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RESUMO

O crescimento do suporte a tecnologias de comunicação veicular (V2X) permitiu
que veículos compartilhassem informações sobre condições da estrada e do próprio
veículo, melhorando a eficiência e a segurança no transporte. No entanto, o uso destas
tecnologias em ambientes reais pode apresentar vulnerabilidades que permitam que
usuários ou outras entidades se aproveitem maliciosamente do sistema, quebrando a
autenticidade das mensagens trocadas ou a privacidade dos usuários. Em especial,
espera-se que o sistema seja capaz de revogar veículos maliciosos (e.g., caso enviem
informações inválidas para outros veículos ou para a infraestrutura das estradas) sem
permitir que veículos honestos sejam rastreados através de suas mensagens. Estas car-
acterísticas são comumente tratadas pelo uso de sistemas de Infraestrutura de Chaves
Pública Veicular (VPKI), como é o caso do Sistema de Gerenciamento de Credenciais
de Segurança (SCMS), um dos principais candidatos à padronização de comunicação
V2X nos Estados Unidos. Porém, enquanto o SCMS apresenta um método eficiente
para prover certificados de pseudônimos, seu mecanismo de revogação pode levar a
grandes Listas de Revogação de Certificados (CRLs), resultando no grande uso de
bandas de comunicação e de processamento de dados. Nesta tese, é proposto um novo
esquema chamado de Códigos de Ativação para Certificados de Pseudônimo (ACPC),
que, integrado ao SCMS, trata o problema da revogação de certificados. A proposta é
baseada em códigos de ativação, pequenas cadeias de bits enviadas periodicamente a
veículos honestos, sem as quais certificados previamente emitidos a veículos revoga-
dos não possam ser utilizados. Como resultado, as entradas na CRL correspondentes
a certificados revogados não precisam ser mantidos por longos períodos de tempo, re-
duzindo o tamanho da CRL e o seu custo de transmissão, e acelerando a verificação
da validade dos certificados. E ao permitir diferentes estratégias de distribuição de
códigos de ativação, o ACPC pode se beneficiar de canais broadcast ou unicast ao
equilibrar entre ganhos de banda e o privacidade dos veículos na requisição. Além da
descrição detalhada do ACPC, ele é comparado com outras soluções similares, como o
Sistema de Transporte Inteligente Cooperativo (C-ITS), o Emita Antes e Ative Depois
(IFAL), e o Gerenciamento de Acesso a Certificados baseado em Árvores Binárias de
Hash (BCAM). Esta análise mostra que o esquema proposto neste documento não so-
mente melhora a privacidade (e.g., em termos de resiliência a conluio de autoridades
do sistema), como também pode levar à redução em ordens de grandeza da sobrecarga
de processamento e de banda de esquemas do estado da arte.



ABSTRACT

The increased support to vehicle communication (V2X) technology allows vehi-
cles to exchange information about road conditions and the vehicles’ states, thereby
enhancing transportation safety and efficiency. For broader deployment, however, such
technologies are expected to address security and privacy concerns, preventing abuse
by users, by the system’s entities end by external attackers. In particular, the system is
expected to enable the revocation of malicious vehicles (e.g., in case they send invalid
information to their peers or to the roadside infrastructure) while preventing tracking
of honest vehicles. These features are enabled by Vehicular Public Key Infrastruc-
ture (VPKI) solutions such as the Security Credential Management Systems (SCMS),
one of the leading candidates for protecting V2X communication in the United States.
While SCMS provides an efficient method for provisioning pseudonym certificates,
its revocation mechanism can lead to large Certification Revocation Lists (CRLs), re-
sulting in great bandwidth usage and processing overhead. In this thesis, we propose
a novel design called Activation Codes for Pseudonym Certificates (ACPC), which
can be integrated into SCMS to address this issue. Our proposal is based on activa-
tion codes, short bitstrings periodically distributed to non-revoked vehicles, without
which certificates previously issued to a vehicle cannot be used by the latter. As a
result, the certificates of revoked vehicles do not need to remain on the CRL for a
long time, reducing the CRLs’ size and streamlining their distribution and verification
of any vehicle’s revocation status. And by providing different distribution strategies
for activation codes, we also show that ACPC can benefit from either broadcast or
unicast channels by enabling different trade-offs between bandwidth savings and the
requester vehicle’s anonymity. Besides describing ACPC in detail, we also compare
it to similar-purpose solutions such as the Cooperative Intelligent Transport System
(C-ITS), Issue First Activate Later (IFAL) and Binary Hash Tree based Certificate Ac-
cess Management (BCAM). This analysis shows that our proposal not only improves
privacy (e.g., in terms of resilience against colluding system authorities), but can also
lead to processing and bandwidth overheads that are orders of magnitude smaller than
those observed in the state of the art.
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1 INTRODUCTION

The longstanding pursuit for Intelligent Transportation Systems (ITS)

(FIGUEIREDO et al., 2001) has been leading the automotive industry to ex-

pand the variety of computing and communication capabilities in vehicles, as well as

in the roadside infrastructure. In particular, the increasing support to the so-called

V2X communications technologies, which includes vehicle-to-vehicle (V2V) and

vehicle-to-infrastructure (V2I) mechanisms, allows the development of many ITS-

oriented applications (IYER et al., 2008) (HARDING et al., 2014). Usually, such

applications involve acquiring information about road conditions (e.g., its slope,

current traffic load) and about the vehicles’ state (e.g., velocity, acceleration, position,

distance to other cars) (PAPADIMITRATOS et al., 2009). Such information can then

be shared among vehicles and also relayed to drivers, so adequate actions can be

taken manually or (semi-)automatically. The expected results include a reduction on

traffic congestion, transportation delays, pollution emissions and waste of fuel, as

well as increase safety for both vehicles and pedestrians (FIGUEIREDO et al., 2001)

(DIMITRAKOPOULOS; DEMESTICHAS, 2010).

To become largely deployed and achieve their full potential, ITS technologies need

to address some important concerns, in particular those related to security and privacy

(SCHAUB; MA; KARGL, 2009) (FÖRSTER; KARGL; LÖHR, 2014). Specifically,

the authenticity of data exchanged via V2X is critical to prevent malicious users from

abusing the system, such as forcing a target vehicle to stop by simulating a road acci-

dent ahead. It can be accomplished via digital signatures computed over the broadcast
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messages, as well as with the revocation of a vehicle’s certificates whenever misbe-

havior is detected. By relying on such Vehicular Public Key Infrastructure (VPKI),

vehicles would only trust in, and act upon, authentic messages signed by non-revoked

peers.

However, the use of traditional certificates would allow an eavesdropper to link

messages to the same vehicle. Even if the vehicle’s exact position is not part of the

broadcast messages’ payload, an attacker who monitors a wide area (e.g., using mul-

tiple sensors placed in strategic locations) could still infer those positions and, thus,

identify the path followed by a given certificate’s owner. To avoid privacy issues, there

are two main solutions to vehicular networks: group signatures and pseudonym cer-

tificates. Group signatures (SALEM; IBRAHIM; IBRAHIM, 2010) (GUO; BAUGH;

WANG, 2007) are used to organize several vehicles in the same group, thus messages

from any group member are indistinguishable, which reduces the capability of linking

messages from any specific vehicle. The downside of group signatures is related to the

revocation of a single member. To provide accountability, the revocation authorities

must first contact the group leader in order to open messages signed by this vehicle.

Hence, the trust in the authorities must be delegated to some vehicles so that they can

create groups, and only these vehicles can have the identity of the culprit disclosed.

Alternatively, the usage of pseudonym certificates satisfies international standards for

privacy in ITS applications (ETSI, 2021). When each vehicle carries certificates for

different pseudonyms, it achieves the required unlinkability by swapping among dif-

ferent certificates in a same route; when legal authorities need to link messages from a

vehicle, the certification authorities may disclose the different pseudonyms belonging

to this vehicle. Thus, pseudonym certificates are among the most prominent solutions

to VPKI.

In this work we focus on the Security Credential Management System (SCMS)

(WHYTE et al., 2013) (CAMP, 2016) (BRECHT et al., 2018), which is currently
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one of the leading VPKI candidate designs in the United States. Basically, SCMS

proposes that each vehicle should carry multiple pseudonym certificates. Even though

each individual pseudonym certificate is short-lived, the batch of certificates carried

by each vehicle is expected to cover a long time range (e.g., a few years). As a result,

messages signed by the same vehicle using different pseudonyms cannot be linked

together, so privacy is preserved as long as its certificates are managed properly (e.g.,

a given certificate is not reused too often). Besides enabling the efficient generation

of pseudonym certificates, SCMS also enables their revocation and linkage in case of

misbehavior, thus facilitating investigations by law enforcement authorities whenever

necessary. This revocation process is such that, with a single piece of information

broadcast to the vehicles, multiple certificates from a revoked vehicle can be identified

as invalid.

1.1 Motivation

Revocation of certificates on any traditional Public Key Infrastructure (PKI) is usu-

ally addressed via the distribution of updated Certificate Revocation Lists (CRLs): a

list of identifiers for certificates that have not yet expired, but should not be considered

valid anymore (e.g., because its owner’s private key has been compromised). This list

is signed by a trusted issuer (e.g., the authority that originally issued the certificate

itself), so the authenticity of its contents can be verified.

Albeit simple, this approach has some important shortcomings when applied to the

context of VPKIs. One refers to the asynchronous nature of CRLs, which may receive

new entries and updates at any time. Traditional applications, such as web browsing,

typically address this issue by directly contacting some authority and checking the

current status of certificates (e.g., using the Online Certificate Status Protocol – OCSP)

(SANTESSON et al., 2013). In V2X environments, however, such online verification

would add too much overhead to vehicles, and may not even be possible due to limited
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connectivity. Hence, when CRLs are adopted, it is almost unavoidable to observe large

delays (e.g., days) until revocation updates are delivered to all vehicles.

Another issue is that each vehicle is expected to carry from 20 (BRECHT et al.,

2018) to 100 (EU, 2018) pseudonym certificates for each week of operation. Therefore,

if a regular CRL is employed, the number of CRL entries resulting from each vehicle

revocation could be very large. Indeed, there are many proposals in the literature

aiming to deal with such growth, improving the efficiency of CRL distribution (for a

survey, see (NOWATKOWSKI, 2010)). Among them, the solution proposed in SCMS

is one of the most effective (BRECHT et al., 2018), as it consists in issuing a large

batch of certificates in advance for several future validity periods, and then inserting

“linkage values” in every pseudonym certificate. As a result, all certificates belonging

to the same revoked vehicle can be identified with a single CRL entry, which results in

the CRLs’ size growing with the number of revoked vehicles, not with the number of

revoked certificates.

Although the capability of linking revoked certificates is an important feature in

the context of V2X due to the large number of pseudonym certificates carried by each

vehicle, it also have some drawbacks. Firstly, there is a lack of flexibility. Revoking

a vehicle means also that its privacy is rescinded, since its entire set of pseudonym

certificates can then be linked together. Hence, the only way to reinstate a revoked

vehicle into the system is to re-provision that vehicle with new certificates. In other

words, there is no “unrevoke” mechanism for situations like a vehicle being wrongly

revoked, or in which the revocation occurred due to a temporary error that has been

patched (KUMAR; PETIT; WHYTE, 2017).

Secondly, the gentler CRL growth comes with a cost: a CRL entry’s lifespan cor-

responds to the duration of the batch of pseudonym certificates carried by the revoked

vehicle. It means that those entries are not as short-lived as the pseudonym themselves,

but must persist as long as the vehicle’s long-term certificate. This is likely to lead to
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large CRLs, because batches are expected to cover several years; for example, while

some proposals in the literature suggest 1 to 3 years (WHYTE et al., 2013), others

assume that each batch can enclose enough certificates to cover 30 years of operation

(i.e., the whole expected lifespan of the vehicle) (KUMAR; PETIT; WHYTE, 2017).

As a result, the bandwidth usage for the distribution of CRLs can become a burden if

many vehicles are revoked.

And finally, the costs to verify whether a pseudonym certificate is valid also grows.

SCMS was designed such that the cost of checking a certificate’s revocation status is

proportional to the number of entries in the CRL. For each new certificate a vehicle

needs to verify, it retrieves one entry from the CRL and execute several operations

over it from the time period it was inserted in to the current time period. If the com-

puted information correlates with that of the certificate, its owner was revoked and the

certificate is denied. This verification is executed for each entry in the CRL, thus the

latter’s growth also impacts the processing overhead at the vehicles. For example, is-

suing 20 certificates per week (CAMP, 2016), each vehicle would have to compute up

to 20 operations per entry in the CRL every time it would need to verify a certificate.

1.2 Goals

The main goal of this work is to improve the SCMS’s revocation process by fo-

cusing on reducing the size of the CRL. The CRL can be compacted by reducing the

number of unexpired pseudonym certificates from misbehaving vehicles. The number

of entries in the CRL can be reduced by imposing a extraction of certificates future to

their issuance, which must be achieved only by honest vehicles.
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1.3 Related Works

In SCMS, the verification of a certificate’s revocation status is done applying one-

way functions from the CRL entry to the certificate’s linkage information, which re-

sults in a cost linearly dependent on the number of entries in that CRL. Therefore,

keeping this number low is important not only to save bandwidth when distributing

CRLs, but also to allow a faster and more energy-efficient verification of a certificate’s

revocation status. Unfortunately, however, the same mechanism proposed in SCMS

for shortening CRLs, which associates several certificates to a same entry, also extends

the lifetime of those entries: after all, linkage information placed into a CRL can only

be safely removed after all certificates associated to it have expired. Consequently,

even if device revocation events occur at a low frequency, CRLs may actually grow

big because the corresponding entries remain in the CRL for a duration comparable to

that of certificate batches (e.g., years). Actually, this issue is carried even on recently

proposed improvements to SCMS’s key-revocation process. For example, in (CAMP,

2016), the partial linkage information is computed using a Davies-Meyer construction

(PRENEEL, 2005) aiming to avoid possible vulnerabilities related to the reversibility

of encryption, a modification that does not affect the longevity of the CRLs’ entries.

As another example, in (SIMPLICIO et al., 2018b) the linkage information is com-

puted with suffix-free hashes, which improves the system’s resilience against birthday

attacks, and another layer in the hash tree is added to simplify the temporary link-

age/revocation of vehicles. Even though entries for temporarily revoked vehicles can

be swiftly removed from CRLs, this facility does not apply to entries related to perma-

nent revocations.

Differently from SCMS, in the Cooperative-Intelligent Transport Systems (C-ITS)

(ETSI, 2021), the issuance of pseudonym certificates (called authorization tickets) does

not happen prior to their use but are supplied on demand. For that, vehicles create a

random key-pair and request a certificate to the corresponding public key to the Autho-
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rization Authority (similar to SCMS’s Pseudonym Certificate Authority) by presenting

their enrollment credentials. The credentials are relayed to the Enrollment Author-

ity (similar to SCMS’s Registration Authority), and if approved, a single pseudonym

credential is issued by the authentication authority. Although more recent versions of

C-ITS allow requesting batches of certificates similarly to SCMS (ETSI, 2021, Sec.

6.2.3.5), to avoid linkability among pseudonyms, each certificate must be requested

separately. Whenever a vehicle needs to be revoked, the pseudonym certificate is

linked to the vehicle’s enrollment certificate by the authorization authority, which then

rejects all the following certificate requests from the vehicle. Even though this scheme

reduces the overhead costs in verifying pseudonym certificates due to their short va-

lidity, it expects that vehicles should be connected to the infrastructure in operation

and that they request several certificates for a given time period. Not only that, but

they need to authenticate with the enrollment authority every time they intend to re-

quest new certificates, and the authentication authority is able to link pseudonyms to

vehicles.

Another possible approach for reducing the size of CRLs is to rely on Bloom Fil-

ters (RAYA et al., 2007) (HAAS; HU; LABERTEAUX, 2009), a probabilistic data

structure that allows the compression of lists of values. As a drawback, however,

Bloom Filters introduce the possibility of false-positives, i.e., some strings that are

actually not among the CRL’s entries may be wrongly considered part of the CRL. In

addition, for a given probability of false-positives, a Bloom Filter’s size depends on the

maximum number of entries supported, not on the actual number of entries in it. When

compared to SCMS, where the size of CRLs depends on the number of currently re-

voked vehicles, this is a major drawback. For example, to support 25,000,000 revoked

certificates and a false-positive rate of ≈0.6%, a CRL implemented as a Bloom Filter

would take 32 MiB (HAAS; HU; LABERTEAUX, 2009), independent of the number

of certificates actually revoked. With SCMS, however, if a single vehicle carrying 5000
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certificates needs to be revoked, the CRL size would take simply 32 bytes; to revoke

5000 vehicles, thus reaching the maximum capacity of the aforementioned Bloom Fil-

ter, the CRL size would still be as small as 160 KB. Therefore, when combined with

SCMS, Bloom filters are useful mostly as the data structure for storing multiple certifi-

cate identifiers at the vehicles’ side (e.g., see (HAAS; HU; LABERTEAUX, 2011)),

an approach that is orthogonal to our proposal.

A more promising approach, which is also adopted in this work, is to prevent a

revoked vehicle from accessing its pseudonym certificates. This is the basic idea be-

hind the Issue First Activate Later (IFAL) scheme (VERHEUL, 2016) (VERHEUL;

HICKS; GARCIA, 2019). In IFAL, non-revoked vehicles can periodically query the

system for the “activation codes”, small pieces of information required to compute the

private keys for their own certificates. As a result, the identifiers for revoked certifi-

cates that have been activated need to remain in the CRL only until their corresponding

expiration dates, since subsequent certificates issued to the same vehicle cannot be ac-

tivated. Albeit interesting, IFAL suffers from a significant issue: since the Pseudonym

Certificate Authority (PCA) communicates directly with the vehicles, it can link the

pseudonym certificates it issues to the corresponding vehicle’s enrollment certificates,

even without colluding with any other entity. The only protection offered by IFAL

against such linkability risk is that it requires the PCA to delete the information pro-

duced during the certificate issuance process (VERHEUL, 2016, Sec. 3.2). However,

since such requirement can be easily ignored by a dishonest PCA, IFAL ends up offer-

ing a lower level of privacy than SCMS itself, hindering a possible integration between

the two solutions.

The Binary Hash Tree based Certificate Access Management (BCAM) scheme

(KUMAR; PETIT; WHYTE, 2017) is another scheme that uses activation codes for

reducing CRL sizes. Unlike IFAL, however, BCAM was designed to interoperate

with the SCMS architecture, inheriting its ability to protect the privacy of honest users
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against a dishonest PCA as long as it does not collude with other system entities.

More precisely, in BCAM the Registration Authority (RA) does not simply relay the

PCA-encrypted certificate batches to the requesting vehicle, but first sends them to a

Certificate Access Manager (CAM). The CAM then encrypts those batches using a

symmetric cipher, so they can only be decrypted by vehicles that are able to compute

the corresponding activation codes, called device specific values (DSVs). Instead of

requiring vehicles to explicitly request their DSVs, though, the CAM builds a binary

hash tree whose leaves allow the DSVs to be computed. The CAM then broadcasts

the nodes of the tree that allow non-revoked vehicles (and only them) to recover their

own DSVs. Even though BCAM does improve SCMS’s revocation process, and the

distribution of activation codes is considerably more efficient than the one in IFAL, it

can be further improved in terms of privacy and efficiency. Namely, one drawback of

BCAM’s design is that it creates an extra point of collusion in the SCMS architecture:

the CAM, like the RA, learns which batch of PCA-encrypted certificates belongs to a

same vehicle; consequently, the CAM can collude with the PCA to violate those cer-

tificates’ unlinkability and, hence, the users’ privacy. In addition, during the butterfly

key expansion, the CAM encrypts certificates that have already been encrypted by the

PCA; therefore, this process can be optimized if those two encryption processes are

combined into one. Both issues are addressed in the proposed solution.

1.4 Contribution

Aiming to tackle this CRL expansion issue, we improve SCMS’s revocation pro-

cess with the adoption of activation codes: small pieces of information without which

pseudonym certificates previously issued become useless. Hence, by preventing re-

voked vehicles from obtaining those codes, the entries associated with those certifi-

cates can be safely removed from CRLs. The proposed design, named Activation

Codes for Pseudonym Certificates (ACPC), builds upon previous works such as Issue
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First Activate Later (IFAL) (VERHEUL, 2016) and Binary-hash-tree-based Certificate

Access Management (BCAM) (KUMAR; PETIT; WHYTE, 2017). Nevertheless, it

addresses privacy and performance issues in both solutions, leading to a more robust

key revocation process for V2X communications. Albeit ACPC relies on the broadcast

of activation codes, it can also benefit from the unicast distribution. We extend our

solution by discussing three different request policies with different trade-offs between

privacy and bandwidth savings.

1.5 Outline

The remainder of this thesis is organized as follows. Chapter 2 presents the cryp-

tographic concepts and notation used in the entire thesis. Chapter 3 describes the main

vehicular public key infrastructure schemes from the literature, later compared with

our proposal. We then present the proposed ACPC solution in Chapter 4. Chapter 5

discusses the security of ACPC’s certificate issuance and revocation procedures. Chap-

ter 6 compares our solution with related works in terms of security and efficiency, from

a theoretical and experimental perspectives. Finally, Chapter 7 concludes the thesis.
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2 BASIC CONCEPTS AND NOTATION

In this chapter, we review the building blocks and notation applied in the construc-

tion of our solution. Our proposed pseudonym certification method ACPC is based

on the Security Credential Management System (SCMS) (further detailed in Chap-

ter 3.1), which relies on some cryptographic schemes. Thus, we start our discussion

with the basic definition of symmetric cryptography algorithms, namely a block cipher

and cryptographic hash function. We follow defining the mathematical properties be-

hind elliptic curve cryptography and the asymmetric cryptographic protocols built over

these constructions: encryption and signature systems. We note that all definitions are

quite standard, and a reader with a background in cryptography may skip the follow-

ing sections. Unless explicit, the definitions can be found in (KATZ et al., 1996). Our

tests and benchmarks were constructed using standardized methods, and the specific

schemes are presented in Table 1.

Table 1: List of cryptographic methods used in the implementation
Cryptographic function Algorithm

Block cipher AES-CBC (NIST, 2001a) (NIST, 2001b)
Hash function SHA256 (NIST, 2015)

Digital signature ECDSA (NIST, 2013)
Asymmetric encryption ECIES (IEEE, 2004a)

Source: the author.
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2.1 Cryptographic Background

Cryptography is the study of mathematical techniques to guarantee secure infor-

mation management. The goals for its application depend on its security requirements

since they can vary from protecting communication data to authorization of personnel.

Usually, it provides at least one of the main security services:

• Confidentiality/Privacy: keeping information secret from unauthorized parties.

• Data integrity: detection or prevention of illegal data modification.

• Authentication: identification of the source or attestation of an identity.

• Non-repudiation: prevention of denial of a commitment in case of dispute.

Cryptographic primitives are employed to address these requirements, such as hash

functions for data integrity, encryption schemes for confidentiality, signature schemes

for authentication, and non-repudiation. They are usually categorized by its key depen-

dency: cryptographic tools that do not depend on keys are called unkeyed primitives;

when all parties use the same key, or the same key can be derived from information

from all parties, they are called symmetric-key primitives; and schemes that only one

party has access to some private function, while others only operate on a public func-

tion, are called asymmetric-key or public-key primitives.

The strength of these algorithms is given by the security level, which represents

the number of bits of a random sample that an attacker must guess correctly in order

to “break” the system. For unkeyed primitives, it usually depends on their output size

or inner components, while for keyed primitives (both symmetric and asymmetric), it

usually relates to the key size.

In this work, most unkeyed and symmetric-key primitives are treated as black-box

implementations, and their inner workings are not required for the execution. How-
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ever, some mechanisms from public-key primitives are explicit, which requires some

background on elliptic curve cryptography.

2.2 Elliptic Curve Cryptography

We now present some group theory concepts used in the remaining of this work.

Unless explicit, the definitions in this section were transcribed from (SHOUP, 2009).

Definition 1 (Abelian Group). An abelian group (G, ⋆) is a set G with a binary oper-

ation ⋆ such that the following properties hold:

• Closure: ∀A, B ∈ G, (A ⋆ B) ∈ G.

• Associativity: ∀A, B,C ∈ G, A ⋆ (B ⋆C) = (A ⋆ B) ⋆C.

• Identity element: the unique element I ∈ G is called the identity element, such

that ∀A ∈ G, A ⋆ I = I ⋆ A = A.

• Inverse element: for each element A ∈ G, exists an element A ∈ G called the

inverse of A such that A ⋆ A = A ⋆ A = I.

• Commutativity: ∀A, B ∈ G, A ⋆ B = B ⋆ A.

Although any operation can be defined in an abelian group, it is usually defined

as the addition or the multiplication operation. Thus, the “⋆” operator is replaced by

the addition “+” (resp., the multiplication “·”) operator, the identity element I by 0G

(resp., 1G), and the inverse A by (−A) (resp., A−1). The formal representation of a group

is (G, ⋆), but when the operation ⋆ is well known for the set, it can be omitted, and

the group is represented only by the set G. For generic abelian groups, the addition

notation is more common and usually omitted.

In several occasions, it is useful to define the composition operation, in which ⋆ is

computed several times over the same element. For the addition (resp., multiplication)
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operation, the composition is usually represented by the multiplication (resp., expo-

nentiation): to compose n times on the element A ∈ G, n · A = n A =
∑n−1

i=0 A (resp.,

An =
∏n−1

i=0 A). The composition operation can also be applied to provide additional

structure inside a group in the form of a cyclic group.

Definition 2 (Cyclic Group). An additive (resp., multiplicative) group G is called a

cyclic group if there is an element G ∈ G such that ∀A ∈ G, there is an integer n such

that A can be computed from the n-multiplication (resp., n-power) of G, i.e., n G = A

(resp., Gn = A). The element G is called a generator of G, and the group ⟨G⟩ = G is

generated by G.

The order of a group is the number of elements in its set and is represented by |G|.

In some cases, we only intend to apply the group operation in a subset G1 of smaller

order than G (G1 ⊂ G). If every property of an abelian group holds to this subset G,

we call G1 a subgroup of G. For some element G ∈ G, we can define ⟨G⟩ ⊂ G as the

subgroup generated by G. The order of the generator G is defined by the order of the

subgroup ⟨G⟩, and is represented by #G.

In some cases, the set may present both operations in its structure (namely, the

addition and the multiplication), which can classify a field.

Definition 3 (Field). A field (F,+, ·) is a set F with two binary operations + and ·

(called addition and multiplication) such that the following properties hold:

• (F,+) is an abelian group with identity element 0.

• (F, ·) is an abelian group with identity element 1.

• Distributivity (of multiplication): ∀A, B,C ∈ F, (A + B) ·C = A ·C + B ·C.

If the number of elements n in the field is limited, it is called a finite field or Galois

field Fn. The order n of the finite field must be a prime or a power of a prime (n = pb,

for some b > 0), and this prime p is the characteristic of the field.
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Definition 4 (Characteristic of a finite field). If F is a field, there is a positive integer p

such that p ·A = 0 for all A ∈ F. The smallest such integer p is called the characteristic

of the field F. If there is no such integer p, the set F is said to have characteristic 0,

and F is not a field.

An elliptic curve is the set of solutions in some defined field to a cubic polynomial

equation in two variables. As a plane curve, elliptic curves have the shape of the graphs

presented in Figure 1. Formally:

Definition 5 (Elliptic Curve). An elliptic curve EC over a field F is the set of solutions

(x, y) ∈ F of the equation:

EC/F : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6; a1, a2, a3, a4, a6 ∈ F (2.1)

, together with the “point at infinity” O. Equation 2.1 is called the generalized Weier-

strass form.

Figure 1: Example of elliptic curves in the real plane

Source: Hankerson, Menezes and Vanstone (2004, p. 77)

If the curve is nonsingular (i.e., there are no repeated roots to the Weierstrass

equation), the set of points of an elliptic curve is an additive abelian group with identity

O (HUSEMÖLLER, 2004, Remarks 2.1 and 5.3). The group operation is called point
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addition, defined by the chord-tangent law of composition, and the composition of

point additions is called scalar multiplication (WEIL, 1928), and they are the basis for

designing some standardized asymmetric cryptographic methods.

The security of traditional asymmetric-key cryptographic primitives is based on

mathematical problems which are easy to verify but hard to compute. Namely, the

Integer Factorization Cryptography (IFC), which is based on the hardness of finding

primes that, multiplied, result in a large public number (e.g., Rivest-Shamir-Adleman

– RSA – cryptosystem (RIVEST; SHAMIR; ADLEMAN, 1978)); and the Finite Field

Cryptography (FFC), which is based on the hardness of finding the number of com-

positions in an abelian group, named the discrete logarithm (e.g., Digital Signature

Algorithm – DSA (NIST, 2013)).

Definition 6 (Discrete Logarithm Problem (DLP)). Consider a (multiplicative) group

G = ⟨G⟩. Given P ∈ G, find an integer x such that P = Gx.

Elliptic Curve Cryptography (ECC) is an adaptation of the FFC using elliptic curve

groups, and its security reduction is usually based on a specific instance of the DLP.

Definition 7 (Elliptic Curve Discrete Logarithm Problem (ECDLP) (MILLER, 1986)).

Consider an elliptic curve EC defined over the field Fn. Given two points P,G ∈ EC,

find an integer x such that P = x G, if such x exists.

To ensure the same security level, schemes based on the DLP usually require

smaller key sizes and have faster execution time than the ones based on integer fac-

torization. And albeit both FFC and ECC are based on the DLP, there are specific at-

tacks on the structure of FFC (e.g., index calculus (ADLEMAN, 1979)), which do not

apply to ECC (SILVERMAN; SUZUKI, 1998) (MILLER, 1986). Thus, FCC usually

requires larger parameters than ECC. Table 2 presents a comparison of the minimum

key-lengths for IFC, FFC and ECC.
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Table 2: Key sizes (in bits) for protocols based on the Integer Factorization Cryptogra-
phy (IFC), Finite Field Cryptography (FFC) and Elliptic Curve Cryptography (ECC)

Security level
IFC FFC ECC

(key size) (public key; private key) (key size)
≤ 80 1024 1024; 160 160 − 223
112 2048 2048; 224 224 − 255
128 3072 3072; 256 256 − 383
192 7680 7680; 384 384 − 511
256 15360 15360; 512 512+

Source: adapted from Barker (2016).

In this work, tests and implementation of elliptic curve protocols employ the

Curve25519 (BERNSTEIN, 2006), which presents a security level of 128 bits and

is one of the fastest curves free of patents.

2.3 Cryptographic Hash Functions

One-way functions take a distinctive role in cryptography because they make it

impracticable for any party to compute the preimage of the public output of specific

functions. Such usage is essential so that an adversary cannot compute private keys

from the public parameters in most public-key cryptographic schemes. Informally,

a function is called a one-way function if it is easy to compute the image from any

element from the domain, but it is computationally infeasible to compute the inverse

from most elements of the codomain.

Cryptographic hash functions are a particular class of one-way function that maps

arbitrary-length bitstrings to another bitstring of fixed length. These functions are

widely adopted with digital signature schemes to get a digest from a larger message

before signing it. They are also used to assert data integrity since any alteration in the

data will result in a different output (called simply hash).

Definition 8 (Hash function). A hash function is, in general sense, a function Hash

which has at least two properties:
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• compression: Hash maps an input str of arbitrary finite bitlength to an output

Hash(str) of fixed bitlength n, i.e., Hash : {0, 1}∗ → {0, 1}n.

• ease of computation: given Hash and str, it is easy to compute Hash(str).

When considering cryptographic hash functions, other properties may also be re-

quired:

• (first) preimage resistance: for all specified outputs, it is computationally infea-

sible to find any input which hashes to that output, i.e., to find a preimage str′

such that Hash(str′) = y when given any y for which a corresponding preimage

is not previously known.

• second preimage resistance: it is impossible to find any second input which has

the same output as any specified input, i.e., to find a second preimage str′′ , str′

such that Hash(str′′) = Hash(str′).

• collision resistance: it is computationally infeasible to find any two inputs which

hash to the same output, i.e., to find str′ and str′′ such that Hash(str′) =

Hash(str′′).

Another classification of hash functions reflects the properties the function

presents. We call a one-way hash function a hash function that presents both the preim-

age resistance and second preimage resistance properties. We call a collision-resistant

hash function a one-way hash function that also presents the collision resistance prop-

erty. In the rest of this thesis, when not specified otherwise, a hash function will be

considered a collision-resistant hash function.

Although considered a symmetric-key cryptographic protocol, hash functions can

be keyed or unkeyed. The computation of a hash function output does not require a

key as input, but some applications use a key as an additional input. The key is affixed

to the input message so that the hash function with a given message will output two
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different hashes when using two different keys. This process is related to the selection

of an element of a family of hash functions, in which the family is represented by the

hash function protocol and the index of the element is the key.

One common use of hash functions is in the construction of key derivation func-

tions (KDF). Given the unpredictability of the hash function output, they can be used

to modify the key material for some other cryptographic algorithm to a more uniform

distribution of bits. In special, its application is recommended if the key material has

some predetermined format which could result in “weak bits” (i.e., bits that could be

guessed by an attacker with greater probability, thus reducing the effective security of

the key). Besides, they can also be used in protocols that require several operations

using the same key so that the key can be updated after a determined number of steps.

Another use of hash functions is function to protect against code modification

in constructions of modification detection codes (MDC) and message authentication

codes (MAC). MDC is a direct usage of an unkeyed hash function to prove that some

data has not been modified after it was provided. Any modification to the original data

will produce a different MDC than originally published, thus asserting its integrity.

Alternatively, a MAC provides not only data integrity but also the authenticity of its

source between two peers by hashing the data together with a shared authentication

key.

For implementation purposes of this work, we use the hash function SHA256 and

the hash-based message authentication code (HMAC) (NIST, 2008).

2.3.1 Birthday Attacks and Security Strings

Birthday attacks are a class of problems that can be applied to any hash function.

These attacks aim to find sample inputs to hash functions that output to the same value

(i.e., a collision). They receive this name based on the birthday problem, which defines

the probabilities of finding two people with the same birthday in a group of random
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people. This problem is commonly named a paradox because of the rapid growth of

the probability after it reaches 50%: for a year of 365 days, it only requires a group of

23 people to get a probability of 50%, and 70 people to a probability of 99.9%.

For cryptographic hash functions, a generic birthday attack is to accumulate

enough input values to a hash function to get a high probability of finding a colli-

sion. Since this number is approximate to the square root of the possible outputs,

they are also characterized as a square-root attack. Considering a security level k, a

collision-resistant hash function has output blocks of at least 2k bits. Thus, an attacker

need access to
√

22k = 2k hash output values to get a collision with high probability.

Although it is usually hard to obtain by itself, some applications may publish a large

number of values, making the attack easier.

One way to avoid the disclosure of many hash output values is to choose different

hash functions. Instead of using different algorithms, it is possible to obtain different

hash outputs using the same algorithm but appending some information to the input

specific to the running instance. The appended information is called a security string

(LEIGHTON; MICALI, 1995), that uniquely define the instance of the hash function

running. The construction of a security string is specific to the application, but it

usually contains some information to identify the entity that provides the hash and

some public information to index the input.

In Appendix A we present a scenario in which an attacker attempts a birthday

attack on BCAM (KUMAR; PETIT; WHYTE, 2017), whose sources of these input

values are twofold: the disclosed activation codes and the attacker chain.

2.4 Encryption

Generically, an encryption scheme (sometimes referred as a cipher) is a set of pro-

tocols capable of providing data confidentiality, i.e., of keeping the content of the infor-
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mation from all but the authorized users. It is based on the reversibility of a function,

which requires a key to the correct execution. The process called encryption receives

the plaintext and an encryption key to transform it into a ciphertext. The inverse pro-

cess, called decryption, receives the ciphertext and the corresponding decryption key

to transform it in the original plaintext. Confidentiality is achieved when the ciphertext

is indistinguishable from a random string, and there is no way to correlate a ciphertext

to some plaintext if the decryption key is not available. Formally:

Definition 9 (Encryption Scheme). LetK,M and C denote, respectively, the key space,

the message space and the ciphertext space. The elements K ∈ K, str ∈ M and

pkg ∈ C are called, respectively, a key, a message and a ciphertext; and the keys can

be divided into the encryption key Ke, and the decryption key Kd. The application

Enc (Ke; str) → pkg is called encryption, and the application Dec (Kd; pkg) → str is

called decryption. The set of algorithms
(
Enc (Ke; ·) ,Dec (Kd; ·)

)
is called an encryp-

tion scheme iff. Dec (Kd; Enc (Ke; str)) = str.

A cipher may be either a symmetric-key scheme (when it is easy to compute the

decryption key from the encryption key) or a public-key scheme (with no easy trans-

formation between the key-pair), usually depending on the underlying computational

problem. As both kinds are presented in SCMS, we further detail the symmetric-key

cipher in Section 2.4.1 and the asymmetric one in Section 2.4.2.

2.4.1 Symmetric-Key Cipher

A symmetric-key cipher is an encryption scheme in which it is easy to compute the

decryption key from the encryption key (e.g., if both keys are the same). This primitive

is used when both the sender and the recipient of some message know the shared key

or when only one user encrypts and decrypts its messages. There are two classes of

symmetric-key ciphers: block cipher and stream cipher.
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A block cipher is an encryption scheme that encrypts a fixed-size message. When-

ever a message is smaller than the block size, it is necessary to append a predefined

bit sequence called padding to round the number of blocks (e.g., (NIST, 2001b)). For

messages larger than the block size, the cipher may use some mode of operation: a

protocol that defines how to pad and split the message into blocks that can be used by

the block cipher, and how the block key is derived from the cipher key. Symmetric-

key block ciphers are one of the most fundamental cryptographic primitives since it is

possible to create other functionalities, such as pseudorandom number generators, mes-

sage authentication codes, and hash functions. It is an important primitive to SCMS,

which employs the Advanced Encryption Standard (AES) in the Cipher Block Chain-

ing (CBC) mode of operation.

Alternatively, a stream cipher is an encryption scheme that encrypts messages of

arbitrary sizes. They are considered block ciphers with a block size of 1 bit, with a

method of key derivation to produce a keystream of any size. It is not used in this

work, but an interested reader can find more information in (KATZ et al., 1996).

2.4.2 Asymmetric-Key Cipher

Unlike its symmetric counterpart, an asymmetric-key (or public-key) cipher is an

encryption scheme on which it is not possible to compute the decryption key from the

encryption key without some secret trapdoor. In this primitive, the encryption key is

publicly disclosed, while the decryption key is kept private. Hence, the main usage of

such a scheme is to provide any user the capability of encrypting strings but reserving

the decryption of such strings to an authorized user. It is important to note that an

asymmetric-key cipher provides data confidentiality without origin authentication or

integrity, which can be achieved by coupling with a digital signature and a Message

Authentication Code (MAC).

Public-key cryptography is usually slower than symmetric-key, so asymmetric-
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key ciphers are usually used to encrypt small messages or the shared key for some

symmetric-key encryption. The SCMS employs the Elliptic Curve Integrated Encryp-

tion Scheme (ECIES) (IEEE, 2004a), which computes a shared key for a symmetric-

key cipher (namely, AES-CBC) and produces a MAC (namely, hash-based MAC –

HMAC) for origin authentication and integrity.

2.5 Digital Signature

A digital signature scheme is a set of algorithms capable of binding an identity to

some piece of information. It provides both authentication and non-repudiation; thus, it

guarantees that the owner of the public key has signed the message, and does not allow

the signer to deny having signed it. The process of signing receives the message and

the signature key, which is private to the signer, to return a signature on the message.

The verification process receives the signature, the message, and the verification key,

which in turn is public, and accepts it if and only if the signature is valid. The existence

of a private signature key and public verification key intrinsically requires the signature

scheme to be an asymmetric-key cryptographic protocol whose trapdoor is related to

the signature key. Formally:

Definition 10 (Signature Scheme). Let K,M and S denote, respectively, the key space,

the message space and the signature space. The elements K ∈ K, str ∈ M and sig ∈ S

are called, respectively, a key, a message and a signature; and the keys are divided into

the signing key Ks and the verification key Kv. The application Sign (Ks; str) → sig

is called signature, and the application Verif (Kv; str, sig) → {0, 1} is called verifica-

tion. The set of algorithms
(
Sign (Ks; ·) ,Verif (Kv; ·)

)
is called a signature scheme iff.

{Sign (Ks; str)→ sig ∧ Verif (Kv; str, sig) = 1}.

For most applications, the message to be signed can be arbitrarily large. In order

to sign such messages, a collision-resistant hash function may be used to compress
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the original message to another message in the signing space (i.e., the message space

in which the signing process transformations are applied). The collision resistance

protects the signer so that it is infeasible to find messages that hash to the same digest

(i.e., so that one signature could be valid for more than one message), especially if the

messages are not provided by the signer him/herself.

In this work, we consider digital signature schemes with appendix, in which the

message must be sent together with the signature. However, some schemes provide

message recovery, which allows the original messages to be recovered from the signa-

ture, and the verification process does not require the message as input.

2.5.1 Public-Key Infrastructure

Signatures provide message authentication by their signer, thus providing irrevoca-

ble information that the owner of the verification key has signed the message. However,

it is not enough to guarantee that the keys’ owners are indeed related to a real-world

identity. Thus, an entity can obtain a digital certificate that binds the verification key

to the identity.

Besides linking the public key to the entity’s identity, digital certificates also usu-

ally contain information about the certificate authority that issued that certificate, the

validity period of the keys, and how the keys can be used by that party (e.g., if that key

can be used to sign other certificates). In order to ensure the correctness of this infor-

mation, an entire Public Key Infrastructure (PKI) is required. Formally, a PKI is the set

of hardware, software, people, policies, and procedures that are needed to create, man-

age, store, distribute, and revoke digital certificates based on asymmetric cryptography

(SHIREY, 2007). Although a traditional PKI is based on X.509 certificates (BOEYEN

et al., 2008), alternative certificates are used for specific domains (e.g., IEEE 1609.2

certificates for vehicular wireless environment (IEEE, 2016)).
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2.5.2 Implicit Certificates

While traditional signature schemes are most commonly used by the certificate au-

thorities to issue a digital certificate, it is also possible to create the end-user keys by

implicitly certifying them. This idea originated from identity-based certificates (GÜN-

THER, 1990), which allows the users’ public keys to be derived from public attributes

that uniquely define them (e.g., name, e-mail address). Only then, the certificate au-

thorities could generate the corresponding private key from this public information and

sent to their owner using a secure channel. However, this schemes resulted in the dis-

advantage of requiring key escrow, i.e., the certificate authorities are privy of the user

private keys, since they were responsible for its generation.

In order to solve the key escrow property from identity-based certificates, implicit

certificates (CERTICOM, 2013) allowed users an additional secret input in the private

key generation. The implicit certificates are not actually signatures on the users’ public

keys, but values from which other entities could derive them from the implicit certifi-

cates and the certificate authority public keys. These schemes usually result in more

compact certificates, since signatures do not need to be transmitted together with the

users’ public keys. In this thesis, implicit certificates are considered in the generation

of vehicular certificates in established vehicular PKIs.

2.6 Summary

In this chapter, we explored the cryptographic background used in this document,

motivated by the security services required for a given application. The given mathe-

matical concepts are essential for asymmetric cryptographic protocols, with the choice

of elliptic curve cryptography for its smaller parameters. Among the protocols applied

in the proposed solution, we introduced hash functions for providing data integrity

and authentication (when constructing a MAC), and a possible attack when a large



43

number of hashes is distributed. Encryption schemes are presented in both symmetric

and asymmetric configurations and are used to provide confidentiality of the transmit-

ted data, with or without authentication. Finally, digital signatures are employed for

authentication and non-repudiation, while it still requires a Public Key Infrastructure

(PKI) to guarantee ownership of published keys.
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3 RELATED VEHICULAR PUBLIC KEY
INFRASTRUCTURES

In this chapter, we review four of the most prominent Vehicular Public Key Infras-

tructures (VPKI) from the literature. First, we detail the inner workings of the Security

Credential Management System (SCMS), which presents an efficient mechanism for

issuing and linking pseudonym certificates, and is also the base for our proposed im-

provement to the revocation procedure. Then, we briefly describe its main competitor,

the Cooperative-Intelligent Transport System (C-ITS), whose certificate issuance fol-

lows a more traditional approach. Finally, we present two other solutions based on

activation codes, the Issue First Activate Later (IFAL) and the Binary-hash-tree-based

Certificate Access Management (BCAM), which we compare with our proposal in

terms of efficiency and privacy.

3.1 Security Credential Management System (SCMS)

The Security Credential Management System (SCMS) (WHYTE et al., 2013)

(CAMP, 2016) (BRECHT et al., 2018) provides efficient mechanisms for the provi-

sioning and revocation of pseudonym certificates in V2X communications. Combined,

these mechanisms enable revocable privacy while ensuring that no single entity in the

system can track honest vehicles. As a result, it addresses the needs of the “honest-

but-curious” security model (KHODAEI; PAPADIMITRATOS, 2015), in which the

system’s entities are expected to follow the correct protocols, but may engage in pas-

sive attacks such as trying to infer sensitive information from the exchanged data (e.g.,
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aiming to track vehicles). Actually, it also takes into account attacks in a security

model slightly more powerful than the “honest-but-curious” approach, which we call

“dishonest-if-allowed”: the system’s entities may engage in active attacks, subverting

the protocols’ execution, but only if (1) this would bring them some advantage (e.g.,

the ability to track vehicles) and (2) if such misbehavior can go undetected.

After SCMS was published and became one of the leading candidate designs for

protecting V2X security in the US, different improvements to its design have been

proposed (KUMAR; PETIT; WHYTE, 2017) (SIMPLICIO et al., 2018c) (SIMPLICIO

et al., 2018b). Since the proposal hereby presented builds upon SCMS and can also

take advantage of the aforementioned improvements, in what follows, we describe

SCMS in some detail, giving an overview of the state of the art and the limitations

targeted by our solution.

3.1.1 Overview

In SCMS, each vehicle receives two types of certificates: one enrollment certifi-

cate, which identifies authorized devices and is expected to have a long lifespan (e.g.,

years) before expiring; and multiple pseudonym certificates, each having a short expi-

ration time (e.g., a few days), so only σ ⩾ 1 certificates of this type are valid simultane-

ously. For protecting their privacy, vehicles may alternate the pseudonym certificates

employed when sending different messages, thus avoiding tracking by nearby vehicles

or by roadside units. In practice, however, it is important that σ remains small to limit

the effects of “Sybil-like” attacks (DOUCEUR, 2002), in which one vehicle poses as

a platoon by sending multiple messages signed with different pseudonym certificates.

Otherwise, a vehicle abusing its pseudonymity in this manner could, for example, re-

ceive preferential treatment from traffic lights programmed to give higher priority to

congested roads (MOALLA et al., 2012).

As previously mentioned, SCMS was designed to distribute multiple pseudonym
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certificates to vehicles efficiently while providing mechanisms for easily revoking and

linking them to their owners in case of misbehavior. For this purpose, SCMS re-

lies basically on the following entities (see Figure 2 for a complete architecture, and

(WHYTE et al., 2013) for the description of all of its elements):

• Pseudonym Certificate Authority (PCA): responsible for issuing pseudonym cer-

tificates to devices.

• Registration Authority (RA): receives and validates requests for batches of

pseudonym certificates from devices identified by their enrollment certificates.

Those requests are individually forwarded to the PCA, so requests associated to

different devices are shuffled together so the PCA cannot link a set of requests to

the same device.

• Linkage Authority (LA): generates random-like bitstrings that are added to cer-

tificates so they can be efficiently revoked (namely, multiple certificates belong-

ing to the same device can be linked together by adding a small amount of infor-

mation to certificate revocation lists – CRLs). SCMS uses two LAs, even though

its architecture supports additional LAs.

• Misbehavior Authority (MA): identifies misbehavior by devices and, whenever

necessary, revokes them by placing their certificate identifiers into a CRL.

These entities play different roles in the two main procedures provided by SCMS:

the butterfly key expansion, which allows pseudonym certificates to be issued; and key

linkage, which allows the efficient revocation of malicious vehicles. Both are described

in the following sections.



47

Figure 2: SCMS overview.
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3.1.2 The Butterfly Key Expansion

The butterfly key expansion enables vehicles to obtain arbitrarily large sets of

(short-lived) pseudonym certificates through a single, small-sized request message

from vehicles. Figure 3 illustrates this process, whereas Table 3 lists the corresponding

operations, explained in what follows.

The vehicle starts by picking two random private caterpillar keys, s and e, used

respectively for signing messages and decrypting the batch of certificates. From them,

the corresponding public caterpillar keys S = s ·G and E = e ·G are computed. It also

picks two random seeds for initializing pseudorandom functions f1 and f2, used for

deriving the original keys. The quadruple (S , f1, E, f2) is then sent to the Registration

Authority (RA).

The RA then generates the batch of β public cocoon signature keys Ŝ i = S + f1(i) ·
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Figure 3: SCMS’s butterfly key expansion and pseudonym certificate generation.
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G, where 0 ⩽ i < β. Analogously, the RA uses E for generating β public cocoon

encryption keys Êi = E + f2(i) ·G. Pairs of public cocoon keys (Ŝ i, Êi) from different

vehicles are then shuffled together so that any two cocoon keys cannot be linked to the

same vehicle. Then, they are sent individually to the Pseudonym Certificate Authority

(PCA) for the generation of the corresponding pseudonym certificates.

The subsequent procedure followed by the PCA when processing (Ŝ i, Êi) depends

on whether explicit or implicit certificates (CERTICOM, 2013) are employed. For
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Table 3: The butterfly key expansion process for issuing pseudonym certificates.
Vehicle → RA → PCA -RA Vehicle

SCMS
(explicit) s,

S = s·G

e,
E=e·G

S ,
f1

E,
f2

Ŝ i = S+
f1(i)·G

Êi = E+
f2(i)·G

(0 ⩽ i < β)

Ŝ i,

Êi

Ui= Ŝ i + ri·G
sigi=Sign (U; {Ui, meta})

certi= {Ui, meta, sigi}

pkg=Enc
(
Êi; {certi,ri}

)
res= {pkg, Sign (U; pkg)} res

êi = e + f2(i)
Verif (U; res)

{certi,ri}=Dec (êi; pkg)
Verif (U; certi)

ui = s + f1(i) + ri

ui·G
?
= Ui

SCMS
(implicit)

Vi = Ŝ i + ri·G
certi= {Vi, meta}

sigi=Hash(certi)·ri+U

pkg=Enc
(
Êi; {certi,sigi}

)
res = {pkg, Sign (U; pkg)}

êi = e + f2(i)
Verif (U; res)

{certi, sigi}=Dec (êi; pkg)
hi = Hash(certi)

ui = hi·(s + f1(i)) + sigi

Ui = ui·G
?
= hi · Vi +U

Source: the author

explicit certificates, the PCA picks a random ri and computes the vehicle’s public sig-

nature key as Ui = Ŝ i + ri · G. The PCA then digitally signs this public key together

with any required metadata meta (e.g., that key’s validity period), obtaining the sig-

nature sigi, so the resulting explicit pseudonym certificate certi is defined by the triple

(Ui, meta, sigi). For implicit certificates, this process is slightly different: the PCA

starts by computing a credential Vi = Ŝ i + ri · G, once again for a random ri, so the

implicit certificate certi is defined as the pair (Vi, meta). The PCA then signs this cer-

tificate to obtain sigi = hi · ri + U, where hi = Hash(certi) and U is the PCA private key.

Whichever the certification model adopted, the resulting certificate and its companion

data (namely, ri for explicit certificates, and sigi for implicit ones) are encrypted with

Êi, which can only be decrypted by the vehicle. To avoid Man-in-the-Middle (MitM)

attacks by the RA, this encrypted package is also signed with the PCA’s own private

key U. The PCA’s response is then sent to the RA, which gathers and de-shuffles them

before relaying the corresponding certificates to the requesting vehicle.

Finally, the vehicle verifies the PCA’s signature on the encrypted certificates, uses

the private cocoon encryption key êi = e + f2(i) to decrypt the PCA’s response, and

verifies the validity of the pseudonym certificate thereby enclosed. For explicit certifi-

cates, this verification consists in checking that the certificate’s signature is valid and
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that the public key Ui was indeed derived from s and ri, i.e. that Ui = (s+ f1(i)+ ri) ·G;

in that case, the vehicle’s private key is set to ui = s+ f1(i)+ri. When the certificates are

implicit, the vehicle simply follows the regular implicit verification protocol described

in (CERTICOM, 2013): it computes its own private key as ui = hi · (s + f1(i)) + sigi,

sets the corresponding public key to Ui = ui · G, and verifies that Ui = hi · Vi + U,

where U is the PCA’s public signature key. These operations are also executed when

other vehicles verify this certificate.

Independently of the type of certificate adopted, the vehicles’ privacy is protected

in this process as long as there is no collusion between RA and PCA. Specifically, the

shuffling of public cocoon keys performed by the RA prevents the PCA from learning

whether or not a group of keys received belongs to the same device. In turn, the

unlinkability of public keys towards the RA is obtained because the latter does not

learn the value of certi in the PCA’s encrypted response.

3.1.3 Key Linkage

To avoid large certificate revocation lists (CRLs), revocation in SCMS is done so

that many certificates from the same user can be linked together by inserting only a

small amount of information into a CRL. For this purpose, each pseudonym certificate

generated by the PCA includes a linkage value lv, computed by XORing two (or more)

pre-linkage values, plv1 and plv2, provided by different Linkage Authorities (LA). The

generation of plvi by LAi is done upon request by the RA, as follows (see Figure 4).

Figure 4: SCMS’s key linkage process: generation, by LAi, of pre-linkage values
employed for certificate revocation.
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First, LAi picks a random, 128-bit linkage seed lsi(0). Next, if the RA’s request

covers τ certificate time periods, LAi iteratively computes a τ-long hash chain (LAM-

PORT, 1981) lsi(t) = Hash(la_idi || lsi(t − 1)), where la_idi is LAi’s identity string

and 1 ⩽ t < τ. Each lsi(t) is then used in the computation of σ pre-linkage val-

ues plvi(t, c) = Enc (lsi(t); la_idi || c), for 0 ⩽ c < σ, for σ certificates valid in each

time period. Finally, every plvi(t, c) is truncated to a suitable length, individually en-

crypted and authenticated using a key shared between the PCA and LAi, and then sent

to the RA. The RA simply includes this encrypted information, together with the cor-

responding cocoon keys, in the requests sent to the PCA. As a result, the latter can

compute the linkage value to be included in the c-th certificate valid in time period t as

lv(t, c) = plv1(t, c) ⊕ plv2(t, c).

Whenever the Misbehavior Authority (MA) identifies a malicious vehicle, its non-

expired certificates can be revoked altogether. It is accomplished via the collaboration

among PCA, RA, and LAs. Namely, the PCA can associate the lv informed by the MA

to the original pseudonym certificate request received from the RA. The PCA then pro-

vides this information, together with the corresponding pre-linkage values plvi(t, c), to

the RA. In turn, the RAcan (1) identify the vehicle/driver behind that certificate re-

quest, placing the corresponding enrollment certificate in a blacklist for preventing its

owner from obtaining new pseudonym certificates; and (2) ask each LAi to identify the

linkage seed lsi(0) from which plvi(t, c) was computed. Finally, each LAi provides

RA with lsi(ts), where ts is the time period from which the revocation starts being valid

(e.g., the time period when the misbehavior first occurred, or the current one). The set

of lsi(ts) received from the LAs can then be placed in a CRL to be distributed through-

out the system, allowing any entity to compute lv(t, c) for time periods t ⩾ ts, linking

the corresponding certificates to a single CRL entry. Consequently, the misbehaving

vehicle’s future certificates are revoked and can be linked together; past certificates

remain protected, though, preserving the vehicle’s privacy prior to the detection of
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the malicious activity. The re-enrollment of revoked vehicles, if allowed, would then

require a new enrollment certificate to be issued, as well as a new execution of the

pseudonym certificate provisioning protocol.

In terms of computational costs, this revocation process is such that each revoked

device results in 2 pre-linkage values added to the CRL. Hence, the CRL grows lin-

early with the number of revoked vehicles, not with the number of revoked certificates.

The main drawback of this gain in size is that checking whether a given certificate is in

the CRL requires the verification of every CRL entry against that certificate’s linkage

value. More precisely, for each CRL entry published at time period ts, the verifica-

tion of whether it covers a given certificate involves basically the computation of two

components:

a) lsi(tc): it takes 2 · (tc − ts) hashes to compute lsi(tc) from lsi(ts), where i = {1, 2}

and tc is the time period when the verification is performed. This cost may be re-

duced by means of pre-computation, i.e., if the vehicles always keep the updated

version of the linkage seeds, lsi(tc), besides the original ones provided in the CRL.

Nonetheless, to cope with the lack of a system-wide time synchronization (VER-

HEUL, 2016), vehicles may actually need to keep a slightly older linkage seed in

memory; for example, by keeping lsi(tc − ϵ) for a small ϵ, it is possible to compute

lsi(tc) with only ϵ hashes.

b) plvi(tc, c): since the certificate under analysis may be any out of σ that are valid

in the current time period, it takes up to σ encryptions to compute each plvi(tc, c)

from lsi(tc). With enough memory, the latency of this process can be reduced via

the pre-computation of a look-up table with all possible σ entries for each lsi(tc) in

the CRL.
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3.2 Cooperative-Intelligent Transport System (C-ITS)

The Cooperative Intelligent Transport System (C-ITS) is a set of technical re-

ports and standards published by the European Telecommunications Standards Insti-

tute (ETSI) that provides definitions for device specifications, certificate management,

and communication protocols to guarantee secure V2X communication (ETSI, 2021)

(ETSI, 2017a) (ETSI, 2010). Although it is considered the main competitor against

SCMS, it presents several similarities in handling short-lived pseudonym certificates

and the role division among the authorities for privacy. Their main difference, however,

results from the strategy used in the issuance of C-ITS pseudonym certificates: instead

of using the butterfly key expansion, they rely on generating individual pseudonym cer-

tificates on demand. This single difference modifies how the authorities have to handle

privacy, how pseudonym certificates are linked to vehicles, and how the revocation

status is verified.

In what follows, we describe C-ITS focusing on its differences regarding SCMS.

Given their similarities, many terms and expressions are analogous between them. So,

to maintain clarity in the comparison, we present the expressions proposed by C-ITS

but will adopt the ones defined by SCMS in the comparison thereafter.

3.2.1 Overview

Similar to SCMS, each vehicle requests a long-term enrollment certificate, which

can be used to retrieve several short-term pseudonym certificates (called Activation

Tickets). While the enrollment certificate uniquely identifies the vehicle, each vehicle

has access to σ ⩾ 1 valid pseudonym certificates simultaneously, which can be used

alternately in a route to provide privacy. On the other hand, differently from SCMS,

the pseudonym certificates are only issued on demand. Before a given time period,

the vehicle requests pseudonym certificates which are only valid until the time period
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ends. This limitation actually has an advantage: the system authorities do not need

to maintain a CRL for the pseudonyms. Since C-ITS pseudonym certificates are only

valid for a short period, it also proposes that the revocation status of pseudonyms is

not necessary. However, if the pseudonyms are misused, the authorities respond by

revoking the vehicle’s enrollment certificate, which makes it unable to be authenticated

in the system and thus cannot obtain new pseudonyms for the next time periods.

Given the simpler solution to obtain pseudonym certificates, C-ITS relies upon

only two basic entities to generate device certificates (the complete architecture of C-

ITS can be seen in (ETSI, 2010)):

• Enrollment Authority: similar to SCMS’s Registration Authority (RA), it is re-

sponsible for generating the vehicle’s enrollment certificate and authorizing re-

quests to issue pseudonym certificates.

• Authorization Authority: similar to SCMS’s Pseudonym Certificate Authority

(PCA), it is responsible for issuing pseudonym certificates if the vehicles’ cre-

dentials are valid.

The lack of an entity equivalent to SCMS’s Linkage Authorities (LA) limits how

C-ITS can link pseudonyms of dishonest vehicles: instead of using the linkage values

from the certificates, the PCA alone can identify the owner of the pseudonym. While

this feature reduces the vehicles’ privacy towards the system authorities, the vehicles

gain in efficiency as they do not need to verify the validity of pseudonyms. In order

to better analyze this trade-off, we describe the pseudonym issuance method in the

following section.

3.2.2 Pseudonym Issuance and Linkage

In order to obtain pseudonym certificates for a given time period, the vehi-

cle (called ITS Station) must request them individually from the PCA. For each
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pseudonym, it generates a random pseudonym private key ui and computes the equiv-

alent public key Ui = ui · G. The public key is then signed using the vehicle en-

rollment certificate key sig(Ui) and is encrypted using the RA public key. The tuple

(Ui, Enc (pkRA; (sig(Ui))) is sent as a request to the PCA.

Upon reception, the PCA relays the encrypted part of the request to the RA, so it

can authenticate the user requesting new pseudonyms. The RA verifies the signature

to the public key, asserting that this request originates from the vehicle and not from a

rogue PCA. If the signature is valid, the RA authorizes the PCA to sign the pseudonym

key sigi = Sign (skPCA; Ui), and return it to the vehicle. The PCA also stores that the

pseudonym key Ui belongs to the vehicle that requested it.

In order to link pseudonyms to the vehicle’s identity, the PCA maintains a registry

of every pseudonym certificate it has authorized. So, whenever a given pseudonym

must be revoked, the PCA simply looks to which vehicle it belongs and requests the

RA to revoke its enrollment certificate. Whenever the revoked vehicle requests new

pseudonym certificates, the RA is able to gauge the revocation status and deny the

PCA to sign the certificate.

3.3 Issue First Activate Later (IFAL)

The Issue First Activate Later (IFAL) (VERHEUL; HICKS; GARCIA, 2019)

(VERHEUL, 2016) was proposed as an improvement to C-ITS for issuing pseudonym

certificates more efficiently. It follows an “honest-but-curious” threat model, so attack-

ers can only listen to correctly executed messages but cannot modify their contents to

gain advantage. This is expected if we consider that C-ITS follows the same approach

by design, allowing the PCA to link pseudonym certificates to the vehicles in order to

be able to revoke them when necessary. However, it requires an additional assump-

tion that the vehicle contains a trusted element (TE) capable of signing messages, but
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considered that it cannot be compromised.

Similar to the previous VPKIs, each vehicle is registered with a single enrollment

certificate, which uniquely identifies it to the system authorities. However, instead of

following C-ITS issuance process of creating each certificate individually, IFAL allows

the vehicles to retrieve short-lived pseudonym certificates for several time periods (or

epochs) up to the vehicle’s lifespan. Although SCMS provides the same feature, IFAL’s

approach does not directly disclose these certificates to the vehicles, but limits their

access until their activation. For that, the private keys from each certificate can only

be derived after receiving the activation code from the system authorities. This way,

not only will the vehicle have access to very few valid certificates in each epoch, but a

revocation will restrict it from using certificates for the following time periods.

Since IFAL is built upon the C-ITS architecture, it also relies on the same au-

thorities to generate certificates. However, in order to use activation codes, the flow

of messages and the authorities’ responsibilities were adapted. The RA is not only

responsible for generating the vehicle’s enrollment certificate but is also required to

distribute the activation codes to non-revoked vehicles. And the PCA becomes re-

sponsible for issuing pseudonym certificates covering the vehicle’s entire lifespan, and

releasing all activation codes to the RA each time period, so that the latter can discard

the revoked ones.

As with C-ITS, there is no LA to link pseudonyms the vehicles’ identity. The

linkage is executed by the PCA, which can identify the vehicle’s identity from the

request for pseudonym certificates, and pseudonym certificates do not need to be re-

voked due to their short validity. For comparison with this proposal, we now present

the details of the pseudonym issuance procedure, distribution of activation codes, and

the pseudonym certificate usage in the following sections.
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3.3.1 Pseudonym Issuance

After obtaining the enrollment certificate from the RA, the vehicle is enabled to

request pseudonym certificates. The vehicle’s TE creates a random pseudonym private

key uT E and computes the equivalent public key UT E = uT E ·G. The public key UT E is

shared with the vehicle, which creates a pseudonym request to the PCA with the public

key and the enrollment credentials.

After verifying the vehicle credentials, the PCA uses UT E as a random seed which

is used to derive the other pseudonym keys Ui. For that, the PCA creates a random

batch key kbτ for each epoch τ, and uses a pseudorandom function f1 in the creation

of the pseudonym public keys: Ui = f1(kbτ, i) · UT E. These keys are then signed using

a variant of the deterministic ECDSA signature scheme (PORNIN, 2013) and returned

to the vehicle as certificates. The batch keys kbτ are stored by the PCA as the vehicles’

activation codes.

3.3.2 Activation Code Distribution and Certificate Usage

The activation of vehicles happens periodically, just before a new epoch begins.

The PCA will deliver the activation codes for every vehicle to the RA, from which it

discards the revoked ones. Then, each vehicle can request the RA for its own batch

key kbτ for the following time-period τ. If the activation code was not discarded, the

RA returns it to the vehicle.

With the batch key, the vehicle is activated to create signatures with the pseudonym

certificates. For the i-th certificate in the batch, the vehicle computes the epoch key

kτ,i = f1(kbτ, i), using the same pseudorandom function f1 as the PCA. By using a pro-

cess similar to Chaum’s blind signature (CHAUM, 1983), the vehicle first transforms

the message str using the epoch key into str′ = T1(str, kτ,i) and send it to the TE. The

TE signs the message with its base key, resulting in a signature sig′ = Sign (uT E; str′).
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Then the vehicle transforms the signature into sig = T2(sig′, kτ,i), which can be re-

layed to other vehicles. The details of the transformations (T1,T2) can be found in

(VERHEUL; HICKS; GARCIA, 2019, Alg. 3 and 4).

3.4 Binary-hash-tree-based Certificate Access Man-
agement (BCAM)

The Binary-hash-tree-based Certificate Access Management (BCAM) (KUMAR;

PETIT; WHYTE, 2017) was proposed as an improvement to SCMS to reduce the costs

of verifying the vehicles’ revocation status, and to allow wrongly revoked vehicles to

be reinstated in the system without a fresh registration. They proposed using activa-

tion codes to encrypt pseudonym certificates during issuance so that only non-revoked

vehicles would be able to decrypt (i.e., activate) them. To achieve these goals, BCAM

adapts the use of activation codes to be obtained from a binary tree, where vehicles

are represented as leaves, and all nodes are derived from the root. Therefore, it elim-

inates the need for bidirectional connectivity when requesting activation codes, as it

can broadcast inner nodes capable of activating several vehicles simultaneously.

The generation of pseudonym certificates is still much similar to SCMS, as it uses

the butterfly key expansion to derive certificates from a seed and then uses linkage

values to later link the pseudonyms of a revoked vehicle. However, the activation

codes are managed by a new authority called the Certificate Access Manager (CAM).

The responsibilities of the CAM are threefold: (1) to create activation trees for each

time period; (2) to encrypt batches of pseudonym certificates from the same vehicle

for a given time period; and (3) to manage which tree nodes should be delivered to

activate the certificates of only non-revoked vehicles. The CAM is not considered a

central entity to the SCMS architecture, and such as LAs, several CAMs can be used

to create the activation codes.

In the following sections, we detail the functionalities added by BCAM.
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3.4.1 Creation of Activation Trees

For each CAM responsible for creating activation codes, a complete balanced bi-

nary tree is constructed for a given time-period τ. Each tree leaf represents a vehicle

with identification VID, and the tree nodes are derived from the root, with each 0

leading to the child on the left and each 1 to the child on the right, as presented in

Figure 5. This way, to span enough leaves to cover all vehicles, the tree must have

depth D = |VID |. Which, by following BCAM recommendation (KUMAR; PETIT;

WHYTE, 2017, Sec. 4.1.1), results of VID with length of 40 bits (thus, trees with

depth D = 40), corresponding to more then 1 trillion vehicles.

Figure 5: Construction of BCAM binary tree

Source: adapted from Kumar, Petit and Whyte (2017, Fig. 3)

The activation tree is constructed iteractively using a collision-resistance hash

function, starting from a random rootτ = nodeτ(0, 0). When the entire tree is cre-

ated, the leaf nodes (called device-specific values – DSV) are used to generate the

BCAM batch key to encrypt/decrypt certificates. To generate the tree, from any node

nodeτ(depth, count), its children nodes are computed as the following:

• Left child: nodeτ(depth + 1, 2 · count) = Hash
(
nodeτ(depth, count) || 0l

)
• Right child: nodeτ(depth + 1, 2 · count + 1) = Hash

(
nodeτ(depth, count) || 1l

)
The node length and the padding length l is chosen in BCAM by the underlying
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hash function used in its construction. To provide 128 bits of security and nodes of 256

bits, they elected the hash function SHA-256. For efficiency, its compression function

can be called only once if the padding length is at most 196 bits due to its 512-bit input

and 64-bit length indicator.

3.4.2 Issuance of Pseudonym Certificates

The issuance of pseudonym certificates follows a similar path to the butterfly key

expansion in SCMS (see Section 3.1.2). First, the vehicle generates two caterpillar key

pairs (s, S , e, E), one for signature and one for encryption, and initialize the pseudoran-

dom functions ( f1, f2) used to derive the keys, which are sent to the RA to obtain new

certificates. Then, the RA expands the keys producing all the cocoon keys (Ŝ i, Êi) for

the vehicle’s lifetime and stores them. After receiving requests from several vehicles,

the RA shuffles the cocoon keys from the different vehicles before sending them to the

PCA, so the cocoon keys cannot be linked to a single vehicle. The PCA transforms

each received signature key into the respective butterfly key (Ui), digitally signs and

encrypts them with the vehicle’s expanded encryption key. These certificates are re-

turned to the RA, which unshuffles the encrypted butterfly keys, so it has batches of

(encrypted) certificates from the same vehicle.

Only after this point, the activation codes are used. After receiving the signed

butterfly keys, the RA assembles for a given time period τ a set of certificates that

belongs to the same vehicle. With activation tree already created, the CAM computes

the DSV dsvVID,τ regarding the requesting vehicle VID from the tree root. From this

value, it uses a KDF to create the BCAM batch key kb = KDF
(
dsvVID,τ

)
. Then, each

certificate is re-encrypted using a symmetric key encryption scheme, with DSV as its

key, resulting in the response res = {Enc (kb; Ui)}, for all Ui in the time-period τ. The

re-encrypted certificates res are then returned to the RA, which can repeat this process

for different vehicles and different time periods. After all certificates from a given
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vehicle have been re-encrypted, they are returned to their owners.

Without access to the activation codes, the last stage of the butterfly key expansion

is delayed since the vehicles cannot decrypt the received certificates. Only after the

vehicles are provided with their activation codes, right before the time period of the

next batch of certificates, can they derive their DSV for removing the CAM layer of

encryption. Then, the vehicle can complete the issuance process by removing the PCA

layer of encryption on the certificates. The signature private key u is finally derived

from the private caterpillar key, and the PCA signature on the pseudonym certificate is

verified to guarantee the correctness of the execution.

3.4.3 Distribution of Activation Codes

When a time period is close to begin, the CAM is supposed to send the activa-

tion codes to all non-revoked vehicles so they can access their pseudonym certificates.

BCAM proposes that the activation codes be transmitted using a broadcast channel to

all vehicles so that bidirectional connectivity is not required. If no vehicles are re-

voked, the CAM only needs to broadcast the root of the tree, and all vehicles will be

able to derive their DSV. However, to stop revoked vehicles from decrypting their cer-

tificates, not all nodes of the activation tree should be available. Even if the revoked

vehicle does not receive their activation code directly, collusion among non-revoked

and revoked vehicles would allow the latter to activate its certificates if its DSV could

be derived from the transmitted nodes. Thus, to avoid the illegal activation of certifi-

cates, the activation tree must be “pruned” from all leaves representing these revoked

vehicles.

In order to choose the nodes to be removed, the RA should maintain a list of the

VIDs of all revoked vehicles. For each removed VID, the leaf it corresponds should to

be removed, and every node in the path from the leaf to the root cannot be disclosed.

And to activate all the remaining nodes in the tree, the CAM selects the sibling nodes
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for each node in the path. By repeating the process to all revoked nodes, the CAM

would return all the nodes that derive the DSV of only the valid vehicles.

As an example, using the tree of depth = 3 from Figure 6, when revoking the

vehicle with VID = 100 (the node marked with an X), all the nodes from the root to

the leaf should not be distributed. So, the CAM can transmit the nodes marked with

bold border (0, 11, 101), which are the siblings to the nodes removed.

Figure 6: Revocation of node with VID = 100 in the BCAM binary tree of depth = 3.
Only the nodes with bold borders (0, 11, 101) should be broadcast.

Source: adapted from Kumar, Petit and Whyte (2017, Fig. 3)

3.5 Summary

In this chapter, we presented the main VPKI schemes in the literature. We de-

tailed the methods of the Security Credential Management System (SCMS), which is

the basis for the improvements in this document, presenting its architecture and the

process to efficiently issue and revoke pseudonym certificates. We briefly described its

main competitor, the Cooperative Intelligent Transport System (C-ITS), which focuses

on providing certificates on-demand so that it does not require the management of re-

voked pseudonyms. Then, we summarize the main methods of the Issue First Activate

Later (IFAL), which improves upon the C-ITS to generate pseudonyms off-band, but

only allowing them to be accessed after receiving activation codes from the system

authorities. And lastly, we describe the Binary Hash Tree based Certificate Access
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Management (BCAM), which improves the SCMS revocation of pseudonyms by re-

quiring activation codes to decrypt the issued certificates, and removes the need for

bidirectional connectivity to distribute the activation codes.
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4 PROPOSAL: ACTIVATION CODES FOR
PSEUDONYM CERTIFICATES (ACPC)

To avoid the growth of CRLs while preserving the performance gains associated

with the butterfly key derivation, we build upon the concept of activation codes: bit-

strings without which certificates previously acquired cannot be used (namely, in the

proposed solution, they cannot be decrypted). Each activation code enables the usage

of certificates corresponding to a certain activation period, which spans α ⩾ 1 certifi-

cate time periods. This is illustrated in Figure 7, for activation periods covering α = 3

time periods.

Figure 7: Activation codes and permanence of revocation data (e.g., linkage seeds) in
CRLs.
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Source: the author

Those codes are then periodically disclosed to non-revoked vehicles, which should
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be done before the start of the corresponding time periods to allow a timely activation

of their own certificates. Revoked vehicles are prevented from obtaining activation

codes for their certificates, at least until this revocation status is removed. As a result,

identifiers of revoked certificates that cannot be activated do not need to remain in

CRLs, reducing the sizes of the latter. For example, certificates could be valid for 1

week, whereas the activation period could be set to 3 weeks and be disclosed 1 week

before they are actually required. In this case, identifiers for certificates from revoked

vehicles would have to remain in CRLs for at most 4 weeks: if the codes for the next

activation period have not yet been disclosed, then the CRL needs to cover only the

current activation period (at most 3 weeks); otherwise, the CRL needs to cover the

next activation period (3 weeks) and the remainder of the current one (at most 1 week).

After that, revoked devices do not receive new activation codes.

The proposed solution, named ACPC (Activation Codes for Pseudonym Certifi-

cates), is inspired by works such as IFAL (VERHEUL, 2016) and BCAM (KUMAR;

PETIT; WHYTE, 2017). However, it innovates by addressing the main shortcomings

of these solutions in terms of performance and privacy, as further discussed in Section

6.

4.1 Generating Activation Codes: Binary Hash Trees

Similarly to BCAM, we assume the existence of one or more Certificate Access

Managers (CAMs), each having a different identifier cam_id. CAMs are entities re-

sponsible for creating and distributing activation codes. For this purpose, a CAM cre-

ates a binary hash tree treet for each time period t, using a preimage resistant hash

function, as illustrated in Figure 8. If the activation period spans n + 1 time periods,

then treet = . . . = treet+n.

The tree’s nodes are denoted nodet(depth, count), where depth ⩾ 0 and 0 ⩽
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Figure 8: Activation tree generated by CAM. The activation codes correspond to the
leaves of the binary hash tree.

Hash Hash

Hash Hash

Hash

Hash

Hash

Hash

Hash HashHash Hash Hash Hash

Time period: t
nodet(0,0)

nodet(1,0) nodet(1,1)

nodet(2,0) nodet(2,1) nodet(2,2) nodet(2,3)

nodet(3,0) nodet(3,1) nodet(3,2) nodet(3,3) nodet(3,4) nodet(3,5) nodet(3,6) nodet(3,7)

codet,0 codet,1 codet,7

=             =             =             =              =              =              =              =  
codet,2 codet,3 codet,4 codet,5 codet,6

CAM

Source: the author

count ⩽ 2depth − 1 indicate the node’s position inside the tree. The depth D of the

tree must match the length of the vehicles’ identifiers (VID), in bits. As a result, each

leaf nodet(depth, count) can be used to represent a single vehicle in the system: the one

with VID = count. In (KUMAR; PETIT; WHYTE, 2017), for example, the suggested

length of VID is 40 bits, which is enough to cover more than 1 trillion vehicles. For

brevity of notation, we denote by codet,VID the leaf of treet whose index corresponds

to a given VID, i.e., codet,VID = nodet(|VID |,VID).

The nodes of treet are assumed to be k-bit long, yielding a k-bit security level

(e.g., in modern deployments one would expect k = 128). The tree is built in the fol-

lowing manner. First, its root nodet(0, 0) is set to a (pseudo)random bitstring, unique

for each activation period. Every other node is then computed from its parent node

combined with a “security string” I, i.e., a different suffix for each node. More pre-

cisely, we have:

nodet(0, 0) = {0, 1}k (picked at random)

nodet(depth, count) = Hash(nodet(depth − 1, ⌊count/2⌋) || I)
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where the security string I is defined as

I = (cam_id || t || depth || count)

If the activation period spans multiple time periods, then t is set to the first time

period covered by that activation period. This approach gives the system enough flex-

ibility to increase or reduce the length of the activation periods without incurring the

repetition of security strings. As further discussed in Appendix A, such non-repeatable

security strings are useful to thwart birthday attacks analogous to those described in

(BIHAM, 2002) (SIMPLICIO et al., 2018b).

Table 4 shows suggested lengths for the fields that compose those security strings

in ACPC, leading to | I | = 96 bits. This composition is designed to support 40-bit

long VIDs for 216 time periods, which means more than 1200 years if the time periods

are 1 week long. At the same time, adding security strings to this computation is

unlikely to have any perceptible impact on processing times for building activation

trees, as long as the hash function’s input fits its block size. For example, SHA-256

operates on 512-bit blocks, appending at least 65 bits to its input message (a bit ‘1’

for padding, and a 64-bit length indicator) (NIST, 2015); therefore, a single call to its

underlying compression function is enough to process a 128-bit node value even when

it is combined with a 319-bit or smaller security string.

4.2 Issuing Pseudonym Certificates with Activation
Codes

Figure 9 illustrates ACPC’s pseudonym certificate issuance, in which the binary

hash tree generated by a CAM is integrated into SCMS’s butterfly key expansion pro-

cess. As shown in this figure, when a vehicle with a given VID requests a batch of

pseudonym certificates, it still provides the quadruple (S , f1, E, f2) to the RA as de-
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Table 4: Components of the security strings employed in ACPC’s activation trees.

Field
Suggested

Description
length (bits)

depth 8
Node’s depth in tree, starting at 0.
Mandatory: |depth | ⩾ lg(|VID |).

count 40
Node’s index in the depth, starting at 0.
Mandatory: |count | ⩾ |VID |.

t 16 Time period to which the tree is associ-
ated

cam_id 32 CAM’s identifier

Source: the author

scribed in Section 3.1.2. It should then lead to the generation of β = τ · σ certificates,

providing a total of σ certificates are valid for each of the τ time periods covered in the

batch, as usually done in SCMS.

Figure 9: Issuing pseudonym certificates with activation codes. For simplicity, we
assume that each activation period covers a single time period.
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Upon reception of the vehicle’s request, the RA queries a CAM for the blinded

activation value At = fa(codet,VID, t,VID) ·G. This operation uses the pseudorandom
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function fa, which could be instantiated, for example, using a NIST-approved construc-

tion (NIST, 2009) and codet,VID as secret seed. As a result, fa’s output is unpredictable

because the activation tree’s leaf codet,VID has not yet been disclosed by the CAM. In

addition, fa’s output is blinded by the CAM via the multiplication by the elliptic curve

generator G, so the actual unblinded activation value cannot be learned by the RA

from the CAM’s response. We note that, even though we assume for simplicity that

a single CAM participates in the generation of certificate batches, in practice multiple

CAMs could be contacted by the RA during this process, thus improving the system’s

resilience against the possibility of a CAM being compromised.

The RA then proceeds with the butterfly key expansion in a manner that is very

similar to the process described in Section 3.1.2, except for one important difference:

the blinded activation values provided by the CAM are added to the computation of the

public cocoon encryption keys. More precisely, let Êt,c denote the c-th public cocoon

encryption key that belongs to time period t. Each of those keys is now computed by

the RA as Êt,c = E + At + f2(t·σ + c) · G, where 0 ⩽ c < σ and 0 ⩽ t < τ. As

usual, the resulting cocoon keys are shuffled together with keys from other vehicles,

before being sent to the PCA. By using f2 in the computation of cocoon encryption

keys, the RA ensures that they cannot be later correlated by the CAM or by the PCA,

even for groups of keys computed using the same At. Therefore, this process preserves

the unlinkability of pseudonym certificate requests, whether or not there is a collusion

between CAM and PCA.

Finally, the PCA computes the vehicle’s (implicit or explicit) pseudonym certifi-

cate, which is encrypted with Êt,c before being sent back to the RA. The RA, in turn,

simply relays those certificates to the corresponding vehicle, without contacting the

CAM once again. Since this procedure is identical to the one proposed in SCMS,

the processing costs and bandwidth usage at the PCA remain unchanged. In addition,

the underlying security properties discussed in Section 3.1.2 still apply, including the
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protection against MitM attacks performed by the RA and the unlinkability among

certificates unless PCA and RA collude.

The result of this process is that the encrypted certificates obtained by the vehicle

can only be decrypted if the associated codet,VID is also obtained. After all, the de-

cryption key corresponding to Êt,c is now computed as êt,c = e+ fa(codet,VID, t,VID)+

f2(t·σ + c). Therefore, to keep a vehicle with identifier VIDr from activating its own

certificates, it suffices to prevent it from obtaining codet,VIDr . In that case, entries for

that vehicles’ certificates do not need to remain in CRLs for too long.

As a final remark, we note that the activation codes as hereby described can also

be combined with the optimized, unified butterfly key expansion process proposed

in (SIMPLICIO et al., 2018c). More precisely, this alternate design achieves better

performance by replacing the pair of caterpillar keys (S , E) with a single key X = x ·G.

Therefore, since the corresponding public cocoon keys X̂ are employed by PCA for

encrypting its response, the RA simply needs to include the blinded activation values

in their computation by making X̂t,c = X + At + f1(t·σ + c) ·G.

4.3 Distributing Activation Codes for Non-Revoked
Devices

In ACPC, like in BCAM, activation codes can be broadcast by the CAM to all

non-revoked vehicles (e.g., via satellite communication (MICHALSKI; VADEKAR.,

2013)) rather than individually sent to them upon request. This eliminates the need for

bidirectional connectivity between vehicles and CAMs when distributing activation

codes.

The tree’s nodes that must be broadcast depend on which nodes are currently re-

voked/suspended, taking into account that every node of a binary hash tree can be

computed from its parent. For example, given the root of the tree, all of its leaves can
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be computed and, thus, all vehicles can obtain their corresponding activation codes.

Hence, if no vehicle is revoked in time period t, the CAM only needs to broadcast

nodet(0, 0) to allow all certificates in the system to be activated. This leads to optimal

performance when distributing activation codes.

When a vehicle needs to be revoked, however, the CAM must not reveal any of

the nodes in the path between the corresponding leaf and the tree’s root. This prevents

the computation of that leaf not only by the revoked vehicle, but also by non-revoked

vehicle that might try to collude with revoked ones to allow the activation of the latter’s

certificates. For example, consider the tree shown in Figure 10. To revoke the vehicle

whose VID is 4, the CAM would have to broadcast only the following nodes (shown in

blue with ticker borders in that figure): node(1, 0), which enables the computation of

leaves node(3, 0) through node(3, 3); node(2, 3), used to compute leaves node(3, 6)

and node(3, 7); and the leaf node(3, 5). More generally, and as mentioned in (KU-

MAR; PETIT; WHYTE, 2017), when nr vehicles out of nt are revoked, the number of

nodes included in the message broadcast by the CAM is on average nr · lg(nt/nr) for

1 ⩽ nr ⩽ nt/2 (cf. Theorem 1 of (AIELLO; LODHA; OSTROVSKY, 1998)). Hence,

albeit more expensive than the scenario in which no revocation occurs, this approach

scales quite well, and is still more efficient than the individual delivery of each ac-

tivation code, as in IFAL. Moreover, there are efficient methods for encoding binary

hash trees such as those hereby described, so the index of each node included in the

broadcast message can be represented with less than |VID | bits (cf. Section 4.4 of

(KUMAR; PETIT; WHYTE, 2017)), saving some bandwidth.

When compared to CRLs, using a binary hash tree does not necessarily leads to

a smaller amount of data being broadcast, in particular when the number of revoked

vehicles is small. Indeed, the aforementioned O(nr · lg(nt/nr)) growth factor of hash

trees for a small nr is larger than the CRL’s O(nr) growth factor discussed in Section

3.1.3. Nonetheless, hash trees scale better than CRLs for large values of nr, since in
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Figure 10: Distribution of activation tree nodes when vehicle with VID = 4 is revoked.
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those cases entire branches of the tree can be omitted. Even more importantly, though,

is the fact the proposed approach shifts the burden of the revocation process from

vehicles to CAMs. More precisely, and as also discussed in Section 3.1.3, in SCMS

the processing time required for checking whether or not a certificate is listed in the

CRL is directly proportional to the number of certificates enclosed in that CRL. With

activation codes, on the other hand, this additional processing cost only applies for the

small time period during which pseudonym certificates remain on the CRL: after that,

a revoked vehicle is simply prevented from decrypting its certificates (and the CRL

remains small). Furthermore, whereas CRLs need to be stored on the vehicle’s side for

a long time, nodes of the activation trees do not need to be kept in storage after they

are used for decrypting batches. Therefore, the additional upstream costs at CAMs

are compensated by lower computational costs on vehicles. Finally, the flexibility

provided by activation codes can be leveraged at any time, so the system may prefer to

use CRLs while the number of revoked vehicles is small, and then shift to activation

codes whenever the processing and storage costs at vehicles start becoming a burden.
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4.4 Alternative Distribution of Activation Codes:
Balancing Privacy and Efficiency

When activation codes are distributed via a broadcast model, as described in Sec-

tion 4.3, ACPC’s bandwidth usage is likely higher than what is usually obtained with

SCMS-based CRLs (which are also distributable via broadcast). More precisely, when

nr vehicles out of nt are hard-revoked, the number of nodes included in the broad-

cast is at most nr · lg(nt/nr) for 1 ⩽ nr ⩽ nt/2 (AIELLO; LODHA; OSTROVSKY,

1998, Theorem 1). In comparison, CRLs as specified in the original SCMS (BRECHT

et al., 2018) take roughly 2|ls | per revoked vehicle, which grows more slowly than

distributing activation codes.

Even though such growth of activation trees is inherent to binary hash trees when-

ever hard-revocations are necessary, one important characteristic of ACPC is that vehi-

cles do not need the whole tree for decrypting their certificates. Actually, each vehicle

needs a single node of the tree, namely the one that sits on the path between its cor-

responding leaf and the root. When nr = 0, the root would suffice and maximum

efficiency is attained. When nr ⩾ 1, though, vehicles could request only a branch of

the activation tree that contains the required node, rather than its entirety. Interest-

ingly, neither the request nor the response need to be authenticated: the valid activa-

tion codes enclosed in the response can be made public, and invalid node values can

be detected by the vehicle simply by checking that the decrypted data does not match

a valid certificate. This strikingly contrasts with CRLs, which (1) must be signed to

avoid counterfeits, and (2) must be obtained in its entirety because, otherwise, the en-

closing signature cannot be verified and some revoked certificates may not be identified

as such.

Following such a strategy of requesting only part of the activation tree, the actual

bandwidth costs for vehicles can be much smaller than what would be obtained with
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CRLs or frequent provisioning. The only potential drawback, in this case, is that the

requester may end up revealing its own identity to the responder, or even to eavesdrop-

pers, if the communication is done via an insecure channel. After all, while any vehi-

cle might be interested in downloading the entire tree, a subset that does not include

nodet(depth, count) would not be requested by a vehicle whose leaf is a descendant of

the omitted node. Moreover, given that the choice of nodes may be personalized for

each vehicle, they may rely on a unicast channel to request their activation codes.

In what follows, we present three different methods for requesting a subset of the

activation tree, each one aiming at a different balance between privacy and bandwidth

efficiency, namely: direct request (DR), fixed-size subset (FSS), and variable-size sub-

set (VSS). To illustrate each approach, we use the activation trees shown in Figures 11

and 12. Both trees have depth D = 5 (i.e., they support 25 = 32 vehicles), and depict

the selection made by the vehicle associated with leaf 38 for different revocation sce-

narios: in Figure 11, 3 leaves are revoked (32, 56 and 60), while Figure 12 extends this

scenario by additionally revoking leaves 33, 48, 49, 57 and 61, resulting in 8 revoked

leaves.

4.4.1 Direct Request (DR)

For maximum bandwidth savings, the vehicle can download a single 16-byte value,

which may be the leaf that represents the vehicle or the shallowest valid node n∗ on

the path from this leaf to the tree root. For example, in the scenario illustrated in

Figures 11 and 12, the vehicle associated with leaf 38 could request either n∗ = 9 or

node 38 directly. The former case requires knowledge of the list containing all revoked

VIDs, so n∗ can be determined by the vehicle; Since each VID can be represented

by a D-bit string, an additional bandwidth usage of D·nr apply if the whole list is

downloaded, although some vehicles may prefer to store this list and refresh it via delta

updates (COOPER, 2000). Conversely, the latter case does not involve any additional
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bandwidth, since the responder may either: (1) provide n∗ despite being asked for

a leaf; or (2) compute the leaf on the vehicle’s behalf, by performing up to D hash

computations.

Albeit efficient, the privacy level provided by this approach can be as low as none.

In particular, any vehicle requesting its own leaf, either willingly or due to a revoked

sibling, achieves a crowd size of 1 (i.e., it would reveal its own identity). One example

of the latter case refers to the vehicle associated with leaf 33 in Figure 11: since the

sibling leaf 32 is revoked, there is no higher node to be requested. Other vehicles can

achieve a higher privacy level, though, since the crowd size when requesting a node at

depth depth is given by 2D−depth. For example, if the vehicle associated with leaf 38

requests node 9 (at depth 2), the resulting crowd size is 4, since that request could be

made by any vehicle interested in computing a leaf between 36 and 39.

We note that, if losing privacy is not a concern, any vehicle that desires more effi-

ciency in receiving activation codes could make a DR. However, there are some special

cases where the vehicle privacy should be forfeit. Emergency vehicles, for example,

are expected to receive traffic priority, which is considered in some ITS proposals (for

a literature review, see (YU et al., 2022)) but require that such vehicles could be identi-

fied. Since such vehicles can be singled out in emergency situations, they may choose

to receive their activation codes by a DR, thus consuming less bandwidth in their acti-

vation process.

4.4.2 Fixed-Size Subset (FSS)

Aiming to increase the overall system privacy, each vehicle can pick several nodes

in the tree as to inconspicuously blend the real requested node with additional nodes

that could be picked by other vehicles. For this, each vehicle can pick as many nodes

as the tree’s depth D, according to the following rules (which is also represented by

Algorithm 1, assuming privacy = 0):
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I. Like in the DR approach from Section 4.4.1, pick the shallowest node n∗ on the

path to its leaf. Let depth∗ denote the depth of that node.

II. For all other pickings, try to include one random node from each other depth

depth , depth∗. That will not always be possible, since some depths may not

have any nodes available. In this case, randomly select extra nodes from the

shallowest depths (since they provide better privacy), until D nodes are picked in

this manner or there are no more nodes left to be picked.

The total data to be downloaded in this case remains quite small, comprising only

16·D bytes from the list of picked nodes, together with nr·D bytes from the list of

revoked nodes’ VIDs that allows the activation tree to be built so that nodes can be se-

lected accordingly. In addition, FSS reduces the variability of the crowd size obtained

by vehicles when compared with the DR method. Indeed, in any request, all vehi-

cles obtain a crowd size larger than 2D−min(depth), i.e., the privacy level provided by the

shallowest node available for picking. If all vehicles follow this simple strategy, they

would collaboratively help to conceal vehicles whose siblings nodes were revoked: in

this case, requests containing a leaf because it is the required n∗ (rule I) cannot be dis-

tinguished from those where the leaf was randomly picked at depth D (rule II). This

indistinguishability should prevail as long as different requests from the same vehi-

cle remain anonymous and unlinkable to each other; otherwise, if an observer can tell

that requests from the same vehicle always contain a given node n, it can infer that

n = n∗. Fortunately, accomplishing such unlinkability is quite simple in this scenario:

it is a matter of sending the request via an unauthenticated channel (e.g., HTTP), or via

a secure channel that supports server-side authentication (e.g., HTTPS), while strip-

ping the request of any information that would enable different requests to be linked

to the same vehicle (e.g., see (JEONG, 2020, Sec. 5.1.2.)). If only authorized vehicles

should be served, though, then the entity responsible for authorization could provide

vehicles with anonymous, one-time tickets for each activation period. For example, for
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3-months activation period, vehicles provisioned with 120 authorization tickets could

activate all their pseudonym certificates for 30 years.

To illustrate the FSS approach, consider the following example using the tree from

Figure 11. Following rule I, the vehicle associated with leaf 38 starts by including

node n∗ = 9 (from depth∗ = 3) in its request. Then, following rule II, it randomly

picks nodes from each other depth with available nodes (nodes 5, 17 and 61 from

depths 2, 4 and 5, respectively). Since the tree has no available nodes at depth 1, it

also selects one extra node from depth 2 (node 6), as it is the shallowest depth with

available nodes. Thus, it has selected a total of D = 5 nodes, and the crowd size for

the resulting set {5, 6, 9, 17, 61} is then 23 + 23 + 22 + 21 + 20 = 23, which corresponds

to 79% of the 29 non-revoked vehicles in the system.

As another example, in the scenario shown in Figure 12, there are no nodes avail-

able at depths 1 and 5. Hence, the same vehicle associated with leaf 38 requests node

n∗ = 9 (required) from depth depth∗ = 3, and additional nodes from depth 2 and 4

(node 5 and 17, respectively). Since it still needs two additional nodes, it also in-

cludes in its request: (1) a node from depth 3 (node 13), since it is the shallowest

node available; and (2) a node randomly picked from the remaining shallowest nodes

(node 31, from depth 4). In this case, the crowd size from set {5, 9, 13, 17, 31} becomes

23 + 22 + 22 + 21 + 21 = 20, or 83% of the 24 non-revoked vehicles.

It is worth noting that, despite involving a larger number of revocations, the pri-

vacy level obtained in Figure 12 is higher than the one obtained in Figure 11. This

only happens, though, because where a leaf would be picked in Figure 11, a node with

lower depth in the tree is picked in Figure 12, since all sibling leaves were revoked.

Nevertheless, on average vehicles should expect lower privacy as the number of re-

vocations grows. The reason is that each revocation raises the chance that nodes from

lower depths become unavailable because one of its descendant leaves is among the re-

vocation targets. In the worst case, each new revocation removes one extra node from
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Algorithm 1: Pseudocode for Node Selection for FSS and VSS
Data: Available[0..D]; /* Array with lists of nodes available at each

depth, from 0 to D */
Data: Path[0..D]; // Nodes in vehicle’s leaf-to-root path
Data: privacy; // Target privacy in VSS (set to 0 in FSS)
Result: Selected[0..D]; /* Array with lists of nodes picked at each

depth, from 0 to D */

// Number of nodes to pick. If privacy=0, toS elect=D
toS elect = NumberNodes(privacy);
if Available[0],null then /* If root is available: no revocation yet
*/

S elected[0].AddIndex(1) // The root is returned
else

for depth=1to D do /* Tries picking nodes from all depths */
if Available[depth] ⊇ Path[depth] then /* Check if required node n∗

is here */
/* A.MoveTo(B,n): moves node n from list A to list B
*/

Available[depth].MoveTo(S elected[depth], Path[depth]); // Pick
that node

toS elect= toS elect−1; // 1 less node to pick
else if Available[depth],null then
/* A.MoveRndTo(B): moves random node from list A to
list B */

Available[depth].MoveRndTo(S elected[depth]) ; // Add random
pick

toS elect= toS elect−1; // 1 less node to pick
end

end
// If extra nodes are required,select more top-bottom
for depth = 1 ; depth ⩽ D and toS elect > 0 ; depth = depth + 1 do

while Available[depth],null and toS elect > 0 do
Available[depth].MoveRndTo(S elected[depth]);
toS elect = toS elect − 1;

end
end

end
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the activation tree’s lowest depth (i.e., those that provide a larger crowd size). As a

result, all nodes from depths lower than depth =
⌈
lg(nr)

⌉
become unavailable, forcing

the vehicle to pick depth + 1 nodes from depth depth + 1. The crowd size obtained

is, thus, at least (
⌈
lg(nr)

⌉
+ 1)·2D−1/nr, which corresponds to the crowd size provided

by such lower depth nodes (i.e., ignoring the privacy added by pickings from higher

depths).

4.4.3 Variable-Size Subset (VSS)

Finally, as an extension of the FSS approach, vehicles could increase their own

privacy by randomly selecting extra nodes from the activation tree’s shallowest depths,

including those nodes in their requests. This case is covered by Algorithm 1 with

privacy > 0, indicating that extra privacy is desired. For example, suppose that the

vehicle associated with leaf 38 wants to increase the crowd size in the scenario from

Figure 11. Namely, assume its goal is to be confused with at least 83% of non-revoked

nodes, as it was the case with the FSS method in the scenario depicted in Figure 12.

For this, that vehicle can select 6 > D nodes, increasing the crowd size by 2 vehicles

by including either node 29 or node 31 in its own request. The resulting crowd size is

then 25, or 86% of all non-revoked nodes.

In general, it is easy to compute the number of additional nodes to be picked be-

yond D if the list of nodes available at each depth is available. Namely, as discussed

in Section 4.4.2, each extra node from depth depth adds 2D−depth to the crowd size.

Similarly to FSS, though, the actual privacy requires that every request is unlinkable

to each other, or different requests might allow the responder infer which vehicle is

making them.

The bandwidth cost when using this strategy depends on the desired crowd size, as

well as on the number of nodes available at the shallowest depths of the tree. However,

as discussed in Section 6.2, our simulations show that this approach scales quite well
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for realistic sizes of activation trees and number of revocations.

4.5 Summary

In this chapter, we presented the proposed solution to improve certificate revo-

cation, called Activation Codes for Pseudonym Certificates (ACPC). The solution

describes the usage of activation codes to deny the usage of previously acquired

pseudonym certificates if the codes are not sent by the system. It allows the removal of

certificates from the Certificate Revocation List (CRL) after their expiration since the

vehicles will not be able to use non-activate certificates. We showed how to generate

activation codes and issue certificate, interleaving them with the butterfly key expan-

sion. We then presented how to broadcast the activation codes to non-revoked vehicles

and also argued how to better distribute activation codes in the unicast model. For that,

we detailed three different methods (namely, direct request – DR –, fixed-size subset

– FSS–, and variable-size subset –VSS), each achieving a different balance between

efficiency and privacy.
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5 SECURITY ANALYSIS

In this chapter, we evaluate the security of ACPC’s certificate issuance and revoca-

tion procedures. The discussion follows an informal approach, building upon the secu-

rity properties of SCMS itself and on standard assumptions, in particular the hardness

of the Elliptic Curve Discrete Logarithm Problem (ECDLP). Even though providing

formal security proofs (e.g., based on the Game-Playing Technique (BELLARE; RO-

GAWAY, 2006)) would be even better, doing so would require building formal proofs

for SCMS itself, since the latter only displays an informal (albeit, according to our

analysis, quite sound) security discussion. Therefore, we leave the task of building a

formal security model and proving the security of ACPC (and, consequently, of SCMS)

in this model as a topic for future work.

5.1 Security of the Certificate Issuance Process

In ACPC, a collusion between CAM and PCA (resp. RA) reveals as much informa-

tion as the PCA (resp. RA) had available in the original SCMS. Indeed, if we remove

the influence of At over the public cocoon keys computed as described in Section 4.2,

the result matches the public cocoon keys in SCMS. Therefore, a collusion with the

CAM can only remove the entropy introduced by this entity, while still preserving the

security and privacy properties discussed in Section 3.1.2 for SCMS itself.

In particular, a vehicle’s private caterpillar key x (either s for signing or e for en-

crypting) remains protected by the ECDLP during the whole execution of the protocol.
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Hence, RA, PCA and CAM are unable to recover the signature or decryption private

keys derived from it, even if they collude. Unlinkability among certificates is similarly

preserved, as long as the RA and PCA do not collude: the shuffling done by the RA still

hides from the PCA any relationship between certificate requests intended for a same

vehicle; meanwhile, the PCA’s encrypted response prevents anyone but the appropriate

vehicle from learning certi. Interestingly, even if the CAM delivers the blinded acti-

vation values At via an unencrypted channel, an eavesdropper (e.g., the PCA) would

remain unable to identify the cocoon encryption keys to which they are associated:

after all, if two keys Ê1 and Ê2 belonging to the same vehicle are indistinguishable

from random points (and, hence, unlinkable), so are the Ê1+A and Ê2+A shifted keys

resulting from the ACPC certificate provisioning process. Finally, since the PCA’s sig-

nature performed during the butterfly key expansion process grants vehicles the ability

to verify whether or not the received certificates were generated in a fair manner, MitM

attacks (e.g., by the RA) are averted.

It is worth mentioning that the aforementioned CAM’s inability to create a new

threat via collusion with other entities is not just a fortunate coincidence. Actually, the

activation codes codet,VID are the only information initially kept secret by the CAM

and, thus, that could be contributed in such collusion. Since those codes are periodi-

cally broadcast aiming to allow vehicles to activate their certificates, though, by design

such a disclosure of the activation tree should not bring negative impacts on the sys-

tem’s security or privacy. Consequently, a “private disclosure” during a collusion is

expected to have an equivalent result.

5.2 Security of the Revocation Procedure

The security of ACPC’s revocation procedure relies on the first preimage resis-

tance of the hash function employed for the construction of activation trees, as well

as the proper disclosure of its nodes by the CAM. In principle, following a dishonest-
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if-allowed model, this means that the choice of a secure hash function is enough to

enforce revocation. At least this should be the case if we assume that the system’s

authorities would gain nothing by illegitimately un-revoking vehicles, i.e., without au-

thorization from the MA. Nonetheless, it is useful to evaluate what happens when one

of the system’s entities is compromised and, as a result, its capabilities are misused

aiming to allow the activation of revoked devices.

On the one hand, a rogue/compromised CAM could disclose the roots of every

activation tree to all vehicles, even revoked ones, allowing all certificates in the system

to be activated. This would not give the attacker any advantage, though, besides dis-

rupting the system’s ability to revoke devices in an efficient manner. In particular, in

consonance with the discussion in Section 5.1, this would not grant the CAM or any

other entity the ability to track devices. Consequently, in a dishonest-if-allowed sce-

nario, it is unlikely that the CAM itself would go rogue and engage in such malicious

activity. Furthermore, if the CAM’s storage is somehow compromised, the leakage of

codes can still be contained by keeping the revoked vehicles’ data in CRLs, just like

in the original SCMS; alternatively, the CAM itself can be revoked so no certificate

under its responsibility is considered valid, thus avoiding the growth of CRLs’ size.

Hence, the attack would not result in any catastrophic security breach, but only nullify

the performance gains provided by activation codes.

On the other hand, a security breach at the RA or PCA should not reveal any infor-

mation about activation codes. The reason is that these entities never learn those codes,

which are only known by the CAM. Nevertheless, if any of these entities goes rogue

or is compromised at a level that allows its behavior to be controlled by attackers, it

can provide valid certificates to revoked vehicles independently of activation codes.

Specifically, a dishonest PCA can always issue new pseudonym certificates for vehi-

cles, including revoked ones, at least until the PCA itself is revoked. A compromised

RA could act similarly, e.g., by requesting pseudonym certificates for a non-revoked
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VIDd, and then delivering those certificates to a revoked vehicle whose identifier is

VIDr , VIDd. Such misbehavior is likely to go unnoticed because the certificates

do not carry any VID on them, as it would break the unlinkability provided by the

pseudonyms. In addition, if VIDd corresponds to a valid vehicle whose pseudonym

certificates have not been requested yet, the CAM would not be able to notice the fraud

by the RA: from the CAM’s perspective, this is simply a new vehicle in the system.

Actually, even if VIDd has already been requested in the past, it would be difficult

for the CAM to use this knowledge to prevent such attack. The reason is that, if the

CAM is configured to refuse a second request for the same VIDd, management issues

are likely to arise. For example, the processing of the initial request for VIDd may

naturally fail, so an honest RA would actually need to send a second request referring

to the same VIDd. As another example, a dishonest RA might abuse this process

by performing a “denial-of-certification” attack: the RA queries the CAM requesting

the caterpillar keys for a non-revoked VIDd, but it does not execute the pseudonym

certificate issuance process; future requests referring to VIDd, potentially by honest

RAs, would then fail.

These observations indicate that, even if a rogue RA or PCA never gains access

to activation codes, their roles in the system still enable them to provide valid certifi-

cates for revoked vehicles. Actually, a similar discussion also applies to the original

BCAM protocol, in which a rogue RA or PCA could provision revoked vehicles with

the PCA-encrypted certificates, before they are once again encrypted by the CAM.

Even though ACPC’s approach of ensuring that only the CAM is able to distribute

activation codes does not actually prevent such threats, it was adopted because it does

reduce the system’s attack surface. For example, if RA and/or PCA store the (PCA-

encrypted) certificates, a data breach disclosing such certificates for a vehicle that is

now revoked does not create any security concern, since that vehicle remains unable to

decrypt them without the corresponding activation codes.
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5.3 Disaster Recovery

In ACPC, the CAM is assumed to follow a “dishonest-if-allowed” model, simi-

larly to the RA and PCA in SCMS (and to the CAM in BCAM). Therefore, it is not

expected to simply broadcast wrong codes or refuse to broadcast activation codes for

non-revoked vehicles, in particular because this would only allow the CAM to disrupt

the system, without giving it any actual benefit (e.g., it would remain unable to track

vehicles). Furthermore, such misbehavior could be easily detected: the absence of

broadcast messages can be noticed by any system entity, while wrong codes can be

detected by the RA by verifying whether or not a blinded activation value originally

received from the CAM was generated from the disclosed activation code. Such ver-

ification by the RA can be performed periodically, via random sampling, or could be

triggered by a complaint from a non-revoked vehicle unable to decrypt its own certifi-

cates.

An honest CAM may, nevertheless, become target of denial of service (DoS) at-

tacks aiming to prevent the delivery of activation codes, thus impairing the availability

of the whole system. Fortunately, however, there are many possible approaches to mit-

igate such threat. For example, even though the generation of the activation tree is

expected to be centralized at each CAM, the distribution of activation codes can actu-

ally be shared with multiple entities, including RAs, PCAs, vehicles and roadside units.

After all, the trees disclosed by CAMs do not carry any secret information (otherwise,

they would not be broadcast) and can be signed by the responsible CAM to ensure its

authenticity. In addition, catastrophic events such the CAM losing access to all activa-

tion codes can be addressed by means of standard disaster recovery approaches, such

as saving the roots of the activation trees in different places and protecting them via

secret sharing mechanisms (SHAMIR, 1979) (AGRAWAL et al., 2009).
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5.3.1 Support for Soft Revocation with Vehicle-Side HSMs

In BCAM, vehicles are assumed to be equipped with a hardware security module

(HSM). This enables what is called a “soft-revocation” mechanism: instead of asking

the CAM to omit nodes from the binary tree, the Misbehavior Authority could period-

ically issue a soft-revocation list (SRL) containing identifiers of revoked vehicles; as a

result, the HSM of vehicles listed in the SRL simply refuse to compute the decryption

keys for the corresponding certificates. A similar feature can be provided in ACPC

if, like in BCAM, the HSM exports a CAM-encrypted symmetric key vk, which is

included in the vehicle’s request for pseudonym certificates. Then, by computing the

blinded activation values as fa(vk, codet,VID, t,VID)·G, the CAM ensures that the HSM

is the only entity capable of decrypting certificates, since it is the only component with

access to vk.

The advantage of this approach is that it potentially leads to smaller messages

broadcast by CAMs. After all, as discussed in Section 4.3, the (hard) revocation of

vehicles forces the CAM to disclose multiple nodes of the revocation tree, rather than

only its root. If, however, those vehicles are known to be soft-revoked due to a com-

pliant HSM, the activation tree’s root can be disclosed without negative impacts to the

system’s security.

Albeit interesting, such a soft-revocation mechanism is considered optional in

ACPC because some vehicles may actually not have an HSM installed, or the HSM

might be compromised by a crafty attacker, rendering the SRL useless. In those cases,

the CAM would be obliged to fall back to the conventional, more reliable process of

omitting nodes from the binary hash tree, so some CAM may actually prefer to default

to such a safer approach.
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5.4 Summary

In this chapter, we analyzed the security of our proposed solution, showing that

it does not introduce new vulnerabilities to SCMS. The evaluation is made by com-

paring which values are made public in the certificate issuance and revocation, when

considering the collusion of the CAM with any of the certification authorities: the RA

or the PCA. We argued that, if the CAM colludes, the vehicle privacy is not lost, and

the other authority only receives the capability of activating the certificates as if the

CAM ceased to exist. We also consider the scenario in which the CAM is corrupted

after the generation of the activation codes in a way that its usage can be reverted to

the original SCMS scheme without loss of security. Furthermore, in case of vehicles

equipped with a hardware security module, soft revocation is possible, improving the

distribution of the activation codes.
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6 COMPARISON WITH RELATED WORKS

The features proposed in ACPC modify the relationships among the system author-

ities with the vehicles by holding access to the pseudonym certificates. These changes

not only improve the management of the Certificate Revocation List (CRL), but also

improves the privacy provided to the vehicles during the issuance. Given the diversity

of properties each VPKI support, in this chapter we discuss the differences in security

and efficiency between ACPC and the VPKIs described in Chapter 3 (namely, SCMS,

C-ITS, IFAL and BCAM).

Since ACPC was built upon the SCMS, most of security aspects are maintained

regarding the system authorities present in both architectures. With the inclusion of

the CAM, however, we have an additional network interface that requires bandwidth

when issuing certificates. But, as argued in Chapter 5, a collusion between the CAM

with the PCA or the RA would reveal as much information as SCMS itself. Although

also built upon SCMS, BCAM does not share this same feature, since the CAM in the

latter would be able to link pseudonym certificates to a vehicle.

When compared to IFAL and C-ITS, ACPC differs mainly in the threat model of

the system authorities. IFAL and C-ITS allow an “honest-but-curious” PCA to link

several certificates to a same device. Since they create certificates without linkage

information, the capability to link a pseudonym to the vehicle’s identity was given to

a single authority (namely, the PCA). However, as ACPC is based on SCMS, linkage

information can only be obtained if the PCA and the RA collude, which is expected
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only when a vehicle should be revoked.

One advantage of IFAL over C-ITS is the issuance of pseudonym certificates be-

forehand. By moving most of the transmission costs out of band, the bandwidth costs

are greatly reduced in real-time, as IFAL’s activation codes are much smaller than ac-

tual certificates. However, ACPC allows vehicles to obtain activation codes much more

efficiently than IFAL’s strategy. By using binary hash trees to create activation codes,

the CAM can broadcast them directly to the vehicles or to caching units, instead of

relying that vehicles individually request them.

Architecturally, ACPC shares more similarities with BCAM than with IFAL, in

particular because both BCAM and our proposal use binary hash trees for the distri-

bution of activation codes. However, ACPC provides better security, for at least two

reasons. First and foremost, the fact that the CAM does not receive certificates from

the RA prevents the former from learning which PCA-encrypted certificates belong to

a same device; therefore, and unlike BCAM, a collusion between CAM and PCA does

not allow those entities to track vehicles. Second, as discussed at the end of Section

5.2, ACPC also reduces the revocation procedure’s attack surface by a rogue RA or

PCA, so it is able to protect the vehicle’s privacy even if PCA and CAM collude or are

compromised.

In the following sections, we compare ACPC with the other VPKI schemes in

terms of processing costs and bandwidth usage, considering both the broadcast and the

unicast models of distribution of activation codes. Additionally, aiming to analyze the

trade-off in privacy for each of the alternative distributions strategies from Section 4.4,

we developed a simulator for activation trees that is able to revoke a configurable num-

ber of leaves from an activation tree. Such revocations can be done either randomly

(for simulating an average case), or by targeting leaves that are descendants of the

lowest-depth nodes, which then become unavailable for picking (which corresponds to

the worst case). The simulator then calculates the size of the whole activation tree, as
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well as the bandwidth usage and crowd size obtained with each node selection strat-

egy. The results from this analysis are discussed in the following section. For better

reproducibility of our experiments, the simulator’s source code (in Java) is available

for download at Simplicio, Silva and Cominetti (2019).

6.1 Processing Costs

To evaluate the processing overheads incurred by ACPC, it is important to consider

every component of the system. In what follows, we start by evaluating the processing

costs at the CAM and vehicles, for which the benefits of ACPC are more noticeable,

and then we discuss how the PCA and RA are affected.

One improvement of ACPC over BCAM is that, in the latter, the CAM is respon-

sible for encrypting the batches received from the RA, after they are delivered by the

PCA. Consequently, the CAM ends up encrypting certificates that have already been

encrypted by the PCA: the latter process is intended to preserve the vehicles’ privacy,

and the former is executed for the purpose of preventing their certificates from being

activated in case of revocation. The proposed approach integrates both purposes into a

single encryption process, performed by the PCA, which was already present in SCMS

itself.

More precisely, in BCAM the number of encryptions performed by the CAM

grows proportionally to the size of the batches, which depends on the size of pkg and

on the number of certificates per time period (σ). In comparison, ACPC’s design is

such that each activation period requires one PRF execution combined with an elliptic

curve scalar multiplication, for computing the corresponding blinded activation val-

ues At = fa(codet,VID, t,VID) · G. Therefore, many symmetric encryption operations

can be replaced by a single computation of a blinded activation value. Since scalar

multiplications over elliptic curves are known to be considerably more expensive than
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symmetric encryption, however, the actual benefits of ACPC depend on the system

parameters: for a given value of | pkg |, the larger the number of time periods covered

by each activation period (α), the larger the number of encryptions replaced by the

computation of a blinded activation value and, hence, the better the processing times

of ACPC when compared to BCAM.

To give some concrete numbers, we have implemented our proposal using the

RELIC cryptography library version 0.4.1 (ARANHA; GOUVÊA, 2018) running on

an Intel i5 4570 processor. In this setting, the computation of one blinded activation

value takes 242,822 cycles. This is approximately 300 times the cost of one single AES

encryption, which takes only 832 cycles. Based on these numbers, Figure 13 shows

the total processing costs at the CAM when we assume pseudonym certificate batches

that span a period of 3-years, which corresponds to 156 one-week long time periods.

The smallest number of encryptions for BCAM, 12,480, refers to a scenario where

σ = 20 and | pkg | = 512 bits, meaning that 156 · 20 = 3120 pseudonym certificates are

encrypted by the CAM and each encryption takes 512/128 = 4 calls to a 128-bit block

cipher such as AES. The largest number of encryptions, 199,680, is obtained when σ =

40 and | pkg | = 4096 bits, so the encryption of each of the 156 ∗ 20 = 6240 certificates

requires 4096/128 = 32 calls to the underlying 128-bit block cipher. As observed in

this figure, the performance of ACPC is comparable to BCAM’s, and usually surpasses

it, in particular for larger numbers of α. For instance, when each activation period spans

4 certificate time periods, only 156/4 = 39 blinded activation value are computed, so

the corresponding ACPC-4 curve always remains below BCAM’s curve.

Even more importantly, the fact that the CAM does not re-encrypt batches in

ACPC means that the vehicles do not need to remove this additional encryption layer

when processing the received pseudonym certificates. Instead, the only decryption

operation performed at the vehicle’s side is the one originally present in SCMS it-

self, which reverses the encryption done by the PCA. Therefore, the total overhead
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Figure 13: Processing costs at the Certificate Access Manager (CAM) for BCAM and
ACPC. We denote by ACPC-α the setting in which the number of time periods covered
by each activation period is α.
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incurred by ACPC refers to the computation of one (unblinded) activation value

fa(codet,VID, t,VID) per activation period, so it can be included in the computation of

the decryption key êt,c. When compared to BCAM, this means that | pkg |/128 encryp-

tions are replaced by τ/α invocations of a PRF at the vehicle’s side. Even if we con-

sider the scenario from Figure 13 in which the benefits of ACPC are less pronounced

at the CAM’s side (namely, α = 1 and | pkg | = 512), this still means that ACPC trades

12,480 decryptions for 156 PRF executions. In practice, assuming that one PRF execu-

tion takes roughly as much processing as one decryption, this means that the overhead

added by ACPC’s activation codes is approximately 1/80 of the overhead incurred by

BCAM at the vehicles’ side.

Finally, the usage of activation codes is transparent from the PCA’s perspective,

so its processing costs remain unchanged. For the RA, in turn, a single elliptic curve

addition per activation period is necessary, to compute E + At, from which the corre-
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sponding public cocoon keys Êt,c can be obtained. Therefore, the overhead incurred by

ACPC at the RA is expected to be negligible.

6.2 Bandwidth Usage

While we expect the use of activation codes to reduce the required bandwidth to is-

sue certificates, the inclusion of a new authority (namely, the CAM) also creates a new

network interface to the system. In this section, we detail the costs of data exchanged

in both the system authorities and during the broadcast of activation codes. We also

compare the alternative distribution methods for unicast communication considering

the data required to distribute CRLs in the original SCMS scheme.

6.2.1 System Authorities

Whether pseudonym certificates are issued with BCAM or with ACPC, the amount

of data exchanged in the vehicle-RA and RA-PCA interfaces remains basically the

same as in the original SCMS (see Figure 9, which shows all interfaces involved in the

issuance process). In the RA-CAM interface, on the other hand, ACPC ends up saving

bandwidth: whereas BCAM exchanges (large) batches of pseudonym certificates via

this interface, in ACPC the CAM simply sends elliptic curve points to the RA upon

request. More concretely, suppose that SCMS adopts implicit certificates, which are

usually shorter that explicit ones, and employs the optimizations described in (SIM-

PLICIO et al., 2018c), which removes the need of signing the encrypted package pkg.

In that case, each PCA-encrypted response pkg = Enc
(
Êi; {certi, sigi}

)
is expected to

be such that | pkg | ⩾ 6k bits for a security level of k: (1) 2k bits for the implicit creden-

tial Vi enclosed in certi, since it corresponds to an elliptic curve point; (2) 2k bits for the

random elliptic curve point that is generated during any ECIES-based encryption; (3)

2k bits for the signature sigi; and (4) some extra bits for the certificate’s metadata (e.g.,

a linkage value and an expiration date), as well as for the authentication tag resulting
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from the ECIES-based encryption, which we ignore in our calculations. Hence, for a

batch size β = τ · σ, in BCAM the total bandwidth usage at the RA and CAM would

be 2 · (6k) · (τ · σ) bits, where the “2” multiplication factor is due to the fact that this

cost is paid both downstream and upstream: the RA sends PCA-encrypted batches to

the CAM, and then receives CAM-encrypted batches.

In comparison, in ACPC the CAM simply sends τ/α blinded activation values

to the RA, where α ⩾ 1 is the number of time periods covered by each activation

period. Since each blinded activation value A is an elliptic curve point (i.e., 2k bits),

this corresponds to an upstream (resp. downstream) cost at the CAM (resp. RA) of

2k · τ/α bits. Therefore, ACPC is expected to use approximately 1/(6σ · α) of the

bandwidth required by BCAM during the pseudonym certificate issuance process. To

give a numeric example, suppose that the system is configured in such a manner that

20 certificates are valid per time period (as in (KUMAR; PETIT; WHYTE, 2017)),

and each activation period covers 4 time periods (e.g., for certificates valid for a week,

the activation period would correspond to a month). In this case, issuing batches of

certificates with ACPC would take 1/480 of the bandwidth required by BCAM at the

RA-CAM interface.

6.2.2 Distribution of Activation Codes

Regarding the distribution of activation codes by broadcast, ACPC provides band-

width savings when compared to BCAM despite also using a binary hash tree as under-

lying data structure for activation codes. This happens because, by integrating security

strings into the activation trees, the nodes of those trees can be 128-bit long while still

preserving a 128-bit security level, despite the number of revoked devices. When com-

pared to BCAM, which uses 256-bit nodes for achieving the same security level (see

Appendix A), this represents a 50% bandwidth gain for the distribution of activation

trees.
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To compare the costs of the DR, FSS and VSS approaches to distribute activation

codes using unicast communication, we first analyze the amount of data exchanged

in each method. For that, we first assume that the encoding of ACPC’s activation

tree corresponds to the list of D-bit revoked IDs (i.e., by removing the revoked leaves

from the complete tree), which translates to D·nr bits. Similarly, any requested node is

represented using a D-bit string, whereas the value of such nodes consists of 128-bit

strings (assuming ACPC is running with a 128-bit security level).

In the DR approach, vehicles simply send a D-bit request and receive a 128-bit

response. In the worst-case scenario, where vehicles wish to request an internal node

but do not have the activation tree’s encoding locally cached, an additional download

overhead of D·nr bits would apply.

Conversely, in the FSS scheme, vehicles are required to obtain the activation tree’s

encoding, once again at a cost of downloading at most D·nr bits (assuming it is not

already cached). Then, the vehicle requests and receives D nodes, which translates to

download and upload costs of 128 · D and D2 bits, respectively.

Lastly, in the VSS approach, the number of requested nodes depends on the desired

privacy settings and on the distribution of revocations among the tree’s leaves, since,

if available, picking shallower nodes results in a larger crowd size for achieving the

expected privacy level. Figure 14 shows the number of nodes required by a vehicle for

D = 40 and a target crowd size of 0.1 · nt; this means that the system supports roughly

1 trillion vehicles, and each vehicle can be confused with 10% of its peers when re-

questing its own activation codes. For each number of revocations 0 < nr ⩽ 50, 000,

we consider the worst-possible distribution of revoked nodes, as well as the average

case for 10,000 random samples. As observed in this figure, the average number of

requested nodes grows approximately logarithmically with nr, which means at a pace

smaller than the nr · lg(nt/nr) upper limit observed for the whole activation tree. The

reason for this behavior is that nodes from shallower depths, which provide a higher
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crowd size, are removed from the activation tree at a logarithmic pace; for example, to

remove all nodes from depth depth, at least 2depth leaves must be revoked. Whenever a

depth depth is depleted of nodes, it takes two nodes from depth (depth + 1) to get the

same crowd size that would be obtained with a node from depth depth.

In the specific case of our simulations, the request needs to include between 0.5–

1% of activation tree’s nodes. Figure 15 shows the corresponding bandwidth costs

for VSS, considering not only the requested nodes but also the download of the entire

activation tree’s encoding (assuming it is not cached). For easy reference of the savings

obtained by caching the tree’s encoding, we also depict the downstream costs for this

piece of data alone. All in all, and although the download costs in this case are 2 to 3

times larger than in the FSS approach, the total amount of data remains small: even for

50,000 revocations, VSS’s extra privacy incurs a download size below 450 KiB in the

worst case, and below 335 KiB on average, of which 244 KiB refers to the activation

tree’s encoding.

To give an overall picture of the bandwidth costs of each distribution approach, we

now compare them with all the revocation methods hereby discussed, namely ACPC

(including DR, FSS, VSS, and the broadcast methods), C-ITS, and the original SCMS

with CRLs. Since IFAL and BCAM present the same growth as DR and the broadcast

method, respectively, they are not included in this comparison. In Figures 16 and

17, we compare the downstream and upstream costs per vehicle for different values

of nr, in each activation period. The corresponding costs at the server-side can then

be obtained by multiplying those numbers by the system’s fleet size. Notice, though,

that such costs on the PKI infrastructure would correspond to an upper limit in ACPC,

where, unlike C-ITS, the burden of distribution can be shared with caching units.

For ACPC’s broadcast approach, we used our simulator to obtain the average num-

ber of nodes in the entire activation tree; the corresponding download costs are then

computed simply as 128 bits per node, plus 40 bits per revoked ID (from which the IDs
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Figure 14: Number of nodes required to achieve 10% privacy in the VSS method, for
0 to 50,000 revocations.
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Figure 15: Bandwidth (download and upload) costs at vehicle to achieve 10% privacy
in the VSS method, for 0 to 50,000 revocations.
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of the nodes can be inferred). For the C-ITS certificates, we consider two cases when

computing the underlying downstream costs: (1) ignoring any overhead, so the only

cost refers to the 117-bytes certificate payload; and (2) estimating the actual C-ITS

certificate response message based on its specification (ETSI, 2021, Sec. 6.2.3.3.2),

which means 265 bytes for each certificate (see Appendix B for details on how this

number was estimated). Similarly, for the upstream cost analysis, we estimate the size

of a C-ITS certificate request message to be around 505 bytes (see Appendix B).

Concerning the downstream costs per vehicle, Figure 16 shows that downloading

the entire activation tree results in low scalability. Specifically, this distribution method

becomes the most expensive method after approximately 400 revocations, which rein-

forces the need of efficient broadcast mechanisms and caching when such method is

adopted. SCMS with CRLs is the second least scalable approach. Even though such

a burden may be tackled via delta-CRLs, so only updates need to be downloaded, this

would not address the other drawbacks of this approach, such as the lack of flexibil-

ity and the overhead processing when verifying certificates. In addition, delta-updates

could be similarly employed to the download of the activation tree encoding in the DR,

FSS and VSS methods, considerably reducing their downstream costs. Indeed, Figure

16 shows that the amount of data downloaded for the DR, FSS and VSS approaches

remain much lower than any alternative strategy when the tree’s encoding is not taken

into account. In addition, even if the tree encoding is downloaded in every activation

period, DR, FSS and VSS remain quite competitive: all three methods are more ef-

ficient than C-ITS in a scenario with less than 50 thousand revocations; if compared

with C-ITS’s payload only, then the break-even for DR, FSS and VSS would be around

22000, 22000 and 30000 revocations, respectively.

In terms of upload costs on the vehicle-side, a first remark is that obtaining the

full ACPC activation tree or CRLs precludes any specific need for upstream commu-

nication. After all, both data structures can be obtained through a generic request or
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via broadcast, with negligible upstream cost. For this reason, Figure 17 only depicts

the costs for C-ITS, DR, FSS and VSS. As observed in this figure, C-ITS is quite

inefficient regarding this metric. This is explained by the combination of two facts:

(1) for better privacy, C-ITS requires vehicles to generate one request per pseudonym

certificate, meaning up to 1,300 requests per period; and (2) such requests are not too

small, since each one contains a public key encrypted and signed by the vehicle, and

the entire request is also encrypted and signed. In comparison, the requests in the

DR methods take a single 40-bits node identifier (i.e., 5 bytes), while FSS involves

D = 40 of such identifiers (i.e., 200 bytes). Even though the upstream cost in VSS

is not as negligible, for the simulated privacy level of 10% it still remains close to 64

KiB, even if we consider the worst-case scenario for 50,000 revocations (the maximum

number shown in this figure). Since this corresponds to 10% of the C-ITS approach,

we can conclude that ACPC is considerably more appealing than C-ITS when the goal

is avoiding upstream costs.

Finally, we note that the vehicle-side upstream costs of C-ITS could be reduced if

it is combined with butterfly keys (BRECHT et al., 2018; SIMPLICIO et al., 2018c),

as done in ACPC itself. Basically, this enables vehicles to offload part of those costs to

a proxy, called a Registration Authority (RA) in the SCMS architecture (BRECHT et

al., 2018). As a result, an arbitrarily large batch of pseudonym certificates can be gen-

erated from a single request containing a 96-byte payload (or 48 bytes if the unified

butterfly optimization is adopted (SIMPLICIO et al., 2018c)). Nevertheless, the re-

sulting VPKI’s bandwidth costs are not reduced, since the proxy expands the vehicle’s

request into as many individual requests as required in C-ITS without butterfly keys. In

addition, to preserve privacy, the (unified) butterfly key mechanism requires a location

obscurer proxy to decouple the vehicle’s identity and location. Under these settings,

adopting ACPC with the DR approach would provide as much privacy as C-ITS, but

would involve a 5-byte request sent via an unauthenticated channel rather than a 48- or
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Figure 16: Comparing vehicle-side download costs in each activation period, for differ-
ent V2X-oriented revocation methods: SCMS with ACPC (DR, FSS, VSS, and broad-
cast), SCMS with CRLs, and C-ITS. VSS is configured to provide 10% privacy.
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Figure 17: Comparing vehicle-side upload costs in each activation period, for different
V2X-oriented revocation methods: SCMS with ACPC (DR, FSS, VSS), and C-ITS.
VSS is configured to provide 10% privacy. SCMS with CRLs and ACPC with broad-
cast are not presented as they do not require any upstream communication.
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96-byte message sent via a mutually-authenticated channel.

6.3 Crowd Size

Whereas the privacy obtained by the DR approach is potentially as absent as in

C-ITS, and VSS provides a configurable privacy level, it is worth evaluating the crowd

size obtained with the FSS approach. The results for 0 ⩽ nr ⩽ 50,000, considering our

simulations and the lower bound formula given in Section 4.4.2, are shown in Figure

18.

Figure 18: Crowd size obtained with the FSS approach, for different numbers of revo-
cations.
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This figure shows that, as expected, the crowd size obtained when requesting D

nodes from the activation tree is inversely proportional to the number of revoked vehi-

cles. Nevertheless, the average and worst-case privacy loss decrease roughly logarith-

mically with nr. After all, to remove all nodes from the activation tree’s depth depth,

so they cannot be picked for increasing the crowd size by 2D−depth, there must be at least

2depth revocations. Hence, nodes from the shallowest depths become unavailable quite

quickly. Nevertheless, those from intermediate depths, which are still able to provide
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a large amount of privacy when picked, require a huge number of revocations before

they cannot be included in vehicles’ requests anymore. Indeed, our simulations show

that, for 50,000 revocations, on average a vehicle can still be confused with more than

230 (out of 240) of its peers when requesting activation codes using the FSS strategy.

6.4 Summary

In this chapter, we compared the ACPC with other state-of-the-art alternative VP-

KIs. On the one hand, ACPC differs in two aspects when compared to IFAL: (1)

while in IFAL a dishonest PCA could link several certificates to the same vehicle, in

ACPC it would require a collusion between dishonest PCA and RA; and (2) ACPC

distributes activation codes efficiently via broadcast, while in IFAL each vehicle must

request them. On the other hand, although the security of BCAM is similar to ACPC,

our proposed protocol is more efficient in terms of data bandwidth and processing

time: it saves bandwidth in two interfaces, in the RA-CAM, depending on the batch

size and number of periods per activation, and in the CAM-vehicle to activate, for the

smaller code length; and it executes fewer operations than BCAM because it replaces

an encryption by a modified operation in the butterfly key expansion. This gain actu-

ally depends on the system parameters, but ACPC provides better efficiency for larger

batch sizes or longer activation periods. We also compared all the distribution meth-

ods (broadcast, DR, FSS and VSS) with other relevant revocation approaches, such as

C-ITS, and the original SCMS with CRLs. We concluded by comparing the expected

privacy achieved by FSS with varying the number of revoked vehicles in the system.
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7 CONCLUSION

Security and privacy mechanisms are essential for preventing drivers from abusing

V2X communications to gain unwarranted advantages over their peers, and also for

limiting any entity’s ability to track honest vehicles. A promising solution to address

such requirements is the Security Credential Management System (SCMS), which

provides efficient and privacy-preserving mechanisms for issuing pseudonym certifi-

cates to vehicles and revoking them in case of misbehavior. As a drawback, however,

SCMS’s revocation procedure is such that, after certificate identifiers are included in a

CRL, it may take a long time for the corresponding CRL entries to be removed. This

incurs not only in bandwidth overheads for the CRL distribution, but also increases the

processing cost at vehicles for verifying a certificate’s revocation status.

Aiming to address these issues, in this thesis we present improvements on SCMS’s

pseudonym certificate revocation process. The proposed design, named Activation

Codes for Pseudonym Certificates (ACPC), is based on activation codes, small pieces

of information without which pseudonym certificates previously issued become use-

less. Consequently, by ensuring that only non-revoked vehicles are periodically pro-

vided with those codes, entries associated with revoked vehicle’s certificates can be

safely removed from CRLs.

Even though ACPC builds upon ideas originally discussed in recent works, in par-

ticular IFAL (VERHEUL, 2016) and BCAM (KUMAR; PETIT; WHYTE, 2017), it

leads to a significantly more secure and efficient pseudonym certificate system. More
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precisely, SCMS’s design is such that a dishonest PCA would have to collude with

the RA to be able to track vehicles, and ACPC does not increase this vulnerability

surface. In contrast, in IFAL a dishonest PCA could track vehicles without collud-

ing with any other entities, whereas in BCAM a collusion between CAM and PCA

would enable them to similarly violate the drivers’ privacy, In terms of performance,

one advantage of ACPC over IFAL refers to the distribution of activation codes: the

CAM can broadcast codes to all non-revoked vehicles, so no bidirectional connectivity

is required between vehicles and CAM. Even though such distribution process is as

efficient as BCAM’s, ACPC leads to a much more efficient certificate issuance pro-

cess than BCAM: since the proposed design avoids the re-encryption of pseudonym

certificates by the CAM, the CAM-RA bandwidth usage in ACPC is expected to be

lower than 1/480 of BCAM’s, and the processing overhead added by ACPC’s activa-

tion codes at the vehicle’s side is expected to be 1/80 or less than what is observed with

BCAM.

We also propose alternative methods to its mechanism for distributing activation

codes. The original distribution via broadcast preserves the anonymity of the receiver

and does not require vehicles to have bi-directional connectivity. When requiring uni-

cast communication, however, the bandwidth costs do not boil down to a single ac-

tivation code, but grow approximately linearly with the number of revoked vehicles,

reaching the order of megabytes for about 10,000 revocations. The goal of the hereby

proposed methods is, thus, to strike a balance between privacy and bandwidth effi-

ciency. In particular, in a scenario where vehicles can abdicate from anonymity when

requesting/activating their certificates (e.g., similarly to C-ITS and IFAL), the direct

request (DR) approach allows this task to be accomplished by means of a simple 16-

byte activation code. Conversely, if a vehicle prefers to retain some level of anonymity

when requesting activation codes, it can either: (1) download the entire activation tree,

for maximum privacy but also maximum bandwidth usage; (2) employ the fixed-size
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subset (FSS) method, downloading less than 1 KiB for a privacy level that degrades

logarithmically with the number of revocations nr; or (3) adopt the variable-size subset

(VSS) approach, for which a configurable privacy level can be obtained with a loga-

rithm increase on the download costs as nr grows. Such gains were confirmed through

simulations, and are particularly interesting when ACPC’s activation tree encoding can

be cached and simply updated whenever required.

7.1 Publications

As a direct result of this work, we produced the following publications:

• (SIMPLICIO et al., 2018a) is a journal article that present the ACPC, describing

the security mechanisms to improve the revocation process of the SCMS pro-

moting the distribution of activation codes by broadcast. The proposed solution

to create activation trees was later incorporated in the IEEE standard 1609.2 for

vehicular communication (IEEE, 2022).

• (SIMPLICIO et al., 2021b) is a journal article that discusses the bandwidth costs

to distribute activation trees by unicast messages, and the proposed distribution

strategies that balance privacy and efficiency.

Additionally, the author has collaborate in other publications, regarding V2X and

other scenarios:

• (SIMPLICIO et al., 2018b) is a conference paper that improves the linkage pro-

cedure in SCMS in two fronts: firstly, it proposes a solution to a possible birth-

day attack that could be applied to SCMS if a large number of certificates are

revoked; and secondly, it proposes an hierarchical way to create linkage values,

so that SCMS can temporarily revoke vehicles, for example, to aid in investiga-

tions by law-enforcement authorities.
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• (SIMPLICIO et al., 2018c) is a conference paper that improve efficiency in the

generation of butterfly keys using an efficient mechanism that allows the vehi-

cle to receive a single key from the RA that would allow it to both decrypt the

received certificate and sign messages with no detriment to security due to cor-

relation attacks.

• (SILVA et al., 2019) is a conference paper and demonstration of a library for

secure drawing of juror or judges in legal systems. The library implements a

method for the legal proceedings’ stakeholders to contribute to the randomness

of the drawing, so that the fairness of the selection could be audited. A full paper

is still in development.

• (SILVA; SIMPLICIO, 2020) was a presentation of an extended abstract that pro-

poses the usage of a tree-based key-agreement protocol for in-vehicle communi-

cation. It proposed three improvements to the original protocol: (1) a transfor-

mation from FFC to ECC to improve size and efficiency of communication; (2)

a improvement to the node addition policy, so that in some situations the worst-

case scenario could become the best-case; and (3) a proposal of node addition

policy for temporary nodes (e.g., media devices, diagnostics tools). A full paper

is still in development.

• (SIMPLICIO et al., 2021a) is a journal article that extends (SIMPLICIO et al.,

2018b). It further improves the linkage procedure by proposing a way to simplify

the SCMS architecture by not requiring the LAs to create linkage values for

revoking certificates from the same vehicle, thus reducing deployment costs and

the attack surface.
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7.2 Future Work and Open Problems

In this thesis, we presented the ACPC scheme, which improves SCMS’s revoca-

tion procedure by using activation codes, resulting in a more flexible way to revoke

pseudonym certificates without much overhead when verifying CRLs. However, we

believe that the area of V2X communications is still open to many improvements and

proposals. Thus, we present here a few open problems related to ACPC that have not

been solved yet.

SCMS formal proofs: Since ACPC is built upon SCMS, much of the original

structure was reused in our proposal. Therefore, our security discussion is also based

on the one from SCMS, in a way to argue that our enhancements do not hinder SCMS’s

security while providing the new functionality. As previously discussed in Chapter

5, the SCMS security analysis follows an informal approach (BRECHT et al., 2018)

(WHYTE et al., 2013). Although no security flaws have been found so far, it could

benefit from more formal proofs, such as the one based on the Game-Playing Tech-

nique (BELLARE; ROGAWAY, 2006), similar to what is proposed in IFAL (VER-

HEUL; HICKS; GARCIA, 2019). Hence, once formal proofs to SCMS are available,

we could also adapt them to ACPC.

Post-quantum security: ACPC and SCMS were originally proposed using classi-

cal cryptographic primitives based on the ECDLP and parameterized to achieve a secu-

rity level of 128 bits. However, when we consider the advances in quantum computing,

building a quantum computer with enough resources will break classical asymmetric

primitives, and symmetric primitives will require larger key sizes. For this reason,

when reaching for long-term privacy, it may be appropriate to adapt the V2X schemes

to work with post-quantum primitives. While qSCMS (BARRETO et al., 2018) pro-

poses the usage of lattices to SCMS, we leave as an open problem its adaptation to

ACPC.
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APPENDIX A -- BIRTHDAY ATTACK
AGAINST BCAM’S HASH
TREES

The structure of BCAM’s binary hash trees is such that their k-bit nodes are com-

puted via iterative hashing, using a constant suffix for each branch. More precisely,

starting from a random root nodet(0, 0), each node nodet(depth, count) of treet is

computed from its parent as follows:

nodet(depth, count) = Hash(nodet(depth − 1, ⌊count/2⌋) || bp),

where b = 0 (resp. b = 1) if the node is a left (resp. right) child, and p ⩾ 1 is a

suitable padding length. For example, when k = 256 and the hash function employed

is SHA-256, adopting 1 ⩽ p < 192 would allow the underlying compression function

to be called only once when computing any node of the tree.

Suppose that a vehicle with identifier VIDr is revoked. In that case, the leaf

nodet(|VID |,VIDr) should not be computed from the message broadcast by the CAM,

for every future value of t. This means that the set Nr of all nodes in the path be-

tween the root and that leaf must remain secret. To accomplish this, the CAM only

broadcasts siblings of the nodes in Nr. For example, as mentioned in Section 4.3 (and

replicated in Figure 19), the revocation of nodet(3, 4) leads to the disclosure of the set

Nd = {nodet(1, 0), nodet(2, 3), nodet(3, 5)}. As long as the tree is built using a secure

hash function, it is not straightforward to use any node in Nd to compute nodes in the set
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Nr = {nodet(0, 0), nodet(1, 1), nodet(2, 2), nodet(3, 4)}. Indeed, doing so corresponds

to finding preimages for nodes in the set Nd.

Figure 19: Distribution of activation tree nodes when vehicle with VID = 4 is revoked.

Hash Hash

Hash Hash

Hash

Hash

Hash

Hash

Hash HashHash Hash Hash Hash

Time period: t
nodet(0,0)

nodet(1,0) nodet(1,1)

nodet(2,0) nodet(2,1) nodet(2,2) nodet(2,3)

nodet(3,0) nodet(3,1) nodet(3,2) nodet(3,3) nodet(3,4) nodet(3,5) nodet(3,6) nodet(3,7)

codet,0 codet,1 codet,7

=             =             =             =              =              =              =              =  
codet,2 codet,3 codet,4 codet,5 codet,6

CAM

REVOKED

Source: the author

To overcome the security of BCAM’s activation trees, the following attack strat-

egy can be employed to recover activation codes for revoked vehicles. First, the at-

tacker picks an arbitrary k-bit long link0, and arbitrarily chooses between b = 0 or

b = 1. The value of link0 is then used as the anchor for a hash chain of the form

linkj = Hash(linkj−1 || bp), until 2n hashes are performed. For simplicity, we as-

sume that no collision occurs during this process, i.e., that linkj , linkj′ for all

j , j′. Nevertheless, this simplification comes without loss of generality because,

whenever there is a collision, the attacker could simply (1) save the current chain, (2)

pick a new anchor distinct from any previously computed linkj, and then (3) start a

new chain from this anchor. Actually, picking different anchors for building multiple

chains is likely advantageous anyway, because this facilitates the parallel processing

of hashes. As long as 2n different hashes are made available in this manner, the attack

can proceed.

Due to the birthday paradox, an attacker that gathers 2m nodes disclosed by the
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CAM has a high probability to find a match between at least one of those nodes and

some of the 2n previously computed linkj if (m+n ⩾ k). Suppose that a match occurs

between linkj and nodet(depth, count). In this case, linkj−1 is a valid preimage

for nodet(depth, count) with padding bp. Hence, if the attacker picked b = 0 and

nodet(depth, count) is a left child, it is very likely that linkj−1 will match the parent

of nodet(depth, count) in the activation tree — unless linkj−1 is a second preimage

rather than the actual preimage. If the parent of nodet(depth, count) is also a left child,

its own parent is also likely to match linkj−2, and so forth. An analogous argument

applies if b = 1 and nodet(depth, count) is a right child. As a result, such collisions

have roughly 50% of chance of giving the attacker access to nodes belonging to the

revoked set Nr. All certificates whose revocation depended on those nodes can then be

activated.

Considering this attack scenario, the growth of the number of revoked devices has

two negative effects on the system’s security. First, the recovery of one node from

the set Nr becomes more likely to give access to activation codes of multiple revoked

devices. The reason is that a node in a given position of the tree always allows the

computation of a same number of leafs (the lower the depth, the higher this number).

When the number of revoked devices increase, so does the number of leaves covered by

that node that should remain concealed to prevent the corresponding activation codes

from being recovered. Second, the number of nodes disclosed by the CAM that would

lead to useful collisions also grows, i.e., the value of m becomes larger.

Since such attacks trade time for space, one possible defense strategy is to adopt

a large enough k parameter. For example, the authors of BCAM suggest k = 256 (cf.

(KUMAR; PETIT; WHYTE, 2017), Section 4.1.3), meaning that the attacker would

have to compute, say, 2n = 2128 hashes and then gather 2m = 2128 nodes from the CAM

before a collision actually occurs. Therefore, in practice, the attacks hereby described

do not pose an actual security threat to BCAM.
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Nevertheless, there is a more efficient defense strategy for this issue, originally dis-

cussed by Leighton and Micali (LEIGHTON; MICALI, 1995) in the context of hash-

based signatures (MCGREW; CURCIO; FLUHRER, 2017) and also proposed for use

with SCMS’s linkage trees (SIMPLICIO et al., 2018b): to use a different suffix for each

node computation. This strategy comes from the observation that collisions between

linkj and nodet(depth, count) are useless if they are computed with different suffixes.

After all, in that case linkj−1 will not match the parent of nodet(depth, count), i.e., it

will necessarily be a second preimage rather than the actual preimage of that node. At

the same time, attackers are unable to gather more than 1 value of nodet(depth, count)

for any given suffix. Consequently, to obtain a high probability of collisions for that

suffix, the attacker would have to build a table with 2n = 2k−m = 2k entries. In other

words, the approach adopted in ACPC leads to a 128-bit security level even when the

nodes themselves are 128-bit long.
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APPENDIX B -- C-ITS TICKET ISSUANCE
MESSAGES

In C-ITS, vehicles must sent a Ticket Request (TReq) message to an Authorization

Authority (AA) for each pseudonym certificate it needs to be issued. The AA then

replies with a Ticket Response (TResp) message that encapsulates that certificate in a

privacy-preserving manner. In this appendix, we describe the structure of both TReq

and TResp aiming to estimate their sizes and, thus, support the comparisons made in

Section 6.2.2. Namely, our estimate is that each TReq and TResp messages comprise,

respectively, 505 and 265 bytes. This analysis complements the description of TReq

and TResp data fields given in (ETSI, 2021) (ETSI, 2017b), where the actual sizes of

such messages are not explicitly calculated.

B.1 C-ITS Ticket Request (TReq)

TReq’s data structure is depicted in Figure 20, considering the version of the mes-

sage that includes an inner Proof Of Possession (POP) signature. We note that, even

though some instances of TReq may get smaller by omitting this signature, its presence

is recommended in the official documentation (ETSI, 2021, Sec. 6.2.3.3.1), since it en-

sures the requester knows the private key corresponding to the requested certificate’s

public key. For convenience, in what follows we describe the message’s structure from

the inner- to the outermost field.

EtsiTs103097Data-SignedExternalPayload (115 bytes):
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Figure 20: C-ITS Ticket Request (TReq) message structure.

Source: ETSI (2021, Fig. 17)

• hashId (1 byte): Indicates the hash algorithm to be used.

• tbsData (42 bytes): Contains the hash of the sharedATRequest (32 bytes), the

provider service identifier (psid – 2 bytes), and the generation time (8 bytes).

• signer (8 bytes): References the vehicle’s enrollment certificate by applying a

hash function to it and using 8 bytes of the output.

• signature (64 bytes): Signature of tbsData using the vehicle’s enrollment cer-

tificate.

EtsiTs103097Data-Encrypted (217 bytes):
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• recipient (86 bytes): References the Enrollment Authority to be contacted; this

is done by applying a hash function to the Enrollment Authority’s certificate and

using 8 bytes of the output. It also contains the encryption key material to be used

the Enrollment Authority when encrypting the payload, using ECIES (IEEE,

2004b) and AES-CCM (NIST, 2004). The total space occupied includes the

aforementioned 8-bytes hash value, the ECIES nonce, which is an elliptic curve

point (33 bytes), the AES-CCM key encrypted and authenticated with ECIES

(32 bytes), and the AES-CCM nonce and parameter (13 bytes).

• ciphertext (131 bytes): the AES-CCM encryption of the EtsiTs103097Data

-SignedExternalPayload (115 bytes) and its authentication tag (16 bytes).

sharedATRequest (41 bytes):

• eaId (8 bytes): Identifies the Enrollment Authority to be contacted.

• keyTag (16 bytes): Leftmost 16 bytes of the hash of hmacKey concatenated

with publicKeys.

• certificateFormat (4 bytes): The version of the certificate format specification

(integer value set to 1).

• requestedSubjectAttributes (13 bytes): The attributes of the pseudonym cer-

tificate to be created. Namely: id, which may be set to null (1 byte); validity

period (start and duration – 6 bytes); region (country and location – 3 bytes);

assuranceLevel (1 byte); and appPermissions (sequence that represents the ser-

vices of the psid – 2 bytes).

InnerATRequest (323 bytes):

• publicKeys (33 bytes): The public key enclosed in the pseudonym certificate,

which corresponds to an elliptic curve point.
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• hmacKey (32 bytes): A key to be used by the HMAC (NIST, 2008) function for

generating keyTag.

• sharedATRequest (41 bytes) and EtsiTs103097Data-Encrypted (217 bytes):

previously described.

EtsiTs102941Data (327 bytes):

• version (4 bytes): An integer value, set to 1.

• content (323 bytes): InnerATRequest.

EtsiTs102941Data-Signed (403 bytes):

• hashId (1 byte): Indicates the hash algorithm employed.

• tbsData (337 bytes): Contains the package payload, EtsiTs102941Data (327

bytes), a psid (2 bytes) and the generation time (8 bytes).

• signer (1 byte): May be set to ‘self’.

• signature (64 bytes): Signature of tbsData. It is created using the private key

whose corresponding public key is enclosed in the pseudonym certificate.

EtsiTs103097Data-Encrypted (505 bytes):

• recipient (86 bytes): References the AA to be contacted; this is done by applying

a hash function to the AA’s certificate and using 8 bytes of the output. It also

contains the encryption key material to be used the AA when encrypting the

payload, using ECIES (IEEE, 2004b) and AES-CCM (NIST, 2004). The total

space occupied includes the AA reference (8 bytes), the ECIES nonce, which is

an elliptic curve point (33 bytes), the AES-CCM key encrypted and authenticated

with ECIES (32 bytes), and the AES-CCM nonce and parameter (13 bytes).
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• ciphertext (419 bytes): the AES-CCM encryption of the EtsiTs102941Data -

Signed (403 bytes) and its authentication tag (16 bytes).

B.2 C-ITS Ticket Response (TResp)

TResp’s data structure is depicted in Figure 21. Similarly to TReq, in what follows

we describe TResp from the inner- to the outermost field.

Figure 21: C-ITS Ticket Response (TResp) message structure.

Source: ETSI (2021, Fig. 19)

authorizationResponse (154 bytes):

• requestHash (16 bytes): The 16 leftmost bytes of the hash computed over the

corresponding TReq’s EtsiTs102941Data-Signed field.

• responseCode (2 bytes): The code that indicates the result of the request (set to

0 if successful).
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• certificate (136 bytes): The pseudonym certificate, comprising:

– version (1 byte): Version of the certificate.

– type (1 byte): Indicates whether this is an implicit or explicit certificate.

– issuer (8 bytes): Identifies the issuer of the certificate.

– toBeSigned (62 bytes): The core of the certificate. It contains: the certifi-

cate id, which may be set to ‘NULL’ (1 byte); the Certificate Revocation

Authorizing Certificate Authority id (cracaId – 3 bytes); the validity period

(start and duration – 6 bytes); the CRLseries (2 bytes); the region (coun-

try and location – 3 bytes); assuranceLevel (1 byte); appPermissions, the

sequence that represents the services of the psid (2 bytes); the certificate

request permissions, describing the permissions that apply to the certificate

holder (11 bytes); and the certificate key (an elliptic curve point – 33 bytes).

– signature (64 bytes): The AA’s signature on the pseudonym certificate.

EtsiTS102941Data (158 bytes):

• version (4 bytes): An integer value, set to 1.

• content (154 bytes): The authorizationResponse.

EtsiTS103097Data-Signed (241 bytes):

• hashId (1 byte): Indicates the hash algorithm to be used.

• tbsData (168 bytes): The package’s payload. It comprises: EtsiTs102941Data

(158 bytes); a psid (2 bytes), set to “secured certificate request”; and the genera-

tion time (8 bytes).

• signer (8 bytes): The identifier of the AA responsible for signing the data.

• signature (64 bytes): Signature of tbsData, created by the AA.
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EtsiTS103097Data-Encrypted (265 bytes):

• recipient (8 bytes): The hash of the symmetric key used in the corresponding

TReq. It allows the vehicle to identify which key to use for decrypting this

TResp.

• ciphertext (257 bytes): The AES-CCM encryption of the EtsiTS103097Data

-Signed (241 bytes) and its MAC tag (16 bytes).


