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ABSTRACT

Part of a lawyer’s job is to understand the client’s problem, to textually describe
its facts and to apply the sources of law. To support a new legal case, a handful of
past judgments on similar cases are typically employed by the lawyers, but finding
them is currently a time-consuming procedure. To address this problem, we built a
machine learning model responsible for classifying similarity between two facts’ de-
scriptions. This similarity metric measures how much (from 0 to 1) a legal decision
may be used to support another. We trained different model architectures combining
several state-of-the-art natural language processing and machine learning techniques
using an extracted dataset from the Superior Court of Justice website of past judg-
ments, which enabled the dynamic construction of facts’ description pairs when one
case cites another as a reference. The final best architecture employs TF-IDF for en-
coding and reducing dimensionality of our input documents, a Siamese Neural Network
(SNN) with a Multilayer Perceptron (MLP) for feature extraction and a final layer, an-
other MLP, responsible for concatenating and classifying the features into the similarity
metric, achieving 85.98% accuracy, 83.89% precision and 89.06% recall. Such a model
would enable the lawyer to compare a case facts description with several judgments of
the jurisprudence and start their search on the most similar ones.

Keywords: Jurisprudence. Artificial Intelligence. Machine Learning. Neural Net-
work. Deep Learning. Natural Language Processing. Transfer Learning. Bag-of-
words. TF-IDF. Word Embedding. Word2Vec. GloVe. FastText. Naive Bayes. Co-
sine Similarity. Logistic Regression. Multilayer Perceptron. Long Short-Term Memory.
Transformer. Siamese Neural Network.



RESUMO

Parte do trabalho de um advogado é entender o problema do cliente, descrever
textualmente seus fatos e aplicar as fontes da lei. Para apoiar um novo processo le-
gal, uma série de julgamentos anteriores em casos semelhantes são normalmente
empregados pelos advogados, mas encontrá-los é atualmente um procedimento que
demanda tempo. Para resolver esse problema, construímos um modelo de apren-
dizado de máquina responsável por classificar a similaridade entre as descrições de
dois fatos. Essa métrica de similaridade mede quanto (de 0 a 1) uma decisão le-
gal pode ser usada para apoiar outra. Treinamos diferentes arquiteturas combinando
várias técnicas de processamento de linguagem natural e aprendizado de máquina do
estado da arte usando um conjunto de dados extraído do site do Superior Tribunal de
Justiça de julgamentos anteriores, o que possibilitou a construção dinâmica de pares
de descrição de fatos quando um caso cita outro como referência. A melhor arquitetura
final emprega TF-IDF para codificar e reduzir a dimensionalidade dos documentos de
entrada, uma Rede Neural Siamesa (SNN) com um Multilayer Perceptron (MLP) para
extração de "features" e uma camada final, outro MLP, responsável por concatenar e
classificar essas "features" na métrica de similaridade, alcançando 85,98% de acurá-
cia, 83,89% de precisão e 89,06% de sensibilidade. Tal modelo permitiria ao advogado
comparar a descrição dos fatos de um caso com vários julgamentos da jurisprudência
e iniciar sua busca pelos mais semelhantes.

Keywords: Jurisprudência. Inteligência Artificial. Aprendizado de Máquina. Rede
neural. Aprendizado Profundo. Processamento Natural de Linguagem. Transferência
de Aprendizado. Bag-of-words. Term frequency-inverse document frequency. Word
Embedding. Word2Vec. GloVe. FastText. Naive Bayes. Similaridade de cosseno.
Regressão Logística. Multilayer Perceptron. Long Short-Term Memory. Transformer.
Rede Neural Siamesa.
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1 INTRODUCTION

Brazilian law is considered to be a fusion between “civil law” (Roman-Germanic)

and “common law” (North American), since its constitution was inherited from the

American system, which allows formalizing the theory of judge-made law. When the

law does not fit a particular case, it needs to be interpreted. When that happens from

judges, judges of a court of law or ministers of justice, a decision is born, which be-

comes part of the jurisprudence – a set of decisions, applications and interpretations

of laws, or the study of laws.

In the Brazilian legal environment, jurisprudence is used as a second source to

sustain new cases worked on by operators of the law. Nevertheless, the research in

jurisprudence consumes substantial lawyer’s time when reading past judgments for

identifying the relevant ones, and those with a similar description of facts. This is be-

cause such a search is usually performed through keywords, thus returning a number

of irrelevant results. A lawyer must analyze about five to ten decisions in order to find

one that is similar to the current case and that can be used as a source.

In a small survey performed by us with 12 lawyers, we found that on average, for

each new case, the following applies:

• Jurisprudence search time: 100.83 minutes

• Number of past decisions necessary to sustain the current case: 3.92 decisions

• Number of decisions that must be read before filtering the correct ones to sustain

the case: 25.17 decisions

The search time and the number of decisions read by the lawyer can be reduced

with our work, by creating a model that identifies only the decisions most likely to be

similar to the new case.

In addition, our survey showed that 91.7% of our lawyers feel positive about the

use of artificial intelligence to facilitate the jurisprudence search, while the rest felt

indifferent about it. This implies that if we manage to accomplish satisfying results,

lawyers would actually use the final solution.
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A preliminary study published in the WPGEC 2019 workshop (RUIZ; BONA, 2019)

was also conducted previously to this work, where we (same authors as this current

work) tested four different models, with three of them based on bag-of-words, using

cosine similarity, a naive Bayes classifier or a Multilayer Perceptron, and the fourth

model being a Siamese Neural Network with word embedding and Long Short-Term

Memory layers. All models were trained and tested with data obtained from the Court

of Justice of Goiás’ system (TJGO), a smaller dataset of 115k fixed pairs of cases with

15k of those being considered similar, having the best model achieve 94.2% accuracy

and 76.2% precision, with 97% precision on the 100 most similar samples. Though

we did not achieve higher accuracy on our most recent study, the TJGO dataset was

heavily skewed towards negative samples (non-similar), explaining the lower precision.

In addition, we also employ a much bigger dataset in our current study, providing higher

reliability as will be mentioned later.

1.1 Objective

The objective of this work is to reduce the jurisprudence search time for a given

new case and to provide a starting point for other researchers when choosing an ar-

chitecture for dealing with this kind of problem or when looking for a large legal cases

dataset in Portuguese, which will be presented as one of our work’s contributions. By

exploring the most recent and successful Natural Language Processing (NLP) and Ma-

chine Learning (ML) techniques, we intend to find the most similar cases in a database

of past judgments.

By training a classifier, one can predict the similarity between the new case and

each case in the jurisprudence, based on their description of facts. The lawyer could

thus focus his search on the most similar cases, instead of reading through many

unwanted references.

NLP and ML techniques have been increasingly used in many data intensive tasks

including in the legal environment (ZHONG et al., 2020). That is partly because of the

increase in available data and part because now we have a better understanding of

how to make a computer interpret text and make conclusions out of it, thus justifying

our approach to solving the proposed problem.
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1.2 Work overview

If two separate legal cases presented the exact same circumstances (not consid-

ering when and with whom they happened), which are described in the case by their

facts, they should, theoretically, receive the same judgment, given the law has not

changed between one and the other (maybe one of those cases happens 50 years

after the other). Furthermore, despite the justice system being somewhat subjective,

it is not meant to be, it is meant to pass a judgment solely based on the case’s facts.

For this reason, in Brazil, judges sometimes accept past decisions on previous cases

as basis to judge a current similar case (similar in the sense that they share similarity

in their facts). So when lawyers are building their current case, they look for past deci-

sions that have similar facts to their current case in the hopes that a judge will evaluate

their case in the same way.

This process is done manually by the lawyer (or its’ assistants) by searching via

word comparison on one (or more) of the many legal databases. Then they read the

facts from the old cases until they find a few that share similarities to their case.

Thus in order to achieve our objective of reducing the time of that search process,

we use NLP and ML techniques to produce a resulting model that compares two pieces

of text and classify them as similar or not. "Similar" meaning they can be used as a

jurisprudence reference to each other (not that they have the same text). Those two

pieces of text being the facts’ description of the current case and each past decision

from the database that it is being compared to.

With that, one can compare each old case to the current one and filter only the most

similar ones for the lawyer to assess, but this time, with much more assertiveness than

if they had to manually search for a case just by regular word filters.

There are many ways to go about building this model, with several NLP techniques

such as word embedding (COLLOBERT; WESTON, 2008), LSTM (HOCHREITER;

SCHMIDHUBER, 1997), Transformer (VASWANI et al., 2017) or Siamese Neural Net-

work (BROMLEY et al., 1994), some using ML and others not. Some of those tech-

niques were chosen based on current state of the art while others were chosen as a

baseline. Because we do not have enough time or computer power to test them all,
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this study focused on a selection of techniques described in Chapter 3 resulting in a

total of 28 different architectures that will be presented in Section 3.4.

Those architectures were based on one of seven different types of models:

• Naive Bayes (NB)

• Cosine Similarity (CS)

• Logistic Regression (LR)

• Multilayer Perceptron (MLP)

• Siamese Neural Network (SNN) + MLP

• SNN + Long Short-Term Memory (LSTM)

• SNN + Transformer (TN)

The first four types of models were chosen mainly as a point of comparison, since

we expected the last two to achieve better results (by being more complex and bet-

ter capable of abstracting the data), though later we will see this was not exactly the

case. The fifth type was an intermediary approach between the other, using the SNN

technique, but still using a one vector per document approach that will be explained in

Section 3.2.1.

The SNN + LSTM based models with a few word embedding methods (3.2.2) were

chosen due to the previous success of these techniques in the domain of NLP. Siamese

networks are responsible for some of the best results in comparing two pieces of text,

being the state of the art in sentence semantic similarity tasks (MUELLER; THYA-

GARAJAN, 2016). Word embeddings (PENNINGTON; SOCHER; MANNING, 2014)

employ a vector space to represent words, usually yielding better results than one-

hot encoding in NLP tasks, as word semantic similarity measuring (MIKOLOV et al.,

2013). LSTM has consistently shown state-of-the-art results in a variety of NLP tasks

(PLANK; SøGAARD; GOLDBERG, 2016) (WANG et al., 2016) (CHEN et al., 2017)

and was first introduced with the objective of storing information of extended sequence

intervals (HOCHREITER; SCHMIDHUBER, 1997).
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For similar reasons to the SNN + LSTM based models, SNN + TN was also cho-

sen as a second option, also showing very good results in many NLP benchmarks

(VASWANI et al., 2017). Though the main paper focuses on text to text language

translation, part of the Transformer can be used as a text encoding with the SNN, so

our two pieces of text can be compared. This will be better explained in Section 3.3.6.

The results will be presented and further elaborated on in Chapter 4, but the best

model was the combination of TF-IDF + SNN + MLP + Output MLP, most likely due

to the nature of our problem, dealing with large documents that are usually hard to

handle for LSTM based architectures and are complex enough to make it difficult for

simpler models such as NB to achieve good results. The SNN architecture also proved

ideal for our solution, since the two pieces of text should be interpreted in the same

way (meaning there are no two different types of inputs, only two inputs of the same

type, where order, for instance, does not matter). Finally, the MLP showed very good

flexibility for further processing the extracted features of TF-IDF and for constructing

the similarity function responsible for comparing those features.

In order to train these supervised learning models, a labeled dataset was required.

Since there is no publicly available option, to the best of our knowledge, one was

constructed from records of past decisions of the Superior Court of Justice ("Supremo

Tribunal de Justiça" – STJ). Each decision consists of a whole assembled case, which

contains a description of the case’s facts and references to the jurisprudence used as

a source. With these references, it was possible to build a dataset with pairs of cases

whose facts’ descriptions were similar (or not) - as briefly explained before, by similar

we do not mean they necessarily have similar words in their text, we only mean one

can be used as a reference to sustain the other. Section 3.1 will detail this extraction

and generation process.

Besides the results of this work, two additional contributions are the extracted

dataset, which can be accessed upon request, and the entire code for the data extrac-

tion and training / evaluation process of all the models, which is available in a public

repository.
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1.3 Paper organization

The rest of the text is organized as follows: In Section 2 we present the related

work; Section 3 describes how the dataset is constructed and the NLP techniques

that will be used to build the models; Section 4 shows the results achieved by the 28

different models, along with the final best model expanded from one of the 28; and

Section 5 brings some final considerations about our conclusions and possible future

work.
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2 RELATED WORK

A common machine learning classification problem receives an input and classifies

it into one of a fixed number of categories. Our work can be seen as a classification

problem, as we intend to classify two pieces of text as being similar or not. However,

it is not a classification problem with a single, atomic entry, as our input is formed by

a pair of facts’ descriptions, corresponding to the two cases whose similarity is to be

determined.

Machine learning techniques have been employed to deal with these multiple en-

try classification problems in various tasks, such as face recognition (SCHROFF;

KALENICHENKO; PHILBIN, 2015) or determination of semantic similarity in Quora

questions (COHEN, 2017), but most applications are restricted to small texts, contain-

ing few sentences, whereas the facts’ description of a legal case can be quite extensive,

sometimes containing a few pages, not to mention the issue of finding a large enough

legal dataset to achieve top performance on more complex models.

Maheshwary and Misra (2018) try to solve the problem of recommending appropri-

ate jobs to candidates based on the job description and their curriculum. They propose

a Siamese convolutional neural network (CNN) (LECUN et al., 1999) capable of deter-

mining the similarity between the two. As input, first the resumes and job descriptions

are converted into vectors using Doc2Vec (LE; MIKOLOV, 2014) which are fed to the

pair of identical CNNs of the Siamese network. The output of those CNNs is then

concatenated and processed by a fully connected layer, generating the final similar-

ity metric. Their problem resembles ours by having a text pair as input and trying to

measure the similarity between it, though comparing two different distributions of text

(resumes and job descriptions). They employ a dataset of 1314 resumes and 3809 job

descriptions, totalizing 5,005,026 pairs, annotated in a semi-supervised manner which

is not specified. Despite having a big pairs dataset, the text variation is small when

it comes to complex machine learning models, since there are very few different texts

generating the pairs.

Shih et al. (2017) investigate the use of Siamese LSTM networks for generating
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document representations for text classification. They test their model on two differ-

ent datasets: IMDB reviews (MAAS et al., 2011) and 20Newsgroups (LANG, 1995).

Starting by building pairs of texts and classifying each as similar if they were in the

same category (positive or negative sentiment for IMBD reviews and one of 20 differ-

ent classes for 20Newsgroups) and different otherwise. Those pairs are processed

by an embedding layer (Word2vec, Skip Gram or GloVe) with the result being fed to

the Siamese LSTM network responsible for generating final document encodings (vec-

tors), which were then used to calculate their Euclidean distance. The distance was

used as a negative similarity function, measuring how related the two documents are

(smaller distance meaning more related). This training process ends up generating a

sub-network (one of the LSTMs from the Siamese network) capable of generating a

document representation, which was in turn fed to a three-layer deep neural network

predicting the probability distribution over the different classes. They end up using a

similar method to ours (Siamese LSTM network), but not with the final objective of

comparing how similar two documents were and rather just generating encodings to

be used in the text classification problem. Another key difference from our proposed

work is that they use datasets with well-defined categories to generate the pairs, which

might facilitate the encoding process, in contrast to our legal texts having many (not

defined) categories.

In the legal domain, Bueno et al. (1999) tackle the same problem as this work, the

search in jurisprudence for similar cases. They split the problem into three parts: repre-

sentation of legal cases, automatic information extraction and similarity based retrieval

process. The representation is constructed via a set of indexes such as publication

date, indicative expressions and case category. Those indexes were determined by a

domain expert in accordance with their importance for comparing with a new case. To

support the retrieval process and automatic extraction of those indexes, a controlled vo-

cabulary and a juridical thesaurus were manually developed by juridical professionals.

For the automatic extraction, they used different keyword references for each index,

such as “DATA” (“date” in Portuguese) for identifying the date or words / expressions

from the built vocabulary to identify the category. For the retrieval process, the user

of the system describes the new case in natural language and specifies other limiting

parameters such as period or resource type. From that, relevant information is auto-
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matically extracted using the controlled vocabulary and juridical thesaurus for the new

case (in the same way the automatic extraction for previous cases was conducted).

Then they use the nearest neighbor approach to compare the similarity between cases

in the database and the new described case using the extracted information, presenting

to the user only the top 10 most similar cases. Overall they use a manual / professional

knowledge base system approach rather than pure machine learning. Nevertheless,

no quantitative results from a well-defined dataset are provided, which could be used

as a benchmark.

Yet another index approach in the legal domain, Rissland, Skalak and Friedman

(1993) discuss the use of manually selected indexes and heuristics on cases to be used

as precedents for argument generation. They mention five indexes: types—citation,

prototypical story, factor, family resemblance, and legal theory. Which are meant to be

used in conjunction with one another rather than separate filters as the previous work

from Bueno et al. (1999). The use of those indexes also acts as filters for retrieved

cases, but not individually, they are paired with a set of indexing strategies with cases

being nodes in a graph. The connections are used to determine how each of the

defined heuristics will filter the resulting set of cases. They also briefly mention the

data used came from the U.S. Federal statute that governs the approval of bankruptcy

plans, but they do not publicly provide that data for access in their work. Moreover, no

accuracy results are provided whatsoever.

Trappey, Trappey and Liu (2020) try to analyze and identify judgment documents

of US trademark (TM) litigation cases as precedents of a given target case. They use

a combination of Word2Vec, Cosine Similarity, Latent Dirichlet Allocation with cluster-

ing to create a set of clusters in which the target case can be placed (determining a

percentage of likelihood for each cluster). They use a total of 4835 TM litigation docu-

ments to train the entire model and separate 42 target cases with 5 cluster cases to be

manually evaluated during testing, generating a total of 210 pairs for comparison. In

their final results, they achieved 83.8% accuracy in matching the clusters of their orig-

inal judgments. Albeit similar to our work, they employ a much smaller and restricted

dataset in comparison. They also assume the generated clusters are sufficiently rep-

resentative of case similarity, which might not be the case. Though their approach is

understandable since they also do not have a manually labeled dataset of similar pairs.
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Liu and Yang (2018) also work on a similar case retrieval process, but more spe-

cific than our work. We try to predict similarity in a broader sense, where cases can

be used as a reference to support each other, while they literally mean similar, since

their work attempts to build a question and answer system where a user can ask ques-

tions about a criminal case, with the system gathering information about its facts and

then searching for the most similar one. Their implementation happens in three steps:

1) a question processing module, responsible for identifying the most relevant seman-

tic slots pertaining to the user’s questions; 2) the information retrieval module, which

queries the legal database for each semantic slot previously identified in a weighted

manner, looking for the most similar cases. 3) the answering module, responsible for

generating answers from the retrieved data that responds to the intended question for-

mulated by the user. The similarity comparison does not happen between two pieces

of text, but rather between the weighted semantic slots allocation and the case library

with pre-established semantic values of their own. The authors claim their system has

a high accuracy of information retrieval, but they do not specify a number, nor do they

provide a public dataset used in their system.

Al-Kofahi et al. (2001) approach the problem of prior case retrieval from the appel-

late chain of the current case using court opinions as input. They start by processing

those opinions to extract information about party names, courts, dates, docket num-

bers and history language. With that, their system generates appropriate queries to

a citator database, retrieving possible prior cases. Finally, they filter those possible

priors with a machine learning system (Support Vector Machine), identifying the actual

prior cases linked to the current case. The model uses assembled features from the

extracted information as input. Though also in the legal domain of information retrieval,

their work does not attempt to process large bodies of text, but rather small titles and

court opinions.

The COLIEE-2018 1 is a competition with a legal case retrieval task (Task 1), which

involves finding supporting cases for a new case, very similar to our problem, but using

a database from the Federal Court of Canada case laws. The training data consists of

285 query cases to be analyzed (to find references) with each having 200 candidate

cases, with some of those being relevant (working as references) to the analyzed case,
1https://sites.ualberta.ca/ miyoung2/COLIEE2018/
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i.e., they used a much smaller database than ours. Nevertheless, the best results for

this task were achieved by Tran, Nguyen and Nguyen (2018) (precision: 0.6763, recall:

0.6343, f-score: 0.6546), using a combination of lexical matching and encoded sum-

marization (encoding the entire document into a vector space embedding properties

of summarization). The former tries to estimate the lexical matching between a query

and a candidate case in different types of n-grams, skip-grams and longest common

subsequence to measure various degrees of lexical similarity by employing matching

formulas from the ROUGE evaluation (LIN, 2004). The latter is based on Tran, Nguyen

and Satoh (2018) to extract catchphrase and generate encoded summaries for the

documents (cases). With those two sets of features, they use a Linear-SVM (CHANG

et al., 2008) as learning algorithm to solve the optimization problem of ranking the

similarity between query and candidate cases.

There are many other works addressing tasks related to text similarity, as question-

answering problems (MINAEE; LIU, 2017) or detecting character-based similarity of

job titles (NECULOIU; VERSTEEGH; ROTARU, 2016). However, none of them deals

with a large database of long legal texts without well-defined categories, especially in

Portuguese, with the exception of Ruiz and Bona (2019), mentioned before in Chapter

1.
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3 METHODS

The proposed solution has two parts: a classifier model capable of determining

the similarity between two facts’ descriptions and the recommendation process, which

uses the classifier to determine the most similar judgments.

In this section, we explain the details of the data extraction and the NLP techniques

used such as document encodings and model architectures.

3.1 Dataset

Ideally, we would have access to a dataset built by lawyers containing pairs of

judgments manually classified, via their facts’ description, as similar or different. As a

viable alternative, we decided to extract a dataset from the Superior Court of Justice1

(STJ) which contains a broad spectrum of cases. We are currently not filtering by

instance or case type, rather we are trying to extract as many cases as possible.

The extraction process started by building a web crawler responsible for download-

ing the PDFs of a total of 682k cases. After dropping the ones that were duplicates,

had missing PDFs, missing dates, missing identifiers and missing reports (part of the

text used in the machine learning algorithms), we were left with over 440k cases.

Within each case, we are interested only in the facts’ description and the jurispru-

dence references. The former can be found in the section of the document called

"Relatório" (report in Portuguese), which starts with the word "RELATÓRIO" and ends

with "É o relatório" (with a few variations such as letter case). With some text pro-

cessing and pattern matching, we were able to extract the report section from the PDF

text. The latter (jurisprudence references) were extracted via pattern matching using

a regular expression for the format d.ddd.ddd/cc, with d being a digit and c being a

character, since those have all this same format. All references inside the report text

were removed to avoid bias in the model training later on.

Examples of the search step, report section and jurisprudence reference can be
1http://www.stj.jus.br/
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found in Appendix A.

The report section contains more than just the facts’ description and the jurispru-

dence references, it may also include other components of the case. In order to discard

these irrelevant components, manual inspection by an expert would be required, due

to the lack of structure in the text. Therefore, we assumed that the description of facts

comprises all the text within the report section, even though it is not entirely true, but

likely good enough.

With those at hand, a dataset was built with four main columns: the case identifier;

the case’s date; its’ known references; and the report text for said case.

As the first contribution of our work, this dataset can be used by anyone for research

purposes upon request via email2 (it was not publicly uploaded to a repository due to

its size – almost 13 GB).

The next step was to sort the 440k cases by date in descending order, setting aside

the first 10k case for a test dataset, the next 30k for validation and the rest for training.

Note that we did not pair the cases as similar or not before splitting them into test /

validation / training datasets. The reasoning behind splitting this way (and not after

building the pairs) and for sorting by date is the fact that in order to predict references,

one should not have access to future cases, only to past ones, so all test cases are

more recent than validation cases, that in turn are more recent than training cases.

To actually build the pairs we then proceed to create a generator that would output

half of the pairs with their known references (references that were actually used on

those cases) and the other half with random cases from the lookup data. For training,

this lookup data is the same training data, but for validation, it is the training and vali-

dation dataset combined. Meaning the validation cases can reference training cases,

but not the other way around. The reason for this half / half distribution is to avoid bias

towards similar or not similar classifications.

This data split process can better be seen in Figure 1, with the pairs for each split

of the data being built by taking one sample from the start of the respective blue arrow

and one from the end of that arrow. For example, to build a pair for the validation

dataset used on the model, we take one case from the 30k cases in the validation data
2rodrigoruiz@usp.br
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split and one from the validation lookup data, consisted of the validation and training

data combined, i.e., 430k cases.

Figure 1: Training / validation / text split.

The validation dataset of pairs was randomly constructed in the same way as the

training pairs, the only difference is that for training, those pairs were chosen as the

model was being trained 3 whilst the validation pairs were chosen randomly only once

and then kept fixed throughout different epochs and models. A total of 30k pairs were

generated to compose the validation dataset and those were built as explained to main-

tain metrics’ consistency.

Each pair of facts’ descriptions was labeled as similar or different based on whether

one of the corresponding judgments had the other in its references (if so, then they

were considered similar). This can better be explained by looking at Figure 2, where

document X references documents A, B and C, and document Y references documents

D, E and F. Note that, in the table in Figure 2, there are rows for X/C, Y/E and Y/F

3Only when necessary - models like the CS based ones do not use training data
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with similarity equal to 1 (meaning they are similar). However, without inspecting the

references in A, B, . . . , F, we cannot determine if the pairs Y/A or X/D are similar or not,

for instance.

Figure 2: Building document pairs dataset.

In addition to that, we also did an exploratory analysis of the data (only for the

training cases so we do not taint the results) by looking into the following aspects:

• Number of words per case distribution (Figure 3): indicating there are very few

cases with more than 1000 words, meaning we can trim the report to a maximum

length of 1000 words and not lose information on most of our cases.

• Number of references per case distribution (Figure 4): showing that on average,

each case references 3.83 other cases, further sustaining our survey’s conclusion

of 3.92 past decisions necessary to sustain the current case.

• Text lengths’ distribution (Figure 5): text length distribution quickly peaks its occur-

rences around 1000 characters and decreases at a slower rate, reaching almost

zero around 7000 characters.

• Top words distribution (unigrams and bigrams) before and after removing stop-

words / processing (Figures 6, 7, 8 and 9): comparing unigrams between Figures

7 and 8, and bigrams between Figures 9 and 10, with and without stopwords, we

can clearly see many common words are removed by filtering stopwords; After

removing the them, we can also notice that legal texts appear to be using a very

specific subset of the language.
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Figure 3: Number of words per case distribution.
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Figure 4: Number of references per case distribution.
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Figure 5: Text length per case distribution.

Figure 6: Top unigrams with stopwords per case distribution.
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Figure 7: Top unigrams without stopwords per case distribution.

Figure 8: Top bigrams with stopwords per case distribution.

Figure 9: Top bigrams without stopwords per case distribution.
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3.2 Document representations

A document can not be processed directly by a model, it first has to be converted

into a set of numbers, which then the model can understand, i.e., do math operations

with it.

We will be employing two different representations: one vector per document and

one vector per word.

3.2.1 One vector per document

For representing an entire document as a single vector, we will be using two differ-

ent techniques: Bag-of-Words (BoW) and Term frequency-inverse document frequency

(TF-IDF).

3.2.1.1 Bag-of-Words

The first step of the bag-of-words method is determining a vocabulary, usually

formed by a number of most frequent words, after eliminating stopwords. Once fixed

the vocabulary, BoW (HARRIS, 1954) transforms a document into a vector of natural

numbers by counting the occurrences of each word in the vocabulary. Figure 10 shows

an example of a dataset with only two documents, each being converted into a vector

using BoW.

Figure 10: Bag-of-words.
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3.2.1.2 Term frequency-inverse document frequency

Term frequency-inverse document frequency (TF-IDF) (RAMOS et al., 2003) is a

technique similar to BoW which considers the count for each word that appears in a

document, but is inversely proportional to how many time that word appears in all the

other documents, thus lowering the importance of very common words such as "a" or

"the".

Equation (3.1) shows the term frequency function, which represents the number of

times a term (word) t appears in document d.

Equation (3.2) shows the inverse document frequency function, with N being the

total number of documents and |{d ∈ D : t ∈ d}| the number of documents in dataset D

that contain a term t.

And finally, Equation (3.3) shows the function for TF-IDF which is just the multipli-

cation of tf and idf.

Intuitively this gives us the importance of each word in a document, with such

being lower for words that appear many times in all the other documents and higher for

specific words that appear in the analyzed document.

There are some variations for both Equations (3.1) and (3.2), but the one mentioned

above is the one we will be using.

t f (t, d) = raw count o f terms in a document (3.1)

id f (t,D) = log
(

N
|{d ∈ D : t ∈ d}|

)
(3.2)

tdid f (t, d,D) = t f (t, d) · id f (t,D) (3.3)

3.2.2 One vector per word

Representing the document as a single vector will limit the representation capacity,

since meaning in word order is usually not captured, thus we can represent each word
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as a vector and the entire document becomes a list of vectors, i.e., a matrix. The

techniques we will be using for this form of representation will be Word embedding,

Word2Vec (CBOW and Skip-gram), Glove and FastText.

In the following sections, we will be explaining each one separately.

3.2.2.1 Word Embedding

A word embedding (COLLOBERT; WESTON, 2008) can be seen as a neural net-

work layer that converts each word into a vector of real numbers. Typically, each word

is initially represented as a vector of 0’s with a single 1, in what is called one-hot en-

coding. This vector has the size of the vocabulary and each word is represented by

a unique vector. The embedding layer reduces the dimensionality of these vectors by

multiplying them by a matrix of parameters. Formally, this matrix has size V×E, V being

the size of your original vector and E the output size of the reduced vector. Figure 11

shows an example of a sentence being encoded with one-hot encoding and then with

word embedding.

Figure 11: Sentence processing with word embedding.

3.2.2.2 Word2vec

Word2vec (MIKOLOV et al., 2013) is a way of constructing a word embedding rep-

resentation and presents two variations: Skip Gram and Continuous Bag Of Words

(CBOW).
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The CBOW model tries to predict a target word based on a context, such as the

previous word. It does it by using a shallow neural network (two layers plus the input

layer) with the output layer using a softmax function, as in Figure 12, having the one-

hot encoded context word as input and the one-hot encoded target word as output.

This context can also be a window size around the target word, i.e., the context can

be a number of previous and next words. When multiple words are used as context,

after processed by the hidden layer, their resulting embeddings are averaged before

passing through the softmax output layer. As an example, a window of size 2 would

generate 4 words as context to be used as input and the output, the target word.

Repeating this process for each word in the corpus as a target word would give us

the full training dataset for the CBOW Word2vec model. After trained, we ignore the

softmax (output) layer and take only the hidden layer’s weights as the embedding for

each word (multiplying the one-hot encoded version of each word by the hidden layer’s

weight matrix generates the embedding for said word).

Figure 12: Word2vec.

The Skip Gram model works in a similar way to the CBOW, but instead of trying

to predict the target word, it used the target word as input and tries to predict each

word from the context. For each word from the context, it generates a separate pair of

context word to the same target word, to be used as a training sample. So using the

same example of size 2 window, instead of generating a single training sample, Skip

Gram would generate 4 samples, pairing each context word with the same target word.

On a final note, when sampling the target word for both methods we said the pro-

cess is repeated for each word in the corpus, but that does not have to be the case, we
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can choose those by picking random words from the corpus (and then using the win-

dow technique to construct the pairs). In practice, they are not picked entirely uniformly

at random, because more common words would be used much more often to train the

network, so usually some heuristics are used.

3.2.2.3 GloVe

GloVe (PENNINGTON; SOCHER; MANNING, 2014) is another technique for con-

structing semantic word embeddings. First, it builds a co-occurrence matrix X with Xi j

being the number of times word j appears in the context of word i, with the context be-

ing defined in the same way as explained in Section 3.2.2.2. Then it tries to minimize

the Equation (3.4) by learning the correct weights wi and w̃ j and biases bi and b j with f

being a weighting function that can be used to give less importance to frequent terms

and zero out the result if the count Xi j is zero, among other things.

J =

V∑
i, j=1

f
(
Xi j

) (
wT

i w̃ j + bi + b j − log Xi j

)2
(3.4)

Because w and w̃ are equivalent when X is symmetric and to help reduce overfitting,

the sum of the two can be used as the final word vectors for the embeddings as in

Equation (3.5).

w f inal = w + w̃ (3.5)

3.2.2.4 FastText

fastText 4 is not an embedding technique per se, it is a library that provides tools to

learn text representations and classifiers.

The part we are interested in is the text representation, more specifically embed-

dings. fastText proposes a framework (JOULIN et al., 2016) that works on top of other

embedding generating methods: Skip Gram and CBOW from Word2vec. The way it

differentiates is by changing how we choose the input / output pairs. Instead of using
4https://fasttext.cc/
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just the one-hot encoded words, first, it breaks each one into n-grams, then building a

vocabulary with the full words and their n-grams (not necessarily all possible n-grams

due to memory constraints, sometimes only picking the most frequent) and one-hot

encoding that final vocabulary. Finally to build the training pairs, whether it uses the

CBOW or Skip Gram method, the input comes from the full words and their n-grams

and the output being the corresponding (based on method) full word. With those pairs,

they apply one of the Word2vec methods from Section 3.2.2.2.

This will generate embeddings for the full known words from the vocabulary and

their n-grams. To compute the final embedding for a word to be used in an NLP task,

for words in the vocabulary, we use the sum of the full word embedding with its n-grams

embeddings as in Equation (3.6). If the word is not in the original vocabulary, then only

the second part of the equation is used, the sum of its n-grams’ embeddings.

Embedding f inal = Embedding f ull word +

word n−grams∑
i

Embeddingn−gram
i (3.6)

3.3 Models

In this section, we present the different models that were or will be tested. Some

of those will use the single vector representation for a document and some will use the

matrix representation (one vector per word) as input.

3.3.1 Naive Bayes

Naive Bayes is a probabilistic classifier (RISH, 2001) based on the Bayes theorem

which assumes independence between the input variables, or features, given a class.

The method estimates the conditional probability of an input being in each class CK,

given the features x1, . . . , xn. The class maximizing this probability can then be assigned

to the input. In order to train the classifier – i.e., learn the conditional distribution P(C | x)

given the features vector x – we use the data to learn P(xi | Ck) for each feature xi and

class Ck, besides the prior P(Ck). For a given x, the class Ck maximizing P(Ck | x) can

be obtained via the Bayes theorem by employing the independence assumption and

ignoring the fixed term P(x), as shown in Equation (3.7). In our case, there are two
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possible classes, 0 if the facts’ descriptions are different, 1 if similar.

To estimate the probabilities from the data, we must assume a probability distribu-

tion for the features x given a class Ck in order to learn its parameters. Our NB classifier

assumed the multinomial distribution.

P(Ck | x) ∝ P(Ck)P(x1 | Ck) . . . P(xn | Ck) (3.7)

The Naive Bayes model does not require training as most of the other models do, as

in learning from many iterations on the data. Instead, it just fits its internal parameters

(probabilities) to said data. Because in our study we do not have the full training data

(pairs of cases) assembled, rather we generate them randomly, we only "fit" the Naive

Bayes model to a randomly generated subset of what would be the whole data.

3.3.2 Cosine Similarity

Cosine Similarity (NGUYEN; BAI, 2010) is a way to measure the distance between

two vectors, given by the cosine of the angle between them, as defined in Equation

(3.8), with A and B being the vectors and θAB the angle. It is worth noting that the

Euclidean distance between normalized vectors is a monotone function of their cosine

similarity. We also point out that the CS model has no parameter to be trained.

CosineS imilarity (A, B) = cos θAB =
A • B
‖A‖ ‖B‖

(3.8)

This distance can then be compared to a threshold, turning the result into a binary

classification. We can determine this threshold the same way it is done for other ma-

chine learning techniques, by testing multiple values and choosing whichever gives the

best results, depending on what we are looking for (the precision / recall trade-off).

3.3.3 Logistic Regression

Logistic regression (KLEINBAUM et al., 2002) in the context of machine learning is

used for binary classification (problems with two classes), fitting our work of determin-

ing similarity between two pieces of text. It uses the logistic function or sigmoid from
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Equation (3.9) by having input features x (vector) and output labels y (single value, from

0 to 1) as in Equations (3.10) and trying to learn weights (vector) w and biases (single

value) b from the data.

sigmoid(z) =
1

1 + e−z (3.9)

z = wT x + b

y = sigmoid(z)
(3.10)

3.3.4 Multilayer Perceptron

Multilayer Perceptron (ROSENBLATT, 1958) is a type of feedforward neural net-

work with an input layer, one or more hidden layers and an output layer. The input layer

represents the features (in our case being the concatenated vector from BoW), the hid-

den and output layers are composed of artificial neurons with weights, biases and an

activation function. Each neuron process its inputs according to Equation (3.11), with

xi being each of the neuron’s input, wi the weight corresponding to input xi, b the bias,

ϕ the activation function and y the neuron’s output. All wi’s and b are parameters to be

learned when training the network. Figure 13 shows an example of MLP with a single

output, as is our model.

y = ϕ

 n∑
i=1

wixi + b

 (3.11)

The layers of an MLP are sometimes called fully connected (or Dense) layers.

3.3.5 Long Short-term Memory

Long Short-Term Memory (HOCHREITER; SCHMIDHUBER, 1997) is a neural net-

work layer that has memory capabilities, especially suitable for processing sequences

of data, such as text. LSTM is a sophisticated type of Recurrent Neural Network or

RNN. To understand RNN, a simple example is depicted in Figure 14.

An RNN process a sequence in step, or cells. Each step receives an activation
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Figure 13: Multilayer Perceptron with 3 inputs, 2 hidden layers of size 4 and output
layer of size 1.

Figure 14: Recurrent Neural Network representation - full representation to the left and
shorter representation to the right.

(a〈t−1〉) and an element (x〈t〉) of the sequence that is being interpreted, outputting another

activation (a〈t〉) and, sometimes, a separate result (ŷ〈t〉) – all inputs and outputs being

vectors. The first activation (a〈0〉) is usually a vector of zeros, while the activation input

for the next step is the activation output from the current step. Equations (3.12)-(3.15)

formalizes the behavior of a RNN layer, where t denotes the processing step, x〈t〉, the

input element for step t, ŷ〈t〉, the output element for step t, a〈t〉, the activation for step

t, W, the weights (each different sub-index represents a different set of weights), b,

the biases (each different sub-index represents a different set of biases) and T , the

sequence size (the separate result ŷ〈t〉 is not always needed for every step, that is why

there is a Ty for that and a Tx for the input sequence - see Figure 14).

a〈t〉 = g(Waaa〈t−1〉 + Waxx〈t〉 + ba) (3.12)



43

ŷ〈t〉 = g(Wyaa〈t〉 + by) (3.13)

L〈t〉(ŷ〈t〉, y〈t〉) = −y〈t〉 log ŷ〈t〉 − (1 − y〈t〉) log(1 − ŷ〈t〉) (3.14)

L(ŷ, y) =

Ty∑
t=1

L〈t〉(ŷ〈t〉, y〈t〉) (3.15)

Equation (3.12) represents the activation generated by each step, Equation (3.13),

the estimated output after computing another non-linearity on the activation, Equation

(3.14), the Cross Entropy loss function used to train the layer for each step and Equa-

tion (3.15), the total loss for all steps.

It is important to notice that the weights for all the steps (processing of each word)

are shared, allowing efficient learning.

The LSTM works in a similar way to the simple RNN describe above, but with a

more complex cell structure. Gate parameters help avoid some issues with longer

sequences, such as the vanishing gradient. Its structure can be seen in Figure 15,

along with Equations (3.16), which formalize its behavior, with σ being the sigmoid

function and Γu, Γ f and Γo being the update, forget and output gates respectively.

Figure 15: LSTM cell structure.
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c̃〈t〉 = tanh(Wc[a〈t−1〉, x〈t〉] + bc)

Γu = σ(Wu[a〈t−1〉, x〈t〉] + bu)

Γ f = σ(W f [a〈t−1〉, x〈t〉] + b f )

Γo = σ(Wo[a〈t−1〉, x〈t〉] + bo)

c〈t〉 = Γu ∗ c̃〈t〉 + Γ f ∗ c〈t−1〉

a〈t〉 = Γo ∗ tanh(c〈t〉)

(3.16)

For a detailed explanation of the LSTM architecture, see (HOCHREITER; SCHMID-

HUBER, 1997).

3.3.6 Transformer

Transformer (VASWANI et al., 2017) is a network architecture based on attention

mechanisms without the use of recurrence or convolutions.

The architecture from the referenced paper was built for sequence to sequence

tasks (namely language translations), but part of this model can also be used for other

tasks (DEVLIN et al., 2018), and that is what we are interested in for our work.

The Transformer is composed of an encoder and a decoder stack, with the encoder

converting the input sequence to contextual encodings that can then be consumed by

the decoder to generate the output sequence, as in Figure 16. We will only explain the

encoder part, since that is what we will be using for some of the proposed architectures

for the legal texts similarity task.

The encoding process can be summarized as converting the input to embeddings,

adding a positional encoding, passing it through the self-attention block, then through a

feed-forward neural network (FFNN) finally generating the result vector for each word.

The input to embedding can use any embedding technique such as Word2vec or

GloVe.

The positional encoding is another vector that represents the position of the word in

the sentence (similar to a binary encoding for the position number, but the Transformer

paper uses a different technique with sine and cosine functions) and is added to the

generated embedding to allow the attention model to learn from the order of the words.
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Figure 16: Transformer architecture. Copied from (VASWANI et al., 2017).

The self-attention head can be split into the following steps: calculate query (Q), key

(K) and value (V)→ calculating scores for each word→ divide by the square root of the

dimension of the key vectors → apply softmax → multiply by V → sum up the vectors

generating the result. Considering X to be the input sequence encodings generated by

the embeddings, W to be the multiple weight matrices for Q, K and V, and Z to be the

final output from the self-attention head, Equations (3.17) show the math behind it and



46

Figure 17 presents an overview of the attention mechanism.

X
n× dE
× WQ

dE × dW

= Q
n× dW

X
n× dE
× WK

dE × dW

= K
n× dW

X
n× dE
× WV

dE × dW

= V
n× dW

so f tmax
Q × KT

√
dW

 V = Z
n× dW

(3.17)

Figure 17: Scaled Dot-Product Attention. Copied from (VASWANI et al., 2017).

To complete the full self-attention block from the paper, they actually use multiple

heads, concatenate the results, multiply by yet another weight matrix and then generate

the final output as in Figure 18. Equation (3.18) shows how the final output from the

self-attention block is calculated. Note that Z f inal has the same dimensions as the

embeddings X, allowing multiple encoder blocks to be stacked easily.

[Z0Z1...Zh]
n× dW ·h

× W0
dW ·h× dE ·h

= Z f inal
n× dE

(3.18)

The last part of the encoder block consists of passing each vector from the self-

attention block result through an FFNN, generating the final result for this encoder

block. One important detail is that the FFNN does not change those vectors’ (one for

each word, or a matrix) dimensions, allowing multiple blocks to be stacked. This brings

us to the final important note of the encoder, it comprises multiple of those encoder

blocks stacked together to form the full encoder.
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Figure 18: Multi-head attention. Copied from (VASWANI et al., 2017).

Section 3.3.7 will explain how Siamese neural networks work and what a feature

extractor is, but in order to use the Transformer encoder as a feature extractor, there

is one extra step we will be taking: summing up (element-wise) the output vectors for

each word into a single vector and dividing by the square root of the sequence size as

in (CER et al., 2018).

3.3.7 Siamese Neural Network

Siamese Neural Network (BROMLEY et al., 1994) is a type of neural network ar-

chitecture that has at least two sub-networks (shared layers S1 and S2) with identical

weights and configurations. In our case, the two inputs (facts’ descriptions) are pro-

cessed by these shared layers separately, and the outputs are concatenated (Concat)

before being processed by other layers (C1 and C2). A simple structure of a Siamese

network can be seen in Figure 19.

Those sub-networks are sometimes called feature extractors, because they are re-

sponsible for receiving the input and processing it into outputs that will be concatenated

and compared in some way to generate the final output type (a similarity measure be-

tween zero and one in our case).

After processing the two inputs through the shared layers, they can together (con-

catenated) be further processed by the final layers which are responsible for learning
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Figure 19: Siamese network structure.

the comparison function (similarity function in our scenario). We will be exploring two

options for those final layers: a small MLP network and the exponential negative Man-

hattan distance (ENMD).

The small MLP as a final layer can, theoretically, learn the comparison function

between the two processed inputs in a similar way a regular MLP would for initial inputs.

The Manhattan distance between two vectors is computed by summing up the ab-

solute distances for each dimension. The exponential negative Manhattan distance,

Equation (3.19) (with F1 and F2 being the two vectors extracted from the inputs pro-

cessed by the shared layers), is just the exponential of the negative of that value. When

the Manhattan distance is 0, the result for the ENMD will be 1 and when it is very big,

the result will be closer to 0, thus allowing us to interpret it as a similarity function

between the two processed inputs.

ENMD = exp

− n∑
i=1

|F1
i − F2

i |

 (3.19)

3.4 Architectures

In this section, we present the several architectures that were tested, with each

being a combination of the models and techniques presented in section 3.3.

We can distinguish our architectures by looking at 4 different selections of patterns:

the text representation, the way to process both inputs (one for each text of the pair of
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documents being compared), the base model used for calculation and, if we are using

an SNN, a type of output to merge the two processed inputs. Those are represented

in Figure 20, with each of the 4 "columns" being the selection patterns and the gray

boxes being the options. Those gray boxes are also grouped (by white boxes) to better

organize the types of options. The arrows indicate which way one can choose an option

(from left to right) to build one of our 28 architectures.

Figure 20: Architecture combinations.

Starting with the red arrows’ path, we have the 2 possible single vector per docu-

ment representations: BoW or TF-IDF. The output of one of those for each piece of text

(from the pair) can then be concatenated into a single vector to be finally processed

into our similarity result by one of the 4 base models: NB, CS, LR or MLP. Resulting in

8 architectures.

• BoW + NB

• BoW + CS
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• BoW + LR

• BoW + MLP

• TF-IDF + NB

• TF-IDF + CS

• TF-IDF + LR

• TF-IDF + MLP

The NB based architectures used a multinomial Naive Bayes classifier with a

smoothing parameter of 1.

For the CS based architectures, the threshold was chosen on a 0.1 interval based

on the best accuracy, which ended up with 0.3 for BoW + CS
¯

and 0.1 for TF-IDF + CS
¯

.

The LR based architectures use a single sigmoid unit on the concatenated inputs.

The MLP based architectures use 2 internal layers of 256 neurons with ReLU as

activation function with a single sigmoid neuron as output layer.

For the green arrows’ path, instead of concatenating the 2 vectors representing the

inputs pair, we process them through the same MLP model as before, but instead of

having an output layer with a single sigmoid neuron, we replace it with 256 neurons

(still using sigmoid as activation function), generating another 2 vectors that can be

merge by one of the output options for the SNN: Output MLP or Output Manhattan

(as explained in Section 3.3.7). The Output MLP concatenates the inputs, passes

concatenated vector through 2 layers of 256 neurons using the ReLU as activation

function and one final layer with a single neuron using sigmoid as activation function

(similar to how BoW + MLP does). Resulting in another 4 architectures.

• BoW + SNN + MLP + Output MLP

• BoW + SNN + MLP + Output Manhattan

• TF-IDF + SNN + MLP + Output MLP

• TF-IDF + SNN + MLP + Output Manhattan
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Finally, for the blue arrows’s path, we start with the single vector per word represen-

tations: We, Word2Vec, Glove or FastText. The inputs are again processed by an SNN

style architecture using one of the 2 available base models, LSTM or TN, as feature

extractors, so they can then be merged by one of the 2 types of outputs as mentioned

in the previous path: Output MLP or Output Manhattan. Resulting in yet another 16

architectures.

• WE + SNN + LSTM + Output MLP

• WE + SNN + LSTM + Output Manhattan

• WE + SNN + TN + Output MLP

• WE + SNN + TN + Output Manhattan

• Word2Vec + SNN + LSTM + Output MLP

• Word2Vec + SNN + LSTM + Output Manhattan

• Word2Vec + SNN + TN + Output MLP

• Word2Vec + SNN + TN + Output Manhattan

• Glove + SNN + LSTM + Output MLP

• Glove + SNN + LSTM + Output Manhattan

• Glove + SNN + TN + Output MLP

• Glove + SNN + TN + Output Manhattan

• FastText + SNN + LSTM + Output MLP

• FastText + SNN + LSTM + Output Manhattan

• FastText + SNN + TN + Output MLP

• FastText + SNN + TN + Output Manhattan

The WEs for the 2 LSTMs had an output dimension of 256. The WEs for the TN

networks were trained with 50 as output dimensions instead, because with 256 the

model was just not learning anything (accuracy stuck at 50%).
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The models with pre-trained embeddings (Word2Vec, Glove and FastText) were all

trained with 300 as output dimension (closest we could find to the 256 from WE and

that were already trained in Portuguese) for the LSTM networks. Due to the same

reason as before, we chose an output dimension of 50 for the TN based networks.

They were all of the Skip Gram type.

All the pre-trained embeddings were downloaded from the NILC repository 5.

The LSTM based architectures assumed a maximum sequence length of 1k.

The TN based architectures had 2 layers, layer output dimension of 50, 2 heads,

inner layer dimension of 16 and dropout rate of 0.1. The reason for not using the same

parameters as the base model from (VASWANI et al., 2017) was due to a lack of better

computational resources.

For all the architectures, when necessary, the models were trained with a vocabu-

lary size of 10k, training batch size of 16, 2k steps per epoch and a start of 10 epochs.

After the initial 10 epochs, each model was trained for another 10 and the loss history

was analyzed: if the latest 10 epochs produced a smaller loss than the previous 10,

the model was trained for another 10 epochs; if not, we stopped training at those initial

20 epochs.

For the NB based models, a total of 10 epochs was considered (20k total pairs) with

no further "training", as it does not make sense for these kinds of models as explained

in section 3.3.1.

It is worth noting that we did not consider some of the more advanced architectures

such as using a pre-trained BERT as a feature extractor for an SNN, because it would

take too long to train considering our computational resources and it did not seem like

it would yield better results. As an example, we trained a simple Output MLP (similar to

other models, concatenating the two inputs) with the inputs being the texts processed

by a Brazilian Portuguese pre-trained BERT from NeuralMind 6 (the BERT itself was

not trained at all, we just used it as a text processing function, similar to BoW and

the others). We trained for 10 epochs and achieved the results from Figures 21 and

22, taking over 10h of training. Because of the long training time and the fact that the
5http://www.nilc.icmc.usp.br/embeddings
6https://huggingface.co/neuralmind/bert-base-portuguese-cased
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accuracy did not seem like it would increase to the point of even reaching the results

of our other models, we decided to forgo further exploring that architecture.

Figure 21: Accuracy, precision and recall for BERT + SNN + Output MLP.
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Figure 22: Validation confusion matrix for BERT + SNN + Output MLP.
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4 EXPERIMENTS AND RESULTS

This section will present all the experiments and results for the 28 different architec-

tures on the STJ dataset, along with the final model chosen with added regularization.

All the experiments were constructed using the following libraries: scikit-learn1,

Keras2 and NLTK3. The first was mainly used for NB and CS based models, the second

for all the others (SNN, MLP, LSTM, TN) and the third for pre-trained embeddings

(Word2Vec, GloVe, FastText).

All the Keras models (all except NB and CS) were built using the binary crossen-

tropy loss with the library’s standard parameters for the Adam optimizer (learning rate =

0.001, beta1 = 0.9, beta2 = 0.999).

All experiments were conducted on a Windows PC with the following specs:

• Processor: Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz

• RAM: 32.0 GB

• System type: 64-bit

• GPU: NVIDIA GeForce RTX 2080 Ti

The code used for data extraction from the STJ website, data processing and

text pairs generation, training and evaluation of the models, is available for non-

commercial research purposes under the license CC-BY-NC-ND at the following repos-

itory: https://github.com/rodrigoruiz/jurisprudence-research/.

Before presenting the results, let us define accuracy, precision and recall. Consider

the confusion matrix from Figure 23 with the following definitions:

• TP = true positives.

• TN = true negatives.
1https://scikit-learn.org/
2https://keras.io/
3https://www.nltk.org/
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• FP = false positives.

• FN = false negatives.

Figure 23: Confusion matrix.

The true labels are the actual values from the dataset and the predicted labels are

the values predicted by a model (if those are equal, than the model correctly predicted

the values). Because the actual labels can be 0 or 1 and the model can predict values 0

or 1 (in our case it predicted values from 0 to 1 and we rounded it), we have 4 possible

combinations for actual value vs predicted value, generating the numbers TP, TN, FP

and FN.

Now accuracy, precision and recall can be defined by Equations (4.1), (4.2) and

(4.3):

accuracy =
T P + T N

T P + T N + FP + FN
(4.1)

precision =
T P

T P + FP
(4.2)

recall =
T P

T P + FN
(4.3)

Finally, to better compare the results of each best model, we can look at Table 1 -

the raw results can be found in Appendix B.
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Table 1: STJ results on validation dataset

Input Model Output Accuracy (%) Precision (%) Recall (%) F1 score (%)

BoW

NB 50.61 50.60 51.71 51.15
CS 73.82 83.09 59.82 69.56
LR 47.28 47.50 51.67 49.50

MLP 83.67 83.44 84.02 83.73

TF-IDF

NB 48.78 48.93 55.91 52.19
CS 80.61 86.32 72.76 78.96
LR 48.90 49.04 56.52 52.51

MLP 83.75 84.92 82.08 83.48

BoW SNN +
MLP

MLP 83.47 81.68 86.28 83.92
Manhattan 81.81 82.44 80.84 81.63

TF-IDF MLP 84.75 83.83 86.12 84.96
Manhattan 83.52 85.09 81.29 83.15

WE

SNN +
LSTM

MLP 81.29 79.46 84.39 81.85
Manhattan 82.10 82.97 80.77 81.86

SNN +
TN

MLP 81.29 79.59 84.16 81.81
Manhattan 59.03 59.66 55.77 57.65

Word2Vec

SNN +
LSTM

MLP 81.76 80.38 84.02 82.16
Manhattan 81.81 82.00 81.52 81.76

SNN +
TN

MLP 75.09 72.83 80.04 76.26
Manhattan 63.87 63.70 64.49 64.09

GloVe

SNN +
LSTM

MLP 80.61 78.34 84.62 81.36
Manhattan 82.56 82.83 82.13 82.48

SNN +
TN

MLP 78.13 75.40 83.49 79.24
Manhattan 64.23 62.46 71.31 66.59

FastText

SNN +
LSTM

MLP 80.67 77.92 85.60 81.58
Manhattan 82.71 82.22 83.47 82.84

SNN +
TN

MLP 77.24 74.13 83.68 78.62
Manhattan 67.15 66.81 68.19 67.49
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The NB and LR models did not do very well in comparison to the best model,

most likely due to their lack of abstracting higher patterns in the data. Though the CS

models did considerably better, which seems counter-intuitive since it is also a very

simple model (that does not even need training).

All the MLP, SNN + MLP and SNN + LSTM models achieved very close results,

with TF-IDF + SNN + MLP + Output MLP being the best one in terms of accuracy and

F1 score. TF-IDF is a known technique for encoding large documents, while SNN can

be used to compare two pieces of text that should be interpreted in the same manner

with MLP being a common way of further processing our encoded input and flexible

enough to fit a similarity function for the extracted features of each text, all which could

explain why this was the best model.

The TN models achieved a broader range of results, with the ones using Output

MLP being better than the Output Manhattan ones. Also having the WE + SNN + TN +

Output MLP achieving results close to the best model.

From those results, we chose the model with the highest accuracy to further work

on, but it does not imply this is the best model amongst all. Possibly TN or LSTM

models did not get the proper adjustment on their hyper-parameters, such as number

of heads, layers or neuron units on each layer, needed to achieve better results. It

could also be that the LSTM models were not able to properly fit their parameters for

such large documents, since they are usually better at handling smaller pieces of text.

Besides the NB and LR models, which presented the worst accuracies, it seems

the results are more closely related to the actual data than the models themselves,

since a lot of them were very close to each other. Many models with different com-

plexity presented similar results, leading us to believe our problem might not need the

complexity of word embedding types of input, so BoW and TF-IDF worked just as well.

Possibly for the same reason, the TN and LSTM models showed similar results to MLP

models, with MLP models doing slightly better, maybe due to them being easier to train.

As a side note, even if the CS model was the best one, it would still not be chosen

simply because it cannot be much further improved (since it does not have a learning

process).

As for the output layer, Output MLP having more flexibility in fitting the data when
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compared to Manhattan might have given a slight edge on the last stages of data

processing to help fit the layers with less data (though not a big difference, since not

all models performed better with Output MLP).

Also, in hindsight, since the CS models (especially the one paired with TF-IDF)

performed fairly well (with the TF-IDF + CS being very close to the best one), it might

indicate that the ratio of word occurrences carry enough information to verify similarity

between text pairs built from our extracted dataset, since this is essentially what a CS

model compares, the distance between the two vectors with each vector being directly

related to the ratio of words (via BoW or TF-IDF). This might also indicate that in other

domains where the word ratio is heavily correlated to the task result, the BoW and

TF-IDF type of text encoding should produce good results.

Finally for the best model of the 28 tested, TF-IDF + SNN + MLP + Output MLP, we

explored a few regularization methods: L1, L2, Dropout and increasing the batch size.

We added dropout layers between all the others, similar to what was done in the

original paper (SRIVASTAVA et al., 2014) (after each input layer, after each dense layer

in the feature model, after the two extracted and concatenated features, and after each

dense layer of the final output processing, except for the very last layer which outputs

the actual classification.) with a dropout rate of 0.3. The final architecture can better

be seen in Figure 24.

In order to evaluate this final model, we then constructed the fixed test dataset with

other 30k pairs generated from those 10k test cases in the way explained in Subsection

3.1. The results on the validation and test datasets can be seen in Table 2.

Table 2: Results for the final model

TF-IDF + SNN + MLP + Output MLP

Dataset Accuracy (%) Precision (%) Recall (%) F1 score (%)
Validation 86.58 84.30 89.91 87.01

Test 85.98 83.89 89.06 86.40

As we can see, the added regularization did not improve much on the validation

dataset in the first place, further corroborating our intuition that the data was much
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Figure 24: Final architecture.
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more relevant in the results than the model itself. This might also indicate that we are

reaching the limit of how precise the data is. Since it was not a manually classified

dataset, we cannot know the exact accuracy of the generated pairs used to train and

evaluate the models and we do know any model cannot do better than the data’s ac-

curacy it is being used to train on. In addition to that, it might also be the case that

some pairs of texts should be considered similar, but were not done so because the

past decision of the to be referenced case was not in accordance with what the lawyer

wanted for their current case, which further contributes to decreasing the accuracy of

our generated data.

As for the results on the test dataset, they were very close to the ones on the

validation dataset (being slightly worse, as would be expected), meaning we managed

to train a model without much bias towards our training (and validation) dataset.

So if our assumption that the extracted dataset from the original cases is good

enough to represent what a manually classified dataset would be is true, then those

results mean that, on average, for more than 8 every 10 cases a lawyer read from our

model’s recommendation will be similar to their current case, and that is considering we

show the cases classified as similar in any order. If we order the cases by the model’s

confidence in the prediction, the assertiveness would be even higher. Thus effectively

reducing the search time of the lawyer on this task.

The resulting model could also potentially be used, either as-is or as a starting

point, to classify cases from other courts. Depending on how similar the structure of

their text is, it might be possible to re-use the same models without further training.
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5 CONCLUSION

During this work, we explored different NLP and ML techniques to address the task

of determining whether two pieces of text were similar, more specifically, two facts’

descriptions from juridical cases.

We started by extracting a dataset of past judgments from STJ since we did not

have a manually classified dataset. For that, we presented an exploratory analysis that

might help future studies on the same data. The data itself could also be used as a

new benchmark for text interpretation of legal cases in Portuguese, comprising many

possible tasks besides the jurisprudence classification done in this study, thus being

one of our work’s contributions.

Using that data we explored 28 different architectures (as described in section 3.4)

and investigated with a more thorough parameter search the one with the best results,

TF-IDF + SNN + MLP + Output MLP, leading to the final result of 85.98% accuracy in

the test dataset. After all that testing, we can say we did not anticipate the results of

many of those architectures being so similar to each other, a fact that could help future

studies to find another architecture with a key difference that could improve our results.

For now, we maintain our conclusion that the results we got were more dependent on

the data than the models themselves, though we can suggest starting with TF-IDF as

a document encoding technique when dealing with large pieces of text, due to Word

Embeddings with LSTMs usually being harder to fit into problems with larger texts. We

also suggest starting with an MLP feature extractor rather than a TN based one, since

TNs are harder to train and, in our case, lead to worse results.

Also as another contribution, all the code for our work was made publicly available

for research purposes (and can be found in the repository specified in Chapter 4).

Even so, due to the lack of even more powerful computers, not all of the latest

techniques were evaluated, including bigger and more expensive networks like ELMO,

ULMFit, BERT, and XLNet, leaving those for future work, along with procuring a manu-

ally labeled similarity dataset. Besides leveraging pre-trained models to achieve results

in the specific task of jurisprudence similarity, transfer learning could also be done from
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our models to other tasks, mainly ones related to long juridical texts in Portuguese, pos-

sibly taking the feature extractor part of our models and using it as an encoder for other

tasks.

Overall, NLP and ML are vastly studied fields, even in specific domains such as

the legal one. Even so, we expect our work to contribute to yet another branch of this

ongoing study by not only providing a new dataset of legal cases in Portuguese, but

also helping other researchers with a starting point on the jurisprudence similarity task

of large legal texts.
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APPENDIX A -- STJ SEARCH AND
EXTRACTION

Figure 25 shows an example of the initial search by the generic term "acórdão" (the

manifestation of a collegiate judicial body that reveals a legal position), to find all past

cases from STJ.

Figure 26 presents an example of the report section of a case.

Figure 27 displays the part of the report where the jurisprudence reference is pre-

sented.
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Figure 25: STJ website search by "acórdão".
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Figure 26: Report section from a case’s PDF.
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Figure 27: Reference from a case’s PDF.
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APPENDIX B -- STJ RESULTS

The raw results for the investigation on each of the 28 architectures trained with the

STJ dataset can be seen in Figures 28 to 81, displaying the loss, accuracy, precision

and recall curves during training along with the confusion matrix of the best of each

model (found during training) applied to the validation data. NB and CS models are the

exceptions, because there is no training in either, as explained before in sections 3.3.1

and 3.3.2 respectively.

Figure 28: Accuracy, precision and recall for BoW + NB.
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Figure 29: Validation confusion matrix for BoW + NB.
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Figure 30: Validation confusion matrix for BoW + CS.



74

Figure 31: Accuracy, precision and recall for BoW + LR.
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Figure 32: Validation confusion matrix for BoW + LR.
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Figure 33: Accuracy, precision and recall for BoW + MLP.
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Figure 34: Validation confusion matrix for BoW + MLP.
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Figure 35: Accuracy, precision and recall for TF-IDF + NB.
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Figure 36: Validation confusion matrix for TF-IDF + NB.
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Figure 37: Validation confusion matrix for TF-IDF + CS.
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Figure 38: Accuracy, precision and recall for TF-IDF + LR.
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Figure 39: Validation confusion matrix for TF-IDF + LR.
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Figure 40: Accuracy, precision and recall for TF-IDF + MLP.
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Figure 41: Validation confusion matrix for TF-IDF + MLP.
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Figure 42: Accuracy, precision and recall for BoW + SNN + MLP + Output MLP.
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Figure 43: Validation confusion matrix for BoW + SNN + MLP + Output MLP.
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Figure 44: Accuracy, precision and recall for BoW + SNN + MLP + Output Manhattan.
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Figure 45: Validation confusion matrix for BoW + SNN + MLP + Output Manhattan.
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Figure 46: Accuracy, precision and recall for TF-IDF + SNN + MLP + Output MLP.
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Figure 47: Validation confusion matrix for TF-IDF + SNN + MLP + Output MLP.
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Figure 48: Accuracy, precision and recall for TF-IDF + SNN + MLP + Output Manhattan.
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Figure 49: Validation confusion matrix for TF-IDF + SNN + MLP + Output Manhattan.
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Figure 50: Accuracy, precision and recall for WE + SNN + LSTM + Output MLP.
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Figure 51: Validation confusion matrix for WE + SNN + LSTM + Output MLP.
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Figure 52: Accuracy, precision and recall for WE + SNN + LSTM + Output Manhattan.
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Figure 53: Validation confusion matrix for WE + SNN + LSTM + Output Manhattan.
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Figure 54: Accuracy, precision and recall for WE + SNN + TN + Output MLP.
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Figure 55: Validation confusion matrix for WE + SNN + TN + Output MLP.
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Figure 56: Accuracy, precision and recall for WE + SNN + TN + Output Manhattan.
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Figure 57: Validation confusion matrix for WE + SNN + TN + Output Manhattan.
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Figure 58: Accuracy, precision and recall for Word2Vec + SNN + LSTM + Output MLP.
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Figure 59: Validation confusion matrix for Word2Vec + SNN + LSTM + Output MLP.
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Figure 60: Accuracy, precision and recall for Word2Vec + SNN + LSTM + Output Man-
hattan.
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Figure 61: Validation confusion matrix for Word2Vec + SNN + LSTM + Output Manhat-
tan.
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Figure 62: Accuracy, precision and recall for Word2Vec + SNN + TN + Output MLP.
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Figure 63: Validation confusion matrix for Word2Vec + SNN + TN + Output MLP.
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Figure 64: Accuracy, precision and recall for Word2Vec + SNN + TN + Output Manhat-
tan.
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Figure 65: Validation confusion matrix for Word2Vec + SNN + TN + Output Manhattan.
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Figure 66: Accuracy, precision and recall for Glove + SNN + LSTM + Output MLP.



110

Figure 67: Validation confusion matrix for Glove + SNN + LSTM + Output MLP.
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Figure 68: Accuracy, precision and recall for Glove + SNN + LSTM + Output Manhattan.
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Figure 69: Validation confusion matrix for Glove + SNN + LSTM + Output Manhattan.
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Figure 70: Accuracy, precision and recall for Glove + SNN + TN + Output MLP.
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Figure 71: Validation confusion matrix for Glove + SNN + TN + Output MLP.
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Figure 72: Accuracy, precision and recall for Glove + SNN + TN + Output Manhattan.



116

Figure 73: Validation confusion matrix for Glove + SNN + TN + Output Manhattan.
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Figure 74: Accuracy, precision and recall for FastText + SNN + LSTM + Output MLP.
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Figure 75: Validation confusion matrix for FastText + SNN + LSTM + Output MLP.
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Figure 76: Accuracy, precision and recall for FastText + SNN + LSTM + Output Man-
hattan.
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Figure 77: Validation confusion matrix for FastText + SNN + LSTM + Output Manhattan.
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Figure 78: Accuracy, precision and recall for FastText + SNN + TN + Output MLP.
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Figure 79: Validation confusion matrix for FastText + SNN + TN + Output MLP.
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Figure 80: Accuracy, precision and recall for FastText + SNN + TN + Output Manhattan.
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Figure 81: Validation confusion matrix for FastText + SNN + TN + Output Manhattan.


