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RESUMO

O sistema regulador glicose-insulina e suas oscilações glicêmicas é um tema recorrente
na literatura devido ao seu impacto na vida humana, principalmente dos acometidos pelo
diabetes mellitus. Diversas abordagens foram propostas, desde modelos matemáticos até
modelos baseados em dados, com o objetivo de modelar a curva de oscilação da glicose. De
posse desta curva, é possível prever quando e quanto injetar de insulina, a quantidade ideal
de carboidratos e possíveis estados hiper- ou hipoglicêmicos em indivíduos com diabetes
tipo 1 (DM1). No entanto, a literatura apresenta horizontes de previsão não superiores a
seis horas, o que pode ser um problema considerando o tempo de sono. Além disso, a mod-
elagem existente não pode ser personalizada para cada indivíduo, considerando seu estilo
de vida. Este trabalho apresenta o Tesseratus, um modelo que adota um sistema mul-
tiagentes para combinar aprendizado de máquina e modelagem matemática para prever
a oscilação da glicose em até oito horas. O Tesseratus também utiliza a farmacocinética
das insulinas, além dos dados coletados dos indivíduos com DM1. A captura periódica de
dados pode melhorar o processo de aprendizado dos agentes. Seu resultado principal é,
essencialmente, valores de predição de glicose durante horizontes que variam de 15 a 480
minutos. Tais valores podem ser visualizados em gráficos para auxiliar os endocrinologis-
tas na prescrição de tratamentos diários para indivíduos com DM1. Além disso, também
podem ser usados para fornecer recomendações personalizadas para esses indivíduos, a fim
de manter sua concentração glicêmica na faixa ideal. Em um experimento envolvendo 15
indivíduos com DM1 e nove indivíduos virtuais com DM1, Tesseratus apresentou resulta-
dos pioneiros para horizontes de previsão de oito horas para o período noturno. Utilizando
Parkes Error Grid como métrica de avaliação, pode-se observar que 95,53% das medições,
em média, caem nas zonas A e B, durante o período diurno, e 95,1% no período noturno,
sendo o Erro Absoluto Médio igual a 26.75 e 27.16 mg/dL, respectivamente. Consider-
amos que o Tesseratus será uma referência para a classificação do modelo de predição
glicêmico, apoiando a mitigação de complicações de curto e longo prazo nos indivíduos
com DM1. Dessa forma, o modelo preditivo proposto tende a retardar as complicações
agudas e crônicas de uma população com projeção de 78 milhões de adultos com diabetes
tipo 1, em todo o mundo, em 2045.

Palavras-Chave – Sistema Regulatório Glicose-Insulina, Diabetes Tipo 1, Sistemas Mul-
tiagentes, Aprendizado de Máquina, Equações Diferenciais Ordinárias, Predição, Person-
alização.



ABSTRACT

The glucose-insulin regulatory system and its glycemic oscillations is a recurring theme
in the literature due to its impact on human life, especially those affected by diabetes mel-
litus. Several approaches have been proposed, from mathematical models to data-based
ones, in order to model the glucose oscillation curve. With this curve, it is possible to
predict when and how much to inject insulin, the ideal amount of carbohydrates and pos-
sible hyper- or hypoglycemic states in individuals with type 1 diabetes (T1D). However,
the literature presents prediction horizons not exceeding six hours, which can be a prob-
lem considering the sleeping time. Also, existing models cannot be customized for each
individual considering their lifestyle. This work presents Tesseratus, a model that adopts
a multi-agent system to combine machine learning and mathematical modeling to predict
glucose oscillation in up to eight hours. Tesseratus also uses the pharmacokinetics of in-
sulins, in addition to data collected from individuals with DM1. Periodic data capture can
improve the learning process of agents. Its result is essentially glucose prediction values
over horizons ranging from 15 to 480 minutes. Therefore, it can assist endocrinologists in
prescribing daily treatments for individuals with T1D and providing personalized recom-
mendations for these individuals in order to maintain their blood glucose concentration
in the optimal range. Tesseratus brings pioneering results for prediction horizons of eight
hours for the night period, in an experiment with 15 real individuals with DM1 and 9
virtual ones. Using the Parkes Error Grid as an evaluation metric, it can be observed
that 95.53% of measurements, on average, fall into zones A and B, during the daytime
period, while at night it reached 95.1%, with the Mean Absolute Error equal to 26.75
and 27.16 mg/dL, respectively. It is our assertion that Tesseratus will be a reference for
the classification of the glycemic prediction model, supporting the mitigation of short and
long-term complications in individuals with T1D. In this way, the proposed predictive
model tends to delay the acute and chronic complications of a population with a projec-
tion of 78 million adults with type 1 diabetes, worldwide, in 2045.

Keywords – Glucose-Insulin Regulatory System, Type 1 Diabetes, Multi-agent System,
Machine Learning, Ordinary Differential Equations, Prediction, Personalization.
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1 INTRODUCTION

Diabetes mellitus (DM) is a syndrome characterized by hyperglycemia resulting from
defects in insulin secretion associated or not with resistance to the action of this hor-
mone (KEEN; BARNES, 1997). People of all ages, from all continents and communities
are affected by DM, which is one of the fastest growing health challenges of the 21st
century. The number of adults living with DM has more than tripled in the last 20 years.
More specifically in Brazil, in 2021, approximately 16 million adults (20–79 years old) were
reported to have DM (IDF, 2022). Another consequence of the increase in the number of
diagnosed cases is hospital admissions, with a total diabetes-related health expenditure
of around 42 billion, only in Brazil, in 2021 (IDF-ATLAS, 2021).

World Health Organization (WHO, 2022) estimates that high blood glucose is the
third most important cause of premature mortality, surpassed only by increased blood
pressure and tobacco use. About 90% of all premature deaths and 87% of all deaths
related to DM occur in low- and middle-income countries. This can be attributed to the
lower rates of diagnosis and difficulties in accessing treatment for DM when compared to
high-income countries (IDF, 2022). In addition, the prevalence of type 1 diabetes (T1D) is
increasing, and there is a projection for 2045 of 78 million adults with T1D (IDF, 2022).
Therefore, public policies aimed at adults, children and adolescents, associated with a
model that can facilitate the routine of a 24-hours (circadian) cycle of individuals with
DM are needed to reduce the complications associated with this condition (DANEMAN,
2006).

Some of the challenges that researchers and health professionals face are the following:
(1) the need for improving the prediction model for individuals with T1D, especially in
high-risk populations, and to support the development of effective and safe interventions
that avoid hypoglycemia or hyperglycemia; (2) the need for developing treatment ap-
proaches that bring better results in terms of glycemic control and reduction of the risks
of developing complications; (3) the possibility of having mechanisms to provide personal-
ized recommendations. From the perspective of individuals with T1D, the challenges are
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more incipient, from lack of access to trained professionals to even continuous treatment.

Current literature is composed of non-customizable methods and models, and most
of them are state-of-the-art built for specific scenarios of T1D control, for example, fo-
cused only on nocturnal hypoglycemia or for the treatment of adolescents (HOBBS et al.,
2019), and there is no path to combine them. Furthermore, no results were found with
prediction horizons longer than 6 hours (FOSS-FREITAS et al., 2020), or with continuous
learning (SCHINDELBOECK; PRAUS; GALL, 2016).

The prediction horizon of pharmaceutical devices already available on the market, such
as insulin pumps, does not exceed 30 minutes (FDA-CONTROLIQ, 2019), (MINIMED-
670G, 2020) and, consequently, does not have a desirable predictability, in the post-
prandial state (> two hours). Another point to be highlighted is the non-socially egalitar-
ian access to an artificial pancreas (CONTROL-IQ, 2020) (hybrid closed-loop systems). In
addition, the dynamic nature of the human organism, more specifically of glucose-insulin
regulatory system (GIRS) makes it complex to create a model that mimics the dynamic
exchange of information between its components (KISSLER et al., 2014).

Thus, we propose Tesseratus, a model that uses a Multi-agent System (MAS) ap-
proach (RUSSELL; NORVIG, 2016) to overcome challenges (1) and (3), as well as sup-
porting physicians to overcoming challenge (2). The model is characterized as hybrid as it
combines ordinary differential equation (ODE) (SMITH, 2011), mathematical modeling
of insulin pharmacokinetics data and machine learning tehcniques to mimic the glucose-
insulin dynamics, monitor and correct the input parameters, and customize the profile of
each individual with T1D.

This process of information gathering and continuous learning can facilitate daily
decision-making (TACK et al., 2018), such as the correct amount of carbohydrates in
addition to the duration of physical exercises. The Tesseratus model is embedded in the
concept of precision medicine (ELEMENTO, 2020), and can be used as a tool for the
Precision Medicine in Diabetes Initiative (NOLAN et al., 2022). The name Tesseratus is
related to the 4-dimensional hypercube – tesseract (RAMÍREZ; PÉREZ-AGUILA, 2002),
as the model has four main agents with pre-established responsibilities.

1.1 Objective

The main objective of the research is to build a hybrid model to predict glycemic
oscillation and suggest personalized recommendations for individuals with T1D. This
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prediction must combine concepts of artificial intelligence and applied mathematics, in
order to cover a minimum period of four hours, during daytime, and up to eight hours in
the nighttime.

1.2 Expected contributions

The main scientific contribution is the definition of a hybrid model that can predict, in
an interval between four to eight hours, the glucose level of an individual with T1D, with
a Mean Absolute Error (MAE) ranging from 0 to 30 mg/dL, according to the prediction
horizon. In addition to an accuracy above 95% in Parkes Error Grid’s zones A + B
according to (PFÜTZNER et al., 2013), representing less risk for individuals with T1D
who use the predictions as a guide to exercise, eat, etc.

Other contributions are an extension of the compartmentalized glucose model pro-
posed via: (1) dynamic correction of ODE glucose parameter values; (2) the use of insulin
pharmacokinetics (basal and rapid effects) to replace the insulin compartment; (3) in ad-
dition to the side effect, with social and economic impact, through the improvement of
DM control and consequently the reduction of diabetes-related health expenditure; (4)
creation of a dataset with seven real and nine virtual individuals with T1D.

As a technological contribution, is an artifact that implements Tesseratus, and could
be coupled to an artificial pancreas (OPENAPS, 2021), or to continuous glucose monitor-
ing (CGM) devices. Thus, it will be possible to automate the learning of each T1D indi-
vidual’s GIRS and make personalized recommendations, such as insulin dosage, amount
of macronutrients, in addition to the time and intensity of physical exercises.

1.3 Document Structure

The document is organized into three parts: Foundations, Proposal, Results and Con-
clusion. In the first part, we have more four Chapters: Chapter 2 describes the research
method. Chapter 3 describes the basic concepts for a good understanding of the text.
Chapter 4 discusses the works related to the present research, involving prediction of
glycemic oscillation in individuals with T1D, using Machine Learning, Multi-agent Sys-
tem, Polynomial Equations and Ordinary Differential Equation. Chapter 5 summarizes
the state of practice and the main application scenarios of this model. In the second part,
we have three Chapters: Chapter 6 contains the architecture and details of the Tesseratus
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model, Chapter 7 with details about initial instantiation of agents and model, and the
implementation of the model is detailed in the Chapter 8. In the last part, we have two
Chapters: Chapter 9 describes the experimental results and the test approach adopted
to verify the accuracy of the proposed model. Finally, Chapter 10 presents associated
publications and future works that may derive from this research.
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2 METHOD

The research method adopted to support this work is the Design Science Research
Methodology (DSRM) (PEFFERS et al., 2007) in its nominal sequence. This method
includes six steps: (1) problem identification and motivation; (2) definition of the objec-
tives of a solution; (3) design and development; (4) demonstration; (5) evaluation; and (6)
communication, as we can see in Figure 1. The method allows the search to start at any
of steps (1), (2), (3) or (4), and therefore the nominal sequence of the process may not be
followed. For this research, the solution sought is centered on motivation and, therefore,
its first nominal activity was number one.

Figure 1: Nominal sequence of Design Science Research Methodology.

2.1 Applying DSRM to this work

This section describes the applicability of DSRM to this job, from problem confirma-
tion to communication.
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2.1.1 Problem confirmation

T1D is a condition characterized by persistent hyperglycemia resulting from defects in
insulin secretion. It is a disease known since antiquity (before Christ) (KARAMANOU et
al., 2016) and, to this day, there is no cure (ADA, 2023). T1D can affect people of any age,
but it usually develops in children or young adults (IDF, 2022). The increased prevalence
of T1D results in higher rates of hospitalization and use of health services, impacting, in
most cases, the Public Health System (SBD, 2022a). Thus, without proper treatment,
individuals with T1D can suffer serious complications such as diabetic nephropathy, neu-
ropathies, among others (BROWNLEE et al., 2011).

Thus, T1D is a real public health problem and, in many cases, there is no technology
to allow continuous glucose control, nor a personalized recommendation system. A system
like the proposed model could infer about the time and appropriate amount of insulin to
be injected, or amount of carbohydrates to be ingested, for example, in a continuous rec-
ommendation process. It is observed that, if this calculation is performed incorrectly, the
individual with T1D may experience hypoglycemia (glucose levels lower than 80 mg/dL),
if they exceed exogenous insulin, or hyperglycemia (elevated blood glucose levels, in gen-
eral greater than 120 mg/dL in fasting period and greater than 180 mg/dL two hours
after a meal [postprandial]), if they inject less insulin than necessary (SBD, 2022a). It is
important to emphasize that in clinical practice, we consider hypoglycemia < 70 mg/dL,
which is considered the lower limit of normality. The American Diabetes Association
(ADA) working group considers <= 70 mg/dL the alert value (SEAQUIST et al., 2013).

Therefore, the continuous task of maintaining balance close to ideal glycemic range
(80–120 mg/dL in the fasting period and up to 180 mg/dL in the postprandial pe-
riod) (SBD, 2022a) is a problem to be addressed since it requires frequent follow-up by
endocrinologists. And, according to recent research, there is an estimate that an individ-
ual with T1D makes extra 180 health-related decisions daily, compared to an individual
without T1D (TACK et al., 2018).

From the literature review presented in Chapter 4, it was confirmed that most studies
related to the prediction of glycemic oscillation, in individuals with T1D, have a short
prediction horizon, less than or equal to two hours, and are decoupled from a continuous
learning and correction system. Another obstacle found was that most studies do not focus
on systematic and continuous prediction (KISSLER et al., 2014) of glycemic oscillation.
Thus, the relevance and classification of the problem as a research was concluded, and
the objectives that the model should achieve were established, in order to support a
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technological solution more adequate to the context of individuals with T1D, starting the
activity two of the research method adopted.

2.1.2 Definition of goals

Considering that the main problems associated with the existing models are short
prediction horizons and the impossibility of personalized recommendation, it was estab-
lished the goal of proposing a model that (i) predict glucose oscillation in a horizon up to
eight hours, and (ii) recommend the amount of exogenous insulin (fast-acting and basal),
in addition to the amount of macronutrients to be ingested, besides the time of exercise.

Possible solutions to the problem were analyzed, deciding on the combination of ex-
isting solutions, namely the use of mathematical modeling (ordinary differential equation)
(section 3.2) and MAS (section 3.3).

2.1.3 Design and development

The Motivation-Centered Solution was triggered by a real problem, and can be treated
with the development of a prototype, which allows the validation of hypotheses that serve
as a basis for the solution design.

The definition of the model started with the architectural design of the MAS, and
how the mathematical model would provide information to the agents and, at the same
time, be fed by them, as described in Chapter 6. The MAS is composed of agents, which
can be reactive and learning agents (RUSSELL; NORVIG, 2016). Part of this model is
described in a book chapter (PEREIRA et al., 2019).

As the model depends on data from individuals with T1D, authorization was requested
from the Ethics Committee (appendix A), granted on 05/20/2020. Data was collected
from seven volunteers between the months of June and August, 2020. A dataset (eight
individuals), from an external source (OHIO-UNIV-T1D, 2020), was also used to evaluate
the model. Another dataset was created with nine virtual individuals to complement and
compare with real individuals. All results with this data are detailed in Chapter 9.

2.1.4 Demonstration

This activity consisted of training and testing the proposed model from the data
collected. After the development of the model, at a proof-of-concept level, the artifact was
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adapted to receive as input the dataset of each individual with T1D. A mobile app is used
to present the agent’s predicted value with the final value suggested by the recommender
agent in addition to its recommendations. These results are compared with the values
received from the continuous glucose monitor (CGM). The performance measures that
are used are detailed in subsection 2.1.5.

2.1.5 Evaluation

The evaluation of the results obtained in the demonstration is carried out using per-
formance measures. The quality of the response of the hybrid model is controlled through
the absolute error between the measured and calculated values. Thus, the proposed hy-
brid model is extensively tested with the real dataset of the seven Brazilian volunteers
with T1D to evaluate these measures, in addition to the data of eight individuals from
the University of Ohio (OHIO-UNIV-T1D, 2020), and nine virtual ones created from the
University of Virginia simulator (UNIV-VIRGINIA, 2020).

The first performance measure is (1) check feasibility to predict for long prediction
horizons; (2) most of the percentage of predictions versus measurements should fall within
Parkes Error Grid (zones A and B) (PARKES et al., 2000), determining to be a clinically
accurate predictor (PFÜTZNER et al., 2013), regardless of the prediction horizon (PH);
(3) the MAE to check the quality (GINSBERG, 2009) of each predicted glucose value
for each individual; (4) the prediction, as well as the correction suggestions, and the
recommendations must be carried out in near-real time.

For comparison purposes only, the established standard for real-time measurements
is ISO15197 (KATZ, 2020), which dictates that 95% of the values must fall within the
range of ± 15 mg/dL to < 100 mg/dL, while the values must be within the range
of ± 15% in blood glucose >= 100 mg/dL. An award model facilitates the evaluation
of the performance measure (5), according to the guidelines of the Brazilian Society of
Diabetes (SBD, 2022a).

2.1.6 Communication

The manuscript related to the proposed model was discussed in a Doctoral Consor-
tium, at the 31st International Symposium IEEE CBMS (Computer Based Medical
Systems) (CBMS, 2018). As reported in activity three, the dissemination of preliminary
results has already been carried out (PEREIRA et al., 2019), in an academic conference
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on Intelligent Systems - 2019. The predictive model was also recently published in
the journal Applied Sciences (PEREIRA et al., 2022) with analysis of data from seven
individuals from Brazil.

The final results will be compiled in another article to be submitted to the journal
Engineering Applications of Artificial Intelligence (EAAI, 2022). For EAAI, the
focus will be on the description of the technological artifact and on the comparison of
personalized recommendations generated for Ohio University and virtual individuals.

The software based on Tesseratus was registered in the Brazilian National Institute
of Intellectual Property (INPI) in 2022, under the process BR5112022000522-0 (INPI,
2022).
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3 THEORETICAL FOUNDATION

In this Chapter, some of the most relevant and pertinent topics for this multidisci-
plinary research are detailed.

3.1 Type 1 Diabetes Mellitus

Glucose is vital for health because it is a source of energy for the cells, and the
main source of energy for the brain. Regardless of the type of diabetes mellitus (DM),
it is related to hyperglycemia (high blood glucose concentrations) (IDF, 2022). The
pancreas is a human organ that makes up the digestive and endocrine systems, and
produces important hormones for our digestive system. It carries out glycemic regulation,
mainly by producing and releasing insulin, through β cells, and glucagon, through α

cells (KATSAROU et al., 2017). Normally, in an individual without DM β cells produce
insulin when blood glucose rises. Thus, according to the body’s needs at the moment, it
is possible to determine whether this glucose will be used as fuel for the body’s activities
or will be stored as a reserve, in the form of glycogen or fat. This makes the blood glucose
return to ideal glycemic range (SBD, 2020).

Type 1 diabetes (T1D) has two subtypes: 1A in which insulin deficiency is due to
autoimmune destruction of β cells; and 1B in which insulin deficiency is of an idiopathic
nature (which manifests itself spontaneously). As a result, the body produces little or
no insulin (ROEP, 2013). For both types of T1D, the therapeutic recommendations are
the same, and there is no evidence of distinct risks for chronic complications between the
subtypes (SBD, 2022a). T1D has no cure, and no effective and safe intervention currently
exists to prevent it.

Constant hyperglycemia can lead to long-term complications such as macrovascu-
lar and microvascular disorders, as well as cerebrovascular diseases (KATSAROU et al.,
2017), that are responsible for the increased morbidity and mortality associated with
T1D (DANEMAN, 2006). To avoid these long-term complications, the first therapeutic
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step is ongoing education about diabetes mellitus, in addition to treatment of T1D with
a multidisciplinary healthcare team is recommended, and requires ongoing attention to
many aspects, including administration of exogenous insulin, continuous glucose monitor-
ing, meal planning, screening of comorbidities and complications related to T1D (DANE-
MAN, 2006).

3.1.1 Glycemic monitoring

Hyperglycemia, measured in mg/dL or mmol/L, has been used for many years as
a defining criterion for DM. To avoid both hyperglycemic and hypoglycemic states, the
blood glucose monitoring task is mandatory and must be continuous for individuals with
T1D (SHLOMO et al., 2019). Individuals with T1D can collect glycemic values in some
ways, either through the continuous glucose monitoring devices (CGM) or blood glucose
monitors.

Blood glucose monitors are devices capable of determining the blood glucose concen-
tration (ACCU-CHECK, 2020). The sample (1-2 µL) of capillary blood, which is found
in capillary blood vessels (GROSSI et al., 2009), is usually obtained by puncturing one
of the fingers of the hand (GLUCOMETER, 2020). The Accu-Check Active® model, for
example, has a minimum accuracy of 95% on most measured values that must be within:
(1) 10% of blood glucose values above 100 mg/dL; and (2) 10 mg of blood glucose levels
below 100 mg/dL (Table 1).

However, in recent years, continuous glucose monitoring is performed by individuals
with T1D more frequently, and the devices that perform it are in constant technologi-
cal evolution. These new devices have a sensor positioned in the interstitium (MOSER;
YARDLEY; BRACKEN, 2018), which contains the interstitial fluid between the skin
and the human circulatory system, and reads the interstitial glucose concentration each
five minutes, in addition to communicating with remote applications via Bluetooth (RO-
DRíGUEZ, 2020). There are models (DEXCOM-G6, 2020) that are coupled to insulin
pumps (MINIMED-670G, 2020), forming a closed system better known as an artificial
pancreas (CONTROL-IQ, 2020).

There are also standalone devices, such as FreeStyle Libre® (FREESTYLE, 2020),
which use NFC (Near Field Communication) (RODRíGUEZ, 2020), but there is a delay,
in average of 10 minutes, between the measurement of capillary blood glucose and the
interstitial glucose concentration (SBD, 2022a). In addition, FreeStyle Libre® has a min-
imum accuracy of 94.2% on most measured values which must be within: (1) ±20% of
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blood glucose values above 100 mg/dL and (2) ±20 mg of blood glucose levels below 100
mg/dL (Table 1). The accuracy of FreeStyle Libre® is adequate throughout its lifetime
(14 days), but is less accurate during the first and last days (FREESTYLE-LIBRE, 2020).
The error in the accuracy of these glucometers can cause confusion in the calculation of
proportion of insulin to be administered by individuals with T1D.

According to the US Food and Drug Administration (FDA) (FDA, 2021), for all
integrated CGM measurements, in the range from 70 to 180 mg/dL , the percentage
of measurements within ±15% of the corresponding glycemic value must be calculated,
and the lower one-sided confidence limit of 95%, must exceed 70%. Table 1 details the
accuracy and drawbacks of the three devices used by the all volunteers in this research.

Glucose meter devices
Model Capture Accuracy Inconvenience

Accu-Check
Active® capillary blood

within 95% for ±
10 mg/dL or 10%
of value measured

Painful finger puncture,
manual

FreeStyle Libre® interstitial fluid
within 94.2% for ±
20 mg/dL or 20%
of value measured

Sensor must be changed
every 14 days, need to

check with a glucometer

Medtronic Enlite® interstitial fluid
within 94.9% for ±
15 mg/dL or 15%
of value measured

Sensor must be changed
every six days, need to

check with a glucometer

Table 1: Devices (glucometers) used in this research.

The Brazilian Diabetes Society (SBD) adopted blood glucose and glycated hemoglobin
(HbA1c) values used to diagnose DM: fasting blood glucose for values greater or equal
to 126 mg/dL; postprandial glycemia (two hours) after overload with 75g of glucose for
values greater or equal to 200 mg/dL; glycemia at random for values greater or equal to
200 mg/dL with unmistakable symptom; HbA1c of 6,5% (SBD, 2022b). In this way, in
individuals with T1D, the continuous permanence of blood glucose in the recommended
range between 70 and 180 mg/dL can be facilitated by the use of CGM devices.

To define a state of hyper- or hypoglycemia, the metabolic control goals are based on
the scientific societies (SBD, 2022a), with glycemic values between 70 and 180 mg/dL.
Glycated hemoglobin (HbA1c) is considered the standard test to assess the metabolic
control of individuals with DM, and there is a well-established relationship between in-
creased values of HbA1c and chronic complications (SBD, 2022a). Glycemic goals can
also be different in each period of the day (24 hours), in accordance with the targets
defined in (SBD, 2022b).
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Glycemic values are pre-defined as goals by scientific societies, but the symptoms of
hypoglycemia, such as apathy or mental confusion, can occur, for example, with a blood
glucose value in the suggested range (70–180 mg/dL).

There are many factors that can interfere with postprandial glycemic oscillations (SBD,
2019), some of them related to food ingestion. A summary of such factors are presented
in Table 2. In this work, at least the following factors are used to predict glycemic oscil-
lation: (1) amount of carbohydrates, proteins and fat; (2) pre-prandial blood glucose; (3)
insulin sensitivity; (4) physical activity.

Food related Non-food related
Amount and type of carbohydrate Pre-prandial glycemia
Consumption associated with Protein

and fat
Gastric emptying time

Consumption associated with proteins
and lipids

Exogenous insulin

Food cooking process Insulin Resistance
Time spent at meal Physical activity

Intake of dietary fiber Stress
Alcohol consumption Puberty and menstrual period

Table 2: Summary of glycemic oscillations – information from the Brazilian Society of
Diabetes (SBD, 2019).

The glycemic oscillation of individuals with T1D is very peculiar, and in addition
to the factors mentioned in Table 2, it can be affected by some morning and evening
hyperglycemic phenomena. The dawn phenomenon (FURUTANI, 2019) and the twilight
phenomenon (DU et al., 2018) are some of them.

3.1.2 Insulin

In the early 1920s, Frederick Banting and Charles Best discovered insulin under the
supervision of John Macleod at the University of Toronto. With the help of James Collip,
the insulin was purified, making it available for successful treatment of DM. Banting and
Macleod won the Nobel Prize for their work in 1923 (SHI, 2020).

All individuals with T1D need to inject insulin to control blood glucose, and there
are different therapeutic that can be used to treat them. Normally, exogenous insulin
replacement is performed with a combination of basal insulin (effect during circadian
cycle), an insulin during meals (meal bolus to control blood glucose between meals and
sleep), and and bolus insulin doses to cover mealtime insulin needs (prandial bolus) and
to correct hyperglycemia (correction bolus) (SBD, 2022a).
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There are different types of insulin, related to pharmacokinetics characteristics (start,
peak and duration of action). Types of insulin include ultrafast, fast, intermediate, long-
acting, ultralong acting and premixed. In this work are considered the fast acting insulin
analogs lispro and aspart, and the basal insulin analogs glargine and degludec (long and
ultra-long acting analogs, respectively), due to their use by individuals with T1D. The
pharmacokinetics features of these insulins are described in the subsection 7.2.2, and
details related to the time they must be taken, how long they last and the time needed
for the start of their action are described at Table 3.

Type
Start of
Action

(minutes)

Peak
(hours)

Duration
(hours)

Moment of
injection

BOLUS - applied before or at mealtime
Ultra-fast analogues

Lispro 10 to 15 1 to 2 3 to 5 15 min. before
meals

Aspart 10 to 15 1 to 2 3 to 5 15 min. before
meals

BASAL - not specific for meals
Slow analog

Glargine 90 NA up to 24 Once a day, before
bed or at dawn

Degludec 90 NA 24 to 42 Once a day, before
bed or at dawn

Table 3: Detailed information about the types of insulin used in this work.

For each individual with T1D, the daily insulin dosage is calculated based on fasting
blood glucose, and interstitial or capillary blood glucose results throughout the day, pre-
and postprandial. For example, the basal insulin dose at bedtime, for example, is adjusted
according to the fasting blood glucose, while the other doses are according to the previous
preprandial blood glucose levels or glycemic values measured during sleep (SBD, 2022a).
Dose adjustments of basal analogues should be performed based on the fasting blood
glucose result, and at least every six days. The adjustment of fast-acting or ultra-fast-
acting insulin analogues is also performed based on the result of capillary or interstitial
blood glucose, two hours postprandial, considering insulin sensitivity factor (ISF) (SBD,
2022a).

Thus, there is no general treatment that covers all individuals with T1D, due to indi-
vidual characteristics, such as body mass, age, risk factors and daily activities. Therefore,
each insulin therapy must be personalized.
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3.1.3 Insulin Resistance

Insulin resistance is defined as the difficulty of insulin exerting its effects on muscle,
liver and fat cells after binding to its receptor (PRIYA; KALRA, 2018). It is known that
sensitivity to insulin action varies from one individual to another, and even at different
times of the day in the same individual. Insulin sensitivity factor (ISF) is defined as how
much a unit of insulin lowers blood glucose (SBD, 2022a).

In some commercial insulin pumps, ISF is used as the ratio of 1700 divided by the
total daily of insulin administered, the result being on the scale of mg/dL of glucose
per unit (U) of insulin. The ISF is used, by educated individuals with T1D, in insulin
pumps to deliver the correct amount of insulin, and correct the glycemic value to reach
the ideal (MINIMED-640G, 2020). ISF can be calculated for regular insulin according to
equation 3.1, while for fast-acting analogue insulin, equation 3.2 is used. Manually, some
calculations can also be performed to find the ISF according to the type of insulin (SBD,
2022a):

ISF = 1500
total daily insulin dose (3.1)

ISF = 2000 [or 1700 or 1800 or 2100]
total daily insulin dose (3.2)

Carbohydrate counting is also used to adjust the doses of fast-acting or ultra-fast-
acting insulin analogues, and it is common to use the insulin:carbohydrate ratio (SBD,
2021), which is obtained by the formula 3.3 (SBD, 2022a).

ratio = 400 or 500
total daily insulin dose (3.3)

Another alternative is to start carbohydrate counting, in adults, considering the indi-
vidual’s body mass (SBD, 2021).

Kissler and colleagues (2014) demonstrated that the ISF can be defined as an scale
factor γ. The γ factor can take values from zero to one, with zero corresponding to no
ability of muscle and fat cells to take up glucose, and one corresponding to the glucose
uptake capacity of an individual without DM. In this case, the individual with T1D would
have a value of γ close to one with adequate insulin doses and close to zero without insulin
administration.
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In 2001, Rabasa-Lhoret and colleagues (2001) evaluated the need to reduce the pre-
meal insulin dose, prescribing postprandial exercises of different intensities and durations
for individuals with T1D. Thus, an additional factor, fex = 1 + s ∗ (tex − texAvg), is
responsible for the positive effect of exercise on insulin sensitivity, as physical exercise
increases insulin sensitivity, providing better glycemic control (NELSON et al., 2013).
Thus, tex (exercise practice time) corresponds to minutes of moderate to vigorous physical
activity per day, with 60 min being the daily average (texAvg). This value is interpreted
as the percentage increase in glucose tolerance for each additional minute of exercise, and
provides the reason behind multiplying by s = 0.0072 (NELSON et al., 2013).

The eGDR (Estimated Glucose Disposal Rate) is another validated clinical tool to
estimate insulin sensitivity in individuals with T1D. The eGDR can be calculated using
routine clinical measurements, such as HbA1c, presence of hypertension (HYP = 0 no and
HYP = 1 yes), and waist circumference (WaCirc) (EPSTEIN et al., 2013). The individuals
with T1D with the lowest eGDR compared to the highest value (1.2 to 8.1 mg

kg.min
) had a

significantly higher risk of any complication of DM (micro - or macrovascular) compared
to less insulin resistant patients. Here is the equation to calculate the estimated glucose
disposal rate (EPSTEIN et al., 2013):

eGDR = (21.158 − 0.09 ∗ WaCirc − 3.407 ∗ HY P − 0.551 ∗ HbA1c) mg

Kg.min

There is also the insulin dose for correction in the case of hyperglycemia (SBD, 2022a),
which should be added to the prandial dose, according to the preprandial glycemia, in
order to adapt the individual to the glycemic goal pre-established.

3.1.4 Macronutrients

Nutritional therapy is the treatment of a disease or condition by changing nutrient
intake or an entire food stream (SBD, 2022a). The relevance of nutritional therapy in the
treatment of T1D has been emphasized since its discovery, as well as its challenging role in
managing and preventing the development of the resulting complications (SBD, 2022a).
Dietary assessment techniques represented by apps (ZHU et al., 2010), for example, are
used to assess macronutrient intake (carbohydrates, proteins and lipids) including a 24-
hour food record, and are essential to maintain optimal glycemic control in individuals
with T1D.

Carbohydrates are important source of energy for the brain and other metabolic pro-
cesses (SBD, 2022a). However, they are considered the predominant macronutrients that
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raise postprandial blood glucose, as 100% of them are converted into glucose (MANUAL1-
CC, 2020) in a time ranging from 15 to 120 minutes. Both the quantity and quality of
carbohydrate play a crucial role in the glycemic control of T1D. In addition, several stud-
ies have shown that lipids and proteins added to the diet can also significantly affect the
postprandial glycemic profile, especially when ingested in excessive amounts (SBD, 2019).

The glycemic index (IG-CG, 2016) represents the effect of carbohydrates on blood
glucose, and is obtained after analyzing the glycemic oscillation produced by 50g of car-
bohydrate of the evaluated food, in relation to the curve of 50 grams of carbohydrate
of the standard food (white bread). The glycemic index of each food can be found in
manuals (MANUAL-CC, 2020) (MANUAL1-CC, 2020), in order to assess the rise and
speed of rise in blood glucose caused by food.

The carbohydrate/insulin ratio is used by individuals with T1D to calculate fast-acting
(bolus) insulin doses before meals (GUPTA; LAL; KHANDELWAL, 2018). Carbohydrate
counting is a known method to establish the prandial insulin bolus dose, when analyzed
with pre- and postprandial blood glucose. However, each individual with T1D has its
own individualized insulin:carbohydrate ratio, even differentiated throughout the day.
For example, an insulin:carbohydrate ratio of 1:12, that is, one unit of rapid or ultra-
rapid insulin administered for every 12 grams of carbohydrates, may be acceptable in the
morning, but may cause hypoglycemia in the afternoon, or hyperglycemia at night.

The correct carbohydrate/insulin ratio can improve glycemic control in individuals
with T1D, as a result of stabilizing the glycemic oscillation, in addition to making food
choices more flexible and simplifying meal planning. Thus, the individualization of the
dietary assessment and the food plan aims to identify the characteristics of this consump-
tion, and adapt them to the proposed glycemic targets, such as ideal glycemic range.
Mixed meals with carbohydrates, proteins, lipids and fiber tend to make it difficult for
the individual with T1D to count total carbohydrates. Scientific evidence has shown that
nutritional intervention has a significant impact on the reduction of HbA1c in individuals
with T1D. The nutritional management must be subjective, with a behavioral and per-
sonalized approach, focusing on improving the lifestyle of the individuals with T1D (SBD,
2022a).

3.1.5 Glucose-Insulin Regulatory System (GIRS)

The human body must be able to maintain the balance of the internal environment,
through various physiological processes, such as the production of insulin or glucagon,
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to balance blood glucose. In this case, the internal medium is the interstitial fluid, and
any phenomenon that interferes with the feedback mechanism, can disturb homeosta-
sis (DAVIES, 2016). In the continuous human homeostatic process, two types of oscilla-
tion in the human glucose-insulin interaction were observed, with two different periods:
one fast (10-15 min.) (PØRKSEN et al., 2002) and the other slow (100-150 min.) (STURIS
et al., 1991). The slow oscillation may originate from the dynamic regulatory negative
feedback interaction of the glucose-insulin system. This oscillation is detected in the hu-
man body, for example, in different physiological situations, such as after the ingestion of
macronutrients (AL-HUSSEIN; TAHIR, 2020).

Thus, normally in an individual without DM, in the postprandial period, the insulin
concentration increases in eight to ten minutes, reaches a peak concentration in 30 to 45
minutes, and then rapidly decreases to initial values in 90 to 120 minutes (GARDNER;
SHOBACK, 2018). The endocrine pancreas secretes about 30 units (U) of insulin per day
into the circulation of adults without DM, and insulin concentration rarely rises above
100 µU/mL after meals (SHLOMO et al., 2019).

Glucose is the most potent stimulant of insulin release, however, blood glucose levels
below 80 to 100 mg/dL do not stimulate insulin release. The endocrine pancreas releases
insulin in two phases in response to glucose stimulation. When blood glucose rises sud-
denly, there is a short-lived initial release of insulin (the first phase), and if the glycemic
elevation persists, the insulin release gradually decreases and then begins to rise again to
a stable level (the second phase) (GARDNER; SHOBACK, 2018).

In addition to insulin, another hormone that should be considered is glucagon, be-
cause physiologically, glucagon secretion increases in hypoglycemia and is suppressed
in hyperglycemia. Insulin released during hyperglycemia inhibits glucagon secretion,
whereas insulin reduction in the presence of hypoglycemia allows glucagon to be se-
creted (KAWAMORI; KULKARNI, 2009).

The glucose-insulin regulatory system (GIRS) is part of the human endocrine sys-
tem (SHLOMO et al., 2019), and is responsible for maintaining the homeostasis of hor-
mones such as insulin and glucagon (endogenous) and, consequently, in the regulation
of glycemia. In this case, insulin plays a dominant role in the regulation of glucagon
secretion compared to blood glucose (KAWAMORI; KULKARNI, 2009).

In the case of T1D, the destruction of β (beta) cells prevents the endocrine pancreas
from producing insulin, and consequently from maintaining blood glucose in the normal
range (80–120 mg/dL - status quo). Figure 2 represents the glucose-insulin regulatory



36

system of individuals with T1D. Some components were added and removed, such as
exogenous insulin infusion and β cells, respectively (PEREIRA et al., 2019). The glucose-
insulin regulatory system in Figure 2 cannot be considered a physiological system, as
there is an exogenous component (synthetic insulin), which mimics endogenous insulin.

Figure 2: Simplified Glucose-Insulin Regulatory System (T1D).

Each point of the system described in Figure 2 can generate a different flow depending
on external stimuli, such as time and the amount of macronutrients ingested, and intensity
of physical exercises, influencing the amount of hormones secreted, such as insulin and
glucagon. In Figure 2 (PEREIRA et al., 2019), dotted arrows indicate external stimuli,
being the ones labeled A and D (the green ones) related to insulin production. The solid
arrow from L to B (the green one) indicates endogenous insulin production, while the ones
from D to I and B to G and H (the red ones) indicate endogenous insulin consumption.
Dash-dot arrows highlight the gap that exists in individuals with T1D. A brief description
of possible flows within the system is presented in the following:

• A - Glucose-insulin regulatory system is stimulated by the intake of macronutrients.

• B - Glucose is produced from the metabolism of macronutrients (GARDNER;
SHOBACK, 2018).

• C - Glucose controls glucagon secretion by α cells.
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• D - The individual with T1D must inject exogenous insulin. There is a delay in
action and exogenous insulin injected into the subcutaneous tissue does not inhibit
glucagon secretion by α cells.

• E - Insulin promotes glucose uptake by muscle and fat cells (SHLOMO et al., 2019).

• F - Insulin inhibits hepatic glucose production.

• G - Insulin-dependent fat and muscle cells, stimulated by insulin and physical exer-
cise, capture glucose.

• H - The components of the Central Nervous System (CNS), such as the brain,
independently of insulin, capture glucose.

• I - Insulin is eliminated by all insulin-sensitive tissues, as well as by the liver and
kidney.

• J - The α cells secrete the hormone glucagon.

• K - Delay time in hepatic glucose generation.

• L - The liver, if not inhibited by insulin, is stimulated by glucagon to produce glucose
(gluconeogenesis and glycogenolysis) (SHLOMO et al., 2019).

• M - Physical activity, as an external stimulus, helps in the uptake of glucose by
muscle and adipose cells.

In summary, T1D blood glucose should be kept within a relatively narrow range in
preprandial period (70–120 mg/dL) or up to 180 mg/dL in postprandial period, despite
wide variations in glycemic flow. This remarkable homeostatic feat is accomplished by
a series of hormonal, neural and glucoregulatory factors (SHLOMO et al., 2019). The
dynamic nature of glucose-insulin regulatory system, in individuals with T1D, requires a
model that mimics this exchange of information between its components, in a personalized
way. One of the contributions of Tesseratus is to use ordinary differential equation (ODE),
in one of its agents, to mimic this behavior, and serve as a source of knowledge for the
other agents in the model, as well as the ML agent.

3.2 Mathematical modeling of the GIRS

One of the goals of metabolic physiology is the development of quantitative methods,
related to the specific processes involved in the regulation of macronutrient metabolism,
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more specifically of carbohydrates, in the body of individuals with DM (SHLOMO et
al., 2019). A simplified mathematical representation is by means of ODE compartmental
models (SMITH, 2011).

Existing mathematical models to GIRS were considered to support Tesseratus. Among
them, the one proposed by Ackerman and colleagues (1964) reduces the number of ki-
netic parameters to only the most relevant ones, and is used to predict a combination
of response to an oral glucose assumption, in the characterization of glucose-insulin reg-
ulatory system. Another model is the Bergman’s "Minimal" (BERGMAN; COBELLIT;
TOFFOLO, 1981), which uses complex nonlinear models to represent this physiological
behavior. Also, Lehmann and Deutsch (1992), adopt a concise mathematical formulation
with as few parameters as possible in order to make the model simple. However, exter-
nal factors that influence blood glucose, such as physical exercise, cannot be considered,
and there is no correlation with the prediction horizon (PH). Still considering nonlinear
models, Hovorka and colleagues (2004) and Dalla Man and colleagues (2004) are based
on meal absorption and insulin sensitivity.

Another alternative modeling would be to use more recent models that are based on
delayed secretion of the glucagon hormone and also accept the insertion of exogenous
insulin as an input parameter, in addition to exercise as a stimulating factor in glucose
uptake, in order to approach the behavior of the human glucose-insulin regulatory system,
as in (KISSLER et al., 2014) and (AL-HUSSEIN; TAHIR, 2020).

Nevertheless, we adopted the modeling proposed by Kissler and colleagues ((KISSLER
et al., 2014)) as basis for our model. It has two compartments modeled, which is feasible
to be applied in individuals with T1D. Initially, it can be represented mathematically as
input and output of the glucose G and exogenous insulin I compartments, described on
equations (3.4) and (3.5), respectively.

G′(t) =
glucose production︷ ︸︸ ︷

(Gin + f1(I(t − τ2))) − (3.4)

(f2(G(t) − γ [1 + s.(m − mb)] .(f3(G(t)).f4(I(t)))︸ ︷︷ ︸
glucose consumption

I ′(t) =
insulin infusion︷ ︸︸ ︷

(Iin + βf5(G(t − τ1))) −
(

VMAXI(t)
KM + I(t)

)
︸ ︷︷ ︸
insulin release

(3.5)
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In the glucose compartment G′(t), f1 describes the hepatic glucose production (HGP);
f2 describes the central nervous system glucose utilization; f3 describes the muscle/fat
glucose utilization; f4 describes the muscle/fat insulin uptake; and f5 describes the pan-
creatic insulin production. The parameters semantics are given in Table 3.2.

Our model adopts their glucose compartment and substitutes the insulin compartment
by a polynomial approximation of it given by data from the pharmacokinetics data of four
types of insulin. To solve the ODE from the glucose compartment we adopted the Range-
Kutta numerical method for solving it (see subsection 3.2.1). Also, as a pioneering part of
this work, the insulin compartment based on ODE was replaced. Thus, the oscillation of
the exogenous insulin concentration is a function of time, based on the pharmacokinetics
of each type of insulin (units U/Kg), such as insulin lispro (ROACH; WOODWORTH,
2002). The function approximation method used to represent the pharmacokinetics of
insulins is detailed in the subsection 3.2.2.

Symbol Description
Iin Insulin infusion rate
Gin Glucose intake rate
β Relative pancreatic β-cell function
γ Relative insulin sensitivity
s Rate of insulin sensitivity increase per minute of exercise
m Daily minutes of physical activity
mb Baseline minutes of physical activity

Vmax Maximum insulin clearance rate
KM Enzyme’s half-saturation value

Table 4: Parameters of the glucose and insulin compartment models.

3.2.1 Numerical Methods for Ordinary Differential Equation

There are several numerical methods for solving Ordinary Differential Equations.
Among the existing methods there are the Runge-Kutta ones. All Runge-Kutta methods
are yielded from approximations of Taylor series. The higher the Runge-Kutta method
order, the larger the number of terms of the Taylor approximation (BUTCHER, 2016).
The most popular Runge-Kutta method is the order four, also known as RK4. Its formula
is given by equation (3.6).

yn+1 = yn + 1
6h(k1 + 2k2 + 2k3 + k4), (3.6)
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where

k1 = f(xn, yn),

k2 = f(xn + 1
2h, yn + 1

2hk1),

k3 = f(xn + 1
2h, yn + 1

2hk2),

k4 = f(xn + h, yn + hk3).

The integration step h was chosen by recursive adjustments from an initial guess h0.
The results from the simulations must be within the proposed mean absolute error (MAE)
of prediction model being smaller than 30 mg/dL, and within the specified numerically
determined margin for insulin error (0.025 units), normally used in insulin pumps.

The quality of your numerical solution depends exclusively on controlling the error
made at each integration step and the global error, that is, the error accumulated in the
total time interval. To solve ODEs linked with glucose compartment, the Runge-Kutta
RK4 method was chosen because it is of order 4 (O(h4)), robust and easy to implement.

Specifically in this work, an error smaller than 0.025 should be considered, due to
the smaller increment units of the participants’ insulin pumps: (1) Medtronic Minimed
670G® - 0.025 units (U)/hour (MINIMED-670G, 2020); (2) Medtronic Minimed 640G®

- 0.025 units (U)/hour (MINIMED-640G, 2020); (3) Medtronic Paradigm Veo 754® -
0.025 units (U)/hour (MINIMED-754, 2020) ; (4) Medtronic Paradigm 715® - 0.05 units
(U)/hour (PARADIGM-715, 2020). Traditional pens and injection consider 1 and 0.5
unit (U) of increment.

3.2.2 Approximation of functions by polynomials

The polynomial trendline works well for datasets with fluctuating values with multiple
range points, such as the ones from pharmacokinetics of insulins, where we want to have
a good approximation over the entire range of the function f(.) (OMANA; MOORTHI,
2022). In an analytical approach, we adopted the regression equation, with the least
squares method to analyze errors. Another motivator for using polynomials to approx-
imate functions is that their derivatives and integrals are easy to determine (EULER,
1988).

Data from the pharmacokinetics of insulins, with their respective concentrations, were
obtained from publications by the pharmaceutical industry and from scientific articles,
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detailed in the section 7.2. Thus, each point means the insulin concentration prescribed
at a given time (t), considering the parameters of the individual with T1D. Thus, given
n+1 pairs (ti, f(ti)), i = 0, 1, 2, ..., n, there is one and only one polynomial pn(t) of degree
≤ n, in which

f(ti) = pn(ti), i = 0, 1, 2, ..., n. (3.7)

We can express the polynomial p (3.8):

pn(t) =
n∑

i=0
cit

i (3.8)

where the coefficients ci are the solutions of the equations’ system below (3.9):



c0 + c1t0 + c2t
2
0 + · · · + cntn

0 = f(t0)

c0 + c1t1 + c2t
2
1 + · · · + cntn

1 = f(t1)
...

c0 + c1tn + c2t
2
n + · · · + cntn

n = f(tn)

(3.9)

The idea of the the Tesseratus model is to mitigate the complexity of the simplified
GIRS with the insertion of insulin pharmacokinetic curves. The model is minimal, regard-
ing the number of parameters. It is mainly used to quantify the characteristic parameters
related to glucose and insulin metabolism, which can be identified from the transient
response of these variables in the system.

3.3 Agents and Multi-Agent System (MAS)

Agents are entities (computer programs) situated in an environment that have the
ability to perceive it through their sensors and act on it through their actuators. A Multi-
Agent System (MAS) (RUSSELL; NORVIG, 2016) is a collection of several autonomous
agents, each acting towards its goals while all interacting in a shared environment, being
able to communicate and possibly coordinate their actions.

In the view of the agent(s), there is a continuous flow of perception, through sensors,
decision making based on perceptions and action through the execution of actions/tasks
via actuators. On the other hand, the environment reacts to the actions and returns
with feedback to the agent. The spectrum of autonomy is intrinsic to agents, which is
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adjustable, and decisions can often be handled over to an agent with higher authority, if
it is beneficial to achieve the goals of the MAS (RUSSELL; NORVIG, 2016).

In complex domains, such as physiological processes and their influencing external
factors, the agent may have, at best, partial control of the environment. In the agent’s
view, the same action performed twice, under apparently identical circumstances, may
have totally different effects. Thus, agents in complex environments must be prepared for
possible failures (RUSSELL; NORVIG, 2016).

Normally, an agent has a base with available actions, along with its preconditions,
which enable it to modify the environment in which it is situated. The key point is for the
agent to select the best action to take in order to achieve the common goal (RUSSELL;
NORVIG, 2016). Intelligent agents have at least 3 skills that can facilitate the feedback
process in the environment involved (WOOLDRIDGE, 2009):

• Reactivity - perceive the environment and respond in a timely manner to changes;

• Proactivity - able to deliberately exhibit goal-directed behavior;

• Social Skill - able to interact with other agents or humans.

Other interesting properties of intelligent agents that learn (RUSSELL; NORVIG,
2016), and must be inherent to a MAS, when modeling human physiological systems, are:

• Truthfulness - they must decide which of the actions prior to the reinforcement
(reward or punishment for the action) was most responsible for it, in order to avoid
false communications and maximize the reward;

• Learning and Adaptation - should be able to improve performance over time.

Whenever we consider a MAS in physiological processes, an environment tends to
be (RUSSELL; NORVIG, 2016): (1) partially observable, where the agent does not
obtain complete, updated and accurate information; (2) stochastic, in which any action
does not have a single guaranteed effect; (3) dynamic, where there are other processes
operating in parallel, and therefore, the environment can change without the agent’s
control; (4) continuous, where there is no fixed number of actions and perceptions; and
finally (5) sequential, in which the current decision can affect future decisions. The agent
complexity is related to these characteristics of the environment. Thus, the interaction
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and cooperation between agents, inserted in a complex environment, help to achieve the
overall MAS goal.

The prerequisite for building a MAS is the ability to build at least two agents, but
the most common case is to have multiple agents interacting with each other to achieve
a common goal. In Figure 3, the agents are in a shared environment, but each one has
full or partial control over a portion of the environment (sphere of influence) (BORDINI;
HüBNER; WOOLDRIDGE, 2007). For example, in real life, insulin and glucose are
components that need to be in constant homeostasis to maintain the glycemic value in
the ideal range. Thus, spheres of influence can overlap in a jointly controlled environment.
In this case, to achieve a result focused on the MAS goal, the agent has to consider how the
other agents act (RUSSELL; NORVIG, 2016). Agents may also maintain organizational
relationships with each other, and may be aware of each other or not fully aware of other
agents in the MAS (WOOLDRIDGE, 2009).

Figure 3: Typical Structure of a Multi-Agent System (BORDINI; HüBNER;
WOOLDRIDGE, 2007).

A pertinent classification for the Tesseratus model is on its average heterogeneity, as its
intelligent agents differ by problem solving methods, and are not identical agents (BOR-
DINI; HüBNER; WOOLDRIDGE, 2007). These agents may differ in the method of
resolution, through continuous learning, ML models or the use of math equations, or even
the way they react to environment changes.

In a complex environment such as physiological environments, it is necessary to com-
bine one or more characteristics of each type of agent to optimize the model, making
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it more efficient over time. Reactive agents can react to messages from other agents or
to changes in the environment. They have no ability to reason about their actions, just
taking them by reacting to events previously described. In the proposed model, one of
the main abilities of these agents is to send messages to humans, or to other agents in
the environment. The architecture of reactive agents support some advantages of the
model, such as simplicity, robustness to failures, in addition to computational savings, in
situations where time is essential (WOOLDRIDGE, 2009).

However, only a purely reactive MAS would not be able to support the complexity
of a physiological system. Thus, in the Tesseratus model, other agents are needed that
can build new representations of this environment, through inferences, and these new
representations are used to discern actions. The idea is to use the reasoning process that
operates on internal representations of knowledge, and this approach to intelligence is
embodied in knowledge-based agents (RUSSELL; NORVIG, 2016).

The learning characteristic associated with an agent that can create a knowledge
base brings advantages in a complex environment. Knowledge-based deliberation allows
the agent to plan hypothetical actions in advance. Learning has another advantage,
as it allows the agent to operate in initially unfamiliar environments and become more
competent than its initial knowledge (RUSSELL; NORVIG, 2016).

A learning agent has four basic components (RUSSELL; NORVIG, 2016): (1) learn-
ing element, which is responsible for making improvements, (2) the performance ele-
ment, which is responsible for selecting external actions. The learning element uses feed-
back from (3) critical on how the agent scores, and the last component is (4) problem
generator, which is responsible for suggesting actions that lead to new and informative
experiences.

Tesseratus model uses Active Learning (THORVE et al., 2020), detailed in the sub-
section 3.3.2, to define the action taken to request knowledge from other agents. In this
case, the idea of Active Learning is to reduce the number of learning simulations, using
knowledge from the mathematical and ML agents, which has more knowledge about the
context. Explanatory learning, as shown in Figure 4 (RUSSELL; NORVIG, 2016), is
an example of cooperation between agents, as agents deliberately, from their knowledge
base, can compile actions in an automated way. Thus, reflective agents can execute them
efficiently with lower computational cost.

In summary, our MAS must be able to use the beneficial characteristics of each agent,
in a hybrid architecture. An important property of hybrid architectures is that the bound-
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Figure 4: Explanatory learning.

aries between different decision components are not fixed. Thus, as the requirement of
agents is to be both reactive and proactive, a decomposition into separate subsystems
approach is adequate (WOOLDRIDGE, 2009). Interactions between agents and their
respective coordination are detailed in sub-section 3.3.1.

3.3.1 Interaction and coordination between agents

The human physiological system (environment) is in the context of a data-driven
problem, as the agents’ knowledge base (KB) has facts about the environment, a set of
rules, and the generation of new facts is continuous. Thus, to maximize the global results
of the model, cooperation between agents must take advantage of the combination of
sharing tasks and results. The performance of agents can be improved, with the sharing
of results related to accuracy, for example. Regarding task sharing, the problem can be
decomposed into sub-problems, and allocated to agents with different and specific skills
to solve that particular sub-problem (WOOLDRIDGE, 2009).

In the same environment, when more than one autonomous agent is situated, inter-
actions may occur, depending on their defined capabilities and goals, whether individual
or global. These interactions can be simple, like sending messages, or complex, like coor-
dinating to achieve common goals. Joint plans can be built, but they must be conducted
with coordination if two agents want to reach an agreement on which joint plan to exe-
cute (RUSSELL; NORVIG, 2016).

Thus, when agents are engaged in a cooperative activity, they must have a defined
joint commitment. The joint commitment shares the persistence properties of each agent,
and social conventions must identify when the joint commitment should be canceled or
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maintained. Thus, coordination is achieved when agents have a goal and motivation
established, according to the mental map of a team of agents, in a cooperative reasoning
cycle (WOOLDRIDGE, 2009), as described next:

• Initially, every agent does not believe that the objective is satisfied, but believes
that it is possible;

• Every agent has a goal, until the termination condition is satisfied;

• While the termination condition is not satisfied:

– If the agent believes that the goal has been achieved, then it will have a goal
and this becomes a mutual belief;

– If the agent believes the goal is impossible, then it will have a goal that becomes
a mutual belief;

– If the agent believes that the goal motivation is no longer present, then this
becomes a mutual belief.

• Termination condition is when it is mutually believed that:

– Goal achieved;

– The goal is impossible to achieve;

– The motivation for the goal is no longer present.

Cooperation in Tesseratus is essential, since planning is centralized and plans are
partially distributed to specific agents, each one responsible for some executing some
tasks that yield important outputs to serve as inputs to other agents’ subplans. Tesseratus
model is completely cooperative, being its agents in relationships of mutual dependence,
since they depend on each other to achieve the overall MAS goal (RUSSELL; NORVIG,
2016). The interaction and coordination between agents facilitates the learning process,
which will be described in sub-section 3.3.2.

3.3.2 Agents that learn

The main capability required of a MAS is to follow the state of the environment, in a
continuous flow of perception and updating of the internal representations. In the context
of personalization and precision related to circadian rhythms, the importance of having a
schedule and a routine to control T1D are well known. Although circadian rhythms are
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endogenous, they are adjusted to the local environment by external causes, for example,
the time. Often, several tasks are routinely performed at the same time, such as eating,
exercising, or injecting insulin. Furthermore, the effectiveness of insulin, as measured by
the insulin correction factor, can change over time, following a pattern throughout the
day (RODRíGUEZ-RODRíGUEZ et al., 2019). Therefore, an important characteristic of
some agents in our MAS is the ability to learn.

There are several learning approaches that can be adopted, such as supervised learn-
ing, unsupervised learning and reinforcement learning. In this work we adopt supervised
learning and reinforcement learning as approaches to make our agents to learn.

3.3.2.1 Supervised learning

Supervised learning is a learning task that, given a (training) set of n examples for
(input, output) pairs of an unknown function f(x), {(x1, y1), (x2, y2), . . . , (xn, yn)}, find a
function h, that better approximates f(x) = y (RUSSELL; NORVIG, 2016). The function
h is called hypothesis and finding it is essenctially search h along the space of all possible
hypothesis, one that performs well when compared other set of (input, output) pairs of
examples. Whenever the output is one of a finite set, this learning problem is called a
classification problem, otherwise it is called a regression problem. Finding solutions to
regression problems is finding a conditional expectation or an average value for y.

In our MAS, the learning problem is a regression one, where agents observe examples
of input and output from the environment, that is, data provided by the individual with
T1D (for instance, <glucose, insulin, exercises>), and learns a function that maps from
input to output. If the dataset does not have labels, it is necessary to include them with
the transfer of knowledge from another agent (SILVA, 2020), for example.

There are several classical supervised learning methods, such as Decision Trees, Linear
and Logistic Regression, and Support Vector Machines (SVM). Nevertheless, there is also
the ensemble learning methods, where the idea is to select a collection (ensemble) of
hypotheses from the hypothesis space and combine their predictions. Boosting methods
are the most popular ensemble learning methods.

Gradient boosting (XGBOOST, 2019) is a supervised learning algorithm that at-
tempts to accurately predict a target variable by combining an ensemble of estimates
from a set of simpler and weaker models. The XGBoost (eXtreme Gradient Boosting)
is a popular and efficient open-source implementation of the gradient boosted trees algo-
rithm, and is constantly used in ML algorithms, due to its robust handling of a variety of
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data types, relationships, distributions and tunable hyperparameters (XGBOOST, 2019).
We can also use XGBoost for linear regression and forecasting. The linear regression algo-
rithm based on decision trees minimizes a regularized objective function (L1 and L2) that
combines a convex loss function (based on the difference between predicted and target
outputs) and a penalty term for the regression tree functions. The training proceeds iter-
atively, adding new trees that predict the residuals or errors of the previous trees which
are then combined with the previous trees to make the final prediction (ALFIAN et al.,
2020).

Hyperparameters are used for tunning the supervised algorithm as, for example, (HASAN
et al., 2020), : (1) eta: step size shrinkage used in updates to prevent overfitting. After
each boosting step, you can directly get the weights of new features; (2) eval-metric:
evaluation metrics for validation data; (3) max-depth: maximum depth of a tree. Increas-
ing this value makes the model more complex and likely to be overfit; (4) objective: spec-
ifies the learning task and the corresponding learning objective, for example, reg:logistic;
(5) subsample: subsample ratio of the training instance and prevents overfitting; (6)
tree-method: define the tree construction algorithm; (7) lambda: regularization term on
weights; (8) gamma: minimum loss reduction required to make a further partition on a leaf
node of the tree. The generic gradient boosting method is detailed below (FRIEDMAN,
2001):

• Input data (training set)
(xi, yi)}n

i=1 (3.10)

• A differentiable loss function
Loss(y, F (x)), (3.11)

• Number of iterations M.

• Algorithm: initialize model with a constant value:

F0(x) = arg min
γ

n∑
i=1

L(yi, γ) (3.12)

• For m = 1 to M, compute residuals:

rim = −
[

∂L(yi, F (xi))
∂F (xi)

]
F (x)=Fm−1(x)

for i = 1, . . . , n (3.13)

• Fit a weak learner (tree) closed under scaling hm(x) to pseudo-residuals, i.e. train
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it using the training set
{(xi, rim)}n

i=1 (3.14)

• Compute multiplier γm by solving the following one-dimensional optimization prob-
lem:

γm = arg min
γ

n∑
i=1

L (yi, Fm−1(xi) + γhm(xi)) (3.15)

• Update the model:
Fm(x) = Fm−1(x) + γmhm(x) (3.16)

• Output FM(x)

3.3.2.2 Reinforcement learning

Reinforcement learning is a task where observed rewards are used to learn an opti-
mal (or near optimal) policy for the environment. For this task, no previous knowledge
about the environment is considered, neither the agent knows the effects its actions may
cause within it (LIM et al., 2021). In this case, the agent needs to know if its action
generated a positive or negative result, through rewards or reinforcements, being reward
or punishment, respectively. RL is different from supervised learning because there is no
labeled training set. In addition, reinforcement learning can be passive learning or active
learning (RUSSELL; NORVIG, 2016). The RL is particularly suited to problems that
include a long-term versus short-term reward compensation. Active Learning allows an
agent to assign labels to typical examples of performance improvement in the learning
system. By using such an approach, we reduce the computational cost, through the active
selection of items for labeling, selecting only specific queries.

The algorithm Q-learning (WATKINS; DAYAN, 1992) is a RL algorithm that maxi-
mizes the cumulative reward and minimize the learning time, through the responsibility
assigned to the agent. The "Q" is related to the quality of an action in a certain state.
From a series of reinforcements, agents can discern which of the actions prior to the rein-
forcement were the most accurate. More specifically in the context of T1D, the Q-learning
algorithm (RUSSELL; NORVIG, 2016), can identify the different states of the individual
with T1D, and recommend corrective actions in insulin doses or amount of carbohydrates
to be ingested, among other actions (recommendations), based on the current glycemic
state. In this way, the Q-learning algorithm is off-policy, that is, it can update estimated
value functions using actions that have not yet been performed. Also, it is a time differ-
ence of the learning method that learns functions from the value of Q (Q-value), and can
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Figure 5: Simple pool-based active learning cycle.

be updated by following the below function (JAVAD et al., 2019):

Q(e, a) = Q(e, a) + α ∗ (reward + γ ∗ max
a

Q(e′, a) − Q(e, a))

Being that:

• e: it is the previous state;

• e’ : it is the current state;

• a: it is the previous action;

• α: it is the learning rate, between zero and one;

• γ: it is the discount factor, between zero and one, that determines whether future
rewards are worth less than current ones;

In the context of this work, intelligent agents use the Q-learning algorithm that selects
actions based on exploration with greedy searches (exploit). These agents have a Q-table
as a reference, and use it with all possible available actions for a given state.
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4 STATE OF THE ART IN PREDICTION OF
GLYCEMIC OSCILLATION

This Chapter discusses the main techniques for predicting glycemic oscillation, in
addition to mimicking the glucose-insulin regulatory system (GIRS) based on Machine
Learning (ML) and mathematical models, found in the literature. In fact, in a survey,
Woldaregay and colleagues (2019) presents a taxonomy of different approaches for pre-
dicting glucose oscillation in individuals with T1D, reproduced in Figure 6.

Figure 6: Classification for glucose prediction techniques (WOLDAREGAY et al., 2019).

Hybrid solutions usually combine mathematical modeling with data-driven techniques.
In a literature search, (GEORGA et al., 2013),(LIU et al., 2019),(CESCON; JOHANS-
SON; RENARD, 2015),(CONTRERAS et al., 2018), presented hybrid predictive mod-
els with PHs from 90 to 120 minutes. Nevertheless, for (MUNOZ-ORGANERO, 2020),
(ZARKOGIANNI et al., 2013),(SAITI et al., 2020),(BUNESCU et al., 2013),(BERTACHI
et al., 2018), (LIU et al., 2018),(MIRSHEKARIAN et al., 2017),(WANG et al., 2020),(IS-
FAHANI et al., 2020),(ZECCHIN et al., 2014),(HAJIZADEH et al., 2018), the prediction
horizon (PH) varies from 30 to 60 minutes.
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4.1 Mathemathical approaches

The literature presents some mathematical approaches to model and simulate the
physiological behavior of GIRS. Some of them are described in the following.

Kissler and colleagues (2014) used ordinary differential equations (ODEs) to mimic the
behavior of GIRS, using two compartments: glucose and insulin, detailed in section 3.2.
However, in the proposed model, there are two inherent delays related to the action of fast-
acting exogenous insulin and hepatic glucose production. Thus, it can be characterized
as delayed differential equations (DDEs) which can be exemplified by a new synthetic
model of the GIRS for inference of physiological parameters (CONTRERAS et al., 2020),
including intestinal absorption and insulin resistance.

Makroglou and colleagues (2006) modeled glucose-insulin dynamics in IVGTT (intra-
venous glucose tolerance test) using integro-differential equations, that is a powerful tool
to assess glucose metabolism in a single individual. Another characteristic is that both
analysis and numerical simulations are performed, especially, when insulin dependent glu-
cose tissue uptake is assumed to follow Michaelis–Menten dynamics (CAO, 2011). They
also adopted partial-differential equations to build a model for the absorption of subcu-
taneously injected insulin.

Minimal models are nonlinear physiological and serve as references for simulators of
individuals with T1D, for example (BROWN et al., 2019a), with their respective deriva-
tions including new compartments such as glucagon (NATH et al., 2018). Bergman and
colleagues (1981) developed a minimal model of insulin secretion and glucose disappear-
ance, limited to evaluate IVGTT results. Hovorka and colleagues (2004) presented a
minimal model that is based on meal and subcutaneous insulin absorption, but with a
maximum prediction horizon (PH) of 60 minutes, and a squared error of 8.48 mg/dL
when related to PH of 30 minutes. Dalla Man and colleagues (2004) do not consider
other external factors that influence blood glucose, such as physical exercise, and Panunzi
and colleagues (2020) included meal disturbance, and parameters for uncertainty analysis
in Sorensen model, resulting in a nineteenth order model wherein the glucose sub-system
is divided into six more sub-systems.

In summary, isolated mathematical techniques do not have the characteristic of adapt-
ability to automatically correct the error, and don’t differentiate between insulin and food
type.
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4.2 AI approaches

Several ML techniques have been developed and evaluated to predict glucose oscil-
lation including Artificial Neural Networks (ANN), Autoregressive model (AR), Support
Vector Machine (SVM), Support Vector Regression (SVR), Gradient Boosting Decision
Tree, Linear Regression and Genetic Programming (GP) (WADGHIRI et al., 2022).
Specifically in the glucose oscillation prediction approach, this set of ML techniques
(ensembles) are used, combining multiple single learners to find a better variance/bias
trade-off and hence improve the prediction accuracy (WADGHIRI et al., 2022).

After a systematic mapping along related work, whose protocol and main findings are
in appendix E, we adopted supervised learning with regression based on decision trees
and reinforcement learning (RL) to support glucose oscillation prediction.

In fact, (MUNOZ-ORGANERO, 2020), (BERTACHI et al., 2018) and (MIRSHEKAR-
IAN et al., 2017) adopt neural network approaches that yield a PH of 60 min when dealing
with nine, six and 10 real patients, respectively; (ZARKOGIANNI et al., 2013) adopts a
combination of compartment model and self-organizing map with 12 real patients, achiev-
ing a PH of 60 min; (SAITI et al., 2020) and (BUNESCU et al., 2013) adopt a support
vector machine approach tested with six and five real patients, respectively, both achiev-
ing PH of 60 min. Moreover, (WANG et al., 2020), (ISFAHANI et al., 2020), (ZECCHIN
et al., 2014), and (HAJIZADEH et al., 2018) achieved PH of 30 min by adopting bayesian
inference, fuzzy logic & neural networks, neural networks and Kalman filter, respectively.

For long-term prediction horizon, we can state that Georga and colleagues (2013)
adopted a multivariate regression approach, to derive a predictive model for subcutaneous
glucose concentration prediction in T1D individuals. The method was evaluated with a
dataset composed of 27 real T1D individuals and presented an average prediction mean
square errors of 5.21 mg/dL for 15-min, 6.03 mg/dL for 30-min, 7.14 mg/dL for 60-
min, and 7.62 mg/dL for 120-min PHs. Liu and colleagues (2019) presented a glucose
forecasting algorithm suited for long-term PHs. The algorithm is based on compartmental
models for the HGIRS. It was evaluated with clinical data of ten real T1D individuals.
For a 120-min PH, an improvement of 18.8% on prediction accuracy measured with the
root mean square error (RMSE), 17.9% A-region of error grid analysis (EGA), and 80.9%
hypoglycaemia prediction calculated by the Matthews correlation coefficient. Cescon,
Johansson and Renard (2015) presented a subspace-based linear multi-step predictor as a
predictive model for short-term glucose oscillation. The model was evaluated with seven
real T1D individuals and had obtained the prediction error standard deviation of 58.06
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mg/dL on 120-min. Contreras and colleagues (2018) combine physiological models for
HGIRS with grammatical evolution as a search-based technique to design a predictive
model for short-term glucose oscillation. Considering the CEG, they achieved more than
96% results falling inside regions A and B for 90-min.

Since there are T1D individuals that feed at intervals greater than two hours, their
results are not helpful for them. The proposal of the Tesseratus model is to extract the
best features of each approach (physiology, data and multi-agent) in order to reach a
longer PH, at personalized intervals of four hours in the full daytime period, and eight
hours in the night period, keeping the MAE below 28 mg/dL in both periods and for all
PHs.

4.3 Discussion

Regarding the physiological model inputs, two trends have been identified according
to (OVIEDO et al., 2017): (1) most of the works referenced in Table 47 use meal models
and insulin models to pre-process the carbohydrate estimation and insulin amount in-
puts. In general, hybrid glycemic prediction models use information about the amount
of carbohydrates, and 78.5% of the studies surveyed used an insulin kinetics model to
incorporate this input into the data-driven model (OVIEDO et al., 2017). In most of the
works studied, the intake of insulin and food is continuous, and this is not the reality of an
individual with T1D. In addition, there is also no differentiation on the amount of protein
and fat ingested, which can change the glycemic curve at different times after meal.

However, the hybrid model developed by (GEORGA et al., 2013) has a lower quadratic
error (7.62 mg/dL) among the others with the longest PH (120 minutes). One of the pos-
itive factors of this work is the use of insulin kinetics modeling. In fact, they adopt a
mechanical approach, which is able to describe the absorption of different insulin formu-
lations and their analogues, including fast-acting (lispro, aspart), short-acting (regular),
intermediate action (NPH - Neutral Protamine Hagedorn) and long action (glargine).
However, it has no long-term prediction and does not present continuous learning. Based
on the values achieved by Georga and colleagues, this was one of the trends of our work
to be hybrid, in order to achieve smaller error values between the measured and predicted
values.

According to Wadghiri and colleagues 2022: (1) regression trees, ANN and AR models
were the most used to construct the ensembles; (2) ensembles in general outperformed
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their single techniques. Nonetheless, other recent works, (FOSS-FREITAS et al., 2019)
and (FOSS-FREITAS et al., 2020), based on Recurrent Neural Networks (deep learning
architecture), do not use hybrid techniques such as ML and physiological models, but
they serve as a comparison and should be in the state of the art in glucose prediction, as
they also aims for long PH, such as 6 hours.

About the 16 hybrid models discovered, the proposed PH does not exceed 120 minutes,
due to the time correlated with the metabolism of carbohydrates in the human body and
also the increase in error in terms of predicted glycemic value. For details about each
model, see Table 47 in appendix E. Nevertheless, naturally there are individuals with
T1D that feed between intervals longer than 120 minutes, for example, four hours in
daytime (morning and afternoon) or from six up to eight hours in nighttime.

In summary, this Chapter describes relevant techniques applied to combine data-based
and physiological modeling for dynamics of glycemic prediction, exclusively in individu-
als with T1D. Tesseratus model extracts the best features of each approach (physiology,
data and MAS), where physiological dynamics is represented by differential equations for
glucose compartment and polynomial equations for insulin, described in section 3.2. The
second category uses historical data recorded by the individual, for example, through
machine learning described in the subsection 3.3. In the third category, the agents con-
solidate the combination of the physiological model and also based on data, the last being
the Tesseratus model approach.
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5 STATE OF PRACTICE IN PREDICTION OF
GLYCEMIC OSCILLATION

In this chapter, some devices such as glucometer, insulin pump and artificial pancreas
are presented. They can benefit from the Tesseratus Model, feeding it with data and
receiving recommendations, creating a positive loop of interaction with the individual.

5.1 Data-driven solutions

To improve the accuracy of the prediction of glucose oscillation, it is necessary to
obtain details about the individuals with T1D’s lifestyle. The possibility of incorporating
software into devices with low computational capacity can facilitate the integration of
individuals with T1D with applications, in a model capable of collecting and receiving
basic information from each individual and then predicting glucose oscillation (PEREIRA
et al., 2019).

The use of IoT (Internet of Things) devices and sensors has become increasingly com-
mon for this real-time data collection function (RODRíGUEZ, 2020). In fact, individuals
with specific diseases, as T1D, are encouraged to perform most of their checks through
an app and receive data through a device (COBELLI; RENARD; KOVATCHEV, 2011).
Remote monitoring and self-management of T1D has been one of the application areas of
mHealth (mobile health). This proliferation was reflected in the numerous pilot studies
and hundreds of commercial applications for individuals with T1D, in addition to mobile
self-management systems created since 2007 (ISTEPANIAN; AL-ANZI, 2018).

Using technology to implement remote management is essential for proper control of
T1D. Nowadays, an app, installed on a cell phone, and continuous glucose monitoring
(CGM) devices are designed to collect data, monitor and adjust the results in real time.
In addition, studies show that the glycemic control of the individual with T1D can be
improved, if there is access to the following individual data (RODRíGUEZ-RODRíGUEZ;
ZAMORA-IZQUIERDO; RODRíGUEZ, 2018): (i) feeding profile and ingested macronu-
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trients; (ii) duration and intensity of physical exercises; (iii) age; (iv) body mass; (v)
medications such as basal and bolus insulins; (vi) stress information; (vii) quality of
sleep; (viii) heartbeat; (ix) current and historical blood glucose.

All stakeholders across the healthcare industry, including the individual with T1D
themselves, need to have access to this data, in full, anywhere, whether locally on mobile
or remotely on cloud service providers (AZURE, 2022). The insights generated by the data
need to be considered in managing the evolution of the individual with T1D (CHAKI et al.,
2020). Individuals with T1D, together with their endocrinologist, must access and process
them subjectively, in order to discern about adjustments in routines and medication. The
main objective of this analysis is to control the course of blood glucose, changing the
profile dynamically. Obviously, the entire data sharing process must have consent and
respect data privacy laws with 13709 (LGPD - Brazil) (LGPD, 2023).

Subjective interpretation by the individual with T1D or even incorrect correlation
of these data can sometimes lead to treatment errors, which can also occur due to par-
tial data evaluation. The quality of data organization and the increase in the amount
of data requires an adequate format for extracting and processing data, efficiently and
effectively (RODRíGUEZ-RODRíGUEZ; ZAMORA-IZQUIERDO; RODRíGUEZ, 2018).

5.2 Blood glucose monitors, flash sensors and apps

In (SIDDIQUI et al., 2018), a taxonomy of glucose monitors is proposed, as described
in Figure 7. Devices are of three types: non invasive, minimally invasive and invasive. In
the last decade, technology supports the development of non-invasive glucose monitors,
and some are already commercialized, such as the glucose meter through photometric
techniques (CNOGA, 2020), and there are others in the research phase with the use
of contact lenses (KEUM et al., 2020). These new devices are designed to provide more
options for managing T1D. However, the most common monitors are invasive or minimally
invasive.

Minimally invasive monitors, which use glucose strips (ACCU-CHECK, 2020), are
the most common, with few copies that can be integrated into applications via bluetooth.
They are characterized by the manual process of capillary blood collection, and further
analysis on the device. However, the introduction of the CGM brought about a revolution
in the control of T1D. CGM devices allow continuous measurement of the glucose present
in the subcutaneous interstitial fluid, with sampling frequency normally every five minutes.
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Figure 7: Taxonomy of blood glucose monitors.

This average duration varies from six (DEXCOM-G6, 2020) up to 14 days (FREESTYLE,
2020), so that, through correction algorithms, they present the glucose values in the
interstitial fluid to the user. Research on new methods of CGM and possible improvements
is frequent. One of the research examples is about evaluating a new algorithm for an
invasive device (FREESTYLE, 2020), as in (KARINKA et al., 2019).

However, these monitors and glucometers must follow accuracy requirements already
established by Health Organizations or Federations. For the prediction horizon (PH), in
real time, the ISO1597 of 2015 (JENDRIKE et al., 2017) established that if the glucose
is greater or equal to 100 mg/dL, the results should be within ± 15% of the reference
standard. If glucose is less then 100 mg/dL, results should be within ± 15 mg/dL of
reference comparator. In total, 95% of all results must meet the following criteria:

• 95% of values in the range ± 15 mg/dL to < 100 mg/dL (characteristic of hypo-
thetical hypoglycemia);

• 15% for values ≥ 100 mg/dL, and above 180 mg/dL is characterized as hyper-
glycemia.

However, in FDA guidelines (KATZ et al., 2020), 95% of all blood glucose results
must be within ± 15% and 99% within ± 20% of the baseline comparator, regardless of
where in the glucose range the results are:

• 95% of all values must be in the ± 15% range;



59

• 99% of all values must be in the ± 20% range.

Clinical accuracy is focusing on the clinical relevance of the meter results in compar-
ison with analytical accuracy, which gives detailed information about agreement of the
home glucose meters, in comparison with a reference method. Two metrics can be used
to assess clinical accuracy of glucose meters: (1) Clarke Error Grid (CEG) (CLARKE
et al., 1987); (2) Parkes Error Grid (PEG) (PFÜTZNER et al., 2013). The PEG has
been intended for use in assessing clinical accuracy of glucose meters for patient self-
measurement, and was proposed to be an alternative to the CEG that had been criticized
for the placement of its risk boundaries.

Other devices are portable monitors that range from wristbands to track health in-
dicators, to devices for insulin delivery, such as insulin pumps, and are valuable items
for individuals with T1D. In recent years, there has been an increase in the number of
remote management systems for individuals with T1D, which receive information shared
by applications installed, for example, on mobile phones. Smartphones increased their
connection capacity and computing power, in addition to the potential use of IoT devices.
Through these devices, individuals with T1D have real-time access to data with their own
glycemic controls, heart rate. Thus, they can directly create or interact with their own
treatment plans, through a mobile health application that brings new functionalities, such
as glycemic prediction, for example, the Tesseratus model.

5.3 Automatic insulin delivery

Another advanced device in glycemic prediction and insulin infusion is the artificial
pancreas (AP). The AP is a system of devices that mimics the glucose regulatory function
of a healthy pancreas. An AP is sometimes referred to as a closed-loop system, an
automated insulin delivery system, or a stand-alone system for glycemic control (FDA-
PA, 2020).

Most AP systems consist of a combination of three types of devices known to the
medical community and individuals with T1D: (1) a CGM system; (2) an insulin in-
fusion pump; and (3) a glucose meter that is used to calibrate the CGM (FDA-PA,
2020). Control algorithms for predicting glycemic oscillation and managing individuals
with T1D (MEHMOOD et al., 2020) can also be used, as well as Tesseratus. The pre-
diction strategy, inserted into an AP system, can avoid hypoglycemia or hyperglycemia
states, helping in the correct administration of fast acting insulin.



60

In 2016, the Food and Drug Administration (FDA) (FDA, 2016) of the United States
of America (USA) approved the first hybrid closed-loop system. Such system monitors
glucose and automatically adjusts the delivery of basal-effect insulin, based on the indi-
vidual’s glucose reading. The system measures the user’s glucose for up to seven days,
and the pump can automatically adjust the dose of insulin applied, using a mathemat-
ical equation or algorithm that incorporates information from the CGM. However, this
version has some associated limitations: (i) even in automatic mode, the user must still
administer insulin manually during meals; (ii) continuous monitoring for only seven days;
(iii) not available in emerging countries such as Brazil; (iv) PH of up to 30 minutes; (v)
it cannot be used in people who require less than a total insulin dose of eight units per
day; (vi) capillary blood glucose tests are still needed.

In 2019, the FDA (FDA-CONTROLIQ, 2019) approved the second automated and
interoperable insulin dosage controller designed for individuals with T1D looking to cus-
tomize their diabetes management system. The AP system, called Control-IQ®, was
derived from research conducted, with 168 patients, at the University of Virginia Di-
abetes Technology Center (UNIV-VIRGINIA, 2020),(BROWN et al., 2019a). Such a
research has shown that Control-IQ® can improve glycemic outcomes in individuals with
T1D (BROWN et al., 2019a). In fact, they report that individuals with T1D experienced
an average increase of an additional 2.5 hours per day, within the optimal glycemic range.
Another advantage is that capillary blood glucose tests are no longer necessary. However,
this AP system has some limitations (UNIV-VIRGINIA, 2020): (i) although the system
has been evaluated for reliability, incorrect calculations and commands can still occur,
causing delays in insulin delivery; (ii) it cannot be used on individuals with T1D that
require less than 10 units of insulin per day; (iii) it works only with two types of insulin:
aspart and lispro (CONTROL-IQ, 2022); (iv) possibility of incorrect insulin administra-
tion as a result of loss of communication between connected devices; (v) it is not available
in emerging countries such as Brazil; (vi) its PH is short (30 minutes).

5.4 Discussion

Glucometers, and their respective applications, do not have the feature of predicting,
only of collecting and displaying the glycemic value. Therefore, telemedicine applications
only have the glycemic point in a specific period, losing the patient’s history, without the
ability to predict glycemic values. Figure 8 represents a common flow of data collection,
but without the prediction feature. It would be necessary a system to assist in the trans-
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mission, storage and organization of this data. In addition, specific organization software,
storing glycemic data, of macronutrients, such as Glic (GLIC, 2022) and (MONTANARI,
2022), does not have the ability to use them to predict glycemic oscillations.

Figure 8: Example architecture for data collection/transmission and remote monitoring.

Normally, the aforementioned commercial AP systems, support only short-term pre-
diction horizons with personalized suggestion, but they dont have the possibility to use
different techniques to predict glycemic oscillations. And the most part of commercial AP
systems dont have a secondary storage and management of the collected data, in order
to consolidate them in a knowledge base, indexing and making them remotely accessible,
for example in a public cloud of services (AZURE, 2022).

There is also an open AP system project, such as OpenAPS (OPENAPS, 2021), for
individuals with T1D, but with a short prediction horizon (30 minutes). The general
idea of OpenAPS is to make AP system technology basic and accessible. OpenAPS is
closed-loop and uses glucose estimation from CGM to automatically adjust the insulin
doses to be delivered. It performs this task by communicating with an insulin pump to get
details of all recent insulin doses, and also with a continuous glucose monitoring device
to get estimates of current glucose levels, and issues commands to the insulin pump.
However, they cannot improve the accuracy of responses to changes in glucose values and
reduce HbA1c values. Open AP system can’t be massively used because they don’t have
a continuous learning process built in, to reduce error and improve accuracy. Tesseratus
is proposed to overcome these limitations. It is presented in Chapter 6.



PART II

PROPOSAL
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6 TESSERATUS MODEL

This Chapter describes the Tesseratus model, in an architecture overview (section 6.1,
detailing its agents and functionalities (section 6.2).

6.1 Overview

Tesseratus adopts a multi-agent approach to define a hybrid model to predict the
glucose oscillation up to four hours during daytime and up to eight hours at night pe-
riod, from the moment the individual requests the prediction. The proposed model is
supported by the concepts of Machine Learning (ML - discrete) and Mathematics (ODE
- continuous). The models that combine discrete and continuous aspects are commonly
referred to as hybrid models (CILFONE; KIRSCHNER; LINDERMAN, 2014). The main
objective of Tesseratus is to improve the accuracy of the predicted value in periods longer
than six hours, in a continuous learning process. Nevertheless, to achieve this objective we
had establised several requirements that must be fulfilled. They are described at Table 5.

Another function of Tesseratus model is to support the analysis of past behavior,
learning and prediction of glycemic oscillation, with subsequent recommendations of diet
modification for each individual with T1D. The model aims to understand the need for
individual macronutrients and their impact on glycemic oscillation, as well as the ad-
justment of the dose of rapid and basal insulin. As a consequence of continuous glucose
monitoring (CGM), the individual with T1D can apply it in the context of nutritional
recommendations, pre- and post-prandial, and in the planning of physical exercises, in-
fluencing lifestyle in the short, medium and long-term.

The reactive and reflective behavior of some agents occurs even in complex environ-
ments as the mimicked GIRS (RUSSELL; NORVIG, 2016), and they are used in Tessser-
atus model to reduce the computational cost. In addition, Tesseratus integrates smart
agents with the ability to learn into the model, complementing the actions and behaviors
of reactive agents, as shown in Figure 9. The input data are: a) current glycemic level



64

Functional requirements Non-functional requirements
allow predicting the glycemic value in a

horizon of four hours in the full daytime period
minimize the exchange of messages

among agents
allow to predict the glycemic value in a

horizon of eight hours in the night period
minimize the processing of the

system that executes it
allow keeping the MAE, of the predicted X

measured glycemic value, less than 30 mg/dL
allow the integration with remote

management systems
allow continuous learning of each individual’s

glycemic behavior
allow integration with open source

artificial pancreas
allow dynamic correction of system input

parameters, according to Table 9 —

allow the use of proteins and fats, in addition
to carbohydrates, as input data —

allow using the pharmacokinetics of each type
of insulin as input —

allow the use of exercise time as input data —
allow you to create personalized

recommendations on feed —

allow you to create personalized bolus and
basal insulin dose recommendations —

allow you to create personalized
recommendations on time and intensity of

physical activity
—

allow the execution of recommendations in less
than 1 minute —

allow 90% of measurements to be in zone A of
the Parkes Error Grid —

Table 5: Functional and non-functional requirements of the Tesseratus model.

(mg/dL) - source: CGMs, for example flash sensors; b) type and duration (minutes) of
physical activities - origin: smart watches; c) amount of carbohydrates (grams) - origin:
manual insertion after counting carbohydrates; d) type of insulin (slow or fast effect) and
injected units (U) - origin: manual insertion; e) date and time - origin: from the device
itself, for example from the cell phone. The details about each agent and learning process
are in section 6.2.

6.2 Tesseratus multiagent system

As previously stated in Chapter 1, we adopted a multiagent approach for developing
Tesseratus. This section describes all the agents that compose the Tesseratus MAS, with
their respective responsibilities.

The agents of Tesseratus are situated in a partially observable, stochastic, dynamic,
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Figure 9: Structure of a learning agent adapted from (RUSSELL; NORVIG, 2016).

continuous and sequential environment (RUSSELL; NORVIG, 2016), in this case, repre-
senting the individual with T1D. To support this complex environment, the Tesseratus
model includes three groups of agents that are used to decompose the complexity of the
phenomenon in question (AMIGONI et al., 2003): (1) reactive agents (AgR) to collect
data and pass it on to other agents from the system, via messages; (2) intelligent agents
(AgInt) to learn, discern the best actions, and consequently predict and recommend based
on prior knowledge, generated by itself or provided by other agents, inserted in its KB;
(3) intelligent agent that generates knowledge individually (AgKnow), without receiving
knowledge from other agents, generating it based on input data indirectly provided by
the environment.

Active reinforcement learning is used among the agents of the Tesseratus model and
takes advantage of the reuse of acquired knowledge (KHOLGHI et al., 2015) in previous
tasks and/or from other agents. A mechanism of cooperative interaction between agents
and balanced negotiation is also used to control and synchronize all communication be-
tween agents, and consequently monitor the environment in an uninterrupted way.

The AgR agents of the Tesseratus model are responsible for stimulating the system
each time they receive new information and, in addition to immediately propagating the
received message to the recommender AgInt. They also store simple condition-action
rules. There are nine reactive agents that are always active and have the following re-
sponsabilities within the system:
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• (1) Curr-Gluco agent: it is responsible for capturing the current glucose informa-
tion (mg/dL), coming from CGM (interstitial fluid), and stimulating the system.
This data can be automatically received each five minutes, via flash sensors, or man-
ually entered. The actions of Curr-Gluco agent are represented by the flowchart in
Figure 34.

• (2) Exercise agent: it is responsible for capturing the physical activity informa-
tion: time in minutes, stimulating the system. The individual with T1D also can
enter the information about the exercise intensity. This data can be automati-
cally received via sensors, smart-watches or manually entered, and to be correlated
through maximum blood oxygenation (V O2) or heart beats per minute (BPM).

• (3) Inbolus agent: it is responsible for capturing information about the type and
amount of bolus insulin (µU/mL or pmol/L) (fast acting), and stimulating the
system. This stimulus can occur few times a day, according to the frequency of
feeding. This data can be automatically received via an insulin pump or be entered
manually or by voice, if the feeding occurs by injections or applicator pens. In
this work, the Inbolus agent expects the entry of only two types of fast-acting
insulin: aspart and lispro, but it can be adapted to other types of fast-acting insulins,
depending on the availability of the pharmacokinetic concentration curve by the
pharmaceutical industry.

• (4) Inbasal agent: it is responsible for capturing information about the type and
amount of basal insulin (µU/mL or pmol/L) (slow action), and stimulating the
system. Usually this stimulus happens once or twice a day. Until now, this data can
only be entered manually, as insulin pumps only support bolus insulins, even when
creating the basal effect with bolus insulin (by injecting these insulins continuously).
In this work, the Inbasal agent expects the entry of only two types of long-acting
insulin: glargine and degludec, but it can be adapted to other types of long-acting
insulin, depending on the availability of the pharmacokinetic concentration curve
by the pharmaceutical industry.

• (5) Carb-in agent: it is responsible for capturing information about the type and
amount of carbohydrates (grams), and stimulating the system. This data is usually
entered manually, but it also can be obtained through an application that calculates
the nutritional content of a food photo, such as (TADA) (FANG et al., 2019), as well
as the Prot-in and Fat-in agents, which includes percentages of carbohydrates,
through a photo of the food. The other option would be by scanning the barcode
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of the product to be ingested.

• (6) Prot-in agent: it is responsible for capturing information about the type and
amount of proteins (grams), and stimulating the system. The Prot-in agent main-
tains in its base the rules referring to the association with carbohydrates, according
to the subsection 3.1.4.

• (7) Fat-in agent: it is responsible for capturing information about the type and
amount of lipids or fats (grams), and stimulating the system. The separate calcu-
lation or measurement of the amount of fat is more complex compared to carbohy-
drates and proteins, but it can be mitigated by automating the recognition process.
The macronutrient fat should not be encouraged in the diet, but it is included in
the mixed food menu. Therefore, the Fat-in agent maintains in its base the rules
referring to the association with carbohydrates, according to the subsection 3.1.4.

• (8) Alcohol-in agent: it is responsible for capturing information about the type
and volume of alcohol (ml), and stimulating the system. The data is usually entered
manually. The other option would be by scanning the barcode of the product to be
ingested.

• (9) Capillar-in agent: it is responsible for capturing the current blood glucose
information (mg/dL), coming from blood glucose device (capillary blood), and stim-
ulating the system by correcting the Curr-Gluco agent. This data can only be
entered manually.

All AgR agents could also be integrated into a system that converts voice to text
facilitating visual accessibility, such as (VOICE-AZURE, 2022), or even a typing-friendly
mobile app, in order to facilitate data entry and sharing.

In addition to the nine aforementioned AgR, there are other ones that we called
satellite agents in the system: (1) (ODE parameters agent), each responsible for its
specific parameter, which monitor all the ODE parameters; (2) monitor error agent.
It is responsible for evaluating the mean absolute error (MAE) between the measured and
predicted value, creating its own KB of errors; (3) anomaly detector agent, in order to
avoid false alarms in terms of possible hypo- or hyperglycemia peaks.

The four main agents of Tesseratus are hybrid agents (AgInt and AgKnow). They
are stimulated by reactive agents each time they receive new data. Their individual
responsibilities are detailed below:
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(1) Recommender agent: it is an AgInt agent and one of the main agents in the model,
as it also accumulates the recommendation and learning functions. It is responsible
for making all recommendations based on knowledge (time, label and prediction)
acquired previously, through supervised learning, from that individual who stim-
ulated the system or from other individuals. The actions of Recommender agent
are represented by the flowchart in Figure 45. The following actions of Predictor,
ML and Math agents are related to phases 1 and 2 of learning: Figures 43 and 44,
respectively;

(2) Predictor agent: it is an AgInt agent with the responsibility of analyzing the
content of the message from Recommender agent, verifying the values entered and
asking the Math and ML agents, the prediction related to those values, and other
values in broader intervals (± 20%), that should reach the optimal predicted curve;

(3) ML agent: it is an AgInt agent with responsibility divided into two phases of learning
the Tesseratus system: in the first one, it manages supervised learning and transfer
learning, and in the second phase predict and participate in RL cycle;

(4) Math agent: it is an AgKnow agent with responsibility divided into two phases of
learning of Tesseratus model. The Math agent uses ODE for the glucose compart-
ment and polynomial approximation for the insulin compartment, detailed in the
section 7.2, and is responsible for storing, and recalculating if necessary the approx-
imation curves of the insulin pharmacokinetics (U/Kg) for fasting and prolonged
action. All generated calculations are stored in your KB.

An example of actions flow is represented in Figure 11, and all steps are below:

(1) individual X reports the following values at 8 am: current glucose level = 180
mg/dL, insulin aspart = 5U, insulin glargine = 26U, carbohydrate = 70g, exercise
= 0 minutes, and request a 4-hour prediction horizon (PH);

(2) AgR agents collect this information and propagate it to the Recommender agent;

(3) Recommender agent checks if it has this dataset and timestamp associated with an
output (action), in its KB;

(4) if the Recommender agent has this action and the predicted value, it can evaluate
which is the best recommendation, if the value is not in the optimal range;
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Figure 10: Tesseratus architecture.

Figure 11: Example of the action flow of Tesseratus model in real life.

(5) if the Recommender agent does not have this action and the predicted value, it
sends a message to the predictor agent requesting a prediction curve for PH =
4 hours. At this point, the Recommender agent already has in its KB the initial
carbohydrate:insulin bolus ratio, which is 12:1, but the individual informed (70g:5U
= 14g of carbohydrates for 1 unit of insulin), which refers to a person of 60kg, and
a correction to the input data values is required;

(6) Predictor agent must send the message to the AgKnow agents;
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(7) ML and Math agents should calculate glycemic oscillation. At this point, the agents
already know the body mass of individual X (70Kg). Thus, the calculation for insulin
aspart would be (5/70 = 0.07 U/Kg) and for insulin glargine (26/70 = 0.37U/Kg);

(8) ML and Math agents return the message with the predicted value;

(9) if the Predictor agent receives a non-ideal value (neutral or negative), it should
automatically request recalculation based on a wider range (± 20%): insulin aspart
= from 4U to 6U, insulin glargine = from 21U to 31U, carbohydrate = from 56g
to 70g, exercise = from 60 to 120 minutes. In this case, the current glucose value
cannot be changed;

(10) after recalculation, if there are more than one option within the ideal range (green
area in semaphores), send to Recommender agent decides;

(11) after sending the recommendations by the Recommender agent, the individual must
evaluate the best condition to reach the ideal glycemic value at that moment. For
example, it may not be appropriate to exercise at day time, but it would be better
to prioritize decreasing the amount of carbohydrates than increasing the amount
of bolus insulin. This individual’s decision is also stored as a future prediction of
behavior associated with options.

6.3 Discussion

The Tesseratus model is embedded in a complex physiological environment to predict
and offer personalized suggestions. The MAS makes use of mathematical modeling and
machine learning techniques to model and regulate the glucose-insulin regulatory system
of individuals with T1D. The utilization of agents as well as active learning ((VER-
STRAETEN et al., 2020) and (SETTLES, 2009)) are essential for the correct functioning
of the Tesseratus model. Its functioning was designed in a two-phase process of learning.
Therefore, instantiation of Tesseratus must be performed in two phases. Both phases
adopts a hybrid approach, in the sense that agents learn based on data provided by all
the nine and sattelite reactive agents, and outputs of the mathematical modeling provided
by the Math agent. The next Chapter presents how instantiation occurs.
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7 TESSERATUS INSTANTIATION

This Chapter presents the steps for instantiating Tesseratus, emphasizing the two-
phase learning process. As described in Chapter 6, Tesseratus has four main inteligent
agents, that receive information from reactive agents and combine them with outputs of
a mathematical modeling of GIRS with the support of a rewarding policy.

7.1 The rewarding policy

In order to support the two-phase learning process for instantiating Tesseratus, we
define a policy reward that is domain-dependent and varies according the individual of
T1D period: fasting or postprandial. The semaphore policy was adopted to label tuples
of values provided by the reactive agents whenever compared to the desirable ones.

For the fasting period, we adopt a reward of 10 whenever the glucose concentration
value lies on the interval between 100 mg/dL and 120 mg/dL, or the absolute error between
collected and desired values are lower than 15 mg/dL. In addition, a reward of eight is
established whenever the glucose concentration is between 80 mg/dL (included) and 100
mg/dL (excluded). These values are labeled as green. Glucose concentration values lying
along the open interval between 120 mg/dL and 180 mg/dL, or absolute error between
collected and desired values lying along the interval between 15 mg/dL and 30 mg/dL,
don´t get score and are labeled as yellow.

Still for the fasting period, a punishment of −10 is established whenever the glucose
concentration value is greater than 200 mg/dL or lower than 80 mg/dL, or the absolute
error between collected and desired values is greater than 50 mg/dL. In addition, whenever
the glucose concentration values lies on the interval between 180 mg/dL and 200 mg/dL,
or the absolute error lies on the interval between 30 mg/dL (excluded) and 50 mg/dL,
a punishment of −5 is established. For these values, labels are red. A summary of this
policy is presented at table 6.
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State fasting period Reward
Green 100 ≤ Gluc0 ≤ 120 10
Green 0 < Absolute error < 15 10
Green 80 ≤ Gluc0 < 100 8
Yellow 120 < Gluc0 < 180 0
Yellow 15 ≤ Absolute error ≤ 30 0

Red 180 ≤ Gluc0 ≤ 200 -5
Red 30 < Absolute error ≤ 50 -5
Red Gluc0 > 200 -10
Red Gluc0 < 80 -10
Red Absolute error > 50 -10

Table 6: Tesseratus model reward policy (fasting period).

For the postprandial period, we adopt a reward of 10 whenever the glucose concen-
tration value lies on the interval between 80 mg/dL and 100 mg/dL, or the absolute error
between collected and desired values is lower than 15mg/dL. In addition, a reward of eight
is established whenever the glucose concentration is between 100 mg/dL (inclusive) and
160mg/dL (excluded). These values are labeled as green. Glucose concentration values ly-
ing along the open interval between 160 mg/dL and 180 mg/dL, or absolute error between
collected and desired values lying along the interval between 15 mg/dL and 30 mg/dL,
don´t get score and are labeled as yellow. Red labeling follows exactly the thresholds
defined for the fasting period. A summary of this policy is presented at Table 7.

State postprandial period Reward
Green 80 ≤ Gluc0 ≤ 100 10
Green 0 < Absolute error < 15 10
Green 100 ≤ Gluc0 < 160 8
Yellow 160 < Gluc0 < 180 0
Yellow 15 ≤ Absolute error ≤ 30 0

Red 180 ≤ Gluc0 ≤ 200 -5
Red 30 < Absolute error ≤ 50 -5
Red Gluc0 > 200 -10
Red Gluc0 < 80 -10
Red Absolute error > 50 -10

Table 7: Tesseratus model reward policy (postprandial period).
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7.2 The Math agent

The Math agent implements a mathematical modeling for the Glucose-Insulin Reg-
ulation System (GIRS) that adopts the Glucose compartment defined as an ordinary
differential equation by (KISSLER et al., 2014) and a polynomial approximation of the
Insulin pharmacokinetic data.

The glucose equation G′(t) (glycemic value as a function of time) should be calculated
using the Runge-Kutta method. It is directly related to the amount and type of macronu-
trients ingested as well as the time (∆tex – measured in minutes) and intensity (V O2 –
maximum volume of oxygen consumed) of physical exercise (NELSON et al., 2013), (LIU
et al., 2018), in accordance with (SBD, 2022c).

Gin and Iin values refer to the rate of glucose intake and insulin infusion, respectively.
Gin is measured in mg/(dL.min), varying in the interval [0, 1.08]. The insulin equa-
tion I ′(t) (insulin concentration value as a function of time) and the value of I0 (insulin
concentration at t(0)) come from the pharmacokinetics equations of each type of insulin
(subsec 7.2.2), selected by each individual.

Thus, having these two equations modeled, we feed our Math agent with them in
order to start the labeling of our dataset, as well as to support the continuous learning in
Tesseratus.

7.2.1 The glucose compartment equation

The description of how the glucose compartment is modeled by using a similar ap-
proach of equation 3.4, extending f1 and reusing f2, f3 and f4. Also, we rename the
physical exercise contribution to the model (fex = [1 + s(∆tex − ∆tex)]). Therefore, it is
represented by equation 7.1

G′(t) =
glucose production︷ ︸︸ ︷

(Gin + f1(I(t − τ2))) − (7.1)

(f2(G(t)) + γfex.(f3(G(t)).f4(I(t)))︸ ︷︷ ︸
glucose consumption

Our extension in f1 considers the fact that there are two sources of glucose production:
the hepatic glucose production (HGP) (KISSLER et al., 2014), and the glucose yielding
from the metabolism of ingested macronutrients.
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In this case, glucagon exerts control over the liver and causes it to dispense glucose,
with a slight delay (given by τ2) of between 15 and 20 minutes (BRATUSCH-MARRAIN;
KOMJATI; WALDHÄUSL, 1986). In order to allow personalization, we redefine f1 con-
sidering or not alcohol ingestion, following the understanding of Schinfelboeck et al 2016.
Both equations (7.2) and (7.3) use the reference values proposed by (LI; KUANG; MA-
SON, 2006), (STURIS et al., 1991) and (TOLIĆ; MOSEKILDE; STURIS, 2000). Then,
for HGPmax is 180mg/min, α is 0.29L/mU , Vpla is 3L, and C5 is 26µU/L.

Here, HGPmax stands for hepatic glucose production, α for hepatic sensitivity to
changes in insulin, Vpla for the volume of plasma in the body, C5 for the insulin concen-
tration at which the liver is most efficient, and Ag(t) for alcohol ingestion (equation 7.2).

f1(I(t − τ1)) = HGPmax.(1 − Ag(t))
(1 + exp(α( I(t)

Vpla
) − C5))

(7.2)

or
f1(I(t − τ1)) = HGPmax

(1 + exp (α( I(t)
Vpla

) − C5))
(7.3)

For glucose utilization, four main components are considered: (1) insulin resistance
in relation to exercise time, is represented by γ ∗ fex, but the value of γ is replaced by the
value of eGDR (EPSTEIN et al., 2013); (2) use of glucose by the Central Nervous System
(CNS), represented by f2(G(t)) as a function of glucose; (3) binding of insulin to muscle
and fat cells, represented by f3(G(t)) as a function of insulin concentration; and finally
(4) the use of glucose by muscle and adipose cells, f4(I(t)) as a function of glycemia. The
values of Ub, C2, Vgli, Um, U0, C4, Vint, Tpla, Tdeg and C3 are in Table 9. The scale factor ζ

with a value of 1.77 (KISSLER et al., 2014) is used only in the equation f3(I(t)). The
parameters of Table 9 are constants to be monitored and can be updated by the model
agents.

There are two inherent delays that is considered in the ODE system: (1) the onset
of action of exogenous insulin, after its infusion, to promote glucose uptake and inhibit
hepatic glucose production; and (2) hepatic glucose production, stimulated by α cells,
if not inhibited (GYLFE; GILON, 2014). Discrete delay is usually a simplification of
the complex physiological process, which is most often represented by a continuous and
distributed delay. Therefore, it is desirable to use continuous and distributed delay param-
eters rather than discrete delays when modeling these systems (CAMPBELL; NCUBE,
2017). It is worth mentioning that in addition to the delay, there is resistance in the
action of insulin due to peripheral (exogenous) administration in individuals with T1D,
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and not endogenously, compared to individuals who do not have DM.

A point to note is that eating and exercise behaviors have an important effect on
glycemic outcomes, in individuals with T1D, although these influences are difficult to
evaluate in real environments. Thus, more accurate models of eating and exercise behavior
are needed to capture glycemic oscillation. In a real physiological process, delays inherent
to sensors or actuators in negative feedback circuits are present in the dynamics, such
as, for example, CGM devices based on interstitial fluid (flash sensors). ODEs represent
these phenomena more satisfactorily and are used in this modeling.

Variables Unit Description Initial Condition

Glucose: G′(t) mg

dL

Blood glucose value
as a function of time NA

Insulin: I ′(t) µU

mL

Insulin value as a
function of time NA

Parameters Unit Description Initial Condition

Glucose G(0) mg

dL
Glycemia in t(0) Reported by the

glucometer, G(0) > 0

Insulin I(0) µU

mL

Insulin concentration
at t(0)

0.65 or insulin type
pharmacokinetic

information, I(0) > 0

Gin
mg

dL.min
Glucose intake rate Between 0–1.08 or recursive

calculation from 1.08

Iin
µU

mL.min

Exogenous insulin
infusion rate

Between 0-2 with recursive
calculation from 0.65 or

insulin type
pharmacokinetic

information
tex minute Exercise time Reported by the individual

γ % Insulin Sensitivity
Factor (ISF)

1700/total amount of
insulin administered

eGDR
mg

kg.min

Estimated Glucose
Disposal Rate Individually calculated

τ1 minute Delay in hepatic
glucose production τ1 > 0, between 15 to 20

τ2 minute Insulin action
depending on its type τ2 > 0, between 5 and 180

Table 8: Parameters, variables and initial conditions.

The parameters adopted to run the numerical method for solving G′(t) are presented in
Table 8. Such values are related to an individual, with a weight equal to 70Kg, according
to (STURIS et al., 1991), (TOLIĆ; MOSEKILDE; STURIS, 2000) and (LI; KUANG;
MASON, 2006). Thus, the values would be changed individually, according to the weight
of each individual. Parameter C5 is a scale factor that cannot be dynamically collected or
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inserted into the model by the individual. However, they serve as a basis for the mimic
through ODE, the simplified glucose-insulin regulatory system. All other parameters used
in expressions f1, f2, f3 and f4 are presented in Table 9.

Symbol Unit values Meaning

Km µU/mL 2300 half-saturation concentration of
insulin-degrading enzyme

Vmax
µU/mL .

min 150 maximum rate of insulin release

HGPmax mg/min 180 maximum rate of hepatic glucose
production

C2 mg/L 144 defines the sensitivity of CNS cells
to changes in glucose

C3 mg/L 1000 defines the sensitivity of muscle cells
to changes in glucose

C4 mU/L 80 defines the sensitivity of muscle cells
to changes in insulin

C5 mU/L 26 insulin concentration at which the
liver is most efficient

Ub mg/min 72 maximum rate of glucose utilization
by brain and nerve cells

U0 mg/min 40 lowest insulin threshold rate for
muscle glucose consumption

Um mg/min 940 highest insulin threshold rate for
muscle glucose consumption

Vglu L 10 body volume into which glucose can
diffuse

Vpla L 3 body plasma volume
Vint L 11 intercellular volume

Tpla L/min 0.2 insulin transport rate from plasma
to cells

Tdeg minutes 100 exponential time constant for
intercellular insulin degradation

λ % 1700/amount of
insulin Insulin Sensitivity factor

Table 9: Reference parameters of the Glucose-Insulin Regulatory System.

Tesseratus model calibrates intelligently the parameters and errors, through the con-
tinuous data collection of individuals with T1D, recursive calculations, ML and mathe-
matical models. This is an essential task, in which the parameter values can be adjusted
so that the model behavior has better accuracy. In subsection 7.2.2 we detail the re-
placement of the insulin compartment by approximating the pharmacokinetics of insulins
through polynomial equations.
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7.2.2 The exogenous insulin equation

Our approach adopts the pharmacokinetics data of four types of insulin (glargine
(FDA-GLARGINE, 2022), degludec (FDA-DEGLUDEC, 2022), lispro (FDA-LISPRO,
2022) and aspart (FDA-ASPART, 2022)) to support this modeling based on the approx-
imation of polynomial functions. The adjustment is made specifically for the insulin
analogues used by the 15 in vivo individuals in this study: lispro and aspart (fast-acting),
and the basal-effect analogues glargine and degludec (slow-acting).

Therefore, for glargine, an insulin of prolonged action, we got values from (OWENS
et al., 2019), (PORCELLATI et al., 2007) , (ABE et al., 2011), (BARNETT, 2006), and
(LINNEBJERG et al., 2015), as well as the FDA report (FDA-GLARGINE, 2022) and the
industry representative information (SANOFI, 2020). Nevertheless, only three references
of insulin glargine concentrations were found: 0.4, 0.6 and 0.8 U/Kg. Since the range
between 0.4 to 0.8 U/Kg does not cover all possibilities for different T1D individuals,
in terms of insulin dosage and weight, we calculate approximate values for 0.2 U/Kg
and 0.1 U/Kg, as a function of the concentration of 0.4 U/Kg, dividing by two and by
four, respectively. In fact, intermediate values of insulin glargine concentration will need
approximate initial values. For example, an individual with a weight of 82 Kg who injects
20U of insulin glargine has a ratio of 0.24 U/Kg, and the closest polynomial curve is 0.2
U/Kg. Thus, the calculation of the initial concentration value is carried out from the
concentration of 0.2 U/Kg multiplied by 1.2. In Table 10 are the concentration values
related to t(x) in hours are: t = 0.5 hours, t in the interval [1, 24] hours.

Having such values, we were able to build a polynomial function p(t) that provide an
approximation for the exogenous insulin compartment. Each point of p(t) represents the
concentration of insulin prescribed at a given time (t), considering the parameters of the
T1D individual.

Thus, Figure 12 represents the polynomial curves of insulin glargine in the unit
(pmol/L), according to Table 11. Each row of Table 11 represents the approximate poly-
nomial function of the concentration curve and its respective squared error. The degree
of the function of each curve, in relation to the 26 points determined of Figure 12, was
chosen because it has the highest squared error value (Rˆ2), associated with the guarantee
of representation of the main concavity changes suggested by data.

Regarding fast-acting insulin, insulin aspart curve points referring to concentrations
0.1, 0.2 and 0.4 U/Kg were extracted from the literature: (SLATTERY; AMIEL; CHOUD-
HARY, 2018),(HEISE et al., 2015a),(PLANK et al., 2002),(HEISE et al., 2015b),(HEISE



78

Time
(hours)

0.1U/Kg
(approxi-
mation)

0.2U/Kg
(approxi-
mation)

0.4U/Kg
(from

articles)

0.6U/Kg
(from

articles)

0.8U/Kg
(from

articles)
0 19 38 76 118.96 142.02

0.5 25.75 51.5 103 162.51 213.97
1 28.12 56.25 112.5 167.02 230.99
2 32.75 65.5 131 187.51 256.47
3 34.25 68.5 137 202.03 258
4 34 68 136 205.98 281.48
5 36 72 144 210.01 266.47
6 36 72 144 218 281.48
7 34.37 68.75 137.5 198 268
8 34.12 68.25 136.5 200.01 268.97
9 33.75 67.5 135 190.98 262.52

10 33.25 66.5 133 180.98 243.49
11 31.25 62.5 125 175.01 237.51
12 29.75 59.5 119 172.02 220.98
13 26.62 53.25 106.5 152.99 187.02
14 25 50 100 150.01 190.01
15 23.5 47 94 155.98 187.02
16 23 46 92 147.02 181.47
17 22 44 88 143.96 167.99
18 21.5 43 86 137.51 155.98
19 20.37 40.75 81.5 125.98 147.02
20 18.75 37.5 75 118.48 140.98
21 17.25 34.5 69 107.99 135.98
22 15.62 31.25 62.5 106.46 130.98
23 15 30 60 87.5 112.5
24 14 28 56 75 103.96

Table 10: Insulin glargine concentration approximation (pmol/L) - 24h.

U/Kg Polynomial function Rˆ2

0.8 (red) y = −5E − 05x6 + 0, 0038x5 − 0, 1154x4 + 1, 8302x3 −
16, 527x2 + 72, 696x + 161, 99 97.32%

0.6 (black) y =
0, 0002x5−0, 0179x4+0, 5573x3−7, 8789x2+44, 188x+128, 8 98.27%

0.4 (light
blue)

y = −2E − 05x6 + 0, 0015x5 − 0, 0463x4 + 0, 7651x3 −
7, 3401x2 + 34, 879x + 81, 985 98.56%

0.2 (green) y = −1E − 05x6 + 0, 0007x5 − 0, 0232x4 + 0, 3825x3 −
3, 67x2 + 17, 439x + 40, 992 98.56%

0.1 (purple) y = −5E − 06x6 + 0, 0004x5 − 0, 0116x4 + 0, 1913x3 −
1, 835x2 + 8, 7197x + 20, 496 98.56%

Table 11: Insulin glargine: polynomial functions and Rˆ2.

et al., 2017),(HEISE et al., 2015b),(LINDHOLM; JACOBSEN, 2001),(KAKU et al.,
2000),(ØSTERBERG et al., 2003). In addition, the summary of the insulin analogue
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Figure 12: Approximate curves of insulin glargine concentrations (24h).

aspart produced by the FDA (FDA, 2020) was used to confirm the time-of-action and
pharmacokinetic information. In the same way, we found in literature only three insulin
aspart concentrations 0.1, 0.2 and 0.4 U/Kg. As the values for the concentration of
the insulin aspart analogue lower than 0.1 U/Kg were not found in the literature, the
values referring to 0.01 U/Kg and 0.05 U/Kg were approximated as a function of the
concentration of 0.1 U/Kg, dividing exactly by 10 and by 2, respectively. The concentra-
tion values related to t in minutes are: t in the interval [0, 60] at five minute intervals,
t = 90, 105, 120, 150, 180, 240, 300, 360 minutes are in Table 12. For example, an individual
with a weight of 73Kg who injects 6U of insulin aspart has a ratio of 0.08 U/Kg, and the
closest polynomial curve is 0.1 U/Kg. Thus, the calculation of the initial concentration
value will be performed from the concentration of 0.1 U/Kg multiplied by 0.8.

Thus, Figure 13 represents the polynomial curves of insulin aspart in the unit (pmol/L),
according to Table 13. Each row of Table 13 represents the approximate polynomial func-
tion of the concentration curve and its respective squared error.
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Time
(minutes)

0.01U/Kg
(approxi-
mation)

0.05U/Kg
(approxi-
mation)

0.1U/Kg
(from

articles)

0.2U/Kg
(from

articles)

0.4U/Kg
(from

articles)

0 0.25 0.25 0.25 0.25 0.25
5 0.63 3.13 6.25 10.15 18.75

15 5 25 50 68.75 111
20 7.81 39.06 78.12 106.25 200
25 9.06 45.31 90.62 146.87 262.5
30 11.25 56.25 112.5 196.88 375
35 13.13 65.63 131.25 242.5 468.75
45 14.38 71.88 143.75 275 568.75
50 14.69 73.44 146.87 281.25 615.62
55 14.38 71.88 143.75 281.25 659.37
60 14.38 71.88 143.75 287.5 631.25
75 13.13 65.63 131.25 287.12 653
90 11.94 59.69 119.37 262.5 609.37

105 10 50 100 232.5 568.12
120 9.06 45.31 90.62 196 496
150 6.56 32.81 65.62 112.43 400
180 4.44 22.19 44.37 112.43 300
210 2.81 14.06 28.12 78.12 223.75
240 2.19 10.94 21.87 56.25 150
270 1.56 7.81 15.62 46.87 113.13
300 0.63 3.13 6.25 31 85.62

Table 12: Aspart insulin concentration approximation (pmol/L) - 5h.

U/Kg Polynomial function Rˆ2

0.4 (rede) y = 1E − 10x6 − 1E − 07x5 + 4E − 05x4 − 0, 0054x3 +
0, 1974x2 + 11, 991x − 53, 175 98.15%

0.2 (black) y = 5E − 11x6 − 5E − 08x5 + 1E − 05x4 − 0, 0018x3 +
0, 0251x2 + 7, 5934x − 27, 416 98.21%

0.1 (light
blue)

y = 1E − 11x6 − 7E − 09x5 + 1E − 06x4 + 0, 0001x3 −
0, 0706x2 + 6, 2668x − 19, 82 98.19%

0.05 (green) y = 5E − 12x6 − 4E − 09x5 + 7E − 07x4 + 7E − 05x3 −
0, 0353x2 + 3, 1334x − 9, 9101 98.19%

0.01
(purple)

y = 1E − 12xˆ6 − 7E − 10x5 + 1E − 07x4 + 1E − 05x3 −
0, 0071x2 + 0, 6267x − 1, 982 98.19%

Table 13: Aspart insulin: polynomial functions and Rˆ2.

7.3 The first learning phase

Supervised learning is used in the first phase of learning, in which the agent observes
examples of input and output from the environment, that is, data provided by the indi-
vidual, and learns a function that maps from input to output. In this case, the dataset is
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Figure 13: Approximate curves of insulin aspart concentrations (5h).

being created with labels, based on the mathematical agent. The mathematical agent uses
ODE and approximation functions, and from the generated curves it can define the labels
and consequently a taxonomy of proximity to the ideal glycemic range (SBD, 2022a). It
also compares with the historical data of each individual with T1D. This first learning
phase can last from seven to 14 days, depending on the amount of data provided by the
individual.

One of the exploited features of the supervised learning algorithm is the resolution
of a multi-class classification problem. At least ten different classes are defined for the
Tesseratus model, according to the proximity of the ideal glycemic level (80–120 mg/dL),
in the fasting period, represented by our rewarding policy based on traffic lights. For
the postprandial period, that is, two hours after the ingestion of macronutrients, the
glycemic level can be considered up to 160 mg/dL, according to the traffic light shown in
Table 9. Figure 14 presents the steps for conducting this first learning phase, detailed in
the following.

1. Environmental data is collected via sensors (each five minutes from CGMs), or by
voice or manually, and received by reactive agents. The payload of messages are
composed by <X mg/dL (glucose level), units of bolus insulin and basal (U), amount
of carbohydrates, protein and fat (g) and duration of physical exercises (minutes)>;
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Figure 14: Phase one of learning (supervised process to learn).

2. Recommender agent receives the data, and sends message to the Predictor agent
to calculate and generate the glycemic curve;

3. Predictor agent sends the message to the ML agent with time frame in order to
create a tuple < data, time > and generate the glycemic curve;

4. ML agent asks the math agent for a labeling of the generated value, based on the
predefined semaphores (fasting and postprandial periods);

5. Math agent sends the message, with the labeling payload, to the ML agent;

6. ML agent sends the message stored in KB to the predictor agent with < time, label, curve >,
based on the data received;

7. Predictor agent receives the message and forwards it to the Recommender agent;

8. Recommender agent receives the new information and classifies it in each knowledge
base (KB), according to the received label, and this learning takes place for at least
seven days, in order to create a personalized base for that individual.
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7.4 The second learning phase

In the phase two, the Active Reinforcement Learning method (EPSHTEYN; VOGEL;
DEJONG, 2008) is incorporated (EPSHTEYN; VOGEL; DEJONG, 2008) and Figure 15
presents a flow of active reinforcement learning, already considering the complete architec-
ture of Tesseratus, where numbers are adopted to support its explanation flow. Note that
there are three more groups of agents, known by the satellite characteristic, as they adja-
cently monitor the parameters involved and errors, which are: (a) the anomaly detector

agent; (b) the monitor error agent; and (c) the ODE parameters agent.

Figure 15: Phase two of learning (by reinforcement).

1. Reactive agents collect data from continuous glucose monitors (CGM), voice or
manually and send them to the Recommender agent. The payload of messages are
composed by <X mg/dL (glucose level), units of bolus insulin and basal (U), amount
of carbohydrates, protein and fat (g) and duration of physical exercises (minutes)>;

2. Recommender agent receives data, associate it with its time frame creating a tuple
< data, time > and checks its knowledge base (KB) if there are actions to be taken
related to them;

3. If yes, the values of glycemic predicted curve are labeled in the ideal range, stored
in the KB as < time, label, curve >, and it is sent to the user;

4. If not, the Recommender agent requests information about prediction curves to the
Predictor agent;
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5. Predictor agent checks its KB to see if there is a suitable prediction curve. If
don’t, it propagates the request to the ML and Math agents;

6. ML agent and Math agent, at a given time frame, store the prediction values in their
KB and return the value linked with prediction calculation to the Predictor agent;

7. Predictor agent analyzes the value received and, if it is a value that is in the ideal
range, the Predictor agent sends a return message to the Recommender agent,
otherwise it requests more options for the ML and Math agents. At this point, the
Predictor agent stores the input and output in its KB with a specific timestamp;

8. Recommender agent could send recommendations to the environment, from its base
of actions , or simply send the predicted oscillation curve with an ideal glucose label
achieved;

9. The actions and knowledge at that specific time frame are stored in the Recommender

agent’s KB;

10. The best glucose value is sent to user, as well as their intermediate values, in the form
of an oscillatory curve, as well as hypothetical complementary recommendations.

7.5 Discussion

Since Tesseratus is a model to support the simulation of personal GIRS, its instanti-
ation is complex and requires a two-phase process to be complete.

The first phase is the supervised feature and in the second phase the focus is on
reinforcement learning, that is particularly suited to problems that include a long-term
versus short-term reward compensation. Initially, the algorithm Q-learning (JAVAD et
al., 2019) is used to maximize the cumulative reward, minimize the learning time, through
the responsibility assigned to the agent. The "Q" is related to the quality of an action in
a certain state. These rewards can come frequently, whenever the environment stimulates
the receptor agents, for example, with the current glucose values.

The Math agent is a generator of knowledge, based on the ODE and approximation
functions by polynomial equations. It is well known that each individual with T1D tends
to have its own physiological characteristic. For example, having different degrees of
insulin sensitivity at each time point in a single day. Therefore, the use of personal data
measured periodically in combination with results from mathematical models, associated
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with supervised and active reinforcement learning among agents, can improve the accuracy
of prediction and the provision of personalized recommendations to individuals with T1D.

Thus, the Tesseratus model suggests the amount of macronutrients to be ingested,
and the delay and/or adjustment of the next infusion of rapid-acting insulin. Agents
identify specific patterns of each individual with T1D, related to the time intervals of
each day, for example, pre- and postprandial, after exercise, at night and dawn, and
if necessary recommend correcting them, suppoerted by MAS utilization. Furthermore,
active reinforcement learning (KHOLGHI et al., 2015) is used to facilitate the learning
process and knowledge transfer between agents.

Learning also consists of associating inputs with outputs (actions) of each individ-
ual. The initial dataset of the Tesseratus model consists of seven individuals with T1D
volunteers, and each one can serve as a learning reference for itself and also for other
individuals, with the same behavior of glycemic oscillation, or even correlation with age
or gender. In addition, a dataset from the University of Ohio (OHIO-UNIV-T1D, 2020),
with data from eight individuals, and from nine virtual ones generated are used to validate
the active learning model embedded in the Tesseratus model. Details about how it was
built is given in Chapter 8. Flow diagrams describing the functioning of each agent are
provided in appendix D.

Finally, in the context of healthcare, Tesseratus model has the necessary strength
to be applied to support decision making in a closed-loop system, like an artificial pan-
creas (FDA, 2019), or for physicians on duty in an Intensive Care Unit. It combined with
a exercise monitor, e.g. bioimpedance sensor, can receive new data such as heart rate, oxy-
genation level, enriching it and correlating it with the measured and predicted glycemic
value. Another applicability is in biotelemetry (RODRíGUEZ, 2020), as an important tool
to guide measurement parameters remotely, and also as support for pre-consultations, in
addition to increasing the individual’s own sense of security with T1D.
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8 TESSERATUS IMPLEMENTATION

After describing the instatiation of Tesseratus, we present along this Chapter Tesser-
atus implementation flow.

8.1 Dataset

The items below were defined as the minimum dataset in order to determine the
prediction of glycemic oscillation in individuals with T1D, as they are factors that directly
interfere in the direction of the oscillatory curve:

• time frame of all stimuli;

• current glucose value (interstitial fluid);

• amount of carbohydrate, protein and lipids consumed;

• amount of alcohol ingested;

• type and intensity of physical exercises;

• type and amount of fast-acting insulin dose (bolus);

• type and amount of slow-acting dose (basal) insulin.

Other items such as heartbeat, stress level, menstrual cycle phase, infection could
be added, but they are not part of the evaluation context of this work. And, no actual
individuals reported alcohol consumption during the research.

Thus, the dataset formed by 15 in vivo individuals and nine in silico individuals with
T1D, collected for up to 21 days, brings inherent characteristics such as precision, validity,
cohesion and no manipulations, these being the standards for a Data Quality (LAYMAN,
2009) in healthcare. Through this unique and reliable dataset, it was possible to create
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ML models with acceptable accuracy to predict the glycemic oscillation, in up to eight
hours, detailed in the chapter 9.

The seven in vivo volunteers from Brazil and eight in vivo from the University of
Ohio (USA), used in this work, are detailed in Tables 14 and 15 (OHIO-UNIV-T1D,
2020), respectively. AC refers to abdominal circumference, and the column Days refers
to the number of days used for data collection.

ID Gender Days Age
Body
mass
(Kg)

AC
(cm)

Data
source

Insulin
type

R-BRA01 M 14 36 57 79 Flash
sensor

degludec
and

aspart

R-BRA02 H 21 50 90 115 Insulin
pump lispro

R-BRA03 H 14 28 70 91 Flash
sensor

degludec
and

aspart

R-BRA04 H 21 45 120 132 Insulin
pump lispro

R-BRA05 H 14 38 82 93 Flash
sensor

glargine
and

aspart

R-BRA06 H 21 39 78.4 91 Insulin
pump lispro

R-BRA07 M 14 65 68 90 Flash
sensor

degludec
and lispro

Table 14: Characteristics of in vivo volunteers of Brazil.

With Brazilian individuals, it was possible to capture more information such as the
presence of hypertension (0 or 1), calculation of eGDR, and glycated hemoglobin (HbA1c)
value, as shown in Table 16. These additional data were used in the glucose compartment
(ODE) for insulin sensitivity factor.

In addition to the dataset of in vivo individuals, data from nine in silico individu-
als with T1D were incorporated, according to Table 17, generated by a FDA-approved
simulator (FDA, 2021) and (VISENTIN et al., 2018).

With the database assembled in the data mesh (AZURE-MESH, 2022) pattern, with
a set of semi-structured data (.csv files) of the 24 individuals with T1D, 50% of the
database was used for training in both ML models: supervised and reinforcement learning,
all individuals and only the R-BRA05 individual, respectively. Mathematical modeling
used the data directly, substituting the glycemic compartment parameters and polynomial
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ID Gender Days Age
Body
mass
(Kg)

AC (cm) Data
source

Insulin
type

544 M 21 40-60 – – Insulin
pump lispro

552 M 21 20-40 – – Insulin
pump lispro

563 M 21 40-60 – – Insulin
pump lispro

570 M 21 40-60 – – Insulin
pump lispro

584 M 21 40-60 – – Insulin
pump lispro

588 F 21 40-60 – – Insulin
pump lispro

591 F 21 40-60 – – Insulin
pump lispro

596 M 21 60-80 – – Insulin
pump lispro

Table 15: Characteristics of in vivo volunteers from Ohio.

ID Hypertensive HbA1c eGDR
R-BRA01 0 5 11.7
R-BRA02 1 6 4.51
R-BRA03 0 6.3 9.91
R-BRA04 1 5.6 3.2
R-BRA05 0 8 8.8
R-BRA06 0 6 10
R-BRA07 0 7.5 9.34

Table 16: Information to calculate eGDR for Brazilian volunteers.

approximation functions for the insulin component.

8.2 Algorithms and numerical libraries

In this work, the function DDE23 (DDE23, 2019) developed in Python 3.8 is used
to solve the ODE. The ODE of the glucose compartment is developed according to sec-
tion 3.2, and the dynamic value of the insulin concentration is entered according to the
pharmacokinetics of each type of insulin, according to subsection 3.2.2.

As with all agents, Math agent has its KB as a NoSQL (Not Only SQL) database (MON-
GODB, 2022), and uses “documents” similar to the JSON (Java Script Object Notation)
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ID Gender Days Age
Body
mass
(Kg)

AC
(cm) Data source Insulin

type

001 – 21 adult 52.6 – Generic insulin
pump

fast-
acting

002 – 21 adult 75.2 – Generic insulin
pump

fast-
acting

003 – 21 adult 108.4 – Generic insulin
pump

fast-
acting

001 – 21 adolescent 30.4 – Generic insulin
pump

fast-
acting

002 – 21 adolescent 50.8 – Generic insulin
pump

fast-
acting

003 – 21 adolescent 80.3 – Generic insulin
pump

fast-
acting

001 – 21 child 18.3 – Generic insulin
pump

fast-
acting

002 – 21 child 30.7 – Generic insulin
pump

fast-
acting

003 – 21 child 49.8 – Generic insulin
pump

fast-
acting

Table 17: Characteristics of in silico individuals.

format to store data. The document is similar to a record, with fields and values. The
database in this case was a service from a specific cloud provider. The ML models: super-
vised, and by reinforcement were developed in Python, using libraries (XGBOOST, 2019)
and (Q-LEARNING, 2019), respectively. The design of the implementation architecture
follows Figure 17.

Based on the stored dataset, after the data collection phase, the ML agent remembers
the timestamps and the value of each observation, achieving a better performance in
the glycemic prediction. The dataset in question, of 24 individuals with T1D, presents
correlation with the previous data (backtesting), where the temporal dimension of the
observations means that we cannot divide them randomly into groups. Instead, it should
split the data and respect the temporal order in which the values were observed (CARTA
et al., 2021), for example glycemic value and insulin dose.

In the first training phase, with data received for at least seven days, the dataset had
no label, and therefore the mathematical agent was used, with code in Python developed,
to add a label to the data handled by the ML agent. Algorithm 1 presents the pseucode
for the setup phase one of learning.
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Algorithm 1 Supervised learning and transfer knowledge - phase 1
New data from the environment. Tesseratus model stores the label of data received along
with the timestamp. Testing dataset (24 individuals with T1D).

if Receive new data then Check the label in the recommender´s KB

if it is in the KB then Confirm the timestamp and increment the counter it is no in
the KB Ask to predictor agent

if Predictor agent has the label in its KB then Send the label to Recommender agent
Predictor agent has not the label in its KB Ask to Math agent via ML agent a label
Math agent calculate the glycemic value based on semaphores created

for Different intervals do

for Values values set in traffic lights do Classify as green, yellow or red

while Wait do Check if receive new data

In the second phase of learning, Tesseratus model used the walk-forward optimization
(WFO) technique (CARTA et al., 2021) and (ALFIAN et al., 2020). Thus, the model
may be updated each time step new data is received from reactive agents, and this step
is essential for automating the model, and would give the model the best opportunity to
make good prediction at each time step. The WFO process works in loop as follows:

1. For instance, since the glucose concentration dataset is measured each five min-
utes, the ML agent used the last two hours of historical data about carbohydrate
and five hours about bolus insulin to predict it (see green and black dashed left-
right arrows of Figure 16). These time slots were chosen based on the duration of
carbohydrate metabolism and the average time of fast-acting insulin action in the
human body, respectively. However, this sliding window could be adapted if pro-
tein or fat consumption is associated with carbohydrates.In Figure 16 insulin values
(in muU/mL), of five hours sliding window, are represented by the black dashed
left-right arrow, while carbohydrate values (in grams), of two hours sliding window,
are represented by the green dashed left-right arrow. They were used to predict the
oscillation glucose up to eight hours (blue dashed right arrow);

2. The model was trained and fitted with the data set available in the selected windows;

3. With the model formed and the parameters established for the selected time period,
it is possible to generate the model outputs for all available data during the next
time step;
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4. In this step, the prediction can be stored as part of a result set;

5. The sliding window can be moved forward so that all data through this window can
be used for tuning and data for the next time step can be used for testing;

6. With the environment stimulated again, coming from the reactive agents, it is posi-
ble restart from step (2), adding the new predictions to the result set.

Algorithm two is the pseudocode of Tesseratus model for the reinforcement learning
process (phase 2), and in the subsection 8.3 is detailed the implementation of the MAS
and its rules.

Algorithm 2 Reinforcement learning - phase 2
New data from the environment after training phase. Tesseratus model sends recommen-
dations and predict glycemic oscillation, in addition to awarding the model. New data
received (individuals with T1D).

if Receive new data then Check the label/data in the recommender´s KB

if it is in the KB then Confirm the timestamp, increment the counter, check the PH
and the possible actions (recommendations)

for Maintain value of glycemic oscillation based on semaphores (green area) do

Recommend time for all recommendations, amount of macronutrients, dose of fast-
acting insulin, in addition to the duration and intensity of physical exercises it is no in
the KB Request help for the predictor agent

if Predictor agent has the label/data in its KB then Send the label/predicted glycemic
curve to recommender agent Predictor agent has not the label in its KB

Ask to mathematical and ML agents a predicted glycemic curve

Mathematical and ML agents calculate the glycemic values

Mathematical and ML agents send the glycemic values, and predictor agent select
the best value closest to the average value between the highest and lowest value of the
range, within the green area of the traffic lights

while Wait do Check if receive new data and give the specific reward

for Reward verification and score creation for agents and Tesseratus model do

Check the reward from the Tables ?? and 7 Check the actions (possible cor-
rections) from satellite agents (anomaly detection, monitor error and ODE parameters
agents)
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Figure 16: Sliding window approach for timeseries data: carb., exercise and insulin.

8.3 Multiagent platform and agents implementation

Some project decisions we made to implement Tesseratus MAS were: adopts SPADE
(Smart Python Agent Development Environment) (SPADE, 2019) to implement the
agents with the use of an event driven approach, and the public cloud platform as the
deployment environment (AZURE, 2022). Each agent profile and knowledge base (KB)
are developed as a microservice. KB of each smart agent uses a non-relational key-value
database, with flexibility for unstructured data and also for being horizontally scalable.

With the platform defined and developed, some initial rules were added to the agents,
mainly to the Recommender agent. However, the rules are dynamically modified through-
out the continuous process of learning and feedback from the environment (individual
with T1D). For the Recommender agent, there are recommendations stored in the KB
through actions and suggestive messages for the individual, always with the objective of
maintaining the glycemic oscillation inside the green area of the traffic lights.

The Recommender agent receives the best glycemic curve values, and can request new
results if a recommendation is not attractive to the individual, such as, for example,
practicing 4 hours of exercise on Monday at 8:00 am. Always, the agent is based on the
age of each individual and whether they are in the fasting, during the meal or postprandial
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period. Furthermore, there are already proactive messages from the Recommender agent
for the individual:

1. When taking any type of insulin, wait 10 seconds before removing the syringe from
your body if you are not using an insulin pump;

2. Do not apply insulin to the same place on the body on the same day;

3. The effect of the previously applied fast- and slow-acting insulin is still active, 5h
and 24h, respectively. It is recommended to wait for the full effect;

4. After eating carbohydrates, assess your capillary glycemic level after 2 hours;

5. Book at least 1 hour of physical exercise if you haven’t practiced for more than 2
days (SBD, 2022a);

6. Correct your blood glucose level that is above 180 mg/dL with fast-acting insulin,
and can be adjusted over time.

In the following there are the initial actions of the Recommender agent for the practice
of physical exercises:

• Check glycemic level: capillary or interstitial fluid;

• Check how much time you have available to exercise;

• If glycemic level is below 90 mg/dL, consume 15–30g of carbohydrates before, if
exercise duration is longer than 30min (SBD, 2022a);

• If the glycemic level is between 90 and 150 mg/dL, consume carbohydrates from
physical exercise, as a rule 0.5 g/Kg/hour (SBD, 2022a);

• If the glycemic level is between 151 and 250 mg/dL, delay the consumption of
carbohydrates, until it returns to the level of 150 mg/dL (SBD, 2022a);

• If the glycemic level is above 250 mg/dL, do not exercise until the insulin correction
is performed, starting with 50:1 or according to the individual’s input (initial action
on KB) (SBD, 2022a).

Next, there are the initial actions at the time of ingestion of macronutrients (carbo-
hydrates, proteins and lipids):
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• Check glycemic level: capillary or interstitial fluid;

• Check your insulin sensitivity using the rule 1700/total amount of insulin adminis-
tered, which can be a fixed value over time, for periods and store the result;

• Check the amount and type of carbohydrate to be consumed, in addition to the
association with protein or lipid;

• KB has the following rules regarding the amount of insulin to be applied - rate
[insulin (U):carbohydrates (g)]:

1:10 in the morning (06:00-12:00);

1:12 on the afternoon (12:00-19:00);

1:15 on the night/early period (19- 06h).

• If it is above 160 mg/dL, delay the intake of carbohydrates, correct it with fast-
acting insulin, and wait 30 minutes until the next measurement;

• Bolus insulin dose adjustment of the bolus insulin dose to 75g of isolated pro-
tein, or 30g associated with carbohydrates which can result in an increase of 47
mg/dL (PANKOWSKA; BLAZIK; GROELE, 2011), (PETERS; DAVIDSON, 1993),
(BELL et al., 2015) and (SMART et al., 2013);

• Bolus insulin dose adjustment for foods with a concentration greater than 35g of fat,
with a possible delay of 180 minutes in the elevation of the glycemic curve (PANKOWSKA;
BLAZIK; GROELE, 2011), (PETERS; DAVIDSON, 1993), (BELL et al., 2015) and
(SMART et al., 2013). This elevation curve needs to be learned on a case-by-case
basis.

And finally, the initial actions related to injecting fast-acting insulin for glycemic level
correction, in the KB of the Recommender agent:

• Check glycemic level: capillary or interstitial fluid;

• KB has the following rules regarding the amount of insulin to be applied:

For 50 mg/dL, the individual injects 1U of insulin, but initially each individual
uses their own, for example, the R-BRA07 uses a 30:1 correction rate.

Nevertheless, for the Predictor agent, the learning and decision rules are more sim-
plified compared to the Recommender agent, as it passes on the new data entered in the
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model, forwarded via the Recommender agent and sends it to the ML and Math agents.
After receiving the results from both agents, it decides on the best curves to send to the
Recommender agent, which is the closest to the glycemic level of 100 mg/dL, according
to the requested prediction period. If the glycemic values fall outside the ideal range, it
requests the recalculation again with different values (macronutrients, insulin, exercise)
in the range of ± 20%.

In the same way, the Math and ML agents receive the information and calculate ac-
cording to the chosen prediction horizon period. They store the predicted values and
send them to the Predictor agent in order to resolve the dispute or forward the message.
Tables containing the description of all agents’ actions are presented in appendix E.

8.4 Cloud reference architecture

The architecture shown in Figure 17 has the basic components on cloud such as API
Management (gateway), database (KB), serverless services for the computational part
(agents), as well as viewers (dashboards) and notebooks to configure ML and mathemat-
ical models. All data collection in this case is carried out via the application, in several
ways such as manual, by voice or with the use of sensors.

All access to the backend, coming from the application, is performed via APIs (Ap-
plication Programming Interface), and the gateway is an API Management.

The event-driven architecture of the proposed model uses events to trigger and com-
municate between different microservices. An event is a state change or an update. Events
can contain state or events can be identifiers. The advantage for the Tesseratus model of
using an event-based architecture is the possible decoupling between the microservices,
because if necessary, the agent of each microservice is only aware of the event router, not
each other. This means your services are interoperable, but if one microservice fails, the
rest will continue to work, maintaining the resilience of the proposed architecture.

All the input data of the Tesseratus model is collected locally, through an applica-
tion that connects with the different devices or manually, in which the individual has
the responsibility to enter the values in the application. To facilitate remote viewing
and capture telemetry, the open source software NightScout (NIGHTSCOUT, 2020) is
used, which allows connecting and transmitting glucose readings from some of the sensors
used by participants, for example, (FreeStyle Libre® (FREESTYLE, 2020) and Minimed
640® (MINIMED-640G, 2020)).
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Figure 17: Tesseratus model implementation architecture in the cloud.

8.5 Testing

As mentioned in subsection 8.1, all tests were performed with 50% of data from 24
individuals with T1D, 15 in vivo and nine in silico. With the data set defined, a model
was created for each individual, and prediction tests were performed in the following time
horizons:

• Morning and afternoon:

15, 30 , 60, 90, 120, 180 and 240 minutes

• Night period:

15, 30, 60, 90, 120, 180, 240, 300, 360, 420 and 480 minutes

From the results obtained with the mathematical and ML models, some techniques
were used to analyze the accuracy of the models and focused on the evaluation of absolute
errors:

• Minor MAE (mean absolute error);

• Minor MAPE (mean absolute percentage error);
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• Longer time in the ideal glycemic range defined (green area of traffic lights) - TIR
(Time in Range). The TIR was collected only from one individual: R-BRA05 after
authorization;

• Parkes Error Grid (PEG) (zones A + B) (PFÜTZNER et al., 2013) greater than or
equal to 90%, in order to determine the deviation between predicted and measured
values.

We use PEG (PARKES et al., 2000) to evaluate errors in the measurement of predicted
glucose oscillation provided by Tesseratus. It was adopted because it is compliant with
ISO15197 (KATZ, 2020) and it separates T1D individuals from individuals with type
2 diabetes mellitus. Moreover, PEG had its technical issues revised by Pfutzner and
colleagues (2013), who established exact borders for the performance zones for glucose
measurements and support the accuracy definition for glucose monitors. The zones are
categorized as A, B, C, D and E. The associate meaning for a measurement of being in
a zone is:

A – clinically accurate measurements, no effect on clinical action;

B – altered clinical action, little or no effect on clinical outcome;

C – altered clinical action, likely to affect clinical outcome;

D – altered clinical action, could have significant clinical risk;

E – altered clinical action, could have dangerous consequences.

PEG was used considering the predicted versus measured values, and the success
metric is simple: the most prediction points are within zones A and B, the better is the
model.

After the model was trained and tested with historical data, only the individual R-
BRA05 was used for recommendation tests, after updating the approval of the Ethics
Council. All the results of tests performed are in chapter 9.



PART III

RESULTS AND CONCLUSION
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9 RESULTS

At the beginning of this work, some metrics to evaluate performance were established:
(1) the prediction horizon is up to four hours for daytime periods and up to eight
hours for night periods, depending on the sleep period of each individual or feeding
frequency; (2) the MAE value must be less than or equal to 30 mg/dL, to check the
quality (GINSBERG, 2009) of each predicted blood glucose value for each individual, in
relation to the prediction horizon; (3) from the measurements, 90% or more must be
inside the zones A and B of the Parkes Error Grid (PEG) (PARKES et al., 2000),
determining to be a clinically accurate predictor (PFÜTZNER et al., 2013), regardless
of the prediction horizon (PH); (4) the prediction, as well as the correction suggestions,
and the recommendations must be carried out in less than 1 minute; (5) performance is
analyzed through the recommendations provided by the proposed model, to achieve the
main goal of maintaining glycemic value within the optimal range, that is, maintaining
the homeostasis of the environment.

To achieve the best results, it was established a natural competition between Math and
ML agents, with their respective strategies, ODEs plus piecewise polynomial equations for
approximation and, supervised learning algorithm plus sliding windows approach, respec-
tively. Furthermore, it was possible practice a continuous flow of active Reinforcement
Learning, using historical data up to 21 days. The best result is always closer to the ideal
glycemic range, always considering other factors such as injecting insulin, eating carbo-
hydrates or practicing medium or high intensity physical exercise. The exercise intensity
was informed by the individuals, and according to the mathematical model, only medium
and high intensity exercises are considered.

In order to be able to predict the glycemic oscillation of individuals with T1D of each
one of them and in an attempt to automate the 180 extra health-related decisions (TACK
et al., 2018), a personalized pattern was sought. This daily pattern exists and Figure 18
represents it, at least in the glycemic speed part. The glycemic speed in this case was
calculated with interstitial glucose values (rising or falling) in relation to time each 30
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min.

Figure 18: Glycemic oscillation pattern of participant R-BRA07 (every 30min of 00h-8h).

However, for example, the volunteer R-BRA05 presented a different pattern of glycemic
speed than the individual R-BRA07, as shown in Figure 19. It is interesting to note that
the first day of measurement was discarded, as it presented a different pattern from
the other 13 days, which is common to the FreeStyle Libre glucometer® (FREESTYLE-
LIBRE, 2020), due to the period of chemical equilibrium with the fluid interstitial on the
first day.

The daytime and nighttime windows were personalized for each individual, according
to the new stimulus (data), with the daytime period corresponding to the period in which
the individual is active. And, for some individuals with night intervals shorter than 8
hours, it was not necessary to trigger the execution of Tesseratus model for this period,
and so on. The prediction triggers were performed in a personalized way, as the model is
stimulated with new data, and the prediction periods were according to each individual.

Based on these premises, the first result of this work consisted in the development
of the mathematical model in Python and subsequent execution. It was proved that the
differential equations serve as a basis for the Tesseratus model, as a provider of labels
for glycemic levels in phase one of learning, and as a predictor, in phase two. Figure 20
illustrates the parameters used to calculate the glycemic oscillation curve. In this case, it
was simulated with a 2-hour prediction, current blood glucose value equal to 180 mg/dL
and insulin sensitivity of 75%. The exercise time is equal to the minimum average time,
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Figure 19: Glycemic oscillation pattern of participant R-BRA05 (every 30min of 00h-8h).

and in this case it does not significantly influence glucose uptake. The glucose intake
rate is at a fixed rate (1.08 mg/dL . min), as is the insulin infusion (20 µU/mL . min).
Figure 21 shows that glycemia, after two hours, stabilizes around 127 mg/dL. Insulin
concentration also stabilizes at 350 µU/mL.

Figure 20: Parameters used - agent Math (60 min. exercise).

The first version of code developed for the physiological model, based on ODEs, was
sensitive to changes in parameter values. For example, changing the exercise time from 60
minutes to 120 minutes, as shown in Figure 22, caused positive changes in glucose level,
as the value was within the ideal range, that is, 100 mg/dL, as shown in Figure 23.

Specifically about the Math agent, the values of insulin concentration I0 and insulin
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Figure 21: Generated graphs of glycemic oscillation and insulin concentration for 60 min.
of exercise.

Figure 22: Parameters used - agent Math (120 min. exercise).

intake Iin were replaced by the approximate value of the pharmacokinetics I(t) (µU/mL),
as a function of time. The value of insulin resistance (IR) (γ) or insulin sensitivity factor
(ISF), specifically for the 7 volunteers from Brazil, was replaced by eGDR (EPSTEIN et
al., 2013). It is very important to point out that the scaling factor γ can take values
from 0 to 1, with 0 corresponding to no ability for muscle and fat cells to take up glucose,
and the closer to 1, the individual with T1D has the ability to uptake glucose through
exogenous insulin, satisfactorily.

In this case, eGDR equal to 12 mg/kg/min equals 50% IR, 6 mg/kg/min equals 75%
and eGDR equals 0 mg/kg/min equals 100% IR or γ equal to 1. In our research, no
individual had a value of γ equal to 1, according to Table 16. However, the best 2-hour
prediction results with ODEs were achieved using the rule of 1700/amount of insulin used
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Figure 23: Generated graphs of glycemic oscillation and insulin concentration for 120 min.
of exercise.

to measure the insulin resistance.

The second result was the development of the Tesseratus model, based on agents,
more specifically with the Spade (SPADE, 2019) library with BDI plugin (SPADE-BDI,
2021). The supervised learning (ALFIAN et al., 2020) algorithm was delegated to the ML
agent, and reinforcement learning governs the entire model (Q-LEARNING, 2019). The
mathematical agent, based on differential equations, is one of the agents in the model.
With the test environment created, the evaluation metrics were defined and applied to
the dataset: MAE, MAPE, TIR and Parkes Error Grid (PEG) considering zones A+B.

9.1 Applying Tesseratus to data from Brazilian Vol-
unteers

The data of the seven Brazilian volunteers, characterized in the subsection 8.1, were
used to verify the evaluation metrics, and the individual’s activity periods were personal-
ized, as follows:

• R-BRA01: daytime (08am–10:40pm) and nightime (10:41pm–07:59am);

• R-BRA02: daytime (06am–10pm) and nightime (10:01pm–05:59am);

• R-BRA03: daytime (08am–10pm) and nightime (10:01pm–07:59am);

• R-BRA04: daytime (09am–9:15pm) and nightime (9:16pm–08:59am);
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• R-BRA05: daytime (07:35am–11:58pm) and nightime (11:59pm–07:34am);

• R-BRA06: daytime (05:30am–9:50pm) and nightime (9:51pm–05:29am);

• R-BRA07: daytime (06am–8:50pm) and nightime (8:51pm–05:59am).

In relation to Parkes Error Grid (PEG) for Brazilian volunteers, Table 18 details each
prediction horizon (PH), in the daytime, in addition to the general average of Tesseratus
model, and Figure 24 represents a total of 3126 predictions, and on average 95.1% fell in
zones A and B. The bar between 0 and 4, on the right side of the PEG, represents the
degree of accuracy between the measured and predicted values, with the lightest (0.0)
being the best state, and the darkest (4.0) being the worst. Dark green dots are in the
zone A, light green dots in the zone B, yellow dots in the zone C, red dots in the zone D
and black dots in the zone E.

Figure 24: Parkes Error Grid linked with 7 Brazilian volunteers (daytime).

Table 19 details the PEG of each prediction horizon, in the night period, in addition
to the Tesseratus model itself and, Figure 25 represents a total of 1400 predictions, and
on average 93.7% fell in zones A and B.
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PH A B C D E A+B # of predictions
Average 62.3% 32.8% 4.4% 0.5% 0% 95.1% 3126
15 min 93% 6.8% 0.2% 0% 0% 99.8% 644
30 min 76.9% 22.2% 0.8% 0% 0% 99.1% 589
60 min 56.4% 41.5% 2% 0.1% 0% 97.9% 509
90 min 50.1% 44.9% 4.7% 0.3% 0% 95% 443

120 min 50.3% 41.8% 7.4% 0.5% 0% 92.1% 392
180 min 46% 44% 8.9% 0.9% 0.2% 90% 305
240 min 49.6% 40.4% 9.7% 0.3% 0% 90% 244

Table 18: Results of Parkes Error Grid for Tesseratus (zones) - daytime (Brazil).

Figure 25: Parkes Error Grid linked with 7 Brazilian volunteers (night time).

The daytime mean absolute error (MAE) is represented in Table 20 and nighttime
MAE in Table 21. The daytime mean absolute percentual error (MAPE) is represented
in Table 22 and nightime MAPE in Table 23.
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PH A B C D E A+B # of predictions
Average 55.8% 37.9% 5.6% 0.7% 0% 93.7% 1400
15 min 86% 12.4% 1.7% 0% 0% 98.4% 163
30 min 72.2% 26.9% 0.9% 0% 0% 99.1% 159
60 min 57.1% 41.8% 1.1% 0% 0% 98.9% 154
90 min 50% 44.4% 5.6% 0% 0% 94.4% 151

120 min 47.7% 46.7% 5.6% 0% 0% 94.4% 139
180 min 45.3% 44.7% 8.6% 0.7% 0.6% 90% 121
240 min 48.8% 42.2% 8.4% 0.6% 0% 91% 110
300 min 46.2% 44.8% 8% 1.2% 0% 91% 107
360 min 54.2% 37.8% 6.5% 1.5% 0% 92% 108
420 min 52.3% 39.7% 6.7% 1.3% 0% 92% 98
480 min 62% 33% 4.5% 0.5% 0% 95% 90

Table 19: Results of Parkes Error Grid for Tesseratus (zones) - nighttime (Brazil).

PH Average
Tesseratus 24.56

15 min 9.18
30 min 16.97
60 min 26.41
90 min 30.24

120 min 30.54
180 min 33.61
240 min 25.01

Table 20: MAE (mg/dL) - daytime (Brazil).

PH Average
Tesseratus 27.77

15 min 9.27
30 min 16.09
60 min 26.26
90 min 28.09

120 min 28.3
180 min 32.68
240 min 34.49
300 min 35.16
360 min 34.97
420 min 33.96
480 min 26.37

Table 21: MAE (mg/dL) - nighttime (Brazil).
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PH Average
Tesseratus 24

15 min 8
30 min 13.32
60 min 20.52
90 min 24.98

120 min 30.79
180 min 33.26
240 min 37.82

Table 22: MAPE (%) - daytime (Brazil).

PH Average
Tesseratus 24.72

15 min 8.8
30 min 15.46
60 min 23.53
90 min 27.74

120 min 24.56
180 min 29.16
240 min 29.31
300 min 23.84
360 min 34.89
420 min 30.24
480 min 24.42

Table 23: MAPE (%) - nighttime (Brazil).

9.2 Applying Tesseratus to data from Ohio Univer-
sity

The data of eight volunteers from University of Ohio, characterized in the subsec-
tion 8.1, were used to verify the evaluation metrics, and the individual’s activity periods
were personalized, as follows:

• OHIO544: daytime (07:50am–10:15pm) and nightime (10:16pm–07:49am);

• OHIO552: daytime (05:15am–11:30pm) and nightime (11:31pm–05:14am);

• OHIO563: daytime (05am–9:55pm) and nightime (9:56pm–04:59am);

• OHIO570: daytime (06am–9:10pm) and nightime (9:11pm–05:59am);

• OHIO584: daytime (05am–9:15pm) and nightime (9:16pm–04:59am);
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• OHIO588: daytime (06:35am–10:55pm) and nightime (10:56pm–06:34am);

• OHIO591: daytime (06am–11:10pm) and nightime (11:11pm–05:59am);

• OHIO596: daytime (06:50am–10:15pm) and nightime (10:16pm–06:49am).

In relation to PEG of volunteers from Ohio, Table 24 details each PH, in the daytime,
in addition to the general average of Tesseratus model, and Figure 26 represents a total
of 8934 predictions, and on average 94.3% fell in zones A and B.

Figure 26: Parkes Error Grid linked with 8 volunteers from OHIO (day time).

Table 25 details the PEG of each PH, in the night period, in addition to the Tesseratus
model itself and, Figure 27 represents a total of 3283 predictions, and on average 91.9%
fell in zones A and B.

The daytime MAE is represented in Table 26 and nightime MAE in Table 27.

The daytime MAPE is represented in Table 28 and nightime MAPE in Table 29.
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PH A B C D E A+B # of predictions
Average 57% 37.3% 5.1% 0.6% 0% 94.3% 8934
15 min 88.3% 11.5% 0.2% 0% 0% 99.8% 1874
30 min 73.5% 25.5% 0.9% 0.1% 0% 99% 1731
60 min 53.7% 42.6% 3.2% 0.5% 0% 96.3% 1480
90 min 48.8% 44.7% 5.5% 1% 0% 93.5% 1214

120 min 44.9% 48.1% 6% 1% 0% 93% 1073
180 min 41.2% 48.6% 9.1% 0.8% 0% 89.8% 854
240 min 38.6% 49.3% 11% 1.1% 0% 87.9% 708

Table 24: Results of Parkes Error Grid for Tesseratus (zones) - daytime (Ohio).

Figure 27: Parkes Error Grid linked with 8 volunteers from OHIO (night time).

9.3 Applying Tesseratus to data from virtual indi-
viduals

Data of nine virtual individuals, characterized in the subsection 8.1, were used to
verify the evaluation metrics, and the individual’s activity periods were defined, as fol-
lows: daytime (07am–6:50pm) and nightime (6:51pm–06:59am). Basedon this, they were
created withe these IDs: Adult#001 - 003, Adolescent#001 - 003 and Child#001
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PH A B C D E A+B # of predictions
Average 49.1% 42.8% 7.1% 1% 0% 91.9% 3283
15 min 93.1% 5.7% 1.2% 0% 0% 98.8% 452
30 min 80.2% 19.2% 0.6% 0% 0% 99.4% 444
60 min 61.8% 36% 1.1% 1.1% 0% 97.8% 417
90 min 52.6% 40.8% 5.2% 1.4% 0% 93.4% 405

120 min 52.5% 42.1% 4.6% 0.7% 0% 94.6% 361
180 min 43% 49.4% 6.4% 1.2% 0% 92.4% 280
240 min 40.1% 48.6% 9.7% 1.6% 0% 88.7% 213
300 min 39.8% 49.3% 10% 0.9% 0% 89.1% 211
360 min 41.7% 46.3% 10.6% 1.4% 0% 88% 178
420 min 42.7% 47.9% 8.9% 0.6% 0% 90.6% 162
480 min 49.3% 43.1% 7.1% 0.5% 0% 92.4% 160

Table 25: Results of Parkes Error Grid for Tesseratus (zones) - nighttime (Ohio).

PH Average
Tesseratus 35.09

15 min 12.07
30 min 21.55
60 min 34.44
90 min 40.53

120 min 44.84
180 min 45.93
240 min 42.14

Table 26: MAE (mg/dL) - daytime (Ohio).

PH Average
Tesseratus 33.19

15 min 12.48
30 min 19.5
60 min 27.37
90 min 32.34

120 min 33.66
180 min 39.21
240 min 42.66
300 min 42.62
360 min 41
420 min 42
480 min 38

Table 27: MAE (mg/dL) - nighttime (Ohio).
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PH Average
Tesseratus 21

15 min 10
30 min 12
60 min 19
90 min 24

120 min 27
180 min 30
240 min 29

Table 28: MAPE (%) - daytime (Ohio).

PH Average
Tesseratus 22

15 min 6
30 min 11
60 min 17
90 min 23

120 min 24
180 min 28
240 min 29
300 min 30
360 min 29
420 min 28
480 min 23

Table 29: MAPE (%) - nighttime (Ohio).

- 003.

In relation to PEG, Table 30 details each PH, in the daytime, in addition to the
general average of Tesseratus model and, Figure 28 represents a total of 1824 predictions,
and on average 97.2% fell in zones A and B.

PH A B C D E A+B # of predictions
Average 68.3% 28.9% 2.2% 0.6% 0% 97.2% 1824
15 min 88.3% 10.9% 0.8% 0% 0% 99.2% 384
30 min 79.7% 20.3% 0% 0% 0% 100% 384
60 min 60.7% 37.5% 1.8% 0% 0% 98.2% 336
90 min 51.1% 45.8% 2.1% 1% 0% 96.9% 288

120 min 62.5% 37.5% 0% 0% 0% 100% 240
180 min 62.5% 32.5% 5% 0% 0% 95% 120
240 min 45.8% 41.7% 8.3% 4.2% 0% 87.5% 72

Table 30: Results of Parkes Error Grid for Tesseratus (zones) - daytime (Virtual).
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Figure 28: Parkes Error Grid linked with nine virtual individuals (day time).

Table 31 details the PEG of each PH, in the night period, in addition to the Tesseratus
model itself and, Figure 29 represents a total of 936 predictions, and on average 99.7%
fell in zones A and B.

PH A B C D E A+B # of predictions
Average 72.1% 27.6% 0.3% 0% 0% 99.7% 936
15 min 93.8% 6.2% 0% 0% 0% 100% 216
30 min 79.2% 20.8% 0% 0% 0% 100% 192
60 min 56.2% 43.8% 0% 0% 0% 100% 168
90 min 50% 50% 0% 0% 0% 100% 96

120 min 37.5% 62.5% 0% 0% 0% 100% 72
180 min 37.5% 62.5% 0% 0% 0% 100% 48
240 min 12.5% 87.5% 0% 0% 0% 100% 48
300 min 37.5% 50% 12.5% 0% 0% 87.5% 24
360 min 75% 25% 0% 0% 0% 100% 24
420 min 71.9% 28.1% 0% 0% 0% 100% 24
480 min 84.7% 15.3% 0% 0% 0% 100% 24

Table 31: Results of Parkes Error Grid for Tesseratus (zones) - nighttime (Virtual).

The daytime MAE is represented in Table 32 and nightime MAE in Table 33. The
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Figure 29: Parkes Error Grid linked with nine virtual individuals (night time).

daytime MAPE is represented in Table 34 and nightime MAPE in Table 35.

PH Average
Tesseratus 20.61

15 min 8.49
30 min 13.78
60 min 24.9
90 min 30.72

120 min 25.24
180 min 19.65
240 min 21.52

Table 32: MAE (mg/dL) - daytime (Virtual).

9.4 Using Tesseratus as a Recommender to one Brazil-
ian Volunteer

In this test, the personalized recommendations of the Tesseratus model were ap-
plied to the individual R-BRA05, with authorization from the Ethics Council (see ap-
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PH Average
Tesseratus 20.54

15 min 8.76
30 min 11.24
60 min 19.14
90 min 26.04

120 min 30.56
180 min 26.74
240 min 25.45
300 min 25.48
360 min 22.69
420 min 19.81
480 min 10.09

Table 33: MAE (mg/dL) - nighttime (Virtual).

PH Average
Tesseratus 13.24

15 min 6.21
30 min 9.97
60 min 14.7
90 min 18.81

120 min 14.63
180 min 13.19
240 min 15.21

Table 34: MAPE (%) - daytime (Virtual).

PH Average
Tesseratus 16.16

15 min 5.16
30 min 5.8
60 min 12.4
90 min 16.08

120 min 22.28
180 min 19.31
240 min 24.11
300 min 26.39
360 min 20.85
420 min 17.47
480 min 7.98

Table 35: MAPE (%) - nighttime (Virtual).
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pendix B). Thus, the Recommender agent has in its knowledge base (KB) some pre-defined
rules/actions between the endocrinologist and the individual, and that are verified for each
stimulus from the environment (individual):

1. Practice at least 60 minutes of physical exercise, from medium to high intensity,
daily or at least 3 times a week;

2. Does not practice physical exercises during the day;

3. Glycemic target by R-BRA05: between 100–140 mg/dL (personalized), with the
ideal being between 80–120 mg/dL;

4. If the glycemic value, coming from the sensor, is above 300 mg/dL or below 80
mg/dL, request a capillary measurement for double verification;

5. Glycemic level correction factor, if the level is above 180 mg/dL: 1U of rapid-acting
insulin (aspart) to 50 mg/dL;

6. Daily amount of basal effect insulin: 28U;

7. In the morning, the rapid insulin:carbohydrate ratio should be 1:10, with 1U of
insulin aspart for 10g of carbohydrates;

8. In the afternoon, the rapid insulin:carbohydrate ratio should be 1:12, with 1U of
insulin aspart for 12g of carbohydrates;

9. At night, the rapid insulin:carbohydrate ratio should be 1:15, with 1U of insulin
aspart for 15g of carbohydrates.

If the prediction values are not in the personalized glycemic range (100–140 mg/dL),
after 2 hours of receiving a new data, new prediction calculations with ± 20% of the input
values are requested (amount of macronutrients, insulin dose and exercise time) for the
ML and Math agents, based on the predictor agent. Thus, the following recommendations
were modified after the first 7 days of learning:

1. Recommendation: practice at least 90 minutes of medium to high inten-
sity physical exercise, daily or at least 3 times a week;

2. Recommendation: practice physical exercises in the afternoon;

3. Non-altered glycemic target for R-BRA05: between 100-140 mg/dL;
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4. If the glycemic value, coming from the sensor, is above 300 mg/dL or below 80
mg/dL, request a capillary measurement for double verification;

5. Glycemic level correction factor remained the same (1:50);

6. Daily amount of basal effect insulin remained the same: 28U;

7. In the morning, the insulin:carbohydrate ratio should remain 1:10;

8. Recommendation: in the afternoon, the carbohydrate ratio should be
1:12, as the individual daily had routine hyperglycemic indexes between lunch and
dinner;

9. Recommendation: at night, the carbohydrate rate should be 1:16, as the
individual daily had routine hypoglycemic indexes after dinner.

Thus, after the recommendations, the TIR (Time in Range) values underwent positive
changes, compared to the 14 days of historical data collected:

• TIR at day period: from 70% of (229 hours) to 72% after 7 days of personalized
recommendations;

• TIR at night period: from 65% of (106 hours) to 66% after 7 days of personalized
recommendations.

Regarding the MAE, MAPE and Parkes Error Grid (PEG) evaluation metrics, Ta-
bles 36 and 37 show the results improvement, after 7 days of learning and recommenda-
tions, as the daytime and the night period MAE decreased by 2.13% and 1.81%, respec-
tively, and the amount of predictions within PEG A+B zones increased by 3.31% in the
daytime period and 2.77% in the night period. The individual R-BRA05 did not have
4-hour predictions in the daytime period, because the period between activation triggers
of the Tesseratus model, with new data, was less than four hours. The Count column in
Table 36 represents the number of predictions.

The graph in Figure 30 represents the telemetry of the glycemic oscillation of the R-
BRA05, coming from the FreeStyle Libre® sensor, and shows the effect of the personalized
recommendations after 5 o’clock afternoon of a specific day.

The results showed improvement of the Tesseratus model with the inclusion of more
data and continuous learning, considering 7 more days of learning, and it is discussed in
the section 9.5.
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R-
BRA05

MAPE
(before)

MAPE
(after)

MAE
(before)

MAE
(after)

PEG
A+B
before

PEG
A+B
after

Count

Tesseratus
(average)

24.26% 23.75% 22.49 22.02 86.05% 88.9% 232

15 min 12.48% 12.22% 11.28 11.04 100% 100% 74
30 min 22% 21.54% 22.4 21.93 95.1% 98.43% 61
60 min 29.11% 28.5% 31.32 30.66 90% 93.15% 40
90 min 34.47% 33.74% 33.15 32.45 81.2% 84.04% 32
120 min 28.9% 28.29% 25.5 24.96 90% 93.15% 20
180 min 42.91% 42.01% 33.8 33.09 60% 62.1% 5

Table 36: Results through metrics after recommendations at daytime (R-BRA05).

R-
BRA05

MAPE
(before)

MAPE
(after)

MAE
(before)

MAE
(after)

PEG
A+B
before

PEG
A+B
after

Count

Tesseratus
(average)

31% 30.45% 29.79 29.26 80.6% 82.84% 119

15 min 7.86% 7.72% 5.72 5.62 100% 100% 13
30 min 17.4% 17.09% 14 13.75 100% 100% 12
60 min 23.09% 22.68% 22.9 22.49 100% 100% 12
90 min 29.4% 28.88% 26.08 25.62 83.3% 85.61% 12
120 min 40.6% 39.88% 32.5 31.92 75% 77.08% 12
180 min 50.4% 49.5% 32.69 32.11 69.3% 71.23% 11
240 min 44.47% 43.68% 38.5 37.82 75% 77.08% 11
300 min 41.2% 40.1% 38 37.32 75% 77.08% 11
360 min 39.37% 38.67% 39.09 38.39 72.8% 74.82% 11
420 min 50.4% 49.5% 40.54 39.82 63.7% 65.47% 10
480 min 38.05% 37.37% 37.75 37.08 75% 77.08% 4

Table 37: Results through metrics after recommendations at nighttime(R-BRA05).

9.5 Discussion

If we consider an overall average between the three datasets in the circadian cycle, two
in vivo and one in silico, Tesseratus model has pioneering results for long-term glycemic
predictions (from four to eight hours): MAE (26.96 mg/dL), MAPE (20.18%) and
PEG in zones A+B (95.31%), out of a total of 19503 requested predictions.

This work achieved mean absolute errors (MAE) of less than 30 mg/dL for long-
term prediction horizons (PH). For short-term PHs (up to 2h), the Tesseratus model
achieved even better results: MAE (23.3 mg/dL), MAPE (16.55%) and PEG in
zones A+B (97.63%). At this point, it is important to emphasize the importance of
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Figure 30: FreeStyle Libre® sensor graph related to 24 hours with recommendations (5pm).

long-term prediction in the night periods, in order to mitigate the risks of nocturnal hy-
poglycemia, and short-term to cover the total time of carbohydrate to glucose conversion,
in the human body.

Even considering only a single individual for the prediction analysis based on per-
sonalized recommendations, there were improvements in terms of time within the ideal
and personalized glycemic level, being four hours during the day and one hour at
night. However, this improvement projection can be expanded with more days of data
collection, being exponential with more individuals in the database.

Comparing the results of the Tesseratus model (PEG 95.31% and 97.63%) with the
current accuracy requirements of the Health Organizations or Federations, for blood glu-
cose meters in real time, that is, PH equal to zero, as ISO1597 of 2015 (KATZ, 2020) or
FDA (KATZ et al., 2020): (1) 95% of values in the range ± 15 mg/dL to < 100 mg/dL
- ISO15197 (Europe); (2) 95% of all values must be in the range ± 15%; - FDA (USA),
it is necessary to have a new taxonomy for evaluating success with longer PHs (180, 240,
300, 360, 420 and 480 min.), according to medicine of precision. This new requirement
comes from the need for predictability of glycemic oscillation, not only in real time or
short-term to avoid irreversible risks, but in the long term reducing the possibility of the
appearance of comorbidities derived from poor control of the glycemic level.

However, it is worth remembering that the model still needs to be validated with
more individuals, as it is still in a proof-of-concept phase. The model also requires a high
degree of commitment from the individual, due to the numerous measurements and data
capture. In addition, the model was tested only with individuals who use insulin pumps,
CGMs, and users of rapid insulin analogues (lispro and aspart) and long-acting analogues
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(degludec and glargine), however the model can be expanded to users of FIASP (FIASP,
2020), NPH and perhaps even regular insulin.

In summary, the Tesseratus model is valid from the point of view of clinical appli-
cability, besides the perspective of a medical and individual decision support system,
through personalized recommendations. The result of this work demonstrated the feasi-
bility of the Tesseratus model to be applied to an open artificial pancreas (OPENAPS,
2021), artificial pancreas (closed-loop) (FDA, 2019), insulin pumps (MINIMED-640G,
2020) or (CONTROL-IQ, 2022), applications of endocrinologists and/or nutritionists, for
example, via telemedicine. In this way, it can facilitate and improve the T1D’s lifestyle,
as well as avoid mental fatigue due to numerous extra decisions.
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10 CONCLUSION AND FUTURE WORK

This Chapter is to discuss the main contributions of the Tesseratus model, future
work and publications.

10.1 Final remarks

Providing a model that efficiently and effectively meets the personalized and dy-
namic needs of each individual with T1D is, however, challenging. Even with advances in
technology with continuous glucose monitors (FREESTYLE-LIBRE, 2020) and artificial
pancreas (FDA-CONTROLIQ, 2019), there is no PH compatible with the busy lifestyle of
today’s individuals with T1D. Another reason that makes glucose prediction complicated
is the development of ML models and mathematical models that mimic glucose-insulin
regulatory system of individuals with T1D.

Succinctly, the main needs are: (1) create treatment approaches that bring better
results in terms of short-term glycemic control and reduction of the risks of developing
long-term complications; (2) improve the accuracy of prediction models for individuals
with T1D (IT1D), especially in high-risk populations, to enable effective and safe inter-
ventions that avoid hypoglycemic or hyperglycemic conditions; (3) there are no models or
software that have long PHs (> six hours), in order to avoid, for example, nocturnal hy-
poglycemia; (4) the most therapies are based on generalist values, according to scientific
societies (IDF, 2022); (5) there is no accurate mechanism for prior personalized recom-
mendation; (6) the PH of pharmaceutical devices already available on the market, such as
insulin pumps, does not exceed 30 minutes (BROWN et al., 2019b) and (MINIMED-670G,
2020), and consequently does not have a desirable predictability, for example postprandial
(> two hours). Thus, this work directly addresses challenge (1) and indirectly addresses
challenges (2)–(6).

In this context, the present work presented a hybrid model called Tesseratus, based
on a Multi-agent System (MAS), to predict the glycemic oscillation, in a horizon of four
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to eight hours. Moreover,it recommends the amount of exogenous, fast-acting and basal
insulin, in addition to the amount of macronutrients to be ingested, time and intensity of
exercise. The main objective is to keep glucose within the ideal range for as long as possible
through these personalized recommendations. A continuous learning system is used with
three Artificial Intelligence techniques: (1) supervised learning; (2) reinforcement learning;
(3) active learning with knowledge transfer.

The proposed model becomes a gray-box hybrid (DUUN-HENRIKSEN et al., 2013)
as it uses physiological models to mimic the glucose-insulin regulatory system of the indi-
viduals with T1D, together with the continuous collection of data from each individual.
Active learning takes advantage of ODE for the glucose compartment, and polynomial ap-
proximation functions for insulin pharmacokinetics, to mimic the individualized behavior
of glucose-insulin regulatory system of each individual with T1D.

One of the great advantages of Tesseratus model is the use of different models, which
can mitigate errors between the predicted and continuously measured values, in addition to
the ODE’s own input parameters. In phase one of learning and labeling, the combination
of techniques is advantageous, as it consists of models with complementary functions,
resulting in a cohesive, well-adjusted model capable of generalization. In the second phase
of learning and prediction, the model takes advantage of the best prediction technique,
either based on ODE, approximation by polynomials and supervised learning algorithm,
being governed by continuous reinforcement learning with the receipt of punishments or
rewards.

From a theoretical point of view, it is worth mentioning that during the bibliographic
survey, no other work was identified that combined the advantages of a MAS with the
hybrid techniques of the gray-box model, that is, prediction of glucose in individuals with
T1D, with physiological and data-based models. And the use of agents was crucial to
bring flexibility to the model to include new prediction models, in order to have positive
competition, in addition to continuous and dynamic error correction.

Another characteristic that makes the results of the Tesseratus model pioneer are
the overall average between the prediction horizons (15 min to eight hours): (1) MAE
(26.96 mg/dL); (2) MAPE (20.18%); (3) PEG in zones A+B (95.31%). This
work also achieved MAE less than 30 mg/dL for long-term prediction horizons (PH).
For short-term PHs (up to 2h), the Tesseratus model achieved even better results: MAE
(23.3 mg/dL), MAPE (16.55%) and PEG in zones A+B (97.63%).

In summary, the idea is to empirically show, with virtual and real data from individ-
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uals with T1D, that the hybrid model named Tesseratus is able to predict glucose oscil-
lation with an accuracy lower than 30 mg/dL (1.7 mmol/L). The idea is to continuously
improve the performance of the Tesseratus model and consequently reduce the error of
the predicted value, while removing some specific restrictions related in the literature: (a)
fixed values of parameters for prediction calculations, in mathematical models; (b) agent’s
support for continuous learning and correction of the values of each input parameter of
the ODEs; (c) not having barriers to combine different prediction models, using Active
Learning, reusing, combining and adapting knowledge from different agents (KHOLGHI
et al., 2015).

10.1.1 Main contributions of Tesseratus Model

The main contributions of this thesis is defining a model that:

1. combines different techniques in the same model working in an orchestrated
way, from mathematics to ML (supervised and reinforced learning), represented by
agents;

2. adopts continuous learning for applicability in real individuals with T1D;

3. uses a Multi-Agent System to delegate the task of continuous self-correcting
process about prediction errors;

4. it is possible to consider real and virtual individuals, so it is independent of sex,
age or ethnicity;

5. was tested with 15 real individuals, in addition to the nine virtual ones;

6. it has direct applicability in technology-based healthcare;

7. provides prediction of glycemic oscillation of up to 8 hours, depending on
the individual’s lifestyle, with acceptable absolute error;

8. built a new dataset with data from 24 T1D individuals, in order to share with
the academic core;

9. can be the research base for a new taxonomy of long-term prediction
softwares/apps, for individuals with T1D, for example, for ANVISA from Brazil
(National Health Surveillance Agency) to validate software as a medical device (AN-
VISA, 2022);
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10. it can support the automation of the 180 extra health-related decisions
daily that individuals with T1D have compared to individuals without DM, in an
attempt to reduce mental fatigue related to these individuals with T1D;

11. it provides hyper-personalized recommendations about on macronutrients, in-
sulin and physical exercise, based on models, not just fixed rules;

12. is flexible for using different types of insulin.

However, some limitations need to be defined, which can be addressed in future work:

1. Tesseratus is not tested with pregnant women and individuals with type 2 diabetes
mellitus;

2. For now it only supports four types of insulin analogues: aspart, lispro, glargine and
degludec;

3. The dataset is still small and performed with historical data from only 24 individuals
between real and virtual;

4. Tesseratus was testes with only 1 individual for future predictions;

5. Only a few insulin sensors or pumps were tested during the research;

6. Add new test variables: stress, hormonal effects, blood oxygen, heart rate.

10.2 Future Work

Tesseratus model could be coupled to mobile devices through an app, with voice
commands and volumetric recognition of food (ZHU et al., 2010), in order to facilitate
the lifestyle of individuals with T1D with visual impairments and to evaluate the user
experience when entering data. In addition, it could be integrated into homecare systems
to provide early warning to other actors, in the remote control system about the current
state of the individual. Even the prototype based on the Tesseratus is in the development
phase (HMP, 2023).

Additionally, work with other data could be considered to improve the accuracy and
precision of the model, for example: (1) stress level; (2) hormonal effects; (3) blood
oxygenation; (4) heartbeats and associate with the levels of exercise intensity: light,
moderate and intense; (5) test with alcohol consumption. In addition, the idea is to
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expand to tests with hundreds of individuals, and consider feedback, after Tesseratus
recommendation, from an endocrinologist or nutritionist directly in the app.

The same framework could be adapted to support individuals with type 2 and ges-
tational DM (IDF, 2022), and to extend more tests with an anomaly detection sys-
tem (ANOMALY, 2022). In addition to adapting the supervised algorithm for time se-
ries analysis, other algorithms such as SARIMAX (MONTASER; DíEZ; BONDIA, 2017)
could also compete for the best prediction result of glycemic oscillation. Other techniques
within the field of Artificial Intelligence could be applied, such as Algorithms with Pre-
dictions (AZR; PANIGRAHI; TOUITOU, 2022) and Deep-Learning (ZHU et al., 2021),
to check improvements in MAE (≤ 15 mg/dL ), MAPE and PEG (zones A+B ≥ 98%).

Another interesting topic that could be addressed is the direct integration with open
artificial pancreas OpenAPS (OPENAPS, 2021). Such integration would allow verifying
if the Tesseratus model can contribute to improve the OpenAPS management system,
increase the PH and decrease the absolute error between the measured and predicted
values.

10.3 Publications

As mentioned in the Chapter 2, the research project of this thesis was discussed in
a Doctoral Consortium, at the 31st International Symposium IEEE CBMS (Computer
Based Medical Systems) (CBMS, 2018). As reported in activity 3, the dissemination of
preliminary results has already been carried out (PEREIRA et al., 2019), in an academic
conference on Intelligent Systems (INTELLISYS, 2019). Final results about seven Brazil-
ian volunteers were compiled and published in the journal Applied Sciences (PEREIRA
et al., 2022). The next step is to submit another paper to the journal Engineering Ap-
plications of Artificial Intelligence (EAAI, 2022), when we compare the results of the
application of Tesseratus in the Ohio individuals (OHIO-UNIV-T1D, 2020) versus the
nine subjects generated by the simulator of the University of Virginia (UNIV-VIRGINIA,
2020).

The work was awarded with the title of Honorable Mention for its e-poster: "A Hybrid
Model to Predict Glucose Oscillation for Patients with Type 1 Diabetes and Suggest
Customized Recommendations", in the category related to Goal 3 - Health and Well-
Being of the United Nations (UN) (ONU-SGD, 2022) at the Second Graduate Meeting
of the Universidade de São Paulo: "A society in transformation", from 10/19/2021 to
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10/20/2021.

The software based on Tesseratus was registered in the Brazilian National Institute of
Intellectual Property (INPI) in 2022, under the process BR5112022000522-0 (INPI, 2022).
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Figure 34: Curr-Gluco agent action flowchart.
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Figure 35: Exercise agent action flowchart.
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Figure 36: Inbolus agent action flowchart.
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Figure 37: Inbasal agent action flowchart.
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Figure 38: Carb-in agent action flowchart.
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Figure 39: Prot-in agent action flowchart.
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Figure 40: Fat-in agent action flowchart.
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Figure 41: Alcohol-in agent action flowchart.
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Figure 42: Capillar-in agent action flowchart.
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Figure 43: Tesseratus model: phase 1 of learning.



153

Figure 44: Tesseratus model: phase 2 of learning.
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Figure 45: Recommender agent action flowchart.
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Figure 46: Monitor error agent action flowchart.
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Figure 47: ODE parameters actions flowchart.
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Figure 48: Anomaly detector action flowchart.
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State Rule/condition
(customizable) Action (messages)

Curr-Gluco and Capillar-in agents
Received current

blood glucose value Previously entered Send to recommender agent

Exercise agent
Received exercise

duration and
intensity value: 1-

moderate, 2- intense

Previously entered Send to recommender agent

Inbolus Agent
Received dose of

insulin aspart Previously entered Send to recommender agent

Received dose of
insulin lispro Previously entered Send to recommender agent

Inbasal agent
Insulin glargine dose

received Previously inserted Send to recommender agent

Received dose of
insulin degludec Previously inserted Send to recommender agent

Carb-in agent
Received food

information (grams) Previously entered Check food to carbohydrate
conversion table

Food converted to
carb. (grams) Previously entered Send to recommender agent

Received amount of
carb. (grams) Previously entered Send to recommender agent

Prot-in agent
Received amount of

protein (grams) Previously entered Checks with carb-in agent if
carbohydrates were ingested

Received amount of
protein (grams) Previously entered

Checks if the amount is greater
than 75g alone or combined with

carb.

If >= 75g Previously inserted
Send to recommender agent with
high protein alert and delayed

glycemic increase (100min)

If > 30g and
associated with
carbohydrates

Previously entered

Sends alerts about protein
associated with carbs to the

recommender agent, and delay in
glycemic increase of 47 mg/dL (300

min.)
Fat-in agent

Received amount of
fat (grams) Previously entered Checks if the amount is equal to or

greater than 35g

If >= 35g Previously inserted
Send to recommender agent with

high fat alert and delayed glycemic
increase (120–180 min.)

Table 38: Actions and conditions of reactive agents (AgR).
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State Rule/Condition
(Customizable) Action

Parameter agents
Parameter values
already entered Previously entered Wait for message from predictor

agent
Received message

from predictor agent Previously inserted Change parameter with the value in
the message

Table 39: ODE Parameter agents actions and conditions (AgR).

Status Rule/condition
(customizable) Action

Monitor Error agent
Received the current

measured blood
glucose value from

the Curr-Gluco agent

Previously entered Stores information in your KB

Received the current
measured blood

glucose value from
the Capillar-in agent

Previously entered Stores information in your KB

Received predicted
blood glucose value
from predictor agent

Previously entered Stores information in your KB

Received both
measures from KB Previously entered Calculate absolute error between

measured x predicted

Error >= 30 mg/dL Previously entered Associate timestamp and send alert
message to predictor agent

Error message (alert)
sent Previously entered

Wait recalculation to correct value
of predicted value from predictor

agent

Error < 30 mg/dL Previously entered
Associate timestamp and do not

send message until threshold value
of MAE error (30 mg/dL)

Error value decreased
to one mg/dL Automated Check each five minutes if error

increases

Table 40: Actions and conditions of Monitor Error agent.
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Status Rule/condition
(customizable) Action

Anomaly Detector agent
Received all data

from recommender
agent

Automated Stores information in your KB

Analyze KB to
correlate them Automated Find sudden changes in data

patterns

If find changes or
peaks ± 50 mg/dL Automated

Check all historical data in the
same period of the day (interval of
± two hours) and request measure

from Capillar-in agent
If peak suspicion is

real Automated Review the correction process with
recommender agent

If peak suspicion is
not real Automated Ignore peak and stores information

Table 41: Actions and conditions of Anomaly Detector agent.
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Status Rule/condition
(customizable) Action

Recommender agent
Received the blood
glucose value from

the current glycemic
agent

Previously entered
Stores information in your KB,

associates it with a time frame and
asks if there is more data

Received the value
about exercises from
the Exercise agent

Previously entered
Stores information in your KB,

associates it with a time frame and
asks if there is more data

Received the value of
insulins from Inbolus
and Inbasal agents

Previously entered
Stores information in your KB,

associates it with a time frame and
asks if there is more data

Received value on
carb., protein and fat
from Carb-in, Prot-in

and Fat-in agents

Previously entered
Stores information in your KB,

associates it with a time frame and
asks if there is more data

If you received all
values at that

moment
Previously inserted Stores information in your KB with

the tuple data:time

If received all values
at that time Previously inserted Checks if there is an action associated

with the tuple data:time
If action exists and
glycemic value is
between 80–120

mg/dL

Previously inserted
Send predicted curve to the
environment, without

recommendations

If action exists and
glycemic value is <

80 mg/dL
Automated

Retrieve information on the
carb:glycemia ratio at different times
of the day, and analyze other actions
that can increase the glycemic value

If action exists and
glycemic value is >

180 mg/dL
Automated

Retrieve information on the
glycemic:insulin ratio at different

times of the day, and analyze other
actions that can decrease the glycemic

value
If action exists and

glycemic value is 150
< G <= 180

Automated
Check corrective actions, e.g. inject
1U bolus insulin, increase exercise

intensity
If action exists and

glycemic value is 121
<= G <= 150

Automated Check if corrective actions are needed

If action does not
exist Previously inserted Request label for tuple <data:time>

for predictor agent

Table 42: Actions and conditions of the smart Recommender agent.



163

Status Rule/condition
(customizable) Action

Predictor agent
Received a prediction

request from the
recommender agent

Previously inserted Analyzes if tuple data:time is in your
KB

If tuple already exists
and value is in

(80–120 mg/dL)
Previously inserted Send to recommender agent

If tuple already
exists, value is not in

(80–120 mg/dL)
Previously inserted Send calculation request to ML and

mathematical agents

If tuple does not exist
in your KB Previously inserted Send calculation request to ML and

mathematical agents
Received predicted
value from ML and

mathematical agents
Previously inserted Analyzes if value is in (80–120 mg/dL)

If value is not in
(80–120 mg/dL) Automated Prompts recalculation with ± 20% of

tuple data values

Received a new label
from ML and

mathematical agents
Automated

Stores all tuples in your KB, but sends
to the recommender agent only those
with values that generate the ideal

value (80–120 mg/dL)
Receives message of
mathematical agent
input parameters

settings

Automated Sends request to each of the ODE
parameters agents

Received confirmation
of settings Automated Send confirmation to mathematical

agent
Received request from
Monitor Error agent

about predicted
glycemic value

Automated Send message to mathematical agent
and also recommender

Received predicted
glycemic value from
the mathematical

agent

Automated Send message to Monitor Error agent

Received predicted
glycemic value from
the recommender

agent

Automated Sends message to Monitor Error agent

Table 43: Actions and conditions of the smart Predictor agent.
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Status Rule/condition
(customizable) Action

Mathematical agent
Received a prediction

request from the
predictor agent

Previously inserted Analyzes if tuple data:time is in your
KB

If tuple already exists
in your KB Previously inserted Send label to predictor agent

If tuple does not
already exist in your

KB
Previously inserted Calculates the ODE of blood glucose

and uses polynomial insulin functions

Calculated value Previously inserted
Sends label (+, neutral or -) to the
predictor agent, based on glycemic

values
If you receive a

recalculation request
from the predictor

agent

Automated
Recalculates the blood glucose ODE

and uses insulin polynomial functions,
based on the new range of values

After recalculation Automated Store all generated tuples in your KB
(labels)

Calculated value Automated

Evaluates new labels, based on
glycemic values, for example, every
five mg/dL and expands the traffic

light in the figures ?? and ??

Calculates glycemic
values and fixes them Automated

Analyzes all parameters recursively to
evaluate hypothetical adjustments for

each individual
If new calculated
parameter values Automated Send message to predictor agent

Table 44: Actions and conditions of the smart Mathematical agent.
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Status Rule/condition
(customizable) Action

Machine Learning (ML) agent
Received a prediction

request from the
predictor agent

Previously inserted Analyzes if tuple data:time is in your
KB

If tuple already exists
in your KB Previously inserted Send label/results to predictor agent

If tuple does not
already exist in your

KB
Previously inserted Calculates glycemic oscillation

(supervised algorithm)

If receives a
recalculation request
from the predictor

agent

Automated
Recalculates the glycemic oscillation
(supervised algorithm), based on the

new range of values

After recalculation Automated Store all generated tuples in your KB
(labels)

If receives new
measured values from
the predictor agent

Automated
Check the predicted value in your KB
and check the semaphore to reward or

punish
In reward or

punishment process Automated Increase the check counter

In reward or
punishment process Automated Increase the counter of Tesseratus

model

Table 45: Actions and conditions of the smart ML agent.
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APPENDIX E – BIBLIOGRAPHIC
RESEARCH
METHODOLOGY

The directed study was define in four stages. In the first step, in order to understand
the state of the art, a search was carried out for related works between the years 2012
to 2021, using the following terms to define the search STRING:(a) glucose prediction or
blood glucose prediction models; (b) individuals with T1D.

The keywords agent, multi-agent system and agent-based model were not used to-
gether with (a) and (b), because even though they are important in the proposed study,
there were no relevant results in the researched literature. Only one article (ZHU et al.,
2020) relevant, but based only on data, was found using Reinforcement Learning com-
bined with agents. However, there were tests with only 20 virtual individuals, and the
prediction horizon of blood glucose was not declared.

The literature offers a large number of articles that relate the terms (a) and (b), and
the literature review was carried out considering seven databases: (1) Google Scholar; (2)
PubMed; (3) JDST (Journal of Diabetes Science and Technology); (4) Science Direct; (5)
IEEE (Institute of Electrical and Electronic Engineers); (6) DBLP (Digital Bibliography
& Library Project); (7) DTT (Diabetes Technology & Therapeutics). Search terms were
explored and combined, resulting in 1319 registers.

The seven databases were validated as reliable tools for retrieving information about
medical research, mathematics and machine learning, in addition to their respective com-
binations. A criterion for inclusion in this research is that the article should develop, test
and discuss the proposed model, in addition to explaining the prediction horizon of blood
glucose.

Still in the first stage, the articles were explored to find content relevant to the main
focus of this study. In addition, a first exclusion criterion was established with the key-
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words: (c) Type 2 Diabetes Mellitus; (d) Gestational Diabetes Mellitus, as well as repeated
articles among the seven databases. After screening, 263 articles were included in the
next stage, as described in the table 46.

Repository #
Google Scholar 106

IEEE 69
Science Direct 29

PubMed 24
JDST 23
DTT 7

DBLP Computer Science 5
Total 263

Table 46: Results after first filter.

The 263 records were categorized by type of predictive model: (1) physiological models
that mimic the oscillatory behavior of the glucose-insulin system; (2) models based on
machine learning related data; (3) hybrid models that combine (1) and (2). According to
(DUUN-HENRIKSEN et al., 2013), each predictive model can also be classified as white-
box models: (1) physiological models, (2) black-box: based on data and (3) gray-box
models: hybrids.

In this work, only works related to hybrid models were analyzed, and thus 54 articles
with these characteristics were considered. In this consolidated database, three more
criteria were applied to keep the articles in the evaluation base: (e) prediction horizon
(PH) greater than or equal to 30 minutes; (f) the article should explain the error value
either in the format of standard deviation (SD), least squares error (LSE) or by the Clarke
Error Grid (CEG) (CLARKE et al., 1987) or Parkes Error Grid (PEG) (PARKES et al.,
2000); (g) the dataset must have individuals in vivo, not only in silico.

After the last filter, 16 articles remained, according to the table 47, which serve as
a basis for comparison for our work. The PH column of the table 47, contains only the
largest values, and is in ascending order in terms of the smallest squared error, with
individuals with T1D. The figure 49 represents the flowchart of the methodology used in
this work to select and filter them.

After the first step of the thorough review, the second step consisted of analyzing the
functionalities of the ODEs (NAGLE; SAFF; SNIDER, 2017), and which would be the
best to mathematically represent the physiological processes and the dynamics of blood
glucose, in addition to the approximation functions of insulins. In the third stage, the
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Figure 49: Flowchart of the bibliographic research methodology.

analysis of several functionalities of a MAS (RUSSELL; NORVIG, 2016) was carried out,
to understand the possible advantages of its use in the regulation of physiological pro-
cesses (KISSLER et al., 2014), and calibration of the values parameters of compartmental
mathematical models and functions. In the last step, the possibility of using supervised
and/or active reinforcement learning (KHOLGHI et al., 2015) among the agents of the
model was analyzed, in order to have the correct discernment for long-term prediction
(four to eight hours), in addition to accelerating the MAS learning.
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Article PH
(max)

LSE -
glucose

(mg/dL)

CEG %
zones

(A+B)

Individ-
ual:

Virtual
(V) or

Real (R)

Method -
Physiologi-
cal Models

+

(GEORGA et al.,
2013) 120 7.62 — 27R

Support
Vector

Machine
(SVM)

(LIU et al., 2019) 120
34.74 (V)
and 40.46

(R)

95.27 (R)
and 93.86

(V)

10V and
10R

Latent
Variable and
Exogenous
Autoregres-

sive

(CESCON;
JOHANSSON;

RENARD, 2015)
120 58.06 — 14R

Autoregres-
sive and
Kalman
Filter

(CONTRERAS et
al., 2018) 90 36.26 96 200R Grammatical

Evolution
(MUNOZ-

ORGANERO,
2020)

60
4.72 (V)

and 11.35
(R)

87.22 (R)
and 99.32

(V)
40V and 9R Neural

networks

(ZARKOGIANNI
et al., 2013) 60 23.19 — 12R Self-

Organization
(SAITI et al.,

2020) 60 27.41 — 6R Autoregre-
sive, SVM

(BUNESCU et al.,
2013) 60 30.9 — 5R SVM

(BERTACHI et
al., 2018) 60 31.72 — 6R Neural

networks

(LIU et al., 2018) 60 35.96 (R
and V) — 10V and

10R
Latent

Variable
(MIRSHEKARIAN

et al., 2017) 60 38 — 10R Neural
networks

(VEHÍ et al.,
2020) 60 —

96.8 (R)
and 97.7

(V)

100V and
16R

Machine
Learning

(WANG et al.,
2020) 30 9.5 — 12R Bayesian

inference

(ISFAHANI et al.,
2020) 30

10.79 (R)
and 11.15

(V)
— 33V and

12R

Fuzzy Logic
and Neural
Networks

(ZECCHIN et al.,
2014) 30 16.6 — 10R Neural

networks

(HAJIZADEH et
al., 2018) 30 25.5 98.87 10R

Autoregres-
sive and
Kalman
Filter

Table 47: Articles related to hybrid models.


