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RESUMO

Uma abordagem para o serviço de Seleção de Slices para Ambientes Mul-
tidomínio em Redes Móveis 5G e Sistemas de Comunicação Futuros

O serviço Network Slice Selection Function (NSSF) em ambientes de tecnologia hete-
rogêneos é um problema complexo, que ainda não tem uma solução totalmente aceitável.
Assim, a implementação de novas estratégias de seleção de slices representa uma questão
importante em desenvolvimento, principalmente devido à crescente demanda em apli-
cações e cenários envolvendo redes 5G e futuras. Este trabalho apresenta uma solução
integrada para o problema NSSF, denominado Network Slice Selection Function Decision-
Aid Framework (NSSF DAF), que consiste em uma solução distribuída, onde uma parte
é executada no equipamento do usuário (e.g. smartphones, VANTs, Brokers IoT), fun-
cionando como um serviço transparente e outra à borda da operadora ou do provedor
de serviços. Para tanto, protocolos e ferramentas de software são usados para classifi-
car os slices. Neste trabalho, 14 métodos multicritérios são empregados para auxiliar na
tomada de decisão, sendo eles: ARAS, COCOSO, CODAS, COPRAS, EDAS, MABAC,
MAIRCA, MARCOS, MOORA, OCRA, PROMETHEE II, SPOTIS, TOPSIS e VIKOR.
O objetivo geral consiste em verificar a semelhança entre esses métodos e aplicações no
processo de classificação e seleção de slices, considerando um cenário específico. Para
realizar a seleção é utilizado aprendizado de máquina por meio do algoritmo de agru-
pamento K-means, adotando uma solução híbrida para a implementação e operação do
serviço NSSF em ambientes de slices multi-domínio em redes móveis heterogêneas. Testes
de bancada foram conduzidos visando validar a abordagem proposta, mapeando e correla-
cionando os requisitos dos serviços com os slices disponíveis. Os resultados indicam uma
possibilidade real de oferecer uma solução completa para o problema NSSF que pode ser
implementada na borda ou no núcleo da rede, ou mesmo na própria Estação Rádio Base
5G, sem custo computacional incremental ao equipamento do usuário final, garantindo a
qualidade de experiência adequada ao consumo dos seus serviços.

Palavras-chave: Seleção de Slices. Decisão Multicritério. Aprendizado de Máquina.
Softwarização de Rede. Redes 5G.



ABSTRACT

The Network Slice Selection Function (NSSF) in heterogeneous technology environ-
ments is a complex problem, which still does not have a fully acceptable solution. Thus,
the implementation of new network selection strategies represents an important issue in
development, mainly due to the growing demand for applications and scenarios involving
5G and future networks. This work then presents an integrated solution for the NSSF
problem, called Network Slice Selection Function Decision-Aid Framework (NSSF DAF),
which consists of a distributed solution in which a part is executed on the user’s equipment
(e.g. smartphones, Unmanned Aerial Vehicles, IoT brokers), functioning as a transparent
service, and another at the Edge of the operator or service provider. It requires low con-
sumption of computing resources from mobile devices and offers complete independence
from the network operator. For this purpose, protocols and software tools are used to
classify slices. This work employs fourteen multicriteria methods to aid decision-making:
ARAS, COCOSO, CODAS, COPRAS, EDAS, MABAC, MAIRCA, MARCOS, MOORA,
OCRA, PROMETHEE II, SPOTIS, TOPSIS and VIKOR. The general objective is to
verify the similarity among these methods and applications in the slice classification and
selection process, considering a specific scenario, towards the framework. It also uses ma-
chine learning through the K-means clustering algorithm, adopting a hybrid solution to
implement and operate the NSSF service in multi-domain slicing environments of hetero-
geneous mobile networks. Testbeds were conducted to validate the proposed framework,
mapping the adequate quality of service requirements. The results indicate a real possibil-
ity of offering a complete solution to the NSSF problem that can be implemented in Edge,
in Core, or even in 5G Radio Base Station itself, without the incremental computational
cost of the end user’s equipment, allowing the adequate quality of experience.

Keywords: Network Slice Selection Function. Multi-criteria Decision Methods. Machine
learning. Networks Softwarization. 5G.
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1 INTRODUCTION

This introductory chapter presents the reasons, research questions, objectives, and

background for this work. It has been organized into the five following sections: Section 1.1

gives relevant background information; Section 1.2 addresses the research questions and

objective; Section 1.3 looks at the main reasons for this study; Section 1.4 describes

the main assumptions used by Network Slice Selection Function Decision-Aid Framework

(NSSF DAF) designing, and testing the slice selection service framework; and Section 1.5

provides an overview of the structure of this document.

1.1 Background

Convergence among networks of different technologies has become a reality. The pro-

cessing power of mobile devices and the diversity of services that can be used with them

shape the way in which access technology infrastructures are modeled. The term conver-

gence hence refers to the possibility of providing user access through different technologies,

enabling the use of various services such as voice, video, and data in general (SILVA et

al., 2022b),(MORGADO et al., 2018).

In applying the concept of the Network Slicing (NS), an avenue to new mobile network

solutions can be provided, including 5G networks (Fifth Generation Mobile Networks) and

future communication systems, as a result of the stricter requirements in terms of their

Key Performance Indicators (KPIs) — isolation, latency, mobility, peak data rate, among

others. The slice constitutes a virtual segment of the network that aims at offering specific

services and providing isolation between the applications. Although several proposals

have pointed out paths in domains that involve heterogeneous technologies (e.g. WLAN,

WiMAX, UMTS, HSPA, LTE and IMT-2020), it is not possible to aggregate several

functionalities in a single and fully functional approach so as to set the operation and

management mechanisms of each slice, or to provide subsidies for scalability, orchestration,

and support for the decision making process (MORGADO et al., 2018; YI et al., 2018).
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The task of selecting a Radio Access Network (RAN) in an environment of heteroge-

neous technologies is difficult, since operators can provide specific types of slices directly

in order to meet the requirements of an application or even multiple slices for the re-

quirements of the same user. Therefore, there is no solution or technique whatsoever

that understands all the aspects and mechanisms of access to these technologies (KIM;

KIM, 2019; YOU et al., 2019). The implementation of new selection techniques be-

comes necessary due to the demand in the growing use of vehicular networks, patient

monitoring, smart cities, and Internet of Things (IoT), among other technologies and

scenarios involving network convergence, mobility management, and service continuity in

5G networks and beyond (BARAKABITZE et al., 2020; CHAHAL; HARIT, 2019; WEI;

ZHANG; FAN, 2018; BOJKOVIC; BAKMAZ; BAKMAZ, 2019; ÇATAK; DURAK-ATA,

2016; AUMAYR et al., 2022; WU et al., 2022).

In this context, a study of the use of computational tools for classifying slices was

carried out, with the objective to support the decision-making process using aids for our

proposed NSSF DAF. Fourteen strategies were suggested, namely Aras (Additive Ratio

Assessment), Cocoso (Combined Compromise Solution), Codas (Combinative Distance-

based Assessment), Copras (Complex Proportional Assessment), Edas (Evaluation based

on Distance from Average Solution), Mabac (Multiattributive Border Approximation

Area Comparison), Mairca (Multi-Attributive Ideal–Real Comparative Analysis), Marcos

(Measurement of Alternatives and Ranking according to Compromise Solution), Moora

(Multi-Objective Optimization on the basis of Ratio Analysis), Ocra (Operational Com-

petitiveness Rating), Promethee II (Preference Ranking Organization Method for Enrich-

ment Evaluations), Spotis (Stable Preference Ordering Towards Ideal Solution), Topsis

(Technique for Order Preference by Similarity to Ideal Solution), and Vikor (Visekri-

terijumska Optimizacija i Kompromisno Resenje)(SILVA et al., 2022b),(ALINEZHAD;

KHALILI, 2019), (HEZER; GELMEZ; ÖZCEYLAN, 2021), (WANG et al., 2020),(ULU-

TAş et al., 2020),(KUNDAKCı, 2019),(NGUYEN et al., 2022a),(DEZERT et al., 2020).

The general purpose was, first, to verify the similarity among these methods and ap-

plications in the slice classification and selection processes, considering a range of different

scenarios, and then to propose a framework that provides the user with the best expe-

rience. Machine Learning (ML) with the K-means clustering algorithm as well as Fuzzy

Logic were selected, adopting a hybrid solution to the deployment and operation of the

Network Slice Selection Function (NSSF) service in multi-domain slicing environments of

heterogeneous mobile networks. To validate the framework, testbeds were conducted to

the mapping of the necessary Quality of Service (QoS) requirements in order to guarantee
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the established SLAs (Service Level Agreement).

Thus, there is a promising solution for 5G mobile networks and beyond, which is a

new approach that employs techniques aimed at the integration and interoperability be-

tween RAN or Open Radio Access Network (O-RAN), Edge and Core networks, based on

an efficient and robust Slice Selection service (virtual network selection), under an archi-

tecture that provides compatibility with the standards specification in progress (SILVA

et al., 2022b). It is also applicable to a number of segments defined by 3GPP (3rd Gen-

eration Partnership Project), such as 1) the integration of a large amount of data from

devices linked to the IoT context (e.g. smart homes, patient monitoring, Wireless Sensor

Networks—WSNs) with cloud services; 2) the integration of applications that have mul-

timedia requirements, high density of video and audio traffic, such as applications that

use Virtual Reality (VR) and Augmented Reality (AR) technologies; 3) the provision of

specialized networks with sophisticated slice selection and security mechanisms to provide

services for autonomous vehicle networks in different models and topologies (e.g., V2V—

Vehicle-to-Vehicle, V2I—Vehicle-to-Infrastructure, V2X—Vehicle-to-Everything) (CAM-

POLO et al., 2018; RICART-SANCHEZ et al., 2018; AFAQ et al., 2020).

More than the understanding of NS, this work contributes to the improvement of

the network slice selection process. A framework that implements the NSSF service in

vertical and horizontal models is proposed, where the handover decision is shared by both

the network edge and the User Equipment (UE) at network runtime.

1.2 Research questions and objective

The selection process requires mobile devices to discover the slices available in a given

RAN, inserted in a environment of heterogeneous technologies, and make an evaluation

based on a set of criteria and metrics (e.g., QoS and QoE), so as to infer which networks

fulfill the continuity requirements or service improvement. In Horizontal Slicing model,

the problem is multivariable, dynamic and nonlinear, in addition to having a stochastic be-

havior, given the randomness of variable values that need to be considered (KHEDDAR et

al., 2022), (SILVA et al., 2022c), (JOŠILO; DÁN, 2020), (GLIGOROSKI; KRALEVSKA,

2019). Therefore, getting a viable model that can represent the real behavior of the slices

QoS variables, as well as the RANs, is a quite complex task (KLIKS et al., 2018), (CHOI;

PARK, 2017).

In addition, for Vertical Slicing Model, a given network operator may have several
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specialized and commonly used slices that were made available to its users. Thus, the

traffic generated by these users must be aggregated, selected and forwarded to the slice

that is best suited to handle and process it in the core of the network, in order to opti-

mize their operating resources (OPEX) and comply with the agreed SLA (Service Layer

Agreement) (IANNELLI; HILL; WANG, 2020), (KIM; KIM, 2019), (KIM; KIM; LIM,

2019).

Unlike the Vertical Slicing model, the Horizontal Slicing model provides a way to offer

mechanisms that can take into account the Quality of Experience (QoE) and application

profiles for each UE or group of UEs. This model ensures that the requirements are met

in an end-to-end (E2E) approach. Additionally, it allows devices to share their resources,

including communication, processing, and storage. As a result, a UE can use different

slices simultaneously, both in the vertical and horizontal model (SILVA et al., 2022b),

(KHEDDAR et al., 2022), (SILVA et al., 2022c).

Because of the difficulty addressing the problem described in the previous section, in

addition to the need for the exploration of the different issues involving the slice selection

problem in this work, several research questions have been made.

The main research questions (RQ) of this work were:

• RQ1. "How to select the best slice?". The standardization entities recommend

that the NSSF function consider a set of criteria or network parameters, and verify at

any given time and among the available slices, which better fits the user needs, sup-

porting network exchange (handover process) for the mobile. In this case, the pro-

cess of selection slice is subject to various criteria and attributes. There is no guid-

ance on how this should be done, and therefore, several solutions can be proposed

(SILVA et al., 2022b),(SILVA et al., 2022a),(YOU et al., 2019; BARAKABITZE et

al., 2020; TEAGUE; ABDEL-RAHMAN; MACKENZIE, 2019),(KARATAS; KOR-

PEOGLU, 2019).

• RQ2."Do the selected slices provide the necessary requirements for the

user?". This is an important question as more mobile devices and a service variety

become available in the vertical slicing model. Developing an appropriate logical

architecture that optimizes the network resources provision for each consumption

profile is essential. This should consider factors such as SLA, mobility, connection

speed, latency, and device density while providing isolation levels that ensure in-

dependence and reduce problems with losses and errors. This avoids the problems

inherent in sharing resources in traditional networks, paying for the availability and
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criticality of services accordingly (SILVA et al., 2022b),(BU et al., 2019),(HABIBI;

HAN; SCHOTTEN, 2017).

• RQ3."Are the selection criteria modeled generically, regardless of the ac-

cess network technology?". This point is key in this work. The data acquisition

models for evaluating the slices must be obtained transparently, without additional

computational cost for the devices. Thus, it is necessary to map the user’s consump-

tion profiles, the conditions, and the slices load in runtime for the various domains.

These features allow integration and collaboration with network orchestrators from

different service providers (SILVA et al., 2022b),(SILVA et al., 2022a).

• RQ4."Does the approach employ techniques aimed at the integration

and interoperability between RAN, Edge, and Core networks?". Unlike

conventional network equipment solutions, the so-called appliances or black boxes

implement all layers and are directly integrated into the hardware. In cloud-native

networks (e.g. 5G and 6G), it requires the softwarization model, for example, in-

volving Software-Defined Networking (SDN) and Network Functions Virtualization

(NFV) technologies. The abstraction is possible due to several entities, such as SDN

Controllers, orchestration tools, and virtualization solutions. This integration poses

a great technical challenge (SILVA et al., 2022b),(BARAKABITZE et al., 2020).

• RQ5. "Do the solutions provide compatibility with the main specifica-

tions standards under development?". This question shows the importance

of the slice selection problem, and how the proposition of NSSF solution can al-

low the creation of standards in 5G industry. In this sense, several institutions

and working groups (e.g. 3GPP, IETF, NGMN, ONF, ETSI, and ITU) have pro-

posed approaches, architectural standards, and business models, constituting re-

search and market open field. The integration and interoperability between the

different solutions will only be feasible to be achieved if based on regulatory and

standardization mechanisms (SILVA et al., 2022b; BARAKABITZE et al., 2020;

ORDONEZ-LUCENA et al., 2018; SAADON; HADDAD; SIMONI, 2019; HUSAIN

et al., 2018).

Considering these issues, new approaches to the NSSF in the vertical and hori-

zontal model, as well as modifications of already conceived architectures and frame-

works, have been formulated (SILVA et al., 2022b),(SILVA et al., 2022a),(DIMOLITSAS,

2020), (BAKMAZ; BOJKOVIC; BAKMAZ, 2020), (RIVERA et al., 2019), (BOJKOVIC;
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BAKMAZ; BAKMAZ, 2019), (VINCENZI; LOPEZ-AGUILERA; GARCIA-VILLEGAS,

2019), (CHOI; PARK, 2017).

In addition, three secondary questions were made to evaluate the different aspects of

the approach adopted in this work. Their results are useful not only for the telecommu-

nications industry and major market players, but also for professionals and researchers in

addressing solutions and methodologies that consider the different problems listed. These

questions were:

• SRQ1: "Is it feasible to propose a mathematical model that considers fea-

tures and behavior of the different QoS variables for the NSSF function?".

The slice selection problem is stochastic, dynamic, multi-variable, and time-varying

problem. Then, the proposition of optimal models is a hard task, given three diffi-

culties: 1) the representation of the actual behavior of the QoS and QoE variables;

and 2) the obtainment of objective functions.

• SRQ2:"Are the use of artificial intelligence techniques sufficient to pre-

dict slice behavior during the network runtime?". The recurrent adjustments

of templates (loads, changes, and adapts), configuration parameters, and optimiz-

ers in already trained models constitute another difficulty for the proper use of the

models. Besides, the abrupt changes occurring in the metrics used by the slices

may or may not be associated with network anomalies, security issues, processing

in nodes and/or the need for scalability cloud parameters and virtual network el-

ements at network runtime. All these operations must be done transparently and

automatically for users in the horizontal and vertical network slicing model.

• SRQ3: "How to ensure that the selection of slices made by a given user

equipment is carried end-to-end? What granularity of automation and in-

teroperability is required to orchestrate multiple network elements across

different administrative domains?". This is a crucial question for evaluating dif-

ferent solutions and constitutes a large operational issue. Note that the slice selector

must be multidomain, and must address complex automation models and Machine

Learning Operations (MLOps) and Software Development and Operations (DevOps)

techniques, in addition work with federated SLAs. Addressing these points configure

relevant and current research points.

This work presents the implementation of an approach that uses machine learning

and the application of decision-making methods to assist in the NSSF service implemen-
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tations and operations in multi-domain slicing environments. Its approach focuses on the

evaluation and dynamic mapping QoS requirements for each type of service, user profile,

and specialized slice. Initially focusing on the vertical model from edge computing, it

then provides a distributed solution in the horizontal model, taking into account network

access, and the signaling and message exchange between the UE and the edge framework.

Thus, the following original objectives of this thesis are presented.

General Objective:

• Propose a multi-criteria approach for the NSSF service based on an architectural

model for 5G and future mobile networks.

Specific Objectives

The specific objectives of this thesis is to:

1. Formulate an approach that incorporates several decision-making methods in the

context Network Slicing.

2. Use machine learning algorithms in a network traffic aggregation, characterization,

and forwarding model using cloud-native, NFV, and SDN techniques.

3. Propose a multiplatform framework that integrates (1) and (2) in 5G Mobile Net-

work environments and future communication systems.

4. Validate entire approach proposed in a hybrid cloud environment and implemented

framework consolidation.

1.3 Reasons for the study

In a 5G E2E architecture and future mobile networks, it is necessary to propose com-

putational techniques that include various slice selection mechanisms, being offered to

users as a transparent service. In addition, it is expected the proposition ML models

for packet characterization and computation at the edge network, according to the slice

profile provided by the access networks or user preferences, or even contracted by telecom-

munications operators from their administrative domain to the public cloud (SHI et al.,

2021), (JOŠILO; DÁN, 2020), (CHEN et al., 2020),(ZHANG et al., 2020).

The main focus is to propose a slice selection strategy that involves sharing the decision

model between the UE and the 5G/B5G network, which is called horizontal slicing. This
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strategy should complement the proposals in the vertical slicing model, implemented

regardless of whether common or specialized slices. It is important to note that in the

vertical model, Telcos use network orchestration tools to create and maintain these slices

(SILVA et al., 2022b).

It is also expected that the new approach uses efficient strategies, coupled with SDN

and NFV control functions, that comply with the main specification standards under

development (especially those led by 3GPP). These points constitute an open field of

research and solutions for the market (ZHANG et al., 2020), (ORDONEZ-LUCENA et

al., 2018), (MORGADO et al., 2018), (HABIBI; HAN; SCHOTTEN, 2017).

Thus, the Network Slicing architecture, with a well-defined and robust Slice Selection

service, emerges as the main solution for the next-generation mobile networks, enabling

integration and adaptation in different segments and applications. This is an extremely

relevant problem, as there is still no defined and marketable industry standard (ZHANG

et al., 2021), (DIMOLITSAS, 2020),(SAADON; HADDAD; SIMONI, 2019), (HUSAIN et

al., 2018).

1.4 Main contributions

The slices selection task on network runtime on heterogeneous environment is a diffi-

cult problem, since there is still no fully accepted solution or technique in this field. The

reason is that there are many variables and scenarios, as the solutions that consider or

not the inter-slice mobility process.

Thus, the implementation of new slice selection techniques becomes quite viable,

including the demand in the growing use in smart cities, robotics, agriculture 4.0, health-

care, remote surgery, Unmanned Aerial Vehicle (UAV), IoT, and Internet of Vehicles

(IoV), among other technologies and scenarios involving network convergence.

Specifically, the points presented below are the present work’s original contributions

to its field of study.

1. Proposal of an NSSF service framework in both vertical and horizontal models,

where the handover decision is shared by network edge and user’s equipment on

network runtime;

2. Suitability of NSSF function originally from 5G core to network edge, to UE, or to

5G Radio Base Station. The deployment model could be defined according to the
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institutional operating scenario;

3. Slice selection model implementation based on multicriteria decision techniques,

fuzzy logic and machine learning, using hybrid algorithms and MLOps concepts;

4. Strategy formulation independently of packet marking type (e.g. SR-IPv6, MPLS,

VXLAN, VPN, EVPN, H-QoS, and GTP) for analyzing data flows and forwarding

to available slices;

5. Approach for collecting QoS and QoE metrics directly from the TCP/IP stack, and

signaling the UE profile, without legacy infrastructure modifications;

6. Definition of network datasets characterization and acquisition models, in addition

to decision matrices assembly in network runtime, using data analytics tools;

7. Integrated model specification and implementation with market orchestration tools

such as ONAP (Open Network Automation Platform), OSM (Open Source Mano),

and EMCO (Edge Multi-Cluster Orchestrator);

8. Slice selection embedded application development for multistream mobile devices.

1.5 Document structure and chapter overview

This work is organized other six chapters.

Chapter 2 presents an 5G overview and future networks, highlighting the slice selection

problem in the context of network slicing. Besides, it demonstrates how edge computing

solutions can be adopted to solve the problem. Finally, it presents the main techniques,

methods, and tools that make up the solution conceived in this work.

Chapter 3 concentrates on a review of the literature regarding the research problem.

A table comparing the main related works is presented, discussing the relevant points of

the adopted solutions, as well as their limitations.

Chapter 4 presents the NSSF DAF framework architecture, its modules description,

the framework technical specification, and an integration overview of 5G networks and

future communication systems. In addition, it presents the solution limitations and re-

strictions, as well as its scalability and extensibility capacity.

Chapter 5 contains the experiments scenarios description for proposed solution vali-

dation, as well as the description of the tools and technologies used in the tests; there are

also details of the main proposed algorithms.
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Chapter 6 reports and discusses the results obtained. A detailed statistical analysis

is carried out for the experiments conducted in different scenarios. A comparison be-

tween the methods is also presented, seeking to evaluate which method presented greater

accuracy in the selection of slices.

Chapter 7 concludes the work. In addition, the answers to the research questions listed

in this work are resumed and analyzed. The main contributions of this work, research

limitations, and recommendations for future work are presented.
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2 FUNDAMENTAL CONCEPTS

2.1 5G Vision and Network Slicing

Telecom operators and standardization bodies are working to fully implement 5G net-

works by the year 2024 (3GPP Release 18)1. Among the main innovations expected by

these networks is the possibility of delivering network slices based on the user’s consump-

tion profile. This way, the network should be prepared to meet the demands to meet

specific applications and scenarios demands, such as smart cities, vehicular networks,

patient monitoring, and medical care. Moreover, these networks should enable the inte-

gration of the aforementioned applications to cloud services (MORGADO et al., 2018),

(KARATAS; KORPEOGLU, 2019).

Thus, it is expected, for each consumption profile, the delivery of optimized network

resources considering the SLA and satisfying requirements such as connectivity, connection

speed, latency, and device quantity, among others. In addition, to offering isolation levels

that allow independence, i.e. computing and network resources competition-free, reducing

problems with losses and errors, issues that are inherent to the infrastructure sharing in

traditional networks (BONATI et al., 2020), (BARAKABITZE et al., 2020).

Virtual networks architectures, associated with traditional networks and core net-

works from service providers, make up the core concept of Network Slicing. A Network

Slicing architecture uses resources from SDN and NFV. These two technologies enable the

partitioning of traditional network architectures into multiple virtual networks on top of a

single physical network infrastructure, which is shared by different users and application

profiles(KIM; KIM, 2019),(HABIBI; HAN; SCHOTTEN, 2017).

Figure 1 presents an architectural overview of these technologies compared to tradi-

tional ones. It is worth highlighting that, when it comes to solutions involving SDN and

NFV, there is an evident division between layers that make up the softwarization model.

Unlike conventional network equipment solutions, the so-called appliances or black boxes
1https://www.3gpp.org/specifications/67-releases
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Figure 1 – Comparison between conventional, SDN and NVF networks.

Source: (BARAKABITZE et al., 2020).

Figure 2 – Networking Slicing Concept.

Source: (YI et al., 2018).

implement all layers and are directly integrated into the hardware. Each layer implements

a level of abstraction from the physical infrastructure layer to the application layer. This

abstraction is possible due to several entities, such as SDN Controllers, orchestration

tools, and virtualization and hypervisor (BARAKABITZE et al., 2020).

In this context, a particular consumer may require a service that offers very high speed,

low delay, and no data loss, paying accordingly for the availability and criticality of its

services. The approach adopted in this work allows the setup of dedicated and flexible

networks to meet a specific type of user. Figure 2 presents the concept of network slicing

from the perspectives of SDN and NFV technologies. Note that each application (e.g.

Video Streaming, Cloud IoT, Virtual Reality, Connected Vehicles, and Mobile Broadband)

uses a specific slice (YI et al., 2018).

To enable network resource abstraction on the same physical hardware, it is necessary

to separate the data plane, control, and transport in the network equipment (e.g. routers,

switches, access points). These terminologies are characteristic in SDN networks, and

configure the real possibility of handling traffic data in certain equipment under different
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perspectives. Fundamentally, management functionalities, as well as data behavior pro-

gramming, based on rules, service delivery, and orchestration model, make it possible to

expand network capabilities. In addition, they allow innovative and creative applications

to emerge for the so-called internet of the future (SAADON; HADDAD; SIMONI, 2019),

(ORDONEZ-LUCENA et al., 2018).

Several manufacturers have supported and collaborated with different standardiza-

tion groups and research labs in order to define the technical requirements for the full

implementation of 5G mobile network resources in combination with the Network Slicing

architecture. This combination aims to substantially guarantee SLAs from operators, in

addition to offering customizable networks, meeting the QoS requirements per applica-

tion, and ensuring the best possible QoE for users (HUSAIN et al., 2018), (BONATI et

al., 2020).

Thus, the Network Slicing concept is pointed out as the path to new mobile network

solutions, including 5G and future networks. However, although several proposals indi-

cate promising paths, it is not yet possible to add the various features in a fully functional

approach. A satisfactory solution must define the operation and management mechanisms

for each slice, in addition to providing scalability, orchestration, and support in a mul-

tidomain decision environment, a task that involves heterogeneous network technologies

(MORGADO et al., 2018).

Finally, we believe that the proposal of technical alterations in mechanisms, models,

and NS architecture functions defined by 3GPP is innovative. These modifications at-

tempt to support 5G and future communication networks. In this context, improvements

in Slice Selection mechanisms will be relevant for both research and market solutions.

In order to accomplish this goal, approaches that take advantage of protocols and com-

putational tools for classification, composition, and selection of slices through machine

learning, and decision-making methods in a completely virtualized architecture with SDN

and NFV will be key components in this field (SILVA et al., 2022b),(SAADON; HAD-

DAD; SIMONI, 2019),(ORDONEZ-LUCENA et al., 2018),(HABIBI; HAN; SCHOTTEN,

2017).

2.2 Intelligent Edge Computing

Edge computing refers to a broad set of techniques designed to move computing and

storage out of the remote central cloud (public or private) and put them closer to the
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source of data (YAN; SHENG, 2023),(ETSI, 2019). It aims to increase the computational

capacity of the network since next-generation networks must support the connection den-

sity of more than 1 Million devices/km2.

New applications, such as tactile Internet services, may also require an extremely high

data rate, lower latency, and extended reliability. To facilitate these types of services, edge

computing is incorporated as a technique to process data at the network edge, instead of

transferring it to the cloud network that is far away.

Within the broad topic of edge computing, ETSI Multi-Access Edge Computing

(MEC) is the widely accepted standard that must be met for a technology to be con-

sidered edge computing (MOURADIAN et al., 2018). Its standards are guided by the

following principles (RAJ et al., 2021),(R; MOHANA, 2022),(ETSI, 2019):

• Edge computing must have a virtualization platform to be considered MEC (ETSI

uses its NFV architecture in the standard);

• MEC can be deployed at radio nodes, aggregation points, or collocated with the

Core network functions;

• APIs (Application Programming Interface) in a MEC environment must be simple,

controllable, and, if possible, reusable for other tasks;

• Since the computing, storage, and network resources required by an MEC applica-

tion may not match what is available in a node, an MEC network requires lifecycle

management for the entire application system to handle these variables correctly;

• MEC systems must be able to relocate a high-end mobile application running on an

external cloud to an MEC host and vice versa, meeting all the application require-

ments (ETSI admits that this principle needs further research).

Figure 3 shows the cutting-edge computing technology used to enable several next-

generation applications. Differently from fog computing (a concept formulated by Cisco

(CISCO, 2022)), edge computing is associated with last-mile processing. A fundamental

difference between MEC and fog computing is that MEC works only in the autonomous

mode, whereas fog computing has several interconnected layers and can interact with the

distant cloud and the network edge (DOGRA; JHA; JAIN, 2020; CHIANG; ZHANG,

2016).

The combination of Artificial Intelligence (AI) and edge computing was introduced

to manage several emerging future communication problems. However, with the limited
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Figure 3 – Edge computing and Fog computing interaction with some applications.

Source: Based on (DOGRA; JHA; JAIN, 2020).

availability of resources and storage, it is very difficult to operate highly complex AI-

based algorithms that require huge data collection at endpoints. Research is needed to

design new and thin AI algorithms for edge nodes. Moreover, the development of effective

mobile resource scheduling and transferring techniques to improve system performance is

also necessary (RAJ et al., 2021),(YOU et al., 2021).

Thus, by combining edge computing with AI and NS, we are able to meet the latency

requirements of critical services, ensuring efficient network operation and service delivery

with improved user experience. Furthermore, intelligent edge computing is important for

slice selection as it is able to alleviate the network core functions. In this sense, Section 2.3

presents the slice classification techniques, and Section 2.3.2 discusses slice composition

with ML.

2.3 Slices classification techniques

Network selection in a heterogeneous environment represents a difficult problem, since

there is no solution or technique accepted in this field yet, due to the number of variables

and existing scenarios. Evidence of this can be found in the solutions that do or do not

consider the process of inter-network mobility.

The implementation of new techniques for network selection thus becomes quite feasi-

ble, mainly because of the growing demand for its use in vehicular networks, patient moni-

toring, and smart cities, among other technologies and scenarios involving network conver-
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gence (CAMPOLO et al., 2018; RICART-SANCHEZ et al., 2018; SALAMA; SAATCHI,

2019).

The most common methods reported in the literature for solving the problem of

network selection include the usage of fuzzy logic, Multiple Attribute Decision Mak-

ing (MADM), Multiple-criteria Decision Analysis (MCDA) or Multiple-criteria Decision-

making (MCDM), Genetic Algorithms, Artificial Neural Networks, and ML. Among the

employed MADM methods are the following: the Analytic Hierarchy Process (AHP), Sim-

ple Additive Weighting (SAW), TOPSIS (FIGUEIRA; GRECO; EHRGOTT, 2005; RIOS;

MONTEIRO; GONDIM, 2012), Multiplicative Exponential Weight (MEW), Simple Mul-

tiattribute Rating Technique (SMART) (TEAGUE; ABDEL-RAHMAN; MACKENZIE,

2019; KARATAS; KORPEOGLU, 2019), VIKOR, COPRAS, Promethee II, and Grey Re-

lation Analysis (GRA) (BOJKOVIC; BAKMAZ; BAKMAZ, 2019; SALAMA; SAATCHI,

2019; SHI et al., 2021; WANG et al., 2020).

With regards to models that consider hybrid solutions, a feature that has achieved

good results is concerned with the techniques that include fuzzy logic, MCDM methods,

and ML (CHAHAL; HARIT, 2019; AFAQ et al., 2020; TEAGUE; ABDEL-RAHMAN;

MACKENZIE, 2019; ZHANG et al., 2020; GLIGOROSKI; KRALEVSKA, 2019; RIVERA

et al., 2019; SHURMAN; RAWASHDEH; JARADAT, 2020; LU et al., 2020; SANTOS

et al., 2020). These models generally work in a similar way. After the process of data

collection, according to the criteria outlined in the previous section, fuzzy logic processing

occurs, followed by the classification method via a decision strategy. In this case, for each

criterion, a certain weight is added to prioritize some services over others, guiding the

choice of network in accordance with the application in use.

2.3.1 Multicriteria methods

Multicriteria decision-making approaches consist of several techniques used for solving

problems. However, there are uncertainties, information conflicts, and disputes over the

criteria that are required to evaluate the alternatives. These characteristics are inherent

parts of the problem, and must therefore be mapped by the decision maker (person or sys-

tem) that will solve it (WA̧TRÓBSKI et al., 2019). The aim is to assess several possible

options using various criteria, each with its own set of characteristics. These characteris-

tics may include the weights, degrees of importance, or preferences of the decision maker

(HEZER; GELMEZ; ÖZCEYLAN, 2021).

• The Promethee (Preference Ranking Organization Method for Enrichment Evalua-
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tions) II method applies a concept called overclassification, which is a multi-attribute

decision-making method proposed by the European School. Thus, the alternatives

are compared in pairs in order to infer whether a given alternative is as effective as

the other. If alternative a is better than alternative b according to a given criterion,

a is said to overclassify b. When all alternatives are compared, the final result is a

classification (ranking) of all the alternatives in a given set, from best to worst. For

this work, the second version was chosen, as Promethee I includes situations where

alternatives are incomparable. Promethee II does not make judgments if the alter-

natives are incomparable, so that it always allows for a complete classification of

actions (ALINEZHAD; KHALILI, 2019; FIGUEIRA; GRECO; EHRGOTT, 2005).

• The TOPSIS (Technique for Order Preference by Similarity to Ideal Solution)

method employs the principle of choosing an alternative that is closest to the positive

ideal solution (best solution), and farthest from the negative ideal solution (worst

solution). Thus, the method focuses on the maximization of the benefits and the

minimization of the costs (BAKMAZ; BOJKOVIC; BAKMAZ, 2020). The method

has been widely used and described in the literature for different problems and has

several extensions, in addition to hybrid models with other techniques (BOJKOVIC;

BAKMAZ; BAKMAZ, 2019).

• The VIKOR (Visekriterijumska Optimizacija i Kompromisno Resenje) method is

based on the concept of compromise ranking. It means that it defines a measure

of proximity with the ideal solution. In this context, the method uses a linear

combination of Manhattan distance and Tchebychev distance metrics, where the

former represents the maximum group utility, and the latter represents the minimum

individual weight of the “opponent”. After obtaining the decision matrix and the

weight vector, the method employs a set of mathematical operations, resulting in

the ranking of the alternatives (ALINEZHAD; KHALILI, 2019; WA̧TRÓBSKI et

al., 2019; BABASHAMSI et al., 2016).

• The COPRAS (Complex Proportional Assessment) method seeks to assess the al-

ternative superiority by implementing a ranking that considers their performance

based on different criteria and their weights. The method can be used to maxi-

mize or minimize criteria, and it is used in several areas of knowledge (HEZER;

GELMEZ; ÖZCEYLAN, 2021; ALINEZHAD; KHALILI, 2019).

• The MABAC (Multiattributive Border Approximation Area Comparison) method

was formally proposed in 2015, and its main feature is the ability to assess the
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distance between each alternative and the Border Approximation Area (BAA). The

method has simple operations and calculations; however, the results are stable and it

considers the relationships between gains and losses in its judgments, which allows

for a ’reasonable’ decision-making process. These characteristics allow its use in

conjunction with other methods, resulting in more refined solutions (WANG et al.,

2020).

• The CODAS (Combinative Distance-based Assessment) method uses two measures

to assess desirability or preference among alternatives. The first measure consists of

calculating the Euclidean distance of the ideal-negative solution, which includes an

indifference space between the criteria. In this way, the alternative whose distance

is greater than the ideal-negative solution is preferable. In cases where it is not

possible to use the Euclidean distance due to the alternatives being incomparable,

the Taxicab distance is used as a secondary measure (OUHIBI; FRIKHA, 2020).

• The OCRA (Operational Competitiveness Rating) method was formalized in 1994,

and has been applied in several areas ever since. The method consists of a relative

performance measurement technique, and is based on a non-parametric model. The

main feature is the ability to monitor and compare the performance of decision-

making units (DMUs) over time. In order to accomplish this goal, the method con-

siders 06 steps, and at the end of the process, it ranks the alternatives in descending

order through the use of efficiency indices (ULUTAş et al., 2020), (KUNDAKCı,

2019).

• The CoCoSo (Combined Compromise Solution) method uses the evaluation of com-

promise between the alternatives, aiming to evaluate the benefit and cost criteria for

the problem under analysis. Moreover, the method uses a comparability verification

model between the alternatives that consider the weights, the power of the weights,

and the aggregation strategy. At the end of the operations, the alternatives are

ranked according to their significance (YAZDANI et al., 2019).

• The ARAS (Additive Ratio Assessment) method implements the concepts of utility

theory. In this case, the decision matrix undergoes a set of normalization operations,

after which the criteria weights are applied, and finally, the optimality function is

calculated. The optimality function determines the utility degree of each alterna-

tive, which considers an interval between 0% to 100%. At the end of the process,

the alternative that presents the greatest utility is chosen as the best among its

counterparts (ALINEZHAD; KHALILI, 2019).
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• The MARCOS (Measurement of Alternatives and Ranking according to Compro-

mise Solution) method is also based on utility theory. The method application

involves 07 steps. Initially, two columns containing the ideal (AI) and anti-ideal

(AAI) solution are added to a decision matrix. Afterward, certain normalization

operations and a maximization and minimization process are performed according

to a criterion. Regardless of the criterion, the method has proven to be effective.

The decision matrix is multiplied by the weight vector of the criteria, resulting in a

weighted matrix. Finally, the calculation of the utility function is performed, aiming

to determine the degree of utility of each alternative in the system. The alternatives

are first ranked based on the solutions provided by utility function, and then sorted

considering their final values (NGUYEN et al., 2022a), (NGUYEN et al., 2022b).

• The MAIRCA (Multi-Attributive Ideal–Real Comparative Analysis) method uses

the same initial operations as the MARCOS method in the decision matrix. How-

ever, it is necessary to calculate the preference for each alternative based on their

weights, thereby obtaining a “theoretical rating matrix”, which is based on the “real

rating matrix”. A set of operations is then performed to determine the criterion

functions (Qi) final values. The final ranking is obtained using the sum of gaps (gij)

(NGUYEN et al., 2022a), (NGUYEN et al., 2022b).

• The EDAS (Evaluation based on Distance from Average Solution) method is widely

used in problems with stochastic characteristics. In general, the method is based on

the distance calculation between the alternatives and the optimal value for obtaining

the best alternative. The attribute average solution is first calculated based on the

decision matrix, and then the positive and negative distances average solutions are

obtained. At the end of the process, the attribute weights are applied over the dis-

tances. The normalized matrix is determined in order to evaluate each alternative,

ranked in descending order (ALINEZHAD; KHALILI, 2019).

• The SPOTIS (Stable Preference Ordering Towards Ideal Solution) method uses

the normalized distance calculation of each alternative in the decision matrix, as

a function of the ideal or best solution. The operations set uses several formulas,

aiming to reduce the average distance to an ideal multi-criteria solution, that is

arranged in ascending order. It is important to emphasize that the method evaluates

each alternative independently of the others, which means that it is not possible to

invert the classification (DEZERT et al., 2020).

• The MOORA (Multi-Objective Optimization on the basis of Ratio Analysis) method
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uses a pipeline similar to the other MCDM methods, which consists of i) defining de-

cision matrix; ii) normalization process of the decision matrix; and iii) attributes op-

timization from a set of equations. However, in several works, the MOORA method

presented results with better performance, and low computational cost when com-

pared to the others (NABABAN et al., 2021; SUNGKONO et al., 2022). The justi-

fication for this is the fact that the method was designed to remedy the weaknesses

of previous methods. Thus, the method works simultaneously with several problem

restrictions, while optimizing the different attributes and criteria, presenting a good

level of precision in the alternatives ranking, and facilitating the decision-making

process (SAHIDA; SURARSO; GERNOWO, 2019).

The methods selection for the framework validation that this work proposes considered

their popularity in the literature for different types of problems, applications, and areas

of knowledge, as well as their proven efficiency. The details of some of these methods and

their mathematical operations are presented in Appendix A. They are used as a reference

in the application of the other methods used in this work.

2.3.2 Slice composition with machine learning

The resources allocation for slice composing must support its lifecycle management

function (TALEB et al., 2019), which, in turn, must meet the requirements specified in

the SLA and in the QoS and QoE rules as latency metrics, throughput, and capacity of

available resources (VASILAKOS et al., 2020). Considering distributed computing (JR et

al., 2019), virtual systems and functions, the variable dynamics of the network, as well as

the dynamicity and variance of the parameters over time, make the resources orchestration

for slice composition a complex task for applying a solution based on AI (JR. et al., 2021).

However, a premise to apply AI techniques is to have an accurate set of data. Therefore,

it was necessary to build or search for datasets that portray the slice efficiency metrics or

even use data streaming for application to AI models.

Hence, monitoring a network’s incoming traffic or its historical behavior in the form

of raw data by streaming can represent the network behavior in terms of QoS and serve

as a basis for obtaining optimal models. The research interest in resource allocation

usually focuses on how to implement slice instances according to the description of resource

requirements (GUAN; ZHANG; LEUNG, 2020) and following the service agreement.

In this sense, a methodology for data collection and analysis from flexible network

that supports the interactive and iterative model for producing ML Models, is validated.
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Thus, a good strategy is to establish a data format to train various AI models and perform

slice recognition and recommendations given the flow generated by the client.

The research interest in resource allocation focuses on how to implement virtual net-

work instances under shared physical resources. End-to-end NS for 5G mobile networks

using ML has been intensively studied (TALEB et al., 2019; VASILAKOS et al., 2020;

BARAKABITZE et al., 2020; LI; OTA; DONG, 2019; LIU; HAN; MOGES, 2020; SHI;

SAGDUYU; ERPEK, 2020; USAMA et al., 2020). One of the most important issues re-

lated to the use of slice by attribution performed from ML is to guarantee the generation

of optimal models to avoid the resources sub-utilization as well as the SLA breaking.

Establishing metrics and an optimal slice recovery mechanism for deterministic de-

mands was the starting point in the work of Wen (WEN et al., 2019), in which he sought

to build the ideal solution to be used as a reference in other algorithms. In stochas-

tic demands, the optimization mechanisms option that generally has slow convergence is

initially adopted, with the use of ML as a future solution. Establishing a dataset that

reflects an optimal solution for guiding ML is an appropriate scenario for building super-

vised learning models. However, scenarios diversity and demands networks clients make

standardized definition a complex task.

Thus, exploring learning types that are not dataset dependent containing the optimal

model classifier label is presented as a plausible and viable alternative. Hence, for instance,

unsupervised learning, recurrent, and convolutional neural network models are often used

to build NS solutions. In the work by Toscano (TOSCANO et al., 2019), neural networks

of the Long-Short Term Memory (LSTM) type were used for slice provisioning in a simple

mechanism with only four parameters contributing to the SLA, being Rs, Ks, Ws, and

Ds, where Rs is the average ratio of resource utilization, where Rs ϵ [0, 1], Ks measures

the maximum standard deviation of resource sharing, Ws is a time window in which

the average is calculated and where the resources sharing plus the deviation must be

guaranteed, and Ds specifies the lifetime duration of the slice. The neural network training

was conducted by using data collected from 24h of running a traffic simulation in the NS-3

Network Simulator (NS-3, 2022). After deploying the performance achieved during the

training of the network, the author concluded by saying that more data needed to be

generated to supply the LSTM network.

Cui (CUI et al., 2020) explore a variation of the LSTM architecture together with

Convolutional Neural Networks (CNN) in a slice context approach for vehicular networks

(V2X). The neural network training used a mobile network traffic dataset from the city of
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Milan, Italy (BARLACCHI et al., 2015), which contained data from the following three

categories: SMS (Short Messaging Service), telephone, and web browsing. For the simu-

lation, each category considered a slice to be allocated through the model which, in turn,

presented a satisfactory performance in establishing the connection between the customer

and the slice that would serve them. The LSTM network is of the Encoder/Decoder

type, and the encoder was used to predict the network traffic, while the decoder obtained

the optimal slice. The entire dataset was used for network training, with the input in

the network being an image matrix. Despite the satisfactory result reported, neither the

SLA nor the parameterization of the dataset attributes used was presented. Therefore,

replicating the procedure to validate the network performance becomes impractical.

2.3.3 Fuzzy logic

Discussed in detail in Chapter 4, the solution proposed in this work initially con-

centrated efforts on mapping the QoS requirements, as well as the SLA, as the central

problem of the slice selection process. In this context, the proposed solution approach

also made use of fuzzy logic to assist in the QoS and QoE measurement and evaluation in

5G mobile networks, since it can deal with uncertainties and subjectivity, having its use

widely disseminated in these scenarios (MORDESON; MATHEW, 2018).

Fuzzy logic consists of different approach from classical (Boolean) logic, that is, it

allows for the treatment of variant and subjective values, such as the ones between 0 and

1. Thus, it is able to ponder the pertinence of values 0.1, 0.5, and 0.9, being almost

false, half true, and almost true, respectively. This treatment emerged as a way to deal

with complex situations, and mainly to deal with uncertainties (CASTILLO; CASTRO;

MELIN, 2022). The fuzzy logic application to slice selection problem is detailed in section

5.2.2.

The resources and concepts used can be divided into four parts:

1. Fuzzy Input: a set of QoS data collected in the following Test Setup 5.2.2 was

considered. The variables are: Latency, Jitter, Loss, Bandwidth, Transfer, Distance

and Reliability.

2. Fuzzification: the fuzzification process used triangular, trapezoidal and Gaussian

membership functions. The input values are normalized, and the parameters or-

ganized into three linguistic variables, namely: low, medium and high. The fuzzy

operators are applied using the defined linguistic variables.
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3. Inference Engine: the inference engine consists of a set of rules that seek to find

the relationships between the input and the output values of the system; therefore,

they are applied directly to the data set and use the Mamdani inference mechanism.

These rules constitute the knowledge base for the problem under study.

4. Desfuzzification: this process returns evaluated values by the inference model, trans-

forming them into numerical and intelligible information again. This process is

related to the system output and essentially composes a classifier.

A detailed fuzzy logic use explanation in different scenarios is outside the scope of

this work. However, several examples of its application and case studies can be found in

(CASTILLO; CASTRO; MELIN, 2022),(MORDESON; MATHEW, 2018),(MATHEW;

MORDESON; MALIK, 2017).

2.4 Chapter summary

This chapter described the main computational techniques addressed to the slice se-

lection problem. A brief explanation is given about each one, and how they correlate with

the problem under investigation. In addition, fundamental concepts and technologies that

make up the 5G framework and future networks are presented.

The details of these concepts are crucial to understand the solution for which this work

argues and to obtain answers to the research questions raised in the previous chapter. In

this sense, the adoption of the mentioned technologies and techniques, with the developed

algorithms, constitutes a feasible way to solve the problem and contributions claimed in

this work.
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3 LITERATURE REVIEW

3.1 Related Work

The purpose of this section is to contextualize the slice selection problem in the sce-

nario of heterogeneous mobile networks (e.g. 5G and Wi-Fi 6) to support the contribution

of this work, which is given in Chapter 4.

Several solutions have been proposed to evaluate and select the best slice, considering

the QoS requirements for telephony and data services. In general, the literature suggests

approaches that consider the following situation: given a set of criteria or network parame-

ters, the works verify, at any given time and among the available slices, which better meets

the user needs, supporting network exchange (handover process) for the mobile (YOU et

al., 2019; BARAKABITZE et al., 2020; TEAGUE; ABDEL-RAHMAN; MACKENZIE,

2019),(KARATAS; KORPEOGLU, 2019). In this case, the process of choosing the slice

is subjected to a number of criteria.

A higher number of mobile devices, as well as the variety of services in the vertical

slicing model, require the optimized development of an appropriate logical architecture,

which allows for scalability, energy efficiency, and simplification of network functions; they

also provide a business model (CAPEX and OPEX) that uses the computational infras-

tructure in operation. Thus, the Network Slicing architecture, with a well-defined Slice

Selection service, emerges as the main solution for the next-generation mobile networks

(BARAKABITZE et al., 2020; HABIBI; HAN; SCHOTTEN, 2017; BU et al., 2019).

Most papers focused on strategies that offer telecommunications operators mecha-

nisms that can provide and control resources for each virtual instance. These include

customization to meet the specific user’s requirements in a pre-defined structure of the

resource allocation. In other words, it occurs without any choice of the slice being passed

by the end-user, ignoring the type of RAN to which it is linked.

These points raise interesting discussions that need to be posed, such as: 1) the E2E
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model in NS environment; 2) service continuity guarantee in a roaming NS architecture,

without the interruption of active services, and stability in the data delivery warranty,

in scenarios with medium and high mobility; 3) interoperability between various network

slice architectures under different administrative domains; 4) security in the transmission

sensitive data; and 5) the migration of all physical network functions to logical networks

(NFV) abstractions (MORGADO et al., 2018; KIM; KIM, 2019; AFAQ et al., 2020;

CONDOLUCI; MAHMOODI, 2018).

According to (MORGADO et al., 2018; ORDONEZ-LUCENA et al., 2018; SAADON;

HADDAD; SIMONI, 2019; HUSAIN et al., 2018), the points listed above are important

and have led several research laboratories and institutions to seek for the strategies and

solutions standarlization. Those institutions and working groups include, but are not

limited to, the Internet Engineering Task Force (IETF) (IETF, 2023), Next Generation

Mobile Networks (NGMN) (NGMN, 2023), Open Networking Foundation (ONF) (ONF,

2023), 3GPP (3GPP, 2023), and the European Telecommunications Standards Institute

(ETSI) (ETSI, 2023). Therefore, new proposals of approaches, as well as modifications to

existing architectures, constitute an open field from the point of view of researchers and

the market (BARAKABITZE et al., 2020).

An issue that has arisen in some countries is whether the 5G network slicing will be

consistent with the network neutrality regulations. Some say that the practical implica-

tions for current open Internet rules are speculative at this stage concerning 5G. That is

because the different 5G elements, such as NS, depend not only on the occasional tech-

nological capabilities, but also on the market demand, the degree of competition, the

commercial strategies, and other variables (OECD, 2019).

There are several literature contributions for admission control, resource allocation,

and billing mechanisms in virtualized wireless networks (SILVA et al., 2022a), (JR et

al., 2019). However, the automated mechanisms for slicing and monetization in 5G are

a theme open to discussion (VINCENZI; LOPEZ-AGUILERA; GARCIA-VILLEGAS,

2019).

Relevant scientific production performed on NSSF is summarized and discussed in

the following Table 1. It is worth noting that papers present contributions in differ-

ent segments, which goes from data plane slice selections strategies to the use of cer-

tain decision-making methods, genetic algorithms or Bayesian networks. The proposals

lack broad validation and testbed implementations in different scenarios, which comply

with the specifications of standardization bodies and meet the main requirements eMBB,
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URLLC and mMTC scenarios.

Moreover, none of the solutions mentioned offer a deployment model that enables

integration in running networks; or provide mechanisms for automation and integration

with cloud and network orchestrators; or even allow models re-training based on the use

of hybrid algorithms, which would provide greater extensibility and scalability in their

solutions.

In this way, the framework proposed in this work, implements the NSSF function

in order to cover all these requirements, filling the gaps left by previous works, and

constituting a promising solution for 5G and future networks.

In addition to the Virtual Network Function (VNF) for selecting slices, Rivera, Khan,

Mehmood and Song (RIVERA et al., 2019) argue that management system is also required

to provide, update, and control the slices life cycle by VNFs. They focused on the provision

and deployment of Data Plane Network Slices and the selection of a proper slice by taking

identification parameters from the user’s equipment. They also confirmed that traffic

control rules can be deployed with minimal resources, so that the efficiency Data Plane

slices are not affected. As the proposed system evolves, a new degree of automation can

be developed with a monitoring agent that can supervise the status of User Plane of the

Packet Data Network Gateway (SPGW-U) traffic in real-time.

The works in (BOJKOVIC; BAKMAZ; BAKMAZ, 2019; BAKMAZ; BOJKOVIC;

BAKMAZ, 2020) proposed NSSF based on Technique for Order Preference by TOPSIS.

According to the division network principles, a mobile terminal may choose from several

connectivity alternatives available based on criteria related to slicing performance, service

requirements, and user preferences. NSSF is perceived as a logical evolution from the ABC

(Always Best Connected) concept to 5G and beyond mobile systems. NSSF is modeled

as a MCDM problem exploring the principle of TOPSIS for classifying the available slices

based on their attributes and weights. TOPSIS is a widely accepted decision-making tool,

considering its understandable logic, algorithmic logic, and mathematical form. However,

it fails to provide consistent results due to the phenomenon of rank reversibility.

As for the TOPSIS method, the results in (BOJKOVIC; BAKMAZ; BAKMAZ, 2019)

demonstrated that the standard deviation weighting technique (SD-TOPSIS) presents sig-

nificantly better performances regarding rank reversibility, but it is highly complexity. In

this sense, they suggested applying the entropy weighting technique (E-TOPSIS), espe-

cially when faced with characteristics such as the fine granularity of slices. The authors

also concluded that the improvements in TOPSIS methods are closely related to alterna-
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tive methods for normalization and ranking phases, especially when managing a situation

of practical implementation. As for future research, they address the need for analyzing

the influence of several alternative standardization techniques and classification methods

on the NSSF performance.

Besides, the results from (BAKMAZ; BOJKOVIC; BAKMAZ, 2020) take into con-

sideration the three stages of the decision-making process (normalization, weighting, and

ranking), and show that proposed alternative techniques, such as linear normalization

(MAX-MIN), the weighting of variance, and binary classification alternatives, presented

a positive influence by significantly reducing classification reversibility and computational

complexity among the tested scenarios. This justifies the need for considering MCDM

methods as a potential solution to the network slice selection problem in 5G mobile sys-

tems and their future generations. As a suggestion for future studies, the performance of

other MCDM algorithms should be analyzed in terms of ranking reversibility.

The work in (SHURMAN; RAWASHDEH; JARADAT, 2020) presented a new ap-

proach that aimed at increasing service utilization and the efficiency of network slices,

since slice selection is one of the key elements of 5G Network Slicing. In the proposed

method, each network slice is considered as a different service and is represented by a

website system with its own database. Then, the GET method is used to link the user

equipment to multiple systems at the same time, focusing mainly on passing the required

parameters by URL. By using this approach, Multiple-Service UE will be able to con-

nect simultaneously to several networks, obtaining a session on the related networks for

a specific time. As future studies, the authors suggested providing the user with a PURE

connection to these networks, meaning that, by passing the parameters to the new system,

the users could be registered to all existing systems, benefiting from their full capabilities,

instead of having a temporary connection as considered in the present work.

Dimolitsas (DIMOLITSAS, 2020) presented a multicriteria decision framework for

the optimal selection of Edge Points of Presence (EPoPs) to deploy a network slice. The

EPoP Selecting Framework is composed of three main components: (i) the Service Reg-

istry, which contains the required KPI values for each EPoP candidate; (ii) the Filtering

Engine, which is responsible for the initial filtering of the candidate EPoPs according

user’s requirements; and (iii) the PoP Ranking Mechanism, which selects the most appro-

priate EPoP for slice deployment based on the multi-criteria Fuzzy Analytic Hierarchy

Process (FAHP) method. The proposed framework was assessed under a realistic sce-

nario in comparison with simple filtering and the single-object (FAHP) approach. The

results indicated the relevance of the proposed two-stage method in meeting the user’s
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requirements for hardware and software, allowing for the communication between slices

and optimal resource allocation from the provider’s point of view.

(ZHAO et al., 2020) worked on maximizing system resource utilization while guaran-

teeing the satisfaction degree among users by exploring the E2E network slicing problem.

Using theoretical analysis, the authors proved that it is a NP-hard problem, and then they

proposed a Genetic Algorithm (GA) to solve the optimization problem. A simulation ex-

periment was conducted to validate the proposed GA algorithm, showing that this method

obtained better access and transmission performance when compared to traditional selec-

tion methods based on the Received Signal Strength (RSS) or greedy algorithms.

Otoshi et al. (OTOSHI et al., 2021) proposed dynamic slice selection by learning to

recognize the rough application situation and the mapping between the current application

situation and the future slice. The Bayesian Attractor Model (BAM) was used to achieve

consistent recognition, as well as the Dirichlet Process Mixture Model (DPMM) to achieve

automatic attractor construction. Situations mapping was also automatically learned

using feedback. The video streaming was used as application of dynamic slice selection

and the results show that the proposed method can maintain a high quality of video

streaming. Extended BAM can be used to reduce the number of slice changes while

reducing degradation of video streaming quality. Additionally, the integration and deletion

of attractors was used to maintain only the necessary number of attractors.

Silva et al. (SILVA et al., 2022a) presented a solution for 5G network slice selection in

IoT scenarios. It uses Edge Computing resources with the application of hybrid machine

learning algorithms and MCDM methods to permit IoT applications to better adapt data

processing and routing, providing a better experience for users. From the results, the

proposed solution proved to be efficient and the adopted MCDM methods show a similar

performance. This demonstrates the high level of flexibility in the ranking of alternatives

for the proposed methods as a function of the adopted weights.

3.2 Chapter summary

This chapter presented the main related works, their contributions and limitations.

The NSSF function is open field according to the 3GPP specifications, and several pro-

posals have been presented. However, a set of issues make the slice selection problem

challenging.

These questions involve:



49

Table 1 – Summary of Related Work

Work Contribution Limitations

Rivera et al. (2019) (RIVERA
et al., 2019)

Traffic control rules can be deployed using minimal re-
sources without influencing the efficiency of the Data
Plane slices. A management system is necessary for the
provision, updating, and control of the physical layer of
VNFs that comprise the slices.

Lack of real world implementa-
tion

Bojkovic, Bakmaz and Bak-
maz (2019) (BOJKOVIC;
BAKMAZ; BAKMAZ, 2019)

SD-TOPSIS presents better performance in rank re-
versibility, but E-TOPSIS has significantly lower com-
plexity operations. The E-TOPSIS method is suggested,
especially when dealing with the fine granularity of slices.
TOPSIS is considered a good decision-making tool, con-
sidering its algorithmic logic and mathematical form.

Lack of real world implemen-
tation. Fails to provide consis-
tent results due to the rank re-
versal phenomenon.

Bakmaz, Bojkovic and Bak-
maz (2020) (BAKMAZ; BO-
JKOVIC; BAKMAZ, 2020)

Alternative techniques, such as linear normalization
(MAX-MIN), the weighting of variance, and binary clas-
sification alternatives, can reduce both the classification
reversibility and computational complexity. This justi-
fies the need to consider MCDM methods as a potential
solution to the network slice selection problem. Lack
of real-world implementation. To analyze the perfor-
mance of other MCDM algorithms in terms of ranking
reversibility.

Lack of real world implementa-
tion

Shurman, Rawashdeh and
Jaradat (2020) (SHURMAN;
RAWASHDEH; JARADAT,
2020)

A mechanism that enables user equipment to run multi-
ple sessions on different network servers at the same time
to utilize the advantages of their services.

Only a temporary session is al-
lowed

Dimolitsas (2020) (DIMOLIT-
SAS, 2020)

A multicriteria decision framework for the optimal se-
lection of Edge Points of Presence (EPoPs) to deploy
a network slice. Results indicate the relevance of the
proposed two-stage method in meeting the user’s hard
and soft requirements, allowing communication between
slices and optimal resource allocation from the providers.

High cost of deployment

Zhao et al. (2020) (ZHAO et
al., 2020)

A Genetic Algorithm that can achieve satisfactory re-
sults in the maximization of user’s Satisfaction Degree
(SD) in the E2E network slicing problem. This method
obtained better access and transmission performance
when compared to traditional selection methods based
on the Received Signal Strength (RSS) or greedy algo-
rithms.

Lack of real world implementa-
tion

Otoshi et al. (2021) (OTOSHI
et al., 2021)

A dynamic slice selection technique that learns to recog-
nize the rough situation and the mapping between cur-
rent situation and the future slice. The Bayesian Attrac-
tor Model (BAM) is used to achieve consistent recog-
nition, as well as the Dirichlet Process Mixture Model
(DPMM) to achieve automatic attractor construction.
Situations mapping is also automatically learned by us-
ing feedback.

Problems such as the bit rate
drop should be predicted in ad-
vance and the slices should be
switched in advance

Silva et al. (2022) (SILVA et
al., 2022a)

The use of hybrid machine learning algorithms and
MCDM methods as a solution for the 5G network slice
selection in IoT scenarios. The proposed solution proved
to be efficient and the adopted MCDM methods show a
similar performance.

Restrictions of the test envi-
ronment

Source: elaborated by the author.
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1. Artificial Intelligence for IT Operations (AIOps): the use of artificial intel-

ligence techniques requires re-training, adjustments of templates, configuration pa-

rameters, optimizers and models already trained during the network runtime, given

the occurrence of abrupt changes in metrics that may or may not be associated to

network anomalies, security issues, processing on nodes and/or need for scalability

of cloud parameters and network elements. These points bring extra difficulties for

the models proposal and to services orchestrations.

2. Operational issues: the slice selector must be multidomain if the local or regional

orchestrator is multidomain. In this case, the architecture representation and the

deployment models are linked to the telco orchestration service. In the event of

a federated orchestration service: how is it possible to guarantee that the slice

selection from user equipment is carried out end-to-end? What is the granularity of

automation, MLOps, and interoperability required to orchestrate multiple elements

across disparate administrative domains? The addressing of these points configures

current research questions.

3. Mathematical modeling: the slice selection problem has stochastic features, dy-

namic, multi-variable, multiattribute, nonlinear, and time variant. Therefore, the

proposition of optimal models are non-existent, given the difficulty of representing

and predicting network QoS variables, thus making it difficult to use optimization

methods.

The solution proposed in this work focuses on questions 1 and 2. The study’s contri-

butions are emphasized in Chapters 4 and 5.
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4 PROPOSED SOLUTION

The slice-selection task at network runtime in a heterogeneous environment is a diffi-

cult problem, since there is still no fully accepted solution or technique in this field. This

is because there are large number of variables and scenarios, as in the case of solutions

that consider mobility between slices or not.

Thus, the implementation of new slice selection techniques becomes mandatory, in-

cluding the demand for the growing use of vehicular networks, smart cities, robotics,

agriculture 4.0, healthcare, remote surgery, UAVs, IoT, and IoV, among other technolo-

gies and scenarios involving network convergence.

Overall, the literature suggests approaches that consider the following situation: given

a set of criteria or network parameters, the system verifies at any time the available

slices, which better meets the user needs, supporting the network exchange (handover

process) for the mobile device (SILVA et al., 2022b),(SILVA et al., 2022a),(BOJKOVIC;

BAKMAZ; BAKMAZ, 2019; SHURMAN; RAWASHDEH; JARADAT, 2020),(BARAK-

ABITZE et al., 2020; TEAGUE; ABDEL-RAHMAN; MACKENZIE, 2019; KARATAS;

KORPEOGLU, 2019).

This work presents a novel approach that employs several techniques aiming at inte-

gration and interoperability between RAN and core network through the proposed orches-

tration architecture, based on an efficient and robust NSSF that provides compatibility

with standards specification (e.g. 3GPP, ETSI NFVI, and 5G PPP).

4.1 NSSF DAF: Network Slice Selection Function Decision-
Aid Framework

Figure 4 provides an proposed framework overview for NSSF function. NSSF DAF

consists of a solution that is partially executed on the user equipment (e.g. smartphones,

vehicles, IoT brokers), running as a transparent service, while another one runs at the
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Figure 4 – Proposed NSSF DAF: Network Slice Selection Function Decision-Aid
Framework.

Source: elaborated by the author.

edge of the network operator or service provider. The framework has several modules

that can be configured according to the context of applications, geographic location,

scenarios of mobility, strategies of slices selection, among others. For energy saving, the

user equipment only signals its consumption profile or user application preference to the

framework hosted at the edge architecture. Hence, no processing occurs in the mobile

device or in the IoT broker.

According to Figure 4, the framework proposed was divided into the following three

main blocks: Collector, Processor, and Decision Maker of NSs. Fundamentally, the crite-

ria for network selection are closely related to the demands or applications in use. Thus,

parameters of application QoS, as well as objective quality metrics for specific applica-

tions, such as Quality of Video (QoV), and subjective metrics, such as indicators based on

the user experience (QoE), must be considered (RICART-SANCHEZ et al., 2018; CHEN;

ZHAO; LI, 2019). The Collector Module focuses on the assessment and mapping the

appropriate QoS requirements dynamically for each type of service, in addition to consid-

ering the signaling User Profile realized by the mobile device to different scenarios (e.g.

V2X, VR, AR, Video on Demand (VoD), Video Stream). Moreover, other variables can

be considered, such as monetization and geographic location (RICART-SANCHEZ et al.,

2018; AFAQ et al., 2020; LU et al., 2020).

NSSF DAF is indifferent to the technique used to mark packages in gNodeB. The
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architecture proposed here assumes that a software instance in Centralized Unit (CU) and

Distributed Unit (DU) based on widely used solutions, such as Segment Router (SR), SDN

Flow Tables, EVPN (VPN Ethernet), VxLAN (Virtual eXtensible Local Area Network),

Multi-Protocol Label Switching (MPLS), and/or definitions of IPv6 classes of service

have already marked (labeled) the packages (3GPP, 2020). Therefore, the framework

only identifies and collects the QoS and QoE parameters. The data are processed them,

thence, defines which NS best meets those requirements; or, in case of non-existence, it

signals to the Orchestrator the parameters for instancing the slice at run time (already in

the cloud).

The Module Processor uses preferentially models that consider hybrid solutions: MCDM

methods, fuzzy logic, and machine learning; as mentioned in Section 2.3. In general, these

models work similarly, that is, after the data collection process, the slices are classified

and ranked; finally, the selection via the decision strategy is performed. In this case, each

criterion receives a certain weight to prioritize some services over others, guiding the new

slice choice according to the application in use. The definition of weights also takes into

account the user profile and other aspects of the available slices. As described in (SILVA et

al., 2022b) and (BONATI et al., 2020), all computational methods are implemented using

VNFs, running in virtualization solutions, for example, on OpenStack (OPENSTACK,

2022) and Kubernetes (K8s) (KUBERNETES, 2022).

For data collected, as well as the results persistence related to the processing module,

a database is used. Data can be manipulated and analyzed by computational intelligence

algorithms with the use of APIs, consuming data directly from the Network Performance

Analytics module, environments based on Hadoop (HADOOP, 2022) and Spark (SPARK,

2022) ecosystems. Note that the framework supports any relational and non-relational

database.

The Decision Maker Module selects the slice that best fits the UE data stream and

then aggregates the network traffic and redirects it to the slice that meets the required

SLA configuration. All the operations between modules and blocks of the framework are

performed via APIs, which provide external access by other entities through RSA1 key

pairs (Secure Shell (SSH) keys) (PAVANI; SRIRAMYA, 2021).

Information about traffic conditions on slices, as well as extra structure configuration

options, are available on a panel in the Graphical User Interface (GUI) or via Command

Line Interface (CLI) when accessing the slice selection service. It is possible to combine
1This algorithm is called RSA because of surnames of the three authors (Ron Rivest, Adi Shamir, and

Leonard Adleman).
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Figure 5 – NSSF DAF Structure specification.

Source: elaborated by the author.

more than one selection strategy or method, for example, using machine learning algo-

rithms, fuzzy logic, or multi-criteria decision methods. It is also possible to define which

QoS parameters should be considered in the selection process.

4.1.1 Structure specification

The NSSF DAF is structured around three large blocks or main modules, as shown

in Figure 5.

The Collector module presents a set of components responsible for data acquisition

and pre-processing. The characteristics and functionalities of these components are de-

tailed below:

1. Data Collection: the component presents a set of methods responsible for obtaining

the QoS metrics (e.g. Latency, Jitter, Packet Loss, Reliability, Bandwidth), QoE,

and user consumption profile (e.g. VoD 4K, AR/VR, V2X). This component uses

passive measurement techniques, using packet analyzers and protocols (sniffers).

It can be configured to use active measurements through Internet Control Mes-

sage Protocol (ICMP) requests, collecting information, such as Round-Trip Time

(RTT), among other metrics. The module offers data consumption routines through

publish/subscribe solutions.



55

2. Data Cleaning : this component is responsible for data cleaning, the fixing of reading

errors, and dataset structuring.

3. Validation: the component is responsible for verifying whether the set of metrics

received satisfies what is expected from a dataset.

4. Transforming : the Transforming component has the following three subcomponents:

Scaling, Typing, and Encoding. The Scaling subcomponent performs the normaliza-

tion process with libraries and methods, which facilitates the application of machine

learning techniques. The Typing subcomponent makes the necessary data typing

conversions (e.g. float to integer, integer to float, string to float). Finally, the Encod-

ing subcomponent performs the necessary transformations in categorical metrics by

converting them to numeric classes, in order to include them in the machine learning

models.

The Processor module presents a set of components prepared to use several opti-

mization techniques, computational intelligence, stochastic and multi-criteria decision

approaches. The components’ characteristics and functionalities are detailed as follows:

1. Fuzzy Logic: the component supports the use of fuzzy logic, its membership func-

tions, fuzzification, and defuzzification methods. The Collector module output al-

lows for component integration transparently.

2. Genetic Algorithms: the component allows for the use of genetic algorithms. The

Collector module organizes the data, thereby facilitating integration, the definition

of generations, and an initial population. It also facilitates the application of multi-

objective formulations directly to the dataset.

3. Machine Learning: the component supports the use of machine learning techniques.

Data organization performed by the Collector module facilitates the use of super-

vised models. It also enables reading non-relational databases, batch files, or data

streaming, which also allows for the use of unsupervised models.

4. MCDM Methods: the component allows for the use of several multi-criteria decision

methods. The structuring of datasets facilitates the assembly of decision matrices.

The criteria weights can be defined directly by the network operator or service

provider, and can also be obtained by using hybrid approaches with machine learning

techniques. Weights can even be mapped directly from the end user’s consumption

profile. These integrations take place through APIs.
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The Decision Maker module presents the components that are necessary to integrate

the techniques used in the Processor module, with Cloud Computing tools and solutions,

especially the network orchestrators. The characteristics and functionalities of these com-

ponents are detailed below:

1. Generator SLA: the component is responsible for generating the SLA that will be

used in the creation of on-demand slices (horizontal model), or for forwarding data

flows to the already available and pre-configured slices (vertical model). The SLA

is assembled from the output of the Processor module and fulfils the requirements

of the application in use or the user’s consumption profile.

2. Export Data Model : this component uses multiple data models that facilitate inte-

gration with third party tools, especially network orchestrators. The transport of

data models takes place via the consumption of APIs.

4.1.2 Integration overview

Figure 6 presents an overview of the proposed solution integration in the context

of 5G/B5G networks. Initially, the NSSF DAF had been designed to function as an

MEC (Mobile Edge Computing) service, being one of the main contributions of this work.

However, the objective was to evaluate the implementation in a local datacenter close to

the gNodeB in the RAN, or in the 5GC. It seeks to verify whether there is a significant

difference in the performance of slice selection at different points of the network slicing

architecture. Its integration with the data plane (UPF—User Plane Function) is essential

for traffic recognition and the differentiation of service classes, which enables its operation.

To enable the definition of requirements, the limitations of the works presented in

Chapter Y were considered. Among the main functional and non-functional requirements

(R) of the NSSF DAF, we identified the following:

R1: Deployable on servers with different virtualization solutions (NFVI–NFV Infrastruc-

ture) and cloud orchestration platforms;

R2: Facilitate deployment in production networks, in a transparent way;

R3: Facilitate the integration of later modules, adding new features, through the avail-

able documentation;

R4: Compliance with the specifications and models of the standards bodies (e.g. 3GPP

and ETSI);
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Figure 6 – NSSF DAF Integration overview.

Source: elaborated by the author.

R5: Act independently of specific hardware manufacturers and models;

R6: Use open-source solutions;

R7: Use DevOps—Development and Operations—philosophy, practices, and tools; MLOps—

Machine Learning Operations; AIOps—Artificial intelligence for IT operations;

R8: Make the mobile multiplatform application available for download from public repos-

itories.

The NSSF DAF - Client application is a cross-platform and can be embedded in several

UEs, such as UAVs, vehicles, smartphones, robots, or even in IoT brokers in smart homes.

The application uses a set of APIs, providing the necessary signaling for the NSSF DAF

- Server. The UE sends messages with its location (GPS coordinates), checking whether

there is an occurrence of NSSF DAF on the Edge or RAN to which it is linked. From

this signaling and the profile of the application in use, the NSSF DAF selects the best

slice available, and returns with the best option for the UE, as detailed in the modules

included in Section 4.1.3 and illustrated in Figure 8.
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The functional and non-functional requirements (RA—Requirement Application) of

the NSSF DAF - Client application are detailed below.

RA1: Become able to search for the available slices (RAN and Edge);

RA2: Direct a request for the best slice option to NSSF DAF, through HTTP requests

and API consumption;

RA3: Execute the handover to the best selected slice;

RA4: Facilitate the setting of the user’s profile (preferences), which can be as follows: VoD

4K/8K, AR/VR, V2X, among others;

RA5: Run in automatic (service) or manual mode, according to the UE.

Regarding integration with cloud computing tools, the NSSF DAF operates with

standardized data models, allowing for the required integration. The specification of the

functionalities of all modules is detailed in Section 4.1.1 and the implementation model

in Section 4.1.3.

4.1.3 Implementation model

Overall, the implementation model comprises the hierarchy as well as the technical

representation of how the system works. For this, there are diagrams descriptions, the

subsystems implementation, and the representation of the interfaces, services, pipelines,

and components. In addition, supplemental information on the structure and management

of the proposed slice selection function provided, based on the details of some technologies

that make up the NSSF DAF framework.

The purpose of this section is the technical specification detailed of our solution,

as described in Section 4.1.1. This process is segmented into two parts: i) detailing

the framework’s general architecture from the technologies used to consolidate the mod-

els and implemented techniques; ii) validation and analysis of the proposed algorithms

through experiments in testbed. The configuration of the different scenarios allow for the

verification and validation of the entire proposed solution, and are detailed in Chapter 5.

Figure 7 illustrates different implementation blocks. For the NFs of 5G Core Network,

the deployment is carried out in different PODs2. Each POD can contain one or more
2Pods are the smallest deployable units of computing used in K8s cluster. For more information see

https://kubernetes.io/docs/concepts/workloads/pods/.



59

Figure 7 – NSSF DAF Implementation model.

Source: elaborated by the author.

containers, this sizing is done based on network traffic and depends on the scalability

model and balancing of computational resources of the K8s cluster. The UE can be any

mobile device with access to the 5G network, or even an IoT broker or CPE (Customer

Premise Equipment). The connection between the access network and the edge cloud

occurs through VNFs that use SDN (protocols and controllers) and NFV (OpenvSwitch)

technologies.

The messages exchange between the architecture functional blocks and service requests

are performed through the consumption of APIs. The objects and components that form

the implementation model are K8s objects, and, therefore, follow the service lifecycle

management and features inherent to the CNFs. In addition, all provisioning is done from

the concept of infrastructure as code, and uses tools such as Ansible3, Chef4, Puppet5, as

well as data models such as YAML (YAML Ain’t Markup Language), XML (Extensible

Markup Language) and JSON (JavaScript Object Notation).

Figure 8 shows the integration from the last mile to the edge, according to the per-

spective of the client application. Note that four main steps are presented. Each of these
3https://www.ansible.com/
4https://www.chef.io/
5https://www.puppet.com/
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Figure 8 – NSSF DAF - Client : Operations and integration with edge computing
architecture.

Source: elaborated by the author.

steps form different functional blocks and are implemented by a CI/CD (Continuous Inte-

gration/Continuous Delivery) process. The first step consists of implementing the RAs of

our solution defined for the client side, NSSF DAF - Client, as described in Section 4.1.2.

The multiplatform application demands services to the edge cloud, in this case, it requests

for available slices, passing your consumer profile as a parameter. In the second step, a set

of APIs are dimensioned to provide different services, across a RESTful implementation.

The second step illustrated in Figure 8 also shows the NSSF DAF 3GPP API block,

which follows the 3GPP TS 29.5016 specification. This block comprises the use of HTTP

methods, which follow compliance standards, and allow for their integration with dif-

ferent web technologies, supporting different cryptographic algorithms and data repre-

sentation. Furthermore, it enables the use of different data modeling languages (e.g.

YANG, NETCONF and RESTCONF). Note that this stage also supports the use of pub-

lisher/subscriber systems, which, in this framework, can be implemented with different

tools; for example, the use of Apache Kafka7 and RabbitMQ8 servers. These tools are cru-

cial in 5G and future network scenarios due to the density of service requests, especially
6https://www.3gpp.org/DynaReport/29501.htm
7https://kafka.apache.org/
8https://www.rabbitmq.com/
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Figure 9 – NSSF DAF using MLOps pipeline and Cloud-Native Network Functions.

Source: elaborated by the author, based on (YAN; SHENG, 2023) and
(KREUZBERGER; KüHL; HIRSCHL, 2023).

in eMBB and mMTC scenarios.

Figure 9 describe the implementation blocks comprising the third and fourth steps.

In the third step, its shows a high-level description of a pipeline used in cloud-native

solutions. In this context, different tools can be used to implement these pipelines. In the

solution proposed in this work, Jenkins was used in collaboration with the Ansible tool

(R; MOHANA, 2022). Both tools allow for the construction and automation of MLOps

workflows, as well as they provide efficient implementation of CI/CD components (e.g.

Build, test and push operations). The triggers can occur sequentially or in parallel and al-

low interoperability between different tools, such as Git, Maven (Pymaven), Docker, SDN

Controllers and K8s Cluster (Master and Nodes). These tools provide specific services

and collaborate for the complete operation of the solution. Each of these applications

can run on different PODs, and are interconnected through a Calico network (SDN for

Containers).

Finally, in the fourth step, there is the ML model deployment. Initially, the feature

engineering pipeline is performed by the Collector module of the NSSF DAF framework,

described in Section 4.1.1. After the data acquisition, cleaning, transformation and valida-

tion steps, the automated ML workflow pipeline starts. This phase is divided into the fol-

lowing steps: i) Data Ingestion; ii) Model Training and retraining; iii) Model Evaluation;
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iv) Model Packaging; and v) Model Registering (KREUZBERGER; KüHL; HIRSCHL,

2023).

Two phases ii) and iii) in the ML pipeline deployment process should be highlighted.

In the training and retraining phase of the models, different operations are performed

to adjust the hyperparameters, optimizers, and activation functions in order to enable

performance gains of the techniques used; in the evaluation phase, the models are tested

on a set of test data aiming at the validation of its performance. The final phases consist

of the deployment of tested models in CNFs. All models are stored in a repository in

the form of templates, which can be loaded quickly depending on the traffic conditions

in the slices, and the demand for adjusting metrics in network and cloud orchestrators

to guarantee the SLAs (YAN; SHENG, 2023; BELTRE; SAHA; GOVINDARAJU, 2021;

RAJ et al., 2021).

The second part of validating the implementation model of NSSF DAF framework is

detailed in Chapter 5.

4.2 System scalability and extensibility

The proposed framework is scalable and can be used with new criteria for slice selec-

tion, as well as different access network technologies. In addition, the solution deployment

model can be adjusted according to the network operator’s preferences or service provider’s

characteristics, as mentioned earlier in this text. In this sense, the dynamism provided

by cloud orchestration tools, such as Kubernetes or OpenShift9, is used. It is possible,

therefore, to have numerous instances of the NSSF DAF framework at different points in

the network architecture, scaling the solution according to the scenario.

The interaction between NSSF DAF instances, even in different administrative do-

mains, provides about the quality of available slices in certain regions (e.g. neighborhoods,

universities, cities). NSSF DAF also allows for the addition of new modules, for exam-

ple, a broker service for IoT devices that support Message Queuing Telemetry Transport

(MQTT). It can also facilitate the attachment of a Mobility Management (MM) module,

selection of Access Points (APs) for RAN based on Wi-Fi 6.

The framework deployment can be performed by using DevOps and MLOps tools,

and it can still be deployed in containers or virtual machines on a public cloud or local

data center, according to the details about the implementation model in Section 4.1.3.
9https://openshift.com/
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This feature can be used on private and public 5G networks.

4.3 NSSF DAF restrictions

Although the NSSF DAF framework solves the slice selection problem, it does not

address issues related to MM. Thus, the mobile device must also use a management

protocol that allows for handover between slices, keeping the continuity of the service

active, especially in instances sensitive to latency and packet loss, such as traditional

real-time applications.

In (JAIN; LOPEZ-AGUILERA; DEMIRKOL, 2020) the main challenges involving

MM are presented, as well as potential solutions. Among the main issues, we can mention

handover signaling, network slicing, integration with other frameworks, and frequent han-

dovers, among others. Potential solutions include the use of deep learning, the creation

of mechanisms on demand MM, SDN- NFV integration with legacy methods (e.g. IEEE

802.21, PMIPv6, LTE MM) and the use of edge computing solutions.

These demands are outside the scope of this work, but the framework proposed here

is in line with these demands, and can be easily extended to cover these issues. This

is possible due to its deployment through the edge computing model, SDN and NFV,

in addition to slice selection strategies, Radio Access Technologies (RAT), the network

metrics acquisition approach and slice evaluation with traffic flow during operation.

4.4 Chapter summary

This chapter presents the most relevant contribution of this work. Overall, a frame-

work for the slice selection problem was proposed, in accordance with the main speci-

fications of 3GPP and ETSI. The solution enables its application in real environments

and in networks that are already in production, facilitating its integration into the Non-

Standalone Architecture (NSA) and Standalone Architecture (SA) 5G models and future

networks.

The technical details of the modules, the hierarchical structure of the solution, the

techniques and methods involved are presented; also, there is the definition of the func-

tional and non-functional requirements of the edge application and at the user level. The

integration model of the solution is also detailed, and its adequacy to architectures both

under development and already standardized in the literature. It is important to empha-
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size that all requirements have been implemented, verified and validated.

In order to validate the proposed solution, the next chapter is dedicated to the detail-

ing of the tests performed and the description of the evaluated scenarios. The objective

is to measure the robustness, efficiency and practicality of the solution.
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5 NSSF DAF PROOF-OF-CONCEPT TEST-BED

In order to validate the proposed solution, we conducted experiments integrating an

approach that uses ML and decision-making methods to support NSSF DAF operations

in multi-domain slicing environments. The workflow shown in Figure 10 outlines the

deployment process for proposed solution in this work. It’s important to note that the

slice selection problem involves several components and tools. The details solution are

discussed in Sections 4.1.1 and 4.1.3 in Chapter 4, including component organization and

modules, and are visually represented in Figures 7, 8, and 9.

Figure 10 – NSSF DAF workflow.

Slice Selection Problem

ML PipelineData Acquisition CI/CD Pipeline

Initializing the Decision Matrix

Normalization of Decision-Making Matrix

Weighted Normalized Decision-Making Matrix

Calculation of Utility Functions

Sort the Slices

Slice Selected

Traffic Forwarding

Finalizing the process

Source: elaborated by the author.

The methods proposed in this approach focus on the evaluation and the dynamic
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mapping of adequate QoS requirements. By the analysis of network traffic coming from the

UEs, a template to create slices in various formats is composed (e.g. YAML, NETCONF,

and JSON), allowing for their integration with 5G Core network functions, and, therefore,

the use of coding, automation, and network service orchestration tools, such as Ansible,

Chef, and Puppet. The NSSF DAF framework also facilitates integration with ONAP1

Istanbul/Honolulu and OSM2 12 orchestrators.

5.1 NSSF DAF: Network Slice Selection Strategy

The NSSF DAF framework processing module was developed by implementing a set

of MCDM methods in Python3 language version 3.8. Thus, the Aras, Cocoso, Codas,

Copras, Edas, Mabac, Mairca, Marcos, Moora, Ocra, Promethee II, Spotis, Topsis and

Vikor methods were implemented. The initial choice of these methods was made due to

their wide use in the literature and proved robustness, allowing proposed solution modules.

However, other strategies to process data from the Collector module can be explored.

Algorithm 1 is responsible for slice selection, constituting the most important part

(core) of the proposed framework. Initially, we used the function ParserStream2DataFrame,

which is implemented in the Algorithm 2. This function aims to obtain the dataset that

is used in decision matrices, constituting the first step of the processing MCDM methods.

The QoS and QoE parameters are concatenated, verified, and validated. The dataset

produced from this procedure serves as the input for decision-making methods. Figure 10

shows this workflow.

The applyMethods function (see Algorithm 1) receives the original dataframe of the

Collector module, which can be in a data stream or batch file. The QoS parameter is

either of the type “the bigger the better”, which is represented in the array as 1, or “the

smaller the better”, which is defined in the array as −1. Lines 5 to 18 of the algorithm

correspond to the application of MCDM methods on the same dataset. These tasks are

presented sequentially for better visualization, but they are executed in parallel.

Furthermore, the algorithm allows the extra parameters of the implemented decision

methods. For example, for the Promethee II method, the usual criterion curve was consid-

ered because the parameters dynamics and the network traffic conditions change sharply

in short periods. The default configuration was utilized for the remaining methods. A
1https://www.onap.org/
2https://osm.etsi.org/
3https://www.python.org/
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Algorithm 1: NSSF Decision-Aid Framework.
Input: Number of evaluated slices N , Number of QoS/QoE Criteria C,

Dataframe with slice data DF (r, c), array of weigthts W , Criteria types
T , MCDM methods M , Methods parameters P

Output: The Best Slice is selected S, slice ranking R(i), SLA slice template F
1 begin
2 DF ← ParserStream2DataFrame(N,C) ; /* apply Algorithm 2 */
3 while DF ̸= ∅ do
4 DFR← applyMethods (DF,M,W, T, P ) ;

/* making preferences ranking by method */
5 RA← rankDataMethod (DFR) ; /* Aras ranking */
6 RCO ← rankDataMethod (DFR) ; /* Cocoso ranking */
7 RC ← rankDataMethod (DFR) ; /* Codas ranking */
8 RCP ← rankDataMethod (DFR) ; /* Copras ranking */
9 RE ← rankDataMethod (DFR) ; /* Edas ranking */

10 RM ← rankDataMethod (DFR) ; /* Mabac ranking */
11 RMI ← rankDataMethod (DFR) ; /* Mairca ranking */
12 RMC ← rankDataMethod (DFR) ; /* Marcos ranking */
13 RMO ← rankDataMethod (DFR) ; /* Moora ranking */
14 RO ← rankDataMethod (DFR) ; /* Ocra ranking */
15 RP ← rankDataMethod (DFR) ; /* PrometheeII ranking */
16 RS ← rankDataMethod (DFR) ; /* Spotis ranking */
17 RT ← rankDataMethod (DFR) ; /* Topsis ranking */
18 RV ← rankDataMethod (DFR) ; /* Vikor ranking */
19 S ← sort(RA[0], RCO[0], RC[0], RCP [0], RE[0], RM [0], RMI[0], RMC[0],
20 RMO[0], RO[0],RP[0],RS[0],RT[0],RV[0]);
21 R← sort(RA,RCO,RC,RCP,RE,RM,RMI,RMC,RMO,RO,RP ,
22 RS,RT,RV);
23 SLA← saveResult (RA,RCO,RC,RCP,RE,RM,RMI,RMC,RMO,
24 RO, RP,RS,RT,RV); /* data for 3GPP API REST */
25 F ← exportTemplateSLA (SLA, S,R) ;

26 end
27 return F ;

28 end

Algorithm 2: Parser Stream to DataFrame
Input: (S, P ), where S is the stream or log of the network flow; P the type

settings to convert.
Output: DataFrame d

1 ParserStream2DataFrame ParserStream2DataFrame(S, P):
2 dataQoS ←− ParserMainParams(S, P )
3 dataQoE ←− ParserExtraParams(S, P )
4 d←− concatenate(dataQoS, dataQoE)
5 d←− validateAndSetTypes(d)
6 return d
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clear example of the Algorithm 1 execution can be consulted in Appendix A (more de-

tails in (NGUYEN et al., 2022a; WANG et al., 2020; ULUTAş et al., 2020; DEZERT

et al., 2020; KUNDAKCı, 2019; YAZDANI et al., 2019; ALINEZHAD; KHALILI, 2019;

WA̧TRÓBSKI et al., 2019; HEZER; GELMEZ; ÖZCEYLAN, 2021; BOJKOVIC; BAK-

MAZ; BAKMAZ, 2019; BABASHAMSI et al., 2016; FIGUEIRA; GRECO; EHRGOTT,

2005)).

The rankDataMethod function defines best slices ranking for each method evaluated.

This method implements the Processor module in the multi-criteria decision strategy

(MCDM Methods), described in Section 4.1.1. The other functions (saveResult and ex-

portTemplateSLA) presented in the algorithm are responsible for handling the resulting

data and configuring the SLA template in a 3GPP REST format. These functions facil-

itate integration with 5G CORE and, therefore, with orchestration tools. All computa-

tional methods are implemented using VNFs, running in an environment based on K8s

Cluster (YAN; SHENG, 2023), (BELTRE; SAHA; GOVINDARAJU, 2021), (BONATI et

al., 2020).

5.2 Environment description

To explore, validate, and develop ML models, a network traffic dataset is required.

This work followed the standard pattern presented in several articles by building the

scenario and producing a dataset based on a testbed. This is necessary due to computer

network scenarios’ wide and diverse characteristics.

5.2.1 Test Setup 01

The test environment was implemented using the network software emulator GNS34

(Graphical Network Simulator 3) to provide the infrastructure for the virtualized network

functions (NFV Infrastructure). The scenario is composed of 05 UEs transmitting at

different traffic rates using a client Iperf5 and Scapy6 librarie, as specified in Table 2, for

collections set performed. In addition, implementation in the gNodeB (3GPP 5G Next

Generation base station) was performed through a software module (CUPS—Control User

Plane Split) running on an Ubuntu7 Linux 16.04 LTS VM with Kubernetes, based on the
4https://www.gns3.com/
5https://iperf.fr/
6https://scapy.readthedocs.io/en/latest/usage.html
7https://ubuntu.com/
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Table 2 – Specification of injected traffic during 5 min for each collection.

Collection UE 01
(Mbps)

UE 02
(Mbps)

UE 03
(Mbps)

UE 04
(Mbps)

UE 05
(Mbps)

01 20 47 07 09 06
02 22 45 06 12 08
03 24 49 09 10 06
04 32 55 14 18 12
05 25 50 10 05 02
06 45 70 30 05 03
07 12 25 05 20 30
08 20 22 24 02 07
09 08 28 05 10 03
10 32 62 22 15 08
11 10 15 05 02 15

Source: elaborated by the author.

OpenAirInterface (openair-k8s) project (OPENAIRINTERFACE, 2022).

Regarding the network edge (Edge Computing), a docker8 container was used with

the deployment of SDN controller OpenDayLight9, to implement the UPF, responsible for

data flow separation and identification. The Network Data Analytics Function (NWDAF)

was implemented in an Ubuntu Linux 16.04 LTS VM with the Anaconda10 Python 3

framework, to implement the analysis functions and the data mining pipeline, using the

Jupyter11 notebook tool and the Numpy12, Pandas13 and Sklearn14 libraries.

Although the scenario presented the 5G architecture core (5G Core—5GC), any Net-

work Functions (NFs) relevant to the core were implemented, such as Network Exposure

Function (NEF), Network Repository Function (NRF), Policy Control Function (PCF),

Unified Data Management (UDM), Authentication Server Function (AUSF), Access and

Mobility Management Function (AMF), Session Management Function (SMF) and Appli-

cation Function (AF), as shown in Figure 11. These network functions will be implemented

through ETSI NFV OSM, which will use the SLA template generated by the NSSF DAF

framework.

However, as detailed below, three vertical slices were considered delivered at the net-

work edge by three different 5G providers, according to the 3GPP TS 22.186 V16.2.0 and
8https://www.docker.com/
9https://www.opendaylight.org/

10https://www.anaconda.com/
11https://jupyter.org/
12https://numpy.org/
13https://pandas.pydata.org/
14https://scikit-learn.org/stable/
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Figure 11 – Illustration of the simulation environment architecture for producing
network traffic.

Source: elaborated by the author.

3GPP TS 22.261 V16.14.0 specifications (ETSI, 2020),(ETSI, 2021). Each composition

slice is given by the junction of Virtual Networks (VNs)’ N1 to N6, under three domains

of different Internet Service Providers—ISPs (X, Y, Z) according to Table 3. Regarding

the service representation, an Iperf server was used for different traffic of Constant Bit

Rate (CBR).

Table 3 – Technical specification for slices composition. Based on (ETSI, 2020) and
(ETSI, 2021).

Slice 1 Type E2E Latency

(ms)

Reliability

(%)

Data Rate

(Mbps)

1 (VN N1 → N4)
Remote

5 (max.) 99.999 (min.)
DL: 1 (min.)

Driving UL: 25 (min.)

2 (VN N2 → N5)
Rural

Not specific Higher than 80%
DL: 50

Macro UL: 25

3 (VN N3 → N6)

Wireless

Road-Side 30 (max.) 99.999 10

Infrastructure

Backhaul (ITS)
1 VN: Virtual Network; DL: Downlink; UL: Uplink.

Source: elaborated by the author.
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As a result, for each 11 collections performed in the simulation process, a trace file

was obtained for each UE containing a dataset of 33 iterations. Iteration data comprises:

the amount of transferred bytes, bandwidth used, transport protocol, latency, jitter and

packet loss. Each collection was carried out for a period of 5 min. These raw log data are

thus the starting point for carrying out the data analysis process.

5.2.2 Test Setup 02

In this test setup, we evaluate another strategy for slice selection. The scenario and

methodology are the same as those described in section 5.2.1. However, in this test setup

fuzzy logic was employed with the MCDM methods that presented the best performance

in Test Setup 01. The aim is to see if there is a significant performance gain in the slice

selection method accuracy. The proposed fuzzy system implemented is basically a system

that consists of seven inputs and three outputs. The parameters used to define the fuzzy

sets, in terms of QoS, are “Latency”, “Jitter”, “Loss”, “Bandwidth”, “Transfer”, “Distance”,

“Reliability”.

The fuzzy model is based on triangular, trapezoidal or Gaussian membership func-

tions by using the Mamdani model (CASTILLO; CASTRO; MELIN, 2022), (MORDE-

SON; MATHEW, 2018). The parameters for each linguistic variables considered in the

membership functions can be visualized in Figures 12 and 13. For the linguistic variable

"Reliability", there was no enough precision from the computer used to represent the

implementation in this testbed.

Table 4 presents the intervals found in the dataset, which are considered as a directing

factor for linguistic variables construction. However, the construction considers upper and

lower bounds on an open interval. In this way, the system accepts and treats values that

are not common to the system, the outliers.

Table 4 – TS02: Intervals for each attribute of the original dataset (non-normalized)

Attribute Limit Inferior Limit Superior Average

Latency 0.554 1.878 1.067772
Jitter 0.104945 2.148467 0.414752
Loss 0 31 4.115286
Bandwidth 32.507692 70000.0 18443.505199
Transfer 139.0 2503000.0 658836.094184
Distance 6.025444 97.929760 53.449390
Reliability 99.984021 99.998972 99.992160

Source: elaborated by the author.
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Figure 12 – Fuzzification process: Latency, Jitter and Loss

(a) Latency (b) Jitter

(c) Loss

Source: elaborated by the author.

An important factor for fuzzy logic use, about the clustering strategy provided by the

K-Means algorithm, as described in section 5.2.1, is the elimination of data normalization

process in the processing step, as well as the need for an exclusive use of numeric data,

i.e., non-categorical. The fuzzy system is more susceptible to noise when the upper and

lower limits for each input attribute are taken into consideration.

Regarding the defuzzification process, we consider the Center of Maximum (COM)

method, where the slices are classified by the parameters obtained by the NSSF DAF’

Collector module.

The system output is the indicator of the most suitable slice for the user’s equipment,

having the variable Slice_Out as the output variable. The representation of the output

is presented in Figure 14, where it is possible to observe that the system will always

recommend a slice to the user. The slices considered are the same in the Table 3 in the
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Figure 13 – Fuzzification process: Bandwidth, Distance and Transfer

(a) Bandwidth (b) Distance

(c) Transfer

Source: elaborated by the author.

Figure 14 – Defuzzification process: System outputs.

Source: elaborated by the author.
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Section 5.2.1.

5.2.3 Test Setup 03

This section presents a hybrid strategy that involves several techniques to implement

the NSSF, using the resources and possibilities offered by the MEC, and validating it for

IoT service scenarios with wide range of traffic profiles.

Some current services need to migrate to business models based on more cost-effective

information delivery and interaction, and the 5G system can help in the adoption of more

efficient models to reduce administrative and supply costs (WIJETHILAKA; LIYANAGE,

2021).

Thus, 5G technology can have a particularly important impact on IoT services and

applications, for different purposes. In the following, four scenarios of IoT services and

applications are described, based on 3GPP Technical Specification TS 22.261 version 18

(3GPP, 2021), which specified characteristics and requirements for dozens of IoT services

in the 5G domain.

5.2.3.1 IoT real-time health system

IoT real-time health system involve medical critical applications, i.e., medical devices

and applications involved in hospital care, which include vital signal monitoring, cooper-

ation in critical situations, remote surgery procedure using high quality image and aug-

mented reality system, and tele-diagnosis or tele-monitoring systems (WIJETHILAKA;

LIYANAGE, 2021; Haghi Kashani et al., 2021). These applications and services, with

mission-critical communication characteristics, produce a variety of traffic profiles that

must be served by the 5G network.

5.2.3.2 IoT Smart Home System

Smart Home Systems lead people to automate their daily activities. This brings cost

reduction and energy preservation, which are major advantages of IoT utilization (HUS-

SEIN, 2019). Smart home applications range from a simple temperature sensing system

that automates the functionality of the air conditioner to a shopping list of supermarket

items based on the refrigerator, or an image processing system that ensures home security

by identifying potential intruders (MALCHE; MAHESHWARY, 2017). In other words,

the diversity of information generated and transmitted can range from a few bits to a
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high-resolution video stream of monitoring (3GPP, 2021).

5.2.3.3 IoT system for Geohazard prevention (monitoring and early warning)

Geographic hazards include slope deformation, which can be characterized as land-

slides, debris flow, rockfall, ground surface deformation, surface collapse, surface cracks,

and, characterizing a more severe event, earthquake (QIN et al., 2021).

Monitoring risk areas for these events is of utmost importance, preventing life losses

from happening by taking preventive evacuation measures. Monitoring systems with low

cost displacement sensors can be implemented with the use of WSN. This system generates

information data of few bits per second per sensor, but, overall, this adds up to a large

volume of data acquisition to be transmitted and analysed, so that it guarantees that the

alarms sounds in the eminence of an event that can put people’s lives at risk (MEI et al.,

2020). This alarm signal should have top priority and be sent to the central monitoring

station in a timeframe of a few tens of milliseconds for rapid dispatch of emergency

resources.

5.2.3.4 IoT Vehicular System

IoT has tightly coupled with several areas in transportation systems. Four different

types of communication modes of V2X are identified by 3GPP: V2V, V2I, V2P and

vehicle-to-network (V2N). This variety of vehicular services generates a wide range of

traffic profiles that must be served by the 5G network (MEI; WANG; ZHENG, 2019).

Furthermore, as a critical communication system, it has high reliability and low la-

tency requirements (WIJETHILAKA; LIYANAGE, 2021).

5.2.3.5 Environment description

Figure 15 represents the E2E 5G architecture proposed and evaluated in this work.

Note that in the access network there are four IoT scenarios, representing specific groups

of services, namely: real-time health system, smart home, V2X and Geohazard prevention.

All services have a gateway (broker) that is directly connected to the gNodeB. The UPF

receives and identifies the flow tables and assigns the labels according to the service data.

Then the packets are forwarded to the edge solution which runs on the MEC Server.

The test environment was implemented by using the K8s Cluster to provide the infras-

tructure for the virtualized network functions (NFV Infrastructure). In addition, there
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Figure 15 – Illustration of the simulation environment architecture for IoT Scenarios
with Open5GS (3GPP Release-16) and UERANSIM.

Source: elaborated by the author.

was the implementation in the gNodeB through UERANSIM15 simulator. A docker con-

tainer was used with the deployment of the SDN controller OpenDayLight, and Open

vSwitch(OvS)16, to implement the UPF, responsible for data flow separation and identi-

fication.

The UERANSIM simulator implements the interface specifications defined in 3GPP

TS 38.41317, which defines the main fields necessary for the identification of a 5G New

Radio (NR) cell, in addition to implementing the necessary interfaces for connectivity

between the UEs, the edge and the 5G Core Network. For this, it implements the NG

Application Protocol (NGAP), Stream Control Transmission Protocol (SCTP) and GPRS

Tunneling Protocol User Plane (GTP_U) protocols (FAROOQUI et al., 2022).

The UPF has a public IP, responsible for exchanging traffic with the external network,

i.e. outside the simulation environment (UERANSIM + Open5GS). This feature emu-

lates a real traffic exchange with the internet (public network). This physical interface is

connected to a Switch 10GB; the other interfaces are virtualized and operate in bridge

mode, one of them being connected to the POD that implements the SMF network func-
15https://github.com/aligungr/UERANSIM
16https://www.openvswitch.org/
17https://www.3gpp.org/DynaReport/38413.htm
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tion, and another interconnected to the gNB instance inside the UERANSIM simulator,

using the standardizes interface N3 and the GTP_U protocol (CHOUDHARI; PATIL;

SARAF, 2022).

There is an interface connected to gNB for each IoT Broker. This interface is called

"uesimtun0", and implements the GTP protocol for sending packets. The other inter-

faces are connected to the Calico network provided by the K8s Cluster, according to the

specification defined in the implementation model of Section 4.1.3. It is worth empha-

sizing that the communication between gNB and the AMF network function is carried

out through the N2 interface implementation, and uses the NGAP and SCTP protocols

(BARRACHINA-MUñOZ; PAYARó; MANGUES-BAFALLUY, 2022).

Note that UERANSIM implements a "slice" field in the messages header coming from

UEs. This list is static and predefined according to the slices supported by gNB. In this

testbed, this functionality will be implemented by the NSSF DAF - Client, and will occur

dynamically through the consumption of APIs with the solution implemented at the edge.

In this test setup, 2000 flows generated four IoT Broker 5G using one thread were

considered. For each flow it checks whether the NGAP authentication response messages

(ngap.procedure_code==46 ), i.e., messages describing if the connection between the UE

and the AMF function, has already been established. Next, the IP address of the UER-

ANSIM UE (IoT Broker 5G), the SCTP protocol destination port, and the other fields

of the NGAP protocol header are considered. The only restriction made in the UPF

consisted of a verification and a permission to forward only SCTP data chunk packets.

The objective was to avoid the forwarding of SCTP HEARTBEAT packets used in the

monitoring and maintenance of SCTP connections, according to RFC 4960 (IETF, 2023),

avoiding traffic overhead in the slices. Furthermore, defining the best offloading is the IoT

Broker responsibility, not a task of the NSSF DAF Client. It is important to emphasize

that the NSSF DAF supports DPI (Deep Packet Inspection) mechanisms through the use

of libpcap and DPDK18 (Data Plane Development Kit) tools. These tools allow stress test

generation on the 5G Core (Open5GS19) and Edge-Core (NSSF and UPF) functions.

The orchestration layer is implemented using ETSI NFV OSM, and has three spe-

cialized slices available, as per TS 3GPP 22.261 V.18.5.0 (3GPP, 2021). The service

provider includes applications to perform processing and monitoring IoT services data.

In this scenario it was implemented using the ELK20 (Elasticsearch, Logstash and Kibana)
18https://www.dpdk.org/
19https://open5gs.org/
20https://www.elastic.co/
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Stack.

The Edge Computing solution is composed of NSSF DAF service. The Collector

module receives the data streams from the IoT brokers and initializes the data analysis,

through the evaluation of QoS and QoE metrics. The dataset is assembled and the

machine learning models are initialized. It was instanciate an K8s Cluster, to implement

the analysis functions and the MLOps pipeline, using the Python 3.X, Numpy, Pandas

and Sklearn libraries, according to the implementation model defined in Section 4.1.3.

The Processor module is responsible for the best slice selection, and also for the

data forwarding to the orchestration layer through multiple APIs. It implements a set of

MCDM methods in Python 3 language (version 3.8), as the Aras, Cocoso, Codas, Copras,

Edas, Mabac, Mairca, Marcos, Moora, Ocra, Promethee II, Spotis, Topsis, and Vikor

methods.

Tables 5 and 6 present the specification of vertical slices. The NSSF solution proposed

in this work aims to cover the IoT scenarios defined in the RAN, using the vertical slices

formerly instantiated by the orchestrator, as shown in Figure 15.

Based on the context specified in Tables 5 and 6, the assignments with priority data

weights by attributes were considered to establish two scenarios: fair and priority, shown

in Table 7.

Table 5 – TS03: Slice specification.

Slices Experienced data rate (DL) Experienced data rate (UL) Area traffic capacity (DL) ...
Urban macro 50 Mbit/s 25 Mbit/s 100Gbit/s/km2(note2) ...
Broadband access in a crowd 25 Mbit/s 50 Mbit/s [3.75]Tbit/s/km2 ...
Airplanes connectivity 15 Mbit/s 7,5 Mbit/s 1,2 Gbit/s/plane ...

Legend: NOTE 1: For users in vehicles, the UE can be connected to the network
directly, or via an on-board moving base station. NOTE 2: These values are derived
based on overall user density. Detailed information can be found in (NGMN, 2016).

Source: adapted from TS 3GPP 22.261 V.18.5.0.

Table 6 – TS03: Slice specification - Continued.

Slices ... Area traffic capacity (UL) Overall user density Coverage

Urban macro ... 50Gbit/s/km2(note2) 10000/km2 Full network (note 1)
Broadband access in a crowd ... [7.5]Tbit/s/km2 [500.000]km2 Confined area
Airplanes connectivity ... 600 Mbit/s/plane 400/plane (note 1)

Legend: NOTE 1: For users in vehicles, the UE can be connected to the network
directly, or via an on-board moving base station. NOTE 2: These values are derived
based on overall user density. Detailed information can be found in (NGMN, 2016).

Source: adapted from TS 3GPP 22.261 V.18.5.0.



79

Table 7 – TS03 - Specification of weights per attribute for tests.

Experiment Latency Jitter Loss Download Upload Distance Reliability Density

01 0.125000 0.125000 0.125000 0.125000 0.125000 0.125000 0.125000 0.125000
02 0.044356 0.025868 0.336857 0.135427 0.041821 0.286351 0.074844 0.054476

Source: elaborated by the author.

5.3 Data analytics

In the traditional data analysis process, falling in love with the dataset is a part of the

first step. Hence, to know and to prepare the data for the mining process, we conducted

the tasks of data pre-processing as follows:

1. Simulation data collection;

2. Data selection;

3. Data purification;

4. Dataset construction.

Algorithm 2 details the process discussed above. The experiment considered six at-

tributes organized in the datasets. However, the network provider can add metrics to suit

different scenarios as long as it is able to collect data from the network. To validate this

principle, two other criteria were added to the dataset, namely reliability and distance.

These, in turn, were randomly generated to follow a normal distribution, respecting a pre-

defined interval within what normally exists in real scenarios according to the 3GPP TS

22.186 V16.2.0 and 3GPP TS 22.261 V16.14.0 specifications (ETSI, 2020),(ETSI, 2021).

The default dataset then has the following attributes:

1. Latency: End-to-end delay (ms);

2. Jitter: Delay variation (ms);

3. Loss: Packets loss;

4. Bandwidth: Number of bits per second (Mbps);

5. Transfer: Amount of data transferred (sent);

6. UE: User Equipment, not used in the model building process;
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7. Experiment: experiment id, not used in the mining process;

8. Distance: Shortest path between UE and Edge;

9. Reliability: Capacity network is functional without interruption.

In the pre-processing step, the data are analyzed regarding the type and interval;

treatments such as normalization are commonly applied to the records in this phase. The

occurrence of treatment and normalization actions applied to the records is common. The

data can thus come to serve and be adaptable to the input pattern of the data mining

algorithm used in future steps.

The pre-processing phase is performed on all testbeds.

5.3.1 Analysis of Test Setup 01

In order to recognize the data, for illustration purposes, Figure 16 presents the network

metrics. Note that data were normalized with the use of the MinMaxScaler method from

the Sklearn library (PEDREGOSA et al., 2011)

The mining process used the K-Means classification or grouping algorithm that uses

numerical data. The "protocol" metric is not used because of the distance-based K-Means

characteristics. The learning process now considers only the attributes relevant to the

experiment: “Latency”, “Jitter”, “Loss”, “Bandwidth”, “Transfer”, “Distance”, “Reliability”.

Clustering performs data analysis to recognize the data group behavior so that an

element is characterized in one group and differs from the other groups. In the K-Means

algorithm, k indicates how many groups are separable in the dataset. One technique to

find the correct value of k for a given set is to apply the Elbow Plot Method by calculating

the sum of the Root Mean Square Error (SSE) (GANKIDI et al., 2022). The Elbow point

occurs when the SSE starts to decrease linearly. Thus, in the dataset used, the appropriate

k is 3, as shown in Figure 17, with the SSE for k from 1 to 8.

Finally, assuming a k equal to 3, the learning and training process occurs with the

separation of elements into three groups that characterize each slice. The next step to

data mining is analysis, which seeks to understand the results. To clarify this step, the

illustration in Figure 18 presents the unique characteristics of each cluster that, in a way,

reflect the characteristics of each slice used in the GNS3 simulation environment. Once

the model is trained, the system can receive any data stream within the average training

interval to provide the suitable slice prediction for the allocation.
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Figure 16 – TS01 - Overview of normalized dataset.

Source: elaborated by the author.

Figure 17 – Downward Mean Square Error for K = 1 to K = 8.

Source: elaborated by the author.

5.3.1.1 Definition of algorithm parameters

After performing the collection and analysis of the network parameters, the applica-

tion runs for the slice selection. This flow can be seen in the architecture of the proposed

framework, illustrated in Figure 4.
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Figure 18 – TS01 - Unique characterization of the groups found in the process.

(a) Slice 1 (b) Slice 2

(c) Slice 3

Source: elaborated by the author.

In summary, the configuration of the parameters defined in Algorithm 1 for carrying

out the tests is presented in Table 8. The weights were defined in the following order

of array parameters [“Latency”, “Jitter”, “Loss”, “Bandwidth”, “Transfer”, “Distance”, “Re-

liability”]. The weights configuration followed the results from the K-means algorithm,

which showed the most relevant features for each slice (obtained clusters), as illustrated in

Figure 18.

Table 8 – TS01 - Weights Setup.

Experiment Weights

1 [0.3, 0.2, 0.1, 0.09, 0.03, 0.03, 0.25]
2 [0.3, 0.4, 0.15, 0.05, 0.05, 0.02, 0.03]
3 [0.10, 0.05, 0.15, 0.3, 0.3, 0.08, 0.02]
4 [0.136, 0.144, 0.144, 0.144, 0.144, 0.144, 0.144]

Source: elaborated by the author.

Thus, for Test 1, the Latency and Reliability criteria were considered with higher

weights. Test 2 considered the Latency and Loss criteria, and Test 3 considered the

Bandwidth and Transfer criteria. Finally, Test 4 used a fair distribution of weights be-

tween the criteria evaluated. Each test is formed by 33 iterations and uses a Flow Table
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with 250 entries (Flow count).

5.3.2 Analysis of Test Setup 02

In this section, the analysis process basically consists of building the inference rules,

since the exploratory analysis of the dataset is the same considered in Test Setup 01, as

described in section 5.3.1. It is important to note that this approach did not use a vector

of weights, since it employs only the relations between the input and output values in the

selecting process, according to the rules defined in the Mamdani inference mechanism.

The rules are built from the data grouping analysis in order to map each of the existing

slices in the system, as illustrated in Figure 18. For demonstration purposes, four rules

are built to map each three existing slices in the system, as described below. However, a

total of seventy-five rules were created. For example, in R4 the attributes loss and latency

are found in high value in Figure 5, therefore, it is possible to easily perceive that this is

an appropriate situation for Slice 1, since this situation is not present for Slice 2 and Slice

3, as can be seen in Figures 18b and 18c.

• Sample of ruleset to select traffic for Slice 1;

– R1: IF loss is low AND latency is high THEN output is Slice 1

– R2: IF bandwidth is low AND transfer is low AND jitter is low THEN

output Slice 1

– R3: IFdistance is medium AND jitter is low THEN output is Slice 1

– R4: IF loss is high AND latency is high THEN ouput is Slice 1

• Sample of ruleset to select traffic for Slice 2;

– R5: IF bandwidth is high AND transfer is high THEN output is Slice 2

– R6: IF jitter is low AND transfer is high THEN output is Slice 2

– R7: IF jitter is low AND bandwidth is high THEN output is Slice 2

– R8: IF latency is medium AND jitter is low THEN output is Slice 2

• Sample of ruleset to select traffic for Slice 3;

– R9: IF loss is low AND latency is low THEN output is Slice 3

– R10: IF bandwidth is low AND loss is low THEN output is Slice 3
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Figure 19 – 5G Slices Selection with the fuzzy system.

Source: elaborated by the author.

– R11: IF bandwidth is low ANDtransfer is high THEN output is Slice 3

– R12: IF jitter is medium AND loss is low THEN output is Slice 3

An example of the inference process using a specific rule is shown in Figure 19. In

this example, the slice selected as the best was Slice 2.

Tests were conducted using genetic algorithms as specified in the Processor mod-

ule, discussed in Section 4.1.1, for automatic generation of inference rules. However, the

convergence time made impracticable the application in a system with dynamic charac-

teristics. Thus, there was the decision to resort to a specialist to set up and define the

fuzzy rules.

5.3.3 Analysis of Test Setup 03

The data analysis uses data obtained from the testbed illustrated in the Figure 15

and respects the 3GPP specification (3GPP, 2021). For processing purposes, a dataset

is constructed with the following attributes: ’Latency’, ’Jitter’, ’Loss’, ’Download’, ’Up-

load’, ’Distance’, ’Reliability’, ’Density’. The flow tables with 2000 flow count for each

established scenario are presented in the Tables 5 and 6. In addition, a dataset sample

used is shown in Table 9.

In order to recognize the data, for illustration purposes, Figure 20 presents the network

metrics. Note that the data were normalized with the use of the MinMaxScaler method
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Table 9 – TS03 - Dataset sample.

Jitter Loss Distance Latency Download Upload Reliability Density

0.360726 1.622586 50.902876 52.781155 44.784232 29.402967 99.999005 3615
0.560079 0.005654 50.671546 52.558219 83.385061 14.347776 99.999309 8501
0.890005 1.838213 58.583555 47.446445 62.431956 23.810858 99.999238 15886

Source: elaborated by the author.

Figure 20 – TS03 - Overview of normalized dataset.

Source: elaborated by the author.

from the Sklearn library (PEDREGOSA et al., 2011).

Initially, the result obtained presented three perfectly defined clusters, as shown in

Figure 21a, that use the t-distributed Stochastic Neighbor Embedding (t-SNE) tecnique

(LIU et al., 2020). The t-SNE is on the state-of-the-art in computer visualization for

high-dimensional data. It is a technique for data dimensionality reduction and extracting

local clustering to represent 2D or 3D graphic (PEZZOTTI et al., 2017).

For this reason, the perfectly natural clusters, to avoid the use of an overfitted dataset,

we used noise insertion and changing scenario thresholds, allowing the existence of inter-

section in the range of some attributes. For example, the intervals of three scenarios for

the download transmission rate attribute are: min - 50 to 500 Mbps; min - 25 to 220

Mbps and min - 15 to 100 Mbps, respectively. As a consequence, the evaluation of k from

K-Means by sum of squared error (SSE) presents two possible candidates, allowing the

arbitrary decision for the k-value, as in Figure 22. The flat view of the cluster for k equal

to three with adjusted dataset is shown in the Figure 21b.

Finally, by assuming that k equals 3, the trained model is persisted and becomes

capable of processing any data stream within the average training interval to provide the
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Figure 21 – A tSNE 8D to 2D.

(a) A tSNE 8D to 2D with a perfect natural
clustering (b) A tSNE 8D to 2D with k = 3.

Source: elaborated by the author.

Figure 22 – SSE.

Source: elaborated by the author.

prediction of the slice suitable for use. The model’s output value has been added as the

class attribute to dataset, in a way that allows the use of mathematical models for the

decision-making process.

5.4 Chapter summary

In this chapter, three testbeds were implemented in the NSSF DAF validation. The

scenarios comprise different technologies, tools, simulation environments, in addition to

portraying different slice specifications, defined according to 3GGP, and aiming to meet
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various services and applications in the 5G context. In this sense, we sought to validate

the proposed solution in different scenarios, showing its applicability and its easiness of

integration with the main market tools.

The data acquisition, cleaning, and analysis pipeline for each evaluated scenario was

detailed, in addition to the adjustments of the algorithms parameters used in each of them.

We also sought to represent the different characteristics application in use, the different

models of solution deploying, as well as the use of different computational platforms.

The experiments were performed in order to validate different framework features. In

addition, we sought to use different virtualization and cloud computing solutions, allowing

for the solution validation in environments as close as possible to slices in production.
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6 RESULTS

This chapter contains the main results of this research and is divided into the following

sections: 6.1 defines the hypotheses and the main statistical tests used in the experiments;

6.2 explains the strategy used in the analysis of the results for the TS-01, in addition to

describing and comparing the results of each experiments in this scenario; 6.3 describes and

evaluates the gains performed by using conjugated fuzzy logic with the MCDM methods

for the TS-02 scenario; 6.4 describes and analyzes the results for the TS-03 scenario,

evaluating the results for priority network traffic; and 6.5 concludes this chapter.

6.1 Definitions of Null and Alternative Hypotheses

After performing the experiments specified in the previous chapter, and once the

data results from each method could be obtained, a descriptive analysis verified whether

there were significant differences in the methods performance for the slices evaluated in

the set of tests. The experiment incorporates a comparative analysis, utilizing multi-

ple comparison Tukey’s test derived from the analysis of variance. We also applied the

Shapiro–Wilk normality, Durbin–Watson independence, and Fligner–Killeen homoscedas-

ticity tests (JAMES et al., 2021), (MONTGOMERY; RUNGER, 2018).

For all tests performed, a significance level α = 0.05 or 95% confidence level was

considered.

Below, the hypotheses for each statistical tests performed are presented. The equation

(6.1) presents the main hypothesis evaluated in this work. The other equations follow the

order: i) (6.2) Shapiro–Wilk test; ii) (6.3) Durbin–Watson test; iii) (6.4) Fligner–Killeen

test; iv) (6.5) Tukey’s test.

For all equations, H0 corresponds the null hypothesis, and Ha the alternative hypoth-

esis.
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H0 : τi = τj (There is no difference between the accuracy of methods in the slice selection process.)

Ha : τi ̸= τj (There is difference between the accuracy of methods into the slice selection process.)

(6.1)

H0 : θi = θj (The sample came from a normally distributed population.)

Ha : θi ̸= θj (The sample does not come from a normally distributed population.) (6.2)

H0 : ϕi = ϕj (The sample has independent residuals.)

Ha : ϕi ̸= ϕj (The sample hasn’t independent residues.) (6.3)

H0 : σi = σj (The sample presents homoscedasticity of variances.)

Ha : σi ̸= σj (The sample does not present homoscedasticity of variances.) (6.4)

H0 : ȲBi
= ȲAj

(The accuracy of methods "A" and "B" do not differ significantly.)

Ha : ȲBi
̸= ȲAj

(The accuracy of methods "A" and "B" differ significantly.) (6.5)

6.2 Results for Test Setup 01

To understand the results measured by each approach, the behavior of the criteria in

the network flows was observed. To this end, we used the boxplot statistical tool to evalu-

ate the main QoS criteria, considering the data symmetry, its dispersion, and the possible

presence of outliers. Additionally, we used the bar graphs feature and network graphs

to verify the performance of the methods considered, finding to validate the hypothesis

defined in the equation (6.1).

Note that Figure 16 presents several outliers for the jitter and loss criteria. This is

characterized by their stochastic, dynamic, and nonlinear behavior and the variation in

traffic rates considered in Table 2.

After this preliminary behavior analysis of the criteria adopted as input parameters,

we evaluated the fourteen approaches concerning their ability of classifying the best slice,

considering the weights or preferences defined a priori by the Decision Maker, and also

the UEs traffic requirements.

For a better data visualization in the tables, rounding to two decimal places was
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Figure 23 – Behavior of the NSSF DAF methods - TS 1: Experiment 1
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considered. It should be noted that the TS 3GPP 22.261 v.16.14.0 specification defines

different characteristics for the specialized configuration of each slices (ETSI, 2021). In

this work, as described in Table 3 in Section 5.2.1, Slice 1 is specialized in serving traffic

referring to ’Remote Driving’, Slice 2 in ’Rural Macro’, and Slice 3 in ITS traffic.

6.2.1 Experiment 1

Table 10 details the results for each method used in the NSSF DAF service to the

Experiment 1. This table results for mean values are summarized in Figure 23.

In Experiment 1, the following attributes were prioritized: “Latency”, “Jitter”, “Re-

liability”, according to the weights defined in Table 8. The weights correspond to the

result of the K-means algorithm analysis, discussed in Section 5.3.1. This configuration

prioritizes Slice 1. In this sense, we seek to verify the MCDM methods sensitivity to the

slice requirements of the ’Remote Driving’ type, that is, the methods that demonstrate

higher accuracy in selecting Slice 1 will be considered superior in this experiment.

It was observed, according to Table 10 and Figure 24a, that among the evaluated

methods, the accuracy of the Ocra method stands out, which showed greater consistency

in the selection of Slice 1, presenting a low variance and standard deviation, in addition to

having a more homogeneous distribution for the 33 iterations considered in the experiment.

The Aras, Codas and Marcos methods also demonstrated high averages, however, with a
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Table 10 – Methods Results: TS01 - Experiment 1

Slice Methods Mean STD Var CI

Slice 1

Aras 188.70 19.38 375.47 181.83 –195.57
Cocoso 97.18 28.83 831.03 86.96 – 107.40
Codas 182.52 21.62 467.32 174.85 – 190.18
Copras 139.09 45.90 2106.84 122.82 – 155.37
Edas 152.79 43.56 1897.23 137.34 – 168.23

Mabac 93.00 43.82 1920.31 77.46 – 108.54
Mairca 45.58 24.61 605.63 36.85 – 54.30
Marcos 185.61 21.78 474.37 177.88 – 193.33
Moora 134.12 47.64 2269.23 117.23 – 151.01
Ocra 231.64 3.90 15.18 230.26 – 233.02

Promethee II 95.91 38.62 1491.15 82.22 – 109.60
Spotis 45.58 24.61 605.63 36.85 – 54.30
Topsis 73.15 48.63 2364.76 55.91 – 90.39
Vikor 60.30 24.06 579.03 51.77 – 68.84

Slice 2

Aras 52.24 25.61 655.75 43.16 – 61.32
Cocoso 130.58 32.90 1082.31 118.91 – 142.24
Codas 55.00 30.05 902.75 44.35 – 65.65
Copras 92.24 51.76 2679.38 73.89 – 110.60
Edas 80.45 45.19 2041.88 64.43 – 96.48

Mabac 131.12 58.47 3418.17 110.39 – 151.85
Mairca 40.64 41.63 1732.74 25.88 – 55.40
Marcos 55.39 27.28 744.43 45.71 – 65.07
Moora 97.27 52.98 2806.77 77.49 – 116.06
Ocra 11.91 4.80 23.09 10.21 – 13.61

Promethee II 125.30 50.22 2521.72 107.50 – 143.11
Spotis 40.64 41.63 1732.74 25.88 – 55.40
Topsis 142.79 75.44 5691.80 116.04 – 169.54
Vikor 48.61 56.21 3159.56 28.67 – 68.54

Slice 3

Aras 9.06 11.10 123.25 5.12 – 13.00
Cocoso 22.24 8.40 70.56 19.26 – 25.22
Codas 12.48 14.02 196.70 7.51 – 17.46
Copras 18.67 17.15 294.23 12.58 – 24.75
Edas 16.76 14.80 219.06 11.51 – 22.01

Mabac 25.88 28.07 787.73 15.93 – 35.83
Mairca 163.79 49.38 2438.23 146.28 – 181.30
Marcos 9.00 10.18 103.69 5.39 – 12.61
Moora 18.61 18.18 330.37 12.16 – 25.06
Ocra 6.45 2.53 6.38 5.56 – 7.35

Promethee II 28.79 21.63 468.05 21.12 – 36.46
Spotis 163.79 49.38 2438.23 146.28 – 181.30
Topsis 34.06 39.95 1595.75 19.90 – 48.23
Vikor 141.09 59.39 3526.77 120.03 – 162.15

Legend: STD: Standard Deviation; Var: Variance ; CI: Confidence Intervals.

Source: elaborated by the author.



92

greater variance, and showing a greater number of outliers.

The descriptive analysis checked for significant differences in the methods performance

for the slices evaluated in the tests set, considering a confidence level of 95%. In this sense,

the parametric methods defined in the equations of Section 6.1 were used. The results

from the Shapiro–Wilk normalization test show that the data set does not follow a normal

distribution. Using the Durbin-Watson test, the sample variables do not present indepen-

dent residues. From the Fligner-Killeen test, the sample does not present homoscedasticity

of variances. Thus, the null hypothesis was rejected for all tests considered.

Due to the violation of normality, and the great variability of the response variable

(Frequency of Selection), as illustrated in Figure 24, it was impossible to compare the

methods using an ANOVA model, and therefore, the test application of Tukey HSD

or Bonferroni multiple comparisons, as the p-value response in these tests reaches the

maximum difference and is fixed at “1”.

Therefore, it was decided to apply the KRUSKAL-WALLIS non-parametric test (JAMES

et al., 2021). However, parametric tests are less efficient when compared to parametric

methods, they help to give a broader view of the comparison between the evaluated

MCDM methods. From Table 10, considering Slice 1, it was verified that the median of

the evaluated methods are different, and the Ocra method presents the lowest interquar-

tile range (IQR), followed by the Aras, Codas and Marcos methods, which corroborates

with the descriptive analysis illustrated in Figure 24a.

The stochastic nature of the problem, in addition to the lack of guaranteed “pre-

dictability”, makes it complex to create models with a better fit to the data. Furthermore,

the considered response variable has characteristics of counting data, which suggests the

use of a binomial or negative binomial distribution (JAMES et al., 2021). It was verified

that it would not be feasible to use a negative binomial distribution, due to the fixed

number of samples, 250 network flows were considered, i.e., there is no variation in this

number. We then proceeded to evaluate the Bernoulli distribution (MONTGOMERY;

RUNGER, 2018), using the simulated envelope graph, as illustrated in Figures 26–28.

Residual plots are a useful graphical tool for identifying non-linearity and can be used to

identify outliers too.

From the analysis of Slice 1, note that, although the response variable has count

characteristics, it was not possible to obtain a data fit using a logistic regression model

(GLM). Thus, a linear regression model (LM) was used, applying the sqrt() function

to the response variable. The application of the sqrt() function makes the results more
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reasonable, i.e., the number of successes approached a normal distribution, as illustrated

in Figure 26b. This procedure allows summarizing the result of the linear regression model

in an ANOVA, and therefore applying the TukeyHSD test, described in the equation (6.5).

From Tukey’s test, it was observed that there is no significant difference between

the various methods. The comparison is performed in pairs between all methods (182

combinations). Given the large number of comparisons, the visualization from Tukey’s

graph became impracticable. To solve this problem, a network graph was used, as shown

in Figure 25a, where two clusters can be seen, which corresponds to the methods that

do not have significant differences in performance, considering a confidence level of 95%.

The network graph supports the descriptive analysis data defined in Table 10 and Figure

24a. In the other comparisons, there are significant differences in the accuracy of MCDM

methods.

With regards to the analysis estimated coefficients in the regression model, for Slice

1 it is observed that the Ocra method reached the highest positive number (1.50), which

demonstrates its superiority comparing to the others. The confidence interval for the Ocra

method is between 0.65 and 2.35.

For Slice 2, the same analysis strategy as for Slice 1 was used. The null hypothesis was

rejected for all applied tests. Thus, there was a violation of the premise of normality and

independence of the residues, and also a violation of the premise of variances homoscedas-

ticity. As a consequence of these violations, the KRUSKAL-WALLIS non-parametric test

was used. In this test, it was observed that the median of the evaluated methods are

different, i.e., for Slice 2 there are also differences in the performance of the evaluated

methods. Additionally, it was found that the Ocra method had the lowest IQR.

To enable multivariate comparison between the methods, a linear regression model

was employed, according to the model fit shown in Figure 27. Then, the result was

summarized in an ANOVA, allowing the Tukey test application. The network graph

illustrated in Figure 25b shows the result of comparing Tukey’s method. Note that of 182

comparisons done, in 45 of them, there is no significant difference between the methods.

With regards to the analysis of the estimated coefficients in the regression model,

it was observed that the Topsis (4.42), Cocoso (4.41), Mabac (4.15) and Promethee II

(4.00) methods demonstrated superiority in the selecting accuracy for the Slice 2. This

performance can be observed in the descriptive analysis illustrated in Figure 24b.

For Slice 3, there was also rejection of the null hypotheses defined in equations (6.2),

(6.3), and (6.4). Based on the approach taken in the analysis of Slices 1 and 2, it was
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Figure 24 – Descriptive analysis using boxplot - TS 01: Experiment 1.

A
ra

s

C
o
c
o
s
o

C
o
d
a
s

C
o
p
ra

s

E
d
a
s

M
a
b
a
c

M
a
ir
c
a

M
a
rc

o
s

M
o
o
ra

O
c
ra

P
ro

m
e
th

e
e
_
II

S
p
o
ti
s

T
o
p
s
is

V
ik

o
r

0

50

100

150

200

250

Slice 1

F
re

q
u
e
n
c
y
 o

f 
S

e
le

c
ti
o
n
s

(a) Slice 1

A
ra

s

C
o
c
o
s
o

C
o
d
a
s

C
o
p
ra

s

E
d
a
s

M
a
b
a
c

M
a
ir
c
a

M
a
rc

o
s

M
o
o
ra

O
c
ra

P
ro

m
e
th

e
e
_
II

S
p
o
ti
s

T
o
p
s
is

V
ik

o
r

0

50

100

150

200

Slice 2

F
re

q
u
e
n
c
y
 o

f 
S

e
le

c
ti
o
n
s

(b) Slice 2

A
ra

s

C
o
c
o
s
o

C
o
d
a
s

C
o
p
ra

s

E
d
a
s

M
a
b
a
c

M
a
ir
c
a

M
a
rc

o
s

M
o
o
ra

O
c
ra

P
ro

m
e
th

e
e
_
II

S
p
o
ti
s

T
o
p
s
is

V
ik

o
r

0

50

100

150

200

250

Slice 3

F
re

q
u
e
n
c
y
 o

f 
S

e
le

c
ti
o
n
s

(c) Slice 3

Source: elaborated by the author.
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Figure 25 – Network graph TS01: Experiment 1. There is no significant difference
between this methods.

(a) Slice 1 (b) Slice 2

(c) Slice 3

Legend: 95% confidence intervals comparing each pair of methods.

Source: elaborated by the author.

Figure 26 – Simulated envelope TS01: Experiment 1 - Slice 1.

(a) Binomial GLM. (b) Normal LM.

Source: elaborated by the author.
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Figure 27 – Simulated envelope TS01: Experiment 1 - Slice 2.

(a) Binomial GLM. (b) Normal LM.

Source: elaborated by the author.

observed that for Slice 3 there are also differences in the performance of the evaluated

methods. Using the adjustment of the regression model illustrated in the simulated enve-

lope graph in Figure 28, and then applying Tukey’s test, it was found that from the 182

comparisons completed, 48 did not have a significant difference in terms of the accuracy

of selection of Slice 3. This behavior can be observed in Figure 25c.

In terms of the estimated coefficients analysis in the linear regression model, it is

observed that the Spotis (10.32), Mairca (10.32) and Vikor (9.26) methods, demonstrate

superiority in the selection accuracy for Slice 3. However, this finding is inconsistent with

the other methods, since for experiment 1 the attributes with the highest weight were

Latency and Jitter, and considering the slices characteristics from the machine learning

model used, Slices 1 and 2 with the highest probability of being selected. These results

indicate that the Spotis, Mairca and Vikor methods show greater adherence to traffic

destined for Slice 3. These results can be confirmed in Table 10 and Figure 24c.

The findings presented in this section are further complemented by the results shown

in Appendix B (experiments 2,3 and 4). The experiments shown in Appendix B differ

from those presented in this section by their weight setup.

6.3 Results for Test Setup 02

To conduct the experiments in Test Setup 02, the Ocra, Aras and Codas methods

were considered. They obtained the best performance in all the TS-01 experiments for

Slice 1, in particular the tests conducted in Experiment 1, as detailed in Section 6.2,

and in Subsection 6.2.1. Slice 1 was used as a reference because it has the highest QoS
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Figure 28 – Simulated envelope TS01: Experiment 1 - Slice 3.

(a) Binomial GLM. (b) Normal LM.

Source: elaborated by the author.

requirements for addressing flows for Remote Driving scenarios (e.g. V2X and IoV),

considered one of the most complex environments for 5G and future networks. These

scenarios consider different levels of automation (MOLINARO et al., 2020),(MEI; WANG;

ZHENG, 2019),(CONDOLUCI et al., 2019), (CAMPOLO et al., 2018).

The dataset used in this test setup are the same considered in TS-01, as described

in Section 5.3.1 of Chapter 5. Thus, the same criteria of Experiment 1 in TS-01 were

prioritized, as defined in Table 8. They are Latency, Jitter and Reliability. In this

configuration, Slice 1 is prioritized. In addition, a fair distribution of weights among all

criteria was also considered, which in TS-01 is carried out in Experiment 4.

In this test setup, we sought to verify whether there were gains in the Ocra, Aras and

Codas methods when combined with fuzzy logic in the NSSF DAF, for the treatment and

addressing of flow tables from the UPF. Experiment 1 uses the weights defined in Table

Table 11 – Methods Results: TS02: Performance Gains - Experiments

Experiment Methods Mean STD Var CI

01 - Gains
(%)

F-Aras 24.52 7.75 60.07 21.77 - 27.27
F-Codas 26.99 8.65 74.77 23.93 - 30.06
F-Ocra 7.35 1.56 24.43 6.79 - 7.90

02 - Gains
(%)

F-Aras 9.99 6.26 39.19 7.77 - 12.21
F-Codas 9.39 7.84 61.40 6.62 - 12.17
F-Ocra 4.93 0.92 0.85 4.61 - 5.26

Legend: STD: Standard Deviation; Var: Variance ; CI: Confidence Intervals.

Source: elaborated by the author.
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Figure 29 – TS-02: Performance Gains to Experiment 1
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Figure 30 – TS - 02: Performance Gains to Experiment 2
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8 (see TS-01 Experiment 1), and Experiment 2 assumes a fair distribution of weights.

From the data analysis in Table 11, considering a confidence level of 95% and for a

set of 33 iterations and 250 flows tables, it was observed in Experiment 1 that the fuzzy

logic provided a performance gain in accuracy of slice selection. The Fuzzy Aras (F-Aras)

and Fuzzy Codas (F-Codas) methods obtained a performance gain of more than 24%

in selection accuracy, while the Fuzzy Ocras (F-Ocras) method obtained a 7.35% gain.

These results are illustrated in Figure 29.

For Experiment 2, the use of fuzzy logic with the MCDM methods promoted an

average performance gain of over 9% for the F-Aras and F-Codas methods, while the

F-Ocra method had a gain of 4.93%, as detailed in Table 11 and shown in Figure 30.

In addition, we sought to verify whether there were significant differences in the

selection accuracy of the F-Aras, F-Codas and F-Ocra methods in both experiments.

From Shapiro-Wilk, Durbin-Watson and Fligner-Killen tests, according to the hypotheses

defined in equations (6.2), (6.3), and (6.4), it was verified that the tests results accepted

the null hypothesis, i.e., for the TS-02 experiments there was no violation neither of the

premisses of normality and independence of the residuals, nor of the homoscedasticity of

the variances, considering a confidence level of 95%.

Then, an ANOVA test was applied, considering a significance level α = 0.05. The

results showed that there is no difference in the mean value of slice selection accuracy

between the evaluated methods. Finally, the Tukey’s method was applied to perform

multiple comparisons. Figure 31 shows the pairwise comparison for Experiment 1, con-

sidering the ANOVA model and the adjustment made by the LM model. Note that all

confidence intervals overlap with zero, so there are no significant differences considering

the defined confidence level. Figure 32 shows the same analysis for Experiment 2. Fur-

thermore, it is observed that there is a flattening of the confidence interval due to the

increase in the p-value provided by the LM model.

Finally, as previously highlighted, the use of fuzzy logic associated with the MCDM

methods helped to ensure that no violation of the premise of normality was made. Figure

33a shows the analysis of residuals considering the ANOVA model, and Figure 33b shows

the adjustment done from the LM model for Experiment 1. Figures 34a and 34b illustrate

the analyzes for Experiment 2. Note that outliers still occur, but the model is able to

describe adequately the behavior response variable.
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Figure 31 – TS 02 - 95% confidence intervals comparing the methods into Experiment 1
with Tukey’s Test.

(a) ANOVA Model. (b) LM Model.

Source: elaborated by the author.

Figure 32 – TS 02 - 95% confidence intervals comparing the methods into Experiment 2
with Tukey’s Test.

(a) ANOVA Model. (b) LM Model.

Source: elaborated by the author.
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Figure 33 – TS 02 - Residual Plots to Experiment 1.

(a) For ANOVA model. (b) For LM model.

Source: elaborated by the author.

Figure 34 – TS 02 - Residual Plots to Experiment 2.

(a) For ANOVA model. (b) For LM model.

Source: elaborated by the author.
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6.4 Results for Test Setup 03

The purpose of this test setup, as detailed in Section 5.2.3, is to evaluate the NSSF

DAF in scenarios involving IoT, i.e., from the use of networking slices for mMTC, following

the specifications defined from 3GPP. In addition, we sought to evaluate the proposed

solution in scenarios with priority traffic, as it is the case involving patient monitoring

and natural disasters. The idea is to validate the hybrid algorithms in an integrated Edge

and Cloud Computing architecture for critical application scenarios.

The vertical slices considered were implemented as specified in Tables 5 and 6, and

used the scenario in Figure 15. The strategy for analyzing the results was the same used

in TS-01, and tested the set of hypotheses defined in Section 6.1. Two experiments are

performed. For Experiment 1, a fair distribution of the weights of each criteria (QoS

attributes) was considered in the selection of the best slice. For this experiment, the

methods could select the best slice according to the traffic conditions in network runtime,

and there were no attributes or network metrics being prioritized.

For Experiment 2, the following criteria were prioritized, in this order: Loss, Distance,

Download, Reliability, Density, Latency, Upload and Jitter, according to data presented in

Table 7. After obtaining the machine learning model, we evaluated the fourteen MCDM

methods adopted in the solution in the two experiments.

In both experiments, a linear regression model was used to adjust the response variable

data, and then the result was summarized in an ANOVA, so that the multiple comparison

using the Tukey’s test could be done. All tests performed considered a confidence level of

95%.

6.4.1 Experiment 1

The results from Experiment 1 are reported in Table 12 and summarized in Figure 35.

For all slices, there was rejection of the null hypothesis, i.e., the premisses of normality

and independence of the residuals, in addition to the fact that the homoscedasticity of

the variances were violated, according to equations (6.2), (6.3) and (6.4).

The performance of all methods for each slices is shown in Figure 36. For Slice 1, it

appears that the Cocoso and Ocra methods had the lowest IQR, and this is confirmed

in the KRUSKAL-WALLIS test. In general, most of the methods have a similar average

behavior, with an exception for the Mairca, Spotis and Vikor ones, which have repeatedly

shown difficulty in operating in environments with great variability in the selection criteria,
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Figure 35 – Behavior of the NSSF DAF methods - TS 03: Experiment 1
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and, for this reason, their results always diverge from the other MCDM methods. However,

the analysis of the estimated coefficients of the regression model shows the superiority of

the Spotis (5.96), Mairca (5.96) and Vikor (5.78) methods in the selection of Slice 1.

From the Tukey’s test, it was observed that there was no significant difference between

the methods in 55 comparisons out of 182 possible. This behavior is reported in the

network graph of Figure 37a, where the formation of two clusters can be observed: the

first formed by the Mairca, Spotis and Vikor methods, which denote the behavior of

the descriptive analysis provided in the boxplot of Figure 36a; the second formed by the

other methods with the leadership of the Promethee II method, which presents a slightly

superior performance to the others.

For Slice 2, which is the slice with the greatest technical capacity, as specified in Table

5 and 6, the methods have a similar average behavior, showing only a greater difference

in the variability of the response variable; however, it is necessary to verification of the

main hypothesis defined in the equation (6.1). The Mairca, Vikor and Spotis methods

presented a performance that diverges again from the others, as illustrated in Figure 36b.

It is also observed that the Vikor and Cocoso methods had the lowest IQR. From the

KRUSKAL-WALLIS test it was verified that there are differences between the methods,

leading to the rejection of the null hypothesis of the equation (6.1). From the estimated

coefficients analysis of the regression model there is evidence of a slight superiority of the

methods Edas (0.85), Moora (0.83), and Cocoso (0.79), compared to the other ones. For
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Table 12 – Methods Results: TS03 - Experiment 1

Slice Methods Mean STD Var CI

Slice 1

Aras 36.91 14.63 214.15 31.72 – 42.09
Cocoso 38.12 5.05 25.55 36.33 – 39.91
Codas 41.45 20.41 416.63 34.22 – 49.69
Copras 30.73 14.70 216.08 25.52 – 35.94
Edas 31.06 13.77 189.68 26.18 – 35.94

Mabac 36.82 11.24 126.40 32.83 – 40.80
Mairca 142.61 18.82 354.12 135.93 – 149.28
Marcos 35.94 14.79 218.87 30.69 – 41.19
Moora 31.21 14.18 200.98 26.19 – 36.24
Ocra 35.97 7.82 61.22 33.20 – 38.74

Promethee II 43.15 12.41 154.07 38.75 – 47.55
Spotis 142.61 18.82 354.12 135.93 – 149.28
Topsis 40.18 18.78 352.65 33.52 – 46.84
Vikor 138.88 25.41 645.73 129.87 – 147.89

Slice 2

Aras 104.18 32.96 1086.53 92.49 – 115.87
Cocoso 118.58 11.30 127.63 114.57 -122.58
Codas 103.24 41.55 1726.31 88.51 – 117.98
Copras 116.12 30.26 915.48 105.39 – 126.85
Edas 121.45 29.53 871.76 110.99 – 131.92

Mabac 114.97 24.46 598.47 106.30 – 123.64
Mairca 46.70 16.99 288.59 40.67 – 52.72
Marcos 107.97 32.48 1054.66 96.45 – 119.48
Moora 121.00 29.89 893.31 110.40 – 131.60
Ocra 109.36 18.54 343.61 102.79 – 115.94

Promethee II 112.33 22.17 491.35 104.47 – 120.19
Spotis 46.70 16.99 288.59 40.67 – 52.72
Topsis 109.94 34.46 1187.25 97.72 – 122.16
Vikor 50.58 20.11 404.50 43.44 – 57.71

Slice 3

Aras 108.91 33.71 1136.59 96.95 – 120.86
Cocoso 93.30 12.01 144.28 89.04 – 97.56
Codas 105.30 42.80 1831.91 90.13 – 120.48
Copras 103.15 30.75 945.45 92.25 – 114.05
Edas 97.48 29.46 868.13 87.04 – 107.93

Mabac 98.21 23.74 563.36 89.80 – 106.63
Mairca 60.70 20.93 438.09 53.28 – 68.11
Marcos 106.09 33.75 1139.21 94.12 – 118.06
Moora 97.79 29.49 869.80 87.33 – 108.25
Ocra 104.67 18.40 338.67 98.14 – 111.19

Promethee II 94.52 21.53 463.57 86.88 – 102.15
Spotis 60.70 20.93 438.09 53.28 – 68.12
Topsis 99.88 36.00 1296.36 87.11 – 112.65
Vikor 60.55 28.61 818.51 50.40 – 70.69

Legend: STD: Standard Deviation; Var: Variance ; CI: Confidence Intervals.

Source: elaborated by the author.
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the Tukey test, it was found that there is no significant difference between the methods

in 57 comparisons, which explains the perceived homogeneity in the Figure 37b.

In Slice 3, from analyzing the estimated coefficients of the regression model, it was

observed that basically all methods had similar performance, as can be seen in Figure 36c.

However, the Mairca, Spotis and Vikor methods had greater difficulties in evaluating the

traffic conditions to Slice 3. This slice has a moderate capacity compared to the other

slices and aims to serve a specific niche in the mMTC scenario. From the Tukey’s test, it

was observed that there is no difference between the methods for 57 comparisons, as seen

in Figure 37c.

The distribution adjustment of the response variable (Frequency of Selections) was

considered using a binomial distribution, and the sqrt() function was applied to approxi-

mate a normal distribution for all slices. These adjustments are illustrated in Figures 38,

39 and 40.

The findings presented in this section are further complemented by the results shown

in Appendix B (TS03: Experiment 2 and priority data). The experiments shown in

Appendix B differ from those presented in this section by their weight setup. In addition

to validating the behavior of the proposed hybrid algorithms and the efficiency of the

NSSF DAF architecture, the occurrence of 200 priority flows was also considered.

6.5 Chapter summary

In this chapter, the results and analysis for the test scenarios defined in Chapter 5

were presented. It was observed, from the results obtained and the statistical analyzes

measured, that the proposed framework is efficient for the evaluated scenarios.

For the experiments in the TS-01 and T-03 scenarios (see Appendix B for further

details), there was a need for verification and validation of the response variable, which,

although it presented characteristics of a normal distribution, when different statistical

tests were applied, it was not possible to obtain models that represented the data with

reliability, as well as it made performance comparisons between methods difficult. For

example, for TS-01, considering Experiment 1 and Slice 1, if the distribution followed a

binomial distribution, the likelihood of the Ocra method selecting Slice 1 would be 3.7 to

4.5 times greater than another method, considering a level of 95% confidence. However,

such comparisons were not possible as demonstrated in the simulated envelope graphs. In

this way, it was decided to use a linear regression model applying the correction provided
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Figure 36 – Descriptive analysis using boxplot - TS 03: Experiment 1.
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Figure 37 – Network graph TS03: Experiment 1. There is no significant difference
between this methods.

(a) Slice 1 (b) Slice 2

(c) Slice 3

Legend: 95% confidence intervals comparing each pair of methods.

Source: elaborated by the author.

Figure 38 – Simulated envelope TS03: Experiment 1 - Slice 1.

(a) Binomial GLM. (b) Normal LM.

Source: elaborated by the author.
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Figure 39 – Simulated envelope TS03: Experiment 1 - Slice 2.

(a) Binomial GLM. (b) Normal LM.

Source: elaborated by the author.

Figure 40 – Simulated envelope TS03: Experiment 1 - Slice 3.

(a) Binomial GLM. (b) Normal LM.

Source: elaborated by the author.
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by the sqrt() function. This strategy approximated the distribution to a normal one,

allowing the use of an ANOVA model and the comparison of methods MCDM based on

the use of multiple comparison methods.

For the TS-01, it was verified, in all experiments, that the Ocra method presented

the best results for Slice 1 (Remote Driving), and this demonstrates the efficiency of the

method in situations where the traffic requirements were more critical, i.e., that require

low latency and loss and high reliability. For Slice 2, the Cocoso and Promethee II methods

presented very consistent and regular results throughout all experiments, demonstrating

greater adherence to traffic where milder attenuation’s and more homogeneous character-

istics of the criteria existed. For Slice 3, there was a dissonant behavior of the Spotis,

Mairca and Vikor methods. These methods showed great difficulty in dealing with sce-

narios of great variability in the decision criteria. In addition, such methods had difficulty

in dealing with network traffic with high QoS requirements (the case of Slice 1), which is

specified to meet "Remote Driving", considered one of the most critical scenarios for 5G

and future networks.

For the TS-02, it was observed that the use of fuzzy logic, in conjunction with the

MCDM methods, allowed a performance gain of accuracy in the slices selection. In ad-

dition, it enabled the criteria to have a normal distribution, which facilitated the use of

parametric tests, and a less laborious statistical inference. However, the definition of the

set of rules requires the knowledge of an expert, which makes its application difficult in

production environments that are based on fully automated processes, such as those that

integrate MLOps models.

For TS-03 and TS-03 Alarm (priority data), the methods showed similar performance

in all experiments, with a more homogeneous distribution of the response variable. The

Spotis, Mairca and Vikor methods were dissonant in relation to the other methods for

all experiments. These methods prioritized Slice 1 almost exclusively. In experiments

with a fair distribution of weights, there is less variability in the response variable, which

implies a smaller number of outliers. In this sense, residual plots were used to identify

the outliers.

Overall, in the experiments conducted in the TS-03 and TS-03 Alarm scenarios, for

Slice 2, the Edas and Moora methods showed greater selection accuracy, and for Slice 3,

the Copras and Mabac methods were better in almost all experiments. The NSSF DAF

can be configured according to the purpose of previously instanced slices, helping in the

network orchestration process.
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7 CONCLUSIONS

This work presented a framework proposal that implements the NSSF function for

5G and future networks, using an approach that employs the concepts of Intelligent Edge

Computing, MLOps and AIOps in cloud native environments. In addition, a comparative

study between some slice selection strategies are presented. Three test setup environments

with different implementation technologies were used, seeking to assess the flexibility and

adaptability of the solution for different scenarios.

In general, each scenario includes 3 vertical slices in a multi-domain environment,

aiming at three common services in the context of 5G networks. In addition, we used a

strategy from the K-means method to group the UE data flows, so as to characterize the

available slices and, subsequently, define the weights that would be used in the MCDM

methods, whose purpose consisted of defining and selecting the best slice available to

receive the network flow during operating time.

Initially, it was necessary to study the slice selection models available in the literature,

as well as verifying the limitations of the works related, identifying important research

gaps. Next, the techniques were verified in order to solve the problem, so as to support

the choice and option for the methods covered herein that constitute the core of the NSSF

DAF framework.

The MCDM methods proved to be favorable, due to their simplicity and efficiency

when compared to other strategies; they did not require a history of virtual network oper-

ations and slices, which can be very useful for newly-created slices. To define the weights

and priorities between the criteria, the K-means clustering algorithm was considered, pro-

viding the opportunity for further studies and to adopt hybrid methods. Furthermore, the

proposed approach is extensible and allows the addition of new slice selection strategies,

considering the possibility of exploring reinforcement learning, evolutionary algorithms,

Bayesian networks, or even networks recurrent along with the MCDM methods in future

works.
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Considering the restrictions of the scenario, and from the analysis of the results, it

was verified that the proposed solution proved to be promising, as it can be transparently

deployed in the core or at the edge of networks that are already in operation. The

architecture of the framework, as well as its implementation models, allow the performance

of new tests considering other scenarios, so that improvements to the algorithms developed

may be proposed, as well as other techniques, strategies, and methods for the core of the

proposed framework can be evaluated.

It also observed that there are significant differences between the evaluated methods.

In this way, using the MLOps concept, it is possible to i) scale, load and retrain models,

2) adjust parameters, criteria weights and preference functions in network runtime, iii)

optimize the use of slices in test environments, and iv) direct data flows according to

the agreed SLA’s. Furthermore, it is possible to evaluate the adoption of data grouping

models, aiming to select the most suitable slice for the user considering the traffic gener-

ated. Hence, this work proposed an optimized E2E approach for the traffic management

of access networks to the 5G Core.

Finally, we concluded that selecting slices is still an open problem, which invites re-

searchers to study and develop new techniques, approaches, and solutions. Our proposed

framework provides compatibility with the current specification standards, thus consti-

tuting a promising solution for 5G and future networks in the context of NS.

The NSSF DAF solution can also be applied in several application niches, such as

situations that need to integrate large amounts of data from devices linked to the IoT

context to cloud services, in addition to the application in specialized slices such as eMBB,

mMTC and URLLC.

7.1 Answers for the research questions

This subsection contains the answers to the main research question (4.1.1) and the

secondary questions (4.1.2).

7.1.1 Main research questions

To answer the five RQs, an approach that employs machine learning, fuzzy logic and

decision-making methods called NSSF DAF was implemented. The proposed approach

focuses on the evaluation and dynamic mapping of the appropriate QoS requirements for

each type of service, user profile and specialized slice, initially focusing on the vertical
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model from edge computing, and then providing a distributed solution in the model

horizontal based on 3GPP OpenAPIs, MLOps and CNFs.

Different testbeds were conducted to validate the proposed solution, as well as to

evaluate its efficiency and ability to integrate with the specifications defined by the stan-

dardization bodies. The combination of these insights resulted in a scalable, extensible

and promising approach to provisioning NSSF service in 5G and future networks.

• RQ1. "How to select the best slice?".

Different solutions have been reported in the literature, with different approaches.

A portion of these solutions discussed in Section 3.1 have been validated in simu-

lation models and focus on the RAN. However, although these solutions point to

interesting ways, the biggest challenge focuses on proposing solutions in a viable

deployment model in networks that are in operation, and that includes an E2E net-

work slicing architecture, considering the preferences and the environment where

the UE is inserted. The framework proposed in this thesis covers all these gaps.

Evidence can be found in Chapters 4 and 5.

• RQ2. "Do the selected slices provide the necessary requirements for the

user?".

Dynamic mapping of user preferences to incoming traffic requires integration be-

tween different technologies and methods. In this sense, strategies for sharing pref-

erences between the UEs and the edge need to be done in a transparent and efficient

way. Furthermore, it is expected that the selection slices can support the creation

and/or adjustment of slices previously instantiated by network orchestrators. The

solution implemented and validated in this work selects the best slice according to

user preferences and traffic, and provides the data model required from network

orchestrators. Evidence can be found in Sections 4.1.2 and 4.1.3.

• RQ3. "Are the selection criteria modeled in a generic way, independently

of the access networking technology?"

In general, market solutions usually work as a black box and have specialist sys-

tems for analyzing and forwarding packets based on specific marking standards (e.g.

MPLS, SR-IPv6, EVPN). These solutions require the acquisition of numerous pro-

prietary appliances that aim to provide a complete pipeline, for example, RAN, Edge

and Core. The approach employed in this work makes use of open sources NFVs

that implement specific applications for data processing directly from the TCP/IP,
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SCTP and NGAP protocols stack. In this way, the QoS metrics used in the NSSF

function are obtained regardless of the RAN technology (All access modes), aggre-

gation and core networks, not requiring changes in legacy networks. The evidence

are detailed in Sections 4.1, 5.2.1, and 5.2.3.

• RQ4. "Do the approaches employ techniques aimed at the integration

and interoperability between RAN, Edge, and Core networks?".

Cloud native networks (e.g. 5G and 6G) consider that the entire network slicing

architecture must be virtualized. In this way, the NFs that can be instantiated

in the RAN, Edge or Core must offer and consume services through APIs. The

specifications of these APIs should provide a set of operations comprising interfaces

(SBI) to discover and identify available services and repositories, in addition to

allowing the creation of exposure models for new functions (e.g. NEFs). These

requirements have united the efforts of different standardization organizations, in

particular 3GPP through the 3GPP TS 29.501 specification and its updates, which

recommend that APIs should be designed as RESTful and allow JSON and YAML

data models.

The framework proposed in this work implements these models and enables integra-

tion and interoperability between NFs that can be deployed anywhere. For this, it

uses cloud orchestration technologies (K8s Clusters) and NFV/SDN functions. The

evidence are detailed in Section 4.1.3, and in the testbeds performed in Chapter 5.

• RQ5. "Do the solutions provide compatibility with the main specifica-

tions standards under development?".

To allow integration with different network orchestration tools (e.g. OSM, ONAP,

EMCO), as well as open 5G Core implementations (e.g. Open5GS and Free5GC1), it

is necessary that slice selection solutions i) use the 3GPP OpenAPIs specifications,

ii) follow compliance policies defined by ETSI for edge applications, and iii) allow

the integration of data from the Open RAN ecosystem and respecting the QoS

Regulation Manual defined by the ITU-T.

Despite the limitations of computational resources (NFVI ) used in this experiments,

all slices instantiated in the test setups conducted in this work followed the technical

specifications of these organizations. In this way, the NSSF DAF was validated

following the guidelines. The evidence can be evaluated in Chapter 5.
1https://free5gc.org/
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7.1.2 Secondary research questions

• SRQ1: "Is it feasible to propose a mathematical model that considers

the features and behavior of the different QoS variables for the NSSF

function?".

The modeling of the slice selection problem requires the evaluation of numerous

variables, most of which have conflicting objectives. Thus, it is necessary to for-

mulate algorithms for these multi-objective problems. In general, it is necessary to

minimize or maximize different variables, model the numerous restrictions, adjust

and readjust the parameters, among others (WANG; PEI; LI, 2023). The biggest

challenge is to do all the tasks and steps in network runtime. In addition, the for-

mulation of objective functions and the obtainment of optimal solutions are also

an arduous task, given the variability of the input variables, i.e., these variables do

not always have well-defined limits and may undergo sudden changes in short time

intervals.

For the experiments performed in this work, 07 to 08 QoS variables were used.

Proposing solutions on this scale involves the application of multi-objective opti-

mization methods, in particular, the application of evolutionary multi-objective al-

gorithms (MOEA) (YACOUBI et al., 2023), since classical optimization algorithms

do not deal with the problem. This task is complex and requires a steep convergence

time.

The solution adopted in this work used hybrid algorithms of machine learning and

decision-making methods.

• SRQ2:"Are the use of artificial intelligence techniques sufficient to predict

slice behavior during the network runtime?".

The experiments performed in this work showed that machine learning and fuzzy

logic techniques show promising results; however, it was noticed the need for the

refinement of the provided solutions. In this sense, the decision-making methods

played a fundamental role, since they do not require traffic history, and assemble

their matrices in network runtime. However, these strategies and methods will be

ineffective if there is not a solid methodology for data collection, training, re-training

and model adjustments in a continuous cycle. In this way, the application of the

MLOps concept proves to be fundamental, correcting the lag of the models and

providing continuous improvement.

The solution proposed in this work used all these approaches.
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• SRQ3: "How to ensure that the selection of slices made by a given user

equipment is carried end-to-end? What granularity of automation and in-

teroperability is required to orchestrate multiple network elements across

different administrative domains?".

This question involves different aspects. Initially, it is necessary to consider technical

and operational issues, and then issues involving regulatory and business models.

Ensuring slice selection involves different network entities, requiring adaptation of

the following points: i) inter-domain slices must be available for the NSSF function;

ii) it is necessary to guarantee that the selection of slices at the user and edge

levels are maintained in inter-domain scenarios through SLAs; iii) SLAs regulation

and continuity models are needed through a federated orchestration service; iv)

mobility management protocols and specialized network functions are needed to

guarantee E2E service; v) efficient and intelligent MLOps strategies are needed to

enable operations without human intervention; vi) business models that support

these operations are needed.

All these issues constitute open research problems and demand solutions. For the

approach proposed in this work, if the orchestrator is multi-domain, the NSSF DAF

will also be. However, the framework can act in local, regional and federalized

domains. The only requirement concerns slice visibility/availability for the NSSF

cloud native function.

7.2 Recommendations for future work

The solution proposed in this research project constitutes an important part of sce-

narios involving future networks. In general, the continuity of this work can be divided

into three major blocks, namely: i) Block 1 - definition, analysis and testing of new

approaches for the proposed framework core; ii) Block 2 - improvements to adaptability

mechanisms and updating of implementations and deployment models; iii) Block 3 -

development and extension of functionalities to facilitate the resolution of open research

problems.

• Block 1: An interesting path for further work consists of evaluating and comparing

other approaches to the Processor module of the NSSF DAF framework. Studies

involving: Deep Learning; SVM; Bayesian Networks; Decision Trees, and MOEA.

The idea is to verify the applicability of these methods and techniques from the
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perspective of chaotic systems, i.e., those that present: uncertain behavior; nonlinear

systems; non-regulation; orderliness and disorder.

Although several testbeds have been conducted to validate the proposal in this

work, other possible ways could involve validation through formal methods, such

as: Hierarchical Colored Petri Nets (HVL); Stochastic Petri Nets (SPN), Markov

Chains; BAN logic; and Applied pi Calculus.

• Block 2: A very relevant research contribution would be the implementation of

intelligents triggers along the chain of NFVs and VNFs. These triggers would

implement an intelligent scheduler of methods and techniques for the core of the

framework, according to traffic demand and utilization rates. Although, the solu-

tion presented in this work implements the concepts of DevOps and MLOps, the

triggers that signal the framework operations follow a Jenkins pipeline, and the op-

erations of the controller-manager (kube and cloud) of the K8s orchestrator. The

proposition of intelligent models that dynamically read the scenario from multi-

agent systems or intelligent bots would provide greater flexibility and scalability of

the NFs, especially the 3GPP NWDAF2 function (TS 29.520). Projects like Jina3

AI, which implement multimodal pipelines with cloud native technologies, can be

valuable in these researches.

• Block 3: The possibilities for future work defined in this block aim to give the

NSSF DAF framework or another solution that implements the 5GC NSSF func-

tion ways to solve open problems from the research questions and market. In this

sense, different modules or extensions can be added to the solution using the same

integration model based on 3GPP OpenAPIs.

Thus, we can highlight the need for adding the following modules:

1. Mobility management module. After the process of selecting slices, and indicat-

ing the best slice for the orchestrator, it is necessary to implement specialized

NFs to guarantee the continuity of the service in the handover process.

2. 6G Extension Module. Aims to meet the KPI’s specifications defined by the

NGNM for 6G networks. These specifications present specific requirements for

machine learning and deep learning models in a MLOps approach.

3. Integration module for proposing slice selection models as a federated service.
2https://www.3gpp.org/DynaReport/29520.htm
3https://github.com/jina-ai/jina
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4. Extension of the NSSF DAF framework to user (data) planes, through the P44

programming language and DPDK. Need to evaluate the performance of the

module to analyze the technical feasibility of deployment in switches layer 2

and 3.

7.3 Other Results

This doctoral research resulted in scientific publications and open source artifacts. In

the following subsections, we present these results.

7.3.1 Published Papers

• da Silva, D.C.; de Sousa, M.A.F.; Oliveira, W.; Barbosa, A.; Henrique, P.R.; Bres-

san, G.; Silveira, R.M.; Prasad. R. NSSF function in 6G networks based on

MLOps deployment model. CONASENSE: An Interdisciplinary Vision Towards

6G: Comunication, Navigation, Sensing and Services. IEEE WPMC 2023. Orlando,

Florida, USA, 2023. Under review.

• da Silva, D.C.; de Sousa, M.A.F.; Bressan, G.; Silveira, R.M. A benchmark analy-

sis of machine learning and decision-making methods for NSSF function

in a cloud-native 5G network. Computers and Electrical Engineering. 2023.

Qualis A2. Under review.

• da Silva, D.C.; Batista, J.O.R., Jr.; de Sousa, M.A.F.; Mostaço, G.M.; Monteiro,

C.d.C.; Bressan, G.; Cugnasca , C.E.; Silveira, R.M. A Novel Approach to

Multi-Provider Network Slice Selector for 5G and Future Communica-

tion Systems. Sensors 2022, 22, 6066. https://doi.org/10.3390/s22166066 . Qualis

A1.

• da Silva, D.C.; de Sousa, M.A.F.; Bressan, G.; Silveira, R.M. 5G Network Slice

Selector in IoT Services Scenarios with QoS Requirements Guarantee.

2022 IEEE Wireless Communications and Networking Conference (WCNC), Austin,

TX, USA, 2022, pp. 90-95, doi: 10.1109/WCNC51071.2022.9771744.

• Batista, J.O.R., Jr.; da Silva, D.C.; Martucci, M., Jr.; Silveira, R.M.; Cugnasca,

C.E. A Multi-Provider End-to-End Dynamic Orchestration Architecture
4https://opennetworking.org/p4/
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Approach for 5G and Future Communication Systems. Appl. Sci. 2021, 11,

11914. https://doi.org/10.3390/app112411914

7.3.2 Developed Software

• NSSF DAF: Network Slice Selection Function Decision-Aid Framework5.

7.4 Final remarks

This section concludes the research. As it was described, the main contributions

delivered was performed, as well as the answers to the research questions listed in Chapter

1. Opportunities for continuing the research in future works were also considered, divided

and detailed into three large blocks.

In general, the solution proposed in this work concentrated efforts on proposing an ap-

plicable solution for the slice selection problem in cloud-native networks. The architecture

of the developed framework adhered to the specifications of the main standards organi-

zations. In addition, some premises were assumed, such as: the solution’s deployment

model should be applicable to the main cloud virtualization and orchestration tools; the

integration model should be transparent in networks that were already in operation; the

solution should be scalable and extensible, allowing the integration of new modules; the

data collection model should be minimally invasive, not generating overhead on the net-

work; it should be independent of specific hardware manufacturers and models; it should

propose continuous life cycle improvement of the VNFs; and use preferentially open source

software.

Finally, we believe that the work achieved the outlined objectives, ensuring the deliv-

ery of the expected contributions.

5Available in https://github.com/gprisa/nssfdaf
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APPENDIX A

Below is a didactic example of the execution of the Algorithm 1, regarding the use of

Promethee II and TOPSIS. In addition, the VIKOR and COPRA methods were described

for the slice selection function.

A.1 Details of MCDM Methods

A.1.1 Application of the Promethee II Method

The Promethee II method considered four slices as alternatives, according to the

organization shown in Table 13. In this example, the criteria values for each of the

alternatives have been set arbitrarily. Next, the type of curve to be used in the comparison

between the alternatives was defined, for each of the considered criteria (ALINEZHAD;

KHALILI, 2019; FIGUEIRA; GRECO; EHRGOTT, 2005).

Table 14 presents this information in a consolidated form. It is important to note

that the function curves, also known as preference functions, follow the equation (A.1)

for the curve I (usual criterion). For such a curve, each alternative is compared with the

other, not depending on additional parameters. The alternative that presents the best

value for a given criterion is the winner in light of this criterion. This process is called

strict immediate preference.

Table 13 – Criteria and Alternatives Matrix - Promethee II.

Alternatives Latency Jitter Loss Reliability

Slice 1 100.85 89.10 20 54
Slice 2 85.65 34.65 18 62
Slice 3 92.40 66.20 24 31
Slice 4 76.80 48.30 17 50

Source: elaborated by the author.
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Table 14 – Characteristics of the criteria for the decision maker.

Criteria Weight Curve Parameters

Latency 0.27 I —
Jitter 0.19 I —
Loss 0.47 I —
Reliability 0.07 I and V p = 60% and q=45%

Source: elaborated by the author.

Figure 41 – Promethee II - Curve I: Usual Criterion.
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For the curve V (indifference criterion), which uses the equation (A.2), indifference

(q) and preference (p) thresholds are defined. The preference among the alternatives

is growing for this function (FIGUEIRA; GRECO; EHRGOTT, 2005). Fig. 41 and 42

presents the curves described in the equations (A.1) and (A.2).

dj(a, b) ≤ 0, Fj(a, b) = 0

dj(a, b) > 0, Fj(a, b) = 1
(A.1)

dj(a, b) ≤ q, Fj(a, b) = 0

q < dj(a, b) ≤ p, Fj(a, b) =
d−q
p−q

dj(a, b) > p, Fj(a, b) = 1

(A.2)

In the equations (A.1) and (A.2), dj(a, b) refers to the matrix with the alternatives,

where the alternative a is represented vertically and b horizontally. Comparisons between

alternatives occur according to a certain criterion, as illustrated in Table 15. Fj(a, b)

represents the preference function, which assumes values between 0 and 1, indicating the

Figure 42 – Promethee II - Curve V: Indifference Criterion.
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Table 15 – Comparison matrix in the light of the latency criterion.

Latency Slice 1 Slice 2 Slice 3 Slice 4

Slice 1 — 0 0 0
Slice 2 1 — 1 0
Slice 3 1 0 — 0
Slice 4 1 1 1 —

Source: elaborated by the author.

preference between the alternatives. For the equation (A.2) we also have the limits of

indifference (q) and preference (p).

The degree of over-classification π(a, b), calculated by comparing the alternatives a

and b, is given by the set of equations (A.3), where wj represents the criterion weight

j, Fj(a, b) the preference function, gj refers to the criterion value considering the curve

and the weight used, A the matrix for comparing the alternatives in relation to a given

criterion, and a and b, as previously stated, are two arbitrary alternatives. This scheme

is detailed below, according to the comparison matrices for each of the criteria (see Tables

15, 16, 17 and 18).

π(a,b) = 1
W

n∑
j=1

wj · Fj(a,b), where W = n

dj : A×A→ R

dj(a,b) = gj(a)− gj(b), where a, b ∈ A.

Fj(a,b) = Fj[dj(a,b)]

(A.3)

The definition of the comparison matrices by criteria follows the format given by Table

13. It is important to point out that for the latency, jitter and packet loss criteria, the

smaller the values obtained, the better the slice is in relation to the parameter in question.

Based on this premise, it was necessary to invert the (A.1) equations, so that the preference

functions reflected this premise. The change is demonstrated in the equation (A.4).

dj(a, b) ≥ 0, Fj(a, b) = 0

dj(a, b) < 0, Fj(a, b) = 1
(A.4)

After defining the comparison matrices for each criterion, the weights provided by the

K-Means algorithm are applied, in this example, described in Table 14. These operations

can be viewed in the Tables 19, 20, 21 and 22.

Then, the so-called positive (ϕ+) and negative (ϕ−) preference indices are calculated,

according to the equation (A.5). The first corresponds to the preference of alternative
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Table 16 – Comparison matrix in the light of the jitter criterion.

Jitter Slice 1 Slice 2 Slice 3 Slice 4

Slice 1 — 0 0 0
Slice 2 1 — 1 1
Slice 3 1 0 — 0
Slice 4 1 0 1 —

Source: elaborated by the author.

Table 17 – Comparison matrix in the light of the loss criterion.

Loss Slice 1 Slice 2 Slice 3 Slice 4

Slice 1 — 0 1 0
Slice 2 1 — 1 0
Slice 3 0 0 — 0
Slice 4 1 1 1 —

Source: elaborated by the author.

Table 18 – Comparison matrix in the light of the reliability criterion.

Loss Slice 1 Slice 2 Slice 3 Slice 4

Slice 1 — 0 1 1
Slice 2 1 — 1 1
Slice 3 0 0 — 0
Slice 4 0 0 1 —

Source: elaborated by the author.

Table 19 – Latency comparison matrix considering the criterion weight.

Latency Slice 1 Slice 2 Slice 3 Slice 4

Slice 1 — 0 × 0.27 = 0 0 × 0.27 = 0 0 × 0.27 = 0
Slice 2 1 × 0.27 = 0.27 — 1 × 0.27 = 0.27 0 × 0.27 = 0
Slice 3 1 × 0.27 = 0.27 0 × 0.27 = 0 — 0 × 0.27 = 0
Slice 4 1 × 0.27 = 0.27 1 × 0.27 = 0.27 1 × 0.27 = 0.27 —

Source: elaborated by the author.

Table 20 – Jitter comparison matrix considering the criterion weight.

Jitter Slice 1 Slice 2 Slice 3 Slice 4

Slice 1 — 0 × 0.19 = 0 0 × 0.19 = 0 0 × 0.19 = 0
Slice 2 1 × 0.19 = 0.19 — 1 × 0.19 = 0.19 1 × 0.19 = 0.19
Slice 3 1 × 0.19 = 0.19 0 × 0.19 = 0 — 0 × 0.19 = 0
Slice 4 1 × 0.19 = 0.19 0 × 0.19 = 0 1 × 0.19 = 0.19 —

Source: elaborated by the author.
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Table 21 – Loss comparison matrix considering the criterion weight.

Loss Slice 1 Slice 2 Slice 3 Slice 4

Slice 1 — 0 × 0.47 = 0 1 × 0.47 = 0.47 0 × 0.47 = 0
Slice 2 1 × 0.47 = 0.47 — 1 × 0.47 = 0.47 0 × 0.47 = 0
Slice 3 0 × 0.47 = 0 0 × 0.47 = 0 — 0 × 0.47 = 0
Slice 4 1 × 0.47 = 0.47 1 × 0.47 = 0.47 1 × 0.47 = 0.47 —

Source: elaborated by the author.

Table 22 – Reliability comparison matrix considering the criterion weight.

Reliability Slice 1 Slice 2 Slice 3 Slice 4

Slice 1 — 0 × 0.07 = 0 1 × 0.07 = 0.07 1 × 0.07 = 0.07
Slice 2 1 × 0.07 = 0.07 — 1 × 0.07 = 0.07 1 × 0.07 = 0.07
Slice 3 0 × 0.07 = 0 0 × 0.07 = 0 — 0 × 0.07 = 0
Slice 4 0 × 0.07 = 0 0 × 0.07 = 0 1 × 0.07 = 0.07 —

Source: elaborated by the author.

a over all alternatives, while the negative preference index corresponds to the preference

index of all alternatives over a.

ϕ+(a) =
∑

b∈A π(a, b)

ϕ−(a) =
∑

b∈A π(b, a)
(A.5)

The positive and negative preference matrix is presented in Table 23.

Finally, the matrix resulting from the application of the method is calculated, that is,

the final index of preference, given by the equation (A.6). The sum of the rows in Table

23 corresponds to the positive preference index (ϕ+), and the sum of the columns to the

negative preference index (ϕ−).

Table 23 – Positive and negative preference matrix.

π Slice 1 Slice 2 Slice 3 Slice 4

Slice 1 — 0 0.54 0.27
Slice 2 1 — 1 0.26
Slice 3 0.46 0 — 0
Slice 4 0.93 0.74 1 —

Source: elaborated by the author.
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Table 24 – Promethee II Resultant Matrix.

Alternatives ϕ+ ϕ− ϕ

Slice 1 0.81 2.39 -1.58
Slice 2 2.26 0.74 1.52
Slice 3 0.46 2.54 -2.08
Slice 4 2.67 0.53 2.14

Source: elaborated by the author.

ϕ(a) = ϕ+(a)− ϕ−(a), a ∈ A.

ϕ(a) > ϕ(b), then alternative a is preferred over alternative b.

ϕ(a) = ϕ(b), then alternative a is indifferent to alternative b.

(A.6)

The preference ranking between the alternatives (ϕ), output of the Promethee II

method, is shown in Table 24.

The sort order for this example is therefore: Slice 4 > Slice 2 > Slice 1 > Slice

3 . Therefore, Slice 4 is the slice selected as the best among those evaluated.

A.1.2 Application of the TOPSIS Method

The TOPSIS method employs the principle of choosing an alternative that is closest

to the positive ideal solution (best solution), and farthest from the negative ideal solu-

tion (worst solution). Thus, the method focuses on maximizing benefits and minimizing

costs (BAKMAZ; BOJKOVIC; BAKMAZ, 2020).

The execution of the method consists of 06 steps, which are demonstrated below. To

simplify the demonstration, only 03 criteria will be considered and 02 alternatives (slices).

Table 25 presents the initial matrix.

Table 25 – Criteria values for Slice 1 and Slice 2.

Alternatives Latency Jitter Loss

Slice 1 0.85 0.100 1
Slice 2 0.65 0.65 5

Source: elaborated by the author.

Step 01: normalize the data as in Table 26, according to the equation (A.7).

rij =
xij√∑m
i=1 x

2
ij

for i = 1, ...,m; and j = 1, ..., n (A.7)
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Table 26 – Normalization of Slice 1 and Slice 2 criteria.

Alternatives Latency Jitter Loss

Slice 1 0.85√
(0.85)2+(0.100)2+(1)2

0.100√
(0.85)2+(0.100)2+(1)2

1√
(0.85)2+(0.100)2+(1)2

Slice 2 0.65√
(0.65)2+(0.65)2+(5)2

0.65√
(0.65)2+(0.65)2+(5)2

5√
(0.65)2+(0.65)2+(5)2

Source: elaborated by the author.

Table 27 – Weighted normalization of the Slice 1 and Slice 2.

Alternatives Latency Jitter Loss

Slice 1 0.64*0.24 = 0.15 0.07*0.14 = 0.01 0.75*0.62 = 0.47
Slice 2 0.12*0.24 = 0.02 0.12*0.14 = 0.01 0.96*0.62 = 0.59

Source: elaborated by the author.

Where xij are the matrix values containing the alternatives in each line, by the criteria

in each column.

Step 02: calculate the weighted normalization, that is, multiply the weights of each

criterion by the normalized data of the matrix rij according to Table 27, according to

equation (A.8).

vij = wj ∗ rij for i = 1, ...,m; and j = 1, ..., n (A.8)

Being wj a vector containing the weights provided by the K-means algorithm.

Step 03: identify the ideal positive solutions and ideal negative solutions according

to Table 28, using the equations (A.9) and (A.10).

A+ = {v+1 , ..., v+j , ..., v+n } = {(maxjvij | j = 1, ..., n) | i = 1, ...,m} (A.9)

A− = {v−1 , ..., v−j , ..., v−n } = {(minjvij | j = 1, ..., n) | i = 1, ...,m} (A.10)

The equation (A.9) seeks to select the highest values of the criteria, that is, the higher

Table 28 – Positive and negative ideal solutions of Slices 1 and 2.

Alternatives Latency Jitter Loss

S+ 0.02 0.01 0.47
S- 0.15 0.01 0.59

Source: elaborated by the author.
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Table 29 – Solutions of the ideal positive and negative distances of Slices 1 and 2.

Slices Positive ideal and negative ideal distance Total

Slice 1 D+
√

((0.15− 0.02)2) + ((0.01− 0.01)2) + ((0.47− 0.47)2) 0.169
Slice 1 D-

√
((0.15− 0.15)2) + ((0.01− 0.01)2) + ((0.47− 0.59)2) 0.144

Slice 2 D+
√

((0.02− 0.02)2) + ((0.01− 0.01)2) + ((0.59− 0.47)2) 0.144
Slice 2 D-

√
((0.02− 0.15)2) + ((0.01− 0.01)2) + ((0.59− 0.59)2) 0.169

Source: elaborated by the author.

Table 30 – Approximation with the ideal positive and negative solutions.

Slices Result

Slice 1 0.144
0.169+0.144 = 0.46

Slice 2 0.169
0.144+0.169 = 0.54

Source: elaborated by the author.

the better. In this way, criteria such as bandwidth, reliability, for example, are selected.

The equation (A.10) selects the smallest values, in this case, the smaller the better. Thus,

criteria such as: jitter, latency and loss are selected (BAKMAZ; BOJKOVIC; BAKMAZ,

2020).

Step 04: find the ideal positive and ideal negative distances for each alternative,

according to Table 29, from the equations (A.11) and (A.12).

D+
i =

√√√√ N∑
j=1

(vij − s+j )
2 for i = 1, ..., N (A.11)

D−
i =

√√√√ N∑
j=1

(vij − s−j )
2 for i = 1, ..., N (A.12)

Where the values selected in step 03 are placed in s+j and s−j and the matrix values

in vij. Obtaining, therefore, a vector with the largest (D+
i ) and smallest (D−

i ) distances

of each alternative.

Step 05: calculate the relative approximation with the positive ideal solution and

the negative ideal solution, according to Table 30, and using the equation (A.13).

Ai =
D−

i

D+
i +D−

i

for 0 ≤ Ai ≤ 1, i = 1, 2, 3, ... M (A.13)

Step 06: the slices are ordered according to the approximation of the ideal solution.

In this case, the slice that has the closest score to 1 and the worst case distance (0), is
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selected. For this example, Slice 2 is selected, finalizing the process.

A.1.3 Description of the VIKOR Method

According to (ALINEZHAD; KHALILI, 2019; WA̧TRÓBSKI et al., 2019; BABASHAMSI

et al., 2016), the following steps make up the VIKOR method:

Step 01: Consider Saaty’s fundamental scale (FIGUEIRA; GRECO; EHRGOTT,

2005). Table 31 presents the relationship between the intensity of importance (preference)

of the criteria and the verbal definition of the same, i.e., the relationship between the

numerical and verbal scale. Intermediate values (2,4,6,8) attribute definitions immediately

below the scale of importance.

Also consider the Table 32, containing the IR (Random Index) provided by Thomas

L. Saaty (FIGUEIRA; GRECO; EHRGOTT, 2005).

Table 31 – Saaty’s Fundamental Scale.

Intensity of importance Definition

1 Equal preference
3 Moderate preference
5 Strong preference
7 Very strong preference
9 Absolute preference

Source: Adapted from Thomas L. Saaty (1980).

From Tables 31 and 32, and using the set of data defined in Table 13, determine the

value f ∗
j and the worst value f−

j of each criterion, according to the equations (A.14) and

(A.15).

f ∗
j = maxi fij (A.14)

f−
j = mini fij (A.15)

Step 02: Calculate the values Si and Ri, according to the equations (A.16) and

Table 32 – Random Index (RI).

Matrix size (n) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.48 1.56 1.57 1.59

Source: Thomas L. Saaty (1980).
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(A.17).

Si =
m∑
j=1

wj

f ∗
j − fij

f ∗
j − f−

i

(A.16)

Ri = maxj

[
wj

f ∗
j − fij

f ∗
j − f−

i

]
(A.17)

Where wj is the criterion weight.

Step 03: Determine the value of Qi, where i = 1, ..., n, obtained by the equation

(A.18).

Qi = v

[
(Si − S∗)

(S− − S∗)

]
+ (1− v)

[
(Ri −R∗)

(R− −R∗)

]
(A.18)

Where S∗ = miniSi, S− = maxiSi, R∗ = miniRi, R− = maxiRi and v used as

maximum group utility. Default value: v = 0.5.

Step 04: Then sort Si, Ri, Qi in descending order, if the two conditions (A.19) and

(A.20) are satisfied.

(i) Q(a2)−Q(a1) ≥ (1/(n− 1)) (A.19)

(ii) Q(am)−Q(a1) < (1/(n− 1)) (A.20)

Step 05: Sort the slices, finalizing the process.

A.1.4 Description of the COPRAS Method

The COPRAS method is simpler when compared to other decision-making methods,

which facilitates its application in several areas.

According to (ALINEZHAD; KHALILI, 2019), the following steps make up the CO-

PRAS method:

Step 01: Initially, the decision matrix must be considered. In this work represented

by Table 13.

Step 02: The Normalization of Decision-Making Matrix.

In order to allow the comparison between the alternatives, use the normalization

process given by the equation (A.21).
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r∗ij =
rij∑m
i=1 rij

; j = 1, ..., n (A.21)

Where, r∗ij indicates the normalized value of the decision matrix of i th alternative in

j th attribute.

Step 03: Determining of Weighted Normalized Decision-Making Matrix.

After the normalization process, the weighted matrix is obtained by multiplying the

attribute weights.

The (A.22) equation is used.

r−ij = r∗ij.wj; i = 1, ...,m; j = 1, ..., n (A.22)

Where wj is the weight of attribute [w1, w2, ..., wn].

Step 04: Calculation of Maximizing and Minimizing Indexes

In this step, considering the type of each attribute (negative or positive), the maxi-

mizing and minimizing indexes of each attribute are obtained.

Equations (A.23) and (A.24) demonstrate this process.

S+i =

g∑
j=1

r−ij ; i = 1, ...,m (A.23)

S−i =

g∑
j=g+1

r−ij ; i = 1, ...,m (A.24)

Where g is the number of positive attributes and n − g is the number of negative

attributes, and Si defines the maximizing and minimizing indexes of i th attribute.

Step 05: Calculation of the Relative Significance Value

The calculation of the relative significance value (Qi) for each alternative is obtained

through the equations (A.25) and (A.26).

Qi = S+i +
miniS−i

∑m
i=1 S−i

S−i

∑m
i=1

miniS−i

S−i

(A.25)

Qi = S+i +

∑m
i=1 S−i

S−i

∑m
i=1

1
S−i

(A.26)

Step 06: The priority order of alternatives
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The final ranking of alternatives considers the relative significance values in descending

order. Thus, the highest final value has the highest rank, finalizing the process.

A.1.5 Other MCDM Methods

The other decision-making methods used in the NSSF DAF, especially in scenario

03 described in Section 5.2.3, use similar approaches, considering the particularities and

characteristics of each one of them.

In fact, a set of routines is necessary to evaluate the data set obtained in various

environments test, defining the decision matrix format. Following this, several matrix

operations are performed to evaluate the alternatives, considering the different weights of

the criteria established by the user or by another strategy. This behavior in this work is

configured through utility functions defined by the proposed hybrid algorithms.

Thus, from the evaluation of the alternatives, and considering the weights and pref-

erences of the user or system, the final ranking is obtained, and the best slice is selected

in network runtime.

For more information about the methods, see the following references:(NGUYEN

et al., 2022a; WANG et al., 2020; ULUTAş et al., 2020; DEZERT et al., 2020; KUN-

DAKCı, 2019; YAZDANI et al., 2019; ALINEZHAD; KHALILI, 2019; WA̧TRÓBSKI et

al., 2019; HEZER; GELMEZ; ÖZCEYLAN, 2021; BOJKOVIC; BAKMAZ; BAKMAZ,

2019; BABASHAMSI et al., 2016; FIGUEIRA; GRECO; EHRGOTT, 2005).
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APPENDIX B

This appendix explains the experiments performed in the TS-01 (experiments 2,3 and

4) and T-03 (experiment 2 and priority data) scenarios. The experiments follow the same

approach explained in Chapter 6, and their objectives is to verify the performance of the

different approaches considering the weight setups presented in Tables 7 and 8.

Thus, it was decided to use a linear regression model by applying the corrections

provided by the sqrt function. As a result, this strategy approximated the distribution

to a normal one, allowing the use of an ANOVA model and applying multiple comparison

methods.

B.1 TS-01: Experiment 2

Table 33 presents the methods results for each slices in Experiment 2. The average

performance of the methods is summarized in Figure 43.

For Experiment 2, the attributes “Latency”, “Jitter”, “Loss” were prioritized, according

to the weights defined in Table 8. The weights correspond to the result of the K-means

algorithm analysis, discussed in Section 5.3.1. This configuration prioritizes Slice 1 and

2, with a slight advantage for Slice 2. In this sense, we seek to verify the MCDM methods

sensitivity to these slices requirements. In addition, we aim to verify statistically whether

there are significant differences in the accuracy of selection between the evaluated meth-

ods.

For Slices 1, 2 and 3, there was normality violation, independence of residuals and

homoscedasticity of variances, which implied the rejection of the null hypotheses de-

fined in equations (6.2), (6.3), and (6.4). Solving this situation, the KRUSKAL-WALLIS

non-parametric method was used, where it was found that the median of the evaluated

methods are different, and that Ocra and Cocoso methods present the lowest IQR, which

corroborates with the descriptive analysis shown in Figure 44.
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Table 33 – Methods Results: TS01 - Experiment 2

Slice Methods Mean STD Var CI

Slice 1

Aras 187.82 21.81 475.59 180.09 – 195.55
Cocoso 100.33 32.50 1056.23 88.81 – 111.86
Codas 185.73 22.82 520.64 177.64 – 193.82
Copras 140.85 55.14 3040.38 121.30 – 160.40
Edas 155.42 55.16 3042.44 135.87 – 174.98

Mabac 114.70 60.14 3616.97 93.37 – 136.02
Mairca 41.73 26.03 677.33 32.50 – 50.96
Marcos 188.76 24.19 585.06 180.18 – 197.33
Moora 144.88 59.42 3530.80 123.81 – 165.95
Ocra 231.12 4.61 21.30 229.48 – 232.76

Promethee II 107.27 50.79 2579.83 89.26 – 125.28
Spotis 41.73 26.03 677.33 32.50 – 50.96
Topsis 84.70 51.88 2691.47 66.30 – 103.09
Vikor 53.73 28.63 819.70 43.58 – 63.88

Slice 2

Aras 44.70 30.77 946.84 33.79 – 55.61
Cocoso 127.82 37.28 1389.84 114.60 – 141.04
Codas 40.97 35.86 1286.28 28.25 – 53.69
Copras 78.58 62.25 3875.56 56.50 – 100.65
Edas 71.73 58.49 3421.58 50.99 – 92.47

Mabac 113.61 73.26 5367.18 87.63 – 139.58
Mairca 54.12 57.47 3303.11 33.74 – 74.50
Marcos 44.94 33.09 1094.81 33.21 – 56.67
Moora 81.03 64.39 4146.47 58.20 – 103.86
Ocra 10.58 6.96 48.50 8.11 – 13.05

Promethee II 110.30 68.29 4663.03 86.09 – 134.52
Spotis 54.12 57.47 3303.11 33.74 – 74.50
Topsis 113.09 88.99 7918.46 81.54 – 144.64
Vikor 86.79 80.53 6485.86 58.23 – 115.34

Slice 3

Aras 17.48 15.01 225.38 12.16 – 22.81
Cocoso 21.85 7.59 57.63 19.16 – 24.54
Codas 23.30 18.37 337.47 16.79 – 29.82
Copras 30.58 22.56 508.81 22.58 – 38.57
Edas 22.85 17.00 288.95 16.82 – 28.88

Mabac 21.70 25.85 668.34 12.53 – 30.86
Mairca 154.15 50.50 2550.63 136.24 – 172.06
Marcos 16.30 14.86 220.78 11.03 – 21.57
Moora 24.09 19.80 391.90 17.07 – 31.11
Ocra 8.30 3.36 11.28 7.11 – 9.49

Promethee II 32.42 25.16 633.06 23.50 – 41.35
Spotis 154.15 50.50 2550.63 136.24 – 172.06
Topsis 52.21 48.84 2385.36 34.89 – 69.53
Vikor 109.48 65.99 4354.57 86.09 – 132.88

Legend: STD: Standard Deviation; Var: Variance ; CI: Confidence Intervals.

Source: elaborated by the author.



143

Figure 43 – Behavior of the NSSF DAF methods - TS 01: Experiment 2
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Source: elaborated by the author.

In addition, to allow the performance comparison of all methods for each of the slices,

a linear regression model was employed, and the result was summarized in an ANOVA.

This procedure was possible by applying the sqrt() function to the response variable

(Frequency of Selections), which made the distribution of this variable approach a normal

distribution, as illustrated in Figures 46b, 47b, and 48b. Note that although the response

variable has characteristics of count data, it does not obey a binomial distribution, as

shown in the simulated envelope plots of Figures 46a, 47a, 48a, and extensively discussed

in Section 6.2.1.

Finally, from the estimated coefficients analysis in the regression model, it appears

that the Ocra method reached the highest positive number (1.52), which demonstrates its

superiority in relation to the others for Slice 1. Regarding Slice 2, it was observed that the

Cocoso (5.02), Mabac (3.85), Promethee II (3.79) and Topsis (3.42) methods demonstrate

superiority in selection accuracy.

For Slice 3, it was observed that Spotis (8.57), Mairca (8.57) and Vikor (6.28) method

performed better. However, this finding is dissonant from the other methods, since for

Experiment 2 the attributes with the highest weight were Latency, Jitter and Loss, and

considering the characteristics of the slices from the machine learning model used, the

slices with the highest probability of being selected would be Slices 1 and 2.

The result of the multivariate comparison provided by the TukeyHSD test for Exper-

iment 2, considering a significance level of 95%, is presented in Figure 45. For Slice 1,
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in 26 comparisons there is no significant difference between the methods, this is denoted

by the presence of three clusters in Figure 45a. For Slice 2, in 16 comparisons there is

no superiority between the methods, as evidenced in Figure 45b. Finally, for Slice 3,

there is greater uniformity in the performance of the methods, with the exception of the

Mairca and Spotis methods. However, in 50 out of 182 comparisons, there is no significant

difference between the methods, as demonstrated by the cluster density in Figure 45c.

Figure 44 – Descriptive analysis using boxplot - TS 01: Experiment 2.
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Source: elaborated by the author.
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Figure 45 – Network graph TS01: Experiment 2. There is no significant difference
between this methods.

(a) Slice 1 (b) Slice 2

(c) Slice 3

Legend: 95% confidence intervals comparing each pair of methods.

Source: elaborated by the author.

Figure 46 – Simulated envelope TS01: Experiment 2 - Slice 1.

(a) Binomial GLM. (b) Normal LM.

Source: elaborated by the author.
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Figure 47 – Simulated envelope TS01: Experiment 2 - Slice 2.

(a) Binomial GLM. (b) Normal LM.

Source: elaborated by the author.

Figure 48 – Simulated envelope TS01: Experiment 2 - Slice 3.

(a) Binomial GLM. (b) Normal LM.

Source: elaborated by the author.
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B.2 TS-01: Experiment 3

For Experiment 3, the attributes “Bandwidth”, “Transfer”, “Loss” were prioritized,

according to the weights defined in Table 8. This configuration prioritizes Slices 1 and 3,

with a slight advantage for Slice 1. It is intended to verify whether there are significant

differences in the selection accuracy between the evaluated methods, i.e., the validation

of the main hypothesis defined in the equation (6.1).

For Slice 1, and considering the result of the KRUSKAL-WALLIS non-parametric

test, it was found that the medians of the evaluated methods are different, and that the

Ocra method presents the lowest IQR, followed by the Codas, Aras and Marcos methods,

which corroborates the descriptive analysis provided in Figure 50a. For the Mairca, Spotis

and Vikor methods, the interquartile range was zero, which demonstrates the inefficiency

of these methods for the selection of Slice 1.

From analyzing the estimated coefficients in the regression model, it appears that the

Codas method reached the highest positive number (0.195), slightly surpassing the Ocra

method (0.192). The two methods showed greater consistency in the selection of Slice 1,

this behavior is evidenced in Figure 50a and Table 34. In addition, other methods also

presented a high average, however, with a greater variation in their results, as it is the

case of the Aras, Marcos, Moora, and Topsis methods. The adjustments applied to the

response variable for the LM and GLM models can be seen in Figure 52.

For the Tukey’s test, and by analyzing Figure 51a, the formation of two clusters was

observed, showing that between the methods that make up each cluster there are no

significant differences in the accuracy of slices selection, considering a confidence level of

95%. For example, for the first cluster, it is observed that i) there are no differences in

performance between the Mabac, Copras, Topsis, Moora and Edas methods, which had

their performance surpassed by the methods of the second cluster, and that ii) there is

no significant difference in performance between them (Marcos, Codas, Aras and Ocra

methods, respectively).

For Slice 2, the methods show greater variability in their results, as it can be seen in

Figure 50b. This more homogeneous performance among all methods is shown in Figure

49, which consists of the Tukey test output. From the 182 possible comparisons, 58

displayed no significant difference between the methods, and this behavior is illustrated

by the cluster density. Based on the estimated coefficients in the regression model, the

Cocoso (3.75) and Vikor (2.66) methods demonstrated a slight superiority in relation to
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Figure 49 – Behavior of the NSSF DAF methods - TS 01: Experiment 3
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Source: elaborated by the author.

the other methods. The adjustments applied to the response variable for the LM and

GLM models can be seen in Figure 53.

For Slice 3, and considering the result of the analysis of the estimated coefficients

in the regression model, the Spotis (14.46), Mairca (14.46) and Vikor (14.31) methods

demonstrate superiority in the selection accuracy for Slice 3. As in the other experiments,

these methods had difficulties in dealing with a greater variability of the criteria used in

the slice selection process, and prioritized the slice with the lowest attenuation of these

parameters, that is, Slice 3. The performance of these methods is shown in Figures 50c

and 49, whereas the output of the LM and GLM models are illustrated in Figure 54.
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Figure 50 – Descriptive analysis using boxplot - TS 01: Experiment 3.
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Source: elaborated by the author.
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Figure 51 – Network graph TS01: Experiment 3. There is no significant difference
between this methods.

(a) Slice 1 (b) Slice 2

(c) Slice 3

Legend: 95% confidence intervals comparing each pair of methods.

Source: elaborated by the author.

Figure 52 – Simulated envelope TS01: Experiment 3 - Slice 1.

(a) Binomial GLM. (b) Normal LM.

Source: elaborated by the author.
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Figure 53 – Simulated envelope TS01: Experiment 3 - Slice 2.

(a) Binomial GLM. (b) Normal LM.

Source: elaborated by the author.

Figure 54 – Simulated envelope TS01: Experiment 3 - Slice 3.

(a) Binomial GLM. (b) Normal LM.

Source: elaborated by the author.
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Table 34 – Methods Results: TS01 - Experiment 3

Slice Methods Mean STD Var CI

Slice 1

Aras 234.82 14.09 198.47 229.82 – 239.81
Cocoso 184.21 34.85 1214.67 171.85 – 196.57
Codas 240.79 13.22 174.67 236.10 – 245.47
Copras 220.45 31.23 975.44 209.38 – 231.53
Edas 228.48 20.69 427.95 221.15 – 235.82

Mabac 216.79 39.01 1521.98 202.95 – 230.62
Mairca 0.61 1.43 2.06 0.09 – 1.11
Marcos 235.79 15.46 239.11 230.30 – 241.27
Moora 228.30 23.08 532.84 220.12 – 236.49
Ocra 240.55 2.71 7.32 239.59 – 241.50

Promethee II 200.85 53.44 2856.20 181.90 – 219.80
Spotis 0.61 1.43 2.06 0.09 – 1.11
Topsis 224.15 39.80 1584.32 210.04 – 238.27
Vikor 1.15 4.30 18.51 0.37 – 2.68

Slice 2

Aras 14.82 14.12 199.40 9.81 – 19.83
Cocoso 56.73 32.06 1028.02 45.36 – 68.09
Codas 8.88 13.25 175.67 4.18 – 13.58
Copras 28.45 31.53 994.38 17.27 – 39.64
Edas 19.76 20.23 409.13 12.59 – 26.93

Mabac 32.12 38.51 1482.98 18.47 – 45.78
Mairca 34.12 18.73 350.80 27.48 – 40.76
Marcos 13.85 15.48 239.63 8.36 – 19.34
Moora 20.18 22.69 514.90 12.14 – 28.23
Ocra 7.03 3.57 12.78 5.76 – 8.30

Promethee II 46.06 51.26 2627.50 27.88 – 64.24
Spotis 34.12 18.73 350.80 27.48 – 40.76
Topsis 25.12 38.94 1516.11 11.31 – 38.93
Vikor 38.24 10.68 114.13 34.45 – 42.03

Slice 3

Aras 0.36 1.25 1.55 0.08 – 0.81
Cocoso 9.06 3.71 13.75 7.75 – 10.38
Codas 0.33 1.11 1.23 0.06 – 0.73
Copras 1.09 1.97 3.90 0.39 – 1.79
Edas 1.76 2.18 4.75 0.98 – 2.53

Mabac 1.09 1.65 2.71 0.51 – 1.67
Mairca 215.27 18.35 336.70 208.77 – 221.78
Marcos 0.36 1.14 1.30 0.04 – 0.77
Moora 1.52 2.21 4.88 0.73 – 2.30
Ocra 2.42 1.80 3.25 1.78 – 3.06

Promethee II 3.09 3.42 11.71 1.88 – 4.30
Spotis 215.27 18.35 336.70 208.77 – 221.78
Topsis 0.73 1.35 1.83 0.25 – 1.21
Vikor 210.61 9.24 85.31 207.33 -213.88

Legend: STD: Standard Deviation; Var: Variance ; CI: Confidence Intervals.

Source: elaborated by the author.
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Figure 55 – Behavior of the NSSF DAF methods - TS 01: Experiment 4
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B.3 TS-01: Experiment 4

Table 35 presents the results for Experiment 4, and Figure 55 summarizes the average

performance of the methods in each slices. As occurred in the other experiments of this

test setup, all parametric tests failed to accept the null hypotheses test previously defined

in equations (6.2),(6.3), and (6.4).

For Experiment 4, a fair distribution of weights among all criteria was defined, ac-

cording to Table 8. This configuration let the NSSF DAF choose which slice will receive

network traffic from the UPF. Thus, the objective is to verify whether there are significant

differences in the selection accuracy between the evaluated methods.

The same analysis was performed in this experiment. It was observed that, by us-

ing the non-parametric KRUSKAL-WALLIS test, the median of the evaluated methods

are different, and the Ocra method presents the lowest IQR. Furthermore, due to the

impossibility of using parametric tests, a linear regression model was implemented, and

the output of the LM model was summarized in an ANOVA, enabling the application of

multiple comparison methods.

For Slice 1, among the evaluated methods, the accuracy of the Ocra, Codas and Aras

methods stands out from the others. When analyzing the estimated coefficients in the

regression model, it appears that the Ocra method reached the highest positive number

(0.424), slightly surpassing the others. Furthermore, the method had the least variability,
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as reported by the KRUSKAL-WALLIS test. Other methods had also an interesting

Table 35 – Methods Results: TS01 - Experiment 4

Slice Methods Mean STD Var CI

Slice 1

Aras 225.03 15.65 244.97 219.48 – 230.58
Cocoso 148.24 28.65 820.75 138.08 – 158.40
Codas 226.52 19.59 383.76 219.57 – 233.46
Copras 211.21 25.88 669.80 202.04 – 220.39
Edas 219.00 22.96 527.25 210.86 – 227.14

Mabac 181.48 44.02 1938.07 165.87 – 197.09
Mairca 12.33 13.81 190.73 7.43 – 17.23
Marcos 224.36 17.55 307.86 218-14 – 230.59
Moora 212.48 29.81 888.76 201.91 – 223.06
Ocra 237.67 2.30 5.29 236.85 – 238.48

Promethee II 159.30 39.30 1544.28 145.37 – 173.24
Spotis 12.33 13.81 190.73 7.43 – 17.23
Topsis 169.94 56.28 3167.18 149.98 – 189.89
Vikor 24.06 22.09 488.00 16.22 – 31.89

Slice 2

Aras 19.94 16.45 270.68 14.11 – 25.77
Cocoso 83.67 26.42 697.79 74.30 – 93.03
Codas 17.48 18.74 351.20 10.84 – 24.13
Copras 29.61 23.74 563.81 21.19 – 38.02
Edas 22.55 20.14 405.44 15.41 – 29.69

Mabac 54.39 39.50 1559.93 40.39 – 68.40
Mairca 67.21 38.29 1465.80 53.64 – 80.79
Marcos 20.30 17.59 309.53 14.06 – 26.54
Moora 28.21 25.98 674.86 19.00 – 37.42
Ocra 6.42 2.77 7.69 5.44 – 7.41

Promethee II 72.48 36.78 1353.13 59.44 – 85.53
Spotis 67.21 38.29 1465.80 53.64 – 80.79
Topsis 60.03 51.23 2624.53 41.86 – 78.20
Vikor 71.82 48.02 2305.53 54.79 – 88.84

Slice 3

Aras 5.03 4.24 17.97 3.53 – 6.53
Cocoso 18.09 7.35 53.96 15.49 – 20.70
Codas 6.00 5.78 33.44 3.95 – 8.05
Copras 9.18 7.44 55.34 6.54 – 11.82
Edas 8.45 6.26 39.19 6.23 – 10.67

Mabac 14.12 14.28 203.98 9.06 – 19.19
Mairca 170.45 37.61 1414.26 157.12 – 183.79
Marcos 5.33 3.94 15.54 3.94 – 6.73
Moora 9.30 7.91 62.53 6.50 – 12.11
Ocra 5.91 1.97 3.90 5.21 – 6.61

Promethee II 18.21 11.48 131.80 14.14 – 22.28
Spotis 170.45 37.61 1414.26 157.12 – 183.79
Topsis 20.03 22.18 492.03 12.16 – 27.90
Vikor 154.12 50.80 2580.61 136.11 – 172.13

Legend: STD: Standard Deviation; Var: Variance ; CI: Confidence Intervals.

Source: elaborated by the author.
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performance, as in Marcos, Moora and Edas methods. However, they presented a greater

variance in their results. These inferences can be seen in Table 35, and in Figures 56a

and 55.

The comparisons output performed in the Tukey’s test to Slice 1 shows that in 30 out

of the 182 comparisons there are no significant difference between the methods. These

comparisons can be visualized in Figure 57a. Note that 03 clusters are formed, two of

which are linked through the Mabac method, since the performance of this method is

close to the group represented by the third quartile and the maximum value obtained

by the methods, as shown in Figure 56a. The Mairca and Spotis methods showed the

worst performance, a characteristic that was repeated in the other tests. The distribution

analysis for the LM and GLM models are shown in Figure 58.

For Slice 2, and considering the estimated coefficients analysis of the regression model,

the Cocoso (5.08) and Promethee II (4.25) methods showed a slight superiority over

the other methods. This performance is depicted in Figure 56b and Figure 55. In the

comparison performed from Tukey’s method, we observed that in 39 comparisons there

were no significant differences between the methods, considering a confidence level of 95%.

These comparisons can be visualized in Figure 57b, which can also be observed in the

presence of two clusters, which represent the dispersion conferred by the boxplot graph

of Figure 56b.

For Slice 3, using the descriptive analysis data shown in Figure 56c, and considering

the estimated coefficients in the regression model, the Spotis (10.94), Mairca (10.94) and

Vikor (10.17) methods demonstrate superiority in selection accuracy. This performance

is totally different from the other MCDM methods, and demonstrates the difficulty of

these methods in scenarios where the variability of the criteria values are high, making

the updates of their decision matrices ineffective, and, therefore, changing their ranking

power. At the output of the Tukey’s test, it was found that in 38 comparisons there was

no significant difference between the methods, as illustrated in Figure 57c. Note that the

Vikor, Mairca and Spotis methods form a cluster, while most of the methods have a very

similar performance, with a slight superiority for the Cocoso, Promethee II, Topsis and

Mabac methods that address the first part of the second cluster.

Adjustments in the distribution of response variable for the slices in Experiment 4

can be seen in Figures 58, 59, and 60.
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Figure 56 – Descriptive analysis using boxplot - TS 01: Experiment 4.
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157

Figure 57 – Network graph TS01: Experiment 4. There is no significant difference
between this methods.

(a) Slice 1 (b) Slice 2

(c) Slice 3

Legend: 95% confidence intervals comparing each pair of methods.

Source: elaborated by the author.

Figure 58 – Simulated envelope TS01: Experiment 4 - Slice 1.

(a) Binomial GLM. (b) Normal LM.

Source: elaborated by the author.
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Figure 59 – Simulated envelope TS01: Experiment 4 - Slice 2.

(a) Binomial GLM. (b) Normal LM.

Source: elaborated by the author.

Figure 60 – Simulated envelope TS01: Experiment 4 - Slice 3.

(a) Binomial GLM. (b) Normal LM.

Source: elaborated by the author.
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Figure 61 – Behavior of the NSSF DAF methods - TS 03: Experiment 2
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Source: elaborated by the author.

B.4 TS-03: Experiment 2

Results for Experiment 2 are reported in Table 36 and summarized in Figure 61. As

in Experiment 1, in the analysis of the response variable (Frequency of Selections) for

all slices, there was rejection of the null hypothesis, i.e., the data does not come from

a normal distribution, does not show independence of residues and homoscedasticity of

variances. From the KRUSKAL-WALLIS test, the rejection of the null hypothesis was

obtained for the main question conducted in this study and defined in the equation (6.1).

In fact, the methods show difference in performance for the evaluated scenario.

For Slice 1, the use of the vector of weights defined in Table 7, improved a performance

gain in almost all methods compared to Experiment 1, according to Figure 62a and Table

36. The accuracy of the methods occurs due to the improvement in the differentiation of

attributes and in the judgment of preferences, which increases the operational capacity

of the methods, mainly in the construction of the ranking of alternatives. The exception

occurs again for the methods Mairca, Spotis and Vikor, which despite the use of weights,

they had slightly lower performance than in Experiment 1 for the same slice. Even so,

from analyzing the estimated coefficients of the regression model, these methods exhibited

the best results, namely: Spotis (3.51), Mairca (3.51) and Vikor (2.75).

After applying the Tukey’s method to the results obtained in Slice 1, it was found

that, for 36 comparisons, there was no significant difference between the methods. These
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Table 36 – Methods Results: TS03 - Experiment 2

Slice Methods Mean STD Var CI

Slice 1

Aras 57.33 18.09 327.17 50.92 – 63.75
Cocoso 44.55 5.71 32.57 42.52 – 46.57
Codas 66.76 19.16 367.06 59.96 – 73.55
Copras 46.85 17.28 298.76 40.72 – 52.98
Edas 45.88 17.04 290.48 39.84 – 51.92

Mabac 54.12 12.41 153.92 49.72 – 58.52
Mairca 120.82 14.11 199.03 115.82 – 125.82
Marcos 58.82 17.89 320.22 52.47 – 65.16
Moora 46.39 16.26 264.50 40.63 – 52.16
Ocra 39.91 10.20 104.02 36.29 – 43.53

Promethee II 58.58 13.02 169.56 53.96 – 63.19
Spotis 120.82 14.11 199.03 115.82 – 125.82
Topsis 70.15 15.27 233.07 64.74 – 75.56
Vikor 104.85 13.93 194.13 99.91 – 109.79

Slice 2

Aras 100.94 27.38 749.93 91.23 – 110.65
Cocoso 114.85 10.39 108.01 111.16 – 118.53
Codas 96.45 33.37 1113.32 84.62 – 108.29
Copras 110.64 29.13 848.61 100.31 – 120.97
Edas 116.85 29.15 849.63 106.51 – 127.18

Mabac 110.24 18.93 358.25 103.53 – 116.95
Mairca 51.03 14.18 200.97 46.00 – 56.06
Marcos 102.09 27.01 729.27 92.52 – 111.67
Moora 114.33 28.44 808.79 104.25 – 124.42
Ocra 111.06 18.87 356.12 104.37 – 117.75

Promethee II 108.48 18.47 341.26 101.93 – 115.03
Spotis 51.03 14.18 200.97 46.00 – 56.06
Topsis 97.64 22.16 490.99 89.78 – 105.49
Vikor 62.27 13.25 175.58 57.57 – 66.97

Slice 3

Aras 91.73 17.67 312.08 85.46 – 97.99
Cocoso 90.61 6.88 47.37 88.17 – 93.05
Codas 86.79 19.21 368.92 79.98 – 93.60
Copras 92.52 18.44 329.88 85.97 – 99.05
Edas 87.27 17.91 320.77 80.92 – 93.62

Mabac 85.64 10.75 115.49 81.83 – 89.45
Mairca 78.15 11.26 126.76 74.16 – 82.14
Marcos 89.09 15.64 244.52 83.55 – 94.64
Moora 89.27 17.67 312.33 83.00 – 95.54
Ocra 99.03 14.24 202.78 93.98 – 104.08

Promethee II 82.94 9.56 91.31 79.55 – 86.33
Spotis 78.15 11.26 126.76 74.16 – 82.14
Topsis 82.21 11.62 134.92 78.09 – 86.33
Vikor 82.88 7.16 51.30 80.34 – 85.42

Legend: STD: Standard Deviation; Var: Variance ; CI: Confidence Intervals.

Source: elaborated by the author.
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comparisons are illustrated in the network graph in Figure 63a.

For Slice 2, there is greater variability of the response variable, this is indicated by

the number of outliers, as illustrated in Figure 62b. This behavior occurs due to the fea-

tures inherent to the slice itself, which holds the specifications with hight computational

resources and enable a high throughput, thus serving a larger number of UEs, as detailed

in Tables 5 and 6. In general, the performance of the methods follows a more homoge-

neous pattern, and from the multiple comparisons provided from Tukey’s method, it was

observed that in 56 pairwise comparisons there was no significant difference between the

methods. However, based on the estimated coefficients analysis of the regression model,

the Edas (0.76), Cocoso (0.74) and Moora (0.65) methods are slightly superior.

Slice 3 follows the same pattern as the other slices, and shows greater homogeneity

in the results of the methods, as seen in Figure 62c. From analyzing the estimated co-

efficients of the regression model, it was observed that basically all methods had similar

performance, with the Ocra method (0.39) showing a slight performance gain. The mul-

tiple comparisons reported from Tukey’s method show that in 78 comparisons there was

no significant difference between the methods. This result is demonstrated in Figure 63c,

in which there is only one cluster that presents a higher density in its connections.

In general, the results of this experiment are similar to those of Experiment 1. How-

ever, a slight performance gain is perceived due to the application of the weight vector,

i.e., the differentiation of attributes improves the ranking capacity of the methods, and,

consequently, the accuracy of slices selection process. The analysis of response variable

(Frequency of Selections) considering a binomial distribution, and the correction applied

by sqrt() function into the LM model to approximate a normal distribution, for all slices,

can be observed in Figures 64, 65 and 66.

B.5 TS-03: Priority data

This experiment adopted the weights defined in Table 7. For this, the following criteria

order was considered: “Loss”, “Distance”, “Download”, “Reliability”, “Density”, “Latency”,

“Upload”,“Jitter”. The same strategy used to analyze the results in Section 6.4 was adopted

here. In this sense, the tests defined in the hypotheses of the equations (6.2), (6.3) and

(6.4) were carried out. In addition, we sought to validate the hypothesis of the equation

(6.1), which aims to verify whether there were significant differences in the performance

of the methods for high priority traffic.
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Figure 62 – Descriptive analysis using boxplot - TS 03: Experiment 2.
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Figure 63 – Network graph TS03: Experiment 2. There is no significant difference
between this methods.

(a) Slice 1 (b) Slice 2

(c) Slice 3

Legend: 95% confidence intervals comparing each pair of methods.

Source: elaborated by the author.

Figure 64 – Simulated envelope TS03: Experiment 2 - Slice 1.

(a) Binomial GLM. (b) Normal LM.

Source: elaborated by the author.
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Figure 65 – Simulated envelope TS03: Experiment 2 - Slice 2.

(a) Binomial GLM. (b) Normal LM.

Source: elaborated by the author.

Figure 66 – Simulated envelope TS03: Experiment 2 - Slice 3.

(a) Binomial GLM. (b) Normal LM.

Source: elaborated by the author.
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Figure 67 – Behavior of the NSSF DAF methods - TS:03 Alarm
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Source: elaborated by the author.

In this regard, to validate the proposed hybrid algorithms behavior, as well as the

efficiency of the NSSF DAF architecture for critical IoT scenarios, the occurrence of 200

priority flows was considered. This event simulates the input of alarm messages for the

real-time health system scenarios and Geohazard prevention.

These packages were generated using the Scapy1 library, representing payloads com-

patible with these applications. Using the previously trained predictive model, and con-

sidering the MCDM methods and technologies adopted in the scenario in Figure 15, the

results obtained are detailed in Table 37 and summarized in Figure 67. It is important

to note that for all slices there was a violation of the premises of normality, independence

of residuals and homoscedasticity of variances.

1https://scapy.net/
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Table 37 – TS:03 Alarm - Method Results with priority data

Slice Methods Mean STD Var CI

Slice 1

Aras 12.64 3.22 10.36 11.49 – 13.78
Cocoso 9.70 1.59 2.53 9.13 – 10.26
Codas 14.48 3.99 15.95 13.07 – 15.90
Copras 9.00 3.67 13.50 7.70 – 10.30
Edas 8.85 3.55 12.57 7.59 – 10.11

Mabac 9.06 3.12 9.75 7.95 – 10.17
Mairca 33.73 4.70 22.08 32.06 – 35.39
Marcos 12.55 3.26 10.63 11.39 – 13.70
Moora 8.73 3.54 12.52 7.47 – 9.98
Ocra 14.33 3.32 11.04 13.16 – 15.51

Promethee II 10.88 3.53 12.48 9.63 – 12.13
Spotis 33.73 4.70 22.08 32.06 – 35.39
Topsis 11.79 3.65 13.30 10.49 – 13.08
Vikor 31.27 5.23 27.39 29.42 – 33.13

Slice 2

Aras 21.85 5.53 30.63 19.89 – 23.81
Cocoso 22.67 2.71 7.35 21.71 – 23.63
Codas 21.85 6.26 39.13 19.63 – 24.07
Copras 22.91 6.11 37.27 20.74 – 25.07
Edas 24.27 6.26 39.20 22.05 – 26.49

Mabac 22.85 4.22 17.82 21.35 – 24.35
Mairca 15.24 3.57 12.75 13.98 – 16.51
Marcos 22.15 4.80 23.01 20.45 – 23.85
Moora 23.94 5.94 35.31 21.83 – 26.05
Ocra 22.52 6.41 41.07 20.24 – 24.79

Promethee II 22.58 4.45 19.81 20.99 – 24.15
Spotis 15.24 3.57 12.75 13.98 – 16.51
Topsis 22.24 5.62 31.63 20.25 – 24.24
Vikor 17.00 4.30 18.50 15.47 – 18.52

Slice 3

Aras 26.52 5.97 35.70 24.40 – 28.63
Cocoso 28.64 2.88 8.30 27.61 – 29.66
Codas 24.67 6.38 40.67 22.41 – 26.93
Copras 29.09 6.11 37.34 26.92 – 31.26
Edas 27.88 5.68 32.23 25.87 – 29.89

Mabac 29.09 5.26 27.71 27.22 – 30.96
Mairca 12.03 2.52 6.34 11.14 – 12.92
Marcos 26.30 5.28 27.84 24.43 – 28.17
Moora 28.33 5.73 32.79 26.30 – 30.36
Ocra 24.15 5.27 27.82 22.28 – 26.02

Promethee II 27.55 4.54 20.63 25.93 – 29.16
Spotis 12.03 2.52 6.34 11.14 – 12.92
Topsis 26.97 5.70 32.53 24.95 – 28.99
Vikor 12.73 2.38 5.64 11.89 – 13.57

Legend: STD: Standard Deviation; Var: Variance ; CI: Confidence Intervals.

Source: elaborated by the author.
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For Slice 1, it was observed that the Aras, Cocoso and Vikor methods had the lowest

IQR, demonstrating a more homogeneous distribution of the response variable (Frequency

of Selections). In addition, by using the KRUSKAL-WALLIS test, it was found that

there are differences in the accuracy of method selection. From the estimated coefficients

analysis of the regression model, there is evidence of the superiority of the Mairca (2.26),

Spotis (2.26) and Vikor (2.05) methods. The Tukey’s test showed that in 35 comparisons

there is no significant difference between the methods. This behavior is represented in

Figures 69a. In the network graph of Figure 68a, the formation of 03 clusters can be

observed, two of which are connected, whereas the other, formed by the Mairca, Spotis

and Vikor methods, is isolated. This characteristic, as previously mentioned, is recurrent,

and shows the divergence of these methods in comparison to the others.

In Slice 2, there is a more homogeneous performance of the methods; however, the

estimated coefficients analysis of the regression model shows a slight superiority of the

Edas (0.24) and Moora (0.21) methods, as shown in Figure 69b and 67. From the Tukey’s

Test it was verified that in 58 pairwise comparisons there is no significant difference

between the methods. The network graph in Figure 68b reports the equivalence of the

methods, with an exception for the Spotis, Mairca and Vikor methods, which, in this

slice, presented a lower performance than the other methods.

For Slice 3, and considering the results obtained by the estimated coefficients of the

regression model, there is evidence of a slight superiority of the Mabac (0.25) and Copras

(0.24) methods, as shown in Table 37 and Figure 69. In general, the methods had a

similar performance. According to the comparisons carried out by the Tukey’s test, and

considering a confidence level of 95%, it was verified that in 53 comparisons there is no

significant difference in performance between the methods, as illustrated in Figure 68c,

through the represented density in the cluster.

The experiment showed that even in situations involving priority traffic, the MCDM

methods maintain the consistency of judgments of the alternatives, and are sensitive to

the attenuation of the traffic conditions of the slices. This characteristic is evidenced by

the lower variability of the response variable, when compared with the results discussed

in Section B.4 for the three slices. In addition, there was a balance in the delivery of

priority flows between the evaluated slices, with Slice 1 receiving 61 flows (30.5%) of

priority traffic), Slice 2 receiving 72 flows (36%) and Slice 3 receiving 67 flows (33.5%). It

is important to note that there was no change in the treatment of the queues from UPF

function, i.e., the judgment and direction occurred only through the processing carried

out in the NSSF DAF.
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Figure 68 – Network graph TS03: Alarm. There is no significant difference between this
methods.

(a) Slice 1 (b) Slice 2

(c) Slice 3

Legend: 95% confidence intervals comparing each pair of methods.

Source: elaborated by the author.

The simulated envelope graphs for this experiment can be seen in Figures 70, 71 and

72. We highlight the adjustment performed by the LM model with the sqrt() function on

the response variable for Slice 2.
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Figure 69 – Descriptive analysis using boxplot - TS: 03 Alarm
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(a) Slice 1
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(b) Slice 2
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(c) Slice 3

Source: elaborated by the author.
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Figure 70 – Simulated envelope TS03: Alarm - Slice 1.

(a) Binomial GLM. (b) Normal LM.

Source: elaborated by the author.

Figure 71 – Simulated envelope TS03: Alarm - Slice 2.

(a) Binomial GLM. (b) Normal LM.

Source: elaborated by the author.

Figure 72 – Simulated envelope TS03: Alarm - Slice 3.

(a) Binomial GLM. (b) Normal LM.

Source: elaborated by the author.


