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A DEEP REINFORCEMENT LEARNING
APPROACH TO COMPLEX OPEN-DOMAIN

QUESTION ANSWERING

Dissertation presented to Escola Politécnica
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RESUMO

Recentemente, modelos compostos por apenas módulos neurais de Recuperação de
Informação e Compreensão de Leitura de Máquina/Gerador de Texto baseados em mode-
los de linguagem pré-treinados alcançaram o estado da arte em vários conjuntos de dados
desafiadores de processamento de linguagem natural. No entanto, ainda há espaço sig-
nificativo para melhorias na capacidade de racioćınio desses sistemas, especialmente no
domı́nio de perguntas e respostas complexas de domı́nio aberto (CODQA - Complex Open-
Domain Question Answering). Neste projeto, propomos uma arquitetura que combina as
principais caracteŕısticas desses modelos dentro de uma configuração de Aprendizado por
Reforço, com a capacidade extra de realizar múltiplos “saltos” entre documentos para
responder às perguntas dos usuários. Um sistema com esta capacidade é fundamental
para construir agentes conversacionais capazes de responder a perguntas complexas que
requerem múltiplas consultas em uma base de conhecimento não-estruturada. Nossos
sistemas alcançaram um F1-score máximo de 0.13± 0.3 no conjunto de teste, usando em
média apenas 47% das passagens de texto totais dispońıveis.

Palavras-Chave – Perguntas e Respostas Complexas de Domı́nio Aberto, Aprendizado
Profundo por Reforço, Agentes de Conversacionais.



ABSTRACT

Recently, models composed of only a neural Information Retrieval and a Machine
Reading Comprehension/Text Generator modules based on pretrained language mod-
els have reached the state of the art in several challenging natural language processing
datasets. However, there is still significant room for improvement in the reasoning capac-
ity of these systems, especially in the realm of complex open-domain question answering
(CODQA) datasets. In this project, we propose an architecture that combines the main
features of these models within a Reinforcement Learning setting, with the extra ability to
perform multiple “hops” among documents to answer to users’ questions. A system with
this capability is critical for building conversational agents able to answer di�cult ques-
tions that require multiple queries on a non-structured database. Our systems achieved
a maximum F1-score of 0.13± 0.3 on the test set, using on average only 47% of the total
available text passages.

Keywords – Complex Open-Domain Question Answering, Deep Reinforcement Learning,
Conversational Agents.
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1 INTRODUCTION

It is estimated that around eighty percent of the knowledge produced is in the form

of unstructured data, such as news, conversation histories, minutes, etc. This landscape

a↵ects di↵erent corporations and represents an opportunity to gain new valuable knowl-

edge and insights (SHILAKES; TYLMAN, 2002; PLEJIC; VUJNOVIC; PENCO, 2008).

At the Academy, the huge amount of articles generated per day makes the work of com-

pilation and organization of information, even in more restricted topics, arduous.

Furthermore, with the popularization of smartphones and their virtual assistants on

board, such as the Apple’s Siri and the Google Assistant, as well as the domestic ones,

such as Alexa from Amazon, there is also a growing demand for direct and concise answers

to questions asked by users in everyday language – a format for presenting results that

is di↵erent from the usual ranked lists of web pages, as in the results of Google and Bing

(GAO; GALLEY; LI, 2018). As a result, the number of people potentially impacted by

unstructured data analytics systems rises into the billions globally 1.

A crucial part of those Natural Language Processing (NLP) systems is the Question

Answering (QA) one, responsible for traversing databases and answer the user’s questions.

Figure 1 outlines a common use case of this kind, in which a virtual assistant is called

to answer a simple user’s question. In particular, after the advent of the Transformer

architecture (VASWANI et al., 2017a) and the pretrained models derived from it, such as

BERT (DEVLIN et al., 2018) and T5 (RAFFEL et al., 2020), there has been a dramatic

improvement in these systems in machine reading comprehension (MRC) tasks, in which

the answer to a question is simply an explicit passage of text in a paragraph. In datasets

like SQuAD (RAJPURKAR et al., 2016), these neural models have already gone beyond

the baseline of human performance, as can be seen in the SQuAD’s leaderboard2.

1Ericsson Mobility Report: hhttps://www.ericsson.com/en/mobility-report/mobility-visualizeri.
2SQuAD’s leaderboard: hhttps://rajpurkar.github.io/SQuAD-explorer/i
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Figure 1: The core of the (simple) QA system, exemplified in a cellphone. Image created
by the author.

1.1 The Role of Complex QA

However, these traditional MRC models are not suitable for dealing with so-called

“complex QA”. To answer questions that belong to this group, it is often necessary to

sequentially collect and compose evidence spread across multiple documents, or develop

some level of logical reasoning, such as the ability to compare two sentences (YANG et al.,

2020). Figure 2 depicts a variation of Figure 1: now, the assistant is required to navigate

(“hop”) across two consecutive Wikipedia articles in order to provide an accurate response

to the user’s inquiry. We scrutinize these peculiarities in the subsection 2.1.2.

These represent a much more challenging QA task for current models than the first

type of QA task (“simple QA”) mentioned in the last section, as can be attested by

comparing the top scores of the SQuAD (simple QA) leaderboad to those of HotpotQA

(complex QA), one of the most popular multi-hop datasets available3. Yet, it is important

to note that anyone routinely answers questions that require queries across multiple emails,

books, or other notes. Thus, on the innovation side, developing better models capable of

performing multi-hop reasoning in QA datasets represents an important advance on the

NLP frontier and, on the practical side, opens up the possibility of massively scaling these

capabilities to prohibitive amounts of data for humans (TALMOR; BERANT, 2018).

3HotpotQA’s leaderboard: hhttps://hotpotqa.github.io/i.
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Figure 2: The core of the complex QA system, exemplified in a cellphone. Complex
questions often require intermediate steps to accumulate information and successfully
reach the answer. Image created by the author.

1.2 Leveraging Deep Reinforcement Learning on
Complex QA

Among the most popular multi-hop QA datasets are: QAngaroo (WELBL; STENE-

TORP; RIEDEL, 2018), QASC (KHOT et al., 2020), and HotpotQA (YANG et al., 2020).

They provide the required intermediate annotated passages {p0, p1, ..., pk} between each

complex question q and the corresponding ground truth answer ag. This allows training

under strong supervision. However, in real cases, such a set of passages is not known, even

when the final answer is – numerous answers to complex questions are available on the

internet without anyone explicitly presenting us the documents that fully support them.

Therefore, reinforcement learning (RL) becomes a natural fit to the problem, since the

intermediate passages are potentially unlabeled (WANG et al., 2018) and it is usually

necessary to process them sequentially. In addition, the agent’s exploration capabitility

could lead to better or richer answers, and we can directly optimize it towards traditional

NLP metrics, such as the F1-score or Exact Match, by injecting them into the reward

definition (RAMAMURTHY; SIFA; BAUCKHAGE, 2020).

Despite the points raised, the literature on DRL models applied to QA problems such

as that of complex questions, is still scarce. This could be due to the extra challenge of re-

framing the task as a sequential decision process, or because of the recognized di�culty in

stabilizing DRL algorithms (HENDERSON et al., 2018). Hence, most current initiatives

focus on supervised neural models, as can be seen in the HotpotQA’s leaderboard, for

example. Traditionally, these supervised QA systems rely on modules of neural readers or

neural readers coupled with retrievers, when there is a need to gather more information
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Figure 3: Comparison of di↵erent common architectures in QA systems. In the first two,
a reader is responsible for generating the final answer – while in the second case, it is
necessary to couple a retriever module to it to fetch additional information from a corpus.
The figure on the right illustrates our solution, which integrates readers and retrievers as
components orchestrated by an agent in a DRL setup. Image created by the author.

from a corpus. Figure 3 compares these traditional forms of QA systems to one based

on a DRL setup – ours, in this case, which we will delve into further in the forthcoming

chapters.

When DRL appears in the NLP literature, it is often related to text-based games, like

TextWorld (CÔTÉ et al., 2019), or grounded language learning, as BabyAI (CHEVALIER-

BOISVERT et al., 2019) and in (LUKETINA et al., 2019). Among the few examples of

DRL applied to the multi-hop problem, in general they are dependent on a previously

built knowledge graph (KG), as in the case of DeepPath (XIONG; HOANG; WANG,

2017), and do not work on simple plain text. Therefore, little attention and frameworks

are devoted to standard NLP tasks, such as the presented ones, based solely on annotaded

datasets (RAMAMURTHY; SIFA; BAUCKHAGE, 2020).

As a special exception, the NLPGym4 recently released (RAMAMURTHY; SIFA;

BAUCKHAGE, 2020) is very close to our approach, as it represents the first Reinforce-

ment Learning (RL) framework analogous to the popular OpenAI Gym (BROCKMAN

et al., 2016) with environments specifically designed to handle some standard NLP tasks

such as sequence tagging, multi-label classification and multiple-choice question answering

(MCQA). In order to model the agents and neural networks, the framework is integrated

with the Stable Baselines library (HILL et al., 2018), which represent the state-of-the-art

(SOTA) for DRL algorithm implementations.

4NLPGym’s Github: hhttps://github.com/rajcscw/nlp-gymlibrary1i
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In the case of the MCQA task, Ramamurthy, Sifa and Bauckhage (2020) applied

their framework to solve the QASC Dataset, an 8-way multi-hop multiple-choice QA

dataset that comes with a large corpus on grade school science (the “8-way” expression

means each question has 8 possible choices, from A to H, and only one is true). The two

intermediate supporting passages (f1, f2) required for each question-answer pair (QA-pair)

are annotated. Hence, a model typically needs to retrive important documents from the

corpus and learn how to compose them in order to answer the questions, relying on (f1, f2)

for supervision. When modeling, Ramamurthy, Sifa and Bauckhage (2020) abdicate the

extra corpus and relies only on the concatenation of the question with the two annotated

passages and, at each step, with the next key (A, B, ..., H), in order to compose the

subsequent states of the environment. Although the MCQA task is the most challenging

among the three studied in the paper, the work eventually achieves some promising results

compared to the baseline of (which is an accuracy of 1/8 = 12.5% in such case, once only

one key is the correct one for each question), with its best model reaching 0.49 accuracy

in the test set.

Whereas the work of Ramamurthy, Sifa and Bauckhage (2020) represents a clear

advance in and a contribution to the interface between RL and NLP, which is still very

little explored in the literature, there is plenty of room for exploration and improvement.

First, datasets like QASC and ARC (CLARK et al., 2018) share unusual features with

real-life practical cases, such as:

• Each question already comes with its possible keys; one of which is the true one –

this allows the model to invariably hit the correct answer after a number of steps that

is at most equal to the number of choices in the question. Instead, a more realistic

scenario would require the answer to be extracted or generated merely from the

supporting documents;

• ”The topics are confined to scientific subjects that are typically only assessed in

school exams, and do not involve questions about people, politics, economics, arts

and other events that are common in practice.

Also, the Ramamurthy, Sifa and Bauckhage (2020)’s model intrinsically depends on

previously annotated support passages to work, but this cannot be counted on in the more

general case of the complex question problem. Another potential improvement already

raised by the authors is that such system would certainly benefit from contextual em-

beddings of states, based on recent pretrained models, like BERT (DEVLIN et al., 2018).
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Finally, NLPGym approach does not have a way to integrate information gathered on pre-

vious hops; it is limited to two passages and deals with them equally and simultaneously,

rather than sequentially.

1.3 Contributions

This work reframes the more general problem of complex open-domain question an-

swering (CODQA) as a deep reinforcement learning task (DRL). On the QA side, we

address an open-domain explainable multi-hop QA dataset represented by the recently

released HotpotQA dataset. The dataset is completely text-based and does not depends

on a knowledge base (KB) and, unlike QASC and ARC, it does not provide choices to

cheat the questions, but rather simple annotated answers, which is a more realistic and

general scenario.

On the DRL side, our framework does not rely on a text-game-like structure and, in-

stead, directly tackles the standard NLP QA task as a traditional dataset. RL is a natural

fit for the problem, as complex questions often require sequential reasoning through the

intermediate passages – which is di↵erent from the common Information Retrieval (IR)

approach, that gathers all the relevant documents in a sigle turn. Furthermore, these

intermediate passages have no labels in a real setting. Another bonus of this approach

is that it allows us to directly optimize the system with common NLP scores such as

F1-score or Exact Match (EM).

Hence, as our main contributions, we highlight:

• A DRL proposal for the more general problem of complex open-domain QA for

which it is necessary to extract or generate an answer from the intermediate passages

for each question and there are no predefined choices to guide the answer and to

simply choose from. No text-game structure, as in (CÔTÉ et al., 2019), KB, as

in (WELBL; STENETORP; RIEDEL, 2018; XIONG; HOANG; WANG, 2017), or

golden intermediate passages, as in (RAMAMURTHY; SIFA; BAUCKHAGE, 2020),

are required;

• Complete redefinitions of environment variables such as states, actions and rewards,

when compared to Ramamurthy, Sifa and Bauckhage (2020)’s approach;

• Incorporation of recent advances in NLP into modeling, such as the use of contextual

embeddings and new support document retrieval strategies, with the use o maximum
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inner product search as a heuristic to select next passages and the aggregation of

previous states into the current one, inspired by (XIONG et al., 2020).

1.4 Relevant Publications in the Context of the
Present Study

As stated at the beginning of this manuscript, this work explores the interface between

the fields of Natural Language Processing and Reinforcement Learning. So far we had the

opportunity to accumulate practical experience with the various SOTA algorithms and

techniques we mentioned in this document, which was fundamental for us to reach the

maturation point where we are in this final stage.

To explicitly name them, at the Brazilian Conference on Intelligent Systems (BRACIS’

21), we published DEEPAGÉ: Answering Questions in Portuguese about the Brazilian En-

vironment (CAÇÃO et al., 2021), in which we built a dataset on the Brazilian Environ-

ment by automatically filtering and translating a massive open-domain QA dataset and

trained and compared multiple QA systems based on a IR and MRC setting composed by

BM25 (ROBERTSON; ZARAGOZA, 2009) and a PTT5, a T5 model pre-trained in Por-

tuguese language, (CARMO et al., 2020). In a paper called DeepPolicyTracker: Tracking

Changes In Environmental Policy In The Brazilian Federal O�cial Gazette With Deep

Learning, presented at the 38th International Conference on Machine Learning (ICML’21)

Workshop Tackling Climate Change With Machine Learning5, we preprocessed govern-

ment legal actions related to the Brazilian environment from the Federal O�cial Gazette

and ft a BERTimbau model (SOUZA; NOGUEIRA; LOTUFO, 2020) to classify them in

terms of potential environmental risk6.

We also had the opportunity to colaborate to Pirá: A Bilingual Portuguese-English

Dataset for Question-Answering about the Ocean, published at the 30th ACM Interna-

tional Conference on Information and Knowledge Management (CIKM’21) (André F. A.

Paschoal, Paulo Pirozelli, Valdinei Freire, Karina V. Delgado, Sarajane M. Peres, Mar-

cos M. José, Flávio N. Cação, André S. Oliveira, Anarosa A. F. Brandão, and Anna H.

R. Costa, 2021) and to Interpretability of Attention Mechanisms in a Portuguese-Based

Question Answering System about the Blue Amazon, accepted at the XVIII Encontro

Nacional de Inteligência Artificial e Computacional (ENIAC’21).

5This workshop did not publish proceedings, but the video of the work, as well as the associated paper,
can be consulted at this link: hhttps://www.climatechange.ai/papers/icml2021/35i

6This paper is now been extended to be submitted to the International Conference on the Computa-
tional Processing of Portuguese (PROPOR’22): hhttps://sites.universidadedefortaleza.com/propor2022/i
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After the practical knowledge accumulated in NLP, in special with QA that envolves

IR in large databases, the next leading challenge was to precisely define the research gaps

at the interface of the NLP and RL areas, as well as the most productive way to address

them. The majority of research endeavors within this subfield remain in their formative

stages, signifying a substantial room for exploration e↵orts. Simultaneously, the absence

of robust standards entails a cautious approach. These twin factors serve as key driving

forces behind the inception of this current investigation.

1.5 Organization of the Manuscript

This work is an endeavor on the frontier of NLP and DRL; thus, the document is

structured accordingly. First, we established the required background of both fields in

Chapter 2. Therefore, we start by presenting the problem we are addressing, the CODQA,

positioning it in the broader literature of QA and conversational agents, and detailing the

HotpotQA dataset that will serve to test our model. Next, we cover some important RL

fundamentals. We close the chapter by introducing the Transformer framework and, in

particular, some pretrained models that will be useful, in addition to examining the NLP

metrics used in this work. Chapter 3 provides an overview of the related literature. In

Chapter 4 we present the proposal of our systems and underscore the di↵erent influences

from the works described in the previous chapter. Chapter 5 presents our results and

provides a discussion on them. Finally, in Chapter 6 we conclude, highlighting our current

contributions and limitations, as well as envisioning some promising future work.
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2 BACKGROUND

In this chapter we present the more general scope of the CODQA challenge we are

solving. We begin by describing the essential taxonomy of the QA area, a subarea of

NLP, and the main historical approaches to the problem. In particular, we explain why

they are not suitable for dealing with QA-pairs that require multiple “hops”. Finally,

we describe some of these most popular datasets in the literature, including HotpotQA,

which will be our testbed.

2.1 Question Answering

Question Answering is the NLP research area dedicated to building systems (or

“agents”) designed to receive questions posed by humans and answer them in a con-

cise and direct way. To do so, it can leverage one or more external data sources. Two

common approaches to this problem are known as KB-QA, in which the agent relies on

a KB as its previously structured database, and text-QA, in which only a collection of

textual documents are available to the agent (GAO; GALLEY; LI, 2018; MANNING,

2021). In this work our focus will be entirely on the latter kind.

Once most of the first text-QA systems were designed to answer factoid questions, such

as “When was Nikola Tesla born?”, whose answers can be extracted from text fragments, a

typical QA system was composed of two sequential modules: an Information Retrieval (IR)

and an MRC. The IR module is responsible for retrieving the k most relevant documents

from the corpora C, where k << |C| (| · | stands for the number of elements – e.g. number

of documents here – in C), and passing them to the MRC module, which reads them and

extract or generate an answer from the list of k documents (MANNING, 2021).

Most of the IR methods still in use are “sparse”, like BM25 (ROBERTSON; ZARAGOZA,

2009). This means sentences are encoded as vectors where absent words are represented

by 0, and present words by their term-frequency; consequently, the vectors are sparse since

most of their components are null by construction. Nonetheless, recent neural retrievers,
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Figure 4: Example of “RAG”, one of the most recent IR+MRC models, based on a neural
Retriever and Reader (“Generator”). From a previously encoded corpus C, the retriever
(DPR) receives and encodes a question q and ranks the k most similar passages to q via
Maximum Inner Product Search (MIPS). These passages are sent to the Reader (BART)
which generates a response as output. Image created by the author, adapted from Lewis
et al. (2020b).

such as Dense Passage Retriever (DPR) (KARPUKHIN et al., 2020), have gained more

space for being able to capture semantic features of sentences, by representing them as

Rn vectors encoded by pretrained language models.

As for the neural MRC module, the most commonly adopted are based on recurrent

neural networks (RNN), such as the LSTMs (HOCHREITER; SCHMIDHUBER, 1997),

or also on pretrained language models like BERT (DEVLIN et al., 2018). The IR+MRC

pair of modules is convenient because the MRC step is typically time-consuming due to

its dependence on neural models with millions or billions of parameters.; thus, it would

often be impractical to apply it directly to the entire corpus (WANG et al., 2018). Figure

4 shows an example of the Retrieval-Augmented Generation (RAG) model (LEWIS et al.,

2020b). It is composed of a neural IR module based on DPR (KARPUKHIN et al., 2020)

and a neural MRC one based on BART (LEWIS et al., 2020a), and their training is done

jointly by backpropagation. To perform QA tasks, the corpus C is previously encoded

and each question q is encoded in runtime by DPR. Then, DPR searches for the k most

similar passages to q on C through Maximum Inner Product Search (MIPS), and sends

these passages to the MRC component (BART). Once BART is a sequence-to-sequence

(seq2seq) model, it finally generates an answer ar from these passages.

The factoid question type previously described, as mention in the Introduction chap-

ter, is also called “simple” and SQuAD is its canonical dataset (RAJPURKAR et al.,

2016). In the case of SQuAD, paragraphs are so short that it is not even necessary to

leverage an IR module; a standalone MRC model is enough. An example of this kind
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Figure 5: Comparison between an example of a “simple question”, at the top, and a
“complex question”, at the bottom of the figure. In the first case, the answer is simply
a span in a paragraph. In contrast, for a complex question, the agent must perform a
sequential reasoning across multiple documents in order do gather enough information to
answer it. Image created by the author.

of question is shown at the top of the Figure 5. It is noteworthy that human baseline

of SQuAD has already been surpassed by current algorithms, as shown by the dataset’s

ranking.

In contrast, “complex” questions cannot be answered with a single text span from

a paragraph, but require more elaborate forms of logical reasoning over the information

presented and/or sequential processing of textual evidences spread across multiple doc-

uments. The reason is the question q itself often does not contain enough information

for the IR module to rank the most relevant passages p0, ..., pk in one single turn so that

the MRC module can extract the correct answer from them. Instead, it is required a

level of compositional reasoning, where the QA system must first leverage the knowledge

posed by q to initially reach a supporting passage p0, and then compose these latest two

information (q, p0) together to better select the third one p1, and so on. This process of

chaining subsequential facts stops when the tuple of gathered data (q, p0, ..., pn) su�ces

to answer q. Moreover, the one-shot IR approach adds many potential and unnecessary

distractors that burden the MRC module when drawing a coherent answer (XIONG et

al., 2020). The previous sequential strategy is exemplified at the bottom of Figure 5 and

Figure 6 presents two sequences of passages attempting to cover ag.
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Figure 6: An illustration of two chains of reasoning via multi-hop over the documents
in the corpus C. In this example, the red sequence P 1

seq had reached the ground-truth
answer ag for the question q after four hops, while the blue P 2

seq, after three hops, had
not. Image created by the author.

Another important way to characterize a QA system is related to the breadth of the

scope of subjects. QA systems built to answer queries only about specific topics, such

as soccer or music, are called “closed-domain” QA and often run on a domain-specific

ontology. Otherwise, when the system is not limited to a specific domain and aims to

answer a question on virtually any subject, it is called “open-domain” QA. These sys-

tems are usually backed by universal ontologies or large encyclopedias, such as Wikipedia

(ALLAM; HAGGAG, 2012).

Nowadays, end-to-end neural models like T5, pretrained in large databases like the

Colossal Clean Crawled Corpus (C4) dominate as state-of-the-art in open-domain QA

problems (RAFFEL et al., 2020). In the past, however, hybrid systems composed of

multiple modules and parsers, such as IBM’s Watson DeepQA (FERRUCCI et al., 2010),

had already been able to defeat world champions in the trivia game Jeopardy!, in 2011

(ALLAM; HAGGAG, 2012).

2.1.1 QA System in the Broader Field of Conversational Agents

The QA systems described in the previous sections can also be thought of as compo-

nents of a broader-purpose conversational agent, such as the one depicted in the Table 1,

which illustrates an occasion in which the agent helps a user with a business decision. In

addition to the QA agent, the other modules can be conceptually divided into two more

types (GAO; GALLEY; LI, 2018):

• Social chats: where the agent is expected to have a social conversation with a human,
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Table 1: Example of a dialog between a human user (“Person”) and a conversational
agent (“Agent”) in which the performance of the three types of intelligent modules can
be observed, with smooth transitions between each one of them. Table created by the
author.

Turn Person/Agent Conversa
1 Person Hello there

Agent Hello! How do you do?
2 Person Actually, I’m a bit worried.

Agent What’s worrying you?
3 Person Revenues have been dropping since last month.

Agent Churn rates were up 10% in our main consumer market.
4 Person Can you arrange a meeting with the local sales director?

Agent Sure, can I schedule it for next Wednesday at 2pm?
5 Person Yes, please. Thanks!

Agent You are welcome!

without an explicit immediate demand. This agent generally needs to demonstrate

more empathic behavior;

• Task completion: in which the agent receives a demand and needs to respond to it

as e�ciently as possible, like booking a movie at a virtual cinema box o�ce.

In all of the above cases, there is the possibility for the agent to receive inputs (ques-

tions, demands, etc.) and return outputs (direct answers, empathetic continuation of the

conversation and others) in the form of written or spoken dialogues, and a typical virtual

assistant operates across the three domains, as in the Table 1.

2.1.2 Multi-hops QA Datasets

As outlined before, multi-hop QA (or, multi-step QA) datasets pose a much greater

challenge for intelligent systems than traditional QA datasets dedicated to training MRC

systems such as SQuAD. While in the latter answers to the questions are usually single

and contiguous passages in short paragraphs, requiring no more than one hop, in the

first case, the system needs to compose an answer from passages distributed in multiple

documents or even perform logical reasoning through multiple sentences, like comparison

(YANG et al., 2020).

We can frame current QA multi-hop datasets as KB-QA or Text-QA. Two impor-

tant KB-QA datasets are QAngaroo (WELBL; STENETORP; RIEDEL, 2018) and Com-

plexWebQuestions (TALMOR; BERANT, 2018). QAngaroo was one of the first multi-

step QA datasets. It consists of two datasets from distinct domains, both of which require
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reasoning across documents. The first one, Wikihop, is built on general Wikipedia arti-

cles and the starting KB used is Wikidata1. The second, MedHop, is based on Medline

abstracts2 about proteins and drugs, and the objective is to detect potential interac-

tions between drugs. ComplexWebQuestions is a large open-domain dataset focused on

QA-pairs that require reasoning over multiple snippets crawled from the Internet. Each

instance is accompanied by the SPARQL query originally used to assemble the answer

from the Freebase database, a KB on general human knowledge (BOLLACKER et al.,

2008).

One of the limitations of QAngaroo is that, due to the extractive construction process,

the answers need to be explicitly present in the questions, as in the case of factoid ques-

tions, which makes them less realistic in practice (TALMOR; BERANT, 2018). Another

relevant point is that both datasets are constrained by the extent of their own predefined

schemas and incompleteness of entity relations in their KBs (YANG et al., 2020).

Among the Text-QA datasets, two pioneers are TriviaQA (JOSHI et al., 2017) and

SearchQA (DUNN et al., 2017), in which multiple documents were retrieved from each

QA-pair. However, because the document retrieval procedure is not sequential, but uses

single-shot IR techniques instead in both cases, there was no guarantee that the questions

required very elaborate multi-step reasoning procedures, as explained at the beginning of

this section (YANG et al., 2020).

QASC is another Text-QA multi-step dataset, specially relevant to this work. Rama-

murthy, Sifa and Bauckhage (2020), the closest work in the literature to ours, used it as

a testbed for the NLPGym QA module. The dataset has 9,980 8-way QA-pairs in total

about grade school science, and each one is present with two supporting facts, extracted

from a 17M-sentence corpus. Each QA-pair and its related facts are assembled from an

initial “combined fact” by crowdworkers (usually called “turkers” in such cases in the

literature) from Amazon Mechanical Turk (MTurk)3 in a way that it is not possible to

resort to only one of the facts, but it is necessary to compose from both ones to properly

answer the question (KHOT et al., 2020). Also, it is noteworthy that, as a multiple-choice

dataset, the main metric of QASC is simply the accuracy; hence, its random baseline is

1/8 = 12.5%. Figure 7 presents an example from the dataset.

It is common for works that deals with multiple-choice QA datasets, such as QASC or

ARC (CLARK et al., 2018), to use information present in the available choices themselves,

1Wikidata: hhttps://www.wikidata.org/wiki/Wikidata:Main Pagei.
2Medline is searchable through PubMed: hhttps://pubmed.ncbi.nlm.nih.gov/i.
3MTurk’s website: hhttps://www.mturk.com/i.
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Figure 7: Example of a QA-pair with its available choices and associated supporting
facts. The two chained facts and the QA-pair itself are assembled by crowdworkers from
an original combined fact, present at the top right of the image. The key in yellow is the
correct one, the “answer key”. The words in green are the links between Fact 1 and the
combined fact; the words in blue are the links between Fact 2 and the combined fact;
and, finally, words in red are the links between the two facts themselves. As one can see,
it is not possible to properly answer the question with only one of the two facts, but it is
required to hop between them. Image created by the author.

either by composing each one with the question and using this “extended query” to retrieve

relevant information in a corpus (PAULA et al., 2021), or by using them sequentially as

states until reaching the correct answer (RAMAMURTHY; SIFA; BAUCKHAGE, 2020).

As mentioned previously, in this research we are interested in large-scale text-based

CODQA datasets with very diverse questions and not restricted to high school science

exam schemas. These requirements lead us to HotpotQA (YANG et al., 2020), a dataset

with 112,779 QA-pairs, almost twelve times larger than QASC, also elaborated by turkers,

focused on diverse, explainable multi-hop QA. Each QA-pair is accompanied by a list of

supporting documents and the subset of those documents (the “golden passages”) that

turkers deemed necessary to respond to the question. This provides strong supervision so

that the predicted passages can be compared to the annotated ones and provides a way

to assess the explicability of the models that would be more di�cult with only the correct

answer available. Figure 8 shows an example of a QA-pair from the HotpotQA dataset.

As for diversity, most of the dataset’s questions are about People (30%), Organiza-
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Figure 8: An example of medium-level QA-pair from the HotpotQA dataset. In this case,
it is supplemented with ten documents, which are lists of snippets about a specific topic
described in the document’s title, as shown in the left panel. Here, only the documents
that contain the annotated golden passages (1, 2 and 3) are shown. In blue, the expression
most similar to the question. In red, the bridge terms between the 5th and 6th documents.
The correct answer is written in green. Unlike comparison queries, this one’s type is called
“bridge”, because it is necessary to find a term in each passage that allows the inference
of the next one. Image created by the author.

tions (13%) and Locations (10%), followed by Date (9%), Numbers (8%) and Artwork

(8%), as indicated in the Figure 9. There are also “Yes or No” questions (6%) and others

about events and nouns to a lesser extent. Di↵erently from other datasets, HotpotQA

contains “Comparative questions” such as “Which magazine was started first Arthur’s

Magazine or First for Women?”. These kind of questions require at least two in-

dependent documents to be retrieved and compared in order to arrive to the answer. In

this example, the model must somehow compare “Arthur’s Magazine (1844–1846)

was an American literary periodical published in Philadelphia in the 19th century (...)” to

“First for Women is a woman’s magazine published by Bauer Media Group in the USA.

The magazine was started in 1989 (...)” to finally reach the annotated answer,

“Arthur’s Magazine”. As for the type of questions in the dataset, there is a balanced

distribution of WH-questions, such as “what” and “which”, as expected, but also from
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other constructs, such as those starting with “how”, “are” and “in”.

Figure 9: Distribution of question types in the HotpotQA dataset. Unlike the QASC
dataset, HotpotQA covers a large range of subjects besides scientific subjects. Chart
produced by the author.

The dataset was built upon the English Wikipedia articles as follows: the authors

mapped all hyperlinks (to other Wikipedia articles) present in the first paragraph of each

article. Thus, in the example shown at the bottom of Figure 5, to answer the question

“Which theory of the 1921 Physics Nobel Prize awarded was experimentally demonstrated

in Sobral, Ceará?”, it is first necessary to go to the article on “Physics Nobel Prize”

to find out that “Albert Einstein” was the winner of this prize category in 1921. This

term then serves as a bridge to the search for the next article, about Einstein himself,

where it is stated that “the general theory of relativity” – the annotated answer – was

experimentally confirmed in Sobral, Ceará.

A share of 16.0% (18,089) of the questions are answerable with only one of the available

passes (they are single-hop) and are rated “train-easy”; 50.4% (56,814) are considered

“train-medium” and require multiple hops to be answered; the remaining 33.6% (37,876)

are, by exclusion, classified as “hard” and require a harder sequence of hops to arrive to

the correct answer. This last set of hard QA-pairs is, in turn, divided into four groups:

the “train-hard”, with 13.9% (15,661) of the total, belonging to the training set as well,

and three other groups destined for validation and testing: “dev”, “test-distractor” and

“test-fullwiki”, each with a share of 6.7% (7.405) of the total. In the “distrator” set, the 2

golden passages were mixed with 8 incorrect passages to add noise to the dataset. In the

“fullwiki” set, golden passages were simply omitted to test the models’ ability to discover
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the documents needed to answer without the extra supervision.

Considering the entire training dataset as a reference (90,447 instances), there is an

average of 41 ± 11 supporting passages available per question, as shown in the left his-

togram at Figure 10. The string composed by the concatenation, for each instance, of the

question with its respective supporting passages (an important concept we will explore in

the Chapter 4) has an average of 1415±385 tokens, with regard to the tokenizer based on

the Sentence Transformers all-MiniLM-L6-v2 model (REIMERS; GUREVYCH, 2019).

The last distribuition is shown at the right side of the Figure 10. An observation that

will be returned later from these distribuitions is that these questions could easily re-

quire a Reader able to handle more than 1, 000 input tokens – a common limitation in

several state-of-the-art Transformers models, such as BERT (DEVLIN et al., 2018) and

DistilBERT (SANH et al., 2019); but easily circumvented with the use of Longformers

(BELTAGY; PETERS; COHAN, 2020).

Figure 10: The left histogram shows the distribution of the number of the supporting
passages available to answer each question of the HotpotQA training dataset. In the
right side, the orange histogram presents the distribuition in the number of tokens for
the concatenation of the question with all of its corresponding supporting passages. Both
charts were drawn from 90k instances. Charts created by the author.

2.1.3 Evaluation Metrics

Once a model is trained, its performance is evaluated in the dev or test set. At

this stage, three main evaluation metrics are common in most multi-hop datasets: the

Accuracy (Acc), the Exact Match (EM) and the F1-score (F1). The last two ones are

indeed the most dominant QA metrics in general.

Acc is suitable for multiple-choice QA datasets, such as ARC and QASC, where all
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the possible choices are previously given; for instance, 4 for ARC and 8 for QASC. Then,

a model must choose the right key, and it is evaluated by the ratio of its correct answers

by the total number of QA-pairs (CLARK et al., 2018; KHOT et al., 2020).

EM has only two possible values for each QA-pair. It is 1 if the predicted answer is

identical to the annotated one at the character level, and it is 0 otherwise. In contrast,

F1 is a measure of the overlap between the bag-of-words versions of the predicted answer

and of the true one.

A standard approach to preprocess the answer strings before calculate the aforemen-

tioned metrics was established by Rajpurkar et al. (2016). The following procedures apply

to generated/extracted ar and ground truth ag answers. They normalize the answer by:

1. Changing all characters to lowercase;

2. Removing punctuations;

3. Removing articles, such as “a”, “an” and “the”;

4. Cleaning the remaining spare white spaces.

The EM score of the pair (ag, a) is computed right from the resulting strings norm(ag)

and norm(a) after the 4th procedure by a simple comparison:

EM =

8
<

:
1, if norm(ag) = norm(a)

0, otherwise.
(2.1)

To compute F1, norm(ag) and norm(a) are tokenized, producing the lists of tokens

t(norm(ag)) and t(norm(a)) respectively, and the number Nc of tokens common to both

lists is counted. Thus, precision Prec and recall Rec are defined as:

8
<

:
Prec := Nc/|t(norm(a))|

Rec := Nc/|t(norm(ag))|.
(2.2)

Finally, F1 metric takes precision and recall into account as a harmonic average:

F1 = 2 · Prec · Rec
Prec + Rec

. (2.3)

The final metric values of both EM and F1 for the whole test dataset is simply the

average over all individual instance scores – i.e., for each (ag, a) pair (YANG et al., 2020).
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2.2 Reinforcement Learning

The interaction between an agent and the environment, summarized in Figure 11, can

be mathematically modeled as a Markov Decision Process (MDP), defined as the tuple

(S,A, T,R, �), where S is a set of states through which the agent can pass {s1, ..., sn};
A is a set of actions that the agent can take {a1, ..., am}, where As is the subset of A

available to the agent from the state s; T represents a state transition function such that

T (st, at, st+1) := p(st+1|st, at), where t demarcates the iteration; and R is the immediate

reward received right after going to state st+1, starting from st for action at. That is, R

is the function R : S ⇥ A 7! R. Finally, � 2 [0, 1[ is the “discount factor”, the parameter

responsible for calibrating the importance the agent gives to future rewards compared to

the closest ones. (SUTTON; BARTO, 2018).

Figure 11: Classic configuration of an agent interacting with the environment in a rein-
forcement learning setting. Image created by the author.

Ideally, solving an MDP means finding a policy ⇡(st) 2 A that maps each state st 2 S

to an action at 2 A, so that the decision-making agent transitions between the states of

the Markov chain in such a way as to maximize the expected value of the accumulated

sum of discounted rewards, i.e., E[�0rt + �1rt+1 + �2rt+2 + ...] – we are considering here

an infinite horizon situation, where we do not have a limited number of iterations t;

in this scenario, conditioning � < 1 guarantees the convergence of the geometric series

(SUTTON; BARTO, 2018).

Under this framework, the value V ⇡(st) of a state, given a policy ⇡, can be understood

as the accumulated value from st onwards (that is, taking st = s0, the starting point),

following ⇡:
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V ⇡(st) = E
" 1X

t=0

�tR(st, at)|⇡, s0 = st

#
. (2.4)

Model-free RL algorithms can generally be organized into two categories: Value-Based

and Policy Gradient, mainly distinguished by the action selection method; in the first case,

the states s and actions a are mapped onto the functions Q(s, a) (a variation of the value

function defined in Equation 2.4) to then decide on a best action; in the second, the

system’s s states are mapped directly into the actions, directly optimizing the ⇡(s) policy

(SUTTON; BARTO, 2018).

In the context of this work, we employed as the agent of our RL environment a Deep

Q-Network (DQN), which is a method that combines deep neural networks and the Q-

learning algorithm to solve the sequential decision-making problem we draw here. This

agent takes the current state as input and outputs a Q-value for each possible action,

balances the exploration-exploitation tradeo↵ by using an ✏-greedy strategy and employs

experience replay to enhance learning stability. By learning from the experiences found

during training, DQN adjusts the network’s parameters by minimizing the loss between

predicted and the target Q-values, in order to improve its predictions over time. The

algorithm 1 outlines these steps.

Algorithm 1 Deep Q-Network (DQN) algorithm

1: Initialize replay memory bu↵er DB with capacity N
2: Initialize Q-network Q with random weights ✓
3: Initialize target Q-network Q̂ with weights ✓0 = ✓
4: for episode = 1 to M do
5: Initialize environment and state s
6: for t = 1 to T do
7: Choose action a using ✏-greedy strategy
8: Execute action a in environment, observe reward r and next state s0

9: Store experience (s, a, r, s0) in replay memory DB

10: Sample random minibatch of experiences (sj, aj, rj, s0j) from DB

11: Calculate target Q-values by setting yj = rj, for terminal sj+1, or by setting
yj = rj + �maxa0 Q̂(s0j, a

0; ✓0), otherwise
12: Update Q-network by minimizing mean squared error:
13: ✓  ✓ � ↵r✓

1
B

P
j (Q(sj, aj; ✓)� yj)

2, where B is the batch size for updating the
Q-network and ↵ is the learning rate

14: Every C steps, reset Q̂ = Q
15: end for
16: end for
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2.3 Transformers

In comparison to the achievements in image recognition obtained through convolu-

tional neural networks (CNN), the domain of natural language processing (NLP) has

experienced a relatively slower progress. This discrepancy can be primarily attributed to

the challenges associated with devising a neural network architecture capable of e↵ectively

harnessing the parallelization of operations within graphics processing units (GPUs), as

well as ensuring the viability of transfer learning.

In the realm of language, two complicating factors persist: the significance of word

order and the variability in the sizes of both inputs and outputs. Until a few years ago,

some of the best neural architectures for problems of this type were RNN, in particular the

LSTM (HOCHREITER; SCHMIDHUBER, 1997), which, in the case of encoder-decoder

(also seq2seq) systems, such as translation, it is outlined in Figure 12, where x can be a

string in English and y, one in French; the encoder and decoder modules correspond, in

this case, to the recurrent application of a sequence of LSTMs:

Figure 12: Illustration of a seq2seq network: x and y are the input and output strings,
respectively, c is the context vector. On the left side, the encoder; on the right, the
decoder. Image created by the author.

Although LSTMs handle long sentences much better than traditional RNNs, a bot-

tleneck of this type of system is the fixed vector c, used by the encoder to represent the

context of sentence x: the last words of x will weigh more than the first ones – and this

is not due to any semantic aspect of the sentences, but the simple order of presentation

of the words to the network (BAHDANAU; CHO; BENGIO, 2014).

The solution to the fixed vector c problem was to establish a linear relationship be-

tween the input and output words: instead of having just one vector c obscurely con-

densing the entire input context, each output word depends on a context that it will be

a linear combination of the input words:

ci =
TxX

j=1

↵ijhj, (2.5)

where ↵ij are the coe�cients of the linear combination and hj’s are the hidden states of
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the neural network (BAHDANAU; CHO; BENGIO, 2014).

Figure 13: Attention with bidirectional RNNs in a machine translation task: a) Demon-
stration of an attention mechanism with a bidirectional RNN. Here xt corresponds to
Portuguese words and yt to English ones; ht and st are the hidden states and the ↵ij are
the linear combination weights of each context. b) Result of the alignment of the input
sentence in Portuguese and its English translation: note that not only the main diagonal
was highlighted, which indicates that the network captured non-obvious relationships be-
tween input and output. Image created by the author, adapted from Bahdanau, Cho and
Bengio (2014).

This approach allows us to plot a sort of correlation graph between the input and

output strings, as shown in Figure 13b: the clearer the square, the more associated is

one word with another. It is to be expected, therefore, that the main diagonal will be

the most intensely activated, as the translated phrase mimics the sequence of the original

phrase: visitou is strongly linked (is the translation of) visited. But note that this does

not happen with the Organização das Nações Unidas passage: while a näıve approach

would align Nações-United and Unidas-Nations, the attention system correctly associated

the two pairs Nações-Nations and Unidas-United.

The Transformer architecture (VASWANI et al., 2017b) completely eliminates the

use of any type of RNN and only leverages attention mechanisms in place. This solves

two bottlenecks of RNNs: forgetting “away” words, due to the attention mechanism, and

sequential training, as they can benefit from parallel trainings on GPUs.

The architecture is shown in Figure 14 and consists of an encoder (the orange part, on

the left, of the figure 14) and a decoder (the purple part, on the right, of the figure), both

comprising multiple layers of self-attention, normalization layers and feed-forward neural
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networks. The encoder processes the input string, capturing its contextual information,

while the decoder generates the output string based on the previously encoded information

and tokens generated.

Figure 14: The Transformer architecture consists of an encoder (orange part, on the left)
and a decoder (purple part, on the right), with multiple layers of self-attention, normaliza-
tion, and feed-forward neural networks. By employing self-attention, the model captures
relationships between sequence elements simultaneously, while positional encodings facil-
itate the understanding of token positions. The encoder processes contextual information
from the input, and the decoder generates the output based on encoded information and
generated tokens. Image created by the author, adapted from Vaswani et al. (2017a).

At the core of it is the concept of self-attention, illustrated by the light orange “Multi-

head attention” blocks in both the encoder and the decoder modules, which allows the

model to capture relationships between di↵erent elements within a sequence, simultane-

ously. Unlike traditional sequential models, where information is propagated sequentially

through recurrent connections, the Transformer model computes attention scores across

all pairs of positions in the input sequence. This attention mechanism allows each position

to attend to all other positions, resulting in a comprehensive representation of the global

context.

Furthermore, the Transformer framework incorporates positional encodings to imbue
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the model with essential positional information. This addition is crucial since the inherent

position-invariance of self-attention necessitates a mechanism to establish the relative

order of tokens within the input sequence. By integrating positional encodings, the model

gains a nuanced understanding of token positioning, enabling it to discern the distinctions

between tokens based on their respective positions.

Finally, famous real-world functional models, such BERT, T5 or GPT, usually is made

of a large stack of these basic structures, with multiple encoder and/or decoder blocks,

so these models end up with millions or billions of parameters.

In recent years, there has been a surge in the popularity of pretrained language models

utilizing the this Transformer architecture. These models have revolutionized every NLP

task, such as classification, translation, and question answering by setting new benchmarks

in terms of quality.

The training process of these models involves self-supervised learning using exten-

sive databases, including comprehensive sources such as the Wikipedia. This pretrained

stage equips the models with a strong initial understanding of language, enabling them

to e↵ectively address diverse language problems. Additionally, fine-tuning on smaller,

domain-specific datasets further enhances their performance. When compared to mod-

els trained solely on these smaller datasets, the general outcome achieved by pretrained

Transformer models is remarkably superior (RAFFEL et al., 2020).
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3 RELATED WORK

Most recent approaches to NLP problems have mainly been end-to-end neural models

(GAO; GALLEY; LI, 2018). Especially after the advent of massive pretrained Transform-

ers models described in the previous chapter, such as BERT (DEVLIN et al., 2018), which

established new standards for state-of-the-art in all classic NLP tasks (RAFFEL et al.,

2020). In QA a similar process occurred, with intense exploitation of neural techniques,

which can be attested by the leaderboards of the main QA datasets, such as the SQuAD.

Other approaches to the problem, such as via RL, have not received much attention: a

simple search in Scopus’ indexed database with the keywords “reinforcement learning”

and “question answering” returns only 126 results for the entire historical period until

20211. However, an intense growth trend can be noticed in particular in the last 5 years,

as shown in Figure 15.

Figure 15: Articles with the keywords “reinforcement learning” and “question answering”
indexed per year in the Scopus platform. Altogether, there are only 126 documents listed
for the entire historical period, but an aggressive growth trend can be observed over the
last 5 years. Figure extracted from the Scopus website.

In general, most of the works on the interface between RL and NLP are about text-

1Query used: “TITLE-ABS-KEY(“reinforcement learning”) AND TITLE-ABS-KEY(“question an-
swering”)”. Result processed in October 2021 at hhttps://www.scopus.com/i.
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based games (RAMAMURTHY; SIFA; BAUCKHAGE, 2020), such as TextWorld (CÔTÉ

et al., 2019), in which the player advances through the game phases solely via textual

instructions exchanged with the command prompt, or about grounded language learning,

such as BabyAI (CHEVALIER-BOISVERT et al., 2019), in which the agent is trained to

learn how to manipulate objects in a virtual environment. Traditional NLP tasks, such

as summarization and QA, are mostly dominated by neural models.

3.1 Reinforcement Learning on KB-QA

Among the successful applications of RL in QA, there is an important set of them made

for KB-QAs. In these systems, the KB is typically given by a graph G(E,R), where E

represents the set of nodes connected by the relations R, as in the case of M-Walk (SHEN

et al., 2018). An MDP is defined in it so that the state st condenses all the history of

previous nodes; the actions at can either answer with the information accumulated up to

t or continue the search through new nodes; rewards are given only if the node associated

with the true answer eT is reached; finally, the transitions are deterministic. Thus, a

neural agent with parameters ✓ is trained to learn a policy ⇡✓(a|s). Models analogous to

this one are developed in the DeepPath (XIONG; HOANG; WANG, 2017) and MINERVA

(DAS et al., 2017) models. Figure 16 illustrates the interaction between the agent and

the defined KB environment.

Our work has similarities with the RL models of KB-QA, as will be demonstrated in

the next chapter. However, we are interested in the more general problem of text-QA,

where there is no ready-made KB available as the environment for the agent, but only

QA-pairs and their respective documents. The next section presents the main works.

3.2 Reinforcement Learning on Text-QA

The Reinforced Ranker-Reader (R3) (WANG et al., 2018) is an end-to-end framework

to tackle open-domain QA datasets whose QA-pairs were not already accompanied by

golden annotated passages, like in the SQuAD dataset (RAJPURKAR et al., 2016); in-

stead, it requires searches in a large corpus C. Until then, the main approaches to this

problem used an IR module (here, called Ranker) to initially list the first k passages from

C most similar to the question q. This set P = {p0, p1..., pk} of passages were then sent

to an MRC component (or, Reader), responsible for generating an answer based on P . A

bottleneck in this procedure is that the overall quality of the answers depended directly
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Figure 16: DeepPath’s RL setting. A neural agent, represented on the right side of the
picture, learns to reason through the KG by learning to map states (agent’s position on
the KG) to actions (paths to other nodes). The Figure above represents all the paths
available as dotted arrows and paths explored by the agent as the bold ones. Image
created by the author.

on the quality of the IR on retrieving congruent and useful passages from C (MANNING,

2021). In the case of sparse IR, for example, such as BM25 (ROBERTSON; ZARAGOZA,

2009), based on the relative frequency of the terms, passages with keywords common to

the question are privileged, but not necessarily the most semantically aligned to q. The

result of this is the inclusion of distracting passages in P that hinder the work of the MRC

module. Table 2 illustrates an example of this phenomenon. The passages p1, p2 and p3

are sorted in descending order by relevance, but p1 clearly does not contain the correct

answer and p3 implies an incorrect answer as well.

To circumvent this issue, Wang et al. (2018) subjected both Ranker and Reader to

joint training via REINFORCE (WILLIAMS, 1992), an RL policy gradient algorithm, so
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Table 2: Example of situation where retrieved passages by the IR module degrade the
MRC module. For the question “What is the largest country in the world by land area?”,
whose answer is “Russia”, the highest-scoring passage, p1, does not contain the correct
answer, and p3, although it does, refers to another entity. Table created by the author.

k Passage
p3 Canada is the second largest country in the world
p3 Russia has 17 million square kilometers, making it the largest country in the world.
p3 The European Union, together with Russia, is the largest producer of wheat in the

world.

that the Ranker is trained to learn a policy ⇡✓(⌧ |q), where ⌧ is a passage, through rewards

received according to the final quality of the answer generated ar by the Reader when

compared to the ground truth annotated answer ag. In the Ranker, R3 uses LSTMs to

create the word embeddings HRank
1 of the passages pi and the question q and then maps

them into fixed-dimensional vectors ui with a max pooling operation. These vectors are

finally concatenated and undergo a nonlinear transformation and used to compute the

probabilities of each passage via a softmax operation, �, such that ⇡✓(⌧ |q) = � tau, as

illustrated on the left side of the Figure 17. Next, the selected passage ⌧ is added by

other negative passages (passages in which the annotated answer is not included), again

vectorized as HRead and processed by the Reader, responsible for extracting the answer

ar. Finally, the reward is computed by comparing ar to the ground truth answer ag by

the following formula – the “else if” clause only means the remaining statements will not

be executed if the first “if” clause is true:

R(ag, ar|⌧) =

8
>>>><

>>>>:

2, if ag = ar,

F1(ag, ar), else if ag \ ar 6= ;,

�1, else.

(3.1)

Thus, the reward computed by the Equation 3.1 is used to refine both the Reader, via

standard backpropagation, and the Ranker, through REINFORCE. The system is shown

in the Figure 17. At its time, R3 reached state-of-the-art results in several datasets such

as SQuAD and Quasar (DHINGRA; MAZAITIS; COHEN, 2017), even without the use

of pretrained models. However, it was not intended to work on multi-hop questions.

Furthermore, the Multi-Step Coarse to Fine Question Answering System (MSCQA)

(WANG; JIN, 2019) was designed to tackle QA on documents of variable sizes with a DRL

setting in a multi-step manner. The system trains an actor-critic agent (KONDA; TSIT-

SIKLIS, 2000) to learn how to e�ciently handle documents of any size. As a testbed, they
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Figure 17: R3 architecture. The Ranker (IR) and the Reader (MRC) undergo a joint
training process. The question q and passages are encoded with an o↵-the-shelf encoder,
and their embeddings are mapped to a fixed-size vector through a max-poling layer.
Thus, the Ranker learns to map q to a best-scoring passage ⌧ , which is paired with a set
of negative passages to improve the learning process. Again, these passages are encoded
and sent to the Reader. The answer ar generated by the Reader is compared with the
annotated one and a reward is calculated. Finally, this reward is used to adjust both the
Ranker and the Reader. Image created by the author, adapted from Wang et al. (2018).

employed four datasets with supporting documents of di↵erent average sizes. For short

documents, the SQuAD (RAJPURKAR et al., 2016) was used (122 tokens on average);

for documents with intermediate sizes, CNN/Daily Mail (HERMANN et al., 2015) (763

tokens) and Wikireading (HEWLETT et al., 2016) (490 tokens); and for long documents,

the Wikireading-Long (CHOI et al., 2017) (1.2k tokens) was used, which is basically a

selection of QA-pairs with the longest supporting documents from Wikireading.

As Figure 18 demonstrates, the states are defined as the concatenation of the encoded

question q with the encoded document Dt in step t. At each step, the agent can choose

one of three actions – beside them, their respective rewards:

1. Simply generate the final answer ar (terminal state). Reward: F1-score(ar, ag);

2. Fetch new sentences from Dt. Reward: 1 if the new document D̂t := Ds contains

ag, and 0 otherwise;
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3. Remove the predicted answer ar from the current state Dt, to avoid false positives.

Reward: 1 if the remaining documents after deleting ar contain the true answer ag;

0 otherwise.

Figure 18: MSCQA architecture. States st are defined as the embedding of concatenation
of documents Dt and the query q at the step t; at t = 0, Dt is just the original document
that accompanies q. The agent is an actor-critic that learns to map each st to one of
three actions. If Predicts answer is chosen, the agent simply extracts an answer ar from
Dt. If Selects sentence is chosen, it gathers a new sentence from Ds. If the agent selects
Excludes predicted answer, the predicted answer ar from Dt is considered a false positive
and excluded from the current state definition. Image created by the author, adapted
from Wang and Jin (2019).

The challenge of exploring the multi-hop QA problem in a DRL environment was also

clearly setted in Ramamurthy, Sifa and Bauckhage (2020)’s work, as part of an e↵ort

to fill the lack of suitable DRL frameworks targeting standard text-based NLP tasks,

such as sequence classification and sequence tagging. The open-sourced library is called

NLPGym, and its code modularization is inspired by the architecture of the OpenAI’s

Gym library (BROCKMAN et al., 2016). This feature makes it compatible with other

frameworks built to work on top of Gym, such as Stable Baselines (HILL et al., 2018), a

collection of state-of-the-art DRL agents.

In the case of the multiple-choice QA task, Ramamurthy, Sifa and Bauckhage (2020)

develop models to handle two datasets, QASC (8-way) (KHOT et al., 2020) and ARC

(4-way) (CLARK et al., 2018), both based on grade school science exams. Since the two
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algorithms are analogous, we will focus here on the modeling over QASC. In this case, as

described in the subsection 2.1.2, each question q comes with two chained facts f1 and f2

and 8 possible choices ct (from A to H for QASC), of which only 1 is correct. Each episode

consists of a QA-pair instance. The MDP states are defined at each timestep t as the

embedding g of the tuple (q, f1, f2, ct). To create the embeddings from the transformation

g, the authors adopted the pretrained word vectors from fasttext (JOULIN et al., 2017),

with 300 dimensions and based on 1 million vectors.

Figure 19 shows an example of NLPGym’s algorithm applied to a QASC question.

The agent starts in state s0 = g(q, f1, f2, cA), where q = “Organisms use fat to what?”,

f1 = “Organisms use lipids to store energy.”, f2 = “Another name for fat is lipid.” and

c0 := cA, the first choice available, “A”. At each timestep t, there are two possible discrete

actions to the agent: CONTINUE or ANSWER. If the agent chooses CONTINUE, it

proceeds to the next state, defined as st+1 = g(q, f1, f2, ct+1) and receives a reward of

0.0. If the agent chooses ANSWER, it selects the key ct and receives a reward of 1.0 if

it is the right answer (in the example, the agent reached the right key, “D”, after four

timesteps) or a reward of 0.0 otherwise, and the episode ends. Since there are a maximum

of 8 choices for each pair, the episode ends on the last possible key, “H”, also with an

ANSWER action from the agent. For the QA-pair present in Figure 19, for example, the

episode associated to the QA-pair is:

s0 = g(q, f1, f2, cA), a0 = CONTINUE, r1 = 0.0

s1 = g(q, f1, f2, cB), a1 = CONTINUE, r2 = 0.0

s2 = g(q, f1, f2, cC), a2 = CONTINUE, r3 = 0.0

s3 = g(q, f1, f2, cD), a3 = ANSWER, r4 = 1.0

As can be seen, in no decision the model takes advantage of past information, and

each state contains only the trio of information associated with the QA-pair, q, f1 and

f2, and the text of the current choice. Although this is not particularly serious here due

to the structure of QASC questions themselves, with candidate choices independent of

each other and only two available facts, in the more general case of complex questions,

it is important to consider the facts sequentially, using accumulated past information to

take the next actions (XIONG et al., 2020). Moreover, another potential flaw in the

current version of NLPGym is that the QA model also refrains from making any use of

its 17M-sentence scientific corpus.
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Figure 19: QA module of NLPGym on a multiple-choice question from QASC. The agent
starts on a state composed of the question q, the supporting facts f1 and f2, and the
first candidate answer, A. If it chooses the action CONTINUE, it moves to a new state,
defined by q, f1, f2 and the next available choice, B, and receives a reward of 0.0. If
it chooses ANSWER, it simply selects the current states’s key; if it is the right one, the
agent receives a reward of 1.0; otherwise, it receives 0.0 again. Image created by the
author.

3.3 Research Gaps

Each DRL work presented in the previous section has its application niches in QA

problems, and there is no “one size fits all” approach. There are robust works to handle

QA in KBs (SHEN et al., 2018; XIONG; HOANG; WANG, 2017; DAS et al., 2017),

to improve the lexical-semantic tradeo↵ between IR and MRC (WANG et al., 2018), to

handle supporting documents of di↵erent sizes (WANG; JIN, 2019; CHOI et al., 2017)

and also to answer complex multiple-choice questions typical from school science exams

(RAMAMURTHY; SIFA; BAUCKHAGE, 2020; KHOT et al., 2020; CLARK et al., 2018).

However, we argue that no DRL work in the literature to date, to the best of our

knowledge, addresses the problem of complex open-domain QA in its most common form

in real cases: a question accompanied by sequences of documents that can contain the cor-

rect answers; all in plain text. In fact, QA work on KBs depends on the prior construction

of a laborious schema or ontology that, in the end, is still limited by their own structures.

Other influential DRL work on QA, such as R3 and the MSCQA-based one, deal with

open-domain plaintext datasets, but do not focus on the need for compositionality in

generating responses to queries that require multiple hops.
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Finally, the most adhering case to ours, NLPGym’s MCQAmodule (RAMAMURTHY;

SIFA; BAUCKHAGE, 2020) is still very seminal. It does not take into account the com-

positional and sequential nature of complex questions, and uses a method to build states

that only concatenates available facts with given choices. The system has also not been

tested on datasets that require more than two hops, because QASC (KHOT et al., 2020)

only has two facts per QA-pair. In contrast, HotpotQA has an average of 41 thematic facts

(passages) per QA-pair, such as those in the Figure 8. Also, the module was not prepared

to take advantage of the available 17M-sentence corpus. Besides that, the NLPGym QA

component has not been evaluated on open-domain datasets and relies, by construction,

on the dataset structure to be multiple-choice, because it is not able to extract or generate

a response directly from the set of facts available. This constraint makes the result of the

action CONTINUE, for example, not very versatile, because it only lists the next candi-

date key in alphabetical order, without any more elaborate heuristics. These restrictions

are critical to extending the system to less controlled scenarios than high school science

exams.

Another limitation present in all these works is the use of contextual embeddings to

represent queries, sentences and answers. In general, these systems are built on RNNs

and their embeddings are classic, such as GloVe (PENNINGTON; SOCHER; MANNING,

2014) or Word2Vec(MIKOLOV et al., 2013). Ramamurthy, Sifa and Bauckhage (2020)

used fasttext (JOULIN et al., 2017) in the QA module, but explicitly considers that the

use of contextual embeddings like BERT’s (DEVLIN et al., 2018) in the definition of

states, for example, probably would lead to substantial improvements.
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4 PROPOSED SYSTEMS

As stated before, the goal of our framework is to directly tackle the CODQA problem,

without relying on KG nor on a full definition of an interactive game. It also does not rely

on QA-pairs being accompanied with a previous set of keys, as in an exam, and, instead,

is able to extract the answers right from the accumulated passages. In other words, this

work aims to address the main gaps mentioned in the previous section. With this aim, we

propose two di↵erent systems: two RL environments with slightly di↵erent agents. We

named these two systems (the set of environment and its respective agent) StringConcat

and VectorSum. Before we dive into both of them, next, we present some basic notations.

4.1 Initial Concepts

Our testbed is the HotpotQA, the text-based CODQA dataset described in the pre-

vious chapter. Its training set is composed of 90,447 instances. In our experiments, we

used the entire training set. Each episode is defined as an instance 0  j  90, 447 of

the dataset, comprised of its respective question qj, a set of all the mj available passages

P j = {pj0, ..., pjm} to answer it, an annotated subset P j
g ⇢ P j of golden passages, which

is the minimal set of passages the annotators considered relevant to chain in order to

answer the proposed question, and an annotated answer ajg – the subscript “g” stands for

“golden” answer. In contrast, the answer extracted or generated by the reader module of

our agent is called ajr.

Upon these basic elements of the dataset, at the step t of an episode j (to recall, an

instance of the HotpotQA), we define P j
t = {pj0, ..., p

j
t�1} as the set of all passages available

up to t to answer qj. To properly pass these snippets to the Reader module, we define

a document djt = [qj, pj0, p
j
1, ..., p

j
t�1] 2 Dj as a string resulting from the concatenation of

the initial question qj with its all subsequent passages, from pj0 up to pjt�1, and Dj as

the set of all possible permutations of the elements from P j [ {qj}. Finally, we generate

the state sjt 2 R̂l for our RL agent operates on by applying the transformation b : D !
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R̂l, which maps a document into its normalized real-valued multidimensional embedding

represention, such that sjt = b(djt) and �1  ||sjt ||  1, 8j, t.

For any episode j or step t, the actions ajt available can be drawn from the discrete

3-dimensional set A = [0, 2] ⇢ Z, where 0 stands for the “ANSWER” action, 1 for the

“RETRIEVE” one, and 2 for the “CLEAN” one. The rewards are given by rjt 2 R.

To render these concepts more tangible, in terms of data structures in a high-level

computer language such as Python, qj, each element of the set {pj0, p
j
1, ..., p

j
t�1}, ajg and ajr

are strings, P j and its di↵erent subsets and Dj are sets of strings, djt is a list of strings,

sjt is a normalized 384-dimensional array, A is a set of integers, ajt is an integer and rjt is

a floating-point number.

Considering that we will adhere to the RL framework henceforth and frequently focus

on the intricate dynamics of an arbitrary episode, we will simplify the notation from this

point onward by implicitly omitting and concealing the superscript j in the subsequent

expressions. Below is a real example that showcases some of the basic key elements

found in a dataset instance, already formatted to be converted into the elements of our

environment:

• Question q: What type of system does the role-playing game created by writer Jenna

Katerin Moran use to determine task resolution?

• Annotated answer ag: Point-based system.

• Available passages P (there are 28 of them):

[“Diceless role-playing game. A diceless role-playing game is a role-playing

game which is not based on chance: it does not use randomisers to determine the

outcome of events in its role-playing game system.”,

“Tabletop role-playing game. A tabletop role-playing game (or pen-and-paper

role-playing game) is a form of role-playing game (RPG) in which the participants

describe their characters’ actions through speech.”,

“Nobilis. The player characters are ”Sovereign Powers” called ”the Nobilis”; each

Noble is the personification of an abstract concept or class of things such as Time,

Death, cars, or communication.”,

...,

“Jenna K. Moran. Jenna Katerin Moran, previously Rebecca Sean Borgstrom (born

March 3, 1972) is a role-playing game writer.”]
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• Annotated golden passages Pg: [“Nobilis”, “Jenna K. Moran”]

4.2 Supporting Transformers Models

Below are the two Transformers models used as auxiliary modules in both of our RL

environments.

4.2.1 Passage encoder

In order to encode documents in runtime with b(·), we use the Sentence Transformer

all-MiniLM-L6-v2 model, which is designed for mapping English sentences into 384-

dimension embeddings. The model is finetuned in a constrastive learning task, and it is

specially tailored for semantic search and clustering operations, more e�cient and faster

than tradicional BERT-like models in metric computations (REIMERS; GUREVYCH,

2019). In this work, we used normalized vectors, between -1 and 1, in order to optimize

the learning of the states accumulated by the agent. We also adopted a batch size of 256.

4.2.2 Reader

The reader module is a Longformer Base with 4096 input tokens, previously finetuned

on the SQuAD dataset version 1.1 dataset1 (RAJPURKAR et al., 2016). It works by

receiving a question q and its context dt, both as strings, and extracting the most likely

text span from dt as the answer ar to q. The reason for a Longformer model instead of

a tradicional Transformer lies in the fact that many instances of the HotpotQA dataset

have several passages available and require more than 1,000 input tokens to be ingested,

as can be seen in the distribuitions in Figure 10. Hence, in the worst case scenario, in

which the agent requires lots of passages to answer q, a traditional Transformer such as

BERT or DistilBERT would not be able to handle it since they are limited to less than a

thousand input tokens.

4.3 RL Agent

For the DRL agent, we use the Stable Baselines 3 framework (HILL et al., 2018),

which delivers state-of-the-art implementations of the lastest released DRL agents. For

1O↵-the-shelf model: hhttps://huggingface.co/valhalla/longformer-base-4096-finetuned-squadv1i.
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the StringConcat system, our agent is a Deep Q-Network (DQN), with two layers of

64 neuros in each one, a learning rate of 5e-4, � = 0.99, a bu↵er size of 20k and 20k

steps available for the agent gathers experiences before start updating its Q-network. We

trained the agent 3 times, for at least 500k episodes in each of them.

For the VectorSum system, on the other hand, everything remained the same, except

for the learning rate, which was updated to 1e-4, the bu↵er size of 90k and the we raised

up to 25k the number of steps available for the exploration phase.

4.4 States and Actions

The main di↵erence between the StringConcat and the VectorSum systems lies on the

state definition. For the StringConcat environment, the set of states S is infinite, and the

state at timestep t, st 2 R̂l, is given by:

st =

8
<

:
b([q, p0]), if t = 0,

b([q, p0, p1, ..., pt�1]), for t � 1,
(4.1)

where q represents the complex question, such as “The Oberoi family is part of a hotel

company that has a head o�ce in what city?” and, in order to speed up the learning

process, the first state is also already built-in with p0, the first passage most similar to q;

b(·) 2 R̂l, l = 384 in this case, is a dense encoder based on a Transformer model, and [·]
is the concatenation operation.

For the VectorSum environment, the state is st 2 R̂l⇥ R̂l, with also l = 384, but given

by:

st =

8
<

:
(b(q), b(p0)), if t = 0,

(b(q), b(p0) + b(p1) + ...+ b(pt�1)), for t � 1,
(4.2)

At each timestep t, in both environments, our value-based agent has three possible

discrete actions: ANSWER, RETRIEVE and CLEAN, as in the work of Wang and Jin

(2019). We limited the number of maximum steps the agent can take – or, the maxi-

mum length for each episode –, as a parameter called MAXSTEPS. In the case of the

StringConcat env, MAXSTEPS = 30; for VectorSum, MAXSTEPS = 20.

In the first case, the agent triggers a reader module to extract an answer associated

to the current state st and arrives into the terminal state. In the case of a RETRIEVE
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action, the agent triggers the IR module, based on MIPS, that searches for the kR closest

set of intermediate passages P new
t = {pi, ..., pi+kR} available such that their embeddings

{b(pi), ..., b(pi+kR)} have the maximum inner product with respect to st, conditioned to

P new
t 6⇢ Pt, such that:

P new
t = {pi 2 P : {argmax

pi

(st · b(pi))}kR}. (4.3)

Thus, the agent advances to the new state st+1 = b([q, p0, ..., pi, ..., pi+kR ]) in the case

of the StringConcat env, or to st+1 = (b(q), b(p0) + ...+ b(pi) + ...+ b(pi+kR)), in the case

of VectorSum, and continues the process.

As a quick reminder, it is worth noting that Equation 4.3 aims to select the passages

pi most similar to st, i.e, the vectors b(pi) with the smallest angle ✓ to st in the embedding

space. This means minimizing with respect to ✓ and, since cos ✓ / st · b(pi), maximizing

the prior inner product.

If the agent chooses the CLEAN action, it will first try to extract an answer ar from

the current passages Pt at its disposal, and then eliminate all of them containing ar. The

agent would receive a small positive reward �C = 0.1 if the annotated answer ag is then

contained in one or more of the remaining passages, and 0 otherwise. The motivation for

this design is to teach the agent to gather the most lean set of passages required to answer

q, and, at the same time, to remove passages that could lead to false positive answers.

This action is also relevant to handle the traditional input tokens limitation found in most

readers modules based on Transformers.

4.5 Rewards

In both StringConcat and VectorSum environments, the rewards are the same and

defined similarly to the model present in Wang and Jin (2019), and depend on the action

taken.

For the action ANSWER:

RANSWER =

8
>>>><

>>>>:

2 + 1/|Pt|, if F1(ar, ag) = 1,

�1/|Pt|, if F1(ar, ag) = 0,

F1(ar, ag) + 1/|Pt|, otherwise.

(4.4)
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For the action RETRIVE :

RRETRIEV E =

8
<

:
1/|Pt|, if ag is present in the newer passages,

0, otherwise.
(4.5)

And for the action CLEAN :

RCLEAN =

8
<

:
�C , �C � 0, if ag is present in the remaining dt,

0, otherwise.
(4.6)

The insights behind this reward shaping is to prompt the agent to e�ciently find the

right supporting passages pi towards the answer ag, avoiding unnecessary passages, which

could, all together, overflow the input token capacity of the reader, even for a Longformer

model in a more general scenario. Another consequence of the success of such behavior

would be an improvement in the explainability obtained with the output answer ar.

4.6 Example

To illustrate a typical episode, consider that in the beginning of it, when t = 0,

the agent starts with the document d0 = [q, p0] (P0 = {p0}), which basically consists of

the question itself concatenated with its first most similar (aka., closest in the embedding

space considering their inner product) passage p0. For the sake of this example, we assume

the agent is in the StringConcat environment – if it was in the VectorSum environment,

the only di↵erence would be in the computation of the states stage. Thus, the first state

is this initial document encoded by a Transformer model, s0 = b(d0).

At t = 1, the agent faces three di↵erent options: ANSWER the question directly with

the available information, RETRIEVE more textual passages to have more data for a

future answer attempt, or CLEAN, in order to remove potentially misleading passages.

For the sake of this example, suppose the agent chooses the RETRIEVE action. Then,

it searches for the kR closest encoded passages {b(p1), ..., b(pkR)} to s0 and concatenate

their passages pi with d0. Hence, it ends up with d1 = [q, p0, p1, p2..., pkR ] and the new

state at this stage is s1 = b(d1). If the annotated answer ar is present at least in one of

the newer retrieved passages, that is, ar is a substring of pi ⇢ P1 = {p1, p2..., pkR}, the
agent receives a positive reward 1/|P1|; otherwise, it receives 0.

Next, at t = 2, consider the agent chooses the action CLEAN. In this case, it tries to

extract an answer ar from the current available passages in P1 and then remove all passages
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{pi, ...., pkC} from P1 that contain the extracted answer ar. If the annotated answer ar is

present in the remaining passages (that is, ar is a substring of p 2 P2 = P1 \ {pi, ..., pkC}),
the agent receives a small positive reward �C ; if ar is not a substring of any element of

P2, it receives 0. Finally, the output state will be b(d2), where d2 is the concatenation of

q with all elements of P2.

This process unfolds likewise until the agent reaches a predefined maximum number

of steps MAXSTEPS or chooses to answer q with the accumulated information so far Pt

(choosing the action ANSWER). In this last scenario, the agent leverages a Longformer

model finetunned on the SQuAD dataset2 to answer q. If ar totally matches ag, it receives

a reward of 2 + 1/|Pt|; if ar is completelly wrong (F1(a, ag) = 0), it is punished with

�1/|Pt|; for any other intermediate case, its reward is F1(a, ag) + 1/|Pt|.

Then, the episode ends and a new one starts as a sampled QA-pair from the 90k-

traning set. We proceed this way up till the end of the predefined number of timestemps.

Figure 20 resumes the proposed model learning from the QA-pair presented in the Figure

8.

2The model is available in the HuggingFace Hub: hvalhalla/longformer-base-4096-finetuned-squadv1i
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Figure 20: Our proposed systems. We have two di↵erent environments, StringConcat and
VectorSum, which di↵ers in the state definition and progression. In the StringConcat env,
the states are st 2 R̂l, made upon the embedding of the concatenation of the passages up
to t. On the other hand, in the VectorSum env, st 2 R̂l ⇥ R̂l, and the states are made
of embeddings of both the question q and the sum of the embeddings of each passage up
to t. The agent starts at s0 when t = 0 and, at each step, it has three available actions.
If it chooses RETRIEVE, it receives a new set of passages P new, to concatenate to the
previous ones in the document Dt. If it chooses CLEAN, it removes kC passages, extracts
an answer from the remaining passages, and, if this answer is the annotated one, it receives
a positive reward. The agent arrives to the terminal state if the available passages pi is
exhausted for the QA-pair, if the agent reaches a maximum predefined number of steps
MAXSTEPS, or chooses ANSWER. In the latter case, a Longformer model finetuned on
the SQuAD dataset is activated to extract an answer ar from Dt. In this case, the agent
receives a new reward proportional to the similiarity between ar and the ground truth
answer ag. Image created by the author.
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5 RESULTS AND DISCUSSION

5.1 Initial Considerations

It is challenging to convert a traditional NLP CODQA dataset into a sort of textual

game and then properly guide a DRL agent towards what we first considered a desirable

outcome. In the work of Ramamurthy, Sifa and Bauckhage (2020), most of their models,

DQN and PPO-based ones, failed in the QA task, not demonstrating significant improve-

ment in learning an e↵ective strategy for answering the questions, even after 50k steps

in a simpler multiple-choice QA dataset. The reasons for this di�culty, both in our case

and in theirs, can be multiple, from the RL realm, such as:

• A poor feature engineering in the design of the observation space;

• A deceptive reward function;

• The absence of a potentially necessary action;

• The typical instability found in many RL models;

• A bad choice of hyperparameters.

Moreover, other sources of noise could be present in the auxiliary NLP modules, such

as:

• An embedding or Reader model not trained in the language or in the task they are

being used for;

• A Reader module with a very limited input of tokens for the typical size of context

it will have to deal with;

• A Reader based on an embedding model of lower semantic richness;

• An inadequate retriever for the task;
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• A Transformer embedding model not specifically finetuned with a constrastive learn-

ing objective (important for establishing a metric in vector space and allowing for

meaningful inner products).

It is still necessary to add to all these factors the classical sample-inneficiency of

DRL models, which requires from 100k up to 2-3M iterations to o↵er a chance to actually

learn an useful policy, and the intensive parallel computing needed to run the Transformer

models that builds embeddings and make inferences in runtime. To illustrate the practival

implications of these factors in our case, it usually used to take more than 2 days to run

an experiment with 500k timesteps, even in a dedicated server with 32 CPU-cores, 64 GB

of RAM and 2x24 GB NVIDIA GPUs.

Nevertheless, in this work we tried to circumvent all of the above mentioned flaws in

both the RL design and in the NLP components. In the RL side, we chose the most stable

and reliable implementations of state-of-the-art RL agents available and slightly adapted

a set of hiperparameters commonly found in successul cases in the literature of the field.

With regard with the states, in both of our systems, we leverage the most direct vector

representation: an embedding of the accumulated passages, plus the original question.

The actions and respective rewards were designed to estimulate the agent not trying to

answer a question without gathering a set of initial extra information, but also to avoid

accumulating unnecessary or misleading passages.

In the NLP side, we chose a state-of-the-art embedding model finetuned in a metric

learning task, and a Longformer with more input tokens than any amount of passages

available in an episode. Both models were pretrained in English, the language of our target

dataset. Also, our retriever implements a dot-product between the collected passages and

the next seeked ones, in order to leverage the semantic properties of theses vectors.

However, we could not control some downsides. First, our embedding model is de-

veloped to encode short sentences, with 256 tokens at most – texts longer than this are

truncated, which means a potential loss of information in our use-case, besides the e↵orts

of the agent in cleaning its bucket of passages. Furthermore, there is the di�culty of

repeating the experiments several times to test di↵erent combinations of actions-rewards

designs and hyperparameters.
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5.2 Results and Comparisons

The charts in the Figure 21 shows the main statistics accumulated during the training

stage of our the systems described in the previous subsections. On the left, in blue tones,

there are the plots for the StringConcat system, and on the right, in red tones, the ones

for the VectorSum system. We trained a DQN agent 3 times in both setups.

Figure 21: The charts illustrates the training curves of the StringConcat and VectorSum
systems after ⇠500k steps. Three training sessions were performed for each system. The
average episode length of the StringConcat system converges to around 20 after 200k
steps, while the VectorSum system exhibits a less stable pattern, peaking at 15 before
decreasing to approximately 10. Both systems show convergent behavior in the loss
charts. The StringConcat system maintains an average reward between 0.3 and 0.4, while
the VectorSum system initially falls to an average reward between 0.4 and 0.5 before
surpassing the StringConcat average, reaching 0.6. Image produced by the author.

The Average Episode Length represents the average number of actions the agent had

taken in each episode. In StringConcat, this number is caped to MAXSTEPS = 30,
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and in VectorSum, to MAXSTEPS = 20. If the agent has not yet chosen the action

ANSWER and has not yet used all available facts for its query, it only has up to this

maximum number of MAXSTEPS steps for the episode to end. The last action, therefore,

does not have to be just ANSWER, but can also be RETRIEVE or CLEAN. Therefore,

one can note that the agent under the StringConcat environment steadily converged to an

average length of about 20 after ⇠200k training steps, while the one under the VectorSum

configuration, showed a less stable pattern: it first grows up to a peak in ⇠15, and

then falls to a length of ⇠10. Both final results are quite less than their respectives

MAXSTEPS.

It is also possible to observe a convergent behaviour in both Loss charts, while their

Average Reward per Episode charts show slightly di↵erent patterns. Whereas the String-

Concat system constantly converges to an average between 0.3 and 0.4, the VectorSum

system first falls to an average limited by 0.4 and 0.5, but then reaches 0.6, surpassing

the StringConcat average level.

Comparing the episode length and the reward episode plots in each system, although

both curves do not change much after 100k-150k steps for the StringConcat system, they

do change jointly for the VectorSum system: when the agent first reaches its peak of

15 at ⇠150k step, the reward per episode is at its lowest point (disregarding the values

before 25k, which corresponds to the pure exploration stage). Next, as the episode length

decreases, the reward gathered in each episode increases, which suggests the agent is

learning how to be more e�cient with the document’s passages at its disposal, profiting

more with less information.

5.3 Results in Dev Set

In order to assess our agent’s ability to process and answer complex questions and

compare it to a traditional neural end-to-end approach, we randomly took 1k instances

from the HotpotQA Dev Set, out of 7405 available. We judged that it was not neces-

sary to use the entire Dev set available, since our benchmark is internal (the end-to-end

Longformer model alone that we use as a reader in the ANSWER action of our agents)

and there is not, so far, an application similar to ours or NLPGym’s of RL techniques to

HotpotQA to keep as a basis for comparison. Even NLPGym has not been tested in the

HotpotQA dataset, because it was not designed for it.

In addition, we used the Dev set (Fullwiki), because the HotpotQA test set does not
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contain the label for each instance (that is, the annotated response), required to compute

the NLP metrics.

Our results are listed in the Table 3, compared to the end-to-end Longformer alone,

finetuned in the SQuAD dataset. Although the RL-based systems were trained to be

economical with the number of passages really required to answer a complex question.

Table 3: Performance Metrics in a 1k-Subset of the HotpotQA Dev Set. Table produced
by the author.

Model Avg F1-score Avg EM Passages Used %Passages
StringConcat 0.058± 0.205 0.030± 0.171 7.6 ± 9.8 18%
VectorSum 0.13± 0.30 0.079± 0.270 20± 9.6 47%
Longformer 0.21 ± 0.36 0.14 ± 0.34 43± 12 100%

In our tests, the strategies of answer-retrieve-clean learned by our RL-based agent was

not enough exceed nor beat a reader able to ingest the full amount of contents to answer

a question – taking into account the Longformer we used can ingest 4096 input tokens,

which is typically more than the necessary to absorb all the passages available to answer

a question in the HotpotQA dataset, as shown in histogram at the right of the Figure 10.

One likely reason for this result is that both of our agents probably learned to exploit

in some level the rewards from the RETRIEVE and CLEAN actions, instead of properly

answer the question. The Table 4 shows the number of times each action was taken as

the last action in each system in the Dev set. Although the VectorSum performed better

than the StringConcat, both often end up the episodes with a RETRIEVE or CLEAN

action, which will certantly lead to a final F1 and EM of zero, since no answer is produced

in these cases to be compared to the annotated one. This is a clearly suboptimal outcome

from the point of view of a NLP task, but is potentially consistent for a RL problem, once

the only way the agent could be punished with a negative score was when actually trying

to answer the question, because of the second condition in the reward function 4.4.

Table 4: Last-Action Distribution for Each RL System in the 1k-Subset of the HotpotQA
Dev Set. Table produced by the author.

Model ANSWER RETRIEVE CLEAN
StringConcat 442 155 403
VectorSum 599 103 298

This probably explains its advantage the VectorSum has over StringConcat, once

it ends up more often in a last action of ANSWER. The Figure 22 shows this result

graphically, comparing our RL systems against each other.
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Next, an example of episode rollout that actually happened during the training stage.

For the question Which one was an American poet, Frank O’Connor or Edwin Arlington

Robinson?, whose annotated answer was Edwin Arlington Robinson, we had the following

steps up to the agent extracts an answer:

STEP 0:

• Number of selected passages so far: 1

• Action taken: RETRIEVE

• Reward: 0.166

• Done: False

STEP 1:

• Number of selected passages so far: 6

• Action taken: RETRIEVE

• Reward: 0.091

• Done: False

STEP 2:

• Number of selected passages so far: 11

• Action taken: CLEAN

• Reward: 0.000

• Done: False

STEP 3:

• Number of selected passages so far: 3

• Action taken: RETRIEVE

• Reward: 0.125

• Done: False
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STEP 4:

• Number of selected passages so far: 8

• Action taken: ANSWER

• Answer extracted: Edwin Arlington Robinson

• F1-score: 1.0

• Reward: 2.13

• Done: True

Figure 22: Comparing last-action distribution in the Dev set for both RL-based systems.
The fact the VectorSum system ends up more often with an ANSWER action probably
explains its advantage over StringConcat. Image produced by the author.

Another reason for the RL-based systems weak results compared to the Longformer is

the limited amount of input tokens of our embedding model all-MiniLM-L6-v2. Despite

it is the state-of-the-art for embedding English sentences intended for the semantic search

task we have, it is currently limited to 256 input tokens. This is clearly a major bottleneck

for the amount of information the agent observes after just a couple of collected supporting

passages, since the average number of tokens is 1415 for a typical full-sized document in an

instance of the dataset. It also contrasts strikingly with our Longformer Reader module

input token of 4096 tokens.
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This probably explains partially the performance gap observed between StringConcat

and VectorSum. For StringConcat, with each step forward, more passages are concate-

nated to generate the document to be vectorized. With each step forward, more passages

are concatenated to generate the document to be vectorized. Since the average length of

each pass is 41 tokens, after 5 to 6 passes the document usually already has more tokens

than the embeddings model is able to support before saturating, truncating and ignoring

any information that has accumulated forward. In the case of VectorSum, as each state

is composed of the original question (which helps to keep the agent aware of the recall),

and the sum of each of the already embedded passages, this impact is virtually null in

this system.
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6 CONCLUSION AND FUTURE WORK

In this work, we tackle a boundary problem in NLP, which is finding apropriate

answers for the complex open-domain questions, from a framework still little explored

in the literature: a RL setting for the traditional NLP datasets. These datasets are

usually addressed by supervised models, specially end-to-end neural models based on the

Transformers networks and pretrained in large amounts of texts accross the internet.

Although these models have shown remarkable results in every classical NLP task,

such as QA, sentiment analysis, Named Entity Recognition, etc., we argue there is room

for RL applications in CODQA tasks mainly due to the fact the intermediate passages

(or, “supporting facts”) are unknown, and often requires a number of sequential steps,

from one passage to the next ones, to answer the question. As a couple of positive side-

e↵ects, one can directly optimizes the system to increases an evaluation metric, such as

the F1-score, or reduce the number of evidences collected to the minimal necessary to

achieve an accurated answer. These were two of the main intentions of this work.

However, our analysis shows our RL setup is not particularly better than a single

Longformer in this QA task, given that the agent is not properly leveraging its CLEAN-

RETRIEVE pair of actions in an e↵ort to reduce the necessary amount of sentences to

answer the question, eliminating the misleading ones, and keeping the most useful ones.

Nonetheless, in real cases, it is common to consult so many documents to answer

a complex question that the limit of 4096 tokens can easily be exceeded. At the same

time, Transformers networks are not as e�cient to process very long inputs due to the

quadratic nature of the self-attention mechanism. In this way, it is feasible to consider

that RL-based systems can still be improved to the point of being relevant for real tasks

of processing complex questions in which it is necessary to manage with some care the

amount of support information really needed to answer these questions.

Another important point to consider is the sampling ine�ciency of RL models. There

really needs to be a substantial advantage in NLP metrics for it to generally be worth
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making use of time-consuming RL models composed of heavy Transformers models. If

separately these systems can already be slow, together this slowness adds up, even if there

is no training of the Transformers networks and they are used only for inference, as we

did in this work.

Thus, as some future work ahead, we would like to address these current limitations,

trying new ways to run the Transformer models faster, by leveraging ONNX serialization,

for example, and search and test di↵erent encoders, with a larger input token – or even

finetune a Longformer with a contrastive learning objective in an English dataset in order

to surpass this 256-token limit. We also strongly believe that a finer reward shaping

could lead to a better and more desirable behavior, by more properly aligning the results

of scores on the NLP task with those on the RL task.

Since the emergence of the super-powerful chatGPT/GPT-4, it also would be in-

teresting to craft a fine prompt, apply them to our CODQA dataset and compare the

performance of these models against the current benchmark results.
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