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RESUMO

Jogos de incentivos mistos compreendem um subconjunto de jogos em que os incen-
tivos individuais e coletivos não estão totalmente alinhados. Esses jogos são relevantes
porque ocorrem com frequência no mundo real, bem como em sistemas multiagentes, e
seus resultados poderiam ser melhores para as partes envolvidas caso aspectos coletivos
fossem considerados. Instituições e normas oferecem boas soluções para governar sis-
temas com incentivos mistos, mas na literatura, são usualmente estudadas e incorporadas
de forma distribúıda. Neste trabalho, propomos um framework para melhorar os resulta-
dos coletivos obtidos em ambientes de aprendizado por reforço multiagente de incentivos
mistos. O framework propõe aprimorar o ambiente com um sistema normativo contro-
lado por um agente externo de aprendizado por reforço. Ao empregá-lo, mostramos que é
posśıvel alcançar bem-estar social usando apenas arquiteturas tradicionais de agentes de
aprendizado por reforço, mesmo em um sistema formado apenas por agentes egóıstas.

Palavras-Chave – Jogos de incentivo misto, Aprendizado por reforço, Agentes norma-
tivos.



ABSTRACT

Mixed-motive games comprise a subset of games in which individual and collective in-
centives are not entirely aligned. These games are relevant because they can be matched to
frequently occurring events in the real-world, as well as in multiagent systems, and their
outcomes could be better for the involved parties if collective aspects were considered.
Institutions and norms offer good solutions for governing mixed-motive systems, but in
the literature, they are usually studied and incorporated into the system in a distributed
fashion. In this work, we propose a framework for reaching socially good outcomes in
mixed-motive multiagent reinforcement learning environments by enhancing the environ-
ment with a normative system controlled by an external reinforcement learning agent. By
employing this framework, we show that it is possible to reach social welfare using only
traditional reinforcement learning agent architectures, even in a system of self-interested
agents.

Keywords – Mixed-motive games, Reinforcement learning, Normative agents.
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1 INTRODUCTION

Mixed-motive games comprise a subset of games in which individual and collective

incentives are not entirely aligned. These games are defined by two basic properties

(DAWES, 1980): a) every individual is incentivized to socially defect and b) all individuals

are better off if all cooperate than if all defect.

Opposing the view that groups will find ways to act so as to serve their own interests

— as individuals often do —, when their incentives point to a different direction than

that of their members, a collective action problem may emerge (OLSON, 1965) and drive

the whole system to a state socially unwished-for.

Olson (1965) develops the notion of a collective action problem starting from the raison

d’etre of organizations. These, as Olson describes, are groups that serve to further the

interests of their members. The problem emerges when the individuals of such groups also

have antagonistic incentives to those common to the collective. In this case, individuals

are left to choose between harming the organization as a whole in favor of their own

benefit or passing on the opportunity for bigger gains in favor of the group. A collective

action problem happens when the former is systematically preferred over the latter.

Consider a market competition scenario: every competitor has, at the same time, the

incentive to keep prices high, which is a function of the market’s supply — the lower the

supply, the higher the price —, and the incentive to increase supply in order to increase

revenue. In case most competitors opt to increase their supplies, prices will be driven

down, which is a bad outcome for the collective1.

Global warming is another case of the collective action problem emerging from mixed

incentives. In this scenario, every player — be it an individual, institution, or government

— have an incentive to emit as much greenhouse gases as desired — for matters of comfort,

financial gains, or popularity —, regardless of how much others are emitting. If to these

ends the collective emissions surpass some threshold, the system increasingly dips into an

1It is a bad outcome among the group of firms within such market, not necessarily among the society
as a whole.
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undesirable state that is bad for everyone.

The collective action problem is not particular to communities of people in the real

world, it may also happen in systems of artificial agents known as multiagent systems

(MAS). In the context of MAS, the collective action problem is all so relatable to the

issue of maintaining the system’s social order (CONTE, 2001; CASTELFRANCHI, 2000).

Castelfranchi (2000) defines social order as the problem of reaching desirable, predictable,

and stable emergent outcomes from local actions in a system composed of agents with

different beliefs and goals. Preserving social order is not only an issue in mixed-motive

games as difficulties in coordinating actions can also hinder a system’s stability when

agents agree to cooperate with each other (WOOLDRIDGE, 2009, p. 200), but it is

especially pervasive in these types of games as their misaligned incentives become another

obstacle.

As the agents’ learning capabilities improve with the advent of technologies such as

reinforcement learning (RL), so increases their ability to optimize for their own benefit.

This is reminiscent of the motto ”people respond to incentives” (MANKIW, 2018, p. 7),

which is the root cause of the collective action problem in the real world. Thus, as the

learning capabilities of artificial agents increase, the chances of falling into the collective

action problem in mixed-motive MAS also increase.

Social norms and norm enforcement mechanisms are tools of an institutional machin-

ery that can be used for governing mixed-motive systems in order to sustain its social

order (VERHAGEN, 2000). These can be implemented either in centralized — when a

central governing body is tasked with running the institutional apparatus by itself — or

decentralized fashion — when the normative system is conducted by the agents them-

selves.

1.1 Motivation

Decentralized approaches have been used in the past to prevent the collective action

problem in MAS (HUGHES et al., 2018; ECCLES et al., 2019). However, decentralized

solutions either imply a) pro-social behavior from the the agents or b) some form of

direct or indirect retaliatory capacity — i.e. having the choice not to cooperate in future

interactions. We acknowledge the effectiveness of these mechanisms in some cases but

also recognize they are no panacea.

For instance, how can one — agent or group of agents — successfully drive a complex
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MAS towards social order from within without assuming anything about others’ beliefs,

intentions, or goals, given that punishing uncompliant behavior is not desirable or allowed?

This problem is akin to many situations in modern society; thus far it is impossible to

know the beliefs and intentions of every person we might interact with, and not every

problem we face is ideally solvable by a ”taking matters into own hands” approach.

Consider as an example the problem with burglary. As a society, we don’t expect social

norms and good moral values to solve the problem completely, although they certainly

change the rate at which it happens. Similarly, we don’t expect the victim of a burglary

to return the favor with a response of similar intensity — like stealing from the aggressor’s

house.

A similar issue may also occur in MAS. Consider a system of self-driving autonomous

vehicles. Every vehicle has an incentive to get to its destination as fast as possible. If,

to this end, a vehicle engages in careless maneuvers and risky overtakes to gain a few

extra seconds, how could another vehicle sharing the road respond to this non-compliant

behavior?

We could assume that all agents in this system are pro-social to some degree, and

thus, such an event would never happen. Preventing socially bad outcomes by having

agents acting empathically is an option that has been explored (HUGHES et al., 2018;

CHEN; WANG, 2019). However, this might not always be a good premise. In the above

example, the system itself is embedded in a competitive environment of firms fiercely

fighting for market share. Performance, in the form of getting to the destination faster,

might represent getting a bigger slice of the pie. Does the designer behind the agent have

the right incentives to design altruistic agents? Social defection for the sake of financial

gains is not unthinkable by any means in the automobile industry2.

Alternatively, we could endow agents with the ability to punish defection, thus chang-

ing the expected payoff of such recklessness (AXELROD, 1984). But could any form of

punishment be accomplished without compromising the safety of passengers? Further-

more, even if we agree upon the safety of reciprocating, there are many situations where

direct retaliation might be undesirable. For instance, how do we address fairness in these

systems? If highly interconnected, even a small violation could be met with a huge wave

of public bashing, similar to the problem of internet cancel culture3.

Thus, a clear need exists for addressing the collective action problem in mixed-motive

2https://www.bbc.com/news/business-34324772
3https://nypost.com/article/what-is-cancel-culture-breaking-down-the-toxic-online-trend/
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MAS when two conditions are true: a) we have no prior knowledge about the agents’

architectures, thus it is not possible to safely assume agents will always behave pro-

socially, and b) agents’ are not allowed to punish each other.

1.2 Objective

Our aim with this work is to propose a general purpose framework for steering mixed-

motive MAS out of socially bad outcomes when conditions a and b, cited in Section 1.1

hold.

In particular, we propose to use a combination of reinforcement learning and central-

ized norm enforcement techniques. Besides the RL agent players, we propose to enhance

such environments with a normative system controlled by a RL regulator agent. This

regulator will be able to learn to adjust norms and sanctions of the system it is regulating

according to its social outcomes.

Such general purpose framework could be useful in a couple of scenarios: a) to train an

RL agent to assume the role of regulator and possibly prevent the collective action prob-

lem in mixed-motive MAS, and b) to learn how different norms and norm-enforcement

mechanisms may influence mixed-motive human interactions (agent-based social simula-

tion research).

Furthermore, it is also our goal to test this framework on a version of a famous

mixed-motive game and, without loss of generality, to assess some of the main drivers

for its successful implementation. Our goals can be summarized in the following research

questions:

1. Can we successfully train a regulator agent to prevent the collective action problem

in mixed-motive MAS environments?

2. What effect does the frequency in which the norm is changed have on the system’s

social outcome?

3. What effect does the harshness of the penalty applied to those who violate the norm

have on the system’s social outcome?
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1.3 Methodology

In case it is not safe to assume other agents are pro-social and it is not desirable for

agents to directly punish each other, we need to resort to centralized governance of some

kind. Jones and Sergot (1994) propose two complementary models of centralized norm

enforcement:

1. Regimentation: Provides an imposing normative framework to which agents have

to abide to, therefore non-compliant behavior does not occur;

2. Regulation: Assumes agents can violate norms, and violations may be sanctioned

when detected.

A drawback of the former is that it constraints agents’ autonomy (NARDIN, 2015).

Furthermore, implementing a regimentation system is not necessarily trivial; edge cases

may arise such that violations may still occur (JONES; SERGOT, 1994). On the other

hand, the latter preserves — to some degree — agents’ autonomy by allowing their actions

to violate the norms.

As mentioned in Section 1.2, we propose to use a combination of reinforcement learning

and centralized norm enforcement techniques for regulating mixed-motive environments.

We focus our attention to the multiagent reinforcement learning (MARL) case, which is

a subset of MAS, since it presents a challenging case for preventing the collective action

problem, as the agents are continuously learning and improving their individual rewards

regardless of how well the collective is doing.

1.4 Expected results

If successful, this work’s expected results, that also characterize its main contributions

to the literature will be:

1. A framework for dealing with the collective action problem in mixed-motive MARL

environments that is compliant with conditions a and b cited on the last paragraph

of Section 1.1.

2. A framework for solving the collective action problem in mixed-motive MARL en-

vironments that can be implemented using only off-the-shelf RL architectures such

as DQN (MNIH et al., 2013) and A2C (MNIH et al., 2016).
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1.5 Organization of the manuscript

This manuscript is organized in 6 chapters. Chapter 2 presents the relevant back-

ground for the project divided into three key topics, games and mixed-motive games, mul-

tiagent systems and normative multiagent systems, and reinforcement learning. Chapter

3 presents some relevant work, that have tackled the broad issue of social order in multi-

agent systems through regulation, the collective action problem in mixed-motive MARL

environments, and a brief discussion of how our work relates to this corpus. Chapter 4

presents an overview of the proposed framework, its formal model, and an algorithm that

shows how it could be implemented. Chapter 5 presents the experiments, how they relate

to the research questions, the environment used to run them, and their results. Finally,

Chapter 6 presents some final considerations and further work.
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2 BACKGROUND

2.1 Games and mixed-motive games

2.1.1 Mixed-motive games

Mixed-motive games is the name given to denote a subset of games from game theory;

a branch of mathematics developed and applied mostly by economists (PETERS, 2015).

Shoham and Leyton-Brown (2008) simply define game theory as ”the mathematical study

of interaction among independent, self-interested agents”1. In other words, game theory is

the study of how independent agents plan and achieve their goals given their expectations

on how other agents in the system plan to achieve their own goals, and the repercussions

of this complex layering of expectations for the system itself.

Game theory is mostly interested with the study of games and their solutions. A

game can be defined by the set of rules and information structure that constrain the

agents’ moves on a play — an instance of a game2. A solution to a game is a systematic

description of the emergent outcomes found in a collection of its plays assuming some

degree of rationality from the agents playing it (OSBORNE; RUBINSTEIN, 1994).

Based on the above, a mixed-motive game, or social dilemma (DAWES, 1980), can

be described as one in which players’ preferences over outcomes are partially aligned and

partially opposed. This duality commonly means individual rationality does not build up

to group rationality (KOLLOCK, 1998), i.e., the aggregate effects of selfishness yield a

socially bad outcome.

1The word ”agents” is used generically to refer to any autonomous, pro-active entity with its own set
of beliefs and goals

2Refer to (NEUMANN; MORGENSTERN, 1944) for a formal and thorough definition.
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2.1.2 Two-players mixed-motive games

Consider a simple two-players symmetric game in which players can choose to coop-

erate (C) or defect (D) with the other. Such a game can be defined by its set of players

P = {1, 2}, the set of actions each player can choose from A1 = A2 = {C, D}, and a

mapping from a combination of players’ actions to two real value rewards — one for each

player — R : A1 × A2 = {C1C2, C1D2, D1C2, D1D2} → R2. Here, we denote C1C2

for the case when both players cooperate, C1D2 for the case when player 1 cooperates

and player 2 defects, and so forth. Without loss of generality, let reward (R), sucker (S),

temptation (T ) and punishment (P ), denote, in order, the four corresponding rewards

earned by player 1 for each of combination of actions in {C1C2, C1D2, D1C2, D1D2},
e.g., if player 1 cooperates and player 2 defects, player 1 will receive a reward of S and

player 2 will receive a reward of T . In these settings, it is possible to define a handful

of mixed-motive games by modifying the relative values of the rewards earned by each

player. This generic two-players, two-actions game is summarized in Table 1.

C1 D1

C2 R, R T, S
D2 S, T P, P

Table 1: Rewards earned by each player for every combination of actions in a two-players,
two-actions game. The first value in each cell is earned by player 1 while the second value
is earned by player 2.

We can build the prisoner‘s dilemma (PD) game — the most well-known mixed-

motive game — on top of this generic framework to serve as an example. PD is a two-

players game, formally defined by the relative reward values such that the inequalities

T > R > P > S and 2R > S + T are satisfied. The background story behind the formal

definition is a tale of two outlaws caught by the police, and sent to different rooms for

interrogation. During interrogation, each prisoner has the option to snitch the partner

(defect), for which he would receive a lesser punishment — at the cost of a more severe

punishment to his accomplice —, or keep quiet (cooperate). Since the punishment for

being snitched is greater than the penalty reduction for snitching, mutual cooperation is

preferred over mutual defection.

Considering the values R = 3, T = 4, S = 0 and P = 1, it is straightforward to see

how the dilemma plays out. Both players have the incentive to defect regardless of what

the other does, since the value they get for defecting is greater, either in case the other

chooses to cooperate — T = 4 > R = 3 — or defect — P = 1 > S = 0. We call defect in

the Prisoner‘s dilemma game a dominating strategy, i.e., an action that yields a greater
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reward than any other, regardless of what the other player does (AXELROD, 1984).

In case both players choose their dominating strategy (defect), a state of equilibrium is

reached, where no player has the incentive to switch actions. This state is known as a

Nash equilibrium. In our example, if both players chose their dominating strategies, they

both would get a reward of 1, even though a more advantageous state for the pair could

be reached; one where they would have cooperated, and for that, would have gotten a

reward of 3. Table 2 sums up the dynamics of the PD game.

C1 D1

C2 3, 3 4, 0
D2 0, 4 1, 1

Table 2: The matrix form of a PD game. Players in a PD are driven by the system’s
incentives towards mutual defection since it is more advantageous for both to defect than
to cooperate, regardless of what the other player does.

It is possible to create other two famous mixed-motive games by changing the relative

payoffs of R, T , S, and P (KOLLOCK, 1998). If they satisfy the inequality R > T >

P > S we have the game of assurance or stag hunt, while if they satisfy the inequality

T > R > S > P we have the game of chicken.

2.1.3 N-players mixed-motive games

Mixed incentives are by no means particular to two-players games. A mixed-motive

game exists in every situation where individuals in a group have to choose between a

greater group outcome and lesser own payoff, or greater own payoff and lesser group

outcome. Table 3 illustrates the point from the perspective of an agent participating in a

hypothetical three-players, two-actions mixed-motive game.

Ag1 Ag2 Ag3
Ag1 a1 10 0 0
Ag1 a2 4 4 4

Table 3: Agent’s one (Ag1) possible choices of action and their respective payoffs to each
agent in a hypothetical three-players, two-actions mixed-motive game. If rational, agent
one will choose action one, that yields a higher payoff to himself (10 > 4), rather than
action two, that yields a higher payoff to the group (10 < 12).

One example of an n-players mixed-motive game in the real world is the public goods

game (PGG) (OLSON, 1965). The PGG describes a set of problems wherein a group of

people needs to pay an upfront cost to maintain a shared good that is accessible to all,

but it’s of every member’s interest to ”free-ride” instead of paying.
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A common example of PGG is our municipal tax system. The local government

employs the money from our taxes — among other expenditures — to improve public

spaces that every resident has the right to use. The lack of payment from one resident

will most likely not affect the maintenance of our roads and parks, but if tax evasion

becomes a norm, the community — especially those who paid their taxes — will be

punished by having public spaces that are not well maintained. 3

A similar yet different n-players mixed-motive game named the tragedy of the com-

mons is also commonly seen in real-world scenarios. The tragedy of the commons is a

term introduced by Hardin (1968) to describe a set of social problems that cannot be

solved solely by technological advances; instead, a behavior change is needed. Like the

PGG, it is a group dilemma. Still, unlike the former, it is associated with individuals

being incentivized to increase their short-term payoff at the cost of inflicting a long-term

punishment to everyone in the game.

Hardin himself describes a didactic example in his article; a group of herders, having

access to a common piece of land, may allow as many of their cows to graze on it. Every

herder has the individual incentive to let as many of his cows in, but if all herders behave

accordingly, the grass will soon be depleted4, and the cows will have nothing to eat. The

tragedy of the commons is a mixed-motive game most often associated with environmental

issues, such as the global warming cited in Chapter 1.

One way to understand the origins and the differences between these games is to

classify them under two criteria: excludability and rivalry. Excludability is a variable

that controls whether or not the resource is accessible to the general public. Rivalry

on the other hand, refers to whether or not the consumption of the good by one entity

prevents others from consuming it. Table 4 gives an example of how some goods can be

classified under both criteria.

Similar to the two-players case, when all players play by their dominating strategies

in n-players mixed-motive games the system as a whole is driven to a sub-optimal equi-

librium. As such, the theoretical findings regarding solving the collective action problem

in group dilemmas point to a non-endogenous resolution — commonly privatizing the

resource or regulating its consumption (HARDIN, 1968; OSTROM, 2000). These are

commonly based on three assumptions a) Resource users are norm-free utility maximiz-

ers with no bounded rationality; b) Designing rules to change incentives is an easy task; c)

3The problem is being simplified to make a point. It is not accounting for the fact that if you don’t
pay your taxes, you are likely to be punished, which in the real world changes the payoff of tax evasion.

4Assuming there are enough cows to eat all the grass in a somewhat short period of time.
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Excludable Nonexcludable

Rival
Private goods
housing, food,
car

Tragedy of the
commons tim-
ber, fish

Nonrival
Club goods ca-
ble TV, internet,
cinema

Public goods
public parks, na-
tional defense

Table 4: Classification of goods according to the excludability and rivalry criteria. Both
PGG and the tragedy of the commons emerge due to the nonexcludability property that
opens up the possibility to free ride (MANKIW, 2018, p. 213).

The resolution to these problems demands intervention from central authority (OSTROM,

1999).

Nonetheless, empirical work has provided evidence that these assumptions do not

always conform with reality. In practice, experimental studies have shown instances of

n-player mixed-motive games being solved by local communities, without the need for

a regulatory central authority, and that social norms play a substantial role in solving

them (OSTROM, 1999; OSTROM, 2000). Still, as communities grow in size and human

interactions grow in complexity, we commonly resort to some form of norms or rules —

formal or not — to dictate expected behavior.

The issue of disaligned group and member incentives is not particular to human

groups and societies. They can also be present in systems of artificial agents in MAS.

Such systems, may also present macro-patterns that are harmful to those within it, as a

symptom of an unfavourable structure of incentives.

2.2 Multiagent systems and normative multiagent sys-

tems

2.2.1 Multiagent systems

A multiagent system (MAS) is one in which autonomous agents, with some degree

of rationality, coexist in and interact with an environment in order to accomplish an

individual or collective goal (WOOLDRIDGE, 2009). Despite not existing a definition

upon which the notion of an agent is universally agreed, autonomy, rationality, and goal-

orientation are properties commonly found in most agents.

These three properties are complementary and interrelated. Autonomy relates to an

aspect agents have of acting independently, without the need for being explicitly told what
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to do (WOOLDRIDGE, 2009, p. 3), which grants agents the ability of being proactive

and purposeful. Purposefulness often implies the existence of preferences over outcomes

or an end goal; an end result or state the agent desires to reach. The property of acting

towards accomplishing a goal is referred as goal-orientation, and is also key to the notion

of an agent (HOEK; WOOLDRIDGE, 2003). Finally, in order to successfully achieve

its goals, an agent is better off picking actions that bring it closer to such desired states

rather than pushing it away from it. The measure of how good an agent is at action-

picking given its context is referred to as rationality (BOWLING; VELOSO, 2001; HOEK;

WOOLDRIDGE, 2003).

Agents in MAS interact with an exogenous entity known as the environment. From the

agent’s perspective, the agent-environment interaction is a continuous cycle of choosing an

action based on the current environment state, and reaching a new state — as a function

of the agent’s action and the environment transition function —, in which the agent will

act again. Such interactions occurs through two of the agents’ sets of components: the

sensors and the actuators.

An agent’s set of sensors is its entry-point to the agent-environment interaction. The

sensors are responsible for perceiving an agent’s surrounding, similar to how we, as hu-

mans, sense the environment around us through our senses. The output at this perception

stage can be referred as percepts, which are abstract representations of the current state of

the environment (RUSSELL; NORVIG, 2010, p. 34). After the perception step, the per-

cepts or a sequence of them is passed to the agent function, that parses such information

and decides what action to execute next.

The agent’s actuators on the other hand are responsible for executing its actions, that

may change the state of the environment, thus changing the agent’s perception of it. Such

cycle of perceiving and acting may continue indefinitely until a stop condition is met. An

abstract representation of the agent-environment interaction is depicted in Figure 1

2.2.2 Normative multiagent systems (NMAS)

As briefly discussed at the end of Section 2.1.3, MAS hold many similarities with hu-

man societies in that, like us humans, agents may have heterogeneous preferences and may

differ in how they assess their surroundings and act toward their goal — mathematically

speaking, different agents may have different agent functions. As such, MAS may also be

subject to the harmful symptoms commonly found in mixed-motive human systems such

as miscoordination (MANKIW, 2018, p. 261), collusion (MANKIW, 2018, p. 338), and
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Figure 1: An agent-environment basic interaction in multiagent systems. An agent senses
the state of the environment through its set of sensors, decides what to do based on
its percepts, and acts thorough its actuators (KURDI; STANNETT; ROMANO, 2015;
RUSSELL; NORVIG, 2010, p. 35).

negative externalities (MANKIW, 2018, p. 189).

One way of preventing these issues both in the real-world and in MAS is through the

use of regulation and oversight. Such apparatus involve the creation of norms that dictate

the socially desired behavior of agents, as well as the establishment of oversight bodies

that ensure that these norms are being followed.

A norm enhanced MAS can be regarded as a normative multiagent system (NMAS),

i.e. a MAS in which these normative concepts may influence the overall rewards earned by

its agents, and therefore the outcome of the system (NARDIN, 2015). In these settings,

despite not having an unified definition, a norm is typically understood to be a standard

or guideline that is widely accepted and expected to be followed within a particular group

or society (ULLMANN-MARGALIT, 1977).

In NMAS, norms that are not complied with might be subject to being sanctioned.

Sanctions can be generally classified into direct material sanctions, that have an immediate

negative effect on a resource the agent cherish, such as a fine, or indirect social sanctions,

such as a lowering effect on the agent’s reputation, that can influence its future within

the system (CARDOSO; OLIVEIRA, 2009). Nardin (2015) also describes a third type of

sanction; psychological sactions are those inflicted by an agent to himself as a function of

the agent’s internal emotional state.

Norm enforcement in such systems can be arranged either in a centralized or dis-
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tributed manner (LIMA; NARDIN; SICHMAN, 2018). They differ in whether the nor-

mative machinery is sustained and enforced by a single entity — be it an agent or an

organization — (centralized), or not (distributed).

Crawford and Ostrom (1995) describes how norms, alongside with shared strategies

and rules, often originate many day-to-day behavioral patterns that we call institutions.

For instance, the expectation two people will shake hands when greeting each other gives

birth to this institution (shaking hands when greeting)5. Not complying with it might be

perceived as an act of rudeness, thus, more often than not, people do shake hands when

greeting.

Conversely, the simple occurrence of a behavioral pattern without the connotation

of it being proper or improper can also be viewed as an institution, or as Crawford and

Ostrom (1995) calls it, institution-as-equilibria (shared strategies). Many people in Brazil

have the habit of having feijoada for lunch on Saturdays. Having something else for lunch

on a Saturday in Brazil is not considered uncompliant; if anything, some Brazilians might

find it unusual at most.

Finally, Crawford and Ostrom (1995) also considers the patterns of interaction that

emerge from rules as institutions (institutions-as-rules). These rest on the assumption

that actions inconsistent with those proscribed by some rule can be sanctioned, and that

the mere existence of a formal sanction is capable of creating such patterns. Most of the

literature considers rules, as per defined by Crawford and Ostrom (1995), as a type of

norm, and so will we in this work.

In short, we highlight the fact that norms are key to describe and can explain and

drive many institutions present in all spheres of our society. They can mold behavior

and generate patterns of interaction within groups of people (OSTROM, 2000). They can

also be incorporated into MAS as soft constraints on agents’ actions (BOELLA; TORRE;

VERHAGEN, 2006) to improve their macro-properties (VERHAGEN, 2000; NARDIN,

2015) without entirely compromising a fundamental aspect of MAS, i.e., agents’ autonomy.

In order to formalize the conception of norms, Crawford and Ostrom (1995) proposes

the ADICO grammar of institutions. The grammar is defined within the five dimensions:

• Attributes: is the set of variables that defines to whom the norm is applied.

• Deontic: is a holder for the three modal operations from deontic logic: may (per-

5We are not implying that shaking hands is the only method of greeting other people around the
world, nor that it is the common method used everywhere.
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mitted), must (obliged), and must not (forbidden). These are used to distinguish

prescriptive from nonprescriptive statements.

• Aim: describes a particular action or set of actions to which the deontic operator

is assigned.

• Conditions: defines the context — when, where, how, etc. — an action is obliged,

permitted or forbidden.

• Or else: defines the sanctions imposed for not following the norm

This grammar can be useful to turn the somewhat abstract concept of a norm into

something tangible, and to operationalize the norm creation and norm revision processes.

For instance, the norm All Brazilian citizens, 18 years of age or older, must vote in a

presidential candidate every four years, or else he/she will be unable to renew his/her

passport as per defined in the ADICO grammar, can be broken down into: A: Brazilian

citizens, 18 years of age or older, D: must, I: vote in a presidential candidate, C: every

four years, O: will be unable to renew his/her passport.

The use of a norms and oversight to regulate a mixed-motive environment becomes

even more justifiable when we add learning capabilities to the agents in the system. This

is the case, because learning agents — especially reinforcement learning (RL) agents —

like us humans, are proficient in optimizing for their own rewards which, given the mixed-

motive nature of the system, means falling prey to the collective action problem.

2.3 Reinforcement learning

2.3.1 Single-agent reinforcement learning

The reinforcement learning task mathematically formalizes the path of an agent inter-

acting with an environment, receiving feedback — positive or negative — for its actions,

and learning from them. Figure 2 illustrates the general idea of the agent-environment

interaction. This formalization is accomplished through the Markov decision process

(MDP), defined in the following.

Definition 1. A Markov Decision Process (MDP) is defined by the tuple ⟨S,A,R,P , γ⟩
where
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Figure 2: A single step of an RL run. The agent senses the current state of the envi-
ronment, acts on it, changes its state, and receives a reward. The current state of the
environment, the action, the reward, and the new state of the environment can be used to
assess the value of taking such action in such current state — and extrapolate for similar
actions in similar states for that matter.

• S represents a finite set of environment states;

• A, a finite set of agent actions;

• R, a reward function R : S × A × S → R that defines the immediate — possibly

stochastic — reward an agent gets for taking action a ∈ A in state s ∈ S, and

transition to state s′ ∈ S thereafter;

• P, a transition function P : S × A × S → [0, 1] that defines the probability of

transitioning to state s′ ∈ S after taking action a ∈ A in state s ∈ S; and

• γ ∈ [0, 1], a discount factor of future rewards (SUTTON; BARTO, 2018, p. 47).

In these settings, the agent’s goal is to maximize its long-term expected reward Gt,

given by the infinite sum (Rt+1 + γRt+2 + γ2Rt+3 + ... + γnRt+n+1). Solving an MDP

ideally means finding an optimal policy π∗ : S → A, i.e., a mapping that yields the best

action to be taken at each state — the action a corresponding to the highest long-term

expected reward Gt subject to the discount factor γ at a given state s.

The relative goodness of a policy π can be determined by a value function vπ : S → R.
In practice, the value function informs the expected reward — or an estimate of it — to
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be earned by the agent for being in state s and following policy π thereafter. A policy π

is said to be better than or equal to a policy π′ if and only if vπ(s) ≥ vπ′(s) for all s ∈ S

(SUTTON; BARTO, 2018, p. 62).

RL algorithms can be divided into two broad categories: model-free RL and model-

based RL. The difference between them relies on whether a model of the environment —

reward and transition functions — is needed for learning (model-based) or not (model-

free). Here, we focus on model-free RL, since it’s most commonly covered and the category

used throughout this project.

Model-free RL can be further split into two classes of algorithms: value-based and

policy gradient. The policy search task in value-based algorithms is dependent on the

computation of a monotonically improving value function. This is generally accomplished

by executing back and forth two intermediary steps, namely policy evaluation — updating

the value function based on past action(s) and reward(s) — (SUTTON; BARTO, 2018,

p. 74) and policy improvement (SUTTON; BARTO, 2018, p. 76) — updating the policy

based on the recently updated value function. Algorithms such as Sarsa (SUTTON;

BARTO, 2018, p. 129), Q-learning (SUTTON; BARTO, 2018, p. 131), and DQN (MNIH

et al., 2013) fall into this category.

Conversely, policy gradient algorithms learn a parameterized policy so actions can be

chosen without the need of a value function. The goal in this case is to learn parameters

θ ∈ Rd such that the policy π(a|s, θ), which yields the probability of action a being taken

given the environment is in state s with parameters θ, maximizes some scalar performance

measure J(θ). This goal is achieved by successively updating the values of θ through a

gradient ascent algorithm, that is, θt+1 = θt + α∇J(θ) (SUTTON; BARTO, 2018, p.

321). Intuitively, policy gradient algorithms try to maximize the frequency in which

actions that yield good outcomes given the state of the environment are picked by the

agent. Algorithms such as REINFORCE (WILLIAMS, 1992), DDPG (LILLICRAP et

al., 2016), A2C (MNIH et al., 2016), and PPO (SCHULMAN et al., 2017) fall into this

category6.

6DDPG, A2C, and PPO are frequently categorized into the actor-critic family of RL algorithms that
use both a value function and a parameterized policy. Actor-critic algorithms are commonly placed under
the policy gradients umbrella since they use the value function to estimate the goodness of an action/state
pair, which in turn, can be used to compute J(θ) and update the policy parameters θ.
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2.3.2 Multiagent reinforcement learning

Multiagent reinforcement learning (MARL) refers to the set of RL tasks where multi-

ple agents — two or more — coexist and interact with an environment and with each other.

The MDP counterpart in MARL is the Stochastic Game or Markov Game (LITTMAN,

1994), defined in the following.

Definition 2. A Markov Game (MG) can be formally defined by the 6-tuple

⟨N ,S, {Ai}i∈N , {Ri}i∈N ,P , γ⟩, where

• N = {1, ..., N} denotes the set of N > 1 agents;

• S, a finite set of environment states;

• Ai, agent’s i set of possible actions.

Let A = A1 × ...×AN be the set of agents’ possible joint actions. Then

• Ri denotes agent’s i reward function Ri : S×A×S → R that defines the immediate

reward earned by agent i given a transition from state s ∈ S to state s′ ∈ S after a

combination of actions a ∈ A;

• P, a transition function P : S × A × S → [0, 1] that defines the probability of

transitioning from state s ∈ S to state s′ ∈ S after a combination of actions a ∈ A;

and

• γ ∈ [0, 1], a discount factor on agents future rewards (ZHANG; YANG; BAŞAR,

2021).

Such formalism holds some similarities with the single-agent case. For once, the

goal from a single agent’s perspective is the same — to learn an optimal policy so as to

maximize long-term expected reward. Another shared commonality is that the learning

strategies introduced in Section 2.3.1 — value-based and policy gradient methods — can

still be used in the multiagent paradigm.

Still, one key difference between RL and MARL lies on the fact that the environ-

ment transitions to a new state as a function of the combined actions of all agents on the
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latter, as opposed to the former, where it transitions solely as a function of one agent’s

action. The fact that all the agents’ actions may influence the state transition has some

bad repercussions for the multiagent case. First, it brings about engineering challenges

such as the sequence in which agents and environment should act and change respectively

(TERRY et al., 2021), how tie-breaking should be implemented (TERRY et al., 2021)

and the increase in dimensionality. Also, the Markov property — the premise that all the

information needed for an action to be picked is encompassed within the current envi-

ronment state, i.e., p(a|st) = p(a|st, st−1, st−2, st−3, ...) — is violated and the environment

ceases to be stationary, which hampers agents learning.

Finally, a game theoretic aspect which is central to multiagent systems is added to the

mix. Since the environment transitions as a function of the joint actions of all agents, an

agent i has to optimize its policy not only with respect to the state of the environment,

but also, relative to the joint policy of all other agents in the system (π−i). Thus, once

again, arises the notions of best responses and Nash equilibria (GRONAUER; DIEPOLD,

2022).

Definition 3. An agent’s i best response is the policy πi
∗ such that its value function

viπi
∗,π

−i(s) ≥ viπi,π−i(s), with π−i being the joint policy of all other agents in the system, for

all states s ∈ S and all policies πi ∈ Πi, with Πi being the set of all possible policies for

agent i.

Definition 4. A Nash equilibrium is a joint policy equilibrium in which all the agents’

policies are best responses to all the other agents policies, i.e. viπi
∗,π

−i(s) ≥ vi
πi,π−i

∗
(s), for

all agents in the system, states s ∈ S, and policies πi ∈ Πi.

MGs are a common place for mixed-motive games and therefore, the occurrence of

the collective action problem. In the next chapter we present how the MARL community,

as well the MAS community have dealt not only with this problem, but also with the

broader issue of social order, starting with the latter.
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Figure 3: A single step of a MARL run. Multiple agents act on the environment, the
combination of actions change its state, and each agent receives a reward.
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3 RELATED WORK

3.1 Regulating MAS

The idea of regulating systems of heterogeneous agents through a formal institution

is about as old as the problem of attaining social order from local actions and interac-

tions (CASTELFRANCHI, 2000). A key step towards the development of a social control

framework was the proposal of electronic institutions (EI) (NORIEGA, 1997; ESTEVA

et al., 2001; ESTEVA et al., 2004), which specifies among other definitions, a set of rules

that determines what the agents in the system ought to do or not under predefined cir-

cumstances. These institutions are inspired, and play a similar role to the one traditional

norm-setting institutions play in real-world societies (BOU et al., 2009).

Though an important step, EIs had some limitations when compared to real-world

institutions. For once, EIs were conceived at design time and were not capable of evolving

over time (BOU; LÓPEZ-SÁNCHEZ; RODRÍGUEZ-AGUILAR, 2007). This issue pre-

sented some challenges for their adoption since a) regulating complex systems is a hard

task, especially when the rules of the game are set a priori, and b) because conceiving

fully functional EIs at design time is hard, a desirable property of software may be lost,

i.e., the deployed system may not be self-managed.

This latter issue gave birth to the proposal of an autonomic electronic electronic in-

stitution (AEI) (BOU; LÓPEZ-SÁNCHEZ; RODRÍGUEZ-AGUILAR, 2007; BOU et al.,

2009), that as the name suggests, is an electronic institution with autonomic capabilities

(norm-evolving at run-time). The main objective of an AEI is for the institution to ac-

complish its goal by measuring some of the system’s metrics, assessing whether or not the

goal is being accomplished, and adapting the system’s norms in case it is not through the

use of an evolutionary algorithm.
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3.2 Agent-centric approaches in MARL

The RL community has also seen its fair share of proposals for solving the issue of

social order, and more specifically, the collective action problem in mixed-motive MARL

environments. That being said, its take on the problem differs from that of the MAS

community previously presented in that most of its proposals have tackled the problem

from an agent-centric perspective; their solutions involve tailoring agents’ architectures

to the specific needs of mixed-motive scenarios.

As discussed before, these solutions can work just fine in closed systems, where one

has control over the agents being deployed, or even in systems where agents are allowed

to punish each other, but not as much in open systems where firm retaliation1 is not

allowed. They can be generally grouped in two: strategies that leverage reciprocity

mechanisms, where agents learn to punish defective behaviors, and pro-social intrinsic

motivation strategies, that reward agents for pro-social behavior.

3.2.1 Reciprocity

Reciprocity has been a notorious strategy for agents in mixed-motive games since

the days of the Axelrod’s tournaments (AXELROD, 1980a; AXELROD, 1980b), when re-

searcher Robert Axelrod promoted two tournaments and invited game theorists to submit

strategies to play one another in repeated plays of the prisoner’s dilemma game.

This strategy is as simple as it is effective, an agent playing a reciprocity strategy

defects when it recognizes antisocial behavior and cooperates when it recognizes prosocial

behavior. Note that reciprocity is inherently related to the notion of a normative system;

it is a mechanism that incentivizes actions that are compliant and discourages actions

that are not.

These strategies have been implemented in RL agents by simply adding the capability

of firmly punishing others to the agents’ set of actions. By doing this, agents were ca-

pable of learning to reciprocate through self-play. Among the works that have leveraged

reciprocity mechanisms to combat the collective action problem in mixed-motive MARL,

we highlight those of Pérolat et al. (2017), that implemented agents with the ability of

tagging other agents out of the game for a period of time, Lerer and Peysakhovich (2018),

that implemented agents with two switchable policies, one fully cooperative and one fully

defective, and Eccles et al. (2019), that implemented reciprocity through imitation.

1By firm retaliation we mean that the punishment inflicted by one agent to another is not negligible.



33

3.2.2 Prosocial intrinsic motivation

Another active avenue of research is to deviate from rational rational egoist model and

endow RL agents with prosocial intrinsic motivation. As seen in Section 2.3, traditional

RL agents are rewarded by the environment after choosing an action a in state s and

transitioning to state s′. This reward can be regarded as extrinsic, i.e. the reinforcement

is given to the agent as a signal of how well it is solving a problem of clear practical

value (SINGH; BARTO; CHENTANEZ, 2004). Conversely, intrinsic motivation can be

modeled as a term that composes the agents’ rewards together with the extrinsic; this can

be understood as a reward that is not related to the specific task in hand, but is rather

earned because it is inherently enjoyable (SINGH; BARTO; CHENTANEZ, 2004).

Intrinsic motivation can be used as a way to model complex abstract patterns such

as morality, empathy, or influence. Among the works that leverage prosocial intrinsic

motivation to deal with the collective action problem in mixed-motive environments, we

highlight those of Hughes et al. (2018), that incorporated inequity aversion preferences in

RL agents, Peysakhovich and Lerer (2018), that modeled prosociality by including other

agents’ rewards as agent’s intrinsic motivation, Jaques et al. (2019), that used the intrinsic

motivation term of the reward to implement a model of social influence, and McKee et

al. (2020), that tested the effects of population heterogeneity in mixed-motive scenarios.

3.3 Discussion

The proposed work is similar to the AEI framework in that it addresses most of the

same problems (social order in MAS) by leveraging the use of norms, but different in that

it is reduced in scope (the collective action problem in mixed-motive MARL), and it uses

RL for norm adaptation instead of an evolutionary algorithm.

It also deviates significantly from those solutions put forward by the RL community;

it does not assume anything about the agents’ in the system, be it their intentions or their

internal architecture. Instead, we opt to add another agent to the system and delegate

to it the role of an overseeing regulator, that is capable of sensing the macro-state of

the environment and changing the norms of the system in order to improve the social

outcome.

This description somewhat fits the AI Economist framework proposed by Zheng et al.

(2020), that closely portrays the general idea of a central authority learning system-level

rules to guide the behavior of adaptable agents. The framework allows the training of



34

RL social planners, that learn optimal tax policies in a MARL environment of economic

actors by observing macro-properties of the system (productivity and equality). Economic

actors in this framework are free to roam around a 2d grid-world and harvest resources to

build houses in order to earn money. Resources can also be traded between them. Similar

to what happens in real-world societies, a percentage of all earnings — conditioned on

the amount earned by each actor — is collected by the social planner and redistributed

equally between all actors.

Although the work does not deal explicitly with the collective action problem in

mixed-motive MARL, nor it explicitly deals with normative concepts, it inspired many of

the ideas used here.
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4 A NORM-ENHANCED MARKOV GAME

4.1 Overview

We propose a norm-enhanced Markov Game (neMG) for governing mixed-motive MGs

by making use of an RL regulator agent and some added normative concepts. A neMG

comprises two types of RL agents: N > 1 players and one regulator. Players are simple

RL agents, analogous to the ones that interact with regular versions of MG environments,

with the difference that they are aware of the norm of the game, which is available to

them as it is embedded in the environment’s state. The regulator, on the other hand,

is able to act exclusively on the environment’s norm at a predefined frequency measured

in terms of players’ steps, which we refer as a period. This agent senses the state of the

environment through a social metric — i.e. a system-level diagnostic — and the efficacy

of its actions is signaled back by the environment as a reward based on the system’s social

outcome.

4.2 Formal model

The formal model below describes how players and regulators interact with the envi-

ronment, the framework builds upon a regular version of a Markov Game:

Definition 5. Let ⟨N ,S, {Ai}i∈N , {Ri}i∈N ,P , γ⟩ be the regular version of the Markov

Game to be enhanced. Then, a norm-enhanced Markov Game (neMG) can be formally

defined by a 13-tuple ⟨ϕ,Np,Sp, {Ai
p}i∈Np , {Ri

p}i∈Np ,Pp, γp,m,Sr,Ar,Rr,Pr, γr⟩, where

• ϕ denotes the neMG’s set of norms;

• Np = N denotes the set of N > 1 players;
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• Sp = S × ϕ, the players’ finite set of environment states;

• Ai
p = Ai player’s i set of possible actions.

Let Ap = A1
p × ...×AN

p be the set of players’ possible joint actions. Then

• Ri
p denotes player’s i reward function Ri

p : Sp × Ap × Sp → R that defines the

immediate reward earned by player i given a transition from state sp ∈ Sp to state

s′p ∈ Sp after a combination of actions ap ∈ Ap;

• Pp, a transition function Pp : Sp ×Ap × Sp → [0, 1] that defines the probability of

the players’ environment transitioning from state sp ∈ Sp to state s′p ∈ Sp after a

combination of actions ap ∈ Ap;

• γp ∈ [0, 1], a discount factor on players future rewards;

• m ∈ N, the amount of players’ steps per period;

• Sr, the regulator’s set of states;

• Ar, the regulator’s set of actions;

Let rij denote the reward earned by player i at a relative time step j of a given period1,

and n the number of players in a neMG. Then

• Rr denotes the regulator’s reward function Rr =
∑n

i=1

∑
rij

2, that determines the

immediate reward earned by the regulator at the end of a period given by the sum of

all players’ rewards over the period;

• Pr, the normative transition function Pr : ϕ × Ar → ϕ that defines norm update

following a regulator’s action; and

• γr ∈ [0, 1], the regulator’s discount factor.

1e.g. r23 refers to the third reward earned by player 2 within the period.
2
∑

rij refers to the sum of rewards earned by player i in the given period.
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Figure 4: A comparison between an MG and an neMG, the upper part depicting an MG
and the lower part, an neMG. An neMG builds on an existing MG by adding normative
concepts and a regulator to it. The added regulator is also an RL agent, and as such,
can also choose an action ar in state sr changing it to s′r and receiving a reward rr in
the process. The regulator senses the environment through a macro-level diagnostic (the
state of the environment from its perspective), acts on its norm (ϕ), and receives a reward
based on the system’s social outcome.
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4.3 Algorithm

In these settings, a neMG could be run following two RL loops; an outer one relative

to the regulator, and an inner one relative to the players. Algorithm 1 exemplifies how

these could be implemented.

Algorithm 1: neMG Pseudocode

1 algorithm parameters: number of players (n), steps per period (m);
2 initialize policy and/or value function parameters;
3 foreach episode do
4 initialize environment (set initial states sr0 and sp0);
5 foreach period do
6 regulator adjusts norm (ϕ) by consulting its policy πr in state sr;
7 for m steps do
8 set current player i;
9 current player acts based on its policy πi

p in state sp, state transitions

to s′p, player observes its reward rip, and updates its policy πi
p;

10 end for
11 regulator observes next state s′r, its reward rr and updates its policy πr;

12 end foreach

13 end foreach

Training on an neMG happens across multiple episodes, a term often used in the RL

literature to denote instances of games that end on a terminal state (SUTTON; BARTO,

2018, p. 54). An episode begins with the initialization of the environment’s states (line

4). At every period, the regulator acts by adjusting the environment’s norm based on

its percept, players in the game act for m steps, and the regulator receives an immediate

reward, update its policy, and the environment transitions to the next state (lines 5-10).

In this case, period size (m) is the variable used to control the frequency in which the

regulator acts and is measured in terms of players’ steps. At every step, players act

based on their percepts, the state transitions, players receive an immediate reward from

the environment, and players update their policy (lines 8-9). Note that the norm does

not appear anywhere in the players’ loop because it is embedded within the environment

state.
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5 EXPERIMENTS

5.1 Recalling the research questions

Before getting into the details of the experiments, we recall the research questions

introduced in Section 1.2 in order to relate them.

1. Can we successfully train a regulator agent to prevent the collective action problem

in mixed-motive MAS environments?

2. What effect does the frequency in which the norm is changed have on the system’s

social outcome?

3. What effect does the harshness of the penalty applied to those who violate the norm

have on the system’s social outcome?

These questions are addressed in three experiments, each one serving the purpose of

answering one of the questions. We start describing the experiments by introducing the

environment used for running them.

5.2 The tragedy of the commons environment

The neMG framework was tested on a mixed-motive MARL environment that em-

ulates the tragedy of the commons game described in Section 2.1.3 and that closely re-

sembles the environment used by Ghorbani et al. (2021) (GHORBANI; HO; BRAVO,

2021). In this environment, agents consume units of a common resource that replenish as

a function of the amount of resources left in a previous step — i.e. if the resource level fall

to zero, the replenishment will also be zero. It also allows for the existence of a regulator

agent by including all elements introduced in Section 4.2.

The environment is composed of two different but related parts: the players’ environ-

ment and the regulator’s environment, which are both described in the following.
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Players’ environment: A period (p) begins with an initial quantity (R0) of the

common resource. At every simulation step, players in the environment can observe the

current resource level (Rj), the consumption limit (lj), and the fine multiplier (λj); and

can choose how much of the resource to consume (cj), with 0 ≤ cj ≤ cmax, where cmax is

a consumption limit that represents a physical limit in an analogous real-world scenario.

Upon such decision, the environment’s resource level is updated following the simple rule

Rj := Rj − cj.

Every n simulation steps — n being the number of players — the resource grows by

a quantity given by the logistic function ∆R = rRj(1− Rj

K
) — akin to how some natural

resources grow in the real world (GHORBANI; HO; BRAVO, 2021) —, with ∆R being

the amount to increase; r, the growth rate; Rj, the current resource quantity; and K, the

environment’s carrying capacity — an upper bound for resources.

The environment also encodes the ADICO variables as described in Section 2.2, which

is the normative framework used to operationalize norm synthesis and norm adaptation

in this environment — ϕ in the formal model. The A, D, and C dimensions remain

fixed for this experiment since a) the norm applies to all players, b) the norm always

defines a forbidden action, and c) the norm is valid throughout the episode, no matter

the conditions. The I and O dimensions, on the other hand, may be changed by the

regulator agent; i.e., every m steps, that denotes the frequency in which the regulator

adjusts the norm, the regulator may change how much of the resource a player is allowed

to consume (l) and the fine applied to those who violate this condition (f(c, l, λ)) — by

setting the value of λ. Thus the ADICO information that enhances this environment is

made up of:

• A: all players;

• D: forbidden;

• I: consume resources above the consumption limit (lj);

• C: always;

• O: pay a fine of fine = (cj − lj)× (λj + 1).

A violation only turns into a fine at a predefined percentage of occurrences. Such

percentage is denoted here as P (punish), and defines the probability a player will be

caught once it exceeds the consumption limit — e.g. if P (punish) = 0.3, violations will
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be punished 30% of the time. The fine value is subtracted from the violator’s consumption

in the same step the norm is violated following the simple update rule cj := cj − fine.

This is the case because players’ rewards in this environment are directly proportional to

their consumption.

At every players’ environment invocation, players act, one at a time, for a total of m

steps. This means that in case the regulator changes the norm at every 100 steps, and

there are 5 players in the game, then each player will act for a total of 20 times before the

norm is once again changed. The amount of times a player acts on a single norm iteration

is denoted n cycles. Algorithm 2 summarizes the players’ environment execution, which

relates to lines 7-10 in Algorithm 1.

Algorithm 2: Pseudocode for the players’ environment

1 for n cycles do
2 foreach player do
3 player i consumes some quantity of resources (cj) based on its policy πi

p

and the state of the environment (Rj, lj, λj);
4 resources update (Rj := Rj − cj);
5 if consumption (cj) > norm-set consumption limit (lj) then
6 random := random number between 0 and 1;
7 caught := (random < P(punish));
8 if caught then
9 player i is penalized (cj := cj − fine);

10 player updates its policy πi
p based on its net consumption (cj) and the

new state of the environment (Rj, lj, λj);

11 end foreach
12 resources replenish (Rj := Rj +∆R);

13 end for

Regulator’s environment: Before a new norm is set, the regulator can evaluate the

system-level state of the environment by observing how much of the resource is left (Rp),

and a short-term and long-term sustainability measurement (Ssp and Slp respectively),

given by S =
∑p

k=p−t
rpk
ck

defined for ck > 0 and t ≥ 0, with

• t being the number of periods considered as short-term and long-term (respectively

one and four for all simulations in this work);

• rpk, the total amount of resources replenished in period k;

• ck, the total consumption in period k;

• p, the current period.
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The initial values at the beginning of the simulation for these observable variables are

drawn from uniform distributions, i.e. R0 ∼ U(10000, 30000), Ss0 ∼ U(0.4, 0.6), and

Sl0 ∼ U(0.4, 0.6).

In this environment, the regulator acts by increasing or decreasing the values relative

to the I and O ADICO variables, i.e. the consumption limit (l) — with changes limited

to a value of 400 (∆lmax) and up until a maximum value of cmax (lmax = cmax) — and

the fine multiplier (λ) — with changes limited to a value of 0.5 (∆λmax) and up until a

maximum value of three (λmax). The initial values of both the consumption limit and the

fine multiplier are drawn from normal distributions in the first period of the simulation,

i.e. l0 ∼ N (375, 93.75) and λ0 ∼ N (1, 0.2). The values of l and λ set by the regulator are

used throughout the period by the players in each their steps (lines 3 to 10 in algorithm

2).

At the end of the period, the success of past norms is feed-backed to the regulator by

the environment as a reward value directly proportional to the period’s — all players’ —

total consumption.

A run — or episode, as it is commonly regarded in the RL literature — has two stop

conditions; it finishes at the end of a period in case resources are completely depleted or

after a thousand steps. Thus, the regulator will take an action for a maximum of m/1000

times, which is referred here by the max period (pmax) variable — e.g. if m = 100, then

pmax = 10. Algorithm 3 summarizes the execution process of the regulator’s environment,

which relates to lines 5-12 in Algorithm 1.

Algorithm 3: Pseudocode for the regulator’s environment

1 while resources(Rp) > 0 or p < pmax do
2 regulator acts by increasing/decreasing the consumption limit (l) based on its

policy (πr) and the state of the environment (Rp, Ssp, Slp);
3 regulator acts by increasing/decreasing the fine multiplier (λ) based on its

policy (πr) and the state of the environment (Rp, Ssp, Slp);
4 players’ environment executes;
5 regulator updates its policy (πr) based on the total period’s consumption (cp)

and the new state of the environment (Rp, Ssp, Slp);
6 p := p+ 1;

7 end while

A summary with all environment related variables used in this experiment and their

descriptions are presented in Table 5.
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Variable name Description

n number of players
m number of steps in a period
R0 initial quantity of common resource
Ri quantity of common resource at step i
K environment’s carrying capacity (resources upper bound)
r resources growth rate

∆R replenishment amount at a single step
ci single player consumption at step i

cmax players max consumption (hard limit)
P (punish) probability an agent will receive a fine if it exceeds the consumption limit

l norm-set consumption limit
λ norm-set fine multiplier

fine fine paid by an agent
p current period
t number of periods considered for calculating Ssp and Slp

Ssp short-term sustainability metric at period p
Slp long-term sustainability metric at period p
rpp period’s total replenishment
cp period’s total consumption
lmax max norm-set consumption limit
∆lmax max change in norm-set consumption limit
λmax max norm-set fine multiplier
∆λmax max change in norm-set fine multiplier

Table 5: Summary of the environment’s variables and their abbreviations.
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5.3 Experimental settings

Besides the fixed-valued variables introduced in the last section, we propose testing

the model with changes along three major axes; with or without an active regulator, with

fixed fine multipliers of different sizes or with the regulator setting it, and with different

period sizes. The cases are distributed in three experiments, each one serving the purpose

of testing how this implementation of the framework behaves given variations on each

axis.

The first experiment compares a default version of the tragedy of the commons ex-

periment as an MG versus it as an neMG. The second experiment tests the effect the

frequency in which the regulator acts has on the outcome of the system. Finally, the

third experiment tests how the system behaves when the fine multiplier is fixed versus

when it varies, and also the effect harsher punishment has on the environment versus

blander punishment. Table 6 presents how the 9 proposed test cases vary along said axes

and their respective experiments.

We investigate the effects these variations have on the system through some metrics:

the total and net comsumption metrics are used as proxy for social outcome, the average

relative and absolute difference between consumption and consumption limit per episode

tracks how rationally players are behaving, and the average fines paid per 1000 episodes

can also be used as a measure of players effectiveness.

The tragedy of the commons environment was built using both the OpenAI gym

(BROCKMAN et al., 2016) and pettingzoo (TERRY et al., 2021) frameworks. Agents in

this simulation were built using traditional RL architectures — SAC (HAARNOJA et al.,

2018) for the regulator and A2C (MNIH et al., 2016) for the players — using the Stable

Baselines 3 framework (RAFFIN et al., 2021), and players were trained on a shared policy.

The learning rates for all agents were set to 0.00039.

5.3.1 Experiment 1: Regulator effect

This first experiment allows us to take a first look into the workings of the neMG

framework by showing how the added normative concepts proposed by it affect the envi-

ronment. This is accomplished by testing the same version of the tragedy of the commons

game in two different scenarios: with normative concepts (neMG) and without them

(MG).

The MG version of the game — without regulator nor any normative concept — is
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Experiment Name Active regulator Value of fine multiplier Period size

Experiment 1
noRegulator no - 100
default100 yes var 100

Experiment 2

default50 yes var 50
default100 yes var 100
default200 yes var 200
default500 yes var 500

Experiment 3

default100 yes var 100
fixedMultiplier0.5 yes 0.5 100
fixedMultiplier1 yes 1 100
fixedMultiplier2 yes 2 100
fixedMultiplier3 yes 3 100

Table 6: Summary of implementation test cases. The default100 case is used as a base
case in all three experiments, and thus, it’s present in all of them.

presented by the noRegulator test case. This test case is used as a benchmark to test the

effects of adopting the neMG framework to regulate mixed-motive MARL environments.

The noRegulator case is tested against the default100 case, that consists of the same

version of the tragedy of the commons game as the one in the noRegulator case, with the

same values for variables — as far as possible —, but with the added normative concepts

proposed by the neMG framework, i.e., an RL regulator agent acting on the system’s

norms. The values used for variables in both of these test cases are shown in Table 7.

Each case was run 10 times.

In this experiment, we expect the neMG to outperform the MG version of the game

since, in the former, agents will almost always have the incentive to consume below the

consumption limit1, which, if we assume to be their expected behavior, will grant the

regulator the ability to control resources level and prevent its depletion.

Results

Figure 5 shows the average total consumption per episode for the noRegulator and

default100 cases, as well as the average net consumption (consumption - fines) per episode

for the default100 case. The results are also summarized in Table 8. As predicted by the

Nash equilibrium, we notice there isn’t much hope for generalized cooperation in case

selfish agents are left playing the game by themselves — i.e. resources quickly deplete in

the beginning of each episode.

1The exception would be when λ = 0. Then overconsuming pays off equally as much as consuming at
the set consumption limit since the fine paid for a norm violation will be equal to the difference between
consumption and limit.
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Variable name Values

n 5
m 100
R0 ∼ U(10000, 30000)
Ri var
K 50000
r 0.3

∆R var
ci var

cmax 1500
P (punish) -; 100%

l -; var
λ -; var

fine -; var
p var
t -; 1 (short-term), 4 (long-term)
Ssp -; var
Slp -; var
rpp var
cp var
lmax -; 1500
∆lmax -; 400
λmax -; 3
∆λmax -; 0.4

Table 7: Values for variables used in the noRegulator and default100 cases. The first
entry in each row is the value used in the noRegulator case whereas the second is the
value used in the default100 case. Rows with only one value means it is used in both
cases.
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Figure 5: The average net and total consumption per episode over a 10 simulation run
for the noRegulator and default100 cases. The blue line in (a) shows the average total
consumption for the noRegulator case while the green line in (b) shows the average total
consumption for the default100 case. The green line in (c) shows the average net con-
sumption (consumption - fines) for the default100 case. The shaded areas in all graphs
cover the region one standard deviation above and below the average.
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Total or net consumption Case Episode of reference Result

Total consumption
noRegulator 5000 21,252 ± 6,696
default100 5000 512,459 ± 152,263

Net consumption default100 5000 453,683 ± 181,435

Table 8: Total and net consumption for all cases in experiment 1. Episodes of reference
were chosen based on where the graphs seem to converge.

Conversely, this is not the case when the regulator is put in place. After a short

period of randomness at the beginning of simulation, players learn not to consume from

the resource since they frequently get punished when doing so. Around episode 500,

players progressively learn to consume around as much of the resource as the set limit

and the regulator increasingly learns to adjust such limit so as to keep resources at a

sustainable level. A comparison between an episode at the beginning of a simulation and

one at the end, after most of learning has taken place, is shown in Figure 6.

Every once in a while, resources deplete before the thousandth time step either due

to innacuracies from the player’s actions (i.e. players consume over the norm-set con-

sumption limit until there is no resources left), from the regulator (i.e. the regulator sets

the consumption limit higher than it should) or a combination of both, which explains in

parts the total consumption variation depicted by the green shaded area in Figure 5. One

instance of such combined inaccuracies is shown in Figure 7. We hypothesize that part of

these innacuracies might be intrinsic to the nature of our problem; neither the agents nor

the regulator have any contextual knowledge about norms or the environment they are

in, they learn and act based purely on past states and rewards. Therefore it is not trivial

for players — as it might be for a human in a similar real-life situation — to consume

below the consumption limit as much as it is for them to consume around it.

The behavior described above — agents consuming around the limit rather than just

under the limit — can be inferred from Figure 8. This figure presents the average absolute

and relative distances between the consumption limit and consumption per episode. The

absolute distance (the red curve) shows, on average, how far the agents are consuming

from the limit, regardless if consumption is above or below it. The relative distance (blue

curve) on the other hand, shows the average distance between consumption and limit

including positive and negative values, i.e., an average consumption of 100 above limit

in one run counters an average consumption of 100 below limit in another given these

values are relative to the same episode within their runs. Since the average distance

between consumption and limit remains close to 100 from episode 1000 onward, and the

average relative distance for this same range hovers close to 0, one can conclude that
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Figure 6: Time step consumption vs. consumption limit set by the regulator at an earlier
episode (a) and at a later episode (b). The orange line shows the resource level at all time
steps and the dotted red line shows the resource level in which the replenishment rate is
greatest (25000). In (a) players and the regulator act somewhat randomly and, for this
reason, resources are kept at a sustainable range but consumption is sub-optimal. Players
in (b) learn to approximate their consumption to the norm-set consumption limit and the
regulator learns to decrease such limit at times when resources are lower and increase it
when resources are higher. Resources in this episode are still kept at a sustainable range
and consumption sharply increases in comparison to (a).



50

Figure 7: An instance of resources depleting before the thousandth time step at a later
episode. Resources are kept at a healthy level in the first 300 steps of the episode and
the regulator increasingly raises the consumption limit. Starting from step 300, agents
overconsume on an already high consumption limit, which dips the system into an unre-
coverable state. The regulator has no time to decrease such limit to prevent the depletion
of resources.

agents are sometimes consuming above the set limit, sometimes consuming below it, but

these quantities cancel out when averaging.

Finally, Figure 9 presents the average fines paid per 1000 episodes in the default100

test case. The graph shows a sharp drop on fines paid when comparing the two first bins.

This behavior is in accordance with expectation; the first thousand episodes encompass

the first phase of learning when agents aren’t trained yet, and thus, are more susceptible

to violating the norm and being punished. Counterintuitively though, the average amount

of fines paid increases in each successive bin thereafter, which is another hint that players

are not learning to consume below the set limit, but rather around it. This pattern could

also be explained by the agents’ innacuracies or training instabilities cited above.

5.3.2 Experiment 2: Period effect

This second experiment provides us with a way of testing the effect that different

period sizes — the frequency in which the regulator acts — have on the overall performance

of the system. To this end, we resort again to the default100 case and use it as benchmark

to test against versions of the game with the same variables, with the exception of the

period size (m). These were set to 50 (default50 case), 200 (default200 case), and 500

(default500 case). Table 9 brings the values for variables used in all cases. For each case

the simulation was once again run 10 times.

Here we hypothesize that the smallest period size case (default50 ) will have a better
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Figure 8: Average absolute and relative distances between consumption and limit. The
red curve shows the average absolute difference (not considering positive and negative
values) between consumption and consumption limit per episode, while the blue curve
shows the average relative distance (considering positive and negative values) between
consumption and consumption limit per episode.

Figure 9: Average fines paid per 1000 episodes in the default100 test case.
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Variable name Values

n 5
m 50; 100; 200; 500
R0 ∼ U(10000, 30000)
Ri var
K 50000
r 0.3

∆R var
ci var

cmax 1500
P (punish) 100%

l var
λ var

fine var
p var
t 1 (short-term), 4 (long-term)
Ssp var
Slp var
rpp var
cp var
lmax 1500
∆lmax 400
λmax 3
∆λmax 0.4

Table 9: Values for variables used in experiment 2. The value of m was set to 50 for the
default50 case, to 100 for the default100 case, to 200 for the default200 case, and to 500
to the default500 case. All the other values remained the same throughout all cases.
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Total or net consumption Case Episode of reference Result

Total consumption

default50 4000 609,520 ± 175,206
default100 5000 512,459 ± 152,263
default200 4500 378,015 ± 214,528
default500 5000 271,586 ± 281,915

Net consumption

default50 4000 537,525 ± 204,455
default100 5000 453,683 ± 181,435
default200 4500 311,340 ± 188,166
default500 5000 259,227 ± 281,599

Table 10: Total and net consumption for all cases in experiment 2. Episodes of reference
were chosen based on where the graphs seem to converge.

performance when compared to the other cases for three main reasons: a) the regulator

will act more often and thus should learn faster; b) since the regulator acts more often, it

should have greater control over the system and more chances to correct its path before it

derails; and c) players should also learn faster since they spend less time acting on noisy

percepts that occur from the moment resources deplete to the moment the period ends

and the environment is reset.

Results

Figure 10 presents the average net and total consumption per episode for each case in

experiment 2 and Table 10 summarizes the results. The results corroborate our hypothesis;

the default50 case seems to reach — on average — a higher consumption (around 600,000)

than the three other cases, before the four-thousandth episode, when it drops about 33%.

We conjecture this drop occurs due to some training instability common to RL such as

off-policy divergence (SUTTON; BARTO, 2018, p. 260).

For the test cases in which the regulator’s actions are more infrequent, total con-

sumption did not stabilize at — in the default200 case — or even reach — in the case of

default500 — the same levels as the test cases in which the regulator act more frequently

(default50 and default100 ). This behavior is expected since this system level metric is

highly dependent on the regulator’s ability to set the right consumption limit, and its

learning is dependent on the frequency in which it acts. Also, player’s learning could have

been harmed in these cases, since players spend more time acting on states with depleted

resources, where their actions have no effect on their rewards.

The players’ behavior throughout the simulation can be analyzed for each case in ex-

periment 2 in Figure 12. It presents the average relative and absolute differences between

consumption and consumption limit for the cases in experiment 2. They show an inter-
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Figure 10: The average total and net consumption per episode for all cases in experiment
2 (default50, default100, default200, and default500 ). The shaded area in each graph
covers the area of one standard deviation above and one standard deviation below the
mean for each episode.
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Figure 11: Resources level at a later episode when m = 50. The regulator manages to
keep resources near the optimal level (25000), represented by the dotted red line.

esting pattern for the default100, and default200. At the beginning of simulation, while

trying to maximize for consumption, players consume above the set consumption limit for

a short period before they realize that overconsumption does not pay off. Then, after a

small period of consuming below the limit — that could be explained by all the negative

reinforcements players received for overconsuming —, agents learn to consume around it

for the remaining episodes. The same pattern does not show up in the default50 case. In

it, players learn to overconsume and remain doing so for a while, slowly decreasing their

consumption difference to the limit, before reaching a relative average of zero, and later

increasing their consumption relative to the limit once again. In the default50 case, two

patterns deviate from the expectation: a) rational players should learn not to consistently

overconsume, like they did in the other cases; and b) rational agents should not go back

to overconsuming once they learned to consume around the set limit. This last pattern is

directly linked to the decrease in the system’s performance after episode 4000, and once

again, could be caused by learning instabilities mentioned above.

As for the average amount of fines paid per episode, Figure 13 presents a big dis-

crepancy between the default50 case and the three other cases. This noticeable difference

may be surprising at first, since one could expect the regulator’s learning to be somewhat

decoupled from the agents’ learning, and if that was the case, the agents fines should not

vary too much across the four test cases in this experiment. This seems to be a reasonable

premise, since the agents are almost always incentivized to consume just below the set

consumption limit, regardless of how much the limit is. In this case, the main difference

across cases is the amount of time agents spend acting on environments with no resources.

Since the environment only resets at the end of a period, players in the default500 case

spend more time acting on a depleted environment than players in the default50 case, i.e.
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Figure 12: Average absolute and relative distances between consumption and limit for
all cases in experiment 2. The red curve shows the average absolute difference (not
considering positive and negative values) between consumption and consumption limit
per episode, while the blue curve shows the average relative distance (considering positive
and negative values) between consumption and consumption limit per episode for the test
cases a) default50, b) default100, c) default200, and d) default500.



57

Figure 13: Average fines paid per 1000 episodes in experiment 2.

resources in the default500 and default200 cases are not always available, which mean

these agents are not able to violate the norms even if they want to.

5.3.3 Experiment 3: Fine multiplier effect

In this last experiment we test the effect harsher punishment has on the system’s

performance versus blander punishment. This is accomplished by fixing the fine multiplier

at different levels across four different test cases (λ = 0.5, λ = 1, λ = 2, λ = 3) and leaving

only the task of setting the consumption limit to the regulator. Since fines are just a proxy

metric for negative rewards in our environment, this experiment has the intent of testing

how these mixed-motive systems behave for different scales of punishment and how these

changes may affect the agents’ learning path. We also compare these cases against the

default100 case, to check if there are any noticeable advantages in allowing this extra

flexibility to the regulator. Table 11 shows the values of all variables used in the test case.

Here, we expect that a higher fine multiplier should discourage agents to consume

over the limit. This could have a positive effect in that agents will be less likely to explore

consuming above the limit, but it may also hinder players’ learning in case negative

reinforcements are too severe.

Results: Figure 14 presents the average total and net consumption per episode for

each of the five test cases in experiment 3 (default100, fixedMultiplier0.5, fixedMultiplier1,

fixedMultiplier2, and fixedMultiplier3 ) and the results are summarized in Table 12. We

notice a tendency for convergence at a higher consumption level for the two cases with

greatest fine multipliers (fixedMultiplier2 and fixedMultiplier3 ) when compared to the two

cases with the smallest fine multipliers (fixedMultiplier0.5 and fixedMultiplier1 ). This
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Variable name Values

n 5
m 100
R0 ∼ U(10000, 30000)
Ri var
K 50000
r 0.3

∆R var
ci var

cmax 1500
P (punish) 100%

l var
λ 0.5, 1, 2, 3, var

fine var
p var
t 1 (short-term), 4 (long-term)
Ssp var
Slp var
rpp var
cp var
lmax 1500
∆lmax 400
λmax 3
∆λmax 0.4

Table 11: Values for variables used in experiment 3. The value of λ was set to 0.5 for
the fixedMultiplier0.5 case, to 1 for the fixedMultiplier1 case, to 2 for the fixedMultiplier2
case, to 3 to the fixedMultiplier3 case, and it was allowed to change for the default100
case. All the other values remained the same throughout all cases.
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Total or net consumption Case Episode of reference Result

Total consumption

default100 5000 512,459 ± 152,263
fixedMultiplier0.5 5000 324,032 ± 247,439
fixedMultiplier1 5000 414,934 ± 264,354
fixedMultiplier2 5000 507,438 ± 74,121
fixedMultiplier3 4000 531,076 ± 95,277

Net consumption

default100 5000 453,683 ± 181,435
fixedMultiplier0.5 5000 229,781 ± 209,780
fixedMultiplier1 5000 370,120 ± 271,507
fixedMultiplier2 5000 463,129 ± 61,083
fixedMultiplier0.5 4000 524,033 ± 100,554

Table 12: Total and net consumption for all cases in experiment 3. Episodes of reference
were chosen based on where the graphs seem to converge.

effect likely happens due to the strength of the signal being sent to the agents in the form

of fines. The smaller the fine multiplier, the lesser is the punishment received for violating

the norm and weaker is the players’ learning signal. The stronger signal does a better job

at encouraging players to consume below the limit, which is good for them in the long

run.

At a first glance, the greatest advantage of having a high fixed multiplier versus al-

lowing the regulator to change it is the reduced variability in training. However, when an-

alyzing the players’ behavior in both scenarios, a small but important difference emerges.

Figure 15 shows the average difference between consumption and consumption limit for

all cases in experiment 3. When comparing the cases default100, fixedMultiplier2, and

fixedMultiplier3, it is possible to notice that players in the latter two cases do a better

job at consuming below the limit than in the former. This pattern can also be observed

in the graph in Figure 16. In it, we notice that players in the default100 case get con-

sistently more punishments in all learning stages than those in the fixedMultiplier2 and

fixedMultiplier3 cases.

We also notice that a higher fine multiplier is not associated with more fines paid by

agents. The harsher punishment had the effect of quickly limiting overconsumption in

the first stages of learning, as opposed to a more prolonged period of overconsumption

observed in the cases with lower fine multipliers. As training progressed, players in the

cases with harsher punishement were more consistent in adhering to the norm.

Once again, we observe some instabilities in training, and although it is hard to

pinpoint exactly what are the root causes, we conjecture that harsher punishment might

be associated with more stable training in these mixed-motive systems.
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Figure 14: The average total and net consumption per episode for all cases in experiment
3 (default100, fixedMultiplier0.5, fixedMultiplier1, fixedMultiplier2, and fixedMultiplier3 ).
The shaded area in each graph covers the area of one standard deviation above and one
standard deviation below the mean for each episode.
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Figure 15: Average absolute and relative distances between consumption and limit for
all cases in experiment 3. The red curve shows the average absolute difference (not
considering positive and negative values) between consumption and consumption limit
per episode, while the blue curve shows the average relative distance (considering positive
and negative values) between consumption and consumption limit per episode for the test
cases a) default100, b) fixedMultiplier0.5, c) fixedMultiplier1, d) fixedMultiplier2, and e)
fixedMultiplier3.
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Figure 16: Average fines per 1000 episodes in experiment 3.

5.3.4 Discussion

The tragedy of the commons experiment serves to validate the idea of a norm-enhanced

Markov Game (neMG). That is to say that it could be an option to be considered for

regulating mixed-motive multiagent systems when the general case a — that no prior

knowledge about the agents’ beliefs, goals, incentives in the system is known — and

constraint b — that agents in the system are not allowed to punish each other — are both

valid.

Experiment 1 shows that it is possible to interfere with a system’s outcome by pur-

posefully employing selfish learning agents with different objectives to interact on a shared

environment. With the advent of ever so powerful learning mechanisms — such as those

found in recent RL architectures —, thinking about the agents’ objectives, and how they

interact with the environment, becomes a viable option for synthesizing norms or regu-

lating systems at run time as opposed to pre-defining them at design time.

Experiment 2 shows that the frequency in which the regulator acts in the system

proved to be a sensible variable. Increasing such frequency grants the regulator greater

control by allowing it a bigger margin for it to correct the system’s path once the system

starts to behave undesirably. This could be especially useful in dynamic systems, where

negative outcomes might scale exponentially.

Finally, experiment 3 gives us a hint to how the punishment variable — the Or else

variable from the ADICO framework such as λ — impact learning in and the overall

performance of a mixed-motive neMG. Greater punishment seems to grant more stability

during training and also positively impact system’s performance. That being said, we do

not know the extent to which this pattern is valid, more experiments should be conducted
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to test if it holds for even greater values of λ.
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6 FINAL CONSIDERATIONS

Multiagent systems are part of a trend towards greater and widespread computational

power (WOOLDRIDGE, 2009, p. 3) that harnesses the potential of autonomous, goal-

oriented agents to solve ever so complex problems. This is reminiscent to how humans

solve problems in societies. We coordinate, cooperate, and negotiate with one another in

order to settle disputes, reach agreements, and move forward as collective.

Still we have come to agree that letting everyone freely pursuit their goals through

any means deemed necessary in our modern-day societies may take us quickly down a

dangerous road. In a system where incentives can point to many different directions, all

sorts of emergent exploits may lead to negative externalities. For instance, two people

may agree on a deal beneficial to them both but that goes against the interests of one or

more third parties.

In many of these cases we resort to central regulation of some shape or form. If

many parallels can be drawn between multiagent systems and real-world communities,

why shouldn’t we exploit this apparatus that has been employed for centuries in the real-

world, and is very present in our everyday lives, to solve problems in communities of

artificial agents?

Delegating norm enforcement to an external central authority might seem counter-

intuitive at first, as we tend to associate distributed solutions with robustness. It also

might seem to go against the findings of Elinor Ostrom (OSTROM, 1999; OSTROM,

2000), who showed that the collective action problem could be solved without the need

of a regulatory central authority and for that, won the nobel prize in economics in 20091.

That being said, central regulation is still an important mechanism to govern complex

systems. Many of the world’s modern social and political systems use it in some form or

shape. With this work, we try to show that central regulation is also a tool that could be

useful in governing MAS and MARL, especially when it is not desirable for actors in the

1https://www.nobelprize.org/prizes/economic-sciences/2009/ostrom/facts/
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system to punish each other.

As further work, we plan to a) test how other variables such as the probability of

punishment influence the performance of the system, b) further investigate the learning

instabilities observed in experiments 2 and 3, and c) to test this very same method in

other mixed-motive MARL environments.
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ECCLES, T.; HUGHES, E.; KRAMÁR, J.; WHEELWRIGHT, S.; LEIBO, J. Z.
Learning reciprocity in complex sequential social dilemmas. 2019.

ESTEVA, M.; CRUZ, D. de la; ROSELL, B.; ARCOS, J. L.; RODRÍGUEZ-AGUILAR,
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ESTEVA, M.; RODRÍGUEZ-AGUILAR, J. A.; SIERRA, C.; GARCIA, P.; ARCOS,
J. L. On the formal specifications of electronic institutions. In: Agent Mediated Electronic
Commerce, The European AgentLink Perspective. Berlin, Heidelberg: Springer-Verlag,
2001. p. 126–147.

GHORBANI, A.; HO, P.; BRAVO, G. Institutional form versus function in a common
property context: The credibility thesis tested through an agent-based model. Land Use
Policy, v. 102, p. 105237, 2021.

GRONAUER, S.; DIEPOLD, K. Multi-agent deep reinforcement learning: A survey.
Artificial Intelligence Review, Kluwer Academic Publishers, USA, v. 55, n. 2, p. 895–943,
Feb 2022.

HAARNOJA, T.; ZHOU, A.; ABBEEL, P.; LEVINE, S. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In: DY, J.;
KRAUSE, A. (Ed.). International Conference on Machine Learning. [S.l.]: PMLR, 2018.
(Proceedings of Machine Learning Research, v. 80), p. 1861–1870.

HARDIN, G. The tragedy of the commons. Science, American Association for the
Advancement of Science, v. 162, n. 3859, p. 1243–1248, 1968.

HOEK, W.; WOOLDRIDGE, M. Towards a logic of rational agency. Logic Journal of
IGPL, v. 11, p. 135–159, 03 2003.

HUGHES, E.; LEIBO, J. Z.; PHILLIPS, M.; TUYLS, K.; DUEÑEZ-GUZMAN, E.;
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