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RESUMO

A viabilidade de obter lucro por meio de negociação em alta frequência de um único
ativo financeiro é uma questão de pesquisa em aberto. O aprendizado por reforço (RL)
e a análise de sentimentos textual (SA) são cada vez mais relevantes para esse problema
financeiro. Notavelmente, apesar de sua proeminência, as técnicas de RL e SA rara-
mente foram combinadas para aprender estratégias de negociação de ativos. Além disso,
os tópicos não abordados incluem: capturar o impulso do sentimento do mercado por
meio da extração expĺıcita de caracteŕısticas de sentimento que refletem a condição do
mercado ao longo do tempo; e verificar se tal incorporação de informações aos algorit-
mos de RL não afeta negativamente a consistência e estabilidade em diferentes situações.
O presente trabalho propõe que o Sentiment-Aware Reinforcement Learning Intelligent
Trading System (ITS-SentARL) preencha esta lacuna. O ITS-SentARL melhora o lucro
e a estabilidade ao alavancar o humor do mercado por meio de uma faixa ajustável de
recursos de sentimentos obtidos de not́ıcias textuais. Ao contrário de pesquisas anteriores,
projetamos um extrator de sentimentos de acordo com o design vencedor da rede neural
convolucional da competição de análise de sentimentos SemEval-2017 – o treinamento
desse extrator de sentimentos foi feito com dados rotulados por especialistas de mercado.
Depois de treinar o extrator de sentimento, ele pode ser usado para pontuar novos dados
e usá-los como parte da representação de estado de um algoritmo Advantage Actor-Critic
(A2C), uma abordagem RL. Tanto uma estratégia A2C sem sentimentos quanto a es-
tratégia clássica de compra e retenção (BH) são usadas como linhas de base. A avaliação
da arquitetura ITS-SentARL ocorre em vinte ativos financeiros, dois custos de transação
e cinco diferentes peŕıodos e inicializações. Notavelmente, os resultados mostram que o
agente ITS-SentARL superou consistentemente o agente de negociação A2C de linha de
base para diversas situações de mercado e, em alguns cenários, também a estratégia BH.
Os resultados sugerem que a incorporação do sentimento de mercado é benéfica, mas
depende da quantidade de not́ıcias divulgadas e sua correlação com o preço.

Palavras-Chave – Aprendizado por reforço, Processamento de linguagem natural,
Análise de sentimentos, Redes neurais profundas, Mercado de ações.



ABSTRACT

The viability of attaining profit through high-frequency active trading of a single as-
set is an open research question. Reinforcement learning (RL) and textual sentiment
analysis (SA) are increasingly relevant for this financial task. Notably, despite their
prominence, RL and SA techniques have rarely been combined for learning asset trading
strategies. Furthermore, unaddressed topics include: capturing market sentiment momen-
tum through the explicit extraction of sentiment features that reflect the market condi-
tion over time; and verifying that such information incorporation to RL algorithms does
not negatively affect consistency and stability in different situations. The present work
proposes that the Sentiment-Aware Reinforcement Learning Intelligent Trading System
(ITS-SentARL) fills this gap. ITS-SentARL improves profit and stability by leverag-
ing market mood through an adjustable range of past sentiment features obtained from
textual news. Unlike previous research, a sentiment extractor was designed according to
the convolutional neural network winning design of the renowned SemEval-2017 sentiment
analysis competition – the training of this sentiment extractor was done with data labeled
by market specialists. After training the sentiment extractor, it can be used to score new
data and use it as part of the state representation of an Advantage Actor-Critic (A2C)
algorithm, an RL approach. Both a sentiment-free A2C and the classical buy-and-hold
(BH) strategy are used as baselines. The evaluation of ITS-SentARL architecture occurs
over twenty assets, two transaction costs, and five different periods and initializations.
Remarkably, the results show that the ITS-SentARL agent consistently outperformed the
baseline sentiment-free A2C trading agent for diverse market situations and, in some
scenarios, also the BH strategy. Results suggest that market sentiment incorporation is
beneficial but depends on the amount of news released and its correlation to the price.

Keywords – Reinforcement Learning, Natural Language Processing, Sentiment Analysis,
Deep Neural Networks, Stock Markets.
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1 INTRODUCTION

The financial market is a rich and complex domain of study that attracts both in-

vestors and researchers. One of the most prominent problems in this domain is active

trading, which comprises continuously operating (e.g., buying and selling) assets (e.g.,

stocks, currencies, and others) to profit over short-term price movements. When execut-

ing active trading, investors typically rely on the premise that customized strategies can

leverage asset information such as historical price and volume as indicators of patterns

that could forecast tendencies. Alternatively, according to some economics researchers,

this financial market exploitability is unlikely because an asset’s price might be exhibiting

predominantly random walk behavior (KING; COOTNER, 1965; FAMA, 1965) and ad-

justing almost instantly to new information – Adaptive Market Hypothesis (AMH) (LO,

2004).

Notwithstanding, the market exploitability is an open economics discussion that, to-

gether with the repetitive nature of active trading, led the machine learning (ML) commu-

nity to become interested in designing profitable intelligent trading systems. A systematic

literature review Henrique, Sobreiro and Kimura (2019) identified the prevalence of ML

works that approach active trading as a market forecasting problem and thus resort to

supervised learning rule-based strategies. Although this research direction has led to

positive results, active trading is, in its essence, a sequential decision-making problem.

Unsurprisingly, the presence of typical trading operation costs may be enough to make a

rule-based supervised approach less effective than a sequential decision-making solution

(MOODY; WU, 1997; DENG et al., 2017; CARAPUÇO; NEVES; HORTA, 2018).

Reinforcement learning (RL) is an ML framework that defines a sequential decision-

making structure for an agent to solve problems on a trial and error basis by interacting

with the environment, taking actions, and receiving rewards (SUTTON; BARTO, 2018).

Thus, unlike a supervised learning approach, RL does not require access to labeled data.

Also, supervised techniques imply the design of customized rules to leverage predictions.

Instead, an RL agent can directly learn a profitable trading strategy for a reasonable course
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of action that maximizes the long-term accumulated reward across market scenarios.

When trading, investors can employ information from two types of market indicators:

technical or fundamental. It is usual among RL works to adopt predominantly technical in-

dicators such as the normalized price time series (MOODY; WU, 1997; DENG et al., 2017;

ALMAHDI; YANG, 2017) or moving average (GIACOMAZZI DANTAS; GUERREIRO E

SILVA, 2018; ALIMORADI; HUSSEINZADEH KASHAN, 2018; ZHANG; MARINGER,

2014). Among RL works that employed fundamental indicators, they mostly use the

information in companies’ periodic balance reports, such as market capitalization or

price-to-earnings ratio values (ZHANG; MARINGER, 2016; WANG et al., 2019; MA

et al., 2021). However, these fundamental indicators rely on values reported on low fre-

quencies, such as every quarter. Thus, for active trading scenarios of higher frequency,

such as hourly or daily, the information in these types of fundamental indicators, after

some period, may not be reliable enough. Alternatively, systematic literature reviews

(KHADJEH-NASSIRTOUSSI et al., 2014; LOUGHRAN; MCDONALD, 2016; HEN-

RIQUE; SOBREIRO; KIMURA, 2019) have shown that textual news is a well-adopted

information source for high-frequency trading supervised approaches.

Notably, only recently have a few authors (FEUERRIEGEL; PRENDINGER, 2016;

YANG; YU; ALMAHDI, 2018; YE et al., 2020) opened up this promising research path

of improving RL solutions by incorporating features extracted through natural language

processing (NLP). Nevertheless, despite these successful initial efforts, numerous issues

are still available for exploration, from which there are two particular topics of inter-

est, as follows. Market sentiment momentum: when extracting features from financial

news for sequential decision-making, it is challenging to capture the prevailing market

mood about a given asset instead of an eventful cause for price oscillation (KHADJEH-

NASSIRTOUSSI et al., 2014). Information incorporation vs. RL methods’ instability : RL

techniques are well-documented to be unstable, generalize poorly (HENDERSON et al.,

2018), and the stochasticity of the financial market environment (TSAY, 2010) amplifies

these difficulties. Thus, introducing any new information entails a thorough examination

to verify that it is not negatively affecting the algorithm’s stability.

This work approaches these issues by proposing the Sentiment-Aware RL intelligent

trading system (ITS-SentARL). ITS-SentARL presents a modular architecture that aids

in incorporating past sentiment features such that it captures the persistent marked mood

and the dissolution of the news impact over the period. In addition, this mechanism helps

to deal with the issue of reduced textual data coverage (YE et al., 2020), which occurs

because of the lack of news articles at every instant for each company. Moreover, ITS-
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Sentarl presents the innovation of being the first RL architecture to adopt a sentiment

extractor with the optimal configuration (FERREIRA et al., 2020) of the winner design

(MANSAR et al., 2017) of the SemEval-2017 Task 5 challenge (CORTIS et al., 2017). This

challenge employed the help of market specialists to label textual news headlines and thus

provided the research community with a gold-standard (i.e., ground-truth) dataset. The

present research also uses this gold-standard dataset to train the ITS-SentARL’s sentiment

extractor. Ultimately, as depicted in Figure 1, the research opportunity pursued in this

present work lies in investigating the sentiment analysis (SA) subset of natural language

processing techniques for improving reinforcement learning algorithms’ performance over

trading tasks.

Figure 1: The intersection of reinforcement learning and sentiment analysis for financial
trading tasks outlines the research direction of the present work.

Economics

Trading

Stock markets
Reinforcement

Learning

Machine Learning

Artificial Intelligence

Natural
Language
Processing

Sentiment
Analysis

Source: Author’s own production.

1.1 Contributions

As previously mentioned, the present work investigates the impact that feature incor-

poration may have on the stability of RL algorithms. So naturally, the methodology here

adopted includes the suggestions by Henderson et al. (2018) regarding best practices about

appropriate experimental design and evaluation of results of RL techniques. Hence, to

meticulously examine ITS-SentARL capabilities, the following steps were crucial. First,

data gathered encompassed twenty different assets from diverse segments. Second, for

evaluation, the adoption of a rolling window setup comprised training and testing over
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five periods, including the COVID-19 pandemic crisis. Next, both a no-penalty and high-

penalty environment were used as market transaction costs (TC). Then, to execute an

ablation study, a similar but sentiment-free (i.e., no sentiment features) version of ITS-

SentARL acts as one of two adopted baselines. The classic buy-and-hold (BH) strategy

serves as the second baseline. Finally, ITS-SentARL and the sentiment-free baseline are

subjected to five different model seed initializations for each combination of asset, period,

and TC, adding up to a thousand trials for comparison between approaches. Valuation

metrics included total return, annualized return, and Sharpe ratio.

The contributions in this research are twofold:

• ITS-SentARL, a novel Sentiment-Aware RL intelligent trading system for efficient

incorporation of market sentiment momentum from news articles to a trading RL

sequential decision process.

• First RL asset trading approach to verify the benefits of information introduction

through a methodology that follows recent experimental design suggestions (HEN-

DERSON et al., 2018) for RL methods’ stability, generalization, and consistency

proper evaluation.

1.2 Publications

In the course of this investigation, the following publications were made:

• Ferreira, T.; Lima Paiva, F. C.; Silva, R.; Paula, A.; Costa, A.; Cugnasca, C.

“Assessing Regression-Based Sentiment Analysis Techniques in Financial Texts”.

Proceedings of XVI National Meeting on Artificial and Computational Intelligence.

Porto Alegre, RS, Brasil: SBC, 2020. p. 729–740.

In this work, a thorough investigation of NLP techniques for extracting

sentiment scores from news headlines was conducted. This examination

aimed to refine the discoveries made in a renowned SA competition for

extracting news headlines from the financial domain and determine the ad-

equate ML architecture and configuration for such a task. Ultimately, the

best-devised approach was reused in this present investigation to score the

sentiment in financial news headlines. More implementation details and

clarification of its incorporation into ITS-SentARL’s design are discussed
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in the remainder of this manuscript. Among this article’s outcomes is the

sentiment extractor implementation and training data that are publicly

available online1.

• Felizardo, L. K.; Lima Paiva, F. C.; Costa, A. H. R.; Del-Moral-Hernandez, E.

“Reinforcement Learning Applied to Trading Systems: A Survey”. arXiv, 2022.

This work was essential in methodically identifying research gaps and,

consequently, opportunities in the exploration of reinforcement learning

techniques for the financial market trading problem. Achieving this level

of fruition required searching for articles on the target subject published

between 2014 and 2020. From the several identified studies, twenty-nine

articles were selected. Then, using the seminal RL seminal literature as a

basis (SUTTON; BARTO, 2018), this study devised a workflow pipeline

that helps categorize and group studies in the field. Next, an in-depth

review and comparison of these articles followed, which allowed the dis-

section and information extraction of these studies under the devised

pipeline. Ultimately, this work observed the increase in the adoption of

reinforcement learning for financial market trading and allowed the iden-

tification of state-of-the-art trends in the field, which led to insights and

suggestions for future studies. Hence, this work was pivotal for identifying

research venues investigated in the following two publications.

• Lima Paiva, F. C.; Felizardo, L. K.; Bianchi, R. A. d. C. B.; Costa, A. H. R.

“Intelligent Trading Systems: A Sentiment-Aware Reinforcement Learning Approach”.

Proceedings of the Second ACM International Conference on AI in Finance. New

York, NY, USA: Association for Computing Machinery, 2021. (ICAIF ’21).

This article highlights the central research investigation described in

the present manuscript. As such, it introduces ITS-SentARL’s architec-

ture and summarizes the presently discussed topics regarding the benefits

of incorporating market sentiment momentum into an RL trading frame-

work. Consequently, some of this manuscript’s overall concepts, images,

and tables were originally published at the Second ACM International

Conference on AI in Finance (ICAIF 2021). Finally, as outcomes, this

work favored providing the publicly available implementation of the source

1https://bit.ly/3kzau8G
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code of a financial news web crawler2 and ITS-SentARL algorithm and

experimental setup3.

• Felizardo, L. K.; Lima Paiva, F. C.; de Vita Graves, C.; Matsumoto, E. Y.; Costa,

A. H. R.; Del-Moral-Hernandez, E.; Brandimarte, P. “Outperforming algorithmic

trading reinforcement learning systems: A supervised approach to the cryptocurrency

market”. Expert Systems with Applications, v. 202, p. 117259, 202.

This research article investigated the adoption of several recent ad-

vancements in RL architectures and compared them to typical supervised

learning methods for trading in the cryptocurrency market. As a result,

this research showed alternative ways to frame the trading task under the

different assumptions of the RL framework, which allowed for a better

comparison between supervised and reinforcement learning approaches.

Moreover, the state-of-the-art Residual Neural Network time series ar-

chitecture (FAWAZ et al., 2019) displayed outstanding performance and

allowed better investigation of the impact of features through the anal-

ysis of residual blocks. Thus, this publication study opens up a venue

for future improvements to ITS-SentARL architecture. For instance, the

promising ResNet could help enhance the proposed system’s performance

and further enhance our analysis of the impact of market sentiment mo-

mentum on the agent’s behavior.

1.3 Organization of the Manuscript

The remainder of this manuscript is organized as follows.

• Chapter 2 reviews relevant articles and contains a comparative analysis of techniques

and approaches related to the presented one.

• Chapter 3 includes financial concepts and the definition of financial trading as a

sequential decision-making problem.

• Chapter 4 covers the RL approach and how it was adjusted to the trading problem.

Moreover, the proposed ITS-SentARL architecture is introduced in this chapter, and

the underlying mechanics of capturing sentiment momentum are also discussed.

2https://github.com/xicocaio/financial web crawler
3https://github.com/xicocaio/its-sentarl
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• Chapter 5 includes details about the experimental data, design decisions, method-

ology, and evaluation of results.

• Chapter 6 concludes this study with final remarks and opportunities in this research

path.
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2 RELATED WORK

Researchers may focus either on the single asset trading (SAT) problem or its gener-

alization, the portfolio management (PM). In SAT, an investor can only operate one asset

at a time, while in PM, the objective is to balance and continuously redistribute assets in

a wallet. Most RL studies favor the former (MOODY; WU, 1997; MARINGER; ZHANG,

2014; ZHANG; MARINGER, 2014; EILERS et al., 2014; GABRIELSSON; JOHANS-

SON, 2015; FEUERRIEGEL; PRENDINGER, 2016; DENG et al., 2017; SPOONER

et al., 2018; CARAPUÇO; NEVES; HORTA, 2018; ALIMORADI; HUSSEINZADEH

KASHAN, 2018; GIACOMAZZI DANTAS; GUERREIRO E SILVA, 2018; LI; ZHENG;

ZHENG, 2019; WU et al., 2019; JEONG; KIM, 2019; PONOMAREV; OSELEDETS; CI-

CHOCKI, 2019; MA et al., 2021; HIRCHOUA; OUHBI; FRIKH, 2021; TSANTEKIDIS et

al., 2021; THÉATE; ERNST, 2021), while some others, the latter (ZHANG; MARINGER,

2016; ALMAHDI; YANG, 2017; KANG; ZHOU; KANG, 2018; PENDHARKAR; CUSATIS,

2018; YU et al., 2019; WANG et al., 2019; PARK; SIM; CHOI, 2020; ALMAHDI; YANG,

2019; ABOUSSALAH; LEE, 2020; YE et al., 2020). The present work will address the

SAT problem while still appreciating distinguished solutions in PM.

Given the previously mentioned active trading circumstances, such as acting in a

fast-paced changing environment, it is reasonable to view trading as a sequential decision-

making problem. Not surprisingly, as early as 1997, researchers have viewed the RL frame-

work as a straightforward approach to designing intelligent trading systems (MOODY;

WU, 1997). RL algorithms aim at learning a policy (i.e., strategy) function – which is

a mapping between a representation of the environment and allowed operations – that

defines an agent’s successful behavior under diverse situations. There are three major

categories of RL solutions: policy-based, value-based, and actor-critic.

Among policy-based methods, the popular policy gradient is a technique for directly

approximating parametric policies through the gradient ascent of rewards (e.g., finan-

cial return) over actions (e.g., trading operations). Policy gradient methods have been

employed in trading since Moody and Wu (1997) proposed the Recurrent RL (RRL) ap-
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proach, the first RL intelligent trading system to gain wide notoriety. RRL is a slightly

modified version of the typical policy gradient algorithm. Despite its simplicity, RRL

was a pioneering work that had such a profound influence over the community that,

to this date, several studies (MARINGER; ZHANG, 2014; ZHANG; MARINGER, 2014;

GABRIELSSON; JOHANSSON, 2015; ZHANG; MARINGER, 2016; ALMAHDI; YANG,

2017; DENG et al., 2017; ALMAHDI; YANG, 2019; ABOUSSALAH; LEE, 2020) con-

tinue to extend its most fundamental ideas and structure. For instance, Deng et al. (2017)

proposed the FDDR, an updated version of RRL with deep neural networks. Alterna-

tively, Almahdi and Yang (2019) leveraged the RRL architecture flexibility to combine

it with particle swarm optimization meta-heuristic for PM tasks. Although the present

work does not fully employ the entire RRL algorithm, two original RRL concepts were

adopted. The first one is the concise financial return formulation, which accounts for

the constant change in trading actions, price changes, amount of invested shares, and

transaction costs. The second adopted concept is the market state representation, which

contains observations from historical price differences and the last action. Representing

the market state in such a way helps to ground the agent’s interaction with the market

situation.

Value-based techniques aim at learning optimal value functions, which assign scores

for given situations and help the agent estimate future opportunities and, thus, derive op-

timal policies. Most RL financial studies that employed value-based approaches, opted for

Q-learning (FEUERRIEGEL; PRENDINGER, 2016; GIACOMAZZI DANTAS; GUER-

REIRO E SILVA, 2018; CARAPUÇO; NEVES; HORTA, 2018), while others preferred

SARSA (PENDHARKAR; CUSATIS, 2018; ALIMORADI; HUSSEINZADEH KASHAN,

2018). Interestingly, there is an increase in researchers (JEONG; KIM, 2019; PARK; SIM;

CHOI, 2020; TSANTEKIDIS et al., 2021; THÉATE; ERNST, 2021) exploring the DQN

algorithm (MNIH et al., 2015), a deep learning approach to Q-learning. Value-based

methods address the issues that policy-based techniques present regarding local optima

convergence and high variance. Unfortunately, while value-based techniques can lead to

optimal solutions, they may suffer from bias and convergence issues on high dimensional

feature spaces, i.e., the curse of dimensionality (RUSSELL; NORVIG, 2009).

Actor-critic methods emerged as a hybrid attempt to address the weaknesses of value-

based and policy-based approaches. Learning policy functions (the actor) and value func-

tions (the critic) allows the agent to balance bias and variance and achieve outstanding

results. For instance, Mnih et al. (2016) proposed the Advantage Actor-Critic (A3C)

algorithm and showed that it outperformed the, at the time, state-of-the-art DQN in the
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video game domain (MNIH et al., 2015). Unsurprisingly, there is a growing interest in the

financial domain regarding the actor-critical model, with works using the Deep Determin-

istic Policy Gradient (DDPG) (KANG; ZHOU; KANG, 2018; YU et al., 2019; YE et al.,

2020), proximal policy optimization (PPO) (HIRCHOUA; OUHBI; FRIKH, 2021), and

A3C (LI; ZHENG; ZHENG, 2019; PONOMAREV; OSELEDETS; CICHOCKI, 2019).

Notably, a few years later, after Mnih et al. (2016) compared the A3C model to the DQN

algorithm in the game domain, Li, Zheng and Zheng (2019) did a similar comparative ex-

periment for the active trading task and similarly observed the exceptional performance of

the A3C algorithm. Thus, inspired by these remarkable results, the present study adopts

a variation of A3C, the Advantage Actor-Critical (A2C) (MNIH et al., 2016). According

to Wu et al. (2017), A2C is a less explored but equally effective variety of A3C. The

main difference between A2C and A3C is that the former does not have the asynchronous

part of the A3C model, which consists of several independent agents interacting with a

different copy of the environment in parallel.

A crucial step in RL system design is selecting features to compose the market infor-

mation (i.e., state) that the agent observes to take action. Most RL researchers favored in-

formation extraction through technical indicators generated from statistical preprocessing

of the price time series of assets. These indicators include the moving average (EILERS et

al., 2014; LI; ZHENG; ZHENG, 2019; WU et al., 2019), relative strength index (ZHANG;

MARINGER, 2016; SPOONER et al., 2018), stochastic oscillator (ALIMORADI; HUS-

SEINZADEH KASHAN, 2018; GIACOMAZZI DANTAS; GUERREIRO E SILVA, 2018),

and others. Nonetheless, a prevalent technical indicator is the normalization of price time

series by taking the difference between consecutive price values. Moody and Wu (1997)

first introduced a state composition built upon this normalized time series, which is still

very popular among deep RL trading approaches (DENG et al., 2017; ALMAHDI; YANG,

2017; WANG et al., 2019; ABOUSSALAH; LEE, 2020). Deep learning allows researchers

to reduce noise through neural networks’ internal layers, diminishing the necessity for

intense preprocessing. For instance, Deng et al. (2017) employed a fuzzy neural network

internal layer for state representation encoding to reduce asset price noise.

In contrast to technical indicators, fundamental indicators comprise features extracted

from sources external to the price series, broadening the spectrum of available informa-

tion sources to include balance sheets, macroeconomic analysis, financial news, and oth-

ers. Case in point, Eilers et al. (2014) adopted information regarding the trading period,

which may anticipate market trends that can occur periodically next to events such as

the turn-of-the-month (ARIEL, 1987), government announcements (LUCCA; MOENCH,
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2015), and others (e.g., exchange holidays). On the other hand, some studies (WANG

et al., 2019; MA et al., 2021) adopted company indicators such as market capitalization,

price-earnings ratio, dividend, and others. Incorporating fundamental indicators gener-

ated from NLP techniques over textual sources, including SA methods is a much-explored

approach for market forecasting (KHADJEH-NASSIRTOUSSI et al., 2014; LOUGHRAN;

MCDONALD, 2016; HENRIQUE; SOBREIRO; KIMURA, 2019). Interestingly, only re-

cently have RL authors explored such a research path (FEUERRIEGEL; PRENDINGER,

2016; YANG; YU; ALMAHDI, 2018; YE et al., 2020).

Choosing the source of textual data impacts the trading problem scope by restricting

the frequency of operations. For instance, some SA researchers (REKABSAZ et al., 2017;

FEUERRIEGEL; GORDON, 2019) selected companies’ periodic exchange filings (e.g., Se-

curities and Exchange Commission filings), which occur sparsely over months. On another

side of the spectrum, social media allows high-frequency trading and facilitates capturing

large amounts of data, which attracted considerable attention (BOLLEN; MAO; ZENG,

2011; NGUYEN; SHIRAI, 2015; JIANG; LAN; WU, 2017; XING; CAMBRIA; WELSCH,

2018). Unfortunately, preprocessing social media content is more challenging than com-

pany filings and may come from less credible writers (LOUGHRAN; MCDONALD, 2016).

News headlines appear as an intermediary source of information that balances frequency

of availability and reliability and, naturally, also attracted considerable awareness from

the SA community (KHADJEH-NASSIRTOUSSI et al., 2015; DUAN et al., 2018; REN;

WU; LIU, 2019; GLASSERMAN et al., 2020). The current work aims at designing an

hourly frequency trading system, and thus the properties of news headlines favored its

selection. Interestingly, all RL studies that employ NLP techniques (FEUERRIEGEL;

PRENDINGER, 2016; YANG; YU; ALMAHDI, 2018; YE et al., 2020) also adopted news

headlines as their sources.

According to Medhat, Hassan and Korashy (2014), textual information extraction

can occur through lexicons (i.e., a dictionary with the corresponding sentiment of words),

machine learning models, or a hybrid combination of both. Lexicons can be generic and

support various tasks from various domains (HUTTO; GILBERT, 2014). Nonetheless,

some researchers defend using domain-specific lexicons, such as Loughran and McDonald

(2011), who proposed a financial lexicon with positive, negative, and neutral sentiment di-

mensions for financial words. One of the most influential studies that use NLP techniques

for market prediction (BOLLEN; MAO; ZENG, 2011) devised a lexicon that categorized

words according to six sentiment dimensions. Regarding machine learning approaches,

there is a recent focus (PINHEIRO; DRAS, 2017; DUAN et al., 2018; XING; CAMBRIA;
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WELSCH, 2018) on adopting deep neural networks with state-of-the-art latent feature

representation, such as the GloVe word embedding (PENNINGTON; SOCHER; MAN-

NING, 2014). Notably, some current state-of-the-art architectures for sentiment extrac-

tion from textual financial sources adopt the hybrid combination of lexicons and machine

learning to extract sentiment for market prediction (MANSAR et al., 2017; JIANG; LAN;

WU, 2017).

Amid RL studies in the financial domain to explore NLP techniques, Feuerriegel and

Prendinger (2016) adopted a Q-learning algorithm and explored composing the market

state representation with SA features and normalized price time series. To generate these

fundamental indicators, Feuerriegel and Prendinger (2016) employed a lexicon-based ap-

proach to extract word-level sentiment to compose the overall sentiment score of news

headlines. Alternatively, Yang, Yu and Almahdi (2018) aimed at first refining sentiment

features by extracting the underlying relation between investors’ sentiment and market

trends. Therefore, Yang, Yu and Almahdi (2018) produced sentiment-charged reward

features using the asset’s price time series and news sentiment scores, from a third-party

provider1, through an inverse RL method. Nevertheless, Yang, Yu and Almahdi (2018)

did not employ these sentiment reward features for learning a trading strategy and in-

stead adopted them as input for a rule-based strategy that relied on supervised learning

predictions. Finally, Ye et al. (2020) adopted a deep learning-based approach to extract

word embeddings from financial news and subsequently generate market forecasts for a

portfolio management problem. Then, these features and predictions served to augment

the market’s state representation. Noticeably, none of these RL works (FEUERRIEGEL;

PRENDINGER, 2016; YANG; YU; ALMAHDI, 2018; YE et al., 2020) employed hybrid

textual information extraction (i.e., lexicon and ML model), a missed opportunity that

the present work approaches.

Like Feuerriegel and Prendinger (2016) and Ye et al. (2020), the present work focuses

on improving market state representation with textual news features. However, explicit

sentiment information is used instead of using implicit latent features (YE et al., 2020).

Following this approach facilitates examining the influence of extracted features on the

systems’ behavior and, consequently, its impact on the financial return (GLASSERMAN

et al., 2020). Nonetheless, developing a sentiment extractor can be challenging, and one

contributing factor to this difficulty is the scarcity of labeled data for training ML models

(KHADJEH-NASSIRTOUSSI et al., 2014). As a workaround, researchers might gather

1Thomson Reuters News Analytics (TRNA): https://fsc.stevens.edu/thomson-reuters-news-analytics-
trna
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sentiment data labeled by users in financial social media platforms (e.g., Stocktwits),

which can be biased or unreliable (XING; CAMBRIA; WELSCH, 2018).

Fortunately, researchers in the SA and financial communities joined forces to address

these issues by producing the labeled gold-standard dataset for the SemEval-2017 Task

5 competition (DAVIS et al., 2016; CORTIS et al., 2017). SemEval-2017 Task 5 encom-

passed two financial challenges, one with data composed of social network tweets and the

other with news headlines. In both challenges, researchers would compete to devise senti-

ment extractors for accurately matching the sentiment scores of texts according to market

specialists’ labeling. Although researchers displayed several promising approaches regard-

ing the news headlines challenge, Fortia-FBK (MANSAR et al., 2017) stood out as the

state-of-the-art winner design. In their hybrid approach, Mansar et al. (2017) combined

the GloVe pre-trained word vectors (PENNINGTON; SOCHER; MANNING, 2014) with

the general-domain VADER lexicon (HUTTO; GILBERT, 2014) into a convolutional neu-

ral network (CNN) (KIM, 2014). Then, past exploratory work (FERREIRA et al., 2020)

experimented with different Fortia-FBK configurations to examine improvements to the

sentiment scoring according to the gold-standard reference data. The present work adopts

a Fortia-FBK-based design as its sentiment extractor with its optimal configuration, as

described by Ferreira et al. (2020).

Finally, Table 1 concludes this chapter by depicting a brief comparison between the

proposed system (ITS-SentARL) and some of the RL studies discussed here. Charac-

teristics depicted in Table 1 include the type of problem (e.g., either SAT or PM), data

sampling frequency (e.g., Minute, Day), category of information used (e.g., Technical

and Fundamental indicators), NLP technique employed (e.g., state-of-the-art ML-based

sentiment extractor) and the RL algorithm employed (e.g., A2C, DQN).
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Table 1: Overview of some RL works for easier comparison with the proposed architecture
ITS-SentARL. First, among analyzed characteristics, the type of problem refers to either
single asset trading (SAT) or portfolio management (PM). Second, data sampling reflects
the availability of data which impacts trading frequency. Next, the variety of indicators
and NLP techniques show the most common category of information. Finally, the last
column informs the employed RL technique.

Authors Type
Data

Sampling
Indicators

NLP
method

RL
algorithm

Eilers et al. (2014) SAT Daily
Tech.+
Fund.

No TD(0)

Gabrielsson and
Johansson (2015)

SAT Minute Technical No
Recurrent

RL

Feuerriegel and
Prendinger (2016)

SAT Daily
Tech.+
Fund.

Sentiment
Lexicon

Q-learning

Deng et al. (2017) SAT
Minute,
Daily

Technical No
Fuzzy Deep
Recurrent

RL

Almahdi and Yang
(2017)

PM Weekly Technical No
Recurrent

RL

Carapuço, Neves
and Horta (2018)

SAT Hour Technical No DQN

Giacomazzi Dan-
tas and Guerreiro
e Silva (2018)

SAT Daily Technical No Q-Learning

Yang, Yu and
Almahdi (2018)

SAT 15 min.
Tech.+
Fund.

Sentiment
charged
reward

Inverse RL

Li, Zheng and
Zheng (2019)

SAT Minute Technical No A3C, DQN

Wang et al. (2019) PM Monthly
Tech.+
Fund.

No
Policy

Gradient

Aboussalah and
Lee (2020)

PM Hour Technical No

Stacked
Deep

Dynamic
Recurrent

RL

Ye et al. (2020) PM
Daily, 30

min.
Tech.+
Fund.

Word
embedding

DDPG

Weng et al. (2020) PM 30 min. Technical No
Policy

Gradient

Ma et al. (2021) SAT Daily
Tech.+
Fund.

No Double DQN

Théate and Ernst
(2021)

SAT Daily Technical No DQN

ITS-SentARL SAT Hour
Tech.+
Fund.

SOTA Sent.
ML Model

A2C

Source: Author’s own production.
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3 BACKGROUND AND PROBLEM

DEFINITION

This chapter describes the theoretical background required to formulate trading activ-

ities as a sequential decision-making problem. The initial section introduces the essential

financial market concepts for understating the complexity of market investment. Next

are details about the trading scenario, available information, restrictions, and necessary

simplifications. Ultimately, the last sections discuss the Markovian formulation or MDP.

3.1 Financial Concepts

There are several types of assets and ways to invest in financial markets. The most

well-known type of asset is companies’ shares or stocks, which represent a small fraction

of company ownership. The negotiation of stocks occurs at marketplaces known as stock

exchanges (e.g., New York Stock Exchange). Although the term stock market refers

to the combination of all stock exchanges, these two designations are popularly used

interchangeably. Curiously, although its name might suggest otherwise, participants might

exchange several types of assets in stock markets, not only stocks. For instance, an

Exchange-Traded Fund (ETF) is an asset that tracks the value of a market index and

can be traded like a typical stock in stock markets. Market indexes represent the overall

combined price of a portfolio of companies’ stocks. For example, the S&P 500 (Standard

& Poor 500) is an index of the combined price of the top five hundred companies with

the highest stock price, traded volume, and that meets given selection criteria. Although

an investor can trade some indexes directly, buying an index indirectly through an ETF

is more usual.

Assets’ prices follow the supply and demand law given by the number of shares avail-

able in the stock market and how much participants are willing to pay for them. Naturally,

this willingness varies according to how stock market participants perceive companies’ in-

trinsic value. As a company grows, its attractiveness to investors increases, driving its
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stock price up. To grow even further, companies can raise more capital for investments by

releasing extra stocks, which increases the asset volume available for public investing. As

a result, an asset’s liquidity (i.e., the readiness of buying or selling) is directly affected by

its attractiveness and shares’ volume in the market. Hence, stocks price oscillate depend-

ing on the companies’ current and expected future performance and growth. Assessing

current value is relatively straightforward given the transparency that market exchanges

require from companies when publicly displaying their financial reports and announce-

ments to shareholders. However, estimating companies’ expected future performance is

a non-trivial effort based on subjective assumptions and speculation. Even so, the econ-

omy is expected to grow over time, and thus, the most traditional way of investing is to

buy-and-hold (BH) stocks over extended periods (e.g., months, years, or decades), even

though they could undergo unexpected price oscillations in the short term. Opposite

to traditional BH investors, active traders leverage the uncertainty that arises from the

market’s speculative nature and how it affects participants’ immediate perception and

behavior. Thus, for active trading, investors focus on the short-term price fluctuation for

increased gains even though it might incur a higher exposure to risk.

As already mentioned, there is an open discussion about whether it is feasible to at-

tain profit regularly with active trading, given the seemingly random characteristics of

the market (KING; COOTNER, 1965; FAMA, 1965). Also, Fama (1970) proposed the

Efficient Market Hypothesis (EMH) that included three forms (i.e., weak, semi-strong,

and strong) that stated that the asset price could encompass all information available to

market participants. Moreover, market efficiency relates to overall companies’ liquidity

which subsequently relates to market size. In this sense, the EMH’s strong form ensured

that efficient markets would be unpredictable, and unobserved information would not ex-

ist for exploitation. Interestingly, even though the EMH supporters back BH investors’

practices, not all BH investors defend the EMH premises. For instance, some BH investors

(e.g., Warren Buffet, Peter Lynch, and others) – popularly known for attaining outstand-

ing profit consistently over decades – employ fundamental indicators (e.g., earnings per

share, price to earnings ratio and others) for estimating companies’ intrinsic value and

then selecting stocks deemed underpriced.

Furthermore, there is both conceptual and empirical criticism of EMH. For example,

according to Behavioral economists – who study the psychology of how market partici-

pants make decisions – EMH does not account for the fact that investors measure and

perceive companies’ potential differently and may come up with different evaluations.

Also, some market anomalies, such as the calendar effect (e.g., turn-of-the-month), are
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still hard to explain under EMH and can be exploited (VASILEIOU, 2013). Subsequently,

the Adaptive Market Hypothesis (AMH) reconciled EMH with behavioral economics and

helped justify anomalies. Essentially, Lo (2004) proposed that evolutionary models ex-

plain investors’ behavior by describing how humans could shape market efficiency by

iterating strategies through trial and error. In this sense, automated trading might be

exploiting market inefficiencies but also, at the same time, filling the opportunity gaps

and, consequently, increasing market efficiency.

Behavioral economics questions the EMH idea of the rational investor, and one of

its particularly notorious fields explores market or investors’ sentiment. In this regard,

bullish market sentiment is equivalent to a general optimistic expectation that prices

will increase. Oppositely, bearish sentiment is a pessimistic view that prices will go down.

Market sentiment researchers have opposed EMH with examples where investors presented

excessive bullish or bearish sentiment, which hypothetically led specific stock prices to get

much higher (overpriced) or lower (underpriced) their intrinsic value. Barberis, Shleifer

and Vishny (1998) were the first authors to show that the market can irrationally overreact

or underreact to the news. These authors also argued that overpricing or underpricing

caused by prolonged excess bullish or bearish sentiment can eventually cause a price

correction in the form of a price mean reversion. Nonetheless, it is essential to notice

that assets possess varying degrees of susceptibility to investors’ sentiment (BAKER;

WURGLER, 2007). Interestingly, the characteristics that define this asset’s susceptibility

are related to those proposed by EMH, such as liquidity or traded volume.

News traders are investors that embody behavioral economics research principles.

This type of trader recognizes that rumors can build up expectations that cause assets to

become mispriced. Then, the realization or not of the fact may trigger price corrections

that lead to trends moving in an opposing direction. Such situations are typical and can

be exploited by news traders (practice summarized by the adage “buy the rumor, sell

the news” (KADAN; MICHAELY; MOULTON, 2014)). In particular, traders can profit

from overreactions caused by disruptive events, especially the unexpected ones that are

sometimes known as black swan. Taleb (2007) characterized the black swan as such a

surprisingly rare event that: first, most observers could not even propose estimating its

chance of occurrence; second, it inflicts a disastrous effect when it happens; third, it is

justified as foreseeable in hindsight. Examples of such events include the 2000 dot-com

bubble and the 2008 housing crisis. While the effects of the COVID-19 pandemic can

arguably not be considered black swan events – even by the author that coined this term

(TALEB, 2007) – the exact moment of the economic impact was unknown, the effects
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were catastrophic, and its duration uncertain.

It is also notable that the uncertainty in the effect duration of most events, either

devastating or not, can also be exploited by news traders using a strategy that aims to

seize the opportunity to invest contrary to the fading sentiment trend. Alternatively,

Barberis and Thaler (2003) exposed that optimism or pessimism can be well-founded.

Therefore, a well-founded sentiment can explain when asset prices do not oscillate sharply

after the expected fact: the excitement was steadily incorporated into the price over time.

In essence, news traders examine the market mood to exploit asset mispricing oppor-

tunities. Eventually, an adequate market mood assessment can be used to secure a good

position over an appropriately priced asset or profit from sharp price swings caused by

sentiment and price mismatches.

3.2 Trading Scenario

Each market participant possesses a given net worth which is the term that describes

the total amount of an investor’s wallet value (e.g., cash, stocks). Naturally, investors aim

to increase their net worth by appropriately selecting assets for investing with a higher

potential of yielding good financial returns. The selection of assets an investor possesses

is known as a portfolio or wallet. When examining trading tasks, researchers can focus on

portfolio management (PM) tasks where an investor seeks higher profit by redistributing

the amount of owned stocks in its wallet. The present work focus on single asset trading

(SAT), which is the specific case of PM, where the trader operates assets in a separated

manner, and thus the position over one asset does not affect others in the wallet. The

most usual asset positions (i.e., operations) are long, short, and neutral. First, the long

operation is equivalent to buying an asset so that profit occurs if prices increase. Next,

the short operation borrows assets in the market with the expectation that prices will go

down. Finally, the neutral operation is similar to selling or staying out of the market,

thus, remaining unaffected by its oscillation. When performing these operations, traders

can select a variable finite amount of shares.

After an investor decides on which operation to perform (e.g., long, short, neutral),

it places an ask or bid order that reflects its decision. An order contains the number of

shares to trade and its selling (i.e., ask) or buying (i.e., bid) the desired price. The spread

is the difference between the ask and bid prices and can relate to the liquidity of a given

asset. In this sense, big stable companies with high-liquidity stocks tend to present a
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low spread. On the other hand, low-liquidity stocks will usually exhibit a higher spread.

Finally, an order is fulfilled, and assets are effectively traded after the same volume of

shares of the bid and ask prices of different investors match or cross (i.e., the price the

buyer is bidding or the seller is asking reaches or traverses each other). Ultimately, all

fulfilled orders account for the historical aggregated data of an asset.

In essence, traders devise strategies to maximize their net worth over the long term

and rely on different market information to define the supposedly best operation to take

on a given instant. Traders can sample information with different frequencies according

to the desired operation frequency (e.g., minute, hour, day). Moreover, the availability

of price information allows for high-frequency trading (e.g., operations at each second).

At any observed period that includes minutes, hours, days, and others, there is a starting

price (i.e., open) that any investor paid for (i.e., bid) or sold (i.e., ask) a given asset.

Moreover, during such a given period, both bid and ask prices achieved maximum (i.e.,

high) and minimum (i.e., low) values before reaching a final price (i.e., close) at the end

of the observed period. Ultimately, volume is the number of asset shares traded in the

market during any given period. Usually, active traders gather the historical bid and ask

traded volumes and OHLC (i.e., open, high, low, close) prices as input to formulating

strategies. Although, in practice, it is a popular convention among both ML works to

only use an asset’s bid or the ask prices as information sources.

In the case of behavioral economics adherents such as news traders, there could be a

scarcity of information even for high-liquidity companies, where many hours could pass

before news vehicles publish even a single news article. Notice, for example, that quar-

terly companies performance reports are still a common source of information for news

traders (REKABSAZ et al., 2017; FEUERRIEGEL; GORDON, 2019). Thus, the spar-

sity between news releases regarding companies may hinder the maximum frequency news

traders could operate. Not surprisingly, it is becoming more common for news traders to

include social media (e.g., Twitter posts) as sources of information for supporting trading

operation decisions (BOLLEN; MAO; ZENG, 2011; DAVIS et al., 2016; CORTIS et al.,

2017).

The market environment assumes that operations can incur trading costs (TC) that

can drastically affect the financial return and penalize traders for frequent position shifts.

Consequently, due to the chaotic nature of the stock market (TSAY, 2010), trying to devise

a system that accurately forecasts near-future trends may lead to a prediction pitfall. In

this regard, every prediction error in a system that frequently changes positions on an

asset can be extremely costly in a real-world scenario. Hence, as TC can drastically
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impact results, researchers should consider it essential in their experiments.

When traders operate, they constantly analyze historical data, such as the price time

series, to obtain indicators for decision-making. Nonetheless, recent data points might

be more informative than older ones. Thus, a trader or an intelligent trading system

observes processes past w points to take a trading action at a trading decision instant

t. The look-back window is this time-window [t, ..., t − w + 1] that sequentially moves

forward in time. Hence, Figure 2 portrays an example of a look-back window of size w

over a price time series. The look-back window is an important concept that is employed

throughout this manuscript.

Figure 2: Example of a look-back window of size w over a price time series. Given a
decision instant t that is always moving forward in time (in red), the look-back window
is an excerpt of the last w data points (a shadowed grey area) in the time series.

Price

Look-Back Window
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Time

Source: Author’s own production.

3.3 The Markov Decision Process Formulation

The present work formulates the single asset trading problem as a Markov decision

process (MDP) given by the tuple 〈S,A, T ,R〉 where S is the set of states (i.e., conditions)

of the environment, and A is the set of actions (i.e., operations) available to the agent.

The state transition function T : S×A 7→ P (S) describes the probability of transitioning

from states after a given action and describes the environment dynamics stochasticity.

R : S ×A 7→ R is the function of the reward received for taking actions at given states.

The interaction of an agent in the MDP formulation is represented in Figure 3. First,

the agent, at an instant t, observes the current state St = s ∈ S, reward Rt ∈ R, and

decides to perform an action At = a ∈ A. Then, the agent receives a reward Rt+1 ∈ R and

transitions to the next state St+1 = s′ ∈ S with a given probability P (St+1). This process

repeats during each episode that comprises a period with timesteps that start at t = 0

until t = T . There are several possible methods for solving the MDP, and Reinforcement

Learning (RL) techniques, discussed in the next Section, are some of the most popular
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ones.

Figure 3: The MDP dynamic. Initially, the agent starts with information about the
current environment state St and reward Rt. Next, it selects an action At to take. Then,
it receives a reward Rt+1 and transitions to the next state St+1.
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3. Action 

2. Current Reward 

5. Next State 4. Next Reward 

Source: Author’s own production.

Before proceeding, observe that this work draws upon the symbols and formulations

of a seminal material in the field (SUTTON; BARTO, 2018). As such, instead of using

Rt to represent the reward resulting from action At, it is better to use Rt+1, highlighting

that the following reward and state, namely Rt+1 and St+1, are determined together.

Consequently, from now on, to guarantee the consistency of symbols and formulations,

only the representation Rt+1 is employed.
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4 SOLVING THE PROBLEM: ITS-SENTARL

Recall from Section 3.2 the analysis of the prediction pitfall and the risks of predict-

ing precisely every price change in an asset. For instance, this problem can arise when

tracking a rule-based strategy that matches ML predictions causes a trading system to

frequently change positions on an asset, which can be costly in a real-world scenario.

Consequently, it is essential to investigate an agent’s performance under both no-penalty

and high-penalty scenarios. Under such conditions, Deng et al. (2017) showed that defin-

ing an architecture for learning a trading strategy that identifies market momentum can

circumvent the prediction pitfall. Additionally, the market’s high stochasticity causes

the agent to experience many distinguished situations among training and testing envi-

ronments, leading to poor performance due to generalization issues. Hence, under these

circumstances, the present trading agent is an autonomous system that interacts with

the environment with the ultimate goal of learning a trading strategy that consistently

maximizes the accumulated total financial return over a period.

In essence, formulating the SAT formulation as an MDP allows an RL algorithm to

learn a strategy for maximizing trading profits by interacting with the environment on a

trial and error basis. Thus, this chapter describes the proposed Sentiment-Aware Rein-

forcement Learning Intelligent Trading System (ITS-SentARL). The first section shows

how reinforcement learning techniques can solve the MDP. Then, the second section ex-

poses the mapping of the trading task to the MDP formulation and defines the base

sentiment-free architecture. Next, the following section shows how the market sentiment

was extracted and subsequently incorporated into the market state representation. Also,

in the last section, there are details about the state-of-the-art sentiment extractor em-

ployed.
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4.1 A Reinforcement Leaning Approach

As mentioned in Section 3.3, the MDP describes a continuous process of interaction

of an agent with a given environment. In this scenario, the agent employs a policy (i.e.,

strategy) to decide which action At to select when in state St. In essence, a policy is a

mapping from states to actions that can be either deterministic µ : S 7→ A or stochastic

π : S 7→ P (A), where P (A) is the probability over the action set. The present work

adopts a stochastic policy π. Ultimately, the agent’s goal is to learn a policy, by trial and

error, that maximizes the expected discounted accumulated reward1 Gt from the current

instant t onward given by

Gt
.
= Rt+1 + γGt+1

= Rt+1 + γRt+2 + γ2Rt+3 + · · ·

=
T−t∑
k=0

γkRt+k+1,

(4.1)

where γ =∈ [0, 1] is the discount factor that balances the impact between immediate and

possible future rewards (SUTTON; BARTO, 2018).

MDPs can be solved by Reinforcement Learning (RL) techniques. However, there

are several possible RL methods. In the present research, the RL algorithm employed

is the A2C, the synchronous version of the Asynchronous Advantage Actor-Critic (A3C)

(MNIH et al., 2016). Value-based techniques suffer from poor convergence, and policy-

based techniques tend to converge to local maxima and suffer from high variance and

sample inefficiency. Thus, the actor-critic methods aim to reduce the disadvantages of

both. Hence, it is essential to understand how these methods work and how they can be

combined to achieve better performance.

Value-based techniques find policies that solve the MDP indirectly through value

functions that determine the best policy π to follow. For instance, given that an agent

follows a policy π, the value of being in a state St = s ∈ S is given by the state value

function
V π(s)

.
= E[Gt|St = s]

= E[Rt+1 + γGt+1|St = s]

= E[Rt+1 + γV π(St+1)|St = s],

(4.2)

with the expected cumulative future reward Gt given by Eq. 4.1. Similarly, the state-

1The expected discounted accumulated reward Gt is usually referred to in the canonical RL literature
as return. However, the term return indicates the financial return in the present context.
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action value function

Qπ(s, a)
.
= E[Gt|St = s, At = a]

= E[Rt+1 + γV π(St+1)|St = s, At = a],
(4.3)

represents the value of selecting an action At = a ∈ A when in state St = s ∈ S, given

that a policy π is being followed. Moreover, from Eq. 4.3, it is possible to see how the

state and state-action value functions are related. More importantly, the relation given by

the Bellman optimality equation V ∗(s) = max
a∈A

Qπ∗
(s, a) expresses that the optimal policy

π∗ is the one that selects the most rewarding action according to the optimal state value

function V ∗(s). Hence, finding an optimal value function V ∗(s)
.
= max

π
V π(s) is equivalent

to finding an optimal policy π∗.

Temporal difference (TD) algorithms allow finding optimal value functions. TD meth-

ods start with an initial estimate of the value function (i.e., bootstrapping) and then update

its estimates towards the true value by interacting with the environment and collecting

samples. Thus, TD methods learn the true value functions by using the TD error

δt
.
= Rt+1 + γV (St+1)− V (St), (4.4)

representing the difference between the observed value of transitioning to a new state

Rt+1 + γV (St+1), and previous estimates V (St). Furthermore, because of this boot-

strapping that relies on initial guessed estimates of the true value function, TD meth-

ods are considered biased. Now, consider a parameterized state value function V (s;ϑ)

with the parameter vector ϑ ∈ Ru, where u is the vector’s dimension. The TD algo-

rithm can iteratively find the parameters ϑ that approximates the optimal value function,

max
ϑ

V (s;ϑ) ≈ V ∗(s), by minimizing the mean-squared TD error given by a sequence of

i loss functions

Li(ϑi) = E [Rt+1 + γV (s′;ϑi−1)− V (s;ϑi)]
2 (4.5)

where s′ ∈ S represents the set next state. In this equation, the estimated value of

the following state s′ is computed using the parameters from the previous iteration, ϑi−1,

because the value of the state s′ is not observed directly but instead is estimated using the

reward received at the next time step Rt+1 and the estimated value of the next state. On

the other hand, the estimated value of the current state s is computed using the current

set of parameters ϑi since this ultimately is the value to improve through learning.

Unlike value-based, policy-based techniques learn policies directly by favoring actions

that maximize the expected future accumulated reward E[Gt]. Let π(s;θ) denote the

parameterized policy function where the parameter vector θ ∈ Rd, and d is the vector’s
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dimension. Then, an agent that follows a policy π at a given time step t, while in state

St = s, selects an action according to the following formulation, At = a ∼ π(St;θ) with

a ∈ A. Afterward, a given policy’s objective function or performance measure can be

written as the expected future cumulative reward (SUTTON; BARTO, 2018)

Jπ(θt) ∝ Qπ(St, At) = E[Gt|St, At]. (4.6)

Eventually, to find an adequate solution, a policy gradient algorithm learns a policy by

making small gradient ascent updates that adjust the parameters θ in the direction that

maximizes the performance measure

θt+1
.
= θt + α · ∇Jπ(θt),

where α ∈ R is the gradient’s step size known as the learning rate hyperparameter. Among

these techniques, the Monte Carlo policy gradient or REINFORCE (WILLIAMS, 1992)

is a well-known, established algorithm. REINFORCE solves this equation by executing

the gradient over the action taken at a given instant with

∇Jπ(θ) = E
[
Gt
∇π(At|St,θ)

π(At|St,θ)

]
,

where π(At|St,θ) represents the policy inclination to select an action At at a state St given

a parameter vector θ. Ultimately, combining previous formulations and instantiating θ

to instant t leads to the solution below

θt+1
.
= θt + α · ∇Jπ(θt)

= θt + α ·Gt
∇π(At|St,θt)
π(At|St,θt)

.
(4.7)

However, given that a typical Monte Carlo method such as REINFORCE is episodic,

an episode must be completed before the accumulated reward can serve to update the

gradients. Hence, these methods present high variance since immediate rewards can be

very distinct, and different policies may present the same accumulated rewards.

When proposing REINFORCE, Williams (1992) suggested that a reduction in vari-

ance to this policy gradient method is achievable, while keeping it unbiased, by subtract-

ing a value, given by the baseline function bt(St), from the expected future accumulated

reward Gt as follows

θt+1
.
= θt + α (Gt − b(St))

∇π(At|St,θt)
π(At|St,θt)

. (4.8)

Then, by adopting the state value function as the baseline function b(St) = V π(St = s;ϑ),
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Mnih et al. (2016) introduced the advantage function

Λ(At, St;ϑ)
.
= Gt − V (St;ϑ)

= Q(St, At)− V (St;ϑ)

= Rt+1 + γV (St+1;ϑ)− V (St;ϑ).

(4.9)

Thus, given the identity ∇ lnx =
∇x
x

(SUTTON; BARTO, 2018), the parameter update

function for the A2C can be written as

θt+1
.
= θt + α · Λ(At, St;ϑ)

∇π(At|St,θt)
π(At|St,θt)

= θt + α · Λ(At, St;ϑ)∇ ln π(At|St,θt).
(4.10)

Silver (2015) notices that taking the gradient of the loss functions in Eq. 4.5 leads to the

TD error in Eq. 4.4, an unbiased estimate of the advantage function in Eq. 4.9. Hence,

the advantage function can be used to update both the policy function and value function

parameters which means (making i = t). As such, the value function parameter update

gradient can be written as

ϑt+1
.
= ϑt + α · ∇Lt(ϑt)V (St;ϑt)

= ϑt + α · Λ(At, St;ϑt)∇V (St;ϑt).
(4.11)

Moreover, similarly to Mnih et al. (2016), the present work adopts deep neural networks to

parameter functions vectors θ ∈ Rd and ϑ ∈ Ru. Subsequently, the policy π(At|St;θ) uses

a multilayer perceptron (MLP) with a softmax output while the value function V (St;ϑ)

adopts a linear output.

It is essential to notice that the final A2C algorithm employs an n-step parameter

update where a gradient ensues after a given number of k steps (MNIH et al., 2016).

Thus, A2C collects rewards for a k number of steps, calculates the gradient for each step,

and then updates the parameters with the sum of these step gradients. Ultimately, the

pseudo code that describes the complete A2C procedure is presented with Algorithm 1.

In conclusion, combining these policy-based and value-based actions to compose the

hybrid actor-critic methods, such as the A2C, favors balancing its strengths and weak-

nesses. For instance, as already mentioned, even though policy-based methods tend to

converge to suboptimal solutions (i.e., local minima), they also have better overall con-

vergence properties and are more effective in high-dimensional spaces (i.e., the curse of

dimensionality (RUSSELL; NORVIG, 2009)). Besides, regarding the bias-variance trade-

off, by bootstrapping, the critic (i.e., state value function) introduces a slight bias to
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Algorithm 1 A2C training algorithm

Initialize actor policy function π(St;θ) with parameter vectors θ ∈ Rd

Initialize critic value function V π(St;ϑ) with parameter vectors ϑ ∈ Ru

Initialize hyperparameters α (gradient step size), γ (reward discount factor), and
k ∈ Z+ (max number of steps before the gradient update)
Set the evaluation for the last step of the value function V (St=T ;ϑ)← 0

5: while not last episode do
Initialize t← 0 (first time step)
Initialize St (first state)
Initialize dθ ← 0 and dϑ← 0
for t ≤ T do . T is the last time step of the episode

10: At ← a ∼ π(St;θ) . Sampling action
Take At, receive Rt+1 and transition to St+1

Λ(At, St;ϑ)← Rt+1 + γV (St+1;ϑ)− V (St;ϑ) . Calculate advantage
dθ ← dθ + α · Λ(At, St;ϑ)∇ ln π(At|St,θt) . Accumulating step gradient
dϑ← dϑ+ α · Λ(At, St;ϑ)∇V (St;ϑ)

15: if t mod k = 0 then . Update parameters every k steps
θ ← θ + α · dθ . Policy function parameters update
ϑ← ϑ+ α · dϑ . State value function parameters update
dθ ← 0 and dϑ← 0 . Resetting cumulative gradients

the actor (i.e., policy function), which helps address its high variance issues. In essence,

the critic is doing policy evaluation by estimating a policy’s potential given the current

parameters. Subsequently, the actor follows the direction suggested by the critic. In this

sense, the critic indicates how good the policy actions are compared to the expected state

values. For these reasons, A2C was chosen in this work.

4.2 Base Architecture

ITS-SentARL presents an RL modular architecture that incorporates fundamental in-

dicators from news headlines through an explicit market mood extraction preprocessing.

This architecture depicted in Figure 4 achieves its sentiment-awareness by introducing

past market sentiment features to the market state representation. Furthermore, this flex-

ible architecture allows experimentation with several sentiment grouping methods (e.g.,

min, mean, max) and sentiment features’ quantity. In addition, the other observable fea-

tures that compose the market state include past assets’ closing prices, hours of trading

prices, and the immediate last action. Besides, the selection of the amount of each of

these features can occur during experimentation. Lastly, ITS-SentARL employs an A2C

algorithm that processes the state representation to select actions.

The present work adopts a popular convention among ML works (HENRIQUE; SO-
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Figure 4: The Sentiment-Aware Reinforcement Learning Intelligent Trading System (ITS-
SentARL) architecture. ITS-SentARL employs a news headline sentiment extractor
trained with gold-standard data; the sentiment scores are then grouped by period to
represent the market mood et in the last l instants. In this illustration, the grouping
method is the minimum sentiment score among headlines in the period. Differences in
previous asset’s closing prices, zt and the normalized time of each data point τt also com-
pose the market state, along with the last action taken by the agent At−1. Based on St,
A2C decides At and receives Rt+1, and the system transitions to state St+1.
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BREIRO; KIMURA, 2019), where only an asset’s bid closing prices are used as input

information. This practice helps address correlation issues among input features and

avoids overwhelming deep learning models with input features directly related to the

assets’ price. Besides, another crucial simplification assumes that given a selection of

high-liquidity assets, trading operations will occur immediately in a decision instant t

where T > t >= 0 ∈ Z+, and T is the last time step of an episode. Then, given the bid

closing price pt at instant t, the price difference zt between two consecutive instants can

be written as

zt = pt − pt−1. (4.12)

Moreover, much like a real-life trader, even though the agent starts trading at the be-

ginning of an episode at instant t = 0, it observes features that represent the market

scenario before the agent starts trading (i.e., t < 0). This procedure was described as

look-back windows in Section 3.2, and it happens because of the necessity to observe past

data time series (e.g., time-series vectors with indexes [t, ..., t − w + 1]). Consequently,

even though t ≥ 0, the agent, at the beginning of any episode, can receive observations

regarding moments before it started trading (e.g., p−1, z−1). This type of circumstance
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appears throughout this section.

Regarding the input features, Spooner et al. (2018) proposed a state abstraction in

which features are conceptually separated as they can represent either the market-state or

the agent-state. Market-state features, such as price time series, technical or fundamental

indicators, refer to the situation of the market environment and, thus, can not be affected

by a single trading investor. Alternatively, agent-state features are the ones that the

agent can have some degree of control over, including the amount of capital available,

asset inventory size, or last assumed position over an asset. Subsequently, the complete

state representation can include any combination of these two types of states.

Initially, the market-state composition, SMt , includes only technical indicator features

given by the concatenation of the price difference zt and its corresponding hour of the day

ht time series,

SMt = [zt, ..., zt−w+1] ‖ [τt, ..., τt−w+1] ∈ Rw+w, (4.13)

considering a look-back window of size w ∈ Z+. Also, τt = ht/24 is the normalized hour

of the day at the instant t in the 24-hour format.

Next, the trading operations available to the agent are formalized as the action set

A = {Long,Neutral, Short} .= {1, 0,−1}. In the present architecture, the last operation

assumed by the agent At−1 ∈ A is the only information it can influence and thus compose

the agent-state, SCt , and so

SCt = [At−1]. (4.14)

The introduction of this information into the state is one factor that can help stabilize an

agent’s position shifting (MOODY; WU, 1997; DENG et al., 2017). It is crucial to notice

that the agent only starts trading at instant t = 0. Hence, the agent was outside the

market before t < 1 and could take no actions implying that A−1,...,−w = 0 (i.e., Neutral

position).

Finally, the base-state representation SBt ∈ S is given by concatenating Eq. 4.13 and

Eq. 4.14 as such

SBt = SMt ‖ SCt
= [zt, ..., zt−w+1] ‖ [τt, ..., τt−w+1] ‖ [At−1].

(4.15)

This base-state representation SBt is the one used by the baseline sentiment-free version

of ITS-SentARL named here with the acronym No Sent. A2C. In the next section this

state receives the additional market information regarding market sentiment features.

Assessing an agent’s performance requires that financial return calculations include
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the absolute nominal return from price movements and deductions from the TC. Moreover,

in financial scenarios, a trader’s position in the market during price oscillations, meaning

both current At and previous action At−1 are relevant. Subsequently, a nominal return

(i.e., undiscounted return) which represents the absolute amount of capital earned after

taking action At, is given by the multiplication

ρNominalt+1 = ϕzt+1At,

where ϕ represents the fixed amount and zt+1 the price difference from t to t+ 1. Then,

return deductions occur if the agent selects an action that is different from the previous

one (At 6= At−1). This deduction is proportional to the number of shares traded and given

by the product

ρDeductiont+1 = ϕξ|At − At−1|,

with the transaction cost ξ ∈ R as a percentage of the transaction value affected by the

absolute value of the difference in trading position. Next, subtracting the transaction

penalties from the nominal return produces the real trader return as

ρTradert+1 = ρNominalt+1 − ρDeductiont+1

= ϕzt+1At−1 − ϕξ|At − At−1|
= ϕ [zt+1At−1 − ξ|At − At−1|] .

(4.16)

Ultimately, the present research adopts one straightforward and effective way to calculate

the immediate reward in trading problems by making it equal to the financial return in

Eq. 4.16, as follows

Rt+1 = ρTradert+1 . (4.17)

Ultimately, notice that to keep consistency with the adopted reward formulation Rt+1

(SUTTON; BARTO, 2018) across this manuscript, the financial return representation

also describes future steps.

4.3 Market’s Mood Incorporation

The sentiment extracted from news headlines is a fundamental indicator that helps the

agent perceive more information about the market environment. Therefore, introducing

sentiment features to the agents’ market-state representation turns it into a sentiment-

aware system. However, to fully capture the market sentiment momentum, the agent must

observe multiple past sentiment features regarding the past period’s sentiment, similar
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to the price time series. In addition, this sentiment time series should facilitate the

agent verifying discrepancies between the price movement and the market sentiment that

indicates if assets could be underpriced, overpriced, or at the appropriate value.

Traders can sample information with different frequencies according to the desired op-

eration frequency (e.g., minute, hour, day). Price information availability allows for very

high-frequency trading at each second. However, even for high-liquidity companies, many

hours could pass before news vehicles publish even a single news article. Consequently,

trading operations were restricted to an hourly frequency to guarantee adequate news

coverage. Even so, the formulation described here could be applied to other operation

frequencies. In short, the system will observe an asset’s past hourly price and financial

news headlines. Also, the system will keep track of all its previously selected positions.

Moreover, to help increase strategies’ overall stability and generalization capacity between

training and testing, the agent will process news headlines to extract market mood in-

formation – or sentiment momentum. Finally, all this information is deemed sufficient to

guarantee the agent’s adequate awareness of the market environment.

A diverse number of market events can occur during a given period, triggering the

publication of more than one news article per period. Consequently, the sentiment extrac-

tor must score each of the released news headlines. In the following Section 4.3.1, details

about the sentiment extractor design and implementation will be provided. Therefore,

for now, it suffices to say that it produces a score yjt ∈ [−1, 1] for each news headline

j = 1, 2, 3, ... ∈ Z+ in the hour before the decision instant t. In this continuous scor-

ing system, lowest values are the most pessimistic (i.e., −1), higher values are the most

optimistic (i.e., 1), and intermediary values are neutral (i.e., 0).

In the unitary score format, this sentiment information can not be appropriately em-

ployed. Hence, sentiment for each data instance in the past period should be transformed

into a single overall sentiment feature. Let Ω be the function that generates a single

overall sentiment score by weighting the list of headlines scores that occurred between

consecutive decision instants t and t − 1. Possible weighting methods for Ω include ap-

plying simple mathematical functions for taking the average avg(·), maximum max(·) or

minimum min(·) values over all the unitary scores for each sentence. Lastly, the bullish-

ness index is a worthy mentioning weighting method to consider, given its popularity in

financial sentiment analysis studies (OLIVEIRA; CORTEZ; AREAL, 2017; LI; DALEN;

REES, 2018). (ANTWEILER; FRANK, 2004) proposed the bullishness index as a metric

for weighting the overall market sentiment from individual sentiment values of several text

instances. Employing this weighting method requires the discretization of the sentiment



48

score values: if the sentiment score is above zero, it assigns a positive polarity or negative

otherwise. However, if the sentiment score is precisely zero, it assumes a neutral overall

market sentiment. Conclusively, let pos denote the count of positive sentiment news and

neg the equivalent for negative sentiment news; then, the bullishness index formulation is

given by

B
.
= ln

(
1 + pos

1 + neg

)
, (4.18)

which compares the number of positive and negative news in a given period.

By applying any weighting method discussed, it is possible to produce a general market

sentiment et ∈ R for the period between the current trading instant t and the previous

one t− 1. Therefore, the general market sentiment can assume different values depending

on the selection of method for the weighting function Ω as such:

et =



min([yjt , y
j+1
t , ...]), if Ω = min(·)

max([yjt , y
j+1
t , ...]), if Ω = max(·)

avg([yjt , y
j+1
t , ...]), if Ω = avg(·)

bullishness([yjt , y
j+1
t , ...]), if Ω = B(·)

(4.19)

In resume, producing the general emotion et ∈ R requires grouping text instances ac-

cording to the trading frequency and applying one weighting method such as the ones

described above. In Chapter 5, weighting methods are compared experimentally to select

the most appropriate one. It is necessary to notice that, given that overall emotion et

is matched to the price time series difference zt, hence, when grouping the headlines by

period, market sentiment features that do not match their financial features counterparts

are removed. Essentially, this implies the disposal of news articles published outside the

trading hours for that asset.

With the conclusion of the formalization of the process to prepare the final hourly

overall sentiment score et, the market mood formalization can resume. Finally, the market

sentiment momentum can be written as the sentiment feature vector

SEt = [et, ..., et−l+1] ∈ Rl, (4.20)

representing the look-back sentiment hourly window of size l ∈ Z+
0 . Finally, to arrive at

the complete state representation for ITS-SentARL, Eq. 4.13, Eq. 4.14, and Eq. 4.20 are
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combined below

St = SEt ‖ SBt
= [et, ..., et−l+1] ‖ [zt, ..., zt−w+1] ‖ [τt, ..., τt−w+1] ‖ [At−1].

(4.21)

Moreover, the ITS-SentARL architecture design considered different look-back windows

for each type of feature for guarantying independence and flexibility of experimental

verification.

Notice that the notations employed throughout this manuscript reflected the bound-

aries of an episode. These notations regarded trading operations that could occur in a

live real-time environment or an offline setting. Although ITS-SentARL can be used for

online trading with minimal adjustments, an offline version was adopted for training and

evaluation in the present work. Thus, since experimentation took place in a simulated

offline environment, data collection occurred before any trial. Hence, consider that the

data gathered – and after preparation – consists of sequential, not continuous (because of

the market closing periods) hourly data points dataset with the last data point D ∈ Z+.

Also, the time instant η ∈ Z+
0 for a data point from this complete dataset of size D + 1

is not equivalent to a time instant t for a given episode. Consequently, equal indexes for

variables do not guarantee identical values (i.e., et=0 6= eη=0. This distinction is crucial

for comprehending some of the analyses elaborated in the remainder of this manuscript.

Algorithm 2 describes ITS-SentARL offline operation on a given episode where all

data is preprocessed before trading starts. As such, in the initial part of Algorithm 2,

there is an iteration through the news headlines for each hour, extracting the sentiment

score associated with each headline and preparing the complete sentiment feature vector.

Moreover, preprocessing of price and hour series occurs to compose respective feature vec-

tors with size depending on the desired episode size and look-back window sizes (i.e., l, w).

Now that the sentiment scores, price differences, and hour-day information have been or-

ganized, the episode for a training or testing set is ready for trading. Ultimately, the

algorithm iterates through each trading instant t, observing the episode features available

at each instant (St = SEt ‖ SBt ), taking actions At defined by the A2C Algorithm 1, and

receiving rewards Rt+1. Moreover, the sentiment-free baseline version of ITS-SentARL

– the No Sent. A2C architecture – behaves similarly to Algorithm 2 but without the

sentiment information SEt .
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Algorithm 2 ITS-SentARL offline pseudocode

Initialize look-back windows w and l
Initialize ϕ, ξ, T,D
Initialize empty vectors SentV ec, PriceDiffV ec,HourDayV ec
η ← 0

5: for η ≤ D do
for j in news headlines in hour η do

yjη ← SentimentExtractor(j )

eη ← Ω([yjη, y
j+1
η , ...]) . Grouping and weighting hourly sentiment scores

SentV ec.append(eη)
10: zη ← pη − pη−1

PriceDiffV ec.append(zη)
τη ← hη/24
HourDayV ec.append(τη)
η ← η + 1

15: EpisodeSize← T + 1
[e−l, ..., e0, ..., eT ]← EpisodeSelector(SentVec, EpisodeSize, l)
[z−w, ..., z0, ..., zT ]← EpisodeSelector(PriceDiffVec, EpisodeSize, w)
[τ−w, ..., τ0, ..., τT ]← EpisodeSelector(HourDayVec, EpisodeSize, w)
t← 0

20: At−1 ← 0(Neutral) . Initial trading position
for t ≤ T do . Starting trading

SEt ← [et, ..., et−l+1]
SBt ← [zt, ..., zt−w+1] ‖ [τt, ..., τt−w+1] ‖ At−1
St ← SEt ‖ SBt

25: At ← A2C(St) . A2C takes action
ρTradert+1 ← ϕ [zt+1At−1 − ξ|At − At−1|] . Financial return
Rt+1 ← ρTradert+1

t← t+ 1



51

4.3.1 Sentiment Extractor

The sentiment extractor is responsible for attributing an individual sentiment score

for each news headline. Recall from Chapter 2 that the extractor adopted in the present

work is directly inspired by the winner design at the SemEval-2017 Task 5 challenge for

financial news headlines (MANSAR et al., 2017). Moreover, the author of the present

dissertation contributed with other researchers to determine a configuration that could

improve this state-of-the-art sentiment extractor (FERREIRA et al., 2020). Thus, the

publicly available source code2 produced by (FERREIRA et al., 2020) of the complete

sentiment extractor design with its optimal hyperparameters configuration is used here.

This extractor encompasses two components, the preprocessing and the sentiment scoring

machine learning model.

The preprocessing subcomponent transforms raw unstructured textual data into a

standard format that machine learning models can handle. The first preprocessing step

is to find and replace companies’ names with a placeholder word with the help of a

dictionary of names. This step reduces dimensionality and, paired with the final feature

representation scheme, helps the machine learning model score the sentence according to

the target entity. As some sentences contain references to more than one company, the

target company name is replaced by ‘TARGET-COMPANY’ while the term ‘COMPANY’

is used instead for all other cases. Next, the tokenization technique used punctuation

and blank spaces to identify word boundaries and help us extract individual textual

elements, called tokens. Then, case-folding of all tokens occur – except for the companies’

placeholders – for converting all word characters to their lowercase versions. Also, some

term disposal involved punctuation and stop-word removal, which are notorious for not

being informative and even contributing to noise in data. Before the final preprocessing

step, padding is necessary so that all entries contain the same size m ∈ Z+. In Table 2,

except for the padding, there is an example of the preprocessing steps.

After preprocessing, textual data is structured and ready for usage in the sentiment-

scoring ML model. The purpose of this model is to determine a sentiment score in the

numerical range [−1, 1] ∈ R for each sentence, where a higher value means a very positive

sentence, and a lower number means a very negative one.

The sentiment score component employs a hybrid combination of ML model and

lexicon approaches, as shown in Figure 5. Initially, an embedding layer transforms the

m-sized word vector input into an improved word representation. Word embedding is

2https://bit.ly/3kzau8G
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Table 2: Example of a news headline going through the textual preprocessing component.
First, from the raw text, companies’ names are replaced. Then words are tokenized and
then lower-cased. Finally, the punctuation and stop words are removed. Finally, the
unstructured text was converted into a structured word vector.

Step Output

Raw Text Stakeholders from Berkshire Hathaway buy stake in Apple
Placeholder
replacement

Stakeholders from COMPANY buy stake in TARGET-COMPANY

Tokenization [Stakeholders, from, COMPANY, buy, stake, in, TARGET-COMPANY]
Lowercasing [stakeholders, from, COMPANY, buy, stake, in, TARGET-COMPANY]
Punct. and
stop-words
removal

[stakeholders, COMPANY, buy, stake, TARGET-COMPANY]

Source: Author’s own production.

a technique for representing each token feature as an n-dimensional short, dense vector

v ∈ Rn. For faster convergence, the GloVe pre-trained word vectors serve to warm-start

the word representation weights in the retrainable embedding layer of size m× n. Then,

features are processed by two one-dimension convolutional layers (Conv1D) displayed

sequentially. Both these convolutional layers present the same filter size and number of

filters. Next, the sentiment lexicon extracts initial sentiment scores combined with the

features resulting from the second Conv1D before undergoing feature reduction by a one-

dimension global max-polling layer, followed by a dropout step. From this point onward,

a fully connected (FC) configuration is adopted, with a hidden dense layer of neurons,

followed by another dropout step for reducing overfitting by eliminating internal neurons

of the hidden layer. Also, all hidden layers mentioned so far use the ReLU activation

function. Finally, the outer layer contains a neuron with an activation function tanh that

outputs values in the desired range of [−1, 1] ∈ R.

In the collaborative work by Ferreira et al. (2020), other ML models, including the

second and third places in the SemEval-2017 Task 5, were implemented and compared

using the same gold-standard dataset with other evaluation criteria. Still, the winner

model (MANSAR et al., 2017) outperformed its challengers according to the mean squared

error (MSE) metric. Moreover, changing the internal architecture, such as the number

of layers, did not help to increase performance. Thus, the sentiment extractor presented

in this section assumes the same design as the original winner of the SemEval-2017 news

headlines task.
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Figure 5: The CNN-based sentiment extractor for scoring news headlines, receiving a
word vector of size m as input. This input is transformed to a word embedding feature
representation of dimension size m × n. Also, the sentiment value of the word vector
according to the sentiment lexicon is generated. The word embedding representation
passes through two convolutional layers for extracting the most relevant latent features.
First, the convoluted features are combined with the ones from the lexicon. Next, these
features undergo a global max-pooling step to reduce feature dimensionality and then a
dropout step to reduce overfitting. Then, the resulting neurons enter a fully connected
hidden layer. Finally, the outer layer with a tanh function that outputs a value in the
range [−1, 1] ∈ R.
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Source: Author’s own production.

On the other hand, the mentioned investigation configurations regarding hyperpa-

rameters such as lexicon, filter, and embedding sizes affected the overall performance.

Consequently, the parameters in Table 3 represent the findings by (FERREIRA et al.,

2020) regarding the optimal configuration of hyperparameters and lexicons. For instance,

the domain-specific economic sentiment lexicon yielded slightly worse results than the

general domain VADER lexicon. In the same way, high word embedding sizes (e.g., 300)

led to increasingly better results than lower sizes (e.g., 50). Ultimately, after finishing the

mentioned investigation, Ferreira et al. (2020) made the source code publicly available

for reproducing the described evaluation and a ready-for-use sentiment extractor. Also,

this sentiment extractor used in the present work was trained using all the news headlines

gold-standard data instances.

The present work exhibited the reasoning for adopting this particular architecture

and the characteristics of the adopted sentiment extractor relevant to fully understanding

ITS-SentARL. For further details, readers should resort to the complete research material

(MANSAR et al., 2017; FERREIRA et al., 2020) that led to the construction of this
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Table 3: Selected configuration according to Ferreira et al. (2020) for the sentiment ex-
tractor component. For instance, findings showed that word embeddings size of 300 and
a higher number of filters of 384 led to better performance.

Configuration Value

Lexicon VADER
Input size m 21
Embedding dimension n 300
Number of filters 384
Filter size 2
Neurons in dense layer 150
Dropout rate 0.4
Objective Function MSE
Training Optimizer ADAM
Training Batch Size 32
Training Epochs 30

Source: Author’s own production.

module.
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5 EXPERIMENTAL VERIFICATION

This chapter describes the training and evaluation methods of the trading system,

showing general results. Initial sections describe the data characteristics, followed by the

configuration for training and evaluation of ITS-SentARL and others baselines. Moreover,

the system used to perform data gathering, preprocessing, and training presents technical

specifications described below:

• Brand/Model Notebook: Dell© Inspiron i7559-2512BLK

• CPU: 2.6 GHz Intel© Core™ i7

• Memory: 16 GB DDR3L SDRAM

• Language: python 3.6.8

• OS: Ubuntu 16.04 LTS

The analysis of the results compares the proposed ITS-SentARL architecture with its No

Sent. A2C counterpart (ablation study) and the BH strategy. For such analysis, a thor-

ough statistical examination of results from both implementations, for all metrics (e.g.,

total profit, average annual return, SR), in the similar characteristics of assets, trading

frequency, and trading costs. Ultimately, there is a discussion about the implications of

this statistical examination.

5.1 Data Characteristics

According to Henderson et al. (2018), RL techniques require extensive and diverse

experimentation to confirm performance results consistency. In this regard, according to

Théate and Ernst (2021), it is vital to adopt a high number of assets (e.g., greater than ten)

for experimentation. Hence, as depicted in Table 4, twenty assets from different market

sectors were employed for the present experimental trading simulation. In the financial
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market, assets are typically referred to by their tickers (i.e., financial identifiers). So then,

the employed assets and market sector description follow AAPL, AMZN, FB, GOOGL,

INTC, MSFT, NFLX, BA (High tech), JPM, MA, V (Financial), DIS, HD, JNJ, KO,

PFE, PG (Consumer discretionary), XOM (Energy), BA (Industrial), T (Communication

Services) and SPY (i.e., an S&P500 index ETF). Moreover, the selection criteria of the

19 stocks included price, traded volume, brand value, and popularity (i.e., measured as

the number of mentions in news articles).

Table 4: General asset information regarding the ticker (i.e., financial identifier) of each
of the 20 companies selected for simulation and also its sector details.

Asset ticker Company Sector

AAPL Apple High Tech
AMZN Amazon High Tech

BA Boeing Industrial
DIS Disney Consumer Discretionary
FB Facebook High Tech

GOOGL Google High Tech
HD Home Depot Consumer Discretionary

INTC Intel High Tech
JNJ Johnson & Johnson Consumer Discretionary
JPM JPMorgan Financial
KO Coca-Cola Consumer Discretionary
MA Mastercard Financial

MSFT Microsoft High Tech
NFLX Netflix High Tech
PFE Pfizer Consumer Discretionary
PG P&G Consumer Discretionary
SPY SP500 ETF

T AT&T Communication Services
V Visa Financial

XOM Exxon Energy

Source: Author’s own production.

Note, however, that the data collection progressed under an agreement that allows its

use only for non-commercial purposes and does not permit distribution. As such, it was

not possible to make the preprocessed news headlines or price data available due to the

restrictions imposed by the original data sources (i.e., The Wall Street Journal, Market-

Watch, and Duskacopy websites). It is paramount to make data available to the research

community when feasible, but sadly, it could not be achieved in this case. Fortunately,

this manuscript supplies all the tools and knowledge necessary for collecting and using all
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the data to reproduce and achieve the same results presented here.

As this present work aims at guaranteeing reproducibility of results for future re-

searchers and, thus, adopted exclusively data gathered from sources that provide free

usage for scientific purposes1. Consequently, only three years of hourly price data (from

2018 to 2019) was obtained, given by the data available for download at the Duskacopy

website2 database for price time series. Additionally, given the limiting factor that all the

selected asset operations follow stock exchange trading hours (from 9:30 to 16:00), a total

of 5,267 price data points could be collected for each asset.

For the textual data, recall from Section 4.3.1 that both a labeled gold-standard

dataset (i.e., ground-truth) and newly collected unlabeled data from relevant financial

news portals are employed. The gold-standard serves for the training of the sentiment

extractor, while the sentiment extracted from data of news portals will support the actual

trading operation. These sentences usually address one company but can also address

multiple businesses. All textual data are mostly single sentences written by financial

journalists that adopt relatively proper use of the English language. Moreover, a critical

aspect of using data based on news outlets is that the journalists who wrote these news

articles possess high knowledge of the market dynamics. Similarly, the gold-standard was

labeled by market specialists who understand the impact of news on stock prices and

are themselves actors in this market. Thus, a hypothetical advantage of training the

sentiment extractor on such data is that it might lead to better acquisition of the mood

of the agents who have some impact on the stock market. Altogether this selection of

data for training and actual trading aligns with the objective of the present research in

capturing the market mood.

The promoters of SemEval-2017 Task 5 (CORTIS et al., 2017) published the competi-

tion’s gold-standard data into a public repository3. This dataset contains news headlines

about various companies from diverse market segments carefully selected from financial

news outlets. Also, each of these sentences was labeled with a sentiment score in the

range [−1, 1] ∈ R. The procedure for producing these scores involved asking market spe-

cialists to attribute a score between −1 (most pessimistic) and 1 (most optimistic) to the

sentiment about the target company in the news headline. Then, the final score for each

headline was the average over the scores given by the specialists.

1Until the publication of the present manuscript, all web portals employed as sources (for both price
and textual data) grant non-commercial usage of their information. Nevertheless, conditions may have
changed since publication.

2https://www.dukascopy.com/
3https://bitbucket.org/ssix-project/semeval-2017-task-5-subtask-2/
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Finding public textual news datasets ready for active trading tasks can be challenging.

Thus, providing textual data for ITS-SentARL required constructing a web crawler for

gathering news headlines from relevant financial news portals such as The Wall Street

Journal4 and MarketWatch5. Even though designing and implementing a financial web

crawler was an essential step of the present research, giving in-depth details about this

crawler is out of this manuscript’s scope. Hence, it suffices to mention that this crawler

goes through the mentioned web portals, seeking headlines about any of the twenty target

companies employed here. Moreover, the source code for the implemented financial web

crawler was made publicly available and free for use6.

Table 5 exhibits some of the news headlines present in the textual data and their

corresponding sentiment. For the gold-standard dataset, the sentiment score displayed

corresponds to the provided label for the SemEval-2017 Task 5. For the data gathered

through web crawling, the headline examples display the sentiment scores according to

the sentiment extractor described in Section 4.3.1. Ultimately, Table 5 exemplifies the

perceived sentiment score for a given sentence. For instance, exaggerated wording (e.g.,

strong, soar, plunged) tends to lead to the higher extreme positive (e.g., AAPL) or neg-

ative (e.g., BA) scores. However, even when the words may represent strong sentiment,

the score might be neutral if they do not appear to bring conclusive benefits or concerns

to the target company (e.g., JPM). Notably, even though these are just small samples

of data, they are representative of the complete news data in the sense that they mainly

report on past situations. Therefore, it is noticeable that only a few headlines attempt

to speculate about future events (e.g., MA) or suggest potential stocks for buying (e.g.,

XOM). It is also apparent how the COVID-19 pandemic can harm the market (e.g., SPY,

AMZN, MA).

Table 6 depicts the overall characteristics of the textual data by each asset. Displayed

characteristics include the number of instances, the median and the maximum number

of words, and the sentiment score average and standard deviation for each dataset. For

instance, except for the SPY (50,719 headlines) that combines a plethora of companies, no

asset presents more than ten thousand news instances, with AAPL (8,740 headlines) and

AMZN (8,629 headlines) being the greater ones. On the other hand, it is also noticeable

that some stocks are less popular since few journalists mention these assets (e.g., KO,

MA, PG), and thus, there are considerably fewer instances (less than a thousand) for

use in trading. Also, it is possible to perceive that the sentiment extractor had a small

4https://www.wsj.com/
5https://www.marketwatch.com/
6https://github.com/xicocaio/financial web crawler
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Table 5: Examples of news headlines from the gold-standard (i.e., ground-truth dataset)
and some of the gathered datasets, with their corresponding sentiment scores.

Dataset News headlines Sentiment

Gold-
standard

“Google Fiber to buy Webpass for big city Internet service” 0.329

SPY “Dow, S&P Slip as Covid Shutdowns Weigh on Investors” -0.3619

AAPL “Apple earnings soar on strong iPhone, Mac sales” 0.8065

AMZN “California subpoenas Amazon over worker safety amid pan-
demic”

-0.2719

BA “Durable-goods orders plunge 14% in March as autos, Boeing
take big hit”

-0.8267

JPM “JPMorgan Just Killed the Bitcoin Dream” 0.0109

MA “Collapse of Travel Will Hurt Mastercard” -0.2478

XOM “Large-Cap Buys: AT&T, GE, Intel, Exxon, BofA” 0.1594

Source: Author’s own production.

amount of gold-standard headlines (1,633) for training, which can be prejudicial when

using deep neural networks. Even so, given by the example samples in Table 5, there is

evidence that the sentiment extractor can be reasonably accurate in scoring sentiment.

As expected, given the inherent nature of this data, Table 6 shows that news headlines

tend to contain a small number of words with a median of eight words per sentence. Also,

although various assets present headlines with a higher number of words (more than

thirty), they seem to be the exception rather than the norm, given the much lower median

word count. Notably, when producing the gold-standard dataset, the SemEval-2017 Task

5 researchers limited sentences to a maximum of eighteen words. Moreover, a piece of

information not displayed in Table 6 is that all headlines present at least three words. At

last, the comparison of the overall sentiment scores for each asset shows that the average

sentiment datasets are positive and very close to zero, although the standard deviation is

slightly higher in the gold-standard dataset.

Although looking at the characteristics in Table 6 might lead to the idea that all the

adopted textual data is reasonably similar, the comparison of data distribution of each

dataset according to the sentiment score values might reveal some meaningful differences.

Such a comparison in Figure 6 helps to identify particularities in the available information.
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Table 6: Characteristics of textual data by asset, including the total count of news head-
lines, the median and maximum words over headlines, and the average and standard
deviation of the sentiment across data instances.

Dataset
News
Count

Word
Median

Max
Words

Sentiment
Avg. ± Std.

Gold-standard 1633 10 18 0.0262 ± 0.3998
AAPL 8740 8 41 0.0380 ± 0.2525
AMZN 8629 9 33 0.0475 ± 0.2327
BA 3882 8 31 0.0198 ± 0.2866
DIS 2924 8 31 0.0523 ± 0.2377
FB 6359 10 37 0.0292 ± 0.2247
GOOGL 5270 8 34 0.0272 ± 0.2302
HD 1178 8 28 0.0274 ± 0.2659
INTC 2267 8 35 0.0390 ± 0.2744
JNJ 1285 8 36 0.0688 ± 0.2702
JPM 3292 8 35 0.0408 ± 0.2629
KO 969 8 30 0.0767 ± 0.2638
MA 812 8 30 0.0588 ± 0.2501
MSFT 4149 8 40 0.0420 ± 0.2478
NFLX 3488 9 33 0.0419 ± 0.2344
PFE 2192 8 36 0.0833 ± 0.2722
PG 877 8 32 0.0771 ± 0.2684
SPY 50719 10 36 0.0579 ± 0.2928
T 2031 8 32 0.0675 ± 0.2261
V 1112 9 30 0.0340 ± 0.2795
XOM 1515 8 30 0.0133 ± 0.2949

Source: Author’s own production.

This comparison involves the binned count of news headlines (y-axis) and their distribu-

tion over the sentiment scores (x-axis) in the range [−1, 1] ∈ R. Therefore, it is possible to

highlight similarities and differences between the gold-standard (i.e., ground-truth senti-

ment labels) and some of the assets news data scored by the present sentiment extractor.

For instance, the gold-standard plot (top-left) indicates a bimodal concentration of data,

with one prominent Gaussian distribution peak on the positive side and a smaller peak on

the negative. These distributions show that, even though this dataset contains a moder-

ately higher number of positive instances, the SA component was exposed to a diversified

set of positive and negative instances during training.

Remember from Section 3.1 that the SPY data (top right) is an ETF that comprises

stocks from 500 companies. Thus, it contains much more news headlines, and it helps to

reference the overall market sentiment across companies. Not surprisingly, even though
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Figure 6: The distribution of news headlines by asset regarding observed sentiment score
compares the ground-truth (i.e., Gold-standard) data to other assets. Hence, the y-axis
shows the binned count of news headlines, and the x-axis depicts the sentiment score in
a continuous −1 (most pessimistic) to +1 (most optimistic) scale. Also, the line over the
bins is the kernel density estimation that normalizes the distribution over an estimated
probability density function.
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the SPY dataset exhibits a slightly skewed curve to the positive side, it still presents a

compact distribution centered close to zero on the positive side and with almost no in-

stances on the extremes of the sentiment axis. Hence, differently from the gold-standard

data, the SPY distribution presents a typical unimodal Gaussian curve. Although, in-

terestingly, some assets (AAPL, AMZN, MA) present a distribution similar to the SPY

reference, but others resemble the gold-standard distribution. For example, although

less pronounced, some data (BA, JPM, XOM) present a slight distortion similar to a

bimodal distribution, most evident by the kernel density estimation drawn on top of the

distribution bins. Nevertheless, the distribution for these assets is less sparse than the

gold-standard and more concentrated over the neutral (i.e., 0) sentiment value. Even so,

it is particularly noticeable that some of these data (BA, JPM, XOM) offer more data

instances in the [−0.5,−0.25] range than other assets (AAPL, AMZN, MA). Finally, dif-

ferently from the gold-standard dataset, data gathered through web crawling seem to lack

extremely positive (i.e., greater than 0.75) or negative (i.e., lower than −0.75) headlines.
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5.1.1 News Analysis

As discussed in previous Chapter 4, all input data requires preprocessing before com-

posing the market state representation for the agent to use. For instance, the hourly price

of assets is transformed into a price time series given by the difference between consec-

utive closing prices zη. Similarly, news data undergoes a preprocessing for generating a

sentiment time series that represents the general emotion of the market in a given period.

Therefore, after extracting the sentiment score from each headline, the market’s emotion

for a particular hour or day eη is given by combining these scores according to a weighting

function Ω. However, there might not be news about an asset to score during a given

period, and, thus, some instants are not covered by headlines. Hence, news coverage rep-

resents the ratio of data points, from a total of 5,267, with at least one headline. Another

insightful way to analyze the input data is to take the Pearson correlation between each

asset’s price difference [zη=0, ..., zη=D] and sentiment time series [eη=0, ..., eη=D], where D

is the last data point of the dataset. Ultimately, Table 7 presents information for each

asset regarding the news coverage and correlation considering each of the four sentiment

weighting approaches given by Eq. 4.19: minimum, maximum, average, bullishness index.

When looking at the asset information in Table 7, it is straightforward to verify that,

despite the popularity of some stocks (e.g., AMZN, AAPL), news articles might cover

at most half of the available trading instants. Notably, even the SPY ETF, which en-

compasses 500 companies and is commonly mentioned by journalists, achieves 95.71%

of news coverage (5,041 out of 5,267). Conversely, a quarter of the assets have news

coverage lower than 10% (HD, JNJ, KO, MA, PG). Besides, the average news coverage

among assets is 24.81%. Moving on to the correlation between the price and sentiment

time series of an asset, values change only slightly across weighting methods. However,

it is noticeable that the bullishness index presents a slightly lower correlation than other

weighting approaches for most assets, the exception being the SPY. Distinctly, BA is the

asset with the overall highest correlation, particularly for the maximum weighting ap-

proach (0.2221). Not surprisingly, MA, the asset with the lowest news coverage (5.60%),

also presents the lowest and the only negative correlation values. The impact of corre-

lation will be discussed in further evaluation sections, but for now, suffice to mention

that it is crucial to verify that correlation is not exceedingly high or low. For instance,

an exceedingly high correlation might indicate that most market information is already

assimilated into the price, so adding sentiment information may be redundant and even

prejudicial (causing multicollinearity of input variables). On the other hand, a very low

or even negative correlation can imply that sentiment information is too detached from
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Table 7: News coverage and sentiment correlation between different weighting methods
and the price difference of each asset. The news coverage is a proportion of price data
points with at least a news headline to compose a sentiment score for that time instant.
The values on the remaining columns correspond to the Pearson correlation between the
time series of the price difference of consecutive instants and the news sentiment scores
with different weighting methods (minimum, maximum, average, and bullishness index).

Asset
News

coverage
Sent. corr.

(Min.)
Sent. corr.

(Max.)
Sent. corr.

(Avg.)
Sent. corr.

(Bull. index)

AAPL 2673 (50.75%) 0.0379 0.0353 0.0399 0.0139
AMZN 2617 (49.69%) 0.0551 0.0464 0.0527 0.0252
BA 1498 (28.44%) 0.2115 0.2058 0.2221 0.1942
DIS 1102 (20.92%) 0.1364 0.1468 0.1478 0.1224
FB 2002 (38.01%) 0.0561 0.0609 0.0624 0.0278
GOOGL 1762 (33.45%) 0.0273 0.0399 0.0388 0.0199
HD 481 (9.13%) 0.1131 0.1079 0.1130 0.0771
INTC 893 (16.95%) 0.1327 0.0978 0.1247 0.1028
JNJ 472 (8.96%) 0.0759 0.0815 0.0810 0.0855
JPM 1281 (24.32%) 0.1723 0.1879 0.1871 0.1417
KO 375 (7.12%) 0.0955 0.0916 0.0957 0.0892
MA 295 (5.60%) -0.0231 -0.0137 -0.0189 -0.0282
MSFT 1471 (27.93%) 0.1151 0.1192 0.1245 0.1039
NFLX 1263 (23.98%) 0.0709 0.0746 0.0785 0.0389
PFE 684 (12.99%) 0.0493 0.0545 0.0576 0.0498
PG 320 (6.08%) 0.1006 0.1308 0.1202 0.0939
SPY 5041 (95.71%) 0.0867 0.0746 0.1272 0.1412
T 701 (13.31%) 0.0485 0.0201 0.0354 0.0347
V 535 (10.16%) 0.1524 0.1435 0.1501 0.1065
XOM 666 (12.65%) 0.1492 0.1531 0.1539 0.1289

Source: Author’s own production.

the price series to be helpful and could be providing noise to the system.

In figure 7, there is an example of a market sentiment time series produced with

the sentiment minimum weighting method and daily grouping, in parallel to the JPM

close price time series. This plot helps identify periods of upward and downward price

tendencies that seem to relate to a higher concentration of positive (green) and negative

(red) sentiment averages. Furthermore, the devastating effect of the market crash caused

by the Covid-19 pandemic in the 2020 first semester is quite impressive, where assets

prices could drop to almost half their previous price. In this sense, it is interesting how

even though the minimum weighting method is being used to group hourly sentiment, in

periods of price recovery, there is also a notable decrease or absence of bearish sentiment
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news (e.g., from March to September of 2019). In particular, starting at around November

2020, there is an evident diminishing number of negative news, which might be related

to the optimism about economic recovery given the prospect of vaccines being applied

in the U.S. in early December of 2020. Ultimately, there is no daily sentiment minimum

higher than 0.7 or lower than −0.8. In the further sections, there will be details about

the reasoning for selecting the weighting method.

Figure 7: Example of an asset’s minimum positive (green bars) or negative (red bars)
sentiment and closing price in U$ (blue line). The y-axis represents the minimum hourly
sentiment scores on the left, while on the right, there are the closing prices for the given
asset (JPM), and in the x-axis, the date values for the examined period (2018 to 2020).
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Despite being useful to analyze the correlation as just described, imagine that an

event concerning a given company occurred between consecutive trading hours [η − 1, η]

and triggered the release of several news articles in less than an hour. Naturally, both

overall sentiment eη and difference in closing price zη at η for that asset oscillate similarly.

Thus, the correlation between the series of sentiment and prices, as presented in Table 7,

serves to compare these series at equivalent moments.

However, depending on the magnitude of an event, news articles are still written hours

after events occur, making the sentiment about it reverberate over time. Consequently,

the overall sentiment at the posterior hour (η + 1) could still be pessimistic and, thus, it

is relevant to bring the sentiment series backward (i.e., negative shift) so that a later sen-

timent can be compared to a current price change. Hence, applying a negative sentiment

shift may be desirable to verify the duration of the impact of a given event and how long

its effects take to fade away. Essentially, a negative shift might help to identify the mar-
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ket sentiment momentum. Oppositely, pushing the sentiment series forward (i.e., positive

shift) favors observing the market emotion at a previous hour and how it impacted the

current price. Therefore, a positive sentiment shift can help identify the predictability

capacity of the sentiment.

After shifting the sentiment time series towards the price difference and then taking

the correlation between these series, it is possible to evaluate the impact of news on the

price over time. Hence, the idea is to apply a negative (backward) or positive (forward)

time shift σ ∈ Z+
0 to the sentiment time series [eη=0+σ, ..., eη=D+σ], with eη>D = 0 and

eη<0 = 0, and subsequently get the correlation to the price series [zη=0, ..., zη=D]. In

resume, a negative shift σ < 0 brings future sentiments to the past prices while a positive

shift σ > 0 pushes the sentiment series to the future. Figure 8 depicts this shifting

concept and shows the correlation vector, which is the outcome of making various shifts

and extracting its correlation with the price series. Selecting different time shifts σ makes

it possible to generate the correlation vector that helps verify the progression by asset

of the correlation over time, as depicted in Figure 9. The sentiment-to-price correlation

appears on the y-axis, while the shift σ values are on the x-axis.

Figure 8: The correlation shift procedure encompasses applying a time shift σ to the
hourly sentiment series to move it backward (σ < 0) or forward (σ > 0) towards the price
difference time series and then taking the correlation. Hence, the top part of the image
shows the hour of the day and its corresponding price difference time series and hourly
sentiment, while the bottom shows the shifted sentiment series. The correlation vector
contains the values over different shifts and can help examine the duration of the impact
of news over time and its predictive power.

Hour of day

-0.67 -1.791 -0.689 -3.08 0.849

-0.318 -0.034 -0.337 -0.356 -0.268

11:00 12:00 13:00 14:00 15:00

-0.318 -0.034 -0.337 -0.356 -0.268

-0.318 -0.034 -0.337 -0.356 -0.268

 (Foward shift)

 (Backward shift)

. . .

. . . Correlation
Vector

0.156

0.211

-0.0001
Shifted Hourly

Sentiment Series

. . .

. . .
. . .

Price Difference (U$)
Time Series

Calculating
correlation

Hourly Sentiment
Time Series

. . .

. . .

. . .

. . .
. . .

Source: Author’s own production.

Thus, by examining Figure 9, it is noticeable that the correlation progression shows the

lowest values for most assets at σ ≤ −8 and σ ≥ 1. Interestingly, this progression indicates

a pulse that starts with an increase in correlation around a shift of −7 until achieving its
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Figure 9: The evolution of the correlation between sentiment and price difference
over time for some of the employed assets. The shift σ to the sentiment time series
[eη=0+σ, ..., eη=D+σ] is shown in the x-axis, while the Pearson correlation with the price
difference [zη=0, ..., zη=D] appears in the y-axis. For instance, the rising correlation from
the negative shift to zero −7 ≥ σ ≤ 0 shows that news sentiment is mostly about past
events, and there is a poor correlation to the immediate next trading hour σ = 1.
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Source: Author’s own production inspired by Lima Paiva et al. (2021).

maximum value at σ = 0 and then falling back to a very low correlation at σ = 1. Hence,

this correlation progression and this sudden change in value are two particularities about

the correlation pulse that could be very insightful. In fact, recall the discussion from

Section 3.1 about how news traders examine market sentiment to exploit asset mispricing

opportunities. The correlation pulse suggests the present approach for extracting market

sentiment information to be compatible with behavioral economic expectations about

market mood.

In this regard, the correlation pulse could be capturing the speculative behavior that

happens before an anticipated event. Therefore, the lower correlation at a posterior hour

σ = 1 might represent the asset getting corrected by a price mean reversion. Alternatively,

the correlation profile could also be capturing that events have a lasting effect that might

take up to 7 hours to dissipate completely. This enduring influence could result from

remarkable events prompting journalists to continuously produce news articles about the

subject, leading to a cyclical influence between the market mood and the asset price.

Still, the market sentiment’s direct linear predictive power for the posterior hour to an

event t + 1 appears nonexistent. Furthermore, the correlation between series reaches its
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lowest value with a shift σ = 1 before increasing for most assets when σ > 2. Hence, it

seems there is a lower alignment between price and sentiment series in the hour posterior

t + 1 to events. This low correlation could be caused by the investors failing to fully

comprehend the situation and then overreacting very arbitrarily, causing the market to

become unstable while digesting the contents of the event. Ultimately, investors digest

the information, and the market starts to operate more consistently again (t > 2).

In resume, the correlation pulse pattern, observed in Figure 9, is not a surprise for

two main reasons. First, textual data examples in Table 5 showed that news headlines

predominantly discuss past events instead of speculating about future trends. Second, the

present sentiment data analysis confirms the patterns that Barberis and Thaler (2003) –

in their survey – found out to be shared among behavioral economic works.

The correlation pulse shows that the collected textual data might adequately convey

the prevailing sentiment market momentum the present works aims at capturing. In

this sense, much like a human news trader, the proposed intelligent system should be

capable of evaluating if either excitement is being adequately assimilated into the price

or if overreaction or underreaction is causing asset mispricing. Ultimately, the correlation

pulse, together with the experimental results discussed in the next section, serve as pieces

of evidence that corroborate the hypothesis that observing market sentiment momentum is

a promising research direction. Essentially, having both a sentiment and price time series

should allow the intelligent system to observe discrepancies between these series that

affect its decisions to maintain or change positions, focusing on the future decision and

not the immediate next one (i.e., prediction scenario). Thus, this sentiment information

should stabilize the intelligent system decisions to avoid unnecessary action change and

focus on the longer-term benefits of maintaining a particular position. Also, the following

section discusses how the correlation pulse served as a guide for selecting the look-back

sentiment window of size l.

5.2 Simulation details

When devising a trading simulation for comparing systems and strategies, it is crucial

to define which experimental setup to use. For example, Figure 10 compares the most

typical setups for training and evaluates the performance of a system that uses time series

data. The static window setup resembles typical setups for non-sequential data. In this

case, all the data is completely used in either the train or test sets with static periods of

fixed proportion. Alternatively, as the name suggests, all sets roll forward with a given
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number of steps for the rolling window setup. Eventually, all the data is processed for this

later setup but in a segmented format that allows system exposition to different market

situations. This approach helps expand the ways to evaluate a system’s consistency and

thus helps address the issues regarding the comparison of RL techniques discussed by

Henderson et al. (2018).

Figure 10: The training and evaluation of systems can occur either in a rolling window
or a static setup. In a static window setup (bottom), the complete dataset is divided into
two parts, one used for training and the other for testing. In the present work, the rolling
window setup is used (top), with the training and test sets covering part of the data and,
at each rolling step, they move forward to cover a different portion of the data.
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The present work aimed at providing enough variability in the testing sets for properly

evaluating consistency over distinct scenarios, and thus a rolling window setup that enacts

five roll steps was selected. Furthermore, the selection of the number of rolling steps also

considered the number of data points available for training, which is essential when using

deep neural networks as function approximators, given their data-hungry characteristics

(RUSSELL; NORVIG, 2009). Subsequently, this number of rolling steps implies dividing

each window into training and testing sets on the ratio of 0.9 (3,377 data points) for

training and 0.1 (374 data points) for testing. This configuration allows testing each

model for each asset without superposition or look-ahead issues regarding the testing

sets. Additionally, the selection of periods for training and testing should reflect the goal

of the rolling window in sampling from different periods with distinct market climates.

In consequence, the first test window covers, for the most part, a period of optimism and

market growth (from 2019-12-09 to 2020-02-26), while the second one (from 2020-02-27

to 2020-05-13) includes a market crash and its fallout caused by the Covid-19 pandemic.

The proposed ablation study compares ITS-SentARL against a sentiment-free base-
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line version of the proposed architecture, No Sent. A2C, to evaluate the benefits of market

sentiment momentum incorporation. Additionally, as discussed in financial background

Section 3.1, the traditional buy-and-hold (BH) is a passive strategy widely adopted in

stock markets, and thus, it is helpful to consider it as a reference baseline. Further-

more, although not all RL works use BH as a baseline (CARAPUÇO; NEVES; HORTA,

2018; HIRCHOUA; OUHBI; FRIKH, 2021), it is relatively usual to observe researchers

(DENG et al., 2017; MA et al., 2021) comparing their approaches to BH. Ultimately,

ITS-SentARL, No Sent. A2C and BH are subjected to the same simulation scenarios

whenever possible. Nonetheless, notice that initialization diversification does not apply

to the BH strategy, and also, the TC has no significant effect (given there are no position

changes in the period).

Regarding the metrics for comparing methods, the present work adopts the standard

metrics in the financial domain that RL researchers most frequently adopt (MOODY et

al., 1998; DENG et al., 2017; YE et al., 2020). Recall from Section 3.2 that a trader’s

ultimate goal is to increase their net worth by exploiting market inefficiencies. Hence,

one obvious choice for evaluating net worth growth is the total return (TR). Total return

is given by taking the relation between the accumulated return from each instant ρTradert+1

(Eq. 4.16) in a period and the initial net worth ψ (cash amount available for investment)

TR =

∑T
t=0 ρ

Trader
t+1

ψ
, (5.1)

where ψ and ρTradert+1 are in U$. Therefore, a positive return indicates an increase in net

worth (profit), while a negative return indicates the opposite (loss). In addition, TR makes

it possible to derive the annualized return (AR), a more convenient metric for comparing

results over different periods and studies. The measure of the annualized return (AR) is

given by

AR = (1 + TR)
χ

365 − 1, (5.2)

where χ is the number of trading days each model operated over.

The financial return alone may not recognize the risk taken to reach profitability

and, thus, the risk-adjusted Sharpe ratio (SHARPE, 1966) evaluation metric – the return

normalized by the risk (volatility) – helps address this issue. The Sharpe ratio (SR)

function adjusts the risk by comparing the average and the standard deviation of an

asset’s total return over different circumstances, given by the following formulation

SR
.
=

Average(TR)

StandardDeviation(TR)
. (5.3)
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As such, the SR of a model or strategy over a given asset accounts for TR covering

all trials (i.e., different periods, initializations, and trading costs) of that specific asset.

Moreover, given the formulation just described, it is straightforward that SR also evaluates

a strategy’s financial return dispersion (volatility).

All simulation trials assume that the trading agent can only conduct operations over

a fixed amount of shares ϕ. Hence, independent of the taken action At (e.g., Long, Short,

Neutral), the agent will permanently be shifting a predetermined number of shares ϕ = 1.

Moreover, the simulations assume an initial net worth of ψ = ϕ∗passet0 , which is equivalent

to the initial amount of cash required to buy ϕ shares of the given asset at a price passet0 at

the instant t = 0. Sequentially, simulations ran over two penalties scenarios: no penalty

and high penalty. The former scenario does not penalize transactions with a TC of zero,

while the latter applies a TC of 0.25% to each change in position.

As previously mentioned, Henderson et al. (2018) point out reproducibility and sta-

bility issues in RL research results concerning the initialization seed of neural networks

based algorithms. These researchers concluded that RL results might vary widely de-

pending on the initialization seed used to define initial training characteristics, such as

the internal weights of neural networks. This difference in initialization can lead to very

different trained models that lead to huge differences when testing models in an unseen

environment (i.e., generalization issues). Hence, following recommendations by Hender-

son et al. (2018), five different internal weights initialization seeds are selected to verify

the reliability of each system under the same conditions. Ultimately, ITS-SentARL and

No Sent. A2C architecture run over 1000 trials each (20 assets × 5 window rolls × 2

TCs × 5 initialization seeds). Also, for each trial, the training extends for 100 episodes

(i.e., epochs). In essence, the high number of trials covering distinct situations, including

extended training analysis, allows a thorough and robust verification of results, compat-

ible with recently suggested guidelines (HENDERSON et al., 2018; THÉATE; ERNST,

2021). In Table 8, there is a summary of the adopted simulation characteristics discussed

in this section.

Considering the rigor employed in the experimental setup that verifies the presented

research hypotheses, applying the same procedure for model hyperparameter selection

would have been prohibitively time-consuming. Therefore, it was necessary to run hyper-

parameter selection with a reduced scope of 10% of the training set for validation, with

fewer assets, initializations and only in a high-penalty environment. Consequently, future

investigation is required to explore a possibly better configuration setup for ITS-SentARL.

In resume, the final hyperparameter selection for all models (i.e., ITS-SentARL and No
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Table 8: Selected parameters for the simulations and models hyperparameters. The first
part of the table shows the simulation parameters that impact the evaluated strategies,
such as initialization seeds and training episodes. Next, the second part shows the selected
characteristics of the adopted base A2C architecture for ITS-SentARL and No Sent. A2C.
For instance, both models adopt the same look-back window for the price difference and
hour time series and a deep neural network (DNN) with two hidden layers, each with
64 nodes. Ultimately, the final part of the table shows information about ITS-SentARL
regarding the sentiment look-back window and the sentiment weighting function that
selects the minimum sentiment in a given hour.

Parameter Type Value

Fixed amount of traded asset shares (ϕ) Simulation 1
Initial net worth in U$ Simulation ψ = ϕ ∗ passet1

Number of rolling window steps Simulation 5
Rolling window Train/Test division ratio Simulation 0.9/0.1
Number of initialization seeds Simulation 5
No-penalty and high penalty TCs (ξ) Simulation 0% and 0.25%
Number of training episodes Simulation 100
Trading days in the testing set(χ) Simulation 77
Price Difference and Hour look-back window size (w) Base A2C 20
DNN architecture (Value and policy functions) Base A2C MLP
DNN hidden layers (Value and policy functions) Base A2C 2
DNN neurons (Value and policy functions) Base A2C 64
DNN learning rate Base A2C 0.99
A2C batch update steps Base A2C 5
Market sentiment look-back window size (l) ITS-SentARL 5
Sentiment weighting function (Ω) ITS-SentARL Minimum

Source: Author’s own production.

Sent. A2C) is also present in Table 8. Finally, discussion and justification regarding the

selection of some of these configurations present in Table 8 include:

• Sentiment weighting. For most assets, taking the minimum sentiment score

across all headlines in an hour showed slight improvements over selecting the aver-

age, maximum, or Bullishness index weighting methods. Although it was noticeable

that other weighting techniques worked better for some assets. Thus, there might

be an opportunity to monitor the correlation and news coverage to better select this

method. Eventually, due to the scarcity of news in some periods, different weight-

ing methods presented similar time series values. Hence, combining more than one

weighting method led to poor results, probably due to collinearity among input fea-

tures. Future work could address this issue by some data preprocessing mechanism
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that verifies and selects when to use multiple weighting methods. Another alterna-

tive might include adopting some model architecture with built-in mechanisms for

proper feature selection (e.g., CNN or ResNET).

• Look-back windows. Even though price and hour-of-the-day features are essen-

tial, defining high-sized look-back windows for these features can limit the impor-

tance of the sentiment features. On the other hand, selecting a small window might

hinder the trading agent’s ability to perceive the market environment correctly.

Ultimately, the value of w = 20 led to better results. Furthermore, during hy-

perparameter selection among the experimented values (e.g., 1, 5, 10), a look-back

sentiment window of size l = 5 appeared to more adequately capture the market

sentiment momentum to improve ITS-SentARL performance. Although this value

appears to be following what is expected from the sentiment correlation pulse previ-

ously observed in Figure 9, a more thorough investigation regarding other look-back

windows should be performed in the future.

• A2C policy and value networks. The A2C algorithm requires approximating

both policy and value functions, and during validation, it was observed that the

use of separate ANNs with similar configurations for each function provided better

performance than a single ANN for both functions. In this sense, each function

adopts a deep ANN multilayer perceptron MLP with two hidden layers with 64

nodes each. Experimenting with deeper networks proved to be less efficient due to

overfitting. However, this aspect also relates to the number of input features. Hence,

slightly deeper networks might work better if look-back window sizes increase. The

learning rate of 0.99 provided better performance among other values.

• A2C steps before update. After a given number of steps, the A2C algorithm

executes batch updates to its policy and value functions. Therefore, performing

these updates after every five steps showed to be the best option. However, this

parameter value performance could relate to the sizes of the look-back windows and,

thus, require further investigation.

The simulation scenarios adopted the OpenAI Gym environments library (BROCK-

MAN et al., 2016), while the A2C implementation came Stable-Baselines (RAFFIN et

al., 2019). The final implementation adapted these libraries to the present stock trading

problem and is publicly available together with ITS-SentARL source code7.

7https://github.com/xicocaio/its-sentarl
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5.3 Results Analysis

This section examines various aspects of SentARL’s performance and its comparison

against the sentiment-free baseline (or No Sent. A2C) and the BH strategy. Thus, to

support the present research hypotheses, the following characteristics are explored: model

generalization, consistency, the impact of market sentiment momentum, and overall return

and risk.

5.3.1 Model Performance Progression

As mentioned in Section 5.2, one of the purposes of the present work was to fol-

low strong modern experimental RL guidelines (HENDERSON et al., 2018; THÉATE;

ERNST, 2021). As such, it was essential to analyze aspects that indicate model stabil-

ity over time. Therefore, Figure 11 focused on reporting the overall financial return for

each episode in training and testing, considering all combinations of assets, window rolls,

and initialization seeds for both TCs. As a result, the evolution of average total return

(y-axis) according to the number of evaluated episodes (x-axis) can be seen in Figure 11.

Hence, the total return progression for ITS-SentARL (orange line) and No Sent. A2C

(blue line) are displayed for both training (top part) and test sets (bottom part) and

both no-penalty (left part) and high penalty (right part) scenarios. Alternatively, as the

number of episodes only affects ML models, the BH strategy (green line) presents the

same constant average total return values of 21.67% in training and 2.43% in the test

period. Thus, BH serves as a reference for the models’ performance.

Looking at the training profile, independent of penalty, both ITS-SentARL and No

Sent. A2C present a steady and consistent increase in average total return until the max

number of a hundred episodes. This progression from neutral or negative returns in the

first episode to more than 250% total return in the final episodes indicates that inde-

pendent of transaction costs, both models continuously learn ways to exploit the market

trends for profit. For instance, models achieve better performance than BH in only three

episodes, and in just ten episodes, they achieve more than four times greater total returns

than BH. Still, between ten and fifteen episodes, it appears to exist an inflection point at

the rate at which the total return increases per training episode. Ultimately, this inflec-

tion could indicate that both models found more outstanding exploitation opportunities

at the beginning of training.

For the progression of financial return on the test set, none of the models presented a
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Figure 11: Comparison between ITS-SentARL and No Sent. A2C model performance in
the training and test sets according to average total return overall assets by episode, with
BH as reference. Top: Training Set; Bottom: Test Set; Left: No-penalty scenario (TC
0.0%); Right: High-penalty (TC 0.25%).
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well-behaved curve profile such as the one observed during the training phase. Neverthe-

less, this outcome is not surprising since trading in the financial market is well known to

be a highly chaotic scenario (TSAY, 2010). Thus, to clarify how to identify the number

of episodes each model takes to overfit, it is paramount to do more than compare the

total return profile between training and testing sets. In this sense, the high dissocia-

tion between consecutive periods, given by the chaotic stock markets’ nature, could be

causing this inconsistent performance in an unseen environment. Consequently, expecting

to observe satisfactory model generalization by traditional ML approaches that compare

progress curves of return over episodes might not be adequate for the trading scenario.

In this regard, looking for evidence of a diminished variation of the financial return

across episodes can help better assess that a model is less prone to performance oscillation

and, thus, more consistent and reliable. Hence, the present work suggests investigating
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the three following aspects for each model or benchmark, considering the 100 episodes of

examination: maximum and minimum values of total return achieved during the; differ-

ence between max and min returns considering all episodes; the number of episodes with

better performance.

Initially, the maximum and minimum average total returns in the no-penalty scenario

(down left in Figure 11) are 4.01% and 1.56%, respectively, for ITS-SentARL and 3.25%

and 0.45% for No Sent. A2C. Hence, the difference between the max and min total returns

for ITS-SentARL (2.45%) was 13% lower than No Sent. A2C baseline (2.81%). Then,

considering the high-penalty scenario, ITS-SentARL presented a max return of 3.15% and

a min of 0.74%, while for the no sentiment model, these values were 2.66% and 0.11%,

respectively. Consequently, ITS-SentARL showed a 6% lower difference between max and

min returns (2.41%) than No Sent. A2C (2.56%). These results reveal that ITS-SentARL

provided better maximum and minimum total returns in both penalty scenarios and better

consistency demonstrated by exhibiting narrower differences between its best and worst

performance.

Next, notice in Figure 11 that ITS-SentARL presented higher episode total return

maximums and minimums for both transaction cost scenarios. For instance, in the high-

penalty scenario, ITS-SentARL displayed a return at its maximum performance (episode

10) 18% greater than No Sent. A2C maximum return (episode 38). Furthermore, in

the same scenario, ITS-SentARL achieved an almost six times greater return at its worst

(episode 93) than the No Sent. A2C model’s lowest performance (episode 27). Finally,

the difference is also noteworthy in the no-penalty scenario, with ITS-SentARL achieving

a 23% greater maximum return and 250% better minimum return than its sentiment-

free counterpart. In conclusion, ITS-SentARL improved total return considering models’

highest and lowest performances, is another aspect that helps support the benefits gains

against No Sent. A2C.

The third meaningful aspect to observe is that despite significant oscillation in perfor-

mance, ITS-SentARL consistently displays better total return across episodes under most

circumstances. In particular, for the no-penalty scenario, IT-SentARL was more profitable

than its sentiment-free counterpart in 89 out of 100 episodes. Also, ITS-SentARL man-

aged to be more profitable than BH in 79 episodes, while No Sent. A2C only outperformed

BH in 25% of the episodes. Next, in the high-penalty scenario, introducing transaction

costs caused performance declines in both models’ profitability, such that outperforming

the BH occurred rarely. For instance, ITS-SentARL presented better returns than the BH

in 14 episodes, while No Sent. A2C did the same in only one episode. Still, even though
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ITS-SentARL prevalence reduced, it kept outperforming its no sentiment counterpart in

most episodes (66%). Notably, in this high-penalty scenario, while ITS-SentARL perfor-

mance is higher in the initial 50 episodes and declines afterward, the opposite is true for

No Sent. A2C. Hence, this aspect favors ITS-SentARL, as it seems to take fewer episodes

to reach a more profitable stage.

5.3.2 Overall Analysis

Table 9 presents the general performance of both models and the BH benchmark when

considering all assets, test periods, initializations, and episodes according to each trans-

action cost and evaluation metric. In this sense, these results summarize the behaviors

observed in the test profile in Figure 11. For instance, the mean TR takes the average

over the TR of the 100 test episodes. Hence, ITS-SentARL achieved 43% and 27% higher

mean TR for the high-penalty and the no-penalty scenarios, respectively, than No Sent.

A2C. Still, by comparing the change in models’ performance between the no-penalty and

high-penalty scenarios, it is clear that ITS-SentARL presented the highest decrease in

TR from 2.83% to 1.79% (36.8% reduction), whereas No Sent. A2C goes from 1.98% to

1.41% (28.8% decline). Alternatively, while the no sentiment A2C was unable to achieve

better mean TR than the BH strategy in neither TCs, ITS-SentARL outperformed the

BH by 16.5% in the no-penalty scenario. The AR metric in Table 9 is an alternative rep-

resentation of the TR values that mainly facilitates researchers and real-world investors

to compare their results with ours. Subsequently, previous assessments regarding the TR

results remain the same for the AR metric.

Table 9: Overall results of ITS-SentARL, No Sent. A2C, and BH according to total return
TR, annualized return AR, and Sharpe ratio SR. Values in bold indicate the strategy that
performed better considering the high-penalty scenario (TC 0.25%), while underlined
value indicates which models reached more promising results for each transaction cost.

TC Strategy Mean TR Mean AR SR

- BH 2.43% 12.03% 0.64
0.0% No Sent. A2C 1.98% 9.73% 0.44

ITS-SentARL 2.83% 14.12% 0.62
0.25% No Sent. A2C 1.41% 6.86% 0.19

ITS-SentARL 1.79% 8.80% 0.51

Source: Lima Paiva et al. (2021).

Moving on to the SR results in Table 9, most of the trends observed for TR are also
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present in this metric. For example, ITS-SentARL reached 41% and 169% higher SR

values than No Sent. A2C in the no-penalty and high-penalty scenarios, respectively.

Therefore, according to this metric and independent of penalty, ITS-SentARL presented

a steadier performance and was more efficient in balancing risk and return to achieve

its purposes. In addition, comparing the different TC scenarios shows that introducing

operational costs causes No Sent. A2C to degrade its SR by 56.8% against a one-third

lower reduction (17.7%) for ITS-SentARL. Hence, these SR values reinforce its stability

qualities and suggest that ITS-SentARL is much less susceptible to the introduction of

penalty dynamics. Still, ITS-SentARL displayed a 3.9% lower SR than the BH, which

indicates this model is still slightly riskier than a passive strategy (i.e., BH).

There is a compelling aspect to dissect when observing the decrease in SR and TR that

the introduction of TC caused in both models. For instance, the decrease in SR that ITS-

SentARL presented was half of its TR reduction. Meanwhile, oppositely, No Sent. A2C

displayed an SR degradation twice its TR decline. In resume, ITS-SentARL sustained a

higher impact on its profitability than risk management capacity, while No Sent. A2C

situation was the opposite. Considering all these aspects, ITS-SentARL seems to be

a more risk-aware system. Thus, the market sentiment momentum information might

be helping ITS-SentARL better assess each situation and thus grounding its balance

of profitability and risk. Subsequently, ITS-SentARL can exploit higher profitability

actions in no-penalty scenarios and retain a superior risk-management balance in high-

penalty circumstances. Besides, ITS-SentARL stayed considerably more lucrative than

its sentiment-free counterpart even with the profit reduction of the high-penalty scenario.

Then moving on to the results presented in Table 10, it is possible to observe the

overall models’ performance and the BH strategy according to the twenty different assets

and two penalty scenarios in terms of SR. For example, in the case of the BA asset

high-penalty scenario, ITS-SentARL achieved an SR (0.665) several times greater than

BH (-0.056) and No Sent. A2C (0.083). Also, observe that ITS-SentARL outperformed

No Sent. A2C according to the SR metric in 12 and 14 assets for the no-penalty and

high-penalty scenarios, respectively. Furthermore, ITS-SentARL surpassed the BH for 10

(no-penalty) and 9 (high-penalty) assets, while the sentiment-free counterpart achieved

the same for 9 and 7 cases. These results reinforce previous analysis and show the higher

deterioration of No Sent. A2C model’s performance when trading costs are introduced.

Moreover, this analysis demonstrates that the overall sound performance of ITS-SentARL

can not be attributed to outstanding results in some cases and instead is a consequence

of consistent decision-making taken across various assets and circumstances.
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Table 10: Sharpe ratio by asset and TC for BH, ITS-SentARL, and No Sent. A2C.
Underlined values identify the best performance between models for a given transaction
cost. Bold values identify the best performance considering high penalty scenario and
BH.

TC 0.0% TC 0.25%
Asset BH ITS-SentARL No Sent. A2C ITS-SentARL No Sent. A2C

AAPL -0.125 0.423 1.439 0.082 1.299
AMZN 1.120 0.497 0.263 0.454 0.190
BA -0.056 1.738 -0.136 0.665 0.083
DIS 0.252 -0.489 -0.361 -0.291 -0.484
FB 0.704 0.042 -0.025 -0.102 0.156
GOOGL 0.742 -0.280 0.226 -0.287 -0.059
HD 0.490 1.273 1.047 0.412 0.000
INTC -0.205 -0.175 -0.662 0.554 -0.351
JNJ 0.912 0.529 -0.209 0.189 -0.428
JPM 0.037 -0.195 -0.369 -0.150 -0.435
KO 0.056 -0.192 -0.171 -0.073 -0.109
MA 0.414 1.556 0.807 1.379 0.762
MSFT 1.792 1.112 0.778 0.915 0.629
NFLX 1.249 0.501 0.194 0.128 0.554
PFE -0.177 -0.284 -0.072 -0.159 -0.155
PG 0.264 0.674 0.523 0.572 0.469
SPY 0.384 0.940 0.857 0.517 0.535
T -0.433 -0.336 -0.289 -0.472 -0.770
V 0.594 1.059 1.835 1.242 0.692
XOM -0.455 0.009 0.080 -0.273 -0.555

Source: Lima Paiva et al. (2021).

There are, however, two curious phenomenons to observe in Table 10. First, ITS-

SentARL and No Sent. A2C improved SR results after introducing trading costs in six

(DIS, INTC, JPM, KO, PFE, and V) and five assets (BA, FB, INTC, KO, and NFLX),

respectively. Notably, two improvements occurred for the same assets (INTC and KO).

These events could indicate that adding penalties might cause models to become more

risk-averse and thus improve their risk balancing capacities for some assets. Nonetheless,

even though they are the minority cases for each model, there is no clear explanation

for this unexpected occurrence. Second, it is notable that for seven assets, after the

introduction of trading costs, the better performing model changed from ITS-SentARL

to No Sent. A2C (FB, NFLX, and SPY), or vice-versa (DIS, KO, T, and V). This

phenomenon indicates that the market sentiment information can influence how a model

reacts in a more adverse scenario and that, in most cases, it can be beneficial.
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Table 11 depicts results regarding the TR metric instead of the previous one that

reported SR values (Table 10). For instance, in the case of BA with the high-penalty

scenario, ITS-SentARL achieved much greater TR (6.71%) than the BH (-2.14%) and

No Sent. A2C (0.58%). Moreover, considering all twenty assets, ITS-SentARL achieved

higher TR than No Sent. A2C in 10 and 13 assets for the no-penalty and high-penalty

scenarios, respectively. At the same time, ITS-SentARL achieved better TR than the

BH for 11 (no-penalty) and 10 (high-penalty) assets, while No Sent. A2C achieved the

same for 10 and 9 cases. Similar to previous analysis regarding SR, these comparisons for

TR show that the addition of trading costs causes No Sent. A2C to take a performance

decrease greater than ITS-SentARL.

Table 11: Total average financial Return (%) by asset and TC for BH, ITS-SentARL,
and No Sent. A2C. Underlined values identify the best performance between models for
a given transaction cost. Bold values identify the best performance considering the high
penalty scenario and BH.

TC 0.0% TC 0.25%
Asset BH ITS-SentARL No Sent. A2C ITS-SentARL No Sent. A2C

AAPL -4.53 7.85 11.27 2.31 11.32
AMZN 13.00 8.09 5.51 7.96 4.36
BA -2.14 10.64 -2.11 6.71 0.58
DIS 6.27 -6.14 -5.64 -3.32 -5.72
FB 6.12 0.50 -0.27 -1.76 1.93
GOOGL 5.07 -2.01 2.12 -1.91 -0.37
HD 4.30 4.38 6.18 2.29 0.00
INTC -2.27 -1.59 -2.51 1.66 -1.38
JNJ 2.21 1.12 -0.73 0.44 -1.02
JPM 0.83 -2.26 -4.86 -1.24 -7.44
KO 0.74 -2.12 -2.04 -0.71 -1.01
MA 3.85 6.98 8.10 9.67 11.15
MSFT 7.53 11.16 7.07 6.55 6.12
NFLX 12.47 7.65 2.36 1.52 8.41
PFE -0.90 -1.12 -0.33 -0.60 -0.71
PG 2.46 4.48 3.53 2.58 2.69
SPY 3.56 7.91 7.80 4.69 4.78
T -5.01 -3.11 -2.12 -2.97 -3.28
V 3.50 4.05 5.24 4.15 2.54
XOM -8.52 0.09 1.01 -2.11 -4.77

Source: Author’s own production.

The previous phenomenons observed for the SR metric are also present when looking

at the TR values. Initially, the performance improvement for assets when costs are intro-
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duced for ITS-SentARL (DIS, GOOGL, INTC, JPM, KO, MA, PFE, T, and V) and No

Sent. A2C (AAPL, BA, FB, INTC, KO, MA, and NFLX). Again both models improved

simultaneously for some assets (INTC, KO, and MA). Next, the change in the better-

performing model by asset after the introduction of trading costs, where ITS-SentARL

surpassed No Sent. A2C for seven assets (DIS, HD, KO, PFE, T, V, and XOM) and

the other way around for four assets (FB, NFLX, PG, and SPY). Although similar con-

clusions can be drawn as before when looking at the SR metric, it is pretty noticeable

that these phenomena seem more frequent for TR. This fact could be attributed to SR

being a risk-management and consistency metric, whereas TR evaluates pure profitability.

Thus these results again point out that the sentiment information can drastically impact

a model’s profitability while allowing it to be more consistent and stable.

By looking at the BH results, it is possible to observe which assets presented an average

price appreciation or depreciation over time. For instance, only six assets (AAPL, BA,

INTC, PFE, T, and XOM) presented an overall depreciation in the observed periods.

Interestingly, among these six depreciating assets, ITS-SentARL outperformed No Sent.

A2C and the BH in five cases (BA, INTC, PFE, T, XOM) for the high-penalty scenario.

On the other hand considering the four instances (AAPL, MA, PG, SPY) where No Sent.

A2C achieved higher TR than ITS-SentARL and the BH, only one was a depreciating

asset (AAPL). These unique outcomes seem to indicate a tendency of ITS-SentARL to

exhibit striking predominance against all benchmarks, primarily when assets underwent

depreciation over time. Ultimately, it is not possible to know beforehand which assets

will appreciate or not. However, depending on macroeconomic factors or long-lasting

events (e.g., post-2008 market crash), it is conceivable to selectively employ ITS-SentARL

over certain assets that could be more susceptible to devaluation in a given period. For

instance, at the beginning of the Covid-19 pandemic, it was not far-fetched to correctly

suppose that the aerospace industry would take a massive hit in sales due to uncertainty

of flight restrictions. Thus, given the observed results, adopting ITS-SentARL for assets

in this aerospace industry (e.g., BA) would be rather appropriate.

However, it is notable that these observed developments are particularly intriguing

when recalling from Figure 6 that most assets exhibited a sentiment score distribution

of their text instances that were slightly positively skewed. Nonetheless, previous stud-

ies (TETLOCK, 2007; TETLOCK; SAAR-TSECHANSKY; MACSKASSY, 2008) have

shown that negative sentiment on the news can have more substantial power in estimat-

ing future market trends than positive texts. Thus, even though the amount of positive

news is higher in most assets, negative news might better indicate future patterns. There-
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fore, analyzing the sentiment aspect of assets and the observed metrics for each model

is very insightful. Hence, in Section 5.3.3, there is an in-depth investigation of such

characteristics.

5.3.3 News Coverage, Sentiment Correlation and Total Return

When examining the impact of the news sentiment, it is essential to compare the

performance improvement of ITS-SentARL over its sentiment-free counterpart under the

different conditions of news coverage and correlation (without a shift) of sentiment-to-

price time series. Thus, in Figure 12, the x-axis marks the correlation between news

sentiment and price difference, the y-axis displays the news coverage, and the intensity

of the color defines the TR difference between ITS-SentARL and No Sent. A2C for each

asset, represented by a dot. For instance, very intense orange dots (BA, JPM, XOM,

and others) mean an asset with a higher difference in TR between models favoring ITS-

SentARL, while very intense blue dots mean the opposite (AAPL, NFLX, FB, and others).

At first, when examining the correlation axis (shown on the horizontal axis of Figure

12), it is noticeable that a higher correlation seems to correspond to an increased advantage

for ITS-SentARL, which is in line with expectations. Nonetheless, it is worth noting

that even a correlation as low as 0.1 can be sufficient to shift the balance in favor of

ITS-SentARL. Furthermore, upon scrutinizing the news coverage axis (displayed on the

vertical axis), we can confirm that news coverage can amplify ITS-SentARL’s advantage

for assets with similar correlations (such as XOM and V). However, when the correlation

falls below a specific value (e.g., AAPL, FB, GOOGL, NFLX), an excessive amount of

news appears to hinder ITS-SentARL’s performance. A noteworthy exception is AMZN,

where this phenomenon is not observed and could be considered an outlier. Additionally,

it should be noted that capturing sentiment for the SPY asset may present difficulties as

it consists of the price of 500 assets, and any given news item may only impact a small

fraction of the index.

It is worth highlighting that several assets from the tech industry had poor corre-

lations that resulted in unfavorable performance for ITS-SentARL. This trend implies

that news related to tech firms, although more popular, can be more speculative and

create a misleading impression of the overall market sentiment. In general, there appears

to be a potential threshold above 11% news coverage and a correlation of 0.128, where

ITS-SentARL demonstrates some of its most noteworthy performance gains over No Sent.

A2C, indicating a higher likelihood of achieving better ITS-SentARL results. Hence, there
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Figure 12: Difference in total return (%) between ITS-SentARL and No Sent. A2C by
asset according to news coverage and sentiment-to-price time series correlation in the test
set with TC 0.25%. Orange dots indicate situations where ITS-SentARL outperformed
No Sent. A2C base model, while blue dots are the opposite. The intensity of colors
indicates the magnitude of the percentage difference between models.
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is a possibility of achieving better ITS-SentARL results beyond this threshold. However,

these assumptions need further empirical validation or rigorous testing with more assets

to establish a more robust and reliable general rule for the broader market.
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6 CONCLUSION AND FUTURE WORK

This work presented ITS-SentARL for the single asset trading task, an effective archi-

tecture in identifying market sentiment momentum to achieve higher profit consistency

than No Sent. A2C. In the presented experiments, considering the total return and

Sharpe Ratio, ITS-SentARL outperformed No Sent. A2C for both transactions costs and

the Buy&Hold strategy when there are no costs associated with the transactions. More-

over, the proposed architecture had reduced performance variation considering all the

transaction costs, model parameters initialization, and periods. Finally, a lower bound

requirement for textual data coverage and necessary correlation was identified to benefit

from news information. In that sense, it would be necessary to monitor recent news cover-

age and sentiment correlation in new data to turn this architecture into a live application.

Results show that ITS-SentARL increased the profitability and stability of 14 assets

out of 20 compared to No Sent. A2C. Then, looking at all assets together, ITS-SentARL

outperforms No Sent. A2C in average total return in the no-penalty and high-penalty

scenarios by 43% and 27%, respectively. Moreover, ITS-SentARL exhibited considerably

improved stability with a Sharpe Ratio 141% better in the no-penalty TC and 270%

better in the high-penalty case. The increase in TC negatively impacted No Sent. A2C

with a reduction of 57% in Sharpe Ratio, while the ITS-SentARL suffered a much smaller

performance reduction of 18%. ITS-SentARL also presented better results in three of

the five initializations and periods (including the high volatility COVID-19 Pandemic).

Ultimately, ITS-SentARL outperformed the BH strategy for 11 assets in the no-penalty

scenario with an overall 17% higher total average return.

This study also concluded that:

• ITS-SentARL’s performance depends on minimum textual data coverage and cor-

relation between price and sentiment, which may guide the selection of assets.

• Market mood information helps shape and stabilize the system strategy by influ-

encing the frequency of action shifts that could harm long-term cumulative reward.
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Although there are assuring results to improve performance over the BH baseline,

there are still plenty of promising options for examining the market sentiment incorpora-

tion as an additional state feature to RL methods. Furthermore, the NLP community has

long adopted social networks as textual sources for trading as it provides a vast amount

of data and can bring fresher information. Thus, even though this data source might

entail additional data preprocessing to reduce noise, it might support increased trading

frequency, better news coverage, and sentiment correlation.

From the technical analysis perspective, employing technical indicators, such as mov-

ing averages, could help smooth out the price time series. Furthermore, as Carapuço,

Neves and Horta (2018) indicated, it might be worth including a feature to the agent-

state that represents the net worth of the agent at each given instant. Finally, there

might be room for improvement in adopting a stop-loss mechanism (ALMAHDI; YANG,

2017, 2019) so that ITS-SentARL avoids significant losses.
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