• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
Documento
Autor
Nome completo
Rosa Helena Peccinini Silva Rossi
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2019
Orientador
Banca examinadora
Almeida Junior, Jorge Rady de (Presidente)
Brandão, Anarosa Alves Franco
Italiano, Isabel Cristina
Oliveira, Adilson de
Sato, Liria Matsumoto
Título em português
Análise de sentimentos para o auxílio na gestão das cidades inteligentes.
Palavras-chave em português
Algoritmos (Classificação)
Análise de sentimentos
Cidades inteligentes
Mineração de dados
Resumo em português
Esta Tese tem como objetivo geral inserir a Análise de Sentimentos na gestão das Cidades Inteligentes, possibilitando a implementação de uma ferramenta que disponibilize informações que auxiliem na supervisão e gestão dessas cidades. Dentre os possíveis auxílios que podem ser prestados está a identificação de ações, meios de prevenção e predição de possíveis adversidades nos diversos Domínios de Interesse, além da busca por melhorias na qualidade vida da população, que pode ser feita por meio dessa análise, permitindo que os gestores dessas cidades possam tomar as melhores decisões de acordo com cada cenário. Este trabalho contribui com um novo método cujo o objetivo é o desenvolvimento de um Sistema de Análise de Sentimentos para Auxílio na Gestão das Cidades Inteligentes (ASCI). Esse Sistema é capaz de captar, tratar, processar, filtrar por Domínio de Interesse e avaliar os sentimentos contidos nas informações provenientes dos cidadãos de uma Cidade Inteligente. O método utiliza duas Fases de Mineração de Dados, uma para a classificação dos Domínios de Interesse e outra para a Análise de Sentimentos. Para o estudo de caso foi implementado o método ASCI por meio do qual são captadas informações provenientes da população de uma determinada região da cidade de São Paulo, por meio da Rede Social Twitter. Também foi realizado um estudo de classificação de sentimentos no Domínio específico do Transporte, no qual também foram utilizados, e tiveram seu desempenho avaliado, os classificadores do tipo Linear SVC, Logistic Regression, Multinomial Naive Bayes e Random Forest Classifier para identificar os sentimentos positivos, neutros e negativos dos tweets captados. Os dados foram avaliados usando duas técnicas de extração de características de texto: Bag of Words e TF-IDF. O método ASCI desenvolvido nesta Tese contribui de maneira relevante para a área de Análise de Sentimentos, uma vez que os resultados obtidos foram satisfatórios quando aplicado em cenários de Domínios de Interesse das Cidades Inteligentes.
Título em inglês
Sentiment analysis for the aid in the smart cities management.
Palavras-chave em inglês
Classification algorithms
Data mining
Sentiment analysis
Smart cities
Resumo em inglês
The main objective of this work is to insert the Sentiment Analysis in the management of Smart Cities, enabling the implementation of a supervision and management tool in these cities. Among the possible aid services that can be applied, there is the identification of actions, ways of prevention and prediction of possible adversities in the various Domains of Interest, and also the search for improvements in the quality of life of the population. This can be done through this analysis, allowing the best decisions according to each scenario by the city managers. This work contributes to a new method whose objective is the development of a Sentiment Analysis System to Assist in the Management of Smart Cities (ASCI). This System is capable of capturing, classifying, processing, filtering by Domain of Interest and evaluating the sentiments of Smart City citizens. The method uses two Data Mining phases, one for the classification of Domains of Interest and the other for Sentiment Analysis. For the case study, the ASCI method was implemented, through which information was collected from a regional population in São Paulo city through Twitter Social Network data. A study of Sentiment Analysis in specific Domain of Interest Transport was also carried out, in which Linear SVC, Logistic Regression, Multinomial Naive Bayes and Random Forest classifiers were used to identify the positive, neutral and negative sentiments of collected tweets. The data were evaluated using two techniques of extraction of text characteristics: Bag of Words and TF-IDF. The ASCI method developed in this Thesis contributes significantly to the area of Sentiment Analysis and the results obtained were satisfactory when applied in Smart City Domain of Interest scenarios.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2019-09-18
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2019. Todos os direitos reservados.