• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
https://doi.org/10.11606/T.3.2019.tde-21112019-113201
Documento
Autor
Nombre completo
Felipe Leno da Silva
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2019
Director
Tribunal
Costa, Anna Helena Reali (Presidente)
Bianchi, Reinaldo Augusto da Costa
Delgado, Karina Valdivia
Sichman, Jaime Simão
Silva, Bruno Castro da
Título en inglés
Methods and algorithms for knowledge reuse in multiagent reinforcement learning.
Palabras clave en inglés
Multiagent Reinforcement Learning
Multiagent Systems
Reinforcement Learning
Transfer Learning
Resumen en inglés
Reinforcement Learning (RL) is a well-known technique to train autonomous agents through interactions with the environment. However, the learning process has a high sample-complexity to infer an effective policy, especially when multiple agents are simultaneously actuating in the environment. We here propose to take advantage of previous knowledge, so as to accelerate learning in multiagent RL problems. Agents may reuse knowledge gathered from previously solved tasks, and they may also receive guidance from more experienced friendly agents to learn faster. However, specifying a framework to integrate knowledge reuse into the learning process requires answering challenging research questions, such as: How to abstract task solutions to reuse them later in similar yet different tasks? How to define when advice should be given? How to select the previous task most similar to the new one and map correspondences? and How to defined if received advice is trustworthy? Although many methods exist to reuse knowledge from a specific knowledge source, the literature is composed of methods very specialized in their own scenario that are not compatible. We propose in this thesis to reuse knowledge both from previously solved tasks and from communication with other agents. In order to accomplish our goal, we propose several flexible methods to enable each of those two types of knowledge reuse. Our proposed methods include: Ad Hoc Advising, an inter-agent advising framework, where agents can share knowledge among themselves through action suggestions; and an extension of the object-oriented representation to multiagent RL and methods to leverage it for reusing knowledge. Combined, our methods provide ways to reuse knowledge from both previously solved tasks and other agents with state-of-the-art performance. Our contributions are first steps towards more flexible and broadly applicable multiagent transfer learning methods, where agents will be able to consistently combine reused knowledge from multiple sources, including solved tasks and other learning agents.
Título en portugués
Métodos e algoritmos para reúso de conhecimento em aprendizado por reforço multiagente.
Palabras clave en portugués
Aprendizado por Reforço
Aprendizado por Reforço Multiagente
Inteligência artificial
Sistemas Multiagente
Transferência de conhecimento
Resumen en portugués
O Aprendizado por Reforço (Reinforcement Learning - RL) é uma das técnicas mais bem-sucedidas para treinar agentes através de interações com o ambiente. Entretanto, o processo de aprendizado tem uma alta complexidade em termos de amostras de interação com o ambiente para que uma política efetiva seja aprendida, especialmente quando múltiplos agentes estão atuando simultaneamente. Este trabalho propõe reusar conhecimento prévio para acelerar o aprendizado em RL multiagente. Os agentes podem reusar conhecimento adquirido em tarefas resolvidas previamente, e também podem receber instruções de agentes com mais experiência para aprender mais rápido. Porém, especificar um arcabouço que integre reuso de conhecimento no processo de aprendizado requer responder questões de pesquisa desafiadoras, tais como: Como abstrair soluções para que sejam reutilizadas no futuro em tarefas similares porém diferentes? Como definir quando aconselhamentos entre agentes devem ocorrer? Como selecionar as tarefas passadas mais similares à nova a ser resolvida e mapear correspondências? e Como definir se um conselho recebido é confiável? Apesar de diversos métodos existirem para o reúso de conhecimento de uma fonte em específico, a literatura é composta por métodos especializados em um determinado cenário, que não são compatíveis com outros métodos. Nesta tese é proposto o reúso de conhecimento tanto de tarefas prévias como de outros agentes. Para cumprir este objetivo, diversos métodos flexíveis são propostos para que cada um destes dois tipos de reúso de conhecimento seja possível. Os métodos propostos incluem: Ad Hoc Advising, no qual agentes compartilham conhecimento através de sugestões de uma extensão da representação orientada a objetos para RL multiagente e métodos para aproveitá-la no reúso de conhecimento. Combinados, os métodos propostos propõem formas de se reusar o conhecimento proveniente tanto de tarefas prévias quanto de outros agentes com desempenho do estado da arte. As contribuições dessa tese são passos iniciais na direção a métodos mais flexíveis de transferência de conhecimento multiagentes, onde agentes serão capazes de combinar consistentemente conhecimento reusado de múltiplas origens, incluindo tarefas resolvidas e outros agentes.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2019-12-06
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2021. Todos los derechos reservados.