AtD) special block that

will inform which sequence they see after B1. And finally, the next block generated after

the AtDs blocks will officialize the accepted sequence, remembering that each block is

digitally signed. In this case, User A created the block A3 that pointed to AtDB, making

official the sequence presented in the User B view.

Figure 18: Example of message blocks’ collision

Source: Authors.

In Figure 19, we have a state machine showing how the system will deal with the

blocks in the different possible situations. The system will be waiting for a new message

in the initial state, and when this message is received we can have the following cases:
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• Ideal case: The system confirms that message, hash, and signature are correct, then

it saves all the data and returns to the initial state.

• Collision case: The system identifies a hash collision and confirms the message is

authentic by the signature. Then the system will stay in a specific state to deal with

the collision. In this state, it will receive and verify all blocks (can be more than

one after collision detection) then at the end the system will generate and send the

special block AtD and return to the initial state.

• Invalid case: If the system identifies some conflicting information in the message

decryption, signature, or block’s hash, it will discard this message and return to the

initial state.

Figure 19: State machine for handling message blocks’ collision

Source: Authors.
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7 PROOF OF CONCEPT

Following the architecture proposed in Chapter 6, due to its complexity, we choose to

develop two proof of concept (PoC) for this work. Each PoC was developed focusing on

different tests described in Chapter 8.

7.1 Android app PoC

At first, we developed an Android app as a PoC, and the technologies and software

used for this implementation were:

• Distributed messaging app with P2P communication developed in a course con-

clusion monography presented to Escola Politécnica of Universidade de São Paulo

in 2017 [ARAKAKI; LEVY, 2017], available in the following GitHub repository

<https://github.com/brunoarakaki/mensageiro-p2p>;

• Java SE Development Kit 8;

• Development environment Android Studio version 3.0.1;

• Development environment Eclipse Neon and Oxygen.

The implementation was carried out on the Android operational system, given that

this platform is almost 6 times more widespread than the second largest competitor, iOS

[GARTNER, 2018], in addition, Android has extensive documentation and a very active

developer community.

The base app [ARAKAKI; LEVY, 2017] uses two open source libraries: TomP2P

[BOCEK, 2004] and Spongy Castle [TYLEY, 2014]. Basically, the TomP2P library is re-

sponsible for creating the DHT network using the Kademlia algorithm, while the Spongy

Castle library manages user certificates and digital signatures, and encrypts messages
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using PGP. Because of some library functions, the application requires an Android op-

erating system version 6.0 or higher. Figure 20 shows some screens from the application

developed by [ARAKAKI; LEVY, 2017].

Figure 20: Screenshot of the app developed by [ARAKAKI; LEVY, 2017]

Source: [ARAKAKI; LEVY, 2017].

Modifying the [ARAKAKI; LEVY, 2017] app, we insert the hash chain structure to

create the whole conversation records. For this purpose, the Spongy Castle library and

the java.security package were also used and the SHA3-256 algorithm [NIST, 2015] was

used to calculate the system hashes, and the ECDSA algorithm [JOHNSON; MENEZES;

VANSTONE, 2001] with the secp256 curve [Certicom Research, 2000] for digital signa-

tures, giving the system a 128-bit security level. Thus, each message has the hash of the

previous message and this information is displayed in hexadecimal as shown in Figure 21.
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Figure 21: Screenshot of PoC Android

Source: Authors.

The messages of the conversations are saved only on the devices that exchanged the

messages and the audit can only be carried out if any of the interlocutors decides to

show the information to third parties who can reconstruct the hash chain and verify its

veracity. It is not possible to audit the conversation without the permission of one of the

interlocutors due to the end-to-end encryption used in communications.

This PoC does not present the selective disclosure and agree-to-disagree features. This

partial result was published at [KOMO; SIMPLICIO JR., 2019]. This PoC is available in

the following GitHub repository <https://github.com/Erina-chan/app_eri-chain>.

7.2 Python chat PoC

For hash chain audit tests we developed a PoC of an instant message chat on desktop,

using Python 3 and Slyther: an encrypted peer-to-peer messaging platform written in

Python, available in the following GitHub repository <https://github.com/ajstensland/

slyther>. In this PoC the focus is the hash chain, so we inserted hash chain structure and
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agree-to-disagree logic in the system, hence, it does not present the PGP web of trust.

This modified version is available in the following GitHub repository <https://github.

com/Erina-chan/hashchat>.

Figure 22 presents some screenshots from the Slyther modified, where screens 1 and

2 are user erina’s server and client respectively, and screens 3 and 4 are user computer ’s

server and client respectively.

Figure 22: Screenshot of PoC Python

Source: Authors.

Due to the structure of Slyther, all the records are saved in a local encrypted JSON4.

We add a function that exports just the hash chain’s information to another JSON file

that will be accessed during the audit.

4https://www.json.org/json-en.html
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8 TESTS AND VALIDATIONS

As described in Chapter 7, we developed two PoC to perform different tests on each

one. All efficiency tests were performed in Android PoC, the platform proposed to be

used by the IM chat system. In Python PoC, we focused to prove the integrity of the chat

construction and how the scheme permits to audit the chat as we proposed in this work.

8.1 Functional Validation Tests

After the PoC implementations, tests were carried out to verify the functioning of the

systems in order to ensure that the functions initially existing were maintained and the

functions developed worked as expected.

8.1.1 Android PoC

Based on the [ARAKAKI; LEVY, 2017] work and the use cases raised in Section 5.1,

the following tests were performed at the Android PoC:

1. User does his first registration in the app;

2. User connects on the DHT network using a tracker;

3. User establishes a connection with another user in the DHT network;

4. Users exchange messages;

5. Compare the construction of the hash chain of the conversations on users’ devices;

6. Test to sign other users’ digital certificate at PGP web of trust.

For this test, the tracker server was run on a notebook and the developed PoC app

was installed on three LG K10 smartphones with Android operational system version 6.
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The TP–Link TL–WR542G router was used to provide wireless network using protocol

IEEE 802.11g (Wi-Fi) considering two scenarios:

1. LAN network: the tracker and the three cell phones are connected to the same local

network without Internet.

2. Network with NAT: the tracker and cell phones are connected to two different wire-

less networks using protocol IEEE 802.11g.

For scenario 1, the functionality tests were satisfactory. Initially, the app established

connections, exchanged messages end-to-end encrypted, and allowed verification and sign-

ing of digital certificates by the PGP web of trust. After the modifications for PoC with

the insertion of the hash chain, the sending and recording of the messages must obey the

chain creation rules with the due checks of the hashes. In tests, the app has proved to be

consistent and the checks are performed correctly.

For scenario 2, the connection between the devices has not been established as ex-

pected. It will be necessary to check how the connection is configured in the case of IPv4

NAT networks, and it is also interesting to consider the use of IPv6 to establish the con-

nection. Other interesting future test is to use mobile communication via 3G, 4G/LTE,

and 5G, also test with same and different carrieres.

8.1.2 Python PoC

Based on the Slyther and use cases raised in Section 5.1, the following tests were

performed at the Python PoC:

1. User does his first registration in the app;

2. User establishes a connection with another user in the network;

3. Users exchange messages;

4. Compare the construction of the hash chain of the conversations between the users;

and

5. Export the hash chain in a JSON file.

For these tests, we run two GNU/Linux instances of containers in Docker5 to perform

two users, and the functionality tests were satisfactory. The chat established connections
5https://www.docker.com/
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and exchanged messages end-to-end encrypted. After the insertion of the hash chain in

the Slyther chat system, the sending and recording of the messages must obey the hash

chain creation rules with the due checks of the hashes. We also inserted the selective

disclosure and agree to disagree, and the chat has proved to be consistent and the

checks are performed correctly.

8.2 Efficiency analysis: Android benchmarks

In addition to the latency normally found in any network connection, a critical part

that determines the latency time of the proposed app’s network is the search time in

the DHT network. In this work, the Kademlia algorithm was chosen due to its high

performance and scalability [CHÁVEZ; CORTÉS; GUERRERO, 2015]. In particular,

searching for any key in Kademlia involves querying (iterative) to O(lg n) nodes, where

n is the full size of the network. Numerical values were not measured for this case due

to a lack of time and resources such as a considerable scalable number of devices and

emulating systems.

To estimate the efficiency of the IM chat system with all the modifications that we

proposed, we created a benchmark for each security function (SHA3, ECDH, ECDSA,

PGP), and these functions were executed 500 times at four different devices. In Table 7

we described the devices used, their commercial name, the release year, the Android

version in the devices tested, and RAM memory and CPU resources.

Table 7: Specification of the test devices

Device name Android RAM memory CPU

Samsung Galaxy J2 Prime (2016) 6 1.5 GB 1.4 GHz Quad-Core

How HT-705 tablet (2018) 7.1 1 GB 1.2 GHz Quad-Core

Xiaomi Redmi Note 7 (2019) 10 4 GB 2.20 GHz Octa-Core

Samsung Galaxy A22 (2021) 12 4 GB 2 GHz Octa-Core

Source: Authors.

Tables 8 and 9 present the time statistics from ECDSA signature and verification tests

respectively. As expected, the verification function takes longer than the signature, and

on newer devices with better resources, the absolute time is minor and the time difference

between signature and verification gets bigger.
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Table 8: ECDSA signature benchmark

Device Mean (ms)
Standard

deviation (ms)
Median (ms)

Samsung Galaxy J2 Prime 6.738 0.549 7.000

How HT-705 tablet 10.472 4.148 9.000

Xiaomi Redmi Note 7 0.498 0.527 0.000

Samsung Galaxy A22 0.386 0.487 0.000

Source: Authors.

Table 9: ECDSA verification benchmark

Device Mean (ms)
Standard

deviation (ms)
Median (ms)

Samsung Galaxy J2 Prime 7.594 0.722 8.000

How HT-705 tablet 11.576 4.981 10.000

Xiaomi Redmi Note 7 0.780 0.464 1.000

Samsung Galaxy A22 0.704 0.456 1.000

Source: Authors.

Table 10 presents the statistics from ECDH key exchange times. As we can observe,

on newer devices the times are close to 1 millisecond, interfering very little with the user

experience.

Table 10: ECDH key exchange benchmark

Device Mean (ms)
Standard

deviation (ms)
Median (ms)

Samsung Galaxy J2 Prime 13.884 2.552 13.000

How HT-705 tablet 15.320 14.653 12.000

Xiaomi Redmi Note 7 1.578 1.683 1.000

Samsung Galaxy A22 1.202 1.598 1.000

Source: Authors.

Tables 11, 12 and 13 present mean, standard deviation and median statistics, respec-

tively, related to the 256 bits SHA3 hash function. In these tests, we executed the SHA3
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with 6 different sizes of inputs 500 times each. In our system, the hash input will be the

message exchanged in the IM chat, so we tested messages with 5, 50, 100, 200, 500, and

1000 characters. As we expected, the message’s size does not interfere significantly and

the times are very short. A highlight for messages with 1000 characters, which is con-

sidered a very long message and which will rarely be sent in message exchange systems

by smartphone apps, however, the measured times are reasonable in terms of usability.

A comparison, on the social network Twitter, the publication’s characters limit is 280

characters6.

Table 11: SHA3-256 benchmark mean times (ms)

Message’s size

(#characters)

Samsung Galaxy

J2 Prime

How HT-705

tablet

Xiaomi

Redmi Note 7

Samsung

Galaxy A22

5 0.310 1.018 0.068 0.060

50 0.254 0.298 0.020 0.024

100 0.272 0.238 0.024 0.032

200 0.470 0.340 0.042 0.024

500 0.904 0.742 0.058 0.042

1000 1.822 1.066 0.088 0.072

Source: Authors.

Table 12: SHA3-256 benchmark standard deviation times (ms)

Message’s size

(#characters)

Samsung Galaxy

J2 Prime

How HT-705

tablet

Xiaomi

Redmi Note 7

Samsung

Galaxy A22

5 0.504 1.554 0.260 0.246

50 0.435 0.503 0.140 0.153

100 0.445 0.426 0.153 0.176

200 0.503 0.474 0.201 0.153

500 0.308 1.586 0.234 0.201

1000 0.463 2.095 0.283 0.258

Source: Authors.

6Counting characters when composing Tweets. <https://developer.twitter.com/en/docs/
counting-characters>
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Table 13: SHA3-256 benchmark median times (ms)

Message’s size

(#characters)

Samsung Galaxy

J2 Prime

How HT-705

tablet

Xiaomi

Redmi Note 7

Samsung

Galaxy A22

5 0.000 1.000 0.000 0.000

50 0.000 0.000 0.000 0.000

100 0.000 0.000 0.000 0.000

200 0.000 0.000 0.000 0.000

500 1.000 1.000 0.000 0.000

1000 2.000 1.000 0.000 0.000

Source: Authors.

Table 14 presents the statistics related to the signature used in the PGP web of trust

tested in the four devices.

Table 14: PGP signature benchmark

Device Mean (ms)
Standard

deviation (ms)
Median (ms)

Samsung Galaxy J2 Prime 88.806 3.617 87.000

How HT-705 tablet 57.724 2.649 58.000

Xiaomi Redmi Note 7 22.062 1.721 21.000

Samsung Galaxy A22 22.620 0.648 23.000

Source: Authors.

Tables 15, 16, 17 and 18 present the statistics related to the encryption using PGP

in the four devices tested. We measured 500 times the signature in the same 6 different

sizes of messages used in the SHA3 tests. In this case, encryption is important due to

the end-to-end encryption in the IM chat, so the message size can be relevant. As we can

observe, the larger the message, the longer the encryption time, but the time difference

is still very small.
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Table 15: PGP encryption benchmark in Samsung Galaxy J2 Prime

Message’s size

(#characters)
Mean (ms)

Standard

deviation (ms)
Median (ms)

5 4.198 0.956 4.000

50 4.240 0.531 4.000

100 4.258 0.707 4.000

200 4.386 0.530 4.000

500 4.740 0.544 5.000

1000 5.292 0.561 5.000

Source: Authors.

Table 16: PGP encryption benchmark in How HT-705 tablet

Message’s size

(#characters)
Mean (ms)

Standard

deviation (ms)
Median (ms)

5 10.706 4.391 9.000

50 8.574 1.117 8.000

100 9.198 3.074 9.000

200 8.786 0.976 9.000

500 9.570 2.259 9.000

1000 9.866 0.963 10.000

Source: Authors.

Table 17: PGP encryption benchmark in Xiaomi Redmi Note 7

Message’s size

(#characters)
Mean (ms)

Standard

deviation (ms)
Median (ms)

5 3.926 0.986 4.000

50 5.326 1.563 6.000

100 6.056 0.530 6.000

200 5.952 0.523 6.000

500 6.044 0.535 6.000

1000 6.156 0.521 6.000

Source: Authors.
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Table 18: PGP encryption benchmark in Samsung Galaxy A22

Message’s size

(#characters)
Mean (ms)

Standard

deviation (ms)
Median (ms)

5 2.584 0.927 2.000

50 2.870 1.202 2.000

100 4.072 0.774 4.000

200 4.036 0.771 4.000

500 4.100 0.833 4.000

1000 4.116 0.794 4.000

Source: Authors.

Tables 19, 20, 21 and 22 present the statistics related to the decryption using PGP

in the four devices tested. Being the reverse process of the encryption, we performed the

same test for the decryption. Same to encryption, the decryption times increase a little

according to the message size increase.

Table 19: PGP decryption benchmark in Samsung Galaxy J2 Prime

Message’s size

(#characters)
Mean (ms)

Standard

deviation (ms)
Median (ms)

5 89.952 4.850 88.000

50 89.710 3.870 88.000

100 90.354 4.637 88.000

200 90.022 3.898 88.000

500 90.980 4.306 89.000

1000 92.046 4.367 90.000

Source: Authors.
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Table 20: PGP decryption benchmark in How HT-705 tablet

Message’s size

(#characters)
Mean (ms)

Standard

deviation (ms)
Median (ms)

5 66.982 9.949 65.000

50 60.966 3.807 61.000

100 63.948 12.076 62.000

200 61.518 3.372 61.000

500 64.140 9.775 62.000

1000 63.142 3.726 63.000

Source: Authors.

Table 21: PGP decryption benchmark in Xiaomi Redmi Note 7

Message’s size

(#characters)
Mean (ms)

Standard

deviation (ms)
Median (ms)

5 13.160 1.796 13.000

50 19.284 5.247 22.000

100 22.726 1.229 22.000

200 22.714 1.210 22.000

500 22.894 1.282 22.000

1000 23.214 1.452 23.000

Source: Authors.

Table 22: PGP decryption benchmark in Samsung Galaxy A22

Message’s size

(#characters)
Mean (ms)

Standard

deviation (ms)
Median (ms)

5 13.140 2.317 13.000

50 15.808 5.691 12.500

100 24.448 1.571 24.000

200 24.392 1.626 24.000

500 24.464 1.695 24.000

1000 24.612 1.557 24.000

Source: Authors.



69

If we consider all the processes to send and receive a message in the proposed system,

we have the sum of times (ECDH exchange + 3 x SHA3-256 + PGP encryption + ECDSA

sign) to the sending and the sum of times (ECDH exchange + 3 x SHA3-256 + ECDSA

verify + PGP decryption) to the receiving. For calculation, consider the newest device

tested (Samsung Galaxy A22) and a message with 100 characters. If we add the respective

average times, we have about 5.756ms to the sending and 26.450ms to the receiving,

generating a total time of 32.206ms. In the literature, [KEATES, 2016; FUNK et al.,

2020] says that the better response time is ≈250ms, and [FUNK et al., 2020] considers

that the most accepted time range is between 0s and 2s. Seeing out benchmark times, we

conclude that the system proves to be efficient enough for the standards in the literature.

8.3 Integrity and auditing testing of conversations

Based on Section 6.2.1, we tested each scenario in the Python PoC. First, we created

a chat presented in Figure 23 that generate the hash chain presented in the followed

Figure 24.
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Figure 23: Chat generated in the Python PoC

Source: Authors.
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Figure 24: Hash chain generated in the Python PoC

Source: Authors.

We developed an independent script to validate and audit a hash chain inputted.

This script is also available in the project’s GitHub at <https://github.com/Erina-chan/

hashchat/blob/main/slyther-audit.py>. The script checks the chain’s last signature then

it starts to ask from what message it will start to audit and what is this message’s content.

With this data, the script calculates and compares it with the information in the hash

chain received, and this process repeats until the end of the chain. Figure 25 presents a

partial audit with correct information.

Figure 25: Auditing the chat with correct messages

Source: Authors.
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Executing the same script in the scenarios described in Section 6.2.1, the results are:

• Editing message content : For this test, we just informed a different message’s con-

tent. The system expected test 2, but we inputted test 2.5. As you can see in

Figure 26, the difference with the hash chain record is identified and the script ends

stating that it has identified an inconsistency.

Figure 26: Auditing the chat with a different message

Source: Authors.

• Changing the messages’ order : For this test, we changed the fourth message (test

2) with the fifth message (test 3) position. Figure 27 presents the hash chain used

to audit with the fourth and the fifth registers’ position changed.

Figure 27: Hash chain modified: changing the fourth and the fifth registers

Source: Authors.
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As you can see in Figure 28, we informed correctly the content test 3 in the fourth

position, however, when the system compares the previous block’s hash calculated

with the expected, it identifies an inconsistency.

Figure 28: Auditing the chat with message order changed

Source: Authors.

• Removing messages : For this test, we deleted the fourth message (test 2). Fi-

gure 29 presents the hash chain used to audit where the fourth register was deleted.

Figure 29: Hash chain modified: deleting the fourth register

Source: Authors.

As you can see in Figure 30, we informed correctly the messages’ content without
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test 2, nevertheless when the system compares the previous block’s hash calculated

with the expected, it identifies an inconsistency.

Figure 30: Auditing the chat with message deleted

Source: Authors.

• Inserting messages : For this test, we added in the fourth position a message (new

text add). Figure 31 presents the hash chain used to audit where the fourth register

was added with the third block’s hash and “new text add” ’s message_x code.

Figure 31: Hash chain modified: adding a new the fourth register

Source: Authors.
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As you can see in Figure 32, we informed correctly the messages’ content, and the

new message new text add was considered correct. However, when the system ve-

rifies the next message (text 2) and compares the previous block’s hash calculated

with the expected, it identifies an inconsistency.

Figure 32: Auditing the chat with message added

Source: Authors.

As we described, during an audit, the system just identifies the possible modification,

it does not present the exact modification. For example, as we can see, the Figures 28

and 30 present the same output in the audit, then with just this information, we can not

know what was the modification. The only certainty is when the audited chat is correct

and complete, and we do not aim to identify what was the modification or what was the

original plain text.

In addition to these scenarios, we also tested performing an audit with a collision

in the chat. For this test, we developed another independent script to validate and

audit a hash chain and this script is also available in the project’s GitHub at <https:

//github.com/Erina-chan/hashchat/blob/main/slyther-audit-atd.py>. This script does

the same audit as the previous one and also handles the scenario with the collision.

Figure 33 show the audit of the full chat used in the previous tests.
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Figure 33: Auditing the full chat with correct messages’ content

Source: Authors.

To generate the chat with collision we used the script available in the project’s

GitHub at <https://github.com/Erina-chan/hashchat/blob/main/atd-script.py>. Fi-

gure 34 shows the chat created, as we can see, the collision is present in the fourth and

fifth positions, and Figure 35 presents this chat’s respective hash chain. Due to collision,

the hash chain presents a “agree-to-disagree (AtD)” block with the hashes of each block

in the sequence seen by each interlocutor.
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Figure 34: Chat generated with collision in the Python PoC

Source: Authors.
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Figure 35: Hash chain generated from chat with collision in the Python PoC

Source: Authors.

So in Figure 36 was realized a partial audit starting from the fifth message “let’s

play”. First, we executed the test with the correct messages’ content (“let’s play” and

“now”), these data were validated and all the hash chain remainder also were checked and

returned “All records are correct”. Second, we ran the same test but with the wrong

message’s content (“let’s play” and “fine”), the script identified the inconsistency and

returned “May happened a change in the records”.
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Figure 36: Partial audit tests from chat with collision

Source: Authors.

Next, we realized a partial test starting after the collision ended. From Figure 37 we

can see that everything was checked correctly.

Figure 37: Partial audit test starting after collision

Source: Authors.
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And last we checked the full chat with the correct messages’ contents, shown in Fi-

gure 38.

Figure 38: Auditing full chat with collision

Source: Authors.

In this case, we also can just identify that happened some modification, but we can

not specify exactly what was modified and the only certainty is when the audited chat

is correct and complete. This is in line with what is expected of the system and its

specification.
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9 CONCLUSION

In this work, we presented the importance of instant messaging apps and show the

security gap present in these systems, in particular, the difficulty to audit conversations

in these apps. The proposed architecture aims to mitigate vulnerabilities of instant mes-

saging apps, developing a communication structure that is secure and allows for an audit

of conversations carried out on IM systems. For this, we have used a DHT network to

allow users’ connections in this distributed system, a PGP web of trust to authenticate

users, and a hash chain to record the messages exchanges. With this, we expected to add

integrity, authenticity, resilience, and non-repudiation characteristics to the platform. We

also cared about privacy including a selective disclosure feature that allowed a partial and

reliable audit.

As described in this work, each mechanism presents an independent security feature

(integrity, privacy, confidentiality, availability, authenticity). Other IM apps available in

the market present some of the mechanisms used as a solution in this work, so the main

contribution that we proposed is the use of hash chain structure to generate a chat’s

log that can be audited. One point raised during this work was the use of blockchain

technology, due to this popularity and the similarity between the bitcoin ledger and the

chat register that we aimed for. However, analyzing the requisites and scope we concluded

that the use of blockchain technology was excessive, because the consensus algorithms used

in the blockchain would derail the communication in the IM app. This level of consensus

is not necessary, so the hash chain structure proposed is enough.

To analyze the proposed architecture, first, an Android app was developed as a proof

of concept. Due to difficulties in developing a completed and functional app with all

proposed features, the Android PoC focused on the efficiency test. We analyzed what im-

pact cryptographic functions would have on communication. According to our tests, the

modifications made to the Android PoC messaging app did not impact the system per-

formance significantly, showing that our solution is efficient enough for message exchange

purposes. Second, a Python web chat was developed as a proof of concept, focusing on the
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generation, construction, and validation of the conversation with hash chain. The tests

in Python chat PoC were also satisfying, we could confirm that it is possible to perform

a reliable audit in the hash chain as we intended.

Following, we list the related articles published and describe the future works that

can be continued from this master’s research.

9.1 Publications

Resulting from the research carried out during this work, we produced the following

publications:

• Conference Paper: KOMO, A. E.; ARAKAKI, B. O.; SIMPLICIO JR., M. A.;

LEVY, M. R. Aplicativode troca de mensagens instantâneas utilizando comuni-

cação P2P. In: Anais Estendidos do XVIII Simpósio Brasileiro em Segurança da

Informação e de Sistemas Computacionais. Porto Alegre, RS, Brasil: SBC, 2018.

p.65–72. Available in: <https://sol.sbc.org.br/index.php/sbseg_estendido/article/

view/4143>

• Conference Paper: KOMO, A. E.; SIMPLICIO JR., M. A. Solução para habilitar

conversas integras e auditáveis em aplicativos de troca de mensagens instantâneas.

In: Anais do XIX Simpósio Brasileiro em Segurança da Informação e de Sistemas

Computacionais. Porto Alegre, RS,Brasil: SBC, 2019. Available in: <https://

sbseg2019.ime.usp.br/anais/196912.pdf>

The paper “Solução para habilitar conversas integras e auditáveis em aplicativos de

troca de mensagens instantâneas” mentioned above was awarded as the best complete arti-

cle at the XIII Workshop de Trabalhos de Iniciação Científica e de Graduação (WTICG) of

the XIX Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais

(SBSeg).

9.2 Future Works

In order to disseminate this work, we plan to submit it to a conference or journal,

as the papers already submitted did not present the selective disclosure and agree-to-

disagree features. The results obtained in this work were satisfactory and they can be

incorporated into an IM app open source to generate a marketable app that is competitive
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with popular apps available on the market. Other future work would be to develop an

independent system just for audits. If many IM apps use the same logic to generate

the hash chain, with one single system will be possible to check and audit any of these

chats. Moreover, to generate a marketable app, it will be necessary to consider the items

excluded from the scope in Section 3.1, like sending messages containing attached files,

photos, videos, and group chats.
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APPENDIX A – BENCHMARK TABLES

In this appendix, the information from the Chapter 8’s tables has been merged into

one table in order to facilitate the comparative analysis between the devices.
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Table 23: SHA3-256 benchmark

Message’s size

(#characters)

Samsung Galaxy

J2 Prime

How HT-705

tablet

Xiaomi Redmi

Note 7

Samsung

Galaxy A22

t σ t̃ t σ t̃ t σ t̃ t σ t̃

5 0.310 0.504 0.000 1.018 1.554 1.000 0.068 0.260 0.000 0.060 0.246 0.000

50 0.254 0.435 0.000 0.298 0.503 0.000 0.020 0.140 0.000 0.024 0.153 0.000

100 0.272 0.445 0.000 0.238 0.426 0.000 0.024 0.153 0.000 0.032 0.176 0.000

200 0.470 0.503 0.000 0.340 0.474 0.000 0.042 0.201 0.000 0.024 0.153 0.000

500 0.904 0.308 1.000 0.742 1.586 1.000 0.058 0.234 0.000 0.042 0.201 0.000

1000 1.822 0.463 2.000 1.066 2.095 1.000 0.088 0.283 0.000 0.072 0.258 0.000

Source: Authors.
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Table 24: PGP encryption benchmark

Message’s size

(#characters)

Samsung Galaxy

J2 Prime

How HT-705

tablet

Xiaomi Redmi

Note 7

Samsung

Galaxy A22

t σ t̃ t σ t̃ t σ t̃ t σ t̃

5 4.198 0.956 4.000 10.706 4.391 9.000 3.926 0.986 4.000 2.584 0.927 2.000

50 4.240 0.531 4.000 8.574 1.117 8.000 5.326 1.563 6.000 2.870 1.202 2.000

100 4.258 0.707 4.000 9.198 3.074 9.000 6.056 0.530 6.000 4.072 0.774 4.000

200 4.386 0.530 4.000 8.786 0.976 9.000 5.952 0.523 6.000 4.036 0.771 4.000

500 4.740 0.544 5.000 9.570 2.259 9.000 6.044 0.535 6.000 4.100 0.833 4.000

1000 5.292 0.561 5.000 9.866 0.963 10.000 6.156 0.521 6.000 4.116 0.794 4.000

Source: Authors.
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Table 25: PGP decryption benchmark

Message’s size

(#characters)

Samsung Galaxy

J2 Prime

How HT-705

tablet

Xiaomi Redmi

Note 7

Samsung

Galaxy A22

t σ t̃ t σ t̃ t σ t̃ t σ t̃

5 89.952 4.850 88.000 66.982 9.949 65.000 13.160 1.796 13.000 13.140 2.317 13.000

50 89.710 3.871 88.000 60.966 3.807 61.000 19.284 5.247 22.000 15.808 5.691 12.500

100 90.354 4.637 88.000 63.948 12.076 62.000 22.726 1.229 22.000 24.448 1.571 24.000

200 90.022 3.898 88.000 61.518 3.372 61.000 22.714 1.210 22.000 24.392 1.626 24.000

500 90.980 4.306 89.000 64.140 9.775 62.000 22.894 1.282 22.000 24.464 1.695 24.000

1000 92.046 4.367 90.000 63.142 3.726 63.000 23.214 1.452 23.000 24.612 1.557 24.000

Source: Authors.


