• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
https://doi.org/10.11606/D.3.2020.tde-21092020-100917
Documento
Autor
Nombre completo
Claudia de Armas de Armas
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2020
Director
Tribunal
Tori, Romero (Presidente)
Bernardes Junior, João Luiz
Concilio, Ilana de Almeida Souza
Título en portugués
Método de avaliação automatizada para simulador de realidade virtual em treinamento de agentes de segurança.
Palabras clave en portugués
Avaliação SVM. Kinect
Realidade virtual
Simulador de baixo custo
Resumen en portugués
Existe uma busca crescente de sistemas de treinamentos mais econômicos, seguros e confiáveis. Especificamente na área militar e de segurança no Brasil, a realização de treinamentos continuados resulta cara, pouco flexível e de difícil acesso, tornando o uso de simuladores de Realidade Virtual (RV) seja uma alternativa potencial para a realização de treinamentos econômicos e eficientes. Embora existam diversas pesquisas desenvolvendo simuladores de RV de baixo custo, ainda não existem pesquisas voltadas ao desenvolvimento de simuladores de treinamento com um sistema completo de sensores para avaliar os principais parâmetros qualitativos necessários durante o treinamento. Também não existem pesquisas explicando os parâmetros comportamentais necessários para medir durante um treinamento com simulador. Visando-se preencher essas lacunas, foi concebida a proposta de um sistema de baixo custo, baseado em sensores, para capturar os dados dos treinandos durante a realização dos treinamentos com o uso do simulador de RV. Foi também desenvolvido e validado um módulo de reconhecimento de postura, com o uso de um sensor de profundidade (Kinect), para 6 posturas diferentes. Durante o levantamento de parâmetros comportamentais foram identificados 6 procedimentos com indicadores de falhas, 5 parâmetros e 6 posturas a avaliar no sistema. Foram selecionados 5 sensores para compor o sistema. Para desenvolver o módulo de reconhecimento de posturas foram analisados e avaliados três tipos de classificadores diferentes SVM, KNN e RF baseados em aprendizado supervisionado, sendo selecionado pelos resultados do experimento o SVM, alcançando um 99,25 % de acurácia na classificação das posturas treinadas.
Título en inglés
Automated evaluation method for virtual reality simulator training for security agents.
Palabras clave en inglés
Evaluation
Kinect
Low cost simulator
SVM
Virtual reality
Resumen en inglés
There has been a growing search for safer, more economic and reliable training systems. Specifically, in the military and security area in Brazil, conducting continuous training is expensive, not very flexible and difficult to access, making the use of Virtual Reality (VR) simulators a potential alternative for conducting economic and efficient training. Although there has been a lot of research on developing low cost VR simulators, there is still no research aimed at developing training simulators with a complete sensor system to assess the main qualitative parameters needed during training. There is also no research explaining the behavioral parameters needed to measure during simulator training. In order to fill these gaps, the proposal is to design a low-cost system, based on sensors, to capture the trainees' data during training sessions using the VR simulator. Finally, a posture recognition module will be developed and validated, using a depth sensor (Kinect), for 6 different postures. During the survey of behavioral parameters, 6 procedures were identified with failure indicators, 5 parameters and 6 postures to be evaluated in the system. Five sensors were selected to compose the system. In order to develop the posture recognition module, three types of different classifiers SVM, KNN and RF based on supervised learning were analyzed and evaluated. The SVM was selected from the results of the experiment, reaching a 99.25% accuracy in the classification of trained postures.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2020-09-24
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2021. Todos los derechos reservados.