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RESUMO

Segura, G.A.N. Cooperative Intrusion Detection for Software-Defined
Resource-Constrained Networks. 2022. 120p. Tese (Doutorado) - Universidade de São
Paulo, São Paulo, 2022.

Redes definidas por software são um paradigma que foi projetado para melhorar a pro-
gramabilidade e o gerenciamento de redes. Os benefícios deste paradigma motivaram sua
implementação em redes de sensores sem fio e aplicações da Internet das coisas, para
abordar desafios relacionados a flexibilidade e reutilização de recursos. As redes definidas
por software são vulneráveis a ataques de negação de serviço, e esta vulnerabilidade se
torna crítica em redes com recursos limitados. Analisando o estado da arte, dois desafios
principais foram identificados: escalabilidade e complexidade. Propostas com alto desem-
penho de detecção são em sua maioria abordagens centralizadas e precisam de recursos de
comunicação incompatíveis com as limitaçoes das redes de sensores. Por exemplo, precisam
de canais dedicados de comunicação para pacotes de controle e monitoramento constante
em períodos curtos de tempo, o qual limita a escalabilidade das soluções. Existem propostas
híbridas que reduzem o tráfego de pacotes e o gargalo das propostas centralizadas. Porém,
estes trabalhos tem um desempenho menor que os centralizados ou precisam de dispositivos
com características diferenciadas para aumentar o seu desempenho. Para abordar este
desafio, foi projetada uma estratégia cooperativa de detecção de intrusos, onde todos os
nós da rede participam ativamente. A proposta é composta por um detector de anomalias
centralizado, mas ajustando os recursos de communicação de acordo com as características
da rede. De forma paralela, todos os nós da rede estão monitorando seu próprio com-
portamento usando uma frequência de amostragem maior que a abordagem centralizada,
para compensar o atraso na detecção. A detecção de intrusos é baseada na detecção de
anomalias usando change point análise. A proposta é uma versão modificada de algoritmos
de soma cumulativa modernos e é tão leve que roda em dispositivos TelosB, ocupando ao
redor de 7.2 KB de memória. A proposta cooperativa foi simulada em redes com 36, 100
e 225 nós com um controlador só. Os resultados mostraram que, resolvendo o problema
de complexidade na detecção distribuída é possível melhorar o desempenho na detecção
sem reduzir o desempenho da rede quando o seu tamanho aumenta, tratando o aspecto da
escalabilidade. A acurácia da detecção é comparável com outras propostas centralizadas
que precisam de altas taxas de tráfego de pacotes ou dispositivos com características
diferenciadas. Ainda, o sistema cooperativo permitiu a identificação de atacantes e tipo de
ataque com probabilidades acima de 0.89.

Palavras-chave: Redes de sensores sem-fio. Redes definidas por software. Detecção de
intrusos. Ataques de negação de serviço.





ABSTRACT

Segura, G.A.N. Cooperative Intrusion Detection for Software-Defined
Resource-Constrained Networks. 2022. 120p. Thesis (Doctor) - Universidade de São
Paulo, São Paulo, 2022.

Software-defined networking (SDN) is a paradigm that was meant to improve networks
programmability and management facilities. These benefits motivated its implementation
in Low-power and Lossy Networks (LLNs), such as Internet of Things and wireless
sensor networks, to address challenges considering flexibility and resource reuse. SDN-
based networks are vulnerable to denial of service (DoS) and Distibuted DoS (DDoS)
attacks, and this vulnerability is critical in resource-constrained networks. Analyzing
the state of the art for SDN-based LLNs, we identified two main challenges: scalability
and complexity. Proposals with high detection performance are mainly centralized and
require communication resources that are not compatible with LLNs, such as out-of-band
communication and constant monitoring in short periods, restricting scalability. There
are also hybrid proposals that reduced packets traffic and the bottleneck effect. These
works reported inferior performance than centralized approaches or required specific nodes
with high capabilities inside the LLN to support the detection. To address this gap,
we propose a cooperative intrusion detection strategy where all the nodes have active
participation. We use centralized monitoring to detect anomalies in the network behavior,
adjusting the communication frequency to the network size and communication resources.
At the same time, every LLN node is monitoring its behavior using a higher sampling
frequency to compensate the delay of the detection from the centralized information.
The intrusion detection is based on anomaly detection using change-point analysis. The
algorithm proposed is a modified version of state-of-the-art CUSUM algorithms and is so
lightweight that it can run on TelosB motes requiring around 7.2 KB of memory space only.
The cooperative intrusion detection was simulated on networks with 36, 100 and 225 nodes
with only one controller. The results showed that by solving the complexity issues of the
distributed detection we were able to improve scalability without reducing detection and
network performance, obtaining detection accuracy comparable to high-traffic centralized
approaches without the need of high capabilities devices. Moreover, the cooperation among
the nodes allowed us to identify nodes launching the attack and the type of the attack
with a probability exceeding 0.89

Keywords: Wireless Sensor Networks. Software-Defined Networking. Intrusion Detection.
denial of service attack.
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1 INTRODUCTION

Software-defined networking (SDN) is a paradigm of programmable networks
devised to control, change and manage network behavior dynamically. For this reason,
SDN proposes to separate the control plane and the data plane and centralize the control
and routing decisions in a software-based controller, or controllers, with a global view
of the network. Then, the network devices become simple forwarding devices that are
configured by the controllers through an application programming interface (Kreutz et al.,
2015).

Back in the day, SDN first proposals were motivated by the inflexibility and low per-
formance of the software platforms for programmable networks (MCKEOWN et al., 2008).
Current results in the literature have shown that SDN can improve the programmability
and simplify the administration and management of networks (BENZEKKI; FERGOUGUI;
ELALAOUI, 2016; Rawat; Reddy, 2017).

Low-Power and Lossy Networks (LLNs) is a group of networks composed of
embedded devices with processing, memory, energy and bandwidth limitations. This
group of networks includes wireless sensor networks (WSN) and Internet of things (IoT)
applications. WSNs are considered application-specific, which results in infrastructure
underutilization, e.g., multiple WSNs for multiple applications deployed in the same
physical space instead of one that is able to attain the same objectives. The implementation
of SDN in LLNs has been explored as a solution to address flexibility and resource reuse
challenges, but not limited to them. Kobo, Abu-Mahfouz and Hancke (2017) discuss the
importance of SDN to address energy, scalability, mobility and interoperability challenges
in WSN.

First SDN proposals for LLNs were architecture ideas that step by step became
functional, and today there are protocols and frameworks (Alves et al., 2019) showing
performance comparable to RPL (ALEXANDER et al., 2012), an established standard for
LLNs. However, there are still challenges in wired SDN networks that are critical in LLNs,
such as security (Pritchard; Hancke; Abu-Mahfouz, 2017). The planes separation and the
global view of the network in SDN are characteristics that can help to countermeasure
particular types of attacks by configuring the whole network to isolate malicious nodes,
for example. On the other hand, the control plane centralization turns the network prone
to denial of service attacks (DoS) and distributed DoS (DDoS). Since SDNs are entirely
controller-based, this vulnerability compromises the whole network as well.

In this work, we study the main security vulnerabilities of SDN in LLNs, analyze
the impact of DoS and DDoS attacks in the network performance and propose a solution
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to detect them considering LLNs restrictions.

1.1 Motivation

First security proposals for SDN-based networks were totally dependent on the
controller (SCOTT-HAYWARD; O’CALLAGHAN; SEZER, 2013), mostly based on cen-
tralized monitoring leveraged by the global view of the network. However, there were
already some authors proposing to delegate some control back to network devices since the
controller could become a bottleneck and is the most vulnerable element of the network
(NAOUS et al., 2009; NAYAK et al., 2009). Using network devices as part of the attack
detection aids to keep malicious traffic as much as possible in the data plane, reducing the
chances to attain the controller.

Centralized approaches are effective for DoS and DDoS attacks detection and could
use machine learning (ML) techniques to detect anomalies on the packets traffic. These
approaches need constant monitoring and high processing resources to run the detection
algorithms, consequently demanding requirements as out-of-band and wired connections
between switches and controllers (Bhunia; Gurusamy, 2017; Ravi; Shalinie, 2020; Jia et al.,
2020). These conditions limit the LLNs scenarios where these proposals could be applied.

One approach to reduce packets traffic in centralized DoS and DDoS detection is by
delegating part of the responsibility to the network devices, i.e., the traffic behavior passing
through them and their neighbors to detect the attack. There are hybrid proposals (i.e.,
centralized and distributed monitoring) in the literature that considered LLNs resources
constraints but reported inferior performance than centralized approaches or required
specific nodes with high capabilities inside the network to support the detection. The main
problem of the first approach is that high control packets traffic compromise scalability,
and in the case of less complex proposals, the main problem is the accuracy of the detection.
An effective DoS attack detection strategy for SDN-based LLNs networks that does not
compromise scalability is still a gap in the literature.

1.2 Hypothesis

We believe that a hybrid DoS detection is the right approach to solve the complexity
and scalability challenges since the centralized and distributed monitoring provides diverse
information and could cooperate to reduce resource usage. However, hybrid approaches
in the literature have not presented strategies to maintain high detection performance
without requiring high capabilities in the LLNs devices. Our belief is that, assuming a
secure channel in the whole network, this can be solved following the next steps:

• the centralized communication frequency for security monitoring has to be defined
according to the network size and performance metrics to improve scalability;
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• the distributed detection has to be able to compensate the delay in the centralized
monitoring in large networks;

• single nodes should be able to detect anomalies in the network by monitoring its own
behavior instead of monitoring their neighbors. This could reduce resources usage.

1.3 Objectives

Our main objective is to design and evaluate a hybrid intrusion detector for DoS
attacks in software-defined resource-constrained networks where all the elements cooperate
to detect the attack and identify the attackers in large networks. The main objective is
divided into the following specific goals:

• design and evaluate a centralized DoS attack detector for SDN-based resource
constrained networks and evaluate its detection performance;

• design and evaluate a lightweight behavior anomaly detector for LLNs devices and
evaluate its detection performance;

• design a centralized security manager for coordinating the cooperation among the
elements of the network and taking security-wise decisions;

• evaluate the performance of the hybrid intrusion detector proposal in large networks

The reference to determine the size of a large network is based on works that
studied scalability of SDN-based resource constrained networks. This topic is further
discussed in Chapter 4.

1.4 Methods

First, the detection performance of software-defined wireless sensor networks (SD-
WSN) under DoS attacks was analyzed (SEGURA; MARGI; CHORTI, 2019). For this,
three different types of attacks were implemented: two of them were new-flow type and
the other one based on the integrity of routing information. A detailed description of
these attacks is discussed in Chapter 4. From this analysis, network vulnerabilities and
the metrics where these attacks have a stronger impact were analyzed.

The performance metrics considered were: data and control packets delivery rate,
data and control packets end-to-end delay, control packets overhead and energy consump-
tion. The delivery rate is calculated by dividing the total number of packets successfully
received by the total packets sent. The end-to-end delay is the average of the time the
packets spent to reach the destination. The packets overhead is quantified as the total
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amount of packets sent. The energy consumption is the average energy consumption of all
nodes, excluding the sink and the controller nodes.

Next, the anomaly detection algorithm was implemented. We chose to use change
point analysis since it fulfills the lightweight criteria and the previous evaluation (SEGURA
et al., 2020) showed detection performance results similar to other works in the literature
using ML techniques, among others. However, our proposal is independent of the anomaly
detection technique while it is lightweight enough to fit and run in simple WSN or IoT
devices.

Both centralized and distributed anomaly detection performance were evaluated
based on detection rate (DR), false positive rate (FPR), false negative rate (FNR) and
detection time median (DTM), indicating the median of the time instances elapsed from the
launch of the attack to the instance it was identified. The experiments included simulations
on fully-bidirectional grid topologies with 36 and 100 nodes (SEGURA; MARGI; CHORTI,
2020; SEGURA; MARGI; CHORTI, 2021).

Lastly, the scalability of our proposal was evaluated through simulations on 225-
node fully-bidirectional grid topologies (SEGURA; CHORTI; MARGI, 2021). This number
was based on state-of-the-art results about the scalability of SDWSN using only one
controller (Alves et al., 2019), where it was shown that for topologies over 200 nodes the
delivery rate falls under 90%. The timeline through these steps is depicted in Figure 1.

Figure 1 – Methods timeline

The experiments consisted of simulations using COOJA simulator and emulating
TelosB motes. The SDWSN was implemented using IT-SDN (Alves et al., 2019) and
Contiki-OS 3.0 (DUNKELS; GRONVALL; VOIGT, 2004).
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1.5 Organization

This thesis is organized as follows:

• Chapter 2, Theoretical Background, explains the basic concepts related to SDN,
LLNs, and security in SDN;

• Chapter 3, State of the Art, analyzes relevant research concerning DoS attack
detection in SDN-based resource-constrained networks;

• Chapter 4, Problem Formulation, analyzes the impact of DoS attacks on the network
performance and explains the scalability and complexity problem SDN-based resource-
constrained networks;

• Chapter 5, Cooperative Intrusion Detection, describes the hybrid intrusion detection
proposal;

• Chapter 6, Performance Evaluation, presents and discusses the most relevant results
about the cooperative intrusion detection proposal;

• Chapter 7, Final remarks, includes the conclusions, future work and publications.
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2 THEORETICAL BACKGROUND

This chapter presents basic definitions and information that are important through-
out this document. First, Section 2.1 explains SDN concept and operation. Then, Section
2.2 presents main concepts about resource-constrained wireless networks and their imple-
mentation using SDN. Lastly, Section 2.3 studies SDN security vulnerabilities.

2.1 Software-Defined Networking

There are three main planes in computer networks: data, control, and management
planes. The data plane involves all functions and processes to forward data from applications
being executed. The control plane takes routing decisions and configures them. The
management plane ensures the optimal operation of the network through control and
monitoring functions.

SDN is a paradigm that decouples control and forwarding functions. This separation
is meant to increase network programmability and improve management. Unlike traditional
networks, where the control and data planes are bundled inside the network devices, in SDN
the control plane is logically-centralized in one or multiple controllers. These controllers
are in charge of taking routing decisions and have control over the data plane elements,
i.e. network devices, through an application programming interface. Consequently, the
network devices become simple forwarding elements with routing tables handling rules,
commonly named as flow tables. These rules specify the action, or actions, to perform
when there is a match between a flow entry in the table and the flow identifier in the
incoming packet. The decision about the actions configured in each device depends on
routing policies and topology information. Examples of these actions include: dropping,
forwarding, and receiving.

The controller needs topology information to be able to calculate and configure
routing rules and the network devices need to know how to reach the controller to provide
these information. In the case where network devices are not directly connected to the
controller, an auxiliary controller discovery protocol is used. In parallel, a neighbor discovery
protocol allows network devices to obtain neighborhood information, such as addresses
and link quality metrics. Then, the network devices send this information to the controller.
This could be periodically or when there is a significant change in the topology or routing
metrics.

Some authors propose the management plane on top of the control plane (Kreutz et
al., 2015) while other authors propose the management plane should be directly connected
to the control plane, data plane and an application plane (CABAJ et al., 2014). In 2015,
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the Internet Research Task Force (IRTF) published the RFC 7426 to define SDN layers
and architecture terminology, since as they claimed, there was an increasing confusion as
to what SDN is. According to the RFC 7426, and as shown in Figure 2, the application
plane is at the top. Then, the control plane and the management plane are at the same
level and the data plane (i.e. Device and Resource Abstraction Layer) is at the bottom.
The application plane is a collection of applications and services that define the network
behavior, excluding applications to support the forwarding plane that are part of the
control plane. Also, these applications and services may use services from the control and
the management planes.

Figure 2 – SDN architecture according to RFC 7426

Source: Modified from Haleplidis et al. (2015)

The management plane is in charge of ensuring the optimal operation of the network.
Such as the control plane, the management plane usually has a global view of the network,
thus based on global or individual metrics the management plane is able to detect faulty
or non-optimized operation (LUZ; MARGI; VERDI, 2021). Some metrics could be high
delay, low delivery rate or high energy consumption. In some cases, the actions required
to optimize the operation may need the intervention of the control plane to configure new
routing rules.



33

The northbound interfaces are implemented in the Network Services Abstraction
Layer (NSAL) and allow the communication among the control, management and applica-
tion planes. Examples of service interfaces include, but are not limited to, RESTful APIs
and open protocols such as NETCONF (ENNS et al., 2011). The southbound interfaces are
implemented in the abstraction layer of the planes and allow the communication between
the control and management plane with the network devices. OpenFlow (MCKEOWN et
al., 2008) is the most commonly used southbound protocol and is considered as a standard
in SDN (LATIF et al., 2020). Some other southbound protocols are: FORwarding & Con-
trol Element Separation, Open virtual Switch Database, Protocol Oblivious Forwarding,
OpFlex, and OpenState (LATIF et al., 2020).

2.2 Low-Power and Lossy Networks

LLNs are composed of embedded devices with processing, memory, energy and
bandwidth limitations. These group of networks include WSN and IoT applications. To
understand the resource limitations in these devices, Table 1 compares some WSN and
IoT platforms with the Raspberry Pi 3, a small single-board computer. The RE-Mote has
better capabilities than the traditional TelosB and SensorTag devices, but in comparison
with the Raspberry Pi 3, the last one has 32 times more clock speed and more than 30 000
times more RAM than the RE-Mote. Also, none of the WSN and IoT devices has 64-bit
register such as the Raspberry Pi 3.

Table 1 – WSN and IoT devices specifications

Platform Microprocessor
model

Clock speed
(MHz)

Flash
memory RAM Register size

TelosB MSP430 8 48 KB 10 KB 16-bit
SensorTag ARM Cortex-M3 48 128 KB 20 KB 32-bit
RE-Mote ARM Cortex-M3 32 512 KB 32 KB 32-bit
Raspberry Pi 3 4 x ARM Cortex-A53 1200 SD card 1 GB 64-bit

Source: Author

WSN are multi-hop/ad-hoc networks deployed to collect information from the
environment and communicate it to specific nodes, known as sink nodes. Then, sink nodes
communicate this information to the application servers or directly to the user. Commonly,
this last part does not belong to the resource-constrained environment. These networks are
used for monitoring hostile locations or whenever wiring is complicated or expensive. For
this reason, they are found in a wide spectrum of applications, from military and industrial
monitoring to home automation. Also, complex applications may consist of hundred or
thousand of nodes.

Three communication patterns are found in WSNs: many-to-one, one-to-many,
and many-to-many. The many-to-one prevails, since it is the case when many nodes send
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the information sensed to a sink. The one-to-many case is commonly used to change the
configuration of the sensor nodes, such as firmware or application parameters. In this case,
the sink would work as a gateway between a management or controller entity and the
sensor nodes. The many-to-many pattern is present in the networks with multiple sinks
or peer-to-peer communication. In this case, one sensor node is able to send monitoring
information to different destinations.

WSN and IoT use lightweight communication protocols specifically designed for their
resource constraints, such as IEEE 802.15.4 (GUTIERREZ; CALLAWAY; BARRETT,
2003), Bluetooth Low Energy (BLE) (WOOLLEY, 2019), IEEE 802.11ah (BANOS-
GONZALEZ et al., 2016) and LoRA (SORNIN et al., 2015). These protocols encompass
lower layers, i.e. PHY and MAC, and their use depends on the application requirements.
LoRA was designed for long distances while IEEE 802.15.4 and BLE are better for short
distances. In terms of traffic intensity, 802.11 ah is optimal for large data sizes (MORIN et
al., 2017).

The diversity of scenarios and applications with different service requirements
incurred in the design of different routing protocols, which lead to a lack of standardization
(WATTEYNE et al., 2011). This motivated the Internet Engineering Task Force (IETF)
to specify a set of IPv6 protocols tailored for resource-constrained devices. One of these
protocols was RPL (ALEXANDER et al., 2012), a distant vector routing protocol which
became one of the most common used in IoT (KHARRUFA; AL-KASHOASH; KEMP,
2019; MARDINI; EBRAHIM; AL-RUDAINI, 2017; HASHEMI; ALIEE, 2019). Despite
the popularity of RPL and their advances in routing standardization, there are still
performance issues mainly concerning energy efficiency, mobility and security (KHARRUFA;
AL-KASHOASH; KEMP, 2019).

WSN also faces challenges in terms of network management and resources utilization.
WSNs are considered application specific, which results in infrastructure underutilization,
for example, multiple WSNs for multiple applications deployed in the same physical
space instead of one that is able to attain the same objectives. The lack of flexibility
in management services and the environmental conditions in where these networks are
deployed complicate their configuration, provisioning, maintenance and resource sharing
(Kobo; Abu-Mahfouz; Hancke, 2017).

Such as mentioned in Section 2.1, SDN is a paradigm that aims to increase the
programability and improve the management of networks. The implementation of the SDN
paradigm in WSN and IoT applications has been studied as a solution to the routing and
management issues in these networks, among others such as scalability, interoperability
and energy efficiency. Up to this day there are promising results but new challenges to
face. Subsection 2.2.1 presents more details about the Software-Defined Wireless Sensor
Networks (SDWSN) concept.
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2.2.1 Software-Defined Wireless Sensor Networks

Software-Defined Wireless Sensor Networks (SDWSN) is the common name used
in the literature for the implementation of the SDN paradigm in WSN. How SDN is
implemented vary among the authors, but a common approach is to use a southbound
protocol to communicate the SDN controller with the WSN devices. Since usually the SDN
controller is not a resource-constrained device, at least one WSN node should work as an
interface. In this manner, the controller receives packets from the WSN and disseminates
the configuration information.

The first initiatives to apply SDN to WSN and IoT are from 2011 and 2012 (MAH-
MUD; RAHMANI, 2011; COSTANZO et al., 2012; LUO; TAN; QUEK, 2012). Mahmud
and Rahmani (2011) proposed to use SDN to improve reliability, routing performance and
load balancing. Their simulation experiments showed a reduction in the packets traffic.
Then, Costanzo et al. (2012) explored the implementation of SDN in WSN. An architecture
was proposed by Costanzo et al. (2012), following three main requirements: support to
duty-cycling, support to in-network data aggregation and flexible definitions of rules. Luo,
Tan and Quek (2012) proposed preliminary solutions to port OpenFlow to WSNs. These
works are based on OpenFlow (MCKEOWN et al., 2008), which is not adequate to the
constraints imposed in WSN, such as limited frame sizes, memory constraints, and lack of
dedicated control channel, which was reflected in the lack of simulations and experiments
with real devices. OpenFlow is Transmission Control Protocol (TCP) based and TCP is
able to receive segments up to 65K bytes. Comparing IEEE 802.3 (MTU of 1500 bytes)
and IEEE 802.15.4 (MTU of 127 bytes) interfaces, using TCP in IEEE 802.15.4 would
require 12 times more packets to reach the maximum segment size. Only Mahmud and
Rahmani (2011) presented simulations results without specifying physical and link layer
protocols or standards.

It took a few years to finally have complete proposals that considered resource
constraints and were able to show performance results and experiments in real devices.
In 2014, Oliveira, Margi and Gabriel (2014) proposed TinySDN and in 2015 Galluccio et
al. (2015) proposed SDN-WISE. These frameworks are based on operating systems for
WSN (TinyOS (LEVIS et al., 2005) and ContikiOS (DUNKELS; GRONVALL; VOIGT,
2004)), which allowed to test them on IEEE 802.15.4 compliant platforms, such as TelosB
and EMB-Z2530PA. It is worth mentioning that TinySDN enables multiple controllers
while SDN-WISE is based on SDWN (COSTANZO et al., 2012) architecture and focus
on implementation and experiments. However, only small networks were used to evaluate
their performances.

Coral-SDN (THEODOROU; MAMATAS, 2017), 𝜇SDN (BADDELEY et al., 2018)
and IT-SDN (ALVES et al., 2017) are more recent proposals. Coral-SDN is an OpenFlow-
like protocol intended to address mobility issues in SDWSNs through adaptive topology
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control. According to Theodorou et al. (2019), Coral-SDN increases packet delivery rate and
reduces control overhead in networks with mobile nodes. The proposal was evaluated in a 21-
node network, with five mobile nodes. 𝜇SDN is a SDWSN framework that aims to address
SDN control overhead issues in WSNs to increase scalability. To attain their objective,
the authors proposed to eliminate fragmentation, reduce control packets frequency and
use source routing, among other secondary optimization measures. Their results showed a
significant reduction of control packets if compared to RPL. However, their experiments
were limited to 30-node topologies, which limits the conclusions in terms of scalability.

TinySDN was a groundbreaking work, but its dependency on TinyOS and the
use of active messaging limited its operation with other systems. IT-SDN is based on
TinySDN concepts but it aimed to improve interoperability and performance. IT-SDN
underlying architecture is independent of the operating system and also defines a clear
separation among the southbound, neighbor discovery and controller discovery protocols.
This separation simplifies the integration of new protocols that could improve network
performance and interoperability. Simulation experiments (Alves et al., 2019) showed that
IT-SDN is feasible for WSN even in networks over 200 nodes, performing as well as RPL.
Also, it was evaluated on a small deployment using TelosB motes.

The experiments presented in this thesis were conducted using IT-SDN. For this
reason, its architecture and protocols are explained in Subsection 2.2.2.

2.2.2 IT-SDN

As shown in Figure 3 within the dashed rectangle, IT-SDN framework (Alves et al.,
2019) comprises the sensing layer, the control layer and three communication protocols:
the Southbound protocol, the Neighbor Discovery protocol and the Controller Discovery
protocol. The sensing layer is composed of the wireless sensor devices used to collect data
from the environment and relay data to the sinks, while routing decisions are taken in the
control layer. It is worth mentioning that all sensor nodes should be SDN-enabled.

The neighbor and controller discovery protocols are not interwined with the spec-
ification, which enables the implementation and replacement of them according to the
application or scenario. The current IT-SDN implementation has been evaluated with
different protocols (ALVES; MARGI; KUIPERS, 2020). The Southbound protocol defines
the message formats for communication between the WSN and the SDN controller. In
IT-SDN, this protocol is composed of seven packets: flow request, flow setup, flow ID
register, neighbor report, data packet, acknowledgement, and underlying protocols packet.

The sensor nodes use the flow request packet to query the controller about an
unknown route, for example, when the incoming packet has a flow identifier with no
match in the flow table. The controller replies to the sensor nodes using the flow setup
packet. This packet contains the information required to configure the routes. Moreover,
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Figure 3 – IT-SDN architecture

Source: Alves et al. (2019)

Figure 4 – Flow table in IT-SDN SDN-enabled nodes

Source: Author

the controller could change already configured entries using such packet. SDN-enabled
nodes use the flowid register to inform the controller that they are a destination candidate
for a specific flow id. Sink nodes are common users of them. The neighbor report packet
contains the source neighborhood information, which is used by the controller to update
the network graph. The nodes send a neighbor report to the controller if: (i) the node
detects one or more new neighbors, (ii) the node detects one or more nodes are no longer
its neighbors, or, (iii) there is a significant change in one or more neighbors’ routing metric.
Data packets encapsulate application layer packets and the Acknowledgement confirms
the delivery of control packets. Lastly, the neighbor and controller discovery protocols
packets are encapsulated using the underlying protocols packet.

All SDN-enabled nodes have a flow table, such as the one in Figure 4. The “Flow
ID” column is the matching criteria. The “Next hop” column contains the address of the
next hop to reach the final destination. The “Action” column contains the action to handle
the incoming packet. The “# used” column indicates the times this flow was used, which
means the incoming packets with this flow identifier. Then, “age” column represents the
times the information in the table for this flow was updated.

IT-SDN also supports source routed. In this case, the whole route is within the



38

Figure 5 – IT-SDN node behavior

Source: Alves et al. (2019)

packet. Source routing is one option to reduce the requirement of flow table sizes. For
example, the flow setup packets from the controller to a specific node are source routed
since each node would need a specific flow to reach it.

In this manner, when the SDN core in the node detects an incoming packet, the
next step is to check the type of the packet. If this is source routed, the node forwards
it according to the route in the header or receives it if its address matches the final
destination address. If the packet is flow routed, the node executes the action in the flow
table. If there is no matching criteria, the packet is stored and a flow request is sent to the
controller. The node waits the flow setup packet to configure the new rule and execute the
action for the packet stored. Figure 5 summarizes the node behavior.

IT-SDN specifies the controller communication but does not specify internal proce-
dures and policies, such as to decide between reactive or proactive routing configuration
or which metric and routing algorithm use. In terms of implementation, current version
available 1 is based on Contiki Operating System (DUNKELS; GRONVALL; VOIGT, 2004)
with a custom controller implementation for x86 machines. IT-SDN has been compiled
and tested on TelosB (Alves et al., 2019), Zolertia z1 (SAYJARI; SILVEIRA; MARGI,
2021) and CC2650 platforms.

1 http://www.larc.usp.br/users/cbmargi/www/it-sdn/. Accessed: November 20th 2021
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2.3 Security in SDN

In terms of security, SDNs have advantages and disadvantages. The control cen-
tralization, the controller global view, and the data and control planes separation are
characteristics that inspired new security strategies (AHMAD et al., 2015). Braga, Mota
and Passito (2010) proposed a mechanism based on Self-Organizing Maps (SOM) (KOHO-
NEN, 1990) to find hidden relations among flows entering the network to detect anomalies
in the network traffic. Giotis, Androulidakis and Maglaris (2014) improved legacy Remote
Triggered Black-Hole (RTBH) routing approach for DDoS attack mitigation by filtering
malicious traffic on a per-flow level. On the other hand, SDNs are entirely controller-based.
This means that, if the controller is compromised, the control plane is compromised,
therefore, the whole network is compromised as well. For this reason, the controller is
tagged as a single point of failure, which turns SDN-based networks prone to DoS attacks
(SINGH; BHANDARI, 2020; Rawat; Reddy, 2017).

In SDNs, the attackers can reach the control plane directly through a controller
or from the applications and network devices through the northbound and southbound
interfaces. The lack of standardized northbound protocols can lead to use insecure commu-
nication protocols that could be exploited by malicious applications to reach the controller
(LATIF et al., 2020). For example, malicious applications on top of the controller execute
a service interruption by manipulating packet handlers or network devices manipulate
neighborhood information to mislead the controller.

In SDN networks, the controller takes the routing decisions and configures the
routing rules on the network devices. When a network device is handling an incoming
packet and there is no matching rule for it, the network device requests a rule to handle
this packet to the controller. The controller calculates the rule and sends a reply to
configure the device. Malicious nodes exploit this message exchange to attack the network
in different ways. An attacker in the forwarding plane can flood the network with control
packets targeting the controller, for example, querying routing rules. Aggressive attacks
can exhaust the controller processing and communication resources. In the same way, an
attacker can mislead other nodes in the network, inducing them to send packets to the
controller at the same time. For example, an attacker sends several data packets tagged
with an unknown flow identifier. The neighboring nodes receiving the packet will check on
their routing table looking for a rule but without success, therefore the nodes will request
a flow rule from the controller. These types of attacks are known as new-flow attacks and
they impact both the controller and network devices resources, compromising the entire
network.

New-flow attacks could be executed by new nodes, unknown by the controller,
or by known nodes that were tampered. In the case the network had an authentication
system, the controller or a Security application could detect an unknown node attacking
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the network quickly, but if not, it is necessary another detection mechanism, for example,
anomaly detection. During the time the attacker is active, the nodes in the route to
reach the controller will spend resources forwarding the packets sent by the attacker,
and the controller will spend resources calculating the rules and replying to the requests.
Usually, this attack is executed by multiple attackers, which means that more nodes in the
network will be affected and the resources usage increase. However, this condition allows
the detection of anomalies on the network behavior.

In the case of wireless networks with resource constrained devices, this scenario
is critical. In these networks, the devices have less resources to execute complex secu-
rity algorithms and to deal with saturation attacks. Also, the in-band communication
leads to undesirable consequences, such as an unreliable and less secure control plane
(THEODOROU; MAMATAS, 2020).

To illustrate this concept, we conducted some experiments to measure the impact
of a new-flow attack on a software-defined wireless sensor network (SDWSN) (SEGURA;
MARGI; CHORTI, 2019). The main results showed this attack was able to increase the
number of control packets per minute between 16% and 127% when there is only one
attacker in the network, and the impact increases when increasing the number of attackers.
After several repetitions, this attack saturates the neighbors’ routing tables and packets
buffer pool, disturbing packets transmission. Also, routing tables saturation inhibits the
node to store new routing rules that could be necessary for the network normal operation.
We also studied the case when malicious nodes manipulate neighborhood information to
mislead the controller. We observed a significant impact on the control and data packets
delivery rate. An extended analysis of these results is presented in Chapter 4. It is worth
mentioning that we did not focus on running aggressive attacks since our objective was to
evaluate the SDN architecture and IT-SDN framework vulnerability through the analysis
of network metrics. Triggering the attack every sixty seconds was enough to observe these
results.

2.3.1 Intrusion detection

Applying intrusion detection systems (IDS) is one approach to solve cyber-attacks,
including virus, worms and DDoS (SCARFONE; MELL et al., 2007). IDSs are meant to
detect threats from the analysis of the network behavior and have been implemented using
different techniques, such as statistical methods and machine learning.

Intrusion detection techniques are classified into three categories: signature-based,
anomaly-based and specification-based (ZARPELÃO et al., 2017). The signature-based
approach detects attacks that match with patterns or signatures previously stored. This
means this approach requires detailed information about the attack behavior to operate
correctly. These patterns and signatures could be a specific message exchange or a specific



41

payload in a message (Butun; Morgera; Sankar, 2014). Signature-based approaches could
be very effective at detecting known threats but have a poor performance with new attacks,
such as zero-day attacks.

The anomaly-based approaches compare the monitored system against normal
behavior profiles. Whenever a significant difference is detected, an alert is triggered. To
obtain normal behavior profiles, they run training routines to obtain specific parameters
and be able to compare behaviors. This detection method is effective against new attacks
but could have high false positive rates (ZARPELÃO et al., 2017). The type of metrics
monitored by these detection schemes is diverse. For example, some proposals monitor
energy consumption (LEE et al., 2014) or number of control packets and neighbors
(PONGLE; CHAVAN, 2015). Other proposals monitor more specific metrics, as packet
size or data rate from one-hop neighbor packets (Thanigaivelan et al., 2016).

The specification-based approaches have elements of both signature-based and
anomaly based approaches. The specification-based detection monitors the system be-
havior, such as the anomaly-based, but instead of running a training routine, the rules
of each specification are manually defined, similar to signature-based detection. These
characteristics aid to obtain lower false positive rates in comparison with anomaly-based
detection, however, they turn the detection scheme less flexible (Mudzingwa; Agrawal,
2012).

This work concerns the detection of specific attacks for SDWSN that have been
barely defined, that could have multiple variations, and that have high impact on the
network behavior. These characteristics match with the profile of attacks commonly
detected through detection of anomalies on the network behavior. For this reason, next
subsections examine techniques used to detect anomalies in SDN-based networks.

2.3.1.1 Anomaly detection in SDN

Anomaly-based detection methods for intrusion detection are grouped in five
categories: soft computing, data mining, knowledge-based, statistical and machine learning.
Soft computing methods aim to automatically classify new packets through problem-solving
technologies, such as fuzzy logic. Knowledge-based methods depend on predefined rules to
check the legitimacy of connection events

Machine Learning (ML) is a wide group of computational algorithms conceived
to learn and emulate human intelligence (YAO; LIU, 2014). One application of ML
algorithms is to learn patterns and classify them. This application has been used to
implement anomaly-based intrusion detection systems. In SDN, the controller access to
traffic information from all the network motivated the implementation of ML, since it
simplifies data collection and the analysis of multiple features (XIE et al., 2019).
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ML techniques are classified into four categories: supervised, unsupervised, semi-
supervised, and reinforcement learning. Supervised algorithms learn from labeled data to
generate a model to classify new inputs, while unsupervised algorithms aim to find struc-
tures or patterns in unlabeled data (SULTANA et al., 2019). Semi-supervised algorithms
use labeled and unlabeled data and are useful in scenarios where to obtain labeled data is
more expensive than unlabeled data. Reinforcement learning aims to take suitable actions
to maximize long-term reward (XIE et al., 2019).

Supervised learning algorithms fit well within the intrusion detection problem
since this is commonly addressed as a classification task. According to Xie et al. (2019),
classification ML algorithms used in SDN for anomaly detection are: Support Vector
Machine (SVM), Random Forest (RF), K-Nearest Neighbors (K-NN), Neural Networks
(NN) and Decision Tree (DT). Qazi et al. (2013) proposed Atlas, a DT-based classifier
for mobile applications in SDN. Atlas used known mobile agents to train the algorithm
to then be able to classify flows from guests devices. The authors reported an average
classification accuracy of 94%. Silva et al. (2016) proposed ATLANTIC for anomaly traffic
detection, classification and mitigation using SDN and SVM. ATLANTIC obtained an
average classification accuracy of 88.7%. More ML proposals for security in SDN are
analyzed in Chapter 3.

Statistical techniques apply a statistical inference test based on a model to determine
if a new instance belongs to it. Techniques as change point detection (CPD), t-test,
covariance and entropy-based methods have been used to detect DDoS attacks in legacy
and SDN networks (XU; LIU, 2016; KALKAN; GUR; ALAGOZ, 2017; FOULADI; ERMIS;
ANARIM, 2020). In this work, we focus on CPD since it is a relevant part of the security
strategy proposed. Subsection 2.3.1.2 presents some examples of how CPD has been used
to detect attacks in WSN and SDN.

2.3.1.2 Change point detection for security applications

CPD is the process of searching abrupt variations in a time-series or stochastic
process properties, such as mean, variance, correlation, and spectral density. CPD methods
are commonly divided in real-time detection and retrospective detection, also known as
on-line and off-line methods, respectively. Real-time methods are suited for applications
requiring immediate response, while retrospective methods target applications that can
deal with longer reaction periods but require more accurate detection.

Pioneer works compare probability distributions of time series over different intervals
(past and present) obtaining promising results (BASSEVILLE; NIKIFOROV et al., 1993).
The main idea of these works was to set an alarm when a significant difference between
two distributions is detected. Examples of methods using this strategy are: cumulative
sum (CUSUM)(BASSEVILLE; NIKIFOROV et al., 1993), generalized likelihood-ratio
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method (GUSTAFSSON, 1996), and change finder (TAKEUCHI; YAMANISHI, 2006).

There is another group of methods that measure the difference between subspaces
to detect dissimilarity between past and present time series intervals. Two relevant ap-
proaches are subspace identification methods, which can be interpreted as a singular value
decomposition of a weighted matrix (QIN, 2006), and Krislov subspace learning based
algorithms, which are convenient when working with indefinite and asymmetrical matrices
(SHITAO, 2018).

There are proposals in the literature that use CPD to detect anomalies in WSNs.
Changlong Chen, Song and Hsieh (2010) proposed a detection mechanism of sinkhole
attacks in WSN monitoring CPU usage in every node. Their main hypothesis is that CPU
usage in malicious nodes is 80% higher than in benign node. Shakhov (2013) models WSN
energy consumption when the network is under an energy exhaustion attack and proposes
some methods to detect it. Part of these methods is to use change point analysis to detect
an intrusion by monitoring the bit error probability. The main hypothesis is that bit error
probability change when the network is under attack. Liu et al. (2011) introduces the
self-diagnosis concept in WSN as a way to decentralized fault detection decisions, that
are commonly taken in the sink, and encourage the sensor nodes to join this process. The
authors used CPD algorithms to decide if a node should join the fault detection process.

There are also some proposals in the literature for wired SDN using CPD. Conti,
Gangwal and Gaur (2017) proposed a distributed DoS (DDoS) detection attack and their
main objective was to provide a unique solution to detect several fundamentally different
DDoS attacks in SDN. The authors used CUSUM technique and incorporate an adaptive
threshold to reduce false alarms. Hirayama, Kentaroh and Sasase (2015) and Mahrach
et al. (2013) propose CPD mechanisms to detect flooding attacks. The first work used a
detection scheme called ChangeFinder (TAKEUCHI; YAMANISHI, 2006) and the latter
proposed a simple CUSUM algorithm with one threshold. Hirayama, Kentaroh and Sasase
(2015) main objective was to detect the attack before the network congestion. To address
this issue, they used multiple detection servers running the ChangeFinder mechanism to
reduce false alarms caused by sudden increase of traceroute packets.

Finally, we explored the application of change point analysis to detect anomalies in
SDWSNs. First, we applied Skaperas, Mamatas and Chorti (2018) algorithm to evaluate
DDoS detection accuracy (SEGURA et al., 2020), obtaining similar results than ML
approaches. Skaperas’ algoritm has an offline phase to determine the best detection
parameters and an online phase for a real-time CPD. Thus, we proposed a variation of
Skaperas’ algorithm (SEGURA; MARGI; CHORTI, 2020), eliminating the offline phase
to reduce the memory and processing requirements without significant impact on the
detection accuracy. This implementation is described in Section 5.2.
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2.4 Summary

In this chapter, the basic concepts about SDN and LLNs are explained. The
concept of SDWSN and a brief review of its evolution is presented, focused on IT-SDN,
the framework used for our proposal implementation. Lastly, SDN-based networks security
vulnerabilities are analyzed. This includes an explanation about how DoS attacks operates
and how some anomaly detection techniques are used to detect them.
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3 STATE OF THE ART

This chapter analyzes works that propose security solutions for resource constrained
SDN-based networks. The focus is on proposals targeting DoS and DDoS attacks detection
and identification; the analysis is based on detection and identification accuracy, type of
DoS attacks detected, and the level of consideration of resource constraints. This last point
concerns network structure, communication protocols and hardware specifications used or
considered for experimentation.

According to the information in the website dimmensions.ai1, as shown in Figure 6,
the number of publications about security in resource constrained SDN-based networks
had a significant increase since 2016. This increase is related to the previous publication
of groundbreaking works that showed that was possible to implement the SDN paradigm
in resource-constrained networks.

First security proposals for SDN-based were totally dependent on the controller
(SCOTT-HAYWARD; O’CALLAGHAN; SEZER, 2013). Eventually, some authors pro-
posed to delegate some control back to network devices since the controller could become
a bottleneck and is the most vulnerable element of the network (NAOUS et al., 2009;
NAYAK et al., 2009). These authors stated that network devices as part of the attack
detection aid to keep malicious traffic as much as possible in the data plane, reducing the
chances to attain the controller. Also, that is an strategy used to address scalability and
response issues during the attack (AHMAD et al., 2015). These insights were followed for
SDN-based resource constrained networks as well, expanding the catalog of proposals. For
this analysis, we split the literature in two groups: i) centralized approaches, i.e., works
where the attack detection resides only in the control plane and ii) hybrid approaches, i.e.,
works where the network devices have an active role in detecting the attack.

3.1 Centralized approaches

Bagaa et al. (2020) propose a highly centralized OpenFlow-based security framework
architecture for SD-IoT. Their objective was to provide protection at network and cloud
levels combining SDN, NFV (Network Function Virtualization) and ML. However, in terms
of DoS detection, this work follows previous proposals where a centralized entity collects
information from the network devices to detect patterns or anomalies using ML. Their
framework was deployed in a testbed with sensors distributed in three rooms, but there
is no information about the number of devices and platforms models. Lastly, the results

1 commercial platform for scientific research on publications https://app.dimensions.ai/discover/
publication. Accessed: October 1st, 2021
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(a) Keyword: SDWSN security (b) Keyword: SDIoT security

Figure 6 – Number of publications about security in resource constrained SDN-based
networks since 2012

Source: Author

show a detection accuracy exceeding 98%. A similar approach was proposed by Zarca et
al. (2018).

Another highly centralized approach was proposed by Choi and Kwak (2016). Their
security strategy is based on authentication and access control, using secure password
authentication (SPA) and certification-based authentication, and traffic analysis to detect
anomalies. However, Choi and Kwak (2016) were concerned about the processing overhead
in the SDN controller caused by the traffic analysis, thus they proposed to include collector
agents in the network. Despite this characteristic, the works is classified as a centralized
approach since the controller is the responsible for the detection.

In terms of implementation and performance, we know the controller was imple-
mented using the Floodlight Controller (MORALES; MURILLO; RUEDA, 2015) and
the network environment using Mininet 2.0. Also, the authors described a simulation
experiment used to analyze the framework performance, but they presented results only
about resource usage, thus is not possible to evaluate the performance in terms of security.
However, a weak point of this work is about the information provided of communication
among the security agents. This is important to understand and evaluate resource usage.

Özçelik, Chalabianloo and Gür (2017) proposed to combine SDN and fog computing
to bring the defense closer to the edge to avoid a disconnection between the IoT networks
and the cloud in case of a DDoS attack. The detection is based on Threshold Random
Walk with Credit-Based Rate Limiting and Rate Limiting. The first algorithm classifies
the nodes based on the likelihood of a connection attempt being successful. This is based
on the argument that a malicious node is continually trying to connect to random nodes
to increase the infection. The second algorithm enqueue connections requests that are
“not common” and processes them in order to wait a delay time between each processing.
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When the number of connections requested in the queue surpass a threshold defined, the
algorithm triggers an alarm. The malicious nodes are detected based on both algorithms
and then the controller updates the routing rules to drop all the packets coming from
these nodes. This paper shows interesting results about DDoS attacks detection and
performance recovery but the cases of study do not represent the type of constrained
network in our scope because of the following characteristics. The network is composed
by eight IoT devices and 30 wired hosts, thus most of devices in the network have no
energy constraints. IoT devices in the simulations are IEEE 802.11 compliant which means
a significant difference in terms of bandwidth if compared to IEEE 802.15.4 compliant
radios.

Bhunia and Gurusamy (2017) (SoftThings) and Ravi and Shalinie (2020) (LEDEM )
proposed OpenFlow-based security architectures for IoT environments. Both are a two-tier
organization with local multiple controllers and one universal or master controller. Local
controllers monitor its corresponding network and report to the universal controller in
case of detecting an attack. The universal controller can pass this information to other
controllers and take actions in higher levels.

In Bhunia and Gurusamy (2017) proposal, the universal SDN controller orchestrates
the whole network but the detection and mitigation are conducted by the local controllers.
The anomaly detection is based on Support Vector Machine (SVM), a ML tool. Then,
the local controller blocks suspicious flows and informs the actions taken to the Master
controller. The performance evaluation showed detection rates between 90% and 98%,
and recovery time between two and three seconds. On the other hand, this proposal
was designed for home or small establishments networks, scenarios with low number of
devices, without energy constraints and reachable in case of hardware problems of physical
tampering. In terms of experimentation, the authors showed their proposal is able to
detect and mitigate attacks from external and internal devices but considering scenarios
with no more than five devices.

Ravi and Shalinie (2020) use a detection algorithm based on deep machine learning
and it is executed in all the controllers. The authors state that their solution requires
out-of-band communication to avoid saturation, which means it may not fit in all IoT
environments. In terms of performance, the authors reported a detection accuracy of
96.28%. IDSIoT-SDL is a similar approach that uses deep learning (WANI; S; KHALIQ,
2021) as well. It is composed of an activity monitor, an activity analyzer and a classifier.
Their results showed a detection rate exceeding 99% but tested on IEEE 802.11 networks.

3.2 Hybrid approaches

Wang et al. (2018) proposed ETMRM (Energy-efficient Trust Management and
Routing Mechanism), an SDWSN trust management and routing mechanism to detect
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selective forwarding and new-flow attacks. Trust, in this context, is a belief level that one
node has on another. In this work, each node obtains the trust values of its neighbors
based on their communication behavior. The controller uses local trust values to calculate
a global trust value for each node. Nodes with a trust value under a threshold defined
are classified as attackers. Then, the controller reconfigures the network to isolate these
nodes. The mechanism was tested in simulations with 100 nodes, varying the number of
attackers between 5 and 20 nodes. Their results showed a detection rate over 90% only for
the case when five nodes are attackers, and this rate drops to values between 60% and 79%
when 20 nodes are attackers. From this, we infer that their proposal could be not very
effective on DDoS. Moreover, they considered CC2530 devices (IEEE 802.15.4 wireless
MCU from Texas Instruments) for communication and energy consumption modeling.
Thus we acknowledge this work as resource-constraints compatible.

Then, Bin-Yahya, Alhussein and Shen (2021) continues the proposal of Wang et al.
(2018) but separating data and control traffic evaluation to increase detection sensitivity.
Moreover, they include a hierarchical scheme to increase granularity and improve response
time, which is supported by their results. Their performance analysis is based on simulations
of a network with 40 nodes. In general, their results show their proposal improves ETMRM.
Trust management approaches are effective over different attacks, such as black hole,
selective forwarding and DoS. In turn, all the nodes remain more time active to monitor
their neighbors’ behavior. Additionally, for the proposal of Bin-Yahya, Alhussein and Shen
(2021), a heterogeneous network is required to implement the clustering approach without
reducing network lifetime.

Miranda et al. (2020) proposed a security framework for SDWSNs that combines
intrusion prevention and anomaly detection divided in three layers: first, an IPS-based
authentication process running in the data plane; second, an energy consumption prediction
running in the sink; and third, a Support Vector Machine (SVM) algorithm running in the
control plane that, using the information from the second layer, classifies nodes in trusted
and malicious nodes. In this proposal, sensor nodes, sinks and the controller are an active
part of the detection strategy, which alleviates the controller bottleneck. In turn, this
overhead is passed to the data plane. In terms of performance, it was evaluated through
simulations on a large network (i.e. 400 nodes), achieving a detection accuracy of 84.75%.

Yin, Zhang and Yang (2018) developed the OpenFlow-based framework SD-IoT,
which includes a security system for DDoS attacks detection, based on the cosine similarity
of packets received by switches. If the cosine similarity of the traffic received by a port
exceeds a certain threshold, it means this port is being attacked. This work is not clear
about how the system reacts when detecting the attack, but based on the results presented,
it seems that the switch blocks the traffic in this port being attacked. This is another
example about how some proposals choose to delegate some control back to network



49

devices. The authors evaluated their proposal through simulations using Mininet. The
network size is not explicitly specified, but on the graphics and figures, it seems to be
around 50 to 60 nodes.

Grigoryan et al. (2018) proposed the cooperation among SDN controllers to facilitate
DoS attack mitigation. In the scenario of a DDoS attack targeting many devices of
different SDN networks, the first controller detecting and confirming the attack shares the
information with the controllers of other networks through a cloud. Using this information,
the controllers can try to stop the attack by reconfiguring the network. Within the network,
attacks are detected by the IoT devices with better capabilities. These devices should be
registered to avoid malicious nodes to misinform the controller.

Grigoryan et al. (2018) evaluated their proposal using GENI testbed (GENI, 2018)
and a real hardware environment. The experimental topology was composed by two
controllers, three OpenFlow switches, two IoT devices and one attacker. Experiments
were designed to test the delay during the whole detection and mitigation process sharing
information between two SDN controllers. Results show that using this configuration one
network is protected in around 550 ms and the second network is protected after 1 s the
attack was triggered in average. Results show a faster attack detection and mitigation in
comparison with Özçelik, Chalabianloo and Gür (2017) and Bhunia and Gurusamy (2017),
but without testing scalability.

3.3 Analysis

From the works reviewed, we identified two approaches in the literature: centralized
and hybrid. Centralized approaches obtained a high detection rate (i.e., over 95%) using
ML techniques in most of cases. However, they impose high traffic overhead, requiring
out-of-band communication in some cases (Ravi; Shalinie, 2020), and large datasets for
training. Moreover, all of them are OpenFlow-based and assume a wired connection
between the switches and the controller. These solutions do not apply to multi-hop/ad-hoc
scenarios, such as WSN, where all nodes behave as switches, forwarding the packets to its
destination. In such case, to apply such approach, one should monitor the traffic going
through every node in the network.

In general, scalability was barely studied. Despite the experiments with 400 nodes
in Miranda et al. (2020) with a detection rate lower than 90%, most works tested their
proposals in networks with less than 100 nodes. Considering the centralized approaches
characteristics in terms of communication resources and security requirements, what we
expect from a scalability analysis is a decrease in the network performance. As shown by
Alves et al. (2019), the delivery rate of data packets can be below 90% in SDWSN networks
over 200 nodes. A security proposal that increases packets traffic could reduce even more
this metric which turns important to analyze the viability of their implementation in these
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sizes.

Hybrid approaches address high packet overhead issues but are limited by scarce
processing, communication and energy resources in IoT and WSN devices. This restricts the
complexity of security solutions that could run in these devices, understanding “complexity”
as the tradeoff between resources usage and detection performance. In terms of results,
Wang et al. (2018) and Miranda et al. (2020) did not obtain high detection performance.
Bin-Yahya, Alhussein and Shen (2021) improved Wang et al. (2018) results but overloading
the processing and communication resources usage in certain WSN nodes. In homogeneous
networks, this could compromise network lifetime thus complexity is still a challenge
(OLIVEIRA; MARGI, 2018).

Lastly, Table 2 summarizes the main characteristics of the works analyzed. We
considered if they obtained high detection rate (represented as High DR), the ability to
detect multiple attacks (represented as Multiple types), the ability to identify the type
of attack (represented as Attack type ident.), if resources constraints were considered
(represented as Resour. const.), the ability to identify the attacker or attackers (represented
as Attacker ident.), if present scalability analysis (represented as Scal.) and if solve the
complexity to run detection algorithms on resource-constrained devices (represented as
complex.). From all the works, only Bin-Yahya, Alhussein and Shen (2021) fullfil the first
five metrics. The hybrid approaches presented strategies to solve the control overhead
traffic, instrumental to solve scalability, however, more experiments are required. Also,
from all the hybrid approaches, only Bin-Yahya, Alhussein and Shen (2021) obtained high
detection performance but at the cost of increasing communication resources usage and a
hybrid infrastructure. For all this, we consider that scalability and complexity problems
are still a challenge to solve. To cover these both problems, a hybrid approach that lays
on the cooperation of all the elements in an SDN-based network is proposed. Also, our
proposal is designed to fullfil the seven metrics presented in Table 2.
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Table 2 – Related work

Reference
High
DR

Multiple
types

Attack type
ident.

Resour.
cons.

Attacker
ident.

Scal. Complex.

Centralized Approaches
(CHOI; KWAK, 2016) ✓

(Özçelik; Chalabianloo; Gür, 2017) ✓

(Bhunia; Gurusamy, 2017) ✓

(ZARCA et al., 2018) ✓

(BAGAA et al., 2020) ✓ ✓ ✓

(Ravi; Shalinie, 2020) ✓ ✓

(FARHIN et al., 2020) ✓

(WANI; S; KHALIQ, 2021) ✓ ✓ ✓

Hybrid Approaches
(WANG et al., 2018) ✓ ✓ ✓ ✓

(BIN-YAHYA; ALHUSSEIN; SHEN, 2021) ✓ ✓ ✓ ✓ ✓

(Miranda et al., 2020) ✓ ✓ ✓

(GRIGORYAN et al., 2018) ✓

(LI et al., 2019) ✓ ✓

(Yin; Zhang; Yang, 2018) ✓ ✓

Source:Author





53

4 PROBLEM FORMULATION

In this chapter, a security vulnerability analysis is presented. Then, the scalability
and complexity issues in hybrid security proposals for SDN-based resource-constrained
networks are described. The whole analysis is based on IT-SDN, an SDWSN framework
previously described in Subsection 2.2.2. IT-SDN (ALVES et al., 2017) was developed by our
research group and is completely open, free and available, which facilitates reproducibility
of experiments and results. Moreover, IT-SDN performance was evaluated in networks up
to 289 (Alves et al., 2019) nodes and tested in resource-constrained devices as TelosB and
SensorTag, appropriate characteristics to evaluate the security proposal in this work.

4.1 Security Vulnerability analysis

In SDN, network devices are not able to make decisions about handling packets.
When a network device has no rule for an incoming packet, it requests one to the controller.
This simple behavior is the basis of new-flow attacks. The attackers flood the network
with rule request packets to overload the control plane, and eventually, interrupt SDN
controller communication. In the case of WSN, this attack is critical. Aggressive attackers
can exhaust devices energy, leading to a permanent disconnection of the network.

Attackers are also able to reach the control plane through the network devices.
Attackers can flood their neighbors with packets with unknown rules. In this case, the
nodes flooding the network with rule requests packets are benign nodes. This attack
can multiply the number of packets flooding the network by the number of nodes in the
neighborhood of the attacker. This increases the radio and processing modules usage of
the nodes around the attacker. Also, each packet with an unknown flow means a new
rule, saturating routing tables after several requests. The saturation of routing tables can
impact on the network performance since valid rules would be replaced or new valid rules
will not have space, reducing delivery rate.

As explained in Subsection 2.2.2, a discovery protocol is executed to obtain topology
information and share it with the controller. The controller uses this information to
configure routing rules according to the policies programmed. The relevance of this
information turns discovery protocol and neighbor information message exchange prone
to attacks. Attackers in the route to reach the controller could identify these packets
and disrupt their integrity to misinform the controller, for example, manipulating nodes
addresses or routing metric values. Cryptography is a common proposal used to solve
integrity issues but results show that its use in SDWSNs is still a challenge. Alves et al.
(2018) proposed 𝑊𝑆3𝑁, a Security Framework to handle node admission and symmetric
key distribution in SDWSNs. However, their proposal has delivery rate issues even for
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networks around 40 nodes, which are small for our approach. This occurs due to packet
size increase, the time necessary to process messages, and the need to establish keys with
a centralized entity. Toledo et al. (2020) followed a similar approach improving several
aspects but increasing security level from 80 to 128 bits. According to their results, less
than 30% of the nodes were able to complete the authenticated key agreement in networks
of 36 nodes.

To understand the vulnerability of IT-SDN, several simulation experiments were
executed setting up an SDWSN under three DoS attacks: false flow request (FFR), false
data flow forwarding (FDFF) and false neighbor information (FNI). For the FFR and
FDFF attack, a secure channel is assumed (authenticity of nodes and integrity of packets).
On the other hand, the FNI attack targets networks without a secure channel. The
implementation of the secure channel is not part of this work.

The experiments include grid topologies between 25 and 121 nodes, varying the
number of attackers from one attacker to 10% of the total of nodes as attackers. The results
were compared against the case where the network was not under attack but maintaining
all the other configurations equal, i.e., the baseline case. Next, the description of each
attack is presented.

1. The FFR attack targets the controller and its main goals are to increase the controller
processing overhead and the packets traffic in order to increase the number of
collisions. To attain these goals, the attacker sends multiple flow rule requests to the
controller using different flow IDs. The controller processes the packets, calculates
the rules, and sends the replies to the attacker. Figure 7 depicts the packets exchange
during this attack.

Figure 7 – False flow request message exchange for one iteration of the attack

Source: Author
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2. A FDFF attack targets the controller via network devices. First, the attacker sends
data packets with unknown flow IDs to its neighbors. The neighbors receive the
packet and check the flow table to determine the action required, without success,
thus ask a rule to the controller by sending a flow rule request packet. The controller
receives this packet, calculates the rule and replies sending a flow setup packet.
Figure 8 shows the packets exchange (one iteration) during this attack, which aims
at increasing the network packet traffic and the controller and neighbors’ processing
overhead (SEGURA; MARGI; CHORTI, 2019).

Figure 8 – FDFF attack, one iteration: the attackers send data packets to their neighbors
using unknown IDs.

Source: Author

3. A FNI attack modifies the packets that contain neighbor information. The attackers
do not intercept the neighbor information packets but modify the ones that use
them to reach the controller. When receiving a neighbor information packet, the
attacker modifies either the routing metric or the node identification number, then
the packet continues its normal route to reach the controller. The packets exchange
for this attack is depicted in Figure 9. This attack leads the controller to mistreat
false information as true and to send erroneous routing rules to the nodes.

The FFR attackers were configured to send one false rule request every sixty
seconds. Likewise, the FDFF attackers send one false data packet to each of their neighbors
using this same frequency. This frequency could not be enough to disconnect the network
rapidly, but can provide information about what metrics they affect still for weak attacks.
The metrics analyzed are: data packets delivery rate, control packets delivery rate, control
packets overhead, flow usage, control and data packets end-to-end delay and nodes energy
consumption.
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Figure 9 – FNI attack, one iteration: the sensor node sends a neighbor report to the
controller and the attacker in the route (in the case there is one) modifies the
neighborhood information before forwarding the packet to the controller.

Source: Author

The delivery rate is the result of dividing the number of packets successfully received
by the total number of packets sent. The end-to-end delay is the average time the packets
spent to reach their destination. The control packets overhead is the total amount of control
packets per minute. Finally, the energy consumption is the average energy consumption of
all nodes during one hour of simulation, but excluding the sinks, the controller, and the
attackers. We excluded the sinks and the controller because we assume those nodes have
no energy restrictions and we excluded the attackers because we consider their energy
consumption information could also be compromised.

4.1.1 Results analysis

The data packet delivery rate when there is only one attacker in the network is
depicted in Figure 10a. The results show that in these conditions the FFR and FDFF
attacks do not have a significant impact on the delivery rate, unlike the FNI attack does.
In all the scenarios when the network is under a FNI attack, the average delivery rate is
lower than the delivery rate in the baseline and the other attacks. Furthermore, we note a
considerably higher variability (shown here as the standard deviation of the measurements)
in the data packet delivery rates when compared to the baseline reference performance.

For the case when ten percent of nodes are attackers (Figure 10b), the results show
that the networks under the FFR attack, and the networks from 36 to 81 nodes under
the FDFF attack, maintain the baseline delivery rate. The networks with 100 and 121
nodes under the FDFF attack and all the network scenarios under the FNI attack show a
decrease in the delivery rate with respect to the baseline results. In the case of the FDFF
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Figure 10 – Comparison of the impact of each attack on the data packets delivery rate. (a)
shows the results when there is only one attacker and (b) shows the results
when 10% of the nodes are attackers.

Source: Author

	50

	60

	70

	80

	90

	100

36 49 64 81 100 121

Co
nt
ro
l	d
el
iv
er
y	
ra
te
	(%

)

Topology	size

Base-line
FFR
FDFF
FNI

(a) One attacker

	30

	40

	50

	60

	70

	80

	90

	100

36 49 64 81 100 121

Co
nt
ro
l	d
el
iv
er
y	
ra
te
	(%

)

Topology	size

Base-line
FFR
FDFF
FNI
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Figure 11 – Comparison of the impact of each attack on the control packets delivery rate.
(a) shows the results when there is only one attacker and (b) shows the results
when 10% of the nodes are attackers.

Source: Author

attack, the delivery rate drop is less than 2%, while in the case of the FNI attack the drop
is considerably higher, between 17% and 66%.

The delivery rate results for control packets are shown in Figures 11a and 11b for
one attacker and for multiple attackers, respectively. Similar to the previous set of results
for the data packet delivery rates, the FNI is the attack with the highest impact on the
delivery rate. On the other hand, we observed two behaviors that were not present in the
data packets results: (i) all the networks under the FFR attack with ten percent of nodes
as attackers showed an improvement in the delivery rate for the control packets; and (ii)
all the networks under the FDFF attack with multiple attackers showed a drop in their
control packets delivery rate.

To understand both behaviors, an analysis of the total control packets overhead
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and the control packets traffic was conducted. The results in Figures 12a and 12b show
that the networks under the FDFF attack have the largest control packets overhead for
both single and multiple attackers. The FFR attack does not impact the control packets
overhead when there is only one attacker, but induces an increase in this metric when there
are multiple attackers. Then, a large control packet traffic due to the network configuration
during the first three minutes was observed in Figure 13. Then, this number drops to zero.
Subsequently, after the initial exchange of a large number of control packets the first three
minutes of operation, in the baseline scenario the number of control packets remains very
small, close to zero. On the other hand, in the FFR and in the FDFF attacks the control
packets flow usage increases over 100 times once the attacks are launched.

Therefore, the control packets delivery rate obtained during the baseline scenario
concerns mostly the first three minutes. On the other hand, when the attackers start to
operate, there is constant but less dense control traffic than in the first three minutes. This
is the main reason for the improvement observed in this metric. The situation is different
for the FDFF attack mainly for two reasons: (i) the control packets overhead is larger
than the control packets overhead in the FFR attack, and (ii) all the attacker’s neighbors
send a flow rule request at the same time, instead of only the single attacker sending one
flow rule request per minute. Both situations increase the probabilities of collisions.

The control packets overhead results also provide information about the FNI attack.
When there is only one attacker the average overhead in all the topologies sizes increases
compared to the baseline results; interestingly, we also observed an increase in the standard
deviation of this metric. In the case of multiple attackers, there is a high increase in the
control packets overhead, with the corresponding gap – when compared to the baseline
results – increasing with the number of nodes. For 36 nodes, the average control packets
per minute increases by 102.78%, for 64 nodes it increases by 117.52%, and for 121 nodes
it increases by 130.07%.

The data packets delay results depicted in Figure 14a and Figure 14b show a high
dispersion for topologies from 64 to 121 nodes. Also, this dispersion is higher when there
are multiple attackers in the network. Additionally, the mean values do not show any
pattern along the different topologies sizes that could aid to determine the impact of each
attack in the data packets delay. On the other hand, our baseline delay results coincide
with the results obtained in (MARGI et al., 2018) and (ALVES; MARGI; KUIPERS, 2019)
for topologies over 49 nodes. This indicates that it is common to have high dispersion in
this metric even though the network is not under attack.

In the case of the control packets delay results shown in Figure 15a and Figure 15b,
the networks with 36 and 49 nodes under the FDFF attack have the highest delay. This
behavior is the same when there is only one attacker and when there are multiple attackers.
For topologies over 49 nodes, the dispersion in the metrics increases and the difference
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Figure 12 – Comparison of the impact of each attack on the control packets overhead. (a)
shows the results when there is only one attacker and (b) shows the results
when 10% of the nodes are attackers.
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among the networks under attack delay results becomes less clear. For this reason, the
dispersion in the delay metric render it difficult to determine the impact of each attack in
the control packets delay when monitoring the average delay only.

Finally, the energy consumption results are shown in Figure 16a and Figure 16b for
one attacker and multiple attackers, respectively. In both cases, the energy consumption
remains unchanged, which means the attacks do not induce an energy consumption overhead
for the network. On the other hand, all the nodes in the network were programmed to work
without radio duty cycle, which means the radio module is turned on all the time. Since
the radio module has the highest energy consumption in the node, the energy consumption
overhead generated by the attacks becomes negligible.

Summarizing, the FFR attack does not induce a significant change in the network
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Figure 14 – Comparison of the impact of each attack on the average delay of data packets.
(a) shows the results when there is only one attacker and (b) shows the results
when 10% of the nodes are attackers.
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Figure 15 – Comparison of the impact of each attack on the average delay of control
packets. (a) shows the results when there is only one attacker and (b) shows
the results when 10% of the nodes are attackers.

Source: Author

delivery rate, packets overhead and end-to-end delay. This means that those metrics are
not proper indicators to detect when the network is under attack; at the same time, this
attack is very mild and does not heavily impact the performance of the network. On
the other hand, the control packets flow usage analysis offered useful information about
the difference with the baseline scenario in terms of control packets traffic. Moreover, an
increase in the average number of control packet delivery was identified for both single
and multiple attackers, turning this metric a potential candidate for the identification of
this type of attacks.

The scenarios under the FDFF attack indicated the highest control packets overhead
and also a drop in the control packets delivery rate. Conversely, this attack did not modify
the metrics related to the data plane. As a result, it is conceivable that a joint monitoring
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Figure 16 – Comparison of the impact of each attack on the average energy consumption.
(a) shows the results when there is only one attacker and (b) shows the results
when 10% of the nodes are attackers.

Source: Author

of the control packet overhead and of the control packet delivery rate can offer the means
to identify this type of attacks.

The FNI attack was the only one that affected both control and data packets
metrics, both in terms of the average value of the metrics as well as of their dispersion.
This attack reduced the control and data packets delivery rate and increased the control
packets overhead. Also, the performance results show there is a significant difference when
there is only one attacker and when there are multiple attackers.

Next, when the duty cycle is off, there are no significant modifications on the energy
consumption. Lastly, the end-to-end delay metric used in this work did not give results
that, at present, indicate the network is under attack. The main problem was the high
dispersion in the results, which is consistent with previously published work.

4.2 Scalability and complexity

Such as discussed in Chapter 3, the state of the art is divided in two main
approaches: the ones centralizing the detection, leveraged by the controller global view
of the network; and hybrid approaches that delegate some control or intelligence back
to network devices (SCOTT-HAYWARD; O’CALLAGHAN; SEZER, 2013)(AHMAD et
al., 2015). Centralized approaches combine the global view of the network with powerful
machine learning mechanisms to obtain accurate detectors, but at the cost of high packets
traffic.

Experiments of network performance in SDN-based IoT networks (Alves et al.,
2019) emulating TelosB motes, show that the delivery rate of data packets can drop below
90% in networks over 200 nodes. In these experiments all nodes were sending data packets
to 1, 2, 3, or 4 sinks every 60 seconds, the neighbor reports sent to the controller were
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Figure 17 – Packets delivery rate increasing the monitoring period of the metrics used to
detect attacks: (a) data packets and (b) control packets

Source: Author

limited to one every 60 seconds as well. Also, there was no security mechanism running in
the network. Porting this scenario configuration to one with a completely centralized attack
detection would be equivalent to every node reporting flow usage statistics to a controller
or management server every 60 seconds. On one hand, aggressive attacks could tear down
the network before two or three statistic updates reach the controller (SANGODOYIN et
al., 2018). On the other hand, to increase the statistic update frequency 𝑛 times, where
𝑛 ∈ R+, is equivalent to multiplying the total packets traffic by (1 + 𝑛/2). Increasing the
frequency by two is equivalent to double the original packets traffic.

Figure 17 shows the average delivery rate for a 225-node topology, varying the
period of time whereby every node reports metrics to a controller or management sink from
120 seconds to 10 seconds. These results show that, for an application where every node
reports data every 60 seconds, reporting performance metrics every 10 seconds reduces
data packets delivery rate in 10%. In the case of the control packets, the delivery rate did
not reach an average value of 80%, even for the case reporting performance metrics every
120 seconds. Reducing the monitoring period to 10 seconds reduce control packets delivery
rate in 6%.

Since the experiments were for multi-hop networks, the end-to-end delay metric
considering all nodes has high dispersion. However, as shown in Figure 18, the average
delay of data packets increase about 250% if changing the monitoring period from 120
seconds to 10 seconds. Furthermore, the results were not conclusive about the control
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Figure 18 – Packets end-to-end delay increasing the monitoring periods of the metrics
used to detect attacks: (a) data packets and (b) control packets

Source: Author

packets.

These results show that, even for applications with one sink, the performance
metrics monitoring required in centralized approaches has a significant impact on the
network performance. According to Alves et al. (2019), in scenarios with more than one
sink node, these metrics can be reduced even more. The case with four sinks obtained 5%
less data packets delivery rate than the case with only one sink. Therefore, in some cases
with a certain quality of service requirements, centralized performance metrics monitoring
is not the best option.

Hybrid approaches aids to keep malicious traffic as much as possible in the data
plane, reducing the chances to attain the controller. Some hybrid approaches reduce
packets traffic, however, their impact in terms of scalability has not been evaluated in the
literature. Also, current hybrid proposals increase the nodes resources usage to the point
that heterogeneous networks are required to implement the detection strategies. Thus, the
complexity of the detection algorithms running in the network devices is a concern, not
only processing requirement but memory space.

Proposals for SDN IoT networks, such as IT-SDN (Alves et al., 2019) or SDN-WISE
(GALLUCCIO et al., 2015), require between 40 kB and 50 kB of flash memory to operate
in standard conditions, this means, without considering the application layer. The TelosB
mote is a WSN device with 48 KB of flash memory and 8 KB of RAM memory. Installing
IT-SDN or SDN-WISE in these devices means taking most of its memory space, remaining
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a few KBs for security applications. Some hybrid approaches based their attack detection
on trust metrics. This reduces packets traffic but increases radio module usage, which is
energy expensive. One strategy could be to detect the attacks based on their own behavior,
which increases processing resources usage. One advantage is that processing is more
energy efficient in contrast with communication energy consumption. Currently, there are
devices with more memory resources, such as SensorTag and RE-Mote, however, targeting
a solution that fits in TelosB motes turns it reachable to a wide option of devices.

Addressing the complexity problem is one step to address the scalability issue, since
resource-constrained network devices would be able to run accurate anomalies detection
algorithms on-site, alleviating the packets overhead required by centralized approaches.
However, these individual nodes are not able to know if the anomaly is caused by an
attack, or if it is caused by a benign behavior, such as network reconfiguration launched
by the controller. In addition, if the anomaly is in fact caused by an attack, the SDN
controller needs to be aware of this to take and/or execute configuration changes on the
network devices to mitigate the attack. This means that the interaction among the different
elements in the SDN architecture (Figure 2) is also vital to solve the security problem.

4.3 Summary

In this chapter, the security vulnerabilities of SDN-based resource-constrained
networks and the scalability and complexity problem of current proposals were formulated.
Three DoS attacks with different characteristics were implemented and their impact on
the network performance was analyzed. The delivery rate and the control packets overhead
were identified as the metrics where these attacks have more impact. Then the scalability
of centralized security approaches was analyzed for networks with 225 nodes. These results
showed how the monitoring frequency has significant impact on the network performance.
Lastly, the complexity problem of current hybrid proposals was explained. Basically, they
require resources that could limit their use in homogeneous networks. Thus, given the
network security vulnerabilities, the impact of centralized intrusion detection in the network
performance and the complexity problem of hybrid approaches, we posed the following
question: “What are the benefits of solving the complexity problem in hybrid approaches
to increase scalability of intrusion detection in SDN-based resource-constrained networks?”
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5 COOPERATIVE INTRUSION DETECTION

This chapter is dedicated to explain the proposed method on intrusion detection
proposal for software-defined resource-constrained networks. This proposal aims to address
the scalability and complexity issues explained in Chapter 4 to detect DoS attacks.

The proposal is an intrusion detection strategy, inspired by multi-agent archi-
tectures (WOOLDRIDGE, 2009), where all the elements of the network cooperate to
determine: i) when the network is under DoS attack, ii) the type of the attack and iii)
to identify nodes launching the attack. The proposal considers four types of elements
that participate in the intrusion detection: Security Manager, sensor devices, Performance
Manager, SDN controller. The definition of these elements is based on the SDN architecture
in the RFC 7426 (HALEPLIDIS et al., 2015).

The Security Manager is in charge of making the decisions in terms of security,
and this means: i) determine when an anomaly, or anomalies, are caused by a DoS attack;
ii) determine the type of the attack; and iii) identify the nodes launching the attack. The
Security Manager uses all the information received from other elements to make decisions
concerning the three points mentioned before.

The sensor devices, which compose the WSN itself, are constantly monitoring
their behavior through metrics as: radio module usage, processing resources usage, and
packets received and transmitted. Their objective is to detect anomalies on their behavior
that could be related to a DoS attack. When a sensor device detect an anomaly, it raises
an alarm and informs the Security Manager about it. Additionally, if possible, the sensor
devices send information about nodes with suspicious behavior.

The SDN Controller is where the control decisions are taken. For this reason,
this agent has topology information and control traffic information that is important for
their own decisions and instrumental to detect DDoS attacks. The SDN Controller agent
provides network graph information to the Security Manager and reconfigures the network
according to Security Manager instructions.

The Performance Manager collects data from the sensor devices and the SDN
Controller, calculates metrics to monitor the network performance, and provides these
metrics values to the Security Manager, when required. The Security Manager analyzes
these metrics to detect anomalies on the network performance.

Next, in Section 5.1 the role of the elements and their interactions before the attack,
during the attack detection and attackers identification is explained.
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5.1 Interaction among agents

As explained before, the Security Manager receives information from other agents to
take security-wise decisions. In the following, we explain the interactions among the agents
necessaries to detect DoS attacks. For this, we use three possible cases: i) no anomaly
detected yet, ii) an anomaly is detected by a Sensor device, and ii) an anomaly is detected
by the Security Manager agent. The interactions among the agents are summarized in
Figure 19.

5.1.1 Normal operation

• Sensor device – Performance Manager: The sensor devices send performance metrics
to the Performance Manager. The Sensor devices can be programmed to send the
metrics periodically or when the Performance Manager requests it.

• Security Manager – Performance Manager: The Performance Manager sends per-
formance metrics to the Security Manager. This interaction can be periodic or by
request of the Security Manager.

• Performance Manager – SDN Controller agent: The Performance manager requests
performance metrics to the SDN Controller.

5.1.2 Anomaly detected by a Sensor device

• Sensor device – Security Manager: The sensor agent informs to the Security Manager
about the anomaly detected. If the Security Manager determines that the anomaly
was not an attack, it informs to the Sensor devices to continue operating normally.

• Security Manager – Performance Manager: The Security manager asks to the Perfor-
mance Manager about recent configurations executed on the node sending the alarm
or in its neighborhood.

• Security Manager – SDN Controller: The Security Manager asks to the SDN Con-
troller about recent configurations executed on the node sending the alarm or in its
neighborhood.

5.1.3 Anomaly detected by the Security Manager agent

• Security Manager – Performance Manager: The Security manager asks to the Perfor-
mance Manager about recent configurations executed on the network.

• Security Manager – SDN Controller: The Security Manager asks to the SDN Con-
troller about recent configurations executed on the network.
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Figure 19 – Interaction among agents

Source: Author

• SDN Controller – Sensor devices: If the anomaly was classified as an attack, the
SDN Controller reconfigures the Sensor devices to mitigate the attack.

5.2 Anomalies detection

The Security Manager takes all the security decisions. These decisions include
determining when the network is under attack based on the anomalies detected and the
information received from the other agents. The agents in charge of detecting anomalies
are the sensor devices and the Security Manager. For this, they execute a change point
analysis algorithm for real-time detection on time-series constructed from metrics as
delivery rate and control packets overhead. The results in Chapter 4 showed DoS attacks
have a significant impact on these metrics.

Skaperas, Mamatas and Chorti (2019) propose a real-time, autonomous and low
complexity (i.e. 𝑂 (𝑁 log 𝑁), where 𝑁 is the length of the monitoring window) change point
detection algorithm with a success rate exceeding 94%. Their proposal is composed of an
off-line phase, an on-line phase and a trend indicator. The off-line phase is a training period
employed to configure the on-line phase and the trend indicator determines the direction
of the change. The low-complexity, success rate and access to the whole implementation
were the main reasons to choose Skaperas, Mamatas and Chorti (2019) as the base of our
anomaly detection algorithm. However, we decided to implement only the on-line phase
to be able to fit it in resource-constrained nodes. The off-line phase was changed for a
manual configuration based on a security policy: prioritize accuracy or detection speed.
The trend indicator was not part of the current implementation as well.



68

5.2.1 On-line change point detection algorithm

Generally, CP problems are formulated as hypothesis tests. The null hypothesis
represents the structural stability of the process, while the alternative hypothesis indicates
one or multiple CPs and is used to detect an anomaly. The test statistics may be viewed
as two-sample tests adjusted for the unknown break location, thus leading to max-type
procedures. Often asymptotic relationships are derived to obtain critical values for the
tests. After the null hypothesis is rejected, the location(s) of the break(s) need(s) to be
estimated (AUE; HORVATH, 2013).

To outline the on-line CP algorithm, let {𝑋𝑛 : 𝑛 ∈ N} be the time series of the
metric monitored. Using Wold’s theorem we can assume that, for 𝑋1, ..., 𝑋𝑁 , each sample is
expressed as 𝑋𝑛 = 𝜇𝑛 +𝑌𝑛, where {𝜇𝑛, 𝑛 ∈ N} is the mean of the time series and {𝑌𝑛 : 𝑛 ∈ N}
is a random zero mean term, so that we can rewrite 𝑋𝑛 as:

𝑋𝑛 =


𝜇 + 𝑌𝑛, 𝑛 = 1, . . . , 𝑚 + 𝑘∗ − 1

𝜇 + 𝑌𝑛 + 𝐼, 𝑛 = 𝑚 + 𝑘∗, . . .
(5.1)

where 𝑘∗ ∈ N∗ represents the unknown time of change and 𝜇, 𝐼 ∈ R𝑟 represent the mean
parameters before and after 𝑘∗, respectively. We here assume a period of no change in the
mean of at least 𝑚 samples, i.e., during the first 𝑚 samples of our observation there is no
change so that 𝜇1 = . . . = 𝜇𝑚 .

During this period, our detector “learns” in real-time the statistics of the observed
time series and the mean value in particular. The statistical hypothesis test is articulated
as,

𝐻0 : 𝐼 = 0
𝐻1 : 𝐼 ≠ 0.

(5.2)

The on-line sequential analysis belongs to the category of stopping time stochastic
processes. In general, a chosen on-line test statistic 𝑇𝑆𝑜𝑛 (𝑚, 𝑙) and a given threshold
𝐹 (𝑚, 𝑙) define the stopping time 𝜏(𝑚):

𝜏(𝑚) =


min{𝑙 ∈ N : 𝑇𝑆𝑜𝑛 (𝑚, 𝑙)⩾ 𝐹 (𝑚, 𝑙)},

∞, if 𝑇𝑆𝑜𝑛 (𝑚, 𝑙)< 𝐹 (𝑚, 𝑙) ∀𝑙 ∈ N,
(5.3)

implying that 𝑇𝑆𝑜𝑛 (𝑚, 𝑙) is calculated on-line for every 𝑙 in the monitoring period. The
procedure stops if the test statistic exceeds the value of the threshold function 𝐹 (𝑚, 𝑙).
As soon as this happens, the null hypothesis is rejected and a CP is detected. 𝐹 (𝑚, 𝑙) is
defined as,

𝐹 (𝑚, 𝑙) = 𝑐𝑣𝑜𝑛,𝛼𝑔(𝑚, 𝑙), (5.4)

where: (i) 𝑐𝑣𝑜𝑛,𝑎 is the critical value determined from the asymptotic behavior of the
stopping time procedure under 𝐻0 by letting 𝑚 → ∞, (ii) and 𝑔(𝑚, 𝑙) is the weight
function defined as:
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𝑔(𝑚, 𝑙) =
√
𝑚

(
1 + 𝑙

𝑚

) (
𝑙

𝑙 + 𝑚

)𝛾
(5.5)

where the sensitivity parameter 𝛾 ∈ [0, 1/2).

The on-line algorithm uses the standard CUSUM detector (FREMDT, 2014), with
test statistic denoted by 𝑇𝑆𝑐𝑡𝑜𝑛. Its corresponding critical value is denoted by 𝑐𝑣𝑐𝑡𝑜𝑛,𝛼 and
the stopping rule by 𝜏𝑐𝑡 (𝑚). The sequential CUSUM detector is denoted by 𝐸 (𝑚, 𝑙),

𝐸 (𝑚, 𝑙) =
(
𝑋𝑚+1,𝑚+𝑙 − 𝑋1,𝑚

)
. (5.6)

The standard CUSUM test statistic is expressed as:

𝑇𝑆𝑐𝑡𝑜𝑛 (𝑚, 𝑙) = 𝑙Ω̂
− 1

2
𝑚 𝐸 (𝑚, 𝑙), (5.7)

where Ω̂𝑚 is the estimated long-run covariance, which captures the dependence between
observations. Then, the stopping rule 𝜏𝑐𝑡 (𝑚), is defined as:

𝜏𝑐𝑡 (𝑚) = min{𝑙 ∈ N : ∥𝑇𝑆𝑐𝑡𝑜𝑛 (𝑚, 𝑙)∥1 ≥ 𝑐𝑣𝑐𝑡𝑜𝑛,𝛼𝑔(𝑚, 𝑙)}, (5.8)

where the ℓ1 norm is involved to modify 𝑇𝑆𝑐𝑡𝑜𝑛 so that it can be compared to a one-
dimensional threshold function. The critical value, 𝑐𝑣𝑐𝑡𝑜𝑛,𝛼, is derived from the asymptotic
behavior of the stopping rule under 𝐻0:

lim
𝑚→∞

𝑃𝑟{𝜏(𝑚) < ∞} (5.9)

= lim
𝑚→∞

𝑃𝑟

{
sup

1⩽𝑙⩽∞

∥𝑇𝑆𝑐𝑡𝑜𝑛 (𝑚, 𝑙)∥1
𝑔(𝑚, 𝑙) > 𝑐𝑣𝑐𝑡𝑜𝑛,𝛼

}
= 𝑃𝑟

{
sup

𝑡∈[0,1]

∥𝑊 (𝑡)∥1
𝑡𝛾

> 𝑐𝑣𝑐𝑡𝑜𝑛,𝛼

}
= 𝛼 (5.10)

where 𝑊 (𝑡) denotes the Brownian motion with mean 0 and variance 𝑡. The on-line critical
values can be computed using Monte Carlo simulations, considering that,

𝑐𝑣𝑐𝑡𝑜𝑛,𝛼 = sup
𝑡∈[0,1]

𝑊 (𝑡)
𝑡𝛾

. (5.11)

Lastly, the estimated on-line CP, 𝑘∗𝑜𝑛, is derived directly from the value of the
stopping time 𝜏(𝑚), as,

𝑘∗𝑜𝑛 = 𝑚 + {𝜏(𝑚) |𝜏(𝑚) < ∞}. (5.12)

In summary, the change point detection algorithm has 3 main steps. The first step is
an observation period of the metric being monitored. From this observation, the algorithm
“learns” in real-time the statistics of the time series and the mean value in particular.
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The on-line change point detection starts when the observation period ends. During the
on-line detection, the change on the time series for every new sample is evaluated. If after
𝑘 samples no change point is detected, the 𝑘 samples are aggregated to the time series
observed in the first step and the new statistic characteristics are calculated. Then, a new
on-line detection period starts. However, if a change point is detected, the algorithm stops.

5.3 Anomalies classification

In this section, the classification process of anomalies to determine when the network
is under attack is described. The anomalies are classified in two groups: simple anomalies
and complex anomalies. However, in this work we include the evaluation only for the
simple anomalies. The evaluation of the classifier for complex anomalies is not part of the
objectives of this work.

5.3.1 Simple anomalies classification

Simple anomalies include the cases of networks in steady-state without large control
and management configurations apart from the initial one. We suppose a fixed number of
nodes during the whole operation, which means, no nodes join or leave the network.

Under these conditions, the network performance should remain stable thus the
Security Manager declares the network under attack when:

• an anomaly on a centralized metric is detected, or

• an attacker is identified.

The Security Manager was designed to be able to run multiple detectors in parallel.
In this manner, we expect to increase the detection probability, but also, to relate the
metric where the anomaly is detected and the type of the attack. Based on the results
about the impact of DoS attacks in SDWSN presented in Chapter 4, we observed two
important relations: control packets overhead is the first metric impacted by FDFF attacks
(new-flow type) and the data packets delivery rate is the first metric impacted by the FNI
attack (routing information integrity type). From these results, the next hypothesis was
posed: if the CP is first detected in the mean value of the control packets overhead, the
attack is classified as FDFF; conversely, if the CP is detected first in the mean value of
the data packet delivery rate, the attack is classified as FNI.

The Security manager identifies the attackers based on the alarms received from
sensor nodes. The first hypothesis is that nodes around the attacker are the first detecting
an anomaly in their behavior. Thus, when the Security Manager receives an alarm, all its
neighbors become suspects. While more nodes report alarms, the list of suspects increases
but also the probability of one suspect being reported multiple times. Based on this, the
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next identification criteria was established: a suspect is classified as an attacker when all
its neighbors have reported an anomaly detected.

The FDFF attack is characterized for inducing the attackers’ neighbors to send
flow rule requests to the controller by creating data packets with unknown flows identifiers.
Based on this, all nodes are able to determine a suspect when detecting an anomaly by
checking the source of the last data packets with unknown flow received. Then, a suspect
is identified as attacker when the Security Manager has received 𝑥 reports from different
nodes, where 𝑥 ∈ [1, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠]. Low values of 𝑥 prioritize detection speed while high
values prioritize accuracy. The implementation of both identifiers is explained in Section
5.4.

5.3.2 Complex anomalies classification

This scenario includes the networks with constant global reconfigurations in both
the control and management plane caused by: a change in the routing policies, a change
in the management policies and nodes joining and leaving the network.

In these cases, a more complex verification is required. When multiple nodes join
or leave the network, the graph and the routing metrics suffer modifications. This process
involves the nodes joining the network, the nodes in their neighborhood, and the controller.
Also, it indirectly involves all the nodes in the routes to reach the controller or other flow
destinations. The new nodes and their neighbors will update their neighbor tables and
send a report to the controller. Then, the controller calculates the new rules and configures
the network. This increases the packets traffic and hardware usage metrics in all the nodes
involved, and also increases the network control overhead metric.

To reduce the false positives in situations like these, the Security Manager asks
the controller about recent configurations on the nodes that reported an anomaly, un-
derstanding “recent” as a parameter to investigate. If the controller confirms a recent
configuration on these nodes, the next step is to ask if these configurations include flow
rule requests for unknown flows, unknown for even the SDN Controller. If this in fact
happened, the Security Manager classifies the anomaly as an attack. Conversely, if there
are no unknown flows detected by the SDN Controller, the Security Manager considers
these anomalies as normal, but remains aware of a centralized anomaly detection that
could indicate a significant impact on the network, for example, a significant drop on the
data packets delivery rate. If the SDN Controller denies recent configuration on these
nodes, the Security Manager asks to the Performance Manager about recent configuration
on these nodes. If the Performance Manager confirms the recent configuration, the Security
Manager discard the attack. On the other hand, if the Performance Manager denies the
recent configuration as well, the anomalies are classified as an attack, understanding that
these anomalies are caused by unknown entities. The algorithm to classify the anomalies
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detected on the Sensor devices is summarized in Figure 20.

Figure 20 – Anomalies classification: Algorithm running on the Security Manager when
receiving one or more anomaly alerts from the Sensor devices

Source: Author

5.4 Implementation

The proposed method was implemented using IT-SDN, an open SDWSN framework.
Using IT-SDN southbound protocol we were able to communicate the WSN with the
SDN controller and the Performance Manager. The SDN Controller and the Performance
Manager run in a desktop computer and a WSN node works as gateway for both via serial
connection. At the initial bootstrap, the controller configures every node in the network to
reach it. Then, the Performance Manager informs to the controller that it is a destination
for management packets using a flow id register packet. Now, the SDN Controller is able
to configure routes to reach the Performance Manager.

Sensor nodes are pre-programmed to send performance metrics to the Performance
Manager periodically. The period is a parameter that depends on the sampling frequency
we want for the centralized monitoring in the Security Manager. Also, this is an important
parameter since this period should change according to the topology size and performance
metrics. However, for our case this is hardcoded based on previous tests to determine the
right value. For example, in Chapter 4 it was shown that using a periodic period of 60
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Figure 21 – Centralized monitoring messages exchange for time series constructions

Source: Author

seconds in a 225-node topology the impact on the data packets delivery rate was minimum.
Then, the Security Manager is able to request performance metrics to the Performance
Manager. The complete centralized monitoring messages exchange is depicted in Figure
21. However, it is worth mentioning that IT-SDN does not have a northbound protocol
implementation, thus the Performance Manager stores the metrics information and the
Security Manager accesses it.

Sensor nodes are also pre-programmed to monitor its own behavior, for example,
radio module usage, processing overhead in miliseconds or number of packets transmitted.
The algorithm running in every node is the same running in the controller but limited in
terms of the number of metrics that can be analyzed at the same time. For the case of
the TelosB mote, which is the platform we used, the limit was one metric using a training
of 200 samples and a monitoring window of 50 samples, for samples of 16 bits. When a
sensor node detects an anomaly, it sends a message to the Security Manager. A packet
was included in the Southbound protocol, exclusively for this purpose. In this packet
the sensor can include important information, such as the metric on which the anomaly
was detected and a suspect address, among others. This packet is forwarded to the SDN
controller, which in turn sends this information to the Security application. Then, the
Security Manager can request topology information to the SDN Controller. For our case,
we implemented two functions: one to ask the number of neighbors of one node and other
to ask the addresses of its neighbors. The messages exchange is depicted in Figure 22.

Then, two algorithms were implemented to identify the attackers. The first algorithm
(Algorithm 1) is based on the hypothesis that nodes around the attacker would be the
first detecting anomalies on their behaviors. When the Security Manager receives an
alarm, it asks the addresses of the suspect’s neighbors to the controller. All the nodes
in the neighborhood are now suspects. The Security Manager creates a counter for each
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Figure 22 – Distributed anomaly detection messages exchange

Source Author

Algorithm 1 FDFF attackers identification
alarm_packet{source_node}: alarm received from “source node”
suspects_addr: addresses of the source node neighbors
counter(n): counter to register the times the node “n” has been reported as suspect
neighbors: number of nodes in the neighborhood of the suspect
——————————————————————————————
Security Manager:
Wait alarm_packet{source_node}
suspects_addr = ask_controller_neigh_addr(source_node)
for n in suspects_addr do counter(n)++ neighbors = ask_controller_neigh_total(n)

if counter(n) == neighbors then
s = attacker

end if
end for

suspect to register the times it is in the neighborhood of a node reporting an alarm. When
the counter and the number of suspect’s neighbors are equal, the suspect is classified as
attacker since this means that all the nodes around the attacker detected an anomaly. The
detection process is summarized in Figure 23.

Then, we proposed another identification algorithm but specific for the FDFF
attack. In this case, a register on the sensor nodes stores the addresses of the nodes sending
data packets with unknown flow IDs. The size of the register will be defined according to
the detection speed results. When the node detects an anomaly, it checks the addresses in
the register and selects as suspect the node with the higher frequency, i.e. the mode. The
size of the register should be defined according to the remaining memory space and the
detection speed of the detector. Since the detection speed changes according to the attack
characteristics and the algorithm configuration, this parameter would be defined when
having first results about distributed detection. Also, this register should be refreshed
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(a) 1 alarm (b) 2 alarms

(c) 3 alarms (d) 4 alarms

Figure 23 – Attacker identification using Algorithm 1. In blue, the node reporting the
alarm and in yellow the nodes that become suspects. Inside the suspects in
the number of neighbors that have reported an alarm

Source: Author

periodically to avoid declare as suspect benign nodes.

The Security Manager receives the alarm and the suspect’s address. The Security
manager checks if this address has been reported before and if not, it creates a counter for
future reports. Then, the Security Manager asks the number of neighbors of the suspect to
the controller and compares this value with the suspect’s counter. If the counter and the
number of neighbors are equal, the Security Manager classifies the suspect as an attacker.
However, since in this case the sensor node is already detecting a suspect, the attack
declaration and attacker identification could be done before all the neighbors report the
alarm. Assuming this, we could reduce the detection speed but also increase the false
positive rate. Algorithm 2 presents the attacker identification algorithm.

These algorithms performance relies on the hypothesis that the attacker will target
all its neighbors. In the case the attacker targets only a a section of its neighborhood,
algorithms 1 and 2 will not identify the attacker. However, there is a list of suspects that
can provide a clue to the Security Manager about the nodes launching the attack when
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Algorithm 2 FDFF attackers identification 2
alarm: signal when the sensor node detects an anomaly
new_packet_flow: flow id of a new packet received
suspect_register: register to store addresses of the suspects
suspect: address of the suspect
suspect_counter: stores the times a suspect has been reported
alarm_packet: packet sent by the sensor nodes to inform of an anomaly
neighbors: number of nodes in the neighborhood of the suspect
——————————————————————————————
In sensor node:
while !alarm do

if new_packet_flow == unknown flow then
include source in suspect_register

end if
end while
suspect = mode(suspect_register)
send alarm to Security Manager
Security Manager:
Wait alarm_packet
if new suspect in alarm then

create suspect_counter
else

suspect_counter++
end if
neighbors = ask_to_controller(suspect)
if suspect_counter == neighbors then

suspect is attacker
end if

detecting an anomaly using one centralized detector. This strategy will be evaluated in
future works.

5.5 Summary

This chapter describes our proposed method for intrusion detection based on the
cooperation of all the elements of the network and inspired on the multi-agents paradigm.
First, four agent types and their interactions were defined. Next, the on-line anomaly
detection algorithm proposal was explained. Then, the anomalies classification criteria was
described. For this, we defined two scenarios: simple anomalies and complex anomalies.
Lastly, the implementation of the whole proposal was explained.
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6 PERFORMANCE EVALUATION

This chapter contains the performance evaluation results of the cooperative intrusion
detection proposal. Section 6.1 describes the experiments and methods while Section 6.2
presents and discusses the results. Lastly, Section 6.3 summarizes the insights obtained
from these experiments.

6.1 Experiments design

From the analysis of the literature (Chapter 3), we noticed that: i) scalability in
intrusion detection proposals for resource-constrained SDN-based networks has not been
addressed and ii) hybrid approaches, which address high packets overhead, are limited by
lack of resources in network devices.

The main objective of this work is to design and evaluate a hybrid intrusion
detection for resource-constrained SDN-based networks that address distributed intrusion
detection limitations and increase scalability, according to the results presented in Chapter
4. Three groups of experiments were designed to evaluate our proposal according to the
objectives mentioned before.

In the first group, the centralized DDoS attack detection performance of the
Security Manager was evaluated. The second group was designed to test the distributed
anomaly detection, running the change point detection algorithm on every node. The
third group comprises the experiments to evaluate the performance of the whole proposal.
The experiments are mainly simulations of WSNs using Cooja simulator (Osterlind et al.,
2006), which allowed us to emulate real platforms.

For all the groups, fully-bidirectional grid topologies emulating Tmote sky (i.e.
an equivalent of the widely known TelosB mote (CROSSBOW, 2004)) were used. This
platform has an MSP430 microprocessor, 48 kB of flash memory, 10 kB of RAM and
a CC2420 transceiver. For the first and second groups, the detection performance was
evaluated on 36-node and 100-node topologies. For the third group, 225-node topologies
were used.

The detection performance was evaluated considering i) detection rate (DR); ii)
false positive rate (FPR); iii) false negative rate (FPR) and iv) detection time median
(DTM), indicating the median of the time instances elapsed from the launch of the attack
to the instance it was identified. The detection rate is the probability of correctly detect
an attack. The false positive rate is the probability of classifying as attack a non-attack
event. The false negative rate is the probability of classifying as non-attack an attack
event. The detection time median is the median of the number of samples required to
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detect the attack.

To calculate those metrics, we classify the events detected as: true positive (TP),
false positive (FP), true negative (TN), and false negative (FN). True positive is the result
of an attack event that is successfully detected. False positive is the result of a non-attack
event that is classified as attack. True negative is the result of a non-attack event that is
successfully classified as non-attack. False negative is the result of an attack event that is
classified as non-attack event. In this manner, the security metrics are defined as:

• Detection rate:
𝐷𝑅 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(6.1)

• False positive rate:
𝐹𝑃𝑅 =

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
(6.2)

• False negative rate:
𝐹𝑃𝑅 =

𝐹𝑁

𝐹𝑁 + 𝑇𝑃
(6.3)

Such as explained in Section 5.2, we implemented an on-line change point de-
tection algorithm based on Skaperas, Mamatas and Chorti (2019). Since we did not
implement the off-line phase to reduce the processing and memory resources required,
it was necessary to determine the parameters values that increase or reduce detection
performance. Two parameters were investigated: the number of samples for the training
period 𝑚 = {100, 150, 200} and the sensitivity 𝛾 ∈ [0, 0.5). From that, we introduced a
“detection score” to capture the relative importance given to the 𝐷𝑅 versus the 𝐷𝑇𝑀

(which focuses on detecting changes in a signal or a time series as quickly as possible after
they occur (POOR; HADJILIADIS, 2008)). The proposed detection score, denoted by
𝑃𝐷𝑆, was defined as:

𝑃𝐷𝑆 (𝐴, 𝐵) = 𝐴(1 − 𝑆) + 𝐵(𝐷𝑅), with 𝐴 + 𝐵 = 1, (6.4)

where 𝐴 and 𝐵 are coefficients that determine the relative weight of each term, and 𝑆 = 𝐷𝑇𝑀
𝑙

with 𝑙 the number of samples monitored after the attack starts. We used five combinations
of 𝐴 and 𝐵, i.e., (𝐴, 𝐵) ∈ {(1, 0), (0.8, 0.2), (0.5, 0.5), (0.2, 0.8), (0, 1)}, to compare the
results when prioritizing the speed of detection (𝐴 > 𝐵) versus when prioritizing the
detection rate (𝐴 < 𝐵).

The scalability of the proposal was measured based on control packets overhead,
data and control packets delivery rate and end-to-end delay. The control packets overhead
is the total of control packets transmitted during the simulation time. The control packets
delivery rate is the result of dividing the number of control packets successfully received
by the total number of control packets sent and similar for the same of the data packets.
The end-to-end delay is the average time the packets spent to reach their destination.
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Every node was programmed to periodically generate data and management traffic.
For the groups one and two, the sensor nodes send one data packet to a sink node every
30 seconds and one management packet to the other sink every 120 seconds. The data
packets delivery rate and the control packets overhead were observed every two minutes,
considering the exchange of messages in the whole network during this window of time.
The delivery rate was calculated by dividing the number of data packets successfully
received by the number of data packets sent. The control packets overhead was quantified
as the number of control packets sent. Since samples were collected every two minutes,
each simulation was run for 10 hours. During the first eight hours the network operated
normally (i.e., for 240 samples there was no change), then the attack was triggered. This
imposed a bound 𝑚 < 240.

For the group three, the period set up for both data and management packets was
60 seconds. Using 60 seconds for data traffic we have similar configuration to Alves et al.
(2019). This is important since their results are a valid reference for evaluation in terms of
scalability. For management traffic, we reduced the period from 120 seconds to 60 seconds.
According to the analysis in Section 4.2, the decrease in the data packets delivery rate for
using 60 seconds is less than 1% and remains around 95%. Thus, we are able to increase
the monitoring metrics sampling by two without a significant impact on the data packets
delivery rate. The simulation time was also reduced to 18000 seconds since reducing the
management traffic we are able to reduce the monitoring sampling period, thus less time
is required for the training phase.

All the scenarios have only one controller and two sinks, one sink exclusive for data
traffic and the other one exclusive for management traffic. The controller was placed in
the center of the grid and the sinks were placed in the middle of the grid edge, since this
location gave a better performance in terms of delay, control overhead, energy consumption
and delivery rate according to Alves et al. (2019). The attackers were semi-randomly
distributed in the network under the condition that two or more attackers cannot be
neighbors and this distribution remains equal in every scenario replication. Figures 24,
25 and 26 show the attackers distribution for 36, 100 and 225 nodes, respectively, when
multiple nodes are attackers. The green circle around the controller represents the devices
radio range. Notice that no attackers are in the radio range of any sink or controller nodes.

The SDWSN was implemented using IT-SDN 1, without changing the default con-
figuration (Alves et al., 2019). Simulations and IT-SDN main configuration is summarized
in Table 3.

1 Available at http://www.larc.usp.br/users/cbmargi/www/it-sdn/. Accessed: November 15th
2021
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(a) FDFF attack (b) FNI attack

Figure 24 – Topology example for 36 nodes with three nodes behaving as attackers: there is
one SDN controller, two sinks and three attackers. The green circle represents
the radio range of all nodes. No attackers are in the radio range of any sink or
controller nodes

Source: Author

6.2 Results

6.2.1 First group

A dataset comprising 480 simulations was generated, divided in 240 simulations
of FNI attacks and 240 simulations of FDFF attacks. Then, each subgroup was split in
two sets: one set for parameterization to capture different trade-offs between the detection
rate and the speed of detection and the other for validation. In particular, we used the
first set to determine the optimal values of {𝑚, 𝛾}. Then, using the values determined for
{𝑚, 𝛾}, the CP detector algorithm was executed over the validation sets to evaluate the
performance achieved. We varied the number of intruders (attackers) in three proportions:
5%, 10% and 20% of the total of nodes in the network.

The algorithm was executed on the first set for 𝑚 ∈ {100, 150, 200} and 𝛾 ∈
{0, 0.15, 0.25, 0.35, 0.45, 0.49} to determine the values that provide the best performance
for different trade-offs between the detection rate 𝐷𝑅 and the detection time median 𝐷𝑇𝑀

using 𝑃𝐷𝑆 (Equation 6.4).

During evaluation, two CP detectors were running in parallel. One detector for
monitoring the control packets overhead and the other one for monitoring the data packets
delivery rate. The validation set comprised both FDFF and FNI attack simulations, 50%
of each one, including all chosen topologies and attack intensity levels. In the validation
stage we used the optimal pairs (𝑚, 𝛾) identified for each pair (𝐴, 𝐵) to maximize the
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(a) FDFF attack (b) FNI attack

Figure 25 – Topology example for 100 nodes with 10 nodes behaving as attackers: there is
one SDN controller, two sinks and ten attackers. The green circle represents
the radio range of all nodes. No attackers are in the radio range of any sink or
controller nodes

Source: Author

metric 𝑃𝐷𝑆 (𝐴, 𝐵). Whenever a CP was detected, we stopped the detectors, declared
the network under attack, and determined which metric triggered the detector. If the
detector monitoring the control overhead was triggered first, we declared an FDFF attack,
alternatively, if the detector monitoring the data packet delivery rate was triggered first,
we declared an FNI type of attack.

6.2.1.1 Optimizing 𝑚 and 𝛾

The main objective of these experiments was to determine the parameters {𝑚, 𝛾}
that could provide the best detection performance. 𝑃𝐷𝑆. was calculated for all topologies,
attack scenarios and combinations of 𝑚 and 𝛾. Then, the results for 𝛼 ∈ {0.90, 0.95, 0.99}
were analyzed. The first results showed that in 90% of all cases 𝑃𝐷𝑆 was maximized when
𝑚 = 200, turning this value an universally optimal choice and the 𝑚 value used for the
remaining of the analysis. This means that, when running the online detector, no training
is required other than the observation of 200 samples of normal network operation.

For the next part, the results were separated grouping each attack based on the
monitoring metric: for the FDFF attack, the control overhead CP detection results were
analyzed, while for a FNI attack the data packets delivery rate, CP detection results
were analyzed based on Segura et al. (2020). The average value of 𝑃𝐷𝑆 as a function of
𝛾 and 𝛼 for the case of a FDFF attack is depicted in Figure 27. Figure 27a shows that
when prioritizing faster detection (i.e. 𝐴 = 1) the higher values of 𝑃𝐷𝑆 are obtained for
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Figure 26 – Topology example for 225 nodes with 10 nodes behaving as attackers: there is
one SDN controller, two sinks and ten attackers. The green circle represents
the radio range of all nodes. No attackers are in the radio range of any sink or
controller nodes

Source: Author

𝛾 = {0.35, 0.45} and the lowest for 𝛾 = {0, 0.15}. In turn, Figure 27c shows that prioritizing
the detection rate, the higher values of 𝑃𝐷𝑆 were obtained for 𝛾 = {0, 0.15, 0.25}, reaching
𝑃𝐷𝑆 = 1. Lastly, if 𝐴 = 𝐵 = 0.5, which means we do not prioritize nor faster detection
neither detection rate, higher values of 𝑃𝐷𝑆 were for 𝛾 = {0.25, 0.35} and its curve is flatter
than the other two cases.

The average value of 𝑃𝐷𝑆 for the case of a FNI attack is presented in Figure 28.
Contrary to the results in Figure 27, in this case the trend was not as clear because
lower values of 𝛾 maximized 𝑃𝐷𝑆 when 𝐴 = 𝐵 = 0.5 and 𝐵 = 1, i.e., the detection rate
influences 𝑃𝐷𝑆 more than the detection speed. This is also supported by the results in 28a
where we observe that considering only the detection speed component (e.g. 𝐴 = 1) the
curve is flatter, varying from 0.88 to 0.91 when 𝛼 = 0.99 and varying from 0.90 to 0.93
when 𝛼 = {0.95, 0.90}. Conversely, the results in 28a, considering only the detection rate
component, 𝑃𝐷𝑆 varies from 0.75 to 0.95 approximately.

By varying 𝛾, we were able to configure the detector to prioritize faster detection
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Table 3 – Simulation parameters

Simulation parameters
Topology Square grid
Number of nodes {36, 100, 225}
Simulation time (s) {18000, 36000}
Node boot interval (s) [0, 1]
Number of sinks 2
Sinks position Middle of the grid edge
controller position center
Data traffic rate 1 packet every 30 seconds
Management traffic rate 1 packet every two minutes
Data payload size 10 bytes
Management payload size 10 bytes
Data traffic start time [2, 3] min
Radio module power 0 dB
Distance between neighbors 50 m
Attacks start after (s) {13200, 28800}

IT-SDN parameters
Controller retransmission timeout 60 s
ND protocol Collect-based
Link metric ETX
Neighbor report max frequency 1 packer per minute
CD protocol none
Flow setup source routed
Route calculation algorithm Dijkstra
Route recalculation threshold 10%
Flow setup types regular or source routed
Flow table size 10 entries

Source: Author

or accuracy. However, the response was different for both attacks. In Table 4, the values
of 𝛾 that maximize 𝑃𝐷𝑆 are shown. In cases where more than one value resulted in the
same or very similar values, one was chosen arbitrarily.
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(a) 𝐴 = 1 and 𝐵 = 0 (b) 𝐴 = 𝐵 = 0.5 (c) 𝐴 = 0 and 𝐵 = 1

Figure 27 – Metric 𝑃𝐷𝑆 in function of 𝛾 and 𝛼 for FDFF attack: (a) shows 𝑃𝐷𝑆 when
prioritizing quickest detection, (b) shows 𝑃𝐷𝑆 when giving the same weight
to detection speed and detection rate, and (c) shows 𝑃𝐷𝑆 when prioritizing
detection rate

Source: Author

(a) 𝐴 = 1 and 𝐵 = 0 (b) 𝐴 = 𝐵 = 0.5 (c) 𝐴 = 0 and 𝐵 = 1

Figure 28 – Metric 𝑃𝐷𝑆 in function of 𝛾 and 𝛼 for FNI attack: (a) shows 𝑃𝐷𝑆 when
prioritizing quickest detection, (b) shows 𝑃𝐷𝑆 when giving the same weight
to detection speed and detection rate, and (c) shows 𝑃𝐷𝑆 when prioritizing
detection rate

Source: Author

6.2.1.2 Centralized detector performance

For this part, two detectors were set running simultaneously, one monitoring the
control overhead and the other one monitoring the data packets delivery rate. Both
detectors were configured according to the values in Table 4 and using 𝑚 = 200. The
first experiment was devised to identify the type of the attack based on the first detector
triggered. The probability of the control overhead CP detector being triggered first in case
of a FDFF attack is depicted in Figure 29a. These results showed that in the worst case
the detector monitoring the control overhead has a probability between 0.89 and 0.98 of
being triggered first in case of FDFF attack. In case of FNI attack, the detector monitoring
the data packets delivery rate was triggered first in 100% of the events, as shown in Figure
29b. These results showed that there is evidence to support the hypothesis drawn up in
our previous works about the relation metric / attack (SEGURA et al., 2020).

Next, the detection performance using the parameters that maximize 𝑃𝐷𝑆 was
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Table 4 – 𝛾 that maximizes 𝑃𝐷𝑆

𝑃𝐷𝑆𝑃𝐷𝑆𝑃𝐷𝑆

𝛾𝛾𝛾

𝛼 = 0.90 𝛼 = 0.95 𝛼 = 0.99
Best 𝛾 for control overhead CP detector

𝐴 = 1 and 𝐵 = 0 0.45 0.45 0.45
𝐴 = 0.8 and 𝐵 = 0.2 0.35 0.35 0.45
𝐴 = 0.5 and 𝐵 = 0.5 0.25 0.35 0.45
𝐴 = 0.2 and 𝐵 = 0.8 0.25 0.25 0.35
𝐴 = 0 and 𝐵 = 1 0 0 0

Best 𝛾 for delivery rate CP detector
𝐴 = 1 and 𝐵 = 0 0.45 0.45 0.45
𝐴 = 0.8 and 𝐵 = 0.2 0 0.15 0.15
𝐴 = 0.5 and 𝐵 = 0.5 0 0 0.15
𝐴 = 0.2 and 𝐵 = 0.8 0 0 0
𝐴 = 0 and 𝐵 = 1 0 0 0

Source: Author

(a) Probability of control overhead CP de-
tector being triggered first in case of
FDFF attack

(b) Probability of data packets delivery rate
CP detector being triggered first in case
of FNI attack

Figure 29 – Attack type identification probability

Source: Author

analyzed. Figure 30 depicts the detection rate 𝐷𝑅 and the metric 1 − 𝑆 when the network
is under FDFF attack. In terms of detection rate, four out of five configurations achieved
𝐷𝑅 ≥ 𝛼. In terms of detection speed, 1 − 𝑆 ≥ 0.90 for 𝐴 = {0.8, 1}. Considering both 𝐷𝑅

and 1 − 𝑆 the results for 𝐴 = 0.8 provided the best trade off.

Figure 31 shows the detection rate and the detection speed metrics for the FNI
attack using the identified values of 𝛾. In this case, four out of five configurations achieved
𝐷𝑅 ≥ 𝛼 for 𝛼 = 0.90; two out of five configurations achieved 𝐷𝑅 ≥ 𝛼 for 𝛼 = 0.95; and
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(a) Detection rate (b) Detection speed

Figure 30 – Detection performance of FDFF attack using 𝛾 and 𝑚 values that optimize
𝑃𝐷𝑆 for five different cases of {𝐴, 𝐵}

Source: Author

(a) Detection rate (b) Detection speed

Figure 31 – Detection performance of FNI attack using 𝛾 and 𝑚 values that optimize 𝑃𝐷𝑆

for five different cases of {𝐴, 𝐵}

Source: Author

zero configurations achieved 𝐷𝑅 ≥ 𝛼 for 𝛼 = 0.99. In terms of detection speed, 𝐴 = 0
obtained the fastest detection, as intuitively expected based on the results from Figure 28.
Comparing the results for 𝐴 = 1 and 𝐴 = 0, we can maximize 𝐷𝑅 at the cost of 0.03 in
1 − 𝑆, which is equivalent to 1.8 samples. On the other hand, if we are looking for fastest
detection, 𝐷𝑅 drops to 0.90 or below.

Next, the detection performance irrespective of the type of attack was analyzed,
when both detectors were running simultaneously. The results in Figure 32 showed a
detection rate over 𝛼 when 𝐴 = {0, 0.2, 0.5, 0.8} for 𝛼 = {0.90, 0.95}; when 𝛼 = 0.99, 𝐷𝑅 = 𝛼

for 𝐴 = {0, 0.2} only. As a conclusion, to maximize the detection rate the configuration
for 𝐴 = {0, 0.2} should be used. In terms of detection speed, as shown in Figure 32b, to
maximize the detection rate means a lag of 3 samples on average with respect to the
fastest detection result obtained.

FDFF and FNI attacks detection using the complete version of Skaperas, Mamatas
and Chorti (2019) algorithm was analyzed (SEGURA et al., 2020) in a previous work.
Tables 5 and 6 compare the results using the complete version and the simplified version



87

(a) Detection rate (b) Detection speed

Figure 32 – Detection performance of FDFF and FNI attacks using 𝛾 and 𝑚 values that
optimize 𝑃𝐷𝑆 for five different cases of {𝐴, 𝐵}

Source: Author

proposed here for 𝛼 = 0.95, 𝐴 = 𝐵 = 0.5 (simplified) when 5% of nodes behaves as attackers
for 36 and 100 nodes, respectively. The simplified version obtained better detection accuracy
while the complete version was quicker, excluding the FNI attack for 100 nodes. From
these results, we noticed that even using a simplified version of the original algorithm, the
right selection of the parameters compensates the lack of the off-line phase.

Table 5 – Complete versus simplified change point detection algorithm: 36 nodes when 5%
behave as attacker

Algorithm DR FPR FNR DTM
FDFF: control packets overhead

Complete version 0.97 0.03 0.00 9
Simplified 1.00 0.00 0.00 14

FNI: data packets delivery rate
Complete version 0.80 0.13 0.07 7
Simplified 0.92 0.07 0 9

Source: Author

Table 6 – Complete versus simplified change point detection algorithm: 100 nodes when
5% behave as attacker

Algorithm DR FPR FNR DTM
FDFF: control packets overhead

Complete version 1.00 0.00 0.00 10
Simplified 1.00 0.00 0.00 11

FNI: data packets delivery rate
Complete version 0.83 0.17 0.00 6
Simplified 0.92 0.07 0.00 5

Source: Author

Summarizing Section 6.2.1, we chose the pairs (𝑚, 𝛾) that maximized the detection
performance metric 𝑃𝐷𝑆. Our results showed that in 90% of cases 𝑚 = 200 maximized
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𝑃𝐷𝑆. With respect to 𝛾, it was observed that using 𝛾 = {0.45, 0.49} reduced the time to
detect the attack but this had an adverse effect on the detection rate. Conversely, when
𝛾 = {0, 0.15} the detection rate was maximized at the cost of delaying the detection. Then,
the CP detectors using the parameters values chosen before were tested. The results showed
that it was possible to detect the attack with 𝐷𝑅 ≥ 𝛼 when 𝐵 > 𝐴. Yet, prioritizing the
fastest detection, the DR drops to 0.93 or below. In terms of detection rate, this proposal
and our previous proposal (SEGURA et al., 2020) have a similar performance. Moreover,
here we provide concrete evidence to support the relation between monitored metric and
the type of attack.

6.2.2 Second group

A dataset of 120 simulations divided into two groups was generated, divided in two
parts so that half concerned for a FDFF attack and the other half for a FNI attack. For
both attacks, grid topologies of 36 and 100 nodes were simulated, whereby 10% of nodes
were attackers. For these experiments, we prioritized detection accuracy over detection
speed and thus the detector was configured using 𝛾 = 0 while we set the target 𝛼 = 0.99,
and 𝑚 = 200 according to the results from Section 6.2.1.1.

The detection performance was evaluated on every node monitoring each metric
(processing time, transmitting time, control packets received and control packets trans-
mitted) separately, i.e., running only one detector at time due to memory constraints on
the nodes. For this evaluation the detection probability of every node on each scenario
was calculated. The same simulation parameters and attackers positions used for the
centralized detection experiments, were maintained.

The detection performance analysis is based on three perspectives under the
condition the network is under attack: (i) probability of CP detection on each node;
(ii) percentage of nodes reporting with high detection rates; (iii), and location of nodes
reporting high detection rates.

6.2.2.1 Results for FDFF attack

The detection probability distribution when the network is under FDFF attack for
36 and 100 nodes is shown in Figure 33. In the case of 36 nodes, as shown in Figure 33a,
more than 40% of the nodes detected an anomaly on their processing and transmitting
time in more than 75% of times the network was under a FDFF attack. The percentage
of nodes that detected an anomaly on these two metrics in more than 75% of the events
grew up to values around 60 for the case of 100 nodes (Figure 33b).

Next, we further zoomed in detection probabilities greater than 0.90, shown in
Figure 34. This value is important since works with better detection results reported
detection probabilities over 0.90 (Chapter 3). For the case of 36 nodes, more than 30% of
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(a) 36 nodes (b) 100 nodes

Figure 33 – Detection probability distribution of FDFF attack: Comparison of detection
probability when monitoring the processing time, transmitting time, control
packets received, and control packets transmitted.

Source: Author

nodes reported an alarm, in at least 90% of events, when monitoring either processing time,
transmitting time or control packets received. The case monitoring the control packets
transmitted was the worst result in terms of percentage of nodes reporting an anomaly.
In the hypothetical case where we are running an intrusion detection policy based on
the number of alarms received by the controller, we reduced the detection chances if
monitoring the control packets transmitted instead of any of the other three metrics.

The percentage of nodes reporting an alarm increases in general with the network
size, obtaining the highest result when monitoring the transmitting time and the lowest
result when monitoring the control packets transmitted. Opposite to the results for 36
nodes, where the percentage of nodes reporting an alarm was similar when monitoring
either the processing time, the transmitting time, or the control packets received, for 100
nodes there was a clear difference among the results for all the metrics. The percentage of
nodes when monitoring the transmitting time was 12% over the results when monitoring
the processing time, and 20% over the results when monitoring the control packets received.

In brief, for 36 nodes the percentage of nodes reporting alarms with 𝑃𝐷𝑅 ≥ 0.90 was
similar when monitoring either the processing time, transmitting time, or control packets
received. However, for 100 nodes the results when monitoring the transmitting time were
clearly over the results when monitoring any of the other metrics. In the hypothetical case
where the nodes have resources to monitor only one metric, the transmitting time is the
one that provides the best trade off in terms of percentage of nodes reporting an alarm.

Subsequently, the position of nodes in the network and their detection probabilities
were analyzed. The heat maps for 36 nodes when monitoring the transmitting time and
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(a) 36 nodes (b) 100 nodes

Figure 34 – Percentage of nodes with detection probability larger than 90% for the FDFF
attack: Comparison of detection probability when monitoring the process-
ing time, transmitting time, control packets received, and control packets
transmitted.

Source: Author

the control packets received are shown in Figure 35. From these results we make two
observations: i) in the case monitoring the transmitting time, the neighbors of the attackers
had higher detection probability than nodes farther; and ii) in the case monitoring the
control packets received, excluding the controller and the node on the lower left corner, all
nodes reporting an alarm were in the attacker’s neighborhood and had a 𝑃𝐷𝑅 = 1. For
100 nodes, a similar behavior was observed when monitoring the control packets received
(Figure 36b), but when monitoring the transmitting time (Figure 36a) the high detection
probability is not exclusive for attackers’ neighbors and it is spread all over the topology.
This happened because when the network was under attack, the number of control packets
increased and this impacted the radio usage of all nodes forwarding those packets. On
the other hand, the control packets received is a metric that impacts only the node that
receives the packet. In Subsection 6.2.2.3 we explore how to use node’s location and address
to identify the attackers.

6.2.2.2 Results for FNI attack

Figure 37 shows the detection probability density distribution results when the
network was under an FNI attack. For 36 nodes (Figure 37a) we observed a similar behavior
for all four metrics: high density in probabilities around 0 and 0.25 that decreased as the
detection probability grows up, being the result for control packets received the one with
highest density in probabilities over 0.50. In the case of 100 nodes, the results for control
packets transmitted maintained the behavior observed for 36 nodes, with high density in
probabilities between 0 and 0.20 that decreased for higher probabilities. The results for
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(a) Transmitting time (b) Control packets received

Figure 35 – Detection probability heat maps for 36 nodes when the network is under FDFF
attack. Each square represents a node in the network and the number inside
them is the detection probability result. The red squares with an “A” inside
are the attackers. (a) shows the results when monitoring the transmitting time
and (b) shows the results when monitoring the control packets received.

Source: Author

(a) Transmitting time (b) Control packets received

Figure 36 – Detection probability heat maps for 100 nodes when the network is under
FDFF attack. Each square represents a node in the network and the number
inside them is the detection probability result. The red squares with an “A”
inside are the attackers. (a) shows the results when monitoring the transmitting
time and (b) shows the results when monitoring the control packets received.

Source: Author

processing time, transmitting time, and control packets received showed high detection
probability density around 0.25 and 0.50. Then, for detection probabilities over 0.90, the
highest density was for the transmitting time. The reason why we observed more impact
on the transmitting time and the control packets received is because this attack leads
to a network reconfiguration using wrong neighborhood information. First, the network
reconfiguration means several control packets from the controller to the nodes, which
increases this metric on these nodes. Then, since the reconfiguration is based on wrong
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information, the number of packets retransmission increases, increasing the transmitting
time metric as well.

(a) 36 nodes (b) 100 nodes

Figure 37 – Detection probability distribution of FNI attack: Comparison of detection
probability when monitoring the processing time, transmitting time, control
packets received, and control packets transmitted. The “x” axis represents the
detection probability divided in four groups: [0, 0.25), [0.25, 0.50), [0.50, 0.75]),
and [0.75, 1]. The “y” axis represents the percentage of the total nodes that
obtained this detection probability. (a) shows the results for 36 nodes and (b)
shows the results for 100 nodes.

Source: Author

To confirm previous results, the percentage of nodes reporting an alarm with
probabilities 𝑃𝐷𝑅 ≥ 0.90 was calculated. Figure 38 shows these results for 36 and 100
nodes. For 36 nodes, 2.7% of nodes obtained a 𝑃𝐷𝑅 ≥ 0.90 when monitoring either the
control packets received or the control packets transmitted. Since 2.7% represent less
than one node, we consider that our distributed proposal is not able to detect an FNI
attack in a small topology with a probability above 0.90. For 100 nodes, the highest
result was for the case monitoring the transmitting time, where 11% of nodes obtained a
𝑃𝐷𝑅 ≥ 0.90. The percentage of nodes reporting an alarm when monitoring the transmitting
time with 𝑃𝐷𝑅 ≥ 0.90 is higher for 100 nodes than for 36 nodes because of two reasons:
there were more nodes using an attacker to reach the controller, which increased the
percentage of nodes affected; and the distance between the attackers and the controller
was larger for 100 nodes, which means more nodes participated forwarding packets for
network reconfiguration. In summary, transmitting time is the only metric where a FNI
attack could be detected by multiple nodes, but up to this point, it seems it does not work
in small-medium networks, i.e. around 36 nodes.

Notwithstanding the detection performance of FNI attack, in Figure 33 a high
density of nodes reporting alarms in probabilities over 0.50 when monitoring the control
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(a) 36 nodes (b) 100 nodes

Figure 38 – Percentage of nodes with detection probability of FNI attack larger than 90%:
Comparison of detection probability when monitoring the processing time,
transmitting time, control packets received, and control packets transmitted.
The “y” axis represents the percentage of the total nodes with high detection
probability. (a) shows the results for 36 nodes and (b) shows the results for
100 nodes.

Source: Author

packets received and the transmitting time was observed. Consequently, we decided to
investigate the location of those nodes in the topology. We observed that in the cases
monitoring the control packets received, as shown in Figure 39, some nodes around the
attackers concentrated the higher detection probability values, but others also in the
attacker´s neighborhood had detection probabilities around zero. The question arises as
to why this is observed; the reason being that neighboring nodes with higher detection
probabilities used the attacker to route their packets toward the controller, thus the
network misconfiguration reached them first.

From these results, a second strategy based on data aggregation was motivated,
analyzing CP detection per regions (areas). To this end, we divided the 36 nodes in four
groups and the 100 nodes in nine groups and created one time series per group. Each
sample of this time series represented the sum of time series of all nodes in the group, thus
we executed one CP detector per group. Figure 40 shows 𝑃𝐷𝑅 results for 36 and 100 nodes
when monitoring the control packets received. Excluding the groups that contained the
controller, in all cases the detection probability achieved is better than the one obtained by
any of the nodes individually. This indicates that with data aggregation we lose granularity
but we gain in detection rates.

Summarizing Subsection 6.2.2, the distributed anomaly detection proposal was
evaluated on networks under FDFF and FNI attack, monitoring four metrics obtained
from each node: processing time, transmitting time, control packets received, and control
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(a) 36 nodes (b) 100 nodes

Figure 39 – Detection probability heat maps when the network is under FNI attack. Each
square represents a node in the network and the number inside them is the
detection probability result. The red squares with an “A” inside are the
attackers. (a) shows the results for 36 nodes and (b) shows the results for 100
nodes.

Source: Author

(a) 36 nodes (b) 100 nodes

Figure 40 – Detection probability heat maps when the network is under FNI attack. Each
square represents a group of nodes and the number inside them is the detection
probability result aggregating the control packets received information of all
nodes in the group. (a) shows the results for 36 nodes and (b) shows the
results for 100 nodes.

Source: Author

packets transmitted. Our results showed that in case of FDFF attack, at least 33% of the
total of nodes obtained a detection probability equal or over 90% when monitoring the
processing time, the transmitting time, or the control packets received. Also, the location of
the nodes with higher detection probability coud be used to determine the node launching
the attack. In the cases when the network was under a FNI attack we had two scenarios:
i) for 36 nodes, 2.5% of nodes obtained a detection probability equal or over 90% when
monitoring the control packets received and the control packets transmitted; and ii) for
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100 nodes we obtained the best result when monitoring the transmitting time, where 11%
of nodes reported a detection probability equal or over 90%. Since the results for the FNI
attack were not satisfactory, we introduced a second strategy based on data aggregation.
Our results showed that using this strategy we increased the detection probability but lost
in granularity.

6.2.2.3 Attacker detection

The results discussed in Subsections 6.2.1 and 6.2.2 showed that the CP detectors
for DoS attacks worked for both centralized and distributed detection, but also we observed
that the distributed detection provides information that infers the attackers’ location.
In this direction, our proposal explores the SDN characteristics by using the controller
global view of the network to identify the attacker’s address or location based on the
alarms reported by the nodes. In this section we present the identification results when the
network is under an FDFF or FNI attack. The analysis is separated by the type of attack.

6.2.2.3.1 Attacker detection in FDFF attack

First, we started testing Algorithm 1. Figure 41 depicts the attacker identification
results for 36 nodes when monitoring the transmitting time and the control packets received.
The heat map shows the probability that each node has of being identified as attacker. We
observed that for the case monitoring transmitting time (Figure 41a), in addition to the
three attackers, seven benign nodes were identified as attackers as well. The probabilities
of those nodes being misidentified as attackers ranged from 0.10 to 1.00, which means
that some nodes were misidentified in all cases. In the case monitoring the control packets
received (Figure 41b), all the attackers were correctly identified in all cases. On the other
hand, 3 more nodes were misidentified in all the cases as well.

We observed that the main problem of our identification algorithm was on the
corners of the grid. This is because the corners have only two neighbors, and those neighbors
are also in the attackers’ neighborhood. This means, all the times our algorithm identified
the attacker, automatically the corners were misidentified as attackers as well. The next
step was to evaluate the performance of Algorithm 2.

As shown in Figure 42, monitoring either the transmitting time or the control
packets received, no misidentifications were registered. When monitoring the control
packets received the identification probability was 1.00 for all the attackers, while when
monitoring the transmitting time the identification probability was between 0.85 and
1.00. When evaluating the identification algorithm for 100 nodes (Figure 43) we obtained
excellent results as well; no misidentifications and identification probabilities over 0.93. In
fact, when monitoring the control packets received the identification probability was 1.00
for all the attackers. The main benefit of Algorithm 2 is that by reporting suspects, the



96

(a) Transmitting time (b) Control packets received

Figure 41 – Attackers identification probability using Algorithm 1 when the network is
under an FDFF attack: case of 36 nodes. Each square in the map represents a
node in the network. The number in the squares represent the probability of
this node being classified as attacker.(a) shows the results when monitoring
the transmitting time and (b) shows the results when monitoring the control
packets received

Source: Author

Security Manager can discard possible suspects and focused only on the ones with higher
probability. However this algorithm is very tight to FDFF characteristics.

(a) Transmitting time (b) Control packets received

Figure 42 – Attackers identification probability using Algorithm 2 when the network is
under an FDFF attack: case of 36 nodes. Each square in the map represents a
node in the network. The number in the squares represent the probability of
this node being classified as attacker.(a) shows the results when monitoring
the transmitting time and (b) shows the results when monitoring the control
packets received

Source: Author
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(a) Transmitting time (b) Control packets received

Figure 43 – Attackers identification probability using Algorithm 2 when the network is
under an FDFF attack: case of 100 nodes. Each square in the map represents
a node in the network. The number in the squares represent the probability
of this node being classified as attacker.(a) shows the results when monitoring
the transmitting time and (b) shows the results when monitoring the control
packets received

Source: Author

6.2.2.3.2 Attacker detection in FNI attack

The results in subsection 6.2.2.2 showed that, for the case of FNI attacks, the
percentage of nodes with high detection probability was low and also not all the nodes
around the attackers detected the attack, opposite to the observed for the FDFF attack.
Because of this, the attacker detection based on data aggregation was evaluated. Our
objective was to, at least, identify the area where the attacker was located.

From Figure 40 we noticed that our FNI detection strategy based on data aggrega-
tion increased the detection probability if compared with our initial approach, running
the detector on every node. However, the data aggregation strategy results show detection
probabilities over 37% in areas without attackers. The first impression is that, in the case
we track the attackers based on the alarm received from one group, this could lead to
false positives because of the detection probability in areas without attackers. Thus, we
analyzed the detection speed on every group.

Figure 44 shows the 1 − 𝑆 metric (normalized 𝐷𝑀𝑇) for 36 and 100 nodes when
monitoring the control packets received. For 36 nodes (Figure 44a), our results showed
that group 1 (the group without an attacker) obtained the lowest 1 − 𝑆, which means
this is the last group reporting an alarm. Now, suppose we trust on the hypothesis that
the groups reporting an alarm has an attacker within it. We may execute a mitigation
strategy targeting the firsts groups reporting an alarm because, as shown in Figure 40a,
these groups have the highest detection probability. In the best scenario, a successfully
mitigation will stop the attack before the detectors on the groups without attackers detect
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(a) 36 nodes (b) 100 nodes

Figure 44 – Detection speed (1-S metric) for FNI detection by data aggregation when
monitoring the control packets received. (a) shows the results for 36 nodes
and (b) shows the result for the case of 100 nodes

Source: Author

a change. However, in the case of 100 nodes (Figure 44b) the results did not show a similar
trend. Groups 4, 5, and 6 are the ones without an attacker within it; interestingly, group 6
had the highest 1− 𝑆. Conversely, group 9 has one attacker and did not report alarms. This
occurred because of two reasons: i) the attacker in group 9, which is in the border with
group 6, had impact on group 6, and ii) the data sink in group 6 increased the packets
traffic which accelerated the change in the time series.

Summarizing, Algorithm 1 was proposed to identify attackers when the network
is under FDFF attack, but results showed this algorithm leads to false positive cases.
Then, Algorithm 2 was proposed and results showed it solved the false positive cases and
improved attackers identification. Attacker identification probability is over 0.93, when
monitoring the transmitting time, equal to 1 when monitoring the control packets received.
Conversely, for the FNI attack, we analyzed the attackers identification based on the data
aggregation detection results when monitoring the control packets received. We noticed
that for 36 nodes, the groups with attackers within it reported the alarm faster than the
group without attackers. On the other hand, for 100 nodes we did not observe a reliable
relation between any metric and the presence of attackers in the groups.

6.2.3 Third group

The results of the cooperative intrusion detection in networks with 225 nodes
are shown in this Subsection. The centralized monitoring in the Security Manager was
set to 60 seconds while the distributed monitoring (i.e. on every individual node) was
varied between 60 and 10 seconds. Transmitting time was the main metric used for the
distributed approach, since monitoring this metric we maximize the number of nodes
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detecting anomalies on large networks (e.g. Figures 33b and 37b). However, monitoring
this metric increases the processing resources usage in 5%, sampling every 60 seconds,
and 11% sampling every 10 seconds. The whole anomaly detection for one metric requires
around 7.2 KB, which is equivalent to 15% of the total flash memory size.

The proposal was tested on FDFF and FNI attacks, varying the number of attackers
among one, four and ten. According to Nooribakhsh and Mollamotalebi (2020), change
point detection accuracy depends on a sudden change on the metric behavior. Thus, the
attackers were programmed to trigger the attacks every 60 or 10 seconds. This frequency is
slow compared to other DoS attacks experiments, but is enough to impact on the network
performance (Chapter 4). Also, analyzing the performance under these conditions, we
are able to evaluate the proposal under conditions that are challenging for the anomaly
detection algorithm.

The network was declared under attack when the Security Manager detected an
anomaly on the centralized monitoring or identified a node as attacker. The policy to
identify the attacker using Algorithm 2 was set to 50%, which means that a node is
classified as attacker when at least 50% of its neighbors reported it as suspect.

6.2.3.1 Results for FDFF attack

The DR and DTM results for the cooperative, centralized and distributed ap-
proaches for different number of attackers are shown in Figure 45. From these results,
we observed that the main benefit of using the cooperative approach is when there are
few attackers, obtaining an improvement of more than 0.20 in the detection probability.
For four and ten attackers, the cooperative approach obtained equal or better detection
probability than the centralized or distributed approach.

Different from the cases with 36 and 100 nodes, with detection probabilities
exceeding 0.90, the centralized detection probability was around 0.55% for topologies
with 225 nodes with only one attacker. The main reason for these results is that the
attacker’s neighborhood has the same size than the cases for 36 and 100 nodes but in a
larger topology, thus the impact in global metrics is lower and slower. The distributed
approach was a bit better (0.60) for this case and the reason is because it does not observe
global metrics.

The FDFF attack impacts on the transmitting time of nodes beyond its neighbor-
hood, which means that multiple attackers increase the anomaly detection probability
in all nodes. One option to improve the detection rate when there is only one attacker
could be by monitoring the control packets received, since this metric is less sensible to
the number of attackers.

The DTM also presented interesting results. Increasing the number of attackers
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(a) DR (b) DTM

Figure 45 – Comparison of the cooperative, centralized and distributed approaches for
different number of attackers: attack every 60 seconds. (a) shows detection
rate and (b) shows the detection time median

Source: Author

Table 7 – Centralized versus distributed approaches for one attack

Approach 60 s 30 s 10 s

Distributed DR 1 0.8 0
DTM 4.55 15 –

Centralized DR 1 0.8 0.7
DTM 4.55 15 28.14

Source: Author

reduces the detection time for the centralized and cooperative approaches, which was the
expected since the impact of the attack is related to the number of attackers, however, this
was not the case for the distributed approach. The results in Figure 45 concern the cases
monitoring the transmitting time every 60, 30 and 10 seconds. The DTM is calculated
using only the delay of true positive events, but for the case with one attacker monitoring
the transmitting time every 10 seconds the number of true positives using the distributed
approach was zero. The results for the specific case of one attacker are shown in Table
7. Here we observed that the cooperative approach is as fast as the distributed approach
and is able to detect the attack when the distributed was not. However, increasing the
monitoring frequency reduces the performance of the distributed approach. This could
be caused by the periodicity of the data packets (application) and the attack launching
period, both programmed in 60 seconds. The periodicity of the packet traffic caused that
multiple samples had value zero.

Motivated by these results, we simulated the case monitoring the control packets
received every ten seconds. This metric is not related with normal data packets traffic
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and depends on other processes without periodicity, such as neighbor information reports
and routing rules configuration. The results for the case with one attacker showed a DR
of 1.00 and all the attacker identifications occurred within the first minute, which is the
fastest detection of all cases evaluated. Moreover, only the attacker’s neighbors detected
the anomaly, which aids to reduce false positive identification. However, the detection
using transmitting time with a 60-second sampling period provides information about the
impact of the attack in the whole network. One strategy could be to use both metrics with
different sampling periods, but this require WSN devices with more memory resources.
With our IT-SDN configuration, the TelosB mote does not have enough memory space to
run both detectors.

From these first experiments, we noticed that the cooperative approach has the
benefits of both centralized and distributed approach; it can identify the type of the
attack and the attackers. Considering all the simulations, 64% of the attackers and 81% of
the attacks were correctly identified. However, we observed before that the distributed
approach had poor performance when using a monitoring period of 10 seconds. Considering
only the simulations for 30 and 60 seconds, the percentage of attackers correctly detected
increased to 94.33%. Likewise, the percentage of attacks correctly identified considering
only the simulations for four and ten attackers increased to 98.33%.

Next, the case where the attack is launched every 10 seconds was analyzed. The
DR and DTM metrics for one, four and ten attackers are depicted in Figure 46. From
these results we noticed that all the approaches obtained a faster response for faster
attacks and that the cooperative and distributed approach obtained equal results in terms
of detection rate and detection speed. Thus, the benefit of the cooperative approach is
the capacity of identifying the type of the attack thanks to the centralized monitoring.
For these simulations, 98% of the attacks were correctly detected as FDFF and 98% of
attackers were correctly detected.

It is worth mentioning that in this case the distributed approach monitoring every
10 seconds obtained a detection probability of 1, when there was only one attacker in the
network, while for the case launching the attack every 60 seconds the detection rate was 0
(Table 7). This opens the discussion again about the sensibility of the transmitting time
metric to the monitoring period and the importance of complementing monitoring other
metrics, such as control packets received. Moreover, the detection performance for lower
frequencies, also known as advanced persistant threats, could also be interesting to analyze
since CP detection was designed to detect abrupt changes. Policies based on flow table
changes analysis could be tested to detect this type of attack.
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(a) DR (b) DTM

Figure 46 – Comparison of the cooperative, centralized and distributed approaches for
different number of attackers: attack every 10 seconds. (a) shows detection
rate and (b) shows the detection time median

Source: Author

6.2.3.2 Results for the FNI attack

The results in Subsection 6.2.2 showed the algorithms we proposed for attacker
identification were not effective when the network was under FNI attack. Thus, based
on the initial attack declaration hypothesis, in this case the detection relied only on the
centralized monitoring. The results showed that 96.88% of attacks were correctly detected.
The DR results classified by number of attackers are depicted in Figure 47. The only
unexpected result is the 𝐷𝑅 = 0.90 for the case with 10 attackers launching the attack
every 10 seconds. Analyzing the traces of the simulations, in multiple events the detector
was triggered before the attack started, which reduced the DR metric. However, this does
not mean the detector has lower detection rate for 10 attackers. This is related to the false
positive rate.

About detection speed, the DTM when the attack was launched every 60 seconds
was 5.5 samples, while when the attack was launched every 10 seconds it was 4.5 samples.
The average delivery rate when the anomaly was detected is around 85%, for 1 and 4
nodes launching the attack every 60 seconds, and 67.67% for 10 attackers. In the case of
the nodes launching the attack every 10 seconds, the delivery rate was between 77% and
73%. Aiming to improve the DTM and hence reduce the delivery rate drop caused by the
attack, we explored the case of attack declaration based on the number of alarms received.
The percentage of total nodes that reported an alarm when the network was under a
FNI attack is depicted in Figure 48. From these results we noticed that: at least 10% of
the total nodes detected an anomaly, the number of alarms is related to the number of
attackers and, such as the case of FDFF attack, the distributed anomaly detection decrease
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Figure 47 – DR results when the network was under FNI attack: classification by number
of attackers

Source: Author

when reducing the monitoring period. The last point was caused by the periodicity of the
packets traffic and its impact on the transmitting time, such as explained for the FDFF
attack.

(a) Attack every 60 seconds (b) Attack every 10 seconds

Figure 48 – Number of true positive alarms in function of the monitoring period and the
number of attacks: (a) shows the results when FNI attack was launched every
60 seconds and (b) when the FNI attack was launched every 10 seconds

Source: Author

The next step was to determine the number of alarms received by the Security
Manager before declaring the attack based on the centralized monitoring. Using this
information, we were able to calculate the probability of detecting the attack before the
centralized monitoring in function of the topology size percentage. The results are depicted
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Figure 49 – Probability of FNI attack detection before the centralized monitoring based
on the number of alarms received: 225-node topology case

Source: Author

in Figure 49.

The distributed FPR considering all the experiments was 0.007, which is equivalent
to less than 2 nodes detecting an anomaly when the network is not under attack. However,
when the nodes are monitoring the transmitting time every 30 seconds, the FPR increases
to 0.021, which is equivalent to 2.1% of the topology size. Therefore, let us suppose the
Security Manager is programmed to declare the network under attack when at least 3%
of the total nodes report an alarm. In this case, the probability of detecting the attack
before the centralized monitoring is 0.76. The probability increases to 1 for the cases with
one and four attackers. Applying this policy, the average data packets delivery rate at the
moment the Security Manager declares the network is under attack increases from 85% to
91.92%, for one and four attackers; and increases from 67.67% to 80.37% for 10 attackers.

6.2.3.3 Network Performance

Previous results showed the detection performance results of our proposal in
comparison with a centralized and a distributed approaches. In this Subsection, the
network performance results are analyzed. We compared the control and data packets
delivery rate for the centralized and the cooperative approach varying the monitoring
period. In the centralized approach, this defines the periodicity of the communication of
every node with the Performance Manager, but for the cooperative approach this period
defines the distributed sampling maintaining a centralized monitoring period in 60 seconds.

The delivery results for control and data packets are depicted in Figure 50. We
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observed that the cooperative approach is able to maintain the data packets delivery rate
stable by reducing the monitoring period on every node. In terms of scalability, this also
means that using the cooperative approach, we would be able to reach or maintain delivery
rate requirements on larger topologies since.

Figure 50 – Packets delivery rate increasing the monitoring periods of the metrics used to
detect attacks: centralized vs cooperative approach

Source: Author

The end-to-end delay for control and data packets is depicted in Figure 51. In this
case, the main benefit is for the data packets. Using the cooperative approach the delay
remains around 400 ms regardless the monitoring period, while using the centralized the
delay increases up to 100 ms. For the case of the control packets the results are not as
clear as the data packets results. There is a high dispersion in the results obtained using
the centralized approach that difficults the comparison. Based only on the average value,
the cooperative approach is superior only when using a monitoring period of 60 seconds.

6.3 Summary

In this chapter, the detection performance of the cooperative intrusion detection
proposal was evaluated. More than 800 simulations were conducted, varying the network
size, the number of attackers and emulating real WSN devices. The experiments were
divided in three groups. The first group (Subsection 6.2.1) was meant to evaluate the
performance of the change point detection algorithm for centralized DoS attack detection.
The second group (Subsection 6.2.2) comprises the experiments to evaluate the performance
of the distributed DoS attack detection. Lastly, the third group evaluates the performance
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Figure 51 – Packets end-to-end delay for different monitoring periods of the metrics used
to detect attacks: centralized vs cooperative approach

of the cooperative intrusion detection and compares the results with the cases using either
the centralized or distributed detection.

Results showed that the cooperative approach was able to solve the scalability
problem of centralized approaches, leveraged by the distributed anomaly detection. By
reducing the centralized monitoring sampling rate, we were able to implement the DoS
detection in topologies of 225 nodes without reducing the data packets delivery rate. To
compensate the delay that could be caused by the centralized sampling rate reduction,
all nodes are monitoring their own behavior aiming to detect anomalies related with a
DoS attack. In this way, we concluded that the cooperative approach improved detection
rate, specially for the case with few attackers, reduced the detection time, was accurate to
classify attacks between FDFF and FNI attacks, and was able to identify FDFF attackers,
fulfilling all the metrics analyzed in Chapter 3 for the state of the art, such as shown in
Table 8.
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Table 8 – Related work

Reference
High
DR

Multiple
types

Attack type
ident.

Resour.
cons.

Attacker
ident.

Scal. Complex.

Centralized Approaches
(CHOI; KWAK, 2016) ✓

(Özçelik; Chalabianloo; Gür, 2017) ✓

(Bhunia; Gurusamy, 2017) ✓

(ZARCA et al., 2018) ✓

(BAGAA et al., 2020) ✓ ✓ ✓

(Ravi; Shalinie, 2020) ✓ ✓

(FARHIN et al., 2020) ✓

(WANI; S; KHALIQ, 2021) ✓ ✓ ✓

Hybrid Approaches
(WANG et al., 2018) ✓ ✓ ✓ ✓

(BIN-YAHYA; ALHUSSEIN; SHEN, 2021) ✓ ✓ ✓ ✓ ✓

(Miranda et al., 2020) ✓ ✓ ✓

(GRIGORYAN et al., 2018) ✓

(LI et al., 2019) ✓ ✓

(Yin; Zhang; Yang, 2018) ✓ ✓

This thesis ✓ ✓ ✓ ✓ ✓ ✓ ✓

Source:Author
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7 FINAL REMARKS

The Software-defined networking paradigm centralizes control decisions and enables
the network to be intelligently and centrally programmed. These characteristics simplify
network management and provide tools for infrastructure sharing. The aforementioned
benefits motivated the discussion of implementing SDN in LLNs as a way to solve different
limitations, but in particular concerning flexibility and resource reuse.

SDN has inspired novel security strategies but the control centralization and planes
separation turn these networks prone to DoS attacks. This vulnerability is critical in
SDN-based LLNs, since the resource constraints limit the implementation of security
solutions for these attacks. This problem has been investigated and there are proposals in
the literature that are effective detecting DoS attacks but at the cost of high resources
usage.

From the literature revision, we identified that the main problem of current solutions
is scalability. Centralized approaches impose high traffic overhead, requiring out-of-band
communication in some cases, and large datasets for training. Distributed or hybrid ap-
proaches aid to reduce communication resources at the cost of lower detection performance
or devices with high capabilities, hence a complexity challenge. From this, we asked the
question: “What are the benefits of solving the complexity problem in hybrid approaches
to increase scalability of intrusion detection in SDN-based resource-constrained networks?”

First, a lightweight anomaly detection that could run on resource-constrained
devices (complexity challenge) was proposed and the metrics that maximized accuracy
were studied. Then, the communication resources required by a centralized application
were adjusted according to the network traffic characteristics. By running the detection
algorithm on every node, we relieve the centralized monitoring from all the responsibility
of anomaly detection. Lastly, a Security Manager analyzes centralized and distributed
information to detect DoS attacks and identify attackers, supported by the information
provided by the SDN controller and a Performance Manager.

Our results showed that, adjusting the centralized monitoring, we were able to scale
the solution to large networks with low impact on the network performance. Combining
both centralized and distributed approaches we improved detection accuracy and reduced
detection delay. Moreover, the cooperation among the SDN controller and the Security
Manager was instrumental to identify the attackers when the network was under FDFF
attack. It is worth mentioning that, rather than concentrate the distributed detection on
few nodes with high capabilities, we decided that all nodes participate in the detection
at the cost of a low increase in the processing overhead. Therefore, this solution can be
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implemented in homogeneous networks with resource constraints.

The results from this research are an important step to develop new intrusion
detection strategies that scale according to new technology trends. Industry 4.0, Smart
Cities and 5G are examples of technologies or paradigms that integrate SDN, WSNs and
IoT in large scale. Cooperative intrusion detection is one option to turn these networks
more secure without a significant impact on their performance.

7.1 Challenges and limitations

During this research, we had to face multiple challenges. Most of the works about
intrusion detection for SDWSN and SD-IoT are well explained about the mathematics
and algorithms implementation but lack experimentation information that limits their
reproducibility. Moreover, looking for a way to access source codes, datasets and results
was also a challenge.

Covid-19 pandemic was also a problem that limited this research. Network simula-
tions with 225 nodes require several time. One set of 10 replications could take between 4
and 10 days, depending on the computer used. Despite most of the work being conducted
remotely, electrical energy issues in the laboratory limited the number of computers that
we could use for simulation, which limited the number of metrics that we could analyze.

7.2 Publications

Five research papers were published from the results presented in this thesis,
enumerated below in chronological order:

1. “Understanding the Performance of Software Defined Wireless Sensor Networks
under Denial of Service Attack”, published at the Open Journal of Internet of Things
and presented at the International Workshop on Very Large Internet of Things 2019
(SEGURA; MARGI; CHORTI, 2019). This paper contains the results about network
performance impact when the network is under attack, present in this document in
Chapter 4.

2. “Denial of Service Attacks Detection in Software-Defined Wireless Sensor Networks”,
presented at the SecSDN: Secure & Dependable Software Defined Networking for
Sustainable Smart Communities, in Conjunction with IEEE ICC 2020 (SEGURA et
al., 2020). This paper contains the results of applying (SKAPERAS; MAMATAS;
CHORTI, 2018) algorithm to detect DoS attacks in SDWSNs.

3. “Multimetric Online Intrusion Detection in Software-Defined Wireless Sensor Net-
works”, presented at the IEEE Latin-American Conference on Communications 2020
(SEGURA; MARGI; CHORTI, 2020). This paper contains the results of applying the
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modified version of (SKAPERAS; MAMATAS; CHORTI, 2018) algorithm to detect
DoS attacks in SDWSNs. These results are present in this document in Subsection
6.2.1.

4. “Distributed DoS Attack Detection in SDN: Trade offs in Resource Constrained
Wireless Networks”, presented at the IEEE Statistical Signal Processing Workshop
2021 (SEGURA; MARGI; CHORTI, 2021). This paper contains our first results
about distributed detection using change point analysis in every node of the network.
Part of these results are present in Subsection 6.2.2.

5. “Centralized and Distributed Intrusion Detection for Resource-Constrained Wireless
SDN Networks”, published at the IEEE Internet of Things Journal (SEGURA;
CHORTI; MARGI, 2021). This paper extend the results about centralized and
distributed DoS detection and explains the cooperation between both approaches to
improve detection performance.

Additionally, three other papers about performance and management of SDWSNs,
were published during the PhD in collaboration with research group colleagues:

• “Software-defined wireless sensor networks approach: Southbound protocol and its
performance evaluation”, published at the Open Journal of Internet Of Things 2018
(MARGI et al., 2018)

• “In-network performance measurements for Software Defined Wireless Sensor Net-
works”, presented at the IEEE International Conference on Networking, Sensing and
Control 2019 (Luz et al., 2019).

• “The cost of software-defining things: A scalability study of software-defined sensor
networks”, published at the IEEE Access Journal (Alves et al., 2019).

7.3 Future work

Some ideas to improve and continue these research are the following:

• implementation of mitigation strategies based on the attackers and type of attack
identification, completing the cooperative solution;

• investigate solutions for FNI attackers identification, since our algorithms were
effective only when the network was under FDFF attack;

• implement multimetric anomaly detection in WSN nodes to study the relation
between the metrics and the type of the attack;
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• implement and evaluate the classification algorithms for complex anomalies explained
in Chapter 5.

This work could also be extended to other type of attacks that are not exclusive
of SDN, such as wormhole attack or selective forwarding. In this work we focus on the
control plane but attacks that attain the data plane could also be investigated. At last,
during the whole work we consider the controller as a secure entity and all the attacks
went through the WSN devices. One next step could be to analyze the case where the
controller has been attacked through the NSAL.
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