
DOUGLAS LUAN DE SOUZA

ALGORITHMS FOR RESPONSIBLE
EXPLANATION OF RECOMMENDATIONS

São Paulo
2024

DOUGLAS LUAN DE SOUZA

ALGORITHMS FOR RESPONSIBLE
EXPLANATION OF RECOMMENDATIONS

Corrected Version

Dissertation presented to the University of
São Paulo’s Polytechnic School in order to
obtain the title of Master of Science.
Program: Electrical Engineering.

Concentration Area:

Computer Engineering

Advisor:

Fabio Gagliardi Cozman

São Paulo
2024

 Autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio
convencional ou eletrônico, para fins de estudo e pesquisa, desde que citada a fonte.

Este exemplar foi revisado e corrigido em relação à versão original, sob
responsabilidade única do autor e com a anuência de seu orientador.

São Paulo, ______ de ____________________ de __________

Assinatura do autor: ________________________

Assinatura do orientador: ________________________

Catalogação-na-publicação

de Souza, Douglas Luan
 ALGORITHMS FOR RESPONSIBLE EXPLANATION OF
RECOMMENDATIONS / D. L. de Souza -- versão corr. -- São Paulo, 2024.
 136 p.

 Dissertação (Mestrado) - Escola Politécnica da Universidade de São
Paulo. Departamento de Engenharia de Computação e Sistemas Digitais.

 1.Interpretabilidade e Explicabilidade (XAI) 2.Aprendizado de Máquina
3.Sistemas de Recomendação I.Universidade de São Paulo. Escola
Politécnica. Departamento de Engenharia de Computação e Sistemas Digitais
II.t.

29 Janeiro 2024

ACKNOWLEDGMENTS

I would like to acknowledge at first the invaluable help my family has given to me all
this lifetime. First of all, my grandmother Maria Ferreira Mendes and my mother Maria
de Lourdes Ferreira de Souza. Then, I would like to extend it to my brother Guilherme F.
S. Sobrinho, my late grandfather José Martins de Souza, all my uncles, aunts and cousins.
You’ve all witnessed a great deal of my struggle and victories and believed in me all along.

An immeasurable force that has been following me in each of my ambitions is the help
of strangers, at first, who I today have the honor to call friends. It is certainly a difficult
task to name them all and I would not dare to try to. But the help from my teachers
Daladiê, Adriano, Raquel, Gleysson, from my former professor and supervisor Deborah
Faragó, from my friends Cleber Santos, Matheus Portari, Diego da Cruz and their families.
Also Regina Cerqueira, Gerald Thomson, Mathias Haake, Anna Haake, Christiana Müller
and Matthias Knälmann who have helped my a great deal in my learning opportunities
in Brazil, Australia and Germany. I could not be more grateful.

I would also like to express my gratitude towards my supervisior Fabio G. Cozman and
my research colleague Gustavo P. Polleti for the respective supervision and collaboration.
Likewise, I am grateful to the University of São Paulo (USP), the Federal University of
the Jequitinhonha and Mucuri Valleys (UFVJM) and the University of Sydney for being
part of my formal education. I extend my gratitude to the taxpayers who having been
helping fund these institutions.

This work was carried out with the support of Itaú Unibanco S.A.; the author has
been supported by the Itaú Scholarship Program (PBI), linked to the Data Science Center
(C2D) of the Escola Politécnica da Universidade de São Paulo. The supervisor has been
partially supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico
(CNPq), grant 312180/2018-7. This work has been partially supported by the Fundação
de Amparo à Pesquisa do Estado de São Paulo (FAPESP), grant 2019/07665-4. We
acknowledge support by CAPES finance code 001. We are also grateful to the Center for
Inovation at Universidade de São Paulo (InovaUSP) for hosting our lab.

ABSTRACT

Recommender Systems have been increasingly deployed as part of digital products
such as e-commerce and social networks. Part of the reason for their success is their
ability to predict which items the user will like. However, there are scenarios where
their recommendation may not be in the best interest of the user. It could be because the
recommendations reinforce a habit the users do not want, such as spending hours watching
short videos, or because it suggests a product that does offer the best cost-benefit ratio.
In these cases, it would be helpful for the users to understand the reasons behind the
recommendation. Furthermore, it would be in the interest of the user to know what
are the drawbacks of taking the recommendation. In this work, we propose methods for
generating reasons for and reasons against a given recommendation, based on Snedegar
theory of practical reasoning. We demonstrate that these methods are feasible in the
context of education through a course recommender.

Keywords – Explainable Artificial Intelligence (XAI), Machine Learning, Recommender
Systems.

RESUMO

Sistemas de Recomendação tem sido cada vez mais presentes em produtos digitais
como e-commerce e redes sociais. Um das razões para o seu sucesso é a sua crescente
capacidade de predizer quais itens irão agradar seus usuários. No entanto, há cenários
onde as recomendações podem não estar sendo geradas segundo os interesses dos usuários.
Isto pode acontecer porque o sistema incentiva que o usuário passe horas assistindo vídeos
curtos, ou porque ele recomenda algum produto que não tem a relação custo-benefício
que seria melhor para o cliente. Nestes casos, seria desejável que os usuários pudessem
entender as razões que levaram à recomendação. Além disso, usuários se beneficiariam ao
compreender quais são as desvantagens de seguir a recomendação dada. Neste trabalho,
propomos métodos para geração de razões a favor e razões contra uma determinada
recomendação, baseados na teoria de Snedegar para raciocínio prático. Mostramos que
estes métodos são aplicáveis na prática em um contexto educacional, usando um sistema
de recomendação de disciplinas.

Palavras-chave – Interpretabilidade e Explicabilidade (XAI), Aprendizado de Máquina,
Sistemas de Recomendação.

LIST OF FIGURES

1 Example graphs from MovieLens. 23

2 Facts representation with TransE. 24

3 Example explanations from LIME. 26

4 Example search for explanation. 30

5 Graph of a high-coverage explanation. 31

6 Architecture of a critiquing recommender system. 33

7 Explanation graphical interfaces. 34

8 Visual representation of the explanation processes. 39

9 Phone recommendation example. 42

10 Venn Diagram for S1. 42

11 Venn Diagram for S4. 43

12 Example of Reasons For and Reasons Against. 45

13 Requirements diagram for Calisto. 51

14 Calisto architecture. 52

15 Sequence Diagram of recommendations and explanations. 53

16 Evaluation method illustration. 58

17 Explanation paths P1 and P2 used in this experiment. 59

18 Results from experiments with S1 and S5 - Inline. 62

19 Results from experiments with S1 and S5 - Bars. 63

20 Was the explanation helpful? . 65

21 The most helpful explanation? . 66

22 Reasons for and reasons against PMR3508. Source: Author. 68

23 Calisto conversational interface. 81

24 Log screen for Calisto’s back-end. 81

25 Experiment setup - real RS (top) . 83

26 Experiment setup - real RS (bottom) . 84

LIST OF TABLES

1 A confusion matrix . 21

2 Common orders of time complexity. 48

3 Functionality table for the recommendation and explanation module. . . . 50

4 Intents for Calisto’s conversational interface. 54

5 Training parameters for inference engine. 56

6 Coverage, support and execution time for algorithms and paths. 59

7 Coverage and support results . 61

8 Statistical test results. 65

9 Sentences descriptive measures. 67

LIST OF ACRONYMS

RS Recommendation System
RecSys Same as RS | The ACM Conference on Recommender Systems
CRS Conversational Recommender System
ML Machine Learning
XAI Explainable AI
KB Knowledge Base
KG Knowledge Graph
KE or KGE Knowledge Graph Embedding
USP Universidade de São Paulo
NLU Natural Language Understanding
NLG Natural Language Generation
DM Dialogue Management
S1 Reasons Against Algorithm - Scheme 1
S2 Reasons Against Algorithm - Scheme 2
S3 Reasons Against Algorithm - Scheme 3
S4 Reasons Against Algorithm - Scheme 4
S5 Reasons Against Algorithm - Scheme 5
SLR Stochastic Logistic Regression
CPU Central Processing Unit
URL Uniform Resource Locator
DFS Depth-First Search
PRA Path Ranking Algorithm
JSON JavaScript Object Notation
HTTP HyperText Transfer Protocol
MAUT Multi-Attribute Utility Theory
LIME Local Interpretable Model-agnostic Explanations
PRED Explanation algorithm that uses the KG for predictions
GDPR European General Data Protection Law
FAccTRec Fairness, Accountability and Transparency in RecSys

LIST OF SYMBOLS

G Knowledge Graph
i Arbitrary recommended item
I Set of i
e Entity in a graph
E Set of e
r Relation in a graph | rating for an item to be recommended
R Set of r
⇡ Path representing an explanation in a graph
⇧ Set of ⇡
u User | user information object
U Set of u
r(u, i) Affinity score between item i and user u
h or eh Head entity
t or et Tail entity
fr Plausibility score function
T Vector, or list, containing plausibility scores
gr Classifier that returns the tail entity with the highest plausibility score
⇥ Knowledge embedding parameters
ẑk The kth perturbed sample of entities
Z Set of ẑk
Rh Set of recommendations for entity h
� Interpretable representation for an entity embedding | set of reasons for
� Explanation search function
O Big-O notation for algorithmic complexity
µ Population mean
� Explanation format Gamma
K Explanation format Kappa
⌅ Explanation format Xi
e Average effectiveness
H(X) Entropy of X

TABLE OF CONTENTS

1 Introduction 13

1.1 Objective . 16

1.2 Structure of the Work . 16

1.3 Disclaimer of Collaboration . 17

2 Background and Related Work 18

2.1 Recommender Systems . 18

2.2 Knowledge Representation . 22

2.2.1 Knowledge Graph . 22

2.2.2 Knowledge Graph Embeddings . 23

2.3 Explaining Recommendations . 24

2.4 Explanations and Knowledge Graph Embeddings 26

2.5 Bipolar Argumentation . 32

2.6 Critiquing-based Recommenders . 32

2.7 A Theory of Reasons . 34

2.7.1 Simple View of Reasons For and Against 35

2.7.2 Reasons For as distinct from Reasons Against 37

3 Generating Explanations 38

3.1 Recommendation Scheme . 38

3.2 Explanation Algorithms . 39

3.2.1 Reasons For . 40

3.2.2 Reasons Against . 40

3.2.3 Computational Cost . 47

4 Software Design and Implementation 49

4.1 Requirements . 49

4.2 Software Design . 51

4.3 Implementation . 55

5 Experiments and Results 57

5.1 Practical Algorithm Analysis . 57

5.2 Offline Evaluations . 60

5.3 User Test . 61

5.4 User Survey - Explanation Format . 62

6 Conclusion 69

References 71

Appendix A – The Implemented CRS 80

Appendix B – Experimental Setup 83

B.1 Experiment with Users and Real System 83

B.2 Experiment with Users for Explanation Format 85

Annex A – Related Paper - FAccTRec @ Recsys 2020 96

Annex B – Related Paper - UMUAI 2023 103

13

1 INTRODUCTION

“Any sufficiently advanced technology is
indistinguishable from magic.”

-- Arthur C. Clarke

Contemporary society heavily depends on computers and digital information for var-
ious aspects of our daily lives, including industry, education, entertainment, and commu-
nication. The progress of hardware and software has been rapidly advancing since the
completion of the first programmable general-purpose electronic digital computer, ENIAC
(Electronic Numerical Integrator and Computer), in February 1946 [22, 8].

While these machines were at first aimed at research institutions and large compa-
nies, they went on to be part of virtually every household, as a desktop, a laptop or a
smartphone. Furthermore, internet access has improved with ever higher coverage and
bandwidth availability, leading to an expansion of the number of devices, specially smart-
phones [45]. Although the world wide web started as distinctively static by presenting
the same content to all users, regardless of preferences, it evolved to be more and more
personalized [18]. Today, user-fit content selection is a fundamental tool to deliver the
best possible experience to users.

Contemporary practices prioritize the implementation of user-centric content selection
as an essential tool in delivering tailored and customized experiences. One of the tools for
delivering an enhanced customer experience using personalization is the Recommender
System (RS), also referred to as Recommendation System. Such systems help humans
in their decision-making process, i.e., to cope with the need of choosing from several
possibilities of items where they do not have enough knowledge to decide or filter options.
Although RS research emerged as an independent area in the mid-1990s, as the web was
gaining popularity [6], they reached commercial applications by the end of the 1990s with
the boom in electronic commerce (e-commerce). Since then, their technology has been
widely utilized not only in e-commerce systems but also by media and content firms as
part of the services they provide [65].

In the early 2000s, RSs already achieved substantial popularization, being the back-
bone of very successful businesses. For instance, Amazon.com, a global e-commerce plat-

14

form, was one of the pioneers in this field, having launched its recommender system back
in 1998, using an algorithm called collaborative filtering. Amazon has kept Recommender
Systems as central tools in their e-commerce [69]. Another notable example is Facebook
(originally thefacebook.com), a social network founded in 2004 that initially recommended
friendships with people the user might know or be interested in connecting with. There
is currently a multitude of companies relying on RSs as a central part of their busi-
ness, such as NetFlix, Apple TV and Disney Plus for video streaming, YouTube, TikTok
and Kwai for video recommendation, MercadoLivre, Americanas, Shopee and Shein for
e-commerce, Tinder, Bumble, Umatch, ElitePartner for dating. Currently, besides the
commercial success, RSs continue to be an attractive research area.

RSs can be roughly classified into content-based, knowledge-based, community-based,
and those based on collaborative filtering. In a content-based system, items are recom-
mended based on the similarities to those items previously chosen by the user. As for
knowledge-based strategies, the RS recommends according to expert-given rules about
user behavior. Community-based strategies employ information from social networks in
which users engage to provide useful recommendations. In a collaborative filtering ap-
proach, the driver of item recommendation is the similarity of profiles among users (i.e.
the systems recommend items that a similar user has chosen). In practice, RS developers
frequently employ a combination of diverse strategies. For example, TikTok uses video
title, audio, tags and user watch and upload history through a hybrid approach with col-
laborative filtering and content-based recommendation for personalizing the content the
user will get recommended [82].

Among many different techniques for building RSs, one constant is that they rely
on Artificial Intelligence (AI) tools to achieve their goals. The field of AI aims to build
intelligent entities capable of perceiving, comprehending, and manipulating the world
themselves. There are diverse approaches that have been tried in AI, each with a different
degree of success [67]. In recent years, a particularly successful branch of AI has been
Machine Learning (ML) [42, 12] which has been broadly applied, for instance to study
human and animal behavior, drug discovery, surveillance, autonomous vehicles and protein
folding [75, 74, 39, 35].

ML itself is classified into Supervised Learning, Unsupervised Learning and Reinforce-
ment Learning. Supervised learning uses labeled data to train a model that should then
find labels for newly input data. This division of ML is further subdivided into classi-
fication and regression, depending on the output being a discrete or continuous value,
respectively. Unsupervised Learning, on the other hand, classifies data without labeling

15

them. Reinforcement Learning is concerned with finding the optimal action to take in
a game-like situation where the agent has aims to maximize the reward it receives [9].
Note that reinforcement is the term used in psychology for what is otherwise, e.g. in
Economics, known as incentive.

ML techniques have allowed RSs to achieve ever higher prediction accuracy. This
measure has been used to evaluate RS performance, with some prediction engine being
at the base of the large majority of recommenders [65]. This metric may be measured by
different mathematical expressions, but the concept it captures is simple: how well the
recommender predicts that users will follow the recommendations they receive.

To achieve higher levels of accuracy, state-of-the-art RSs utilize various models in
which non-observed variables are responsible for capturing patterns [28, 30, 33]. For
example, matrix factorization techniques are applied to reduce the dimensionality of the
data by identifying low-dimensional “latent factors” that may be combined [37]. The
most popular latent model to this date is represented by embeddings, in which entities
are mapped to numerical vector spaces where the similarity between entities is translated
to distance between vectors [51].

The main inconvenience of latent models resides in the difficulty of interpreting them.
Similar to other popular machine learning models, e.g. deep neural networks, embeddings
are “black-boxes” that produce output by processing large quantities of data, without
the possibility of easily mapping the relation between the input values and the resulting
vectors. The very problem of low interpretability in highly accurate RSs reveal that this
higher accuracy is not cost-free. As pointed out in [20], “The problem is that a single
metric, such as classification accuracy, is an incomplete description of most real-world
tasks”.

Because RSs work in a way that requires them to communicate with humans to be
helpful, they must be interpretable to be socially acceptable [48]. More importantly,
humans need to understand the motivations behind other agents, such as RSs, so as
to know whether their interests are aligned or conflicting [66]. But how to make a RS
interpretable without losing its accuracy?

One solution to that problem is to generate explanations for the black-box so that
humans can have a better understanding of it. Because some machine learning models are
intrinsically interpretable, e.g. linear regression, we may use them to generate the expla-
nations for “black-box” models. This leads to post-hoc explanations; that is, explanations
are generated after the non-interpretable model is trained. Inputs and outputs are used

16

to train an interpretable model that is then used to explain the original, more complex
one [48].

Explanation generation for machine learning models is a topic of great interest in AI,
both to allow users to detect possible flaws in those models and to increase the degree of
user trust in the “black-box” systems [26, 25].

In this work, we study and develop explanations for a RS in the education domain us-
ing a post-hoc approach. Communication between students and the RS happens through
a user-friendly chatbot interface. This interface allows students to input text queries and
to receive textual responses displayed on the screen. Furthermore, the system offers an in-
teractive feature that enables users to inquire about reasons for or against a recommended
course.

1.1 Objective

The objective of this work is to develop explanation methods that give pro and con
reasons for recommendations, that users can perceive as a fair and transparent approach
to explanation generation when compared to current explanation patterns.

Regarding performance, explanation coverage must be above 70%, i.e., explanations
must be available for at least 70% of the recommendations presented to users. Moreover,
there is a time-constraint for the presentation of explanations, due to the conversational
nature of the interaction. Explanations must be given in less than 5 seconds. To under-
stand why we defined these numbers, please refer to Section 4.1.

Achieving these objectives is relevant to the development of conversational agents and
RSs with real ability to interact with humans through complex dialogues. The ability to
explain decisions is essential in such interactions as interpretability increases user trust
and, hence, acceptance of recommendations [46, 48].

1.2 Structure of the Work

In Chapter 2, we present theoretical background needed to understand our contribu-
tions. In Chapter 3, we present our proposals. In Chapter 4, we put forth the functional
and non-functional requirements of our RS, outline its software architecture and detail
the generation of explanations. We also describe the algorithms we developed and the
training parameters we used for the machine learning models.

17

We describe experiments, tests and evaluation in Chapter 5. In that chapter, we
also analyze and discuss our results. Finally, in Chapter 6 we state the conclusions,
contributions and suggest future directions.

1.3 Disclaimer of Collaboration

This work has been carried out partly in collaboration with another master’s student,
Gustavo Padilha Polleti, who successfully defended his work “Explanation Generation For
Conversational Recommendation Systems Based On Knowledge Embeddings” [56].

Gustavo developed the explanation algorithms that employ Reasons For and came
up with the idea that explanations should present reasons for and reasons against. The
author developed algorithms for explanations that contain reasons for and against. The
author also implemented and tested them offline. Together, both designed and carried
out user experiments to assess these algorithms.

Unless stated otherwise, all other contributions in this work are done by the author.

18

2 BACKGROUND AND RELATED WORK

“The saddest aspect of life right now is that
science gathers knowledge faster than society

gathers wisdom.”

-- Isaac Asimov

This chapter provides a comprehensive overview of essential concepts crucial to grasp
the underlying principles of this work. We begin by introducing three key concepts:
knowledge graphs, recommender systems, and explainable artificial intelligence, elucidat-
ing their significance and relevance. Next, we delve into the theory of reasons for and
reasons against, establishing the groundwork for the explanation algorithms we have de-
veloped.

2.1 Recommender Systems

A recommender system is engineered to support decision-making processes. Primitive
recommender systems are rankings of best movies, top ten lists or classified offers that can
still be seen in magazines and newspapers. However, these rankings or lists do not take
user preferences into account. Instead, they are built on the assumption that the viewers
of the communication vehicle follow a particular profile. The advent of recommender
systems brought the possibility of user-specific rankings that take personal preferences as
the central guide in providing suggestions [65].

A recommender system (RS) operates based on a collection of users U and a collection
of items I. By utilizing this data, it generates a score denoted as r(u, i), representing the
affinity or compatibility between a particular user u 2 U and an item i 2 I [65]. This
score serves as the criterion for ranking a number N of items that will be presented to
the user. Ultimately, the user has the autonomy to decide which suggested option aligns
best with their preferences or needs.

The definition of the affinity score r(u, i) can vary depending on the specific ap-
plication domain. Different approaches and techniques are employed to calculate this
affinity, taking into account factors such as user behavior, item characteristics, computa-

19

tional performance requirements and other relevant contextual information. At present,
the state-of-the-art techniques learn the affinity between users and items from previous
experiences using latent variable (also called unobserved variable) models, which often
depend on matrix factorization and embedding techniques [28, 30, 33]. These approaches
involve a process of transforming item attributes into a latent space. In this latent space,
the mapping of similarity is translated into distances, ensuring that similar items are
positioned close to each other. Consequently, this arrangement minimizes the distances
between related objects. The purpose of this transformation is to create a representation
where the proximity of items reflects their similarity [51].

One limitation of latent models is their lack of transparency, which makes it challeng-
ing to comprehend the rationale behind the recommendations they provide. This lack
of transparency hinders the interpretability of the recommendations, as highlighted by
Doshi-Velez and Kim [20].

In this work, we take Miller’s intuitive definition of interpretability: the extent to
which a human can understand the reasoning behind a specific decision made by the
system [46].

Transparency is another crucial concept in this context. While a system may be trans-
parent, allowing users access to its inner workings, it can still produce recommendations
with low interpretability. In cases where interpretability is low, one possible approach is
to generate explanations for the system’s decisions. These explanations serve as a means
of providing additional transparency into the system’s decision-making process without
requiring changes to its internal mechanisms.

A wide range of techniques exist for generating explanations for machine learning
models, as detailed in Molnar’s Interpretable Machine Learning book [48]. These tech-
niques adopt various approaches to provide insights into model predictions. One approach
involves investigating the sensitivity of model outputs to changes to the inputs or the com-
ponents of the model itself. These types of explanations highlight the evidence of which
parts of the input or model contribute to changes in the outcomes. Other techniques
focus on more intricate explanations. Some specifically concentrate on certain model
types, such as neural networks, and generate explanations by examining the activation or
deactivation of specific neurons and layers within the network.

Furthermore, there are explanation generation techniques that are model-agnostic,
meaning they are independent of the original model to be explained. These methods only
require access to the inputs and outputs of the original model. In this work, explanation-

20

generation methods are of the model-agnostic type. They are designed to provide expla-
nations for any given model, ensuring flexibility and applicability across different model
architectures. Note that this does not mean, however, that our methods will work well
for any model.

As a further note on the matter of interpretability, it is not sometimes stated that
performance and interpretability are conflicting goals [64]. For instance, achieving high
accuracy in a classifier often leads to increased complexity, making it more challenging
to interpret the underlying decision-making process. However, matters are more delicate
in the context of recommender systems, as its the overall performance depends on its
interaction with users, not only on traditional machine learning metrics such as accu-
racy and precision. User trust in the recommendations plays a crucial role in system
performance [54], and higher interpretability is strongly linked to higher trust. When
interpretation fails, existing recommender systems can exhibit unexpected failures [21].

Previous research has explored various approaches to achieve a balance between per-
formance and interpretability in recommender systems [44, 41, 84]. Some of these efforts
involve generating explanations that support the recommendations [49, 3, 31].

To properly evaluate the performance of recommender systems, it is necessary to con-
sider both qualitative and quantitative measures. As mentioned in Chapter 1, in the early
stages of this technology, prediction accuracy was primarily used as the evaluation metric.
However, a more comprehensive evaluation framework that incorporates interpretability
and user satisfaction is essential for a more adequate assessment of recommender system
performance [65].

According to [68], accuracy is used due to the assumption that users will prefer a
recommender that offers more accurate predictions. How we calculate this prediction
accuracy will depend on whether we are measuring rating prediction or usage prediction
accuracy [68]. We shall compare the system results to user ratings. Thus, we use one
of the prevalent mathematical metrics for error calculation, such as Root Mean Square
Error (RMSE) or Mean Absolute Error (MAE). That is because the accuracy itself is a
measure of the difference between the observed and the actual value of a quantity, the
so-called observational error [10]. For the calculation of accuracy according to RMSE and
MAE, let us consider a recommender has access to a test set T and predicts ratings r̂ui

for this set. We represent user-item pairs by (u, i), the actual ratings rui are given, and
then, the equations are as follows:

21

Table 1: Confusion matrix with recommendations and usage [65].

Recommended Not recommended
Used True-Positive (TP) False-Negative (FN)

Not used False-Positive (FP) True-Negative (TN)

RMSE =

s
1

|T |
X

(u,i)2T

(r̂ui � rui)2 , (2.1)

MAE =

s
1

|T |
X

(u,i)2T

|(r̂ui � rui)| . (2.2)

Currently, accuracy is no longer the only evaluation metric, as more complex require-
ments have been used, such as fairness, trust and transparency [20]. However, prediction
accuracy is still primarily used for experiments not involving users, the so-called offline
evaluation.

When one is able to test the system with users, one objective metric of interest is
usage prediction accuracy. That is a measure of how useful the suggestions were to the
users. To calculate prediction accuracy, it is useful to apply a confusion matrix as seen in
Table 1. One may calculate not only prediction accuracy, but also precision and recall as
follows [65]:

accuracy =
TP + TN

TP + FP + TN + FN
,

precision =
TP

TP + FP
,

recall =
TP

TP + FN
.

(2.3)

While it may not always be feasible due to various constraints, the primary approach
for evaluating recommender systems is through tests with real users. This user-centric
evaluation allows for more specific and clarifying questions to be asked, providing valuable
insights into user preferences, satisfaction, and overall system performance. Additionally,
the metrics discussed in this section can serve as supplementary evaluation criteria to
assess the system’s effectiveness.

By involving real users in the evaluation process, researchers and developers can gather
direct feedback, understand user behavior, and make improvements based on user needs.
This approach goes beyond solely relying on quantitative metrics and adds a qualitative
dimension to the evaluation. While practical limitations may restrict the extent of user
testing, incorporating real users into the evaluation process enhances the validity and

22

reliability of the results, leading to more meaningful and user-centric recommendations.

2.2 Knowledge Representation

There are several ways to represent the knowledge an agent has at its disposal. Exam-
ple representations are logical sentences and knowledge graphs. The former uses predicate
logic while the latter relies on entities and relations [67, 43]. We employ knowledge graphs
in this work, and we describe them in further detail next.

2.2.1 Knowledge Graph

A graph G is a pair (V,E) where [29]:

• V is a finite set whose elements are called the vertices of G;

• E is a set of unordered pairs v, w where v, w 2 V and v 6= w. The elements of E
are called the edges of G.

A knowledge graph is a graph whose vertices, also called nodes, are entities, and edges
represent relations between those entities. A triple hhead, relation, taili is called a fact,
and the knowledge graph as a whole, i.e. the set of all facts, is a knowledge base [32].

The knowledge base used in this work, USPedia1, represents knowledge about courses
from the University of São Paulo (USP). An example fact in this base would be the triple
hmachine_learning, subject, PCS3838i, which means machine learning is a subject taught
in the course PCS3838 or that this unit’s content include machine learning.

Another example knowledge graph is the one shown in Figure 1. Those are parts of a
knowledge graph, generated by a query using a graph database called Neo4j. Movielens
is a set of data-sets for movie recommendations from the research group GroupLens from
the University of Minnesota, widely used for research purposes [34]. In the image, one
sees a set of users (3, 4, 13, 18, 19, 21, 20) who have the action genre as a favorite. We
then see movies related to “Waiting to Exhale (1995)” and a number of movies whose
genres include action or, put another way, a number of action movies.

1The name USPedia comes from USP, as the University of São Paulo known, and the suffix Pedia
as in WikiPedia or, more appropriately in our case, DBPedia. Although the knowledge base was first
meant to be about all courses from the university, it ended up having only facts about courses from the
Polytechnic School. The name was maintained nonetheless and some day the base might be expanded.

23

Figure 1: Example graphs from MovieLens. Source: Author.

2.2.2 Knowledge Graph Embeddings

A knowledge graph contains mostly symbolic, textual data which would be hard to
manipulate in tasks such as prediction of relations. A solution is to produce embed-
dings from these knowledge graphs. An embedding maps entities and relations from a
knowledge graph into a latent representation in continuous vector spaces. This represen-
tation has advantages in various tasks such as knowledge graph completion and entity
classification [77].

Embeddings are usually built in a three-step process. First, entities and relations are
represented numerically in a continuous vector space. Next, a scoring function fr(h, t) is
defined on each triple hh,r,ti so as to indicate the plausibility that the triple holds. The
third and final step is to learn the representation of the entities and relations, i.e., the
embedding itself. That is accomplished by optimizing the plausibility of all triples (facts)
in the knowledge graph [51, 77].

A particular embedding model is TransE, which we used in this work. TransE (from
“Translational Embedding”) represents entities and relations in the same space, as vectors
h and t. The relation is then a vector r that transforms through space translation such
that h+r ⇡ t when the fact hh,r,ti is true [11, 77]. Figure 2 illustrates the idea; the scoring
function for TransE is expressed in Equation (2.4). The higher this scoring function, the
higher the plausibility of the triple hh,r,ti:

fr(h, t) = �kh + r� tk 1
2
. (2.4)

Note that the 1
2 term in Equation (2.4) refers to the L2-norm, also referred to as

24

Figure 2: Representation of facts through TransE. Source: [77].

the Euclidean norm. Further details can be found in the survey [77] and in the original
TransE paper [11].

In this work, we use the terms knowledge graph embedding, embedding of knowledge
graphs and knowledge embedding as synonyms. For conciseness, we also use the acronym
KE, from knowledge embedding.

2.3 Explaining Recommendations

The section introduces concepts and techniques that generate explanations in the
context of recommender systems. The section examines both model-specific and model-
agnostic techniques for generating explanations, highlights the impact of explanations on
user satisfaction and decision-making and its role in improving transparency.

Explanation generation belongs to a field referred to as Explainable Artificial Intelli-
gence (XAI), a term coined by the Defense Advanced Research Project Agency (DARPA)
in 2016. That agency funded researchers to foster the development of interpretable and
explainable artificial intelligence systems so as to cope with the technological and ethi-
cal challenges posed by the advancement of highly accurate but hardly auditable systems.
These are also called black-box models as they are metaphorically seen as opaque, making
it difficult to see how they give their results [26].

There are machine learning models which are interpretable by construction, such
as decision trees and linear regression. These models require no further explanation
since, for example, given the equation a linear regression outputs, one can see the effect
each weight has on the outcome. For instance, consider the three-dimensional equation
y = �0 + �1x1 + �2x2. �1 represents how much x1 contributes to the result y and �2 how
x2 contributes, while �0 is what one would have without contribution from neither x1 nor

25

x2.

There are cases where interpretable models are not good enough in terms of prediction
accuracy or other metrics. In these cases, other more flexible models such as deep neural
networks are necessary. These models, however, must be explained [48].

Algorithms for explaining black-box models can be categorized as model-specific or
model-agnostic. Model-specific algorithms are designed to work exclusively with a par-
ticular algorithm. In contrast, model-agnostic algorithms operate based on the input and
output of the model, independent of its specific architecture. They can be either local,
focusing on explaining individual instances or a subset of the data, or global, providing
explanations for the entire output data set based on the overall input data set [48].

An example of local, interpretable method for generating explanations is LIME -
Local Interpretable Model-agnostic Explanations [63]. Intuitively, LIME works by using
an interpretable model to capture the function [1] learned by the black-box for a subset of
the data points to be predicted. One may ask: how can an intrinsically interpretable, thus
less flexible model, learn the same function a a complex black-box model? The answer is
that the interpretable model only learns the function for localized data points.

A surrogate model is an interpretable model that approximates the predictions of
a black-box model either locally (Local Surrogate) or globally (Global Surrogate). A
surrogate model often generates explanation for instance x as a model g that minimizes
loss function L while maintaining complexity ⌦ low [48]:

argmin
g

L(f, g, ⇡(x)) + ⌦(g), (2.5)

where ⇡(x) defines a region around x.

Figure 3 depicts a toy example from Ribeiro et al. original paper [63]. In the image
we have a bright red cross that is the instance of interest. The other red crosses and blue
dots are perturbed samples and the blue and red colors mean that these points belong to
the blue of red class. These classes are divided by a complete decision boundary; LIME
finds a line that represents the decision boundary for the sample points locally. We can
see that the approximation does represent the pattern and divides the points with high
accuracy in this example.

In addition to the efforts of the scientific community to provide explanations for data
processing by artificially intelligent mechanisms, there is also a legal obligation brought
by the European General Data Protection Law (GDPR) [25]. In its Article 22 - Auto-

26

Figure 3: Intuitive example of explanation for the bright red cross.

mated Individual Decision-making, Including Profiling - it reads [55]: “The data subject
shall have the right not to be subject to a decision based solely on automated process-
ing, including profiling, which produces legal effects concerning him or her or similarly
significantly affects him or her.” The article requires that users be granted access to an
explanation for results from automated data processing. For the technical personnel re-
sponsible for giving the requested explanations themselves, it is thus paramount that the
algorithms are either intrinsically interpretable or that explanations are generated [25].
As many high-performing algorithms are black-boxes [2], this has created a demand for
explanation generation.

2.4 Explanations and Knowledge Graph Embeddings

In this section we describe the type of Conversational Recommender System (CRS)
we deal with in this work, review a method for generating explanations from a knowledge
graph and techniques to improve coverage through knowledge graph embeddings [59].
This sets the stage for our proposal, described in Chapter 3.

First, suppose the CRS receives a query from the user. This query asks for a topic
of interest that is represented as an entity eh in an auxiliary knowledge graph. The CRS
must then find items (entities) that are linked to the entity eh though some relation r that
represents the affinity between the user preference and the items. That is, the system
must find triples following the pattern heh, r, eti for possibly many tail entities et. To do
so, the CRS must predict links connecting various entities; we suppose that link prediction
operates using a selected knowledge embedding (KE). That is, the CRS returns the top N

ranked entities, where N is an hyper-parameter fixed for the CRS, and the ranking follows

27

the plausibility score fr(eh, et | ⇥) specified through the embedding. Here the score given
by the embedding is a predicted measure of how strong the item entities relate to the
user preference. Parameters ⇥ are tied to the embedding and are learned from previously
processed training data.

To illustrate, take a system that recommends classes to students based on a given
topic of interest. Suppose a student sends the query “recommend me something about
Astronomy” to which the CRS might produce the output “I recommend you Exoplanets101”.
The CRS presumably identified Astronomy as the topic (item) of interest, and found
the possible classes to recommend by accessing a previously computed list T containing
the plausibility of a link to each entity in its auxiliary knowledge graph through the
relation subject. Possibly the CRS has several entities at its disposal in descending order
of plausibility, from Exoplanets101 to say Mechanics101, Mechanics202, and so on. In our
example, we have

T =

2

664

fsubject(Astronomy,Exoplanets101|⇥)
...

fsubject(Astronomy,Mechanics202|⇥)

3

775 .

Note that this conceptual model of the CRS is agnostic to the specific embedding and
plausibility function, as it only assumes the existence of a plausibility function. In short,
the CRS recommends the entities that best fill the question mark in the query heh, r, ?i,
where r is a relation modeling how tail entities meet user preferences eh.

Given this description of the recommendation scheme, we move now to describe expla-
nation methods from that use the same knowledge base as the recommender to generate
explanations. The first method we present focuses on generating explanations using the
knowledge embedding that are faithful to the original knowledge graph [59, 56]. The
second method improves on the first, by reducing the execution time and improving cov-
erage [56, 60].

The first method is a local surrogate one [59], inspired by LIME, that employs an
intrinsically interpretable machine learning model to explain local instances of black-
box predictions reached through embeddings of knowledge graphs. As local surrogate
explanations usually are weighted features and, in the case of embeddings, features are
not interpretable, a suitable interpretable representation for the embedding is proposed.
Then a method that extracts those representations, or maps embeddings to interpretable
representations, is proposed. The idea is to use a graph feature model, with one-sided path
features to represent the embeddings as information that users can grasp. To extract these

28

features, note that embeddings allows one to find plausible facts in the original graph.
For instance, consider the following example from the original work [59]:

Example 1. Here we show a toy example where we are interested in the tail prediction
for the triple hastronomy, topic_of_class, ?i. Let us define:

T = [ftopic(eastro, ei | ⇥), ei 2 E],

sort_desc(T) =

2

666664

f(eastro, eexoplanets101|⇥)
f(eastro, eaeronautics102|⇥)

...
f(eastro, em|⇥)

3

777775
, gtopic(astro|⇥) = exoplanets101. (2.6)

The list T represents the plausibility score calculated for all entities. Thus, to discover
the most plausible candidates for courses about astronomy, we sort T in descending order
and identify that the class most presumably related is exoplanets101, then aeronautics102
and so on. Our function gr returns only the top 1 ranked entity, in this case exoplanets101.

Consider also the embedding feature extraction for the compound feature category �
topic of the entity astronomy. First, we discover the category of astronomy using the
function gcategory, then we inquire for her classes using gtopic. That is,

gcategory(astro|⇥) = astrophysics! gtopic(astrophys|⇥) = mechanics101. (2.7)

The function gcategory(astro|⇥) is in fact a classifier provided by the embedding. For
the top-1 tail prediction task, the embedding can be viewed a set of black-box classifiers
gr 2 G, for each relation r 2 R, where gr(h|⇥) returns the tail entity et 2 E that yields
the highest plausibility score fr for the triple heh, r, eti. In more formal terms:

gr(eh|⇥) = argmax
ei2E

fr(eh, ei | ⇥). (2.8)

As there is a real-valued vector representation for each entity ei 2 E in the KE param-
eters ⇥, the authors [59] define the classifier function gr such that it takes the head entity
embedding as input. Having completed this mapping and generated the interpretable
representation for the embedding, the next step is to general the explanations. For that,
they follow an approach similar to LIME [63], but in this case, one is to sample around
the original input representation. To explain why an entity et is a plausible tail entity for
a triple heh, r, ?i, one first samples K data points around eh, thus generating a data-set

29

Algorithm 1 Local Surrogate Explanation Generation. Source: [59].
1: procedure extract-features(ẑk,⇧L,G)
2: �k = {}
3: for all ⇡ 2 ⇧L do
4: e⇡ ẑk
5: for each edge rj 2 ⇡ do
6: e⇡ grj(e⇡) . Plausibility-based classifier for relation rj
7: end for
8: �k �k [e⇡
9: end for

10: return �k

11: end procedure
12: procedure explain-instance(êh, r, t, L,G)
13: � {}
14: ⇧L graph-features(L) . Generate set of path features
15: for k 2 1, 2, 3, ..., K do
16: ẑk sample-around(êh) . Generate perturbed sample
17: �k extract-features(ẑk,⇧L,G)
18: � � [h�k, gr(ẑk), d(êh, ẑk)i
19: end for
20: g0r SLR(�) . Train interpretable classifier with �k as features and t as target
21: Draw explanations from g0r in terms of feature importance
22: end procedure

Z of perturbed samples ẑk. Next, for each perturbed sample ẑk 2 Z, one must carry out
the feature extraction presented above. We get the interpretable representation:

�k = [e⇡ : g⇡(ẑk), ⇡ 2 ⇧L]. (2.9)

At this point we have the interpretable representation �k 2 � for each perturbed sample
z 2 Z, so one may train an intrinsically interpretable classifier g0r � SLR(�) and use
feature importance as explanations.

We present the pseudo-code for this method in Algorithm 1, as described in the original
paper [59]. This particular method is able to produce explanations that are faithful to
the original graph, but it comes with high computational cost. This happens due to the
need to train a new interpretable model for each new instance to be explained. Another
relevant previous work simplifies and improves the method we just described, as we now
discuss.

In the paper “Explanations within Conversational Recommendation Systems: Im-
proving Coverage through Knowledge Graph Embeddings” [60], the authors define an
explanation as a path of length at most L, where L is a hyper-parameter, starting and

30

eh

e1 e2 . . . en

ei ej et

1 3

2 4 5

Figure 4: Depth-First Search toy example. Source: [60].

ending at selected entities eh and et. For instance, we may want to find the explanation
for a case where the user wishes to learn about Astronomy and receives Exoplanets101. We
may then return the following part of the knowledge graph:

Astronomy
subject���! Exoplanets

subject���! Exoplanets101.

To reduce computational cost and execution time, the authors propose to generate ex-
planations by first selecting a set of paths ⇧L of length at most L; for instance, one may
focus on paths that have sequences of links labeled with relation subject, or perhaps by
either subject or topic_of. They assume the construction of ⇧L is domain-dependent and
that, although one may use all possible paths of length at most L, this may be unfeasible
in practice. They also note that if one selects few paths, good explanations may be un-
available. They assume that a professional building a CRS will be able to impose sensible
restrictions on possible paths (or perhaps consult a domain expert who will do so). For
large knowledge graphs, they suggest automated methods such as graph feature selection
algorithms [24] may be needed.

To generate an explanation according to this method, the search should run through
every path ⇡ 2 ⇧L starting from eh, using a depth-first search (DFS). If the search reaches
et, the path from eh to et is a possible explanation. Note that the search-tree height is at
most L; that is why they use DFS instead of, for example, breadth-first search.

Running the DFS using solely the links in the knowledge graph has the drawback of
low coverage of explanations. This happens because most knowledge graphs are sparse
and they found the same in preliminary testing. To be able to properly explain recom-
mendations to users, one would like to have a hundred percent coverage, covering every
recommendation with an explanation. One possible strategy to increase coverage is by
going beyond the edges in the original knowledge graph; they do so by running the search
in an enlarged (weighted) graph [60].

31

Exoplanets101 Astronomy

Aeronautics102Exoplanets

Rocket

Science

subject

subject

subject

subject subject

topic_of

topic_of

Figure 5: Sub-graph illustrating explanations for the recommending Exoplanets101

and Aeronautics102. For example, the path Exoplanets101
subject����! Exoplanets

topic_of�����!
Astronomy explains the recommendation Exoplanets101. Source: adapted from [56].

That is, we wish to run the search in the space containing completions of the knowledge
graph as established by the knowledge embedding. However, the embedding is a contin-
uous mapping, not a graph. How can we search on it? The authors use the KE itself to
extract interpretable features. But, instead of using one-sided paths as features, they use
paths formed by a number l of arbitrary relations in the form r1 ! r2 ! ... ! rl [60].
The difference between one-side path and this last format, that is similar to PRA [38],
is that one-sided paths are less restrictive and are used for correlation while PRA-styled
ones allow for inference.

To summarize, an explanation is taken to be a sequence of relations ⇡ = {r1, r2, . . . , rL},
that is built only if we can find triples from eh to et such that each triple hei, rk, eji
either is in the original knowledge base, or it displays a plausibility score such that
frk(ei, ej|⇥) > �rk . The search starts from eh, moving downward in the search tree,
according to the plausibility scores, to another entity. Even though the search will stop at
some point, it makes sense to stop after some desired time limit. In our own scenario, in
a conversational setting, it is natural to set a time limit for the user to receive a response.

To illustrate procedure above, consider the example of a DFS in Figure 4. The nodes
are sorted from the highest plausibility score on the left to the lowest on the right. The
numbering on the edges indicates the order in which each node is visited. Please also
consider the toy example in Figure 5; it indicates that Exoplanets101 is recommended
because it is about Exoplanets, which is a topic of Astronomy. The graph also contains the
explanation for recommending Aeronautics102 because it teaches Rocket Science, which is
also a topic of Astronomy. Note that the student wishes to learn about Astronomy in this
case.

To conclude this section, we summarize the two methods we described. In their first
method it was necessary to train a surrogate model and to compute feature importance
so as to know which features could explain the knowledge embedding prediction [59]. In

32

the second method [60], the set of key features ⇧L is given by the domain expert and so
as to avoid re-training the surrogate model for every instance one wishes to explain.

2.5 Bipolar Argumentation

Computational argumentation is a sub-field of computer science that deals with ar-
gumentation supported by computers, be it monological or dialogical. A monological
argument occurs when a single communicating agent, or interlocutor, is acting. A dia-
logical argumentation, on the other hand, happens between two interlocutors at a time.
According to [14], computational argumentation follows three steps:

1. the exchange of arguments, whereby communicating agents (interlocutor) transmit
an argument, i.e. an explanation or justification;

2. the valuation of interacting arguments, when the receiving interlocutor assigns
weights to each argument received;

3. selecting the most acceptable argument, the end result of the argumentation.

Arguments tend to defend a certain position. In a bipolar argumentation framework,
arguments are given in a bipolar (positive/negative) manner. In other words, arguments
are given in favor and against a certain position [14]. That is similar to the reasons
for and against discussed in the previous section. Bipolar frameworks can enable new
types of interactions between arguments as well as new kinds of valuations for the argu-
ments. Results of argumentation processes may be presented as acceptable and rejected
arguments [5].

These ideas in computational argumentation may be applied to explanations that rely
on reasons for and reasons against an issue.

2.6 Critiquing-based Recommenders

A critiquing recommender system is defined by its dependence on user feedback, also
called review or critique [27]. Through such critiques one may compare a number of
options according to their score on specific characteristics.

For instance, let us imagine Anna wants to buy a mobile phone. This phone may be
evaluated according to the quality of its camera, its battery and its operating systems.

33

Figure 6: Architecture of a critiquing recommender system (note the feedback loop).
Source: [15].

If other users rated their characteristics previously or these are even given by experts,
Anna could use these very characteristics to assist her decision on whether to follow the
recommendation or not. A critiquing capability is then added to allow her to enter which
of those characteristics could be changed in order to find a more suitable phone for her [16].
As an example, she could want a phone with a battery of longer time, and the system
would search and possibly fetch a similar phone with an improved battery time.

The overall workings of a critiquing RS are seen in Figure 6 [15]. The figure shows
the architecture diagram with the feedback in boldface to highlight it as the main feature
of such systems.

Researchers have developed systems that can proactively suggest critiques for the user
to follow. For example, give the user the choices of “lower price” and “ ‘smaller” to a given
phone [15].

In another proposal, characteristics of a product are presented relative to an individual
item; this is called a compound critique [81]. Such reasons for and against are produced
by the so-called Multi-Attribute Utility Theory (MAUT). This theory accounts for the
conflicting value preferences for item attributes and produces a score for each item that
gives the degree to which it satisfies user preferences [36].

One can take such strategies as explanations that indicate how a product compares
to others, by showing reasons that either support or discredit buying the product. The
system developed by [81] outputs textual explanations of the form “More Memory, Larger
Hard-Disk, Lighter and Cheaper. But Different Type of CPU, slower CPU, Smaller
Screen and Shorter Battery Life”. Such an explanation contains the reasons supporting

34

Figure 7: Example interfaces with the comparison of attributes. Source: [80]

the product in the first sentence and the reasons against the purchase in the second
sentence.

In another work, authors have adopted a graphical interface instead of text, using col-
ors to indicate whether the attribute had a pro or con effect on the item. Red represented
a negative effect and green a positive one [80]. An illustration of these two presentation
schemes can be seen in Figure 7.

2.7 A Theory of Reasons

In Section 2.4 we saw a method for generating explanations for the education domain
using paths in a knowledge graph. These explanations consist of reasons that support
the recommendations given by the system. In [60], we demonstrated that providing those
reasons has effects on user experience. Users are to understand the recommendations and
to reach increased trust in the system due to the explanations.

However, one could argue that explanations may be misleading to the user by giving
extra facts to support a recommendation. A possible real-life case with comparable conflict
of interests is as follows.

Let us assume a potential customer (Anna) walks into a coffee shop. The customer is
looking for a gift for a friend (Belle) who is having her birthday soon and loves coffee. At
this point, Anna is getting some help from the saleswoman at the shop - Clair. Clair then
suggests, among a relatively large selection of coffee, that Anna takes one or both of two
coffee beans which are the most expensive in the shop. As the prices are above Anna’s
expectations, she asks what makes those kinds of coffee so appealing. Clair then replies
that they are of the highest quality, produced by cooperative small-farmers in Ghana, and
satisfy Belle’s taste.

One could ask at this point: is Clair fair? Is there a way her explanations could be

35

better? The question should be better for whom? If they mean better for Anna, then we
might say that there are probably missing pieces of information that could be helpful for
Anna to make a more informed decision. If we give her these missing pieces of information,
we provide her with ways to decide which options are better for her according to her own
judgment.

Let us consider what other researchers have done in this direction.

In Philosophy, we find the work of Justin Snedegar, who gives a comprehensive discus-
sion on the topic, in particular on contrastive normative reasons [70]. Contrastive means
that reasons for or against a certain option are given compared to other options. For
instance, that a fact b supports a hypothesis h rather than an alternative hypothesis ⌘,
not that b supports h simpliciter. These reasons are also called justifying reasons because
they justify some action [4].

In another work [71], Snedegar points out that in general, it is believed that reasons
against some option are just reasons for some competing options, but proceeds to affirm
that reasons against and reasons for are two different entities. He proposes a way of
viewing those reasons that satisfy his claim.

2.7.1 Simple View of Reasons For and Against

Snedegar presents four versions of what he calls the simple view of reasons for/against:
what you should do is determined by a competition between reasons that support the
available options. This view, he adds, is often depicted by a metaphor of a scale with
pans. In this case, each pan represents an option, and each marble on the pans represent
reasons weighing heavier or lighter for the option. A critique of this metaphor is that it
is incomplete because, for example, it assumes that multiple reasons for an option can be
combined and that the total weight of the combination would equal that of the sums of
the individual weights [71]. That is not necessarily true as there might be some sort of
intersection among those reasons.

Although the simple view has its limitations, Snedegar affirms that it is attractive
due to its simplicity. It is simple because it considers unique relations between reasons
and options - the for relation - and also a unique type of competition - that between
reasons that support conflicting options [71]. That simplicity goes well with the scientific
community’s preference for simple over complex theories [53, 76].

In broader terms, the simple view states that a reason against an option P is a

36

reason for alternatives to P. Snedegar breaks it down to what he calls four different
implementations, depending on these alternatives. In the next paragraphs, we will go
through each of these implementations.

Let us first define some terms. The set of possible options on is O = {P,Q,R, S}.
The set of reasons for P is denoted by Rfor(P), for Q by Rfor(Q) and so for R and S.
The set of reasons against P is named Rag(P) and so on.

The first implementation takes the reasons against P to be reasons for some alternative
to P. For instance, the reasons against P are the union of reasons for Q, reasons for R
and reasons for S: Rag(P) =

S
Rfor(r 2 O\P) = {q1, q2, q3, r1, r2, r3, s1, s2, s3}. This

implementation has the drawback of considering that there are reasons against P which
are also against Q, Rag(P) \ Rag(Q) = {r1, r2, r3, s1, s2, s3}. But in practice, that is
hardly the case, and Snedegar gives the example of a restaurant with long waiting times
as a reason against going there. That is a reason for going to another restaurant, but
there could be another restaurant among the options that also has long waiting times.
The implementation in question fails to represent that fact since it does not take into
account that reasons against this second restaurant could also be reasons against the first
one.

In the second implementation, a reason against P is a reason for not doing P, i.e., a
reason for the negation of P. Although this solves the problem mentioned in the previous
implementation, this one fails to help decide on which of the options to take in computa-
tional terms (that is, as a clear and objective algorithm). It does not clarify how reasons
that are going against P act on each of the alternatives to P.

The third implementation’s reasons against P are reasons for the disjunction of all of
the alternatives to P. In this case, Rag(P) = Rfor(Q _R _ S).

The fourth and last implementation in the simple view considers reasons against P to
be reasons that are a reason for each of the alternatives. What this means is that reasons
against P are reasons that support all of the alternatives to it. That happens if, in our
notation and example, the Rfor(Q) ^Rfor(R) ^Rfor(S) 6= ; holds true. Going back to
the restaurant example, a reason against P satisfying this implementation could be that
restaurants Q, R and S accept credit card payments while P does not. The argument
Snedegar uses to reject this version of the simple view is that, although it does not suffer
from the shortcomings of the others, it could happen that a reason against P is not a
reason for one of its alternatives. For instance, he states that P being crowded is a reason
against going there and, by this version, it is a reason for going to Q and a reason for

37

going to R and also a reason for going to S. However, it happens that S is even more
crowded than P and so he rejects all versions of the simple view in favor of his proposal,
which solves all of the problems mentioned [71]. He thus looks at a more complex scheme
as described in the next section.

2.7.2 Reasons For as distinct from Reasons Against

The fundamental claim by Snedegar is that reasons for and reasons against are distinct
types of reasons. To make the distinction clear, he uses the idea of objectives. The
definition provided in [71] is:

For: r is a reason for A when r explains (or is part of the explanation) why A
promotes/respects some objective better than all of the alternatives.

Against: r is a reason against A when r explains (or is part of the explanation)
why A promotes/respects some objective less well than some alternative.

He explains that objectives are either desires or values of the agent that ought to take
action. As desires, objectives could be to feed oneself, to enjoy, to learn something. As val-
ues, objectives could be justice, friendship or happiness. So, considering these definitions
and the proposal, objectives are what ultimately explain or provide the reasons [71].

Going back to the examples, a possible objective could be that a student wants to
have lunch quickly and go back to the library to work on his master’s thesis. In this case,
if we say restaurant P is the cheapest, that is neither a reason for nor a reason against the
student going for lunch there. Why? Although, in general, students have the objective
to save, the goal defined here was solely to have a quick lunch. Therefore, P being cheap
does not promote the objective better or less well than its alternatives.

We could list some more characteristics of restaurants P, Q, R and S to compare them.
Nevertheless, to decide according to Snedegar’s proposed framework, the student must
know which one has a higher waiting time, which is the farthest from the library, which
food takes longer to eat, which could require a longer pause due to a higher post-lunch
slump and other reasons that relate to the objective of spending less time for the lunch
break.

38

3 GENERATING EXPLANATIONS

“The best way to predict the future is to invent it.”

-- Alan Kay

This chapter describes our contributions by first introducing the recommendation
model we assume in a concrete setting, so as to clarify its practical aspects. We then
present techniques for generating explanations for recommendations, and then describe
our main contributions.

3.1 Recommendation Scheme

To examine our proposals in a realistic setting, we developed a recommender system
(RS) with a knowledge base (KB) that contains classes from the Escola Politécnica at the
Universidade de São Paulo. This KB has entities representing courses, classes, professors,
topics, and their relationships. Its primary goal is to assist students in deciding which
classes to take next, especially optional ones. For that purpose, students ask the RS
questions through textual input (or voice command, that is processed first and then input
as text).

From the question, the system infers the users preferences. As the system relies on
a knowledge base (KB), there must be an entity e in the KB that is a topic related to
the user preference. The task is to find classes that are related to this topic. As classes
are also entities, let us differentiate the topic eh from the class et. By saying that two
entities are related, we mean that there exists a relation r such that the triple heh, r, eti is
plausible, according to the knowledge graph embedding prediction. For instance, in the
case of the embedding model TransE as pictured in Figure 2, it should be possible to go
from eh to et through a translation by r.

In practice, several tail entities - classes, in this case - may be related to the head
entity of interest - the topics. Therefore, according to the plausibility score of the adopted
embedding, the recommender returns the top-N classes that are most closely related to the
topic of interest. Recall that the plausibility score is a function output by the embedding
fr(eh, et | ⇥), where ⇥ denotes a set of hyperparameters.

39

Black-Box Model Cognitive Social Explainee
Explanation

Figure 8: Visual representation of the explanation processes.

Suppose the RS recommends Digital Systems Design to a student that asks for hard-
ware development. This means that the knowledge graph embedding built a vector of
plausibility scores Th from eh (hardware development) to the entire set of entities in the
embedding, except eh itself, E . Then, the program sorted Th in descending order, and
the score of Digital Systems Design was in the first position. In a more intuitive form, we
may say that according to the classes available in the KB, the data we have about these
classes and the embedding model we trained, et = Digital Systems Design was the one
most closely related to what the student aspires to learn. After we sort them, Th and the
recommendations Rh may look as follows:

Th =

2

664

fh(eh, e1 | ⇥)
. . .

fh(eh, en | ⇥)

3

775 , Rh =

2

664

Digital SystemsDesign

. . .

. . .

3

775 . (3.1)

The system then presents the recommendation “I recommend Digital Systems design,
which teaches about hardware development”.

As our techniques deal with automatically-generated explanations for the suggestions
the RS provides, we now introduce the explanation mechanism.

3.2 Explanation Algorithms

The act of explaining requires a social interaction between at least two agents: the
explainer and the explainee. The explanation model proposed by Miller defines the ex-
planation as a compound process with two steps: the cognitive and the social. While the
first describes the process of identifying the causes as to why a given decision was made,
the second is the process of conveying or communicating such reasons to the explainee.
Figure 8 depicts this process, that starts with the opaque black-box model, from which
we find the explanations comprising the cognitive and social phases; then the explanation
is given to the inquirer, the explainee.

This main contribution here is the concrete discussion of reasons against, as those add
to the already usual capability to provide reasons for [59, 60]. Reasons against are mostly

40

Algorithm 2 Explanation Generation algorithm Reasons-For. Source: [61].
1: procedure reasons-for(i: item, u: user, ⇧: set of paths, G: graph)
2: �u,i = {} . Set of reasons for i
3: for all ⇡ 2 ⇧ do
4: � �(u, i, ⇡ | G) . Function describing the cognitive process.
5: �u,i �u,i [�
6: end for
7: return �u,i

8: end procedure

focused on the second explanation step from Miller’s framework (Figure 8).

3.2.1 Reasons For

To better understand our proposals, we start with the algorithm that generates reasons
for, i.e., explanations that only support the recommendation of interest. In Section 2.4
we described related work on methods that generate explanations from knowledge em-
beddings predictions [59, 60]. Recalling from Section 2.4, explanations are generated by
a search “through” the embedding. The search finds entities satisfying a defined expla-
nation pattern that takes an explanation to be a path containing entities and relations.
We use the latter methods to generate reasons for recommendations based on knowledge
embeddings.

Consider Algorithm 2. In order to generate a reason for the input recommendation,
we need: an item to be explained i, user information u, the enlarged weighted knowledge
graph G and the set of paths that specify possible explanations, ⇧. Given these input
parameters, the algorithm runs through the graph starting at a node u and follows the
paths in ⇧ with the goal of reaching the recommended item i. If it is successful in finding
the paths that connect these entities in the specified time limit, the algorithm has found
one reason that supports the recommendation. Note that the time limit should be set in
the � function, to control how long the search may go on.

3.2.2 Reasons Against

We with to propose novel explanation algorithms that are able to present users with
reasons that support the recommendations (advantages) and reasons that debunk them
(disadvantages). We assume that explanations should assist users in their decision-making
processes, so as to let them choose the best possible options in harmony with their own
opinions, even if their best decision is not to follow recommendations at all. We build

41

on top of the techniques introduced up to now in this section,1 again emphasizing the
need to quickly generate explanations: in a CRS, the user must not wait too much. Our
proposals are based on Snedegar’s theory of reasons, explored in Section 2.7.

Snedegar presents five of what he calls implementations of reasons against, which can
an agent contemplating competitive options can use. Those implementations, henceforth
called schemes, can be summarized as follows:

• Scheme 1 (S1): a reason against an item A is a reason for a competing option;

• Scheme 2 (S2): a reason against an item A is only a reason for NOT A (not for
any particular other option);

• Scheme 3 (S3): a reason against an item A is just a reason for the disjunction of
the other options (say B _ C _D);

• Scheme 4 (S4): a reason against an item A is a reason for each, i.e. all, of the
alternatives to it.

• Scheme 5 (S5): a reason against an item A explains (or is part of the explanation
as to) why A promotes or respects some objective less well than some other option
(this scheme requires one to specify a quantitative objective).

These schemes have been defined by Snedegar at a highly abstract level; we must
take them to a concrete form. We present our implementations in the remainder of this
section.

Our implementation of S1 generates a reason against a given item by generating
reasons for other options. For instance, take the case where the RS has recommended two
phones for a potential buyer — phones Red and Green — as in Figure 9. A reason against
the Red Phone then would be that the Green Phone has a “Long Duration Battery”, while
a straightforward reason for it is its “Cutting edge OS”.

Scheme S2 is a more delicate one: how to define the negation of an item in the context
of recommendations? The vague nature of this question led us to skip this scheme, as we
could find no feasible implementation for it in the context of recommendations.

1We first proposed these new explanation generation methods, in a joint effort with Gustavo Polleti,
using their high-coverage explanation generation [60]. We presented this joint work in the 5th FAccTRec
Workshop on Responsible Recommendation at RecSys 2020 [61]. Here we introduce novel practical
methods to generate reasons against that are included a paper now under review and that is appended
to this thesis in Appendix B.

42

Figure 9: Phone recommendation example. Source: Author [61].
.

Figure 10: Venn Diagram representing the workings of S1. Source: [61].

Our implementation of S3 goes through competing options, collecting reasons for them
that are not reasons for the option of interest; we then trim the list of reasons against to
an small number of reasons (the number of reasons must be set). In our running example,
we can imagine there is a Blue Phone, and as reasons against the Red Phone, we have
that the Green Phone, the Blue Phone or both of them have long duration batteries.
In the context of recommender systems, S1 and S3 produce identical reasons against,
differentiated by a mere ‘or’ in the explanation sentence. In Figure 10 we illustrate how
Schema 1 works using a Venn Diagram, which also represents S3.

The implementation of S4 resembles that of S3 to the extent that S4 takes reasons for
competing options into account (reasons against according to S4 are also reasons against

43

Figure 11: Venn Diagram representing the workings of S4. Source: [61].

according to S3). An example of a reason against the Red Phone using S4 would be that
both the Blue Phone and the Green Phone from the example above have adequate battery
duration. However, the stringent nature of this scheme, where the intersection of reasons
is required, makes it hard to generate reasons against in practical circumstances. We
ran tests with our recommender system on topics and classes, and found no explanations
whatsoever. That can be explained by the restrictive nature of S4, as seen in the Venn
Diagram in Figure 11 by comparing it with Figure10. We can see that, the more options
we could have, the more restrictive S4 becomes, since its results come from an intersection
operation.

So, suppose a RS recommended N items in an ordered set I : {i1, i2, ...iN} to user u.
In Schema S1 and S3, we define as reason against an item ir as the union of reasons for
each of its alternatives I\{ir} that are not reasons for ir itself. Hence we must iterate
over the alternatives, extracting reasons for each one of them � � [�u,i 8i 2 I\{ir}.
We then remove from � the reasons for our recommendation of interest, if any. The
remaining reasons ⌦ = �/�u,ir are the reasons against ir – as presented in Algorithm 3.
Regarding the implementation of Scheme 4 (S4), we would follow a very similar procedure,
except that instead of considering the union of reasons for its alternatives, we take their
intersection. That is, we just replace the line 15 of the Algorithm 3 so as to take the
intersection of sets � � \ �u,i 8i 2 I\{ir}.

Scheme S5 has a noteworthy characteristic that differentiates it from the other four.
It depends on a quantitative objective that is used as the basis for explanations; this

44

Algorithm 3 Explanation Generation using Scheme S1. Source: Author2.
1: procedure reasons-for(i: item, u: user, ⇧: set of paths, G: graph)
2: �u,i = {} . Set of reasons for i
3: for all ⇡ 2 ⇧ do
4: � �(u, i, ⇡|G) . Function described in Section 2.2.2
5: �u,i �u,i [�
6: end for
7: return �u,i

8: end procedure
9: procedure reasons-against-S1(ir, u, I,⇧,G)

10: ⌦u,ir {} . Set of reasons against ir
11: � = {}
12: �u,ir reasons-for(ir, u, ⇧, G) . Set of reasons for ir
13: for i 2 I\{ir} do . Iterate over ir alternatives
14: �u,i reasons-for(i, u, ⇧, G)
15: � � [�u,i

16: end for
17: ⌦u,ir �\�u,ir

18: return ⌦u,ir

19: end procedure

objective is used to determine whether a reason is for or against an option. In a sense,
S5 takes that reasons for and reasons against are distinct from each other. We have
implemented S5 by assuming that an objective function is known. To illustrate our
implementation of S5, consider in our phone example that the user has the objective of
extended battery life for her phone. With that piece of information, the RS can present
the user with a reason against the Red Phone: “short duration battery”.

We now turn to discuss the implementation of these schemes in our research domain.
Figure 12 depicts a number of explanations generated by our RS, presented in the form
of graphs. A student asked our RS for classes about Stochastic Resonance and received
classes with codes PME3430 and PME3479. The RS found two reasons for PME3430 (Fig.
12a and Fig. 12b) and one for PME3479 (Fig. 12c). Note that both recommendations
share the reason for depicted in Fig. 12b and 12c (Auditive System), thus it cannot be a
reason against for none of them. On the other hand, the reason in Fig. 12a is a reason
only forPME3430; therefore, it is a reason against PME3479 and can also be presented
as a reason against PME3430.

The implemented Scheme S5 is more complex than the original form proposed by
Snedegar [71]. S5 depends on a quantitative objective that serves to measure how well

2Paper submitted to UMUAI Special Issue on Conversational Recommender Systems:Theory, Models,
Evaluations, and Trends.

45

PME3430

Robotic Sensing

Sensorial System

Stochastic Resonance

subject broader broader

(a) Reason for PME3430 and against PME3479.

PME3430

Auditive System

Sensorial System

Stochastic Resonance

subject broader broader

(b) Reason for PME3430.

PME3479

Auditive System

Sensorial System

Stochastic Resonance

subject broader broader

(c) Reason for PME3479.

Figure 12: Examples of S1 with two reasons for and one reason against the recommenda-
tion of PME3430.

the reason does. Actual performance will determine whether the reason is for or against a
certain option. For instance, imagine a student who wants to learn about machine learn-
ing. Then, both PCS3838 (Artificial Intelligence) and PMR3508 (Machine Learning and
Pattern Recognition) are reasonable candidates and will knowingly suffice this student’s
needs. However, PCS3838 is a broader course which covers many other topics of artificial
intelligence than machine learning (ML), while PMR3508 is mostly about ML. In this
case, S5 returns that PMR3508 is more about (ML) than PCS3838 and, therefore, being
about machine learning is a reason that works for PMR3508 and against PCS3838.

In practice, to determine which of a set of classes is more connected with a topic, we
can again rely on the plausibility score calculated by the knowledge graph embedding.

In our effort to implement Scheme 5, we started with a variant with low execution
cost. We rely on a search graph with higher-plausibility links placed first. This first
implementation is described in Algorithm 4. Using the reasons-for generated previously,

46

Algorithm 4 Scheme S5 implemented using response times - proto version
1: procedure reasons-generation(i: item, u: users, ⇧: set of paths, G: graph)
2: �u,i {} . Set of reasons
3: for all ⇡ 2 ⇧ do
4: � f(u, i, ⇡|G) . Embedding link prediction function, Section 2.2.2
5: �u,i �u,i [�
6: end for
7: return �u,i

8: end procedure
9: procedure Scheme-S5(ir, u, I,⇧,G, �)

10: � reasons-generation(ir, u, ⇧, G)
11: sort(�,by=time) . structure includes the time it took for each explanation
12: ⇥u,ir [0]
13: ⌦u,ir [1]
14: return [⇥u,ir ,⌦u,ir]
15: end procedure

it sorts them by the execution time it took for each reason, in ascending order, then
makes the first the reason for the recommendation and the second a reason against the
recommendation.

We can refine this algorithm so that the topic of interest itself as the objective. This
implementation explains the recommendation by ranking the possible reasons for how
much the course promotes learning the topic of interest. Such an implementation of S5 is
detailed in Algorithm 5. First, all the reasons for the recommended item being explained
ir are collected, and for each reason, ir is ranked according to the embedding plausibility
score. In the second step, we iterate over all the alternatives to ir by repeating the same
procedure in the first step. If some alternative is better ranked than ir, this alternative
is more closely related to that reason than ir, so it is a reason against ir according to
S5. Using the same example as above, in the second step, PMR3508 is better ranked
with respect to machine learning; that is why it is given as a reason against PCS3838.
Noting that REASONS-FOR also has a loop, the algorithm depends on the number of
items and on the path length. However, the explanation path length is necessarily short,
usually 3.

In short, the generated reasons are sorted in descending order based on their plau-
sibility scores, which are determined with respect to the entity representing the user’s
quantitative objective, i.e., what they aim to learn.

Please note that, because our explanations are automatically generated and we do not
3This algorithm is in a paper submitted to UMUAI Special Issue on Conversational Recommender

Systems:Theory, Models, Evaluations, and Trends.

47

Algorithm 5 Explanation Generation using Scheme S5. Source: Author3.
1: procedure rank(�: reasons for, u: user, i: item, ⇥: parameters)
2: r = �i 2 � . The quantitative objective relation
3: fr(u, i|⇥) . Assess the quantitative objective as the plausibility score
4: return . Measured plausibility score value
5: end procedure
6: procedure scheme-S5(ir: rec. item, u: user, I: rec. set, ⇧: paths, ⇥: parameters)
7: ⌦u,ir {} . Set of reasons against ir
8: �u,ir reasons-for(ir, u, ⇧, ⇥) . Set of reasons for ir
9: ir rank(�u,ir , u,⇥)

10: for i 2 I\{ir} do . Iterate over alternatives to ir
11: �u,i reasons-for(i, u, ⇧, ⇥)
12: i rank(�u,i, u,⇥) . Measure of how well ir meets user’s objective
13: if (ir < i) then . Compare if i better meets the objective than ir
14: ⌦u,ir ⌦u,ir [(�u,i\�u,ir)
15: end if
16: end for
17: return ⌦u,ir

18: end procedure

further curate them, they might not be always meaningful to the user. But since they are
drawn from the knowledge embedding relations, we may suppose that the recommendation
itself may not be so insightful in these cases as they might have come from spurious
correlations. That remains a topic to be further investigated.

3.2.3 Computational Cost

In this section, we analyze the theoretical time complexity of Schemes S1 and S5 with
O (Big-oh) notation. This is a mathematical function-analysis notation that allows us
to analyze the algorithm’s running time in terms of the input size and classify them in
different orders of running time growth. A constant time means that regardless of the
input size, the running time will be the same. Formally, for a function g(n), O(g(n)) is
the set of functions [17]:

O(g(n)) = f(n) : 9c, n0 2 R, 0 f(n) cg(n) 8n > n0 . (3.2)

As an example, 5n2 + 3n � 7 is in O(n2) as for c = 6 and n0 2 R, the inequality
6n2 > 5n2 +3n� 7 holds true for all values of n. Table 2 shows the most common orders
of growth and how we refer to them.

Let L be the path length, M the number of reasons found and N the number of
recommendations given to the user, i.e., the size of �u,i. Also, we assume that traditional

48

Table 2: Common orders of time complexity.

Time Complexity Order Name
O(1) Constant
O(N) Linear

O(log(N)) Logarithmic
O(N·log(N)) Linearithmic

O(N2) Quadratic
O(N3) Cubic

knowledge graph embedding models such as TransE, DistMult and ComplEx execute a
link prediction in constant time [47]. Therefore, we consider the the plausibility score
function f(·) runs in constant time.

Let us now proceed to the analysis, starting with S1. The REASONS-FOR step runs
in time L, as the for loop executes L times and inside is the function f . The appending
of reasons runs in constant time for each iteration. The REASONS-AGAINST step runs
a for loop N � 1 times. Inside the for loop is the previous step, which runs in time L.
Therefore, this step runs in L · N . It is noteworthy that both L and N are relatively
small. In our work, we have used L < 5 and N < 10.

Now focus on the final implementation for S5. Looking at line 10 in Algorithm 5,
we see that the first step uses REASONS-FOR, similarly to S1. Then S5 has a for loop
that runs also N � 1 times: order N . Inside the loop, we have REASONS-FOR (L) and
RANK. RANK, on the other hand, runs a sorting algorithm that we may assume to be
Heap or Merge Sort. Hence, it would run in time complexity O(M · log(M)).

The for loop in SCHEME-5 runs, therefore, in time O(N · (L+M · log(M))) and the
complete algorithm, in time O(L+N · (L+M · log(M))).

We thus conclude that our proposals are feasible from a time complexity standpoint.
In Chapter 5 we present experiments that confirm this claim.

49

4 SOFTWARE DESIGN AND IMPLEMENTATION

“Inventions are, above all, the result of stubborn
work, in which there must be no room for

discouragement.”

-- Alberto Santos Dumont

In order to evaluate our proposals, we built a real explanation-capable conversational
recommender system we call Calisto 1. We describe our implementation in this chapter.
First, we present the requirements, then the specification and finally the development of
the system.

4.1 Requirements

In this section, we present the functional and non-functional requirements of the sys-
tem. Requirements are physical or operational needs that the system must satisfy to
achieve its end goal [62]. Functional requirements map into a specific function or func-
tionality in the system and may involve calculations, data manipulation and processing in
the actual implementation. In contrast, a non-functional requirement define a particular
property of the system behavior [7].

We introduce the functional requirements of the system in Table 3 and explore them
in the next paragraphs.

The system’s primary function is to provide recommendations to students, who are
the end-users. In our case, the system gets the field of study about which the user wants to
learn. The system must identify the relevant classes for this field of interest and must make
suggestions to the student. The system must then find relations between the suggestions
to the field of interest, i.e., it must find some connection between them. After that, the
system must present these relations to the student.

At this point, it is crucial to specify how the system will communicate with the student,
i.e., the nature of the human-computer interface. As we are building a conversational

1Calisto is one of Jupiter’s moons and we chose this name because the undergraduate courses man-
agement system at USP is called Jupiter. Also, a previous version of Calisto, with only explanation for,
was called Ganymede - another of Jupiter’s moons.

50

Table 3: Functionality table for the recommendation and explanation module.

Objective Requirement
Suggest units of study Identify student’s field of interest.

Identify courses belonging to the student’s field of inter-
est.
Suggest a course according to field of interest.

Explain suggestions given Find relations from suggestions to field of interest.
Explain relations to student.

Communicate with student Availability of a public user interface for user interaction.
Understand human language in Brazilian Portuguese.
Generate human-readable sentences for recommendations
and explanations.

agent, users should communicate in verbal or written sentences, and the system likewise.
As it is possible to easily convert text to speech using a tool specifically for that (for
example, Amazon Text-to-Speech or IBM Watson), the challenge is reduced to generating
human-readable sentences.

Our target users are students from the University of São Paulo, a Brazilian university
where most students speak Portuguese, so the language must be Brazilian Portuguese.
The availability of a public interface for user interaction is a key requirement.

A conversational agent, being interactive, must have a quick response time. The
Dialogflow tool, used for interfacing the client with the recommender system, has a 5-
second timeout specification by construction. That is, if the back-end does not respond
within that time-frame, the Dialogflow interface presents the user with the message that
it could not understand the question or that it cannot explain that recommendation. Due
to the nature of human information processing, i.e. the limits of the short term memory,
we must keep the time interval between interactions short [13, 52] and that, as pointed out
above, is built into the conversational platform we use. Hence we require that response
time for recommendations and explanations must be below 5 seconds.

Other essential requirements of the system are related to the quality of the explana-
tions. The system has the following non-functional requirements:

1. Explanation coverage above 70%;

2. Average explanation support equal or over 1.0.

These requirements focus on the quality of the explanations generated by the system,
measured by coverage and support. We define coverage as the fraction of recommendations

51

Figure 13: SysML Requirements diagram for Calisto. Source: Author.

for which we can find at least one explanation and average support as the number of reasons
we can find to explain (may it be in favor or against) a given recommendation [60, 83].
The values specified about are sensible as they are achievable and sufficient, according to
previous works [58, 61].

To summarize the requirement explanations outlined in this chapter, see the require-
ments Diagram in Figure 13, which illustrates the requirement specification for the system
following SysML [23, 72].

4.2 Software Design

In this section, we present the architecture design for the recommender system, as well
as other diagrams and context relevant to understanding its workings and implementation.
The proposed architecture, seen as a high-level architecture diagram in Figure 14, has
three main components so-called the Front-end, the Back-end and the Database. There
is also an actor, the student, who interacts with the system through its interface.

The interface is the conversational agent, enclosing Natural Language Understanding
(NLU) software that can process the user input into a defined intent (see next section).
With additional relevant information, this intent is passed then onto the Back-end.

52

Figure 14: High level architecture diagram for Calisto. Source: Author.

The Back-end is composed of the recommendation and explanation modules. They
are the system’s backbone, providing the critical functionalities of recommendation and
explanation over the recommendations given. These modules are the core of this work.

The third component, the Database, serves as a helping hand to the Back-end for
two purposes. The first is mapping a particular entity in the knowledge graph from its
numeric id to a human-friendly name used for both recommendations and explanations
in the textual response to the student. The second purpose is to log the interactions for
debugging, testing and evaluation of interaction results both in development and research
surveys with real users. We have used a real-time cloud database. We calculate and
evaluate the research results from the stored data that also works as the repository of
data for research carried out using this system.

From the logical standpoint, we may visualise the system by its data flow, viewed
through the Sequence Diagram in Figure 15. This diagram shows how the conversational
agent mediates the communication between the student (actor) and the recommender
and explainer modules. Requests are sent to the corresponding Back-end module through
the agent, which processes and sends the relevant response. Again, the agent deals with
interfacing this information with the student.

As noted previously, we built our chatbot interface using Dialogflow (available at
dialogflow.cloud.google.com), a freely distributed package that supports the Portuguese
language. In that platform, we created the chatbot with the intents presented in Table 4,

53

Figure 15: Sequence diagram for interactions between users and Calisto for recommenda-
tion and explanation. Source: Author.

based on previous works that implemented chatbots for recommending units of study [19,
57]. These intents map to a function inside the system, which either provides suggestion-
s/explanations helping the user better deal with the system or provides feedback for the
interaction.

The recommendation (or recommender) module is tasked with receiving a suggestion
request, a theme and a path and then finding, parsing and sending the recommendations
back to the requesting agent.

State-of-the-art recommendation techniques learn affinity between users and items
from previous data using latent variable models, which often depend on matrix factoriza-
tion and embedding techniques [28, 30, 33]. These approaches work by transforming item

54

Table 4: Intents implemented in the conversational agent for Calisto.

Intent Meaning
GetCourseSuggestion Requests a recommendation

GetCourseSuggestion - explain Explains a recommendation
Help Guides user to the system functionalities

Feedback - transparency Acquires user feedback (transparency metric)
Feedback - persuasion Acquires user feedback (persuasion metric)
Feedback - engagement Acquires user feedback (engagement metric)

Feedback - trust Acquires user feedback (trust metric)
Feedback - effectiveness Acquires user feedback (effectiveness metric)

Feedback - comment Acquires user feedback (comment metric)
Thanks Displays farewell message

attributes into a latent space so that related objects have their distances minimized as a
result [51].

Explanations are saved in a dictionary, and must then be translated to natural lan-
guage so that the user may understand them. For that purpose, a sentence template has
been adopted, which can be represented in the Backus-Naur form as seen below:

<explanation>::=<sentence>|<sentence><compl_sentence>

<sentence>::=‘Recomendo ’<entity3>‘ sobre ’<theme>‘, pois ’<entity3>‘ é sobre

’<entity2>‘, que é da categoria ’<entity1>‘ assim como ’<entity0>

<compl_sentence>::=‘No entanto, ’ <neg_sentence|less_sentence>

<neg_sentence>::=‘ela não é sobre ’<themes>‘ como ’<reasons_against><verb>

<less_sentence>:==‘é menos relacionada a <themes>‘ do que ’

<subject_against>. <verb>::=‘é|são’

<themes>::=<theme>|<themes>‘ ou ’<theme>

The theme above is the theme provided by the student in the chatbot when asking
for a recommendation. The variable entity0, entity1, entity2 and entity3 are the
entities in the explanation path found as explained in the previous section, i.e., they are
the forming parts of the reason for. Likewise, reasons_against are the set of reasons
against the recommended item, found according to Schemes 1 or 5 and may well be a
singular reason.

The sentence compl_sentence is only present in schemes that produce also reasons
against. Additionally, neg_sentence is applied in S1 while less_sentence is in S5.

55

4.3 Implementation

This section describes some of the steps we took to implement a recommender with
explanation capability using the algorithms we proposed.

We relied on a large knowledge base known as USPedia. The data used to feed
the system were gathered and organized into USPedia in a prior effort by our research
group [60]. More specifically, the recommender uses the links from professors to courses
they teach and to articles (papers) they published to help in inferring categories and topics
for courses. Note that professors may not necessarily teach about all topics that they have
published about, but we suppose there is a correlation. At this point, it is convenient
to briefly describe USPedia. We reproduce part of its description below, from the article
which firstly described it [60, p. 5]:

The KG (USPedia) structure consists of five types of entities: learning object,
professor, concept, and category. The learning object includes both graduation
courses offered by the university and articles authored by faculty members.
Concepts and categories represent an ontology for the learning-objects content.
Thus, we say that a faculty member is involved in multiple learning objects
in which they can either teach a course or author an article and that each
learning object is about multiple concepts.

To build the KG, we opted for using an automated semi-structured approach
(Nickel et al. 2015) as it has also been employed by many popular large-
scale KGs, such as DBpedia (Auer et al. 2007) and YAGO2 (Hoffart et al.
2013). The selected approach automatically extracts information from semi-
structured data, like info-boxes, via rules or regular expressions. Firstly, we
collected the description and 543 teachers’ names for 1740 engineering courses
from the university graduation support website.

We also retrieved from the academic repository Scopus 7648 articles authored
by the faculty members. Finally, we performed entity linking to DBpedia
using the articles’ keywords and course descriptions content, so the knowledge
base incorporated DBpedia’s hierarchy of concepts and categories.

The resulting Knowledge Graph has 34182 entities, 3 relations and 152468
triples.

The training of the knowledge graph embedding was carried out according to the
model TransE, as seen previously in Section 2.2.2. To train TransE we chose OpenKE.

56

Table 5: Training parameters for the knowledge graph embedding. Source: Author.

Parameter Value
model TransE

work_threads 8
nbatches 100
margin 1.0
bern 0

train_times 1000
dimension 500

ent_neg_rate 1
rel_neg_rate 0
opt_method SGD

↵ 0.001

The training parameters were tuned for better performance according to a grid search
procedure as described in [50] and were finally set according to the values in Table 5.

We designed and implemented a REST API to allow the chatbot to communicate
with the back-end services - recommendations and explanations. For that, we used a
Python module for web development, Flask. In the production environment, we replaced
the Flask server with the production-grade server Waitress, as suggested by Flask’s own
documentation 2. Additionally, for logging, we used a tool called Logger to format and
output parameters in some parts of the interaction.

The resulting system is described in Appendix A, with some screenshots of the front-
end and the back-end running.

2https://flask.palletsprojects.com/en/1.1.x/deploying/

57

5 EXPERIMENTS AND RESULTS

“In preparing for battle I have always found that
plans are useless, but planning is

indispensable.”

-- Dwight D. Eisenhower

The most desirable evaluation of a recommender system is a test with real users.
Aside from that, typical machine learning evaluation techniques can be coupled to enhance
confidence in the system’s robustness and efficiency [65]. In this work, we coupled tests
with real users and several offline objective evaluations of the proposal, which together
give a fuller description of the overall system performance.

This chapter reports the experiments we realized and discusses the results we obtained
through those experiments. We first present an analysis of the algorithms time complexity
in practice, focusing on their run time to generate explanations. Then, we present practical
off-line evaluations regarding their output coverage and support. Finally, we report on
the experiments performed with human subjects.

We summarize this evaluation method in Figure 16, based on Doshi-Velez and Kim’s
Functional-grounded, Human-grounded and Application-grounded evaluation framework [20].
Note that, although the specificity and cost increase in the order presented, we timed the
evaluations in an order of Functional, Application and Human-grounded.

5.1 Practical Algorithm Analysis

In Section 3.2.3, we analyzed the algorithms time complexity using Big-O notation.
In this section, we focus our analysis on algorithms for S1 and S5, including a preliminary
approach to implement S5 which we call S5(v0). We describe an experiment that evaluates
their execution time, also taking into account their coverage and support.

We set up an experiment with a sample size of 100 themes, chosen according to a
uniform distribution over the total of 6814 entities available in the training set for the
knowledge base. We proceeded to request recommendations for each of them and then
generated explanations for each of those recommendations using algorithms S1, S5 and

58

Figure 16: Evaluation method illustrating all the experiments we ran.

S5(v0). For each algorithm, we tried the two different explanation paths seen in Figure 17a
and Figure 17b, henceforth called P1 and P2.

For each algorithm, we evaluated results for thirty recommended topics, each receiving
five recommended courses. P1’s rationale is that if a specific course (u) covers a topic
(t1), whose category (c) falls under the same as some other topic (t2), then u likely covers
the topic of interest t2 for which we want an explanation. For instance, say we would
like to learn about pandemics, and we are recommended BIO3100 - Tropical Diseases
and Epidemics, which covers epidemics, under the category epidemiology. Then, we offer
the following explanation: we recommend BIO3100 about pandemics because it is about
epidemics, which is under the category epidemiology as pandemics is.

P2, on the other hand, conveys the notion that if u covers the topics of an article
(a), which was published by a professor (p) who also teaches u, then u should also be
about topic t. For example, if a co-author of “A new Covid-19 crisis: Domestic abuse rises
worldwide”, which is about domestic abuse, lectures a course SOC0101 - Social Aspects
of Violence, this path assumes this unit covers the topic of domestic abuse.

In an offline experiment, we found that the results vary slightly for paths P1 and
P2. In Table 6, we show coverage, support and execution time for the algorithms we

59

t2
subject

t1
su

bj
ec

t
c

br
oa

de
r

broader

u

(a) Topic explanation path (P1).

u t
subject

p

in
vo

lv
ed

a

su
bj
ec

t

involved

(b) Professor explanation path (P2).

Figure 17: Explanation paths P1 and P2 used in this experiment.

Table 6: Coverage, support and execution time for each algorithm using explanation path
types P1 and P2. Coverage is given in percentage of classes for which an explanation
was found, support is the average number of explanation found for those units and time
represents the mean execution time per explanation in seconds.

TransE Embedding Results
Algorithm Path Coverage Support Time (s)

Reasons For P1 71.83% 24.6 3.920
P2 71.83% 9.7 3.951

S11
P1 71.83% 1.0 3.931
P2 71.83% 1.0 3.953

S5(v0)1
P1 20.42% 1.0 3.491
P2 21.13% 1.0 3.944

S51
P1 65.49% 1.0 3.931
P2 65.49% 1.0 3.959

presented, considering both path types. In terms of coverage, we only note a difference
in the prototype version of S5, while there is a difference in support in the case of the
Reasons For algorithm. In the other cases, all algorithms were designed to have support
equal 1.0. Finally, in terms of execution time, we find a considerable difference again only
in the case of S5(v0). That can be explained by the very characteristic of this algorithm,
that uses the execution time as a proxy to the plausibility of the explanations found. This
means that, according to this method, explanations found through P1 are more plausible,
even though we are able to cover slightly less recommendations.

1These algorithms are designed to yield at most one explanation for and one explanation against, so
support is either 0 or 1.

60

5.2 Offline Evaluations

The implementations were also evaluated from two other perspectives: (1) the frac-
tion of recommendations for which we can find at least one explanation (referred to as
coverage) and (2) the average number of reasons we can find to support/attack a given
recommendation (referred to as support) [60, 83]. These metrics offer a glimpse at the
workings of Calisto in a real-world scenario from an objective perspective. The simulated
interactions were built by asking for the Top-4 recommendations of randomly sampled
100 cases. Next, we used our implemented explanation schemes to retrieve both reasons
for and against each recommendation previously found.

Regarding reasons for, Table 7 shows that we obtained 79.33% coverage and a support
mean of 2.0, similar results to those reported in previous works [60, 83]. As for reasons
against, we ran our experiments considering Schemes S1, S4 and S5. Both the coverage
(85.1%) and support (2.3) obtained for S1 are higher than those from reasons for. This
result was expected since the S1 implementation considers more aggregated reasons for
alternatives than it removes from the recommendation being explained.

On the other hand, Scheme S4 could not generate a single reason against at all (cov-
erage 0%!) in our settings. This happened because Scheme S4 requires that a reason
against an option must be a reason for all of its alternatives, imposing a restriction so
rigorous that it is, in fact, unfeasible in practice. This restrictive nature of S4, due to the
intersection operation, is further illustrated in Figure 11, which can be compared with
Figure 10. In S1 the union of reasons for alternatives is taken to be reasons against, while
in S4 reasons against are formed by the intersection of the reasons for the alternatives.

The support and coverage results for S5 are also shown in Table 7. The average
support of 1.0 is expected since, by construction, Scheme 5 yields a single reason against
and a single reason for each recommendation. As for coverage, we obtained the value of
83%, which is a similar score to S1’s. When leaving out the explanations which contained
only reasons for, S5’s coverage reaches the value of 61.7%. We hypothesize that this is
due to embedding incompleteness, which led to 17% of missing reasons against, i.e., links
between subjects and courses. This difference remains to be further investigated.

2Partly published in [61]. Coverage results for S5 would be 61.7% if explanations containing only
reasons were left out.

61

Table 7: Coverage and Support results for Schemes S1 and S5. Source: Author2.

Explanation Type Coverage Support

Reason For 79.3% 2.0± 1.0
Reason Against (S1) 85.1% 2.3± 1.4
Reason Against (S4) 0% -
Reason Against (S5) 83.0% 1.0± 0

5.3 User Test

In a user test, we gather a sample of users and request them to perform some actions
and evaluate the system responses according to some pre-established metrics. We decided
to evaluate our proposal in five dimensions - transparency, persuasion, engagement, trust,
and effectiveness. Besides that, we explicitly asked the users to comment on their overall
impression of the system.

Transparency measures how much the explanation clarifies the process of finding the
recommendation. Persuasion measures how likely the users are to accept the suggestions
they receive. Engagement indicates how the explanation helped them learn more about
the recommended items. Trust, in its turn, is a figure that represents the confidence the
users have in the correctness of the recommendations. Finally, effectiveness is an overall
gauge of the recommender system as a whole [73].

We chose to represent all those metrics in a Likert scale, which ranges from one to
five in order to avoid central tendency [40] from 1 to 5 (standing for “Strongly disagree”,
2 “Disagree”, 3 “Neither agree nor disagree”, 4 “Agree”, and 5 “Strongly agree”).

Our experiment took 54 subjects, all of which were final year undergraduate engineer-
ing students, and asked them to evaluate the three RSs implementations, one displaying
only reasons for recommendations, the other displaying reasons against for and against
according to S1 and the other displaying reasons for and against according to S5. Addi-
tionally, a toy recommender system allowed users to get familiar with the interface since
that was not part of the evaluation. The webpage set up for the experiment may be
visualised in Figure 25 and Figure 26, where one sees the experiment flow at the top of
the page and the actual chatbot at the bottom, with some clarifying text in the middle.

Each subject went through a series of tests for each of the explanation implemen-
tations, each type in a different recommender, served by different links to the human
subjects. For each of those systems, we asked questions to evaluate the implementa-
tion’s score for each metric we defined above. At the end of the interaction, each subject

62

Figure 18: Visual representation of the average scores for the explanation metrics com-
paring Reasons For, S1 and S5. Source: Paper under review; please refer to Appendix B
for the paper.

could write a short, free-format text with remarks about the systems, with critiques or
suggestions as they desired.

The results we obtained can be viewed in Figure 18, which depicts the explanation
metrics scores on a continuum representing the Likert scale visually. The same results
are represented in Figure 19 as a bar chart for a more intuitive visualization. We can
observe that the conversational recommender system employing Schema S5 was the best
approach from the user’s perspective by means of transparency (µtransparency = 2.94), trust
(µtrust = 2.68) and, particularly, persuasion (µpersuasion = 2.65). Furthermore, Schema
S5 was better than S1 with respect to all measures. Other effects of introducing reasons
against in explanations are the drop in engagement and effectiveness, i.e., the baseline
(PRED/reasons for) reached the highest ratings in both metrics (µeffectiveness = 2.96 and
µengagement = 2.87)3.

5.4 User Survey - Explanation Format

By taking into account the importance of user understanding of our explanations,
we also run an experiment to get insights into the most suitable format for explanations.
The experiment followed the scoping, planning, operation, analysis, and evaluation phases
proposed in [78]. The experiment aimed to analyze explanation formats for the algorithm
S5 to decide which explains better concerning effectiveness from the students’ point of
view in the context of a subject-object study with undergraduate students from the Escola
Politécnica at the Universidade de São Paulo.

The context of the experiment was a machine learning course offered at the Univer-
sidade de São Paulo. The experiment was run offline, with students using Google Forms
for the questionnaire, and presented subjects with a real and a toy problem. The setting
was class recommendation for an engineering student, while the toy problem dealt with
recommending classes for someone wishing to learn about investments. For this experi-

3Results to be published in paper under review. Please refer to Appendix B for the paper.

63

Figure 19: Bar chart with the average scores for the explanation metrics. Reasons For,
S1 and S5 results are in purple, red and yellow, respectively. Source: Paper under review;
please refer to Appendix B for the paper.

ment, we surveyed 62 students and obtained 61 valid responses. There was only one that
responded too quickly in comparison to all others and gave meaningless responses in the
open questions.

Our hypothesis with the experiment was that an explanation with more information
would be more effective. To verify that, we introduced three different explanation formats,
which we nick-named Gamma (�), Kappa (K) and Xi (⌅). The order in which these three
different formats appeared was randomly assigned to each participant, and we chose the
naming so as not to provide information about order or importance. Note: explanation
format ⌅ is the one we used for the experiment in Section 5.3 and that we described in
Backus-Naur form in Section 4.2.

�: I recommend COURSE1 as the most adherent to TOPIC1. However, it covers the
subject SUBJECT less than COURSE2, which is also about TOPIC1.

K: I recommend COURSE1 about TOPIC1, since it is about TOPIC2 from the
category CATEGORY as TOPIC1. However, COURSE1 covers the subject SUBJECT
less than COURSE2.

⌅: I recommend the course COURSE1 as the most adherent to TOPIC1, since
COURSE1 is about TOPIC2 from the category CATEGORY as TOPIC1. However,
it covers the subject SUBJECT less than COURSE2, which is also about TOPIC1.

64

As one can see above, there is a decreasing sentence size, a proxy for quantity of
information, from � to K and ⌅. Note that they were always randomly assigned in the
experiment.

In our setup, the independent variable is the explanation format F, where F 2
{�, K,⌅}. The dependent variable is the Effectiveness e. So, we want to compare the
effectiveness means µe for each value of the explanation format. For that, considering we
expect larger sentences to yield a higher effectiveness, we have three unilateral hypothesis
tests to evaluate - T1, T2 and T3 below.

T1 =

8
<

:
H0 : µe⌅ = µe�

H1 : µe⌅ > µe�

(5.1)

T2 =

8
<

:
H0 : µeK = µe�

H1 : µeK > µe�

(5.2)

T3 =

8
<

:
H0 : µe⌅ = µeK

H1 : µe⌅ > µeK

(5.3)

With these three hypotheses to test, we created a questionnaire to carry out our
experiment. The complete questionnaire we applied is available in Appendix B.2. To
apply it to the students, we followed a simple random sampling, in which the order of
the questions was shuffled by Google Forms. We analyze the results we gathered in the
remainder of this section.

First, let us consider the data in the three histograms in Figure 20. Each histogram
presents results from a question as to whether an explanation was helpful, following a
Likert scale. In red, we show the average response that represents the mean effectiveness
e. In Figure 20c we have e⌅ = 3.55, in Figure 20b, eK = 3.50, and in Figure 20a, e� = 3.24.

Taking a 5% significance level and noting that we have data from paired experiments,
we proceed to test our hypotheses. We carried a more conservative, paired two-sample
T-test (Welch two-sample T-test) with different variances for each group and also ran
a Mann-Whitney-Wilcoxon Test which does not assume normality in the data. As we
show in Table 8, tests T1 (Equation 5.1) and T2 (Equation 5.2) led to no rejection of H0

for both statistical methods. On the other hand, T3 (Equation 5.3) led to rejection of
H0 : µe⌅ = µeK in favor of Ha : µe⌅ > µeK .

65

(a) Explanation �. (b) Explanation K. (c) Explanation ⌅.

Figure 20: Was the explanation helpful? Source: Author

Table 8: Statistical test results for tests T2, T3 and T1. Source: Author.

Statistical Method Test p-value Reject H0

Paired Welch two-sample T-test
T1 0.404 No
T2 0.925 No
T3 0.039 Yes

Paired Mann-Whitney-Wilcoxon Test
T1 0.379 No
T2 0.902 No
T3 0.034 Yes

Looking at the sample distributions in Figure 20, we see that there is a high concen-
tration of responses around the mean value of 3, which in a Likert scale indicates a level
of uncertainty. In cases of Figure 20a and Figure 20c, we also note that the histograms
look similar besides their means being approximate, i.e., e⌅ = 3.55 and eK = 3.50. So,
in these two cases we see that, coherently with the statistical test results in Table 8, it is
not possible to differentiate between the two explanation formats � and ⌅ according to
their effectiveness.

In the case of explanation K, we have e� = 3.24 and see that there are less responses
with a score 5, which show that there seems to be a considerable difference between the
effectiveness of this explanation format and the other ones, specially format ⌅. This
difference is statistically confirmed for the comparison of ⌅ and K, as we can see in
Table 8. In both statistical tests, the more conservative T-test and the non-parametric
Mann-Whitney-Wilcoxon test, we find we may reject the null hypothesis in favor of ⌅
yielding a higher effectiveness than K.

For higher clarity, however, we asked students which explanation they found to be
most helpful. We see the result in Figure 21, showing that the winning format was ⌅ -
the most complete explanation. Noting that the order in which explanations appeared

66

Figure 21: What was the most helpful explanation? Source: Author.

was random, we conclude that, indeed, explanation format ⌅, the one that provides the
most information, is favored by the students.

We also note that responses for the most helpful explanation were aligned with the
Likert-scale responses for effectiveness. The order of preference e⌅ > e� > eK is main-
tained in answers across the questionnaire. This order requires some further analysis,
which we do next.

We may describe these three explanation formats according to how complex or com-
plete they are, which we can represent by their length and entropy. The length allows us
to compare the number of words in the sentence, while the entropy measure the quantity
of information in each sentence.

First, note that this we analyzed the original versions of the explanation formats, in
Brazilian Portuguese, and not the translation to English as written above. To examine
this analysis in detail, please refer to Appendix B.2. To calculate the length, as our
purpose is to measure how much more effort the student would need to employ in order
to read the sentence, we use the number of words in the sentence. For the entropy, we also
strip stop-words, leaving only words that convey meaning and calculate the information
entropy according to:

H(X) = �p(X) · log2(p(X)). (5.4)

We calculated both metrics for the three sentences and present them in Table 9. From
those results, we see that indeed, students seem to prefer higher quantity of information
even if sentence length is larger (⌅), but solely length and entropy are not enough to
represent their preference in this case. We see that, while explanation K was the least

67

Table 9: Descriptive measures for sentences ⌅, � and K. Source: Author.

Format Preference Length Entropy Info density
� 27.4% 25 words 3.55 bits 0.142 bits/word
K 22.6% 33 words 4.04 bits 0.122 bits/word
⌅ 50.0% 40 words 4.06 bits 0.102 bits/word

preferred, it displays a higher quantity of information (entropy) than �.

Hence, another factor we may look at is the information relative to the length for
each sentence. The intuition is that this could be the preference indicator as it carries
a density of information, requiring less effort to convey the same level of information to
the readers. This measure is also present in Table 9, but we see that it follows the same
pattern as before. For our three formats, explanations with higher sentence length also
exhibit higher entropy and higher information density.

For the question of explanation format preference, we conclude that user preference is
often more complex than it can be described by simple metrics. This only emphasizes the
importance of carrying out studies with real users and asking questions to elicit, confirm
and abide by their preferences.

We also took the opportunity to ask clarifying questions regarding the balancing effect
of presenting both reasons for and reasons against a recommendation. For that, we asked
students two more questions; we present results in Figure 22. First, we asked whether
they could find reasons to take the first recommended class. We see in Figure 22a that
most students (87%) found reasons to take the class, while 8% reported to partly find a
reason and about 5% reported not finding any reason to take the course.

Finally, we asked them whether they could find the reasons against only following the
first recommendation (PMR3508) in favor of PCS3838. In Figure 22b, we see that 68% of
the students reported to be able to find a reason this time. To understand why about 26%
of the students could not find a reason to take PCS3838 instead of PMR3508, we found
that it does not mean they did not see reasons against the first recommendation. Instead,
some found did not find the reason convincing enough for their objective. For instance,
one student stated that “It depends on my interest in complex systems ...”, thinking that
the argument against PMR3508 was that PCS3838 had more emphasis on the subject of
complex systems. So, this shows that they did recognize a reason not to follow directly
the recommendation, but did not necessarily consider it to be a defining factor.

Taking into account the survey results we discussed in this section, we conclude that,
overall, students prefer to have more information to decide. That is how we interpret the

68

(a) Reasons to take PMR3508. (b) Reasons to take PCS3838 instead.

Figure 22: Reasons for and reasons against PMR3508. Source: Author.

results from Figure 21. Furthermore, students were also able to recognize reasons for and
reasons against taking the recommendation as seen in Figure 22.

69

6 CONCLUSION

“The more I know, the more I realize I know
nothing.”

-- Socrates

This master’s thesis presented methods for generating explanations for automatically-
generated recommendations. It also described the implementation of a recommender sys-
tem that uses those methods to explain recommendations in the education domain. In
addition, it shows that the proposed methods are feasible in practice in terms of cover-
age, support and time complexity; they lead to higher transparency and user trust when
compared to the baseline algorithms that only present reasons supporting the recommen-
dation.

We call this class of explanation methods responsible as they show not only the reasons
to do what the recommender suggests, but also reasons for taking other paths. Hence the
algorithms address a trade-off between the interests of the recommendation provider and
the users of the recommendation. This lets users choose what is best for them.

Taking into account the social nature of explaining automatically-generated recom-
mendations to humans, we carried out a survey with users to assess their preferences for
explanation formats. We also investigated their perceptions of reasons for and reasons
against in our explanations. We found that user preferences are more complex than what
can be represented by simple sentence characteristics such as length. With respect to the
presence of reasons for and reasons against, we found that most users could identify them
in the explanation.

The main contributions of this work are the techniques that generate reasons for and
reasons against recommendations using a knowledge graph. Scheme S1 allows one to
understand further available options and their advantages and disadvantages. Scheme
S5 offers explanations that display the fitness between the recommendation and user
preferences.

We published a paper [61], and participated as co-first author in a second paper under
review by an international journal, during this work.

70

Future work should improve explanations in three directions. First, it is desirable to
improve the performance of the cognitive phase of the explanation process, by improving
the embedding training with data enrichment and embedding types such as [79]. Second,
there should be an effort to investigate how much explanations that do not shed light
onto the recommendation contribute to understand that the recommendation itself might
have come from spurious correlations. Third, future work should look for better ways to
format explanations with reasons for and against. This could be done by gathering user
feedback on which explanations are helpful, for example, using a freely-available interface.
Among the various hypotheses to be tested, one for instance might vary sentence length
and wording.

71

REFERENCES

[1] Abu-Mostafa, Yaser S, Malik Magdon-Ismail, and Hsuan-Tien Lin. Learning From
Data. Vol. 4. Lectures available at http://work.caltech.edu/telecourse.html. AML-
Book New York, NY, USA: 2012. isbn: 1600490069.

[2] Alharbi, Basma. “Back to Basics: An Interpretable Multi-Class Grade Prediction
Framework”. In: Arabian Journal for Science and Engineering (2021), pp. 1–16.
url: https://doi.org/10.1007/s13369-021-06153-x.

[3] Alshammari, M., O. Nasraoui, and S. Sanders. “Mining Semantic Knowledge Graphs
to Add Explainability to Black Box Recommender Systems”. In: IEEE Access 7
(2019), pp. 110563–110579. doi: 10.1109/ACCESS.2019.2934633.

[4] Alvarez, Maria. Reasons for Action: Justification, Motivation, Explanation. url:
https://plato.stanford.edu/entries/reasons-just-vs-expl/#NormReas.

[5] Amgoud, Leila et al. “On bipolarity in argumentation frameworks”. In: International
Journal of Intelligent Systems 23.10 (2008), pp. 1062–1093.

[6] Anand, Sarabjot Singh and Bamshad Mobasher. “Intelligent Techniques for Web
Personalization”. In: ITWP’03: Proceedings of the 2003 international conference
on Intelligent Techniques for Web Personalization. ITWP’03. Acapulco, Mexico:
Springer-Verlag, 2003, pp. 1–36. isbn: 3540298460. doi: 10.1007/11577935_1.
url: https://doi.org/10.1007/11577935%5C_1.

[7] Army, United States Government US. A Procedure for Requirements Analysis Sys-
tems Engineering Fundamentals (PDF). [Online] Access on 06 dec 2020. Archive.org,
2001. isbn: 978-1484120835. url: https://web.archive.org/web/20170131231503/
http://www.dau.mil/publications/publicationsdocs/sefguide%2001-01.

pdf.

[8] Atkinson, Paul. “ENIAC versus Colossus and the early presentation of electronic
computers”. Accessed on December 24th. 2021. Sept. 2014. url: http://shura.
shu.ac.uk/9501/.

[9] Bishop, Christopher M. Pattern Recognition and Machine Learning. Berlin, Heidel-
berg: Springer-Verlag, 2006. isbn: 0387310738.

72

[10] Bland, J Martin and Douglas G Altman. “Statistics Notes: Measurement error”. In:
BMJ 313.7059 (1996), p. 744. issn: 0959-8138. doi: 10.1136/bmj.313.7059.744.
eprint: https://www.bmj.com/content. url: https://www.bmj.com/content/
313/7059/744.1.

[11] Bordes, Antoine et al. “Translating Embeddings for Modeling Multi-Relational Data”.
In: Proceedings of the 26th International Conference on Neural Information Pro-
cessing Systems - Volume 2. NIPS’13. Lake Tahoe, Nevada: Curran Associates Inc.,
2013, pp. 2787–2795. url: https://proceedings.neurips.cc/paper/2013/file/
1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf.

[12] Carbonell, Jaime G, Ryszard S Michalski, and Tom M Mitchell. “An overview of
machine learning”. In: Machine learning. Elsevier, 1983, pp. 3–23.

[13] Card, Stuart K., Allen Newell, and Thomas P. Moran. The Psychology of Human-
Computer Interaction. USA: L. Erlbaum Associates Inc., 1983. isbn: 0898592437.

[14] Cayrol, Claudette and Marie-Christine Lagasquie-Schiex. “On the Acceptability of
Arguments in Bipolar Argumentation Frameworks”. In: European Conference on
Symbolic and Quantitative Approaches to Reasoning and Uncertainty. Springer.
2005, pp. 378–389.

[15] Chen, Li and Pearl Pu. “Critiquing-based recommenders: survey and emerging
trends”. In: User Modeling and User-Adapted Interaction 22.1 (2012), pp. 125–150.

[16] Chen, Li and Pearl Pu. “Evaluating critiquing-based recommender agents”. In:
AAAI. Vol. 6. 2006, pp. 157–162.

[17] Cormen, Thomas H. et al. Introduction to Algorithms. 2nd. The MIT Press, 2001.
isbn: 0262032937. url: http://www.amazon.com/Introduction-Algorithms-
Thomas-H-Cormen.

[18] Cormode, Graham and Balachander Krishnamurthy. “Key differences between Web
1.0 and Web 2.0”. In: First Monday (2008).

[19] Corrêa, André Murillo Geraldo and Fabio Gagliardi Cozman. Jupiterweb Chatbot.
2018. url: https://bdta.aguia.usp.br/item/002954978.

[20] Doshi-Velez, Finale and Been Kim. Towards A Rigorous Science of Interpretable
Machine Learning. cite arxiv:1702.08608. 2017. url: http://arxiv.org/abs/
1702.08608.

73

[21] Estola, Evan. “When Recommendation Systems Go Bad”. In: Proceedings of the 10th
ACM Conference on Recommender Systems. RecSys ’16. Boston, Massachusetts,
USA: Association for Computing Machinery, 2016, p. 367. isbn: 9781450340359.
doi: 10.1145/2959100.2959117. url: https://doi.org/10.1145/2959100.
2959117.

[22] Freiberger, Paul A. and Michael R. Swaine. ENIAC. Accessed on December 24th.
2021. May 27, 2020. url: https://www.britannica.com/technology/ENIAC.

[23] Friedenthal, Sanford, Alan Moore, and Rick Steiner. “Chapter 4 - An Automobile
Example Using the SysML Basic Feature Set”. In: A Practical Guide to SysML
(Third Edition). Ed. by Friedenthal, Sanford, Alan Moore, and Rick Steiner. Third.
The MK/OMG Press. Boston: Morgan Kaufmann, 2015, pp. 53–81. isbn: 978-
0-12-800202-5. doi: https : / / doi . org / 10 . 1016 / B978 - 0 - 12 - 800202 - 5 .

00004 - 7. url: https : / / www . sciencedirect . com / science / article / pii /

B9780128002025000047.

[24] Gardner, Matt and Tom Mitchell. “Efficient and Expressive Knowledge Base Com-
pletion Using Subgraph Feature Extraction”. In: Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing. Association for Computa-
tional Linguistics, 2015, pp. 1488–1498. doi: 10.18653/v1/D15-1173.

[25] Goodman, Bryce and Seth Flaxman. “European Union Regulations on Algorithmic
Decision-Making and a “Right to Explanation””. In: AI Magazine 38.3 (Oct. 2017),
pp. 50–57. issn: 0738-4602. doi: 10.1609/aimag.v38i3.2741. url: http://dx.
doi.org/10.1609/aimag.v38i3.2741.

[26] Gunning, David and David Aha. “DARPA’s Explainable Artificial Intelligence (XAI)
Program”. In: AI Magazine 40.2 (June 2019), pp. 44–58. doi: 10.1609/aimag.
v40i2 . 2850. url: https : / / www . aaai . org / ojs / index . php / aimagazine /

article/view/2850.

[27] Hägglund, Sture. “Introducing expert critiquing systems”. In: The Knowledge Engi-
neering Review 8.4 (1993), pp. 281–284. doi: 10.1017/S0269888900000308.

[28] He, Ruining, Wang-Cheng Kang, and Julian McAuley. “Translation-Based Rec-
ommendation”. In: Proceedings of the Eleventh ACM Conference on Recommender
Systems. RecSys ’17. Como, Italy: Association for Computing Machinery, 2017,
pp. 161–169. isbn: 9781450346528. doi: 10.1145/3109859.3109882. url: https:
//doi.org/10.1145/3109859.3109882.

74

[29] Henderson, Anthony. Introduction to Graph Theory. Distributed by the School of
Mathematics and Statistics, The University of Sydney. Mar. 2014.

[30] Henk, Veronika et al. Metaresearch Recommendations using Knowledge Graph Em-
beddings. 2018.

[31] Hoeve, Maartje ter et al. “Faithfully Explaining Rankings in a News Recommender
System”. In: CoRR abs/1805.05447 (2018). arXiv: 1805 . 05447. url: http : / /

arxiv.org/abs/1805.05447.

[32] Hogan, Aidan et al. Knowledge Graphs. English. Synthesis Lectures on Data, Se-
mantics, and Knowledge 22. Morgan & Claypool, 2021. isbn: 9781636392363. doi:
10.2200/S01125ED1V01Y202109DSK022. url: https://kgbook.org/.

[33] Huang, Xiao et al. “Knowledge Graph Embedding Based Question Answering”. In:
Proceedings of the Twelfth ACM International Conference on Web Search and Data
Mining. WSDM ’19. Melbourne VIC, Australia: Association for Computing Ma-
chinery, 2019, pp. 105–113. isbn: 9781450359405. doi: 10.1145/3289600.3290956.
url: https://doi.org/10.1145/3289600.3290956.

[34] Jannach, Dietmar et al. “A Survey on Conversational Recommender Systems”. In:
ACM Computing Surveys 54.5 (May 2021). issn: 0360-0300. doi: 10.1145/3453154.
url: https://doi.org/10.1145/3453154.

[35] Jumper, John et al. “High Accuracy Protein Structure Prediction Using Deep Learn-
ing”. In: Fourteenth Critical Assessment of Techniques for Protein Structure Pre-
diction (Abstract Book). Nov. 2020.

[36] Keeney, R.L., H. Raiffa, and R.F. Meyer. Decisions with Multiple Objectives: Pref-
erences and Value Trade-Offs. Wiley series in probability and mathematical statis-
tics. Applied probability and statistics. Cambridge University Press, 1993. isbn:
9780521438834. url: https://books.google.de/books?id=GPE6ZAqGrnoC.

[37] Koren, Yehuda, Robert Bell, and Chris Volinsky. “Matrix Factorization Techniques
for Recommender Systems”. In: Computer 42.8 (Aug. 2009), pp. 30–37. issn: 0018-
9162. doi: 10.1109/MC.2009.263. url: https://doi.org/10.1109/MC.2009.263.

[38] Lao, Ni, Tom Mitchell, and William W. Cohen. “Random Walk Inference and Learn-
ing in A Large Scale Knowledge Base”. In: Proceedings of the 2011 Conference
on Empirical Methods in Natural Language Processing. Edinburgh, Scotland, UK.:
Association for Computational Linguistics, July 2011, pp. 529–539. url: https:
//aclanthology.org/D11-1049.

75

[39] Larrañaga, Pedro et al. Industrial Applications of Machine Learning. CRC Press,
2018.

[40] Likert, Rensis. “A Technique for the Measurement of Attitudes”. In: Archives of
Psychology 140 (1932), pp. 1–55.

[41] Ma, Hao et al. “Recommender Systems with Social Regularization”. In: Proceed-
ings of the Fourth ACM International Conference on Web Search and Data Min-
ing. WSDM ’11. Hong Kong, China: Association for Computing Machinery, 2011,
pp. 287–296. isbn: 9781450304931. doi: 10.1145/1935826.1935877. url: https:
//doi.org/10.1145/1935826.1935877.

[42] Mahdavinejad, Mohammad Saeid et al. “Machine learning for Internet of Things
Data Analysis: A Survey”. In: Digital Communications and Networks 4.3 (2018),
pp. 161–175.

[43] Markman, A.B. Knowledge Representation. Taylor & Francis, 2013. isbn: 9781134802906.
url: https://books.google.com.br/books?id=Uu%5C_mxqQal8kC.

[44] Massa, Paolo and Paolo Avesani. “Trust-Aware Recommender Systems”. In: Pro-
ceedings of the 2007 ACM Conference on Recommender Systems. RecSys ’07. Min-
neapolis, MN, USA: Association for Computing Machinery, 2007, pp. 17–24. isbn:
9781595937308. doi: 10.1145/1297231.1297235. url: https://doi.org/10.
1145/1297231.1297235.

[45] Max Roser, Hannah Ritchie and Esteban Ortiz-Ospina. “Internet”. In: Our World
in Data (2015). https://ourworldindata.org/internet.

[46] Miller, Tim. “Explanation in Artificial Intelligence: Insights from the Social Sci-
ences”. In: CoRR abs/1706.07269 (2017). arXiv: 1706.07269. url: http://arxiv.
org/abs/1706.07269.

[47] Mohamed, Sameh K., Emir Muñoz, and Vit Novacek. “On Training Knowledge
Graph Embedding Models”. In: Information 12.4 (2021). issn: 2078-2489. doi: 10.
3390/info12040147. url: https://www.mdpi.com/2078-2489/12/4/147.

[48] Molnar, Christoph. Interpretable Machine Learning. A Guide for Making Black Box
Models Explainable. https://christophm.github.io/interpretable-ml-book/.
[Online], 2019.

76

[49] Musto, Cataldo et al. “Linked open data-based explanations for transparent recom-
mender systems”. In: International Journal of Human-Computer Studies 121 (2019).
Advances in Computer-Human Interaction for Recommender Systems, pp. 93–107.
issn: 1071-5819. doi: https://doi.org/10.1016/j.ijhcs.2018.03.003. url:
http://www.sciencedirect.com/science/article/pii/S1071581918300946.

[50] Nguyen, Dat Quoc et al. “Neighborhood Mixture Model for Knowledge Base Com-
pletion”. In: Proceedings of The 20th SIGNLL Conference on Computational Natural
Language Learning. Berlin, Germany: Association for Computational Linguistics,
Aug. 2016, pp. 40–50. doi: 10.18653/v1/K16-1005. url: https://www.aclweb.
org/anthology/K16-1005.

[51] Nickel, Maximilian et al. A Review of Relational Machine Learning for Knowledge
Graphs. cite arxiv:1503.00759Comment: To appear in Proceedings of the IEEE.
2015. doi: 10.1109/JPROC.2015.2483592. url: http://arxiv.org/abs/1503.
00759.

[52] Nielsen, J. Usability Engineering. Interactive Technologies. Elsevier Science, 1994.
isbn: 9780125184069. url: https://books.google.com.br/books?id=95As2OF67f0C.

[53] Norton, John. “‘Nature is the Realisation of the Simplest Conceivable Mathematical
Ideas’: Einstein and the Canon of Mathematical Simplicity”. In: Studies In History
and Philosophy of Science Part B: Studies In History and Philosophy of Modern
Physics 31 (June 2000), pp. 135–170. doi: 10.1016/S1355-2198(99)00035-0.

[54] O’Donovan, John and Barry Smyth. “Trust in Recommender Systems”. In: Proceed-
ings of the 10th International Conference on Intelligent User Interfaces. IUI ’05. San
Diego, California, USA: Association for Computing Machinery, 2005, pp. 167–174.
isbn: 1581138946. doi: 10.1145/1040830.1040870. url: https://doi.org/10.
1145/1040830.1040870.

[55] Parliament, European. REGULATION (EU) 2016/679 OF THE EUROPEAN PAR-
LIAMENT AND OF THE COUNCIL of 27 April 2016 on the protection of natural
persons with regard to the processing of personal data and on the free movement of
such data, and repealing Directive 95/46/EC (General Data Protection Regulation).
url: http://data.europa.eu/eli/reg/2016/679/oj.

[56] Polleti, Gustavo Padilha. “Explanation Generation For Conversational Recommen-
dation Systems Based On Knowledge Embeddings”. MA thesis. Polytechnic School,
University of São Paulo, 2022.

77

[57] Polleti, Gustavo Padilha and Fabio Gagliardi Cozman. Chatbot para Perguntas e
Respostas com Capacidade de Explicação. 2019.

[58] Polleti, Gustavo Padilha and Fabio Gagliardi Cozman. “Explaining Content-Based
Recommendations with Topic Models”. In: 2019 8th Brazilian Conference on Intel-
ligent Systems (BRACIS). Oct. 2019, pp. 800–805. doi: 10.1109/BRACIS.2019.
00143.

[59] Polleti, Gustavo Padilha and Fabio Gagliardi Cozman. “Faithfully explaining pre-
dictions of knowledge embeddings”. In: Encontro Nacional de Inteligência Artificial
(ENIAC). Sept. 2019, pp. 1–12.

[60] Polleti, Gustavo Padilha, Hugo Neri Munhoz, and Fabio Gagliardi Cozman. “Ex-
planations within Conversational Recommendation Systems: Improving Coverage
through Knowledge Graph Embedding”. In: 2020 AAAI Workshop on Interactive
and Conversational Recommendation System. New York City, New York, USA:
AAAI Press, 2020, p. 8.

[61] Polleti, Gustavo Padilha, Douglas Luan de Souza, and Fabio Cozman. “Why should
I not follow you? Reasons For and Reasons Against in Responsible Recommender
Systems”. In: 3rd FAccTRec Workshop: Responsible Recommendation. 2020, p. 6.
arXiv: 2009.01953 [cs.AI].

[62] Pressman, Roger. Software Engineering: A Practitioner’s Approach. 7th ed. USA:
McGraw-Hill, Inc., 2009. isbn: 0073375977.

[63] Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. “‘Why Should I Trust
You?’: Explaining the Predictions of Any Classifier”. In: Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
San Francisco, CA, USA, August 13-17, 2016. 2016, pp. 1135–1144.

[64] Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. Model-Agnostic Inter-
pretability of Machine Learning. June 2016. arXiv: 1606.05386.pdf. url: http:
//arxiv.org/abs/1606.05386.pdf.

[65] Ricci, Francesco et al. Recommender Systems Handbook. 1st. Berlin, Heidelberg:
Springer-Verlag, 2010. isbn: 0387858199.

[66] Russell, Stuart. “Should we fear supersmart robots?” In: Scientific American 314.6
(2016), pp. 58–59.

[67] Russell, Stuart and Peter Norvig. Artificial Intelligence: A Modern Approach. 3rd.
USA: Prentice Hall Press, 2009. isbn: 0136042597.

78

[68] Shani, Guy and Asela Gunawardana. “Evaluating Recommendation Systems”. In:
Recommender Systems Handbook. Boston, MA: Springer US, 2011, pp. 257–297.
isbn: 978-0-387-85820-3. doi: 10.1007/978- 0- 387- 85820- 3_8. url: https:
//doi.org/10.1007/978-0-387-85820-3%5C_8.

[69] Smith, Brent and Greg Linden. “Two Decades of Recommender Systems at Ama-
zon.com”. In: IEEE Internet Computing 21.3 (2017), pp. 12–18. doi: 10.1109/MIC.
2017.72.

[70] Snedegar, J. Contrastive Reasons. OUP Oxford, 2017. isbn: 9780191089039. url:
https://books.google.com.br/books?id=9zJdDgAAQBAJ.

[71] Snedegar, Justin. “Reasons for and reasons against”. In: Philosophical Studies 175.3
(2018), pp. 725–743.

[72] SysML FAQ: What is a Requirement Diagram (REQ) and how is it used? Accessed:
2023-04-22. url: https : / / sysml . org / sysml - faq / what - is - requirement -

diagram.html.

[73] Tintarev, Nava and Judith Masthoff. “A Survey of Explanations in Recommender
Systems”. In: Proceedings of the 2007 IEEE 23rd International Conference on Data
Engineering Workshop. ICDEW ’07. Washington, DC, USA: IEEE Computer So-
ciety, 2007, pp. 801–810. isbn: 978-1-4244-0831-3. doi: 10.1109/ICDEW.2007.

4401070. url: http://dx.doi.org/10.1109/ICDEW.2007.4401070.

[74] Valletta, John Joseph et al. “Applications of machine learning in animal behaviour
studies”. In: Animal Behaviour 124 (2017), pp. 203–220.

[75] Vamathevan, Jessica et al. “Applications of machine learning in drug discovery and
development”. In: Nature Reviews Drug Discovery 18.6 (2019), pp. 463–477.

[76] Walsh, Dorothy. “Occam’s razor: A principle of intellectual elegance”. In: American
Philosophical Quarterly 16.3 (1979), pp. 241–244.

[77] Wang, Q. et al. “Knowledge Graph Embedding: A Survey of Approaches and Appli-
cations”. In: IEEE Transactions on Knowledge and Data Engineering 29.12 (2017),
pp. 2724–2743. doi: 10.1109/TKDE.2017.2754499.

[78] Wohlin, Claes et al. Experimentation in Software Engineering. Springer Publishing
Company, Incorporated, 2012. isbn: 3642290434.

[79] Yao, Zhen et al. Analogical Inference Enhanced Knowledge Graph Embedding. 2023.
arXiv: 2301.00982 [cs.AI].

79

[80] Zhang, Jiyong, Nicolas Jones, and Pearl Pu. “A visual interface for critiquing-based
recommender systems”. In: Proceedings of the 9th ACM conference on Electronic
commerce. 2008, pp. 230–239.

[81] Zhang, Jiyong and Pearl Pu. “A comparative study of compound critique generation
in conversational recommender systems”. In: International Conference on Adaptive
Hypermedia and Adaptive Web-Based Systems. Springer. 2006, pp. 234–243.

[82] Zhang, Min and Yiqun Liu. “A commentary of TikTok recommendation algorithms
in MIT Technology Review 2021”. In: Fundamental Research 1.6 (2021), pp. 846–
847.

[83] Zhang, Wen et al. “Interaction Embeddings for Prediction and Explanation in
Knowledge Graphs”. In: Proceedings of the Twelfth ACM International Conference
on Web Search and Data Mining (Jan. 2019). doi: 10.1145/3289600.3291014.
url: http://dx.doi.org/10.1145/3289600.3291014.

[84] Zhang, Yongfeng and Xu Chen. “Explainable Recommendation: A Survey and New
Perspectives”. In: CoRR abs/1804.11192 (2018), pp. 1–101. arXiv: 1804.11192.
url: http://arxiv.org/abs/1804.11192.

80

APPENDIX A – THE IMPLEMENTED CRS

This appendix shows screenshots from interactions with our implemented system. It
is worth noting that dialogues are in Brazilian Portuguese. However, conversations are
transcribed and translated.

Figure 23a depicts the entire page where Calisto is available in a version that imple-
ments Snedegar’s Scheme 5 (S5). The dialogue starts with a greeting. Calisto replies and
gives some help text; the user asks for a recommendation about ML, which is correctly
understood to mean Machine Learning and some recommendations are given back. In
Figure 23b the chat continues, and explanations are requested for two different subjects
- PMR3508 and PTC3452 - to which intuitive and correct textual explanations are given
back. PMR3508 is related to probabilistic classifiers, and PTC3452 is related to non-
supervised learning. Both topics belong to the category of machine learning and those
are the reasons for recommending those units of studies for the theme ML.

The back-end allows for debugging and monitoring through logs sent to the docker
container with the terminal command docker logs -f calisto-s5. Figure 24 shows
the resulting screen with the HTTP requests received with URL and method, as well as
the response with JSON explanation with response code.

The deployment used a docker container to provide environment isolation to the sys-
tem in production. The codes in Listing 1 and Listing 2 show the commands for creating
the docker image and running it, respectively. The figure is based on Python 3.7.9 and
includes Node.js for Localtunnel 1, Localtunnel itself for reverse proxying/tunnelling, Cal-
isto’s back-end. For running Calisto, we set it to restart on failure, mirror the port in the
docker container to the host machine’s port and set the Nvidia devices to access GPUs.

All the experiments were run using the computational infrastructure at the Centro
de Inteligência Artificial e Aprendizado de Máquina (CIAAM) hosted by USP Innovation
Center (InovaUSP).

1https://theboroer.github.io/localtunnel-www/

81

(a) Greeting, recommendation request and response.

(b) Example response
for an explanation re-
quest.

Figure 23: Calisto chatbot interface. Source: Author.

Figure 24: Calisto’s back-end running (logs). Source: Author.

82

FROM python:3.7.9
RUN pip install --upgrade pip
RUN mkdir -p calisto-backend
ADD . calisto-backend
WORKDIR calisto-backend
RUN pip install -r requirements.txt
RUN curl https://nodejs.org/dist/v12.19.0/node-v12.19.0-linux-x64.tar.xz

--output node-v12.19.0-linux-x64.tar.xz,!

RUN mkdir -p /usr/local/lib/nodejs
RUN tar -xJvf node-v12.19.0-linux-x64.tar.xz -C /usr/local/lib/nodejs
ENV PATH=/usr/local/lib/nodejs/node-v12.19.0-linux-x64/bin:$PATH
RUN npm install -g localtunnel
ENV PORT=5024
CMD while true; do lt -s calisto-s5 -p $PORT ; sleep 1; done & python

src/server.py,!

Listing 1: Code for Dockerfile.

docker build . -t calisto-backend-gpu
docker run --device=/dev/nvidia0 --device=/dev/nvidia1 -p 5023:5023

--restart on-failure --name calisto-gpu -tid calisto-backend-gpu,!

Listing 2: Code for back-end deployment.

83

APPENDIX B – EXPERIMENTAL SETUP

In this chapter we present setups used to carry experiments we explained in Chapter 5.
Please note that screenshots are in Brazilian Portuguese, as experiments were carried out
in Brazil.

B.1 Experiment with Users and Real System

Figure 25: Experiment platform (top of the page). Source: Author.

84

Figure 26: Experiment platform (bottom of the page). Source: Author.

85

B.2 Experiment with Users for Explanation Format

We list scripts we used for the analysis of our experiment with users to investigate
their preferences for each explanation format and also present the questionnaire for it.

import numpy as np

import nltk

from nltk.corpus import stopwords

import pandas as pd

from nltk.stem import WordNetLemmatizer

lemmatizer = WordNetLemmatizer()

nltk.download('stopwords')

nltk.download('wordnet')

stop_words = set(stopwords.words('english'))

csi = "I recommend the course COURSE1 as the most adherent to TOPIC1,

since COURSE1 is about TOPIC2 from the category CATEGORY as TOPIC1.

However, it covers the subject SUBJECT less than COURSE2, which is

also about TOPIC1."

,!

,!

,!

gamma = "I recommend COURSE1 as the most adherent to TOPIC1. However, it

covers the subject SUBJECT less than COURSE2, which is also about

TOPIC1."

,!

,!

kappa = "I recommend COURSE1 about TOPIC1, since it is about TOPIC2 from

the category CATEGORY as TOPIC1. However, COURSE1 covers the subject

SUBJECT less than COURSE2."

,!

,!

def unique_counter(sentence):

tokens = nltk.word_tokenize(sentence)

words = [token for token in tokens if not token in stop_words and

token.isalnum()],!

words = [lemmatizer.lemmatize(word) for word in words]

return len(words)

86

def length(sentence):

tokens = nltk.word_tokenize(sentence)

words = [token for token in tokens if token.isalnum()]

return len(words)

def entropy(sentence, base=2):

tokens = nltk.word_tokenize(sentence)

words = [token for token in tokens if not token in stop_words and

token.isalnum()],!

unique_words = set(words)

n = len(words)

frequencies = [words.count(word)/n for word in unique_words]

base_factor = np.log(base)

return -(frequencies * np.log(frequencies)/base_factor).sum()

sentences_df = pd.DataFrame([['Csi', length(csi), unique_counter(csi),

entropy(csi)], ['Gamma', length(gamma), unique_counter(gamma),

entropy(gamma)], ['Kappa', length(kappa), unique_counter(kappa),

entropy(kappa)]], columns=['Name', 'Length', 'Unique', 'Entropy'])

,!

,!

,!

sentences_df['Relative Info'] =

sentences_df['Entropy']/sentences_df['Length'],!

sentences_df['Relative Unique'] =

sentences_df['Entropy']/sentences_df['Unique'],!

sentences_df['User Pref'] = pd.Series([50, 27.4, 22.6])

sentences_df

7/9/23, 7:59 PM Explicações sobre Recomendações

https://docs.google.com/forms/d/1agzs7S8EbNGrpSkNp059ocBVXstLdYoG4kx_PH3mJ8Q/edit 1/9

1.

Marcar apenas uma oval.

Sim

Pular para a pergunta 2

Informações Cadastrais

Suas respostas serão usadas para traçar o per�l de respondentes para �ns estatísticos,
mas de forma anônima.

2.

3.

4.

Marcar apenas uma oval.

Masculino

Feminino

Não-binário

Não desejo responder

Explicações sobre Recomendações
Neste formulário, serão apresentadas explicações sobre recomendações de disciplinas

* Indica uma pergunta obrigatória

As respostas fornecidas nesta atividade serão utilizadas de forma anônima e
apenas para propósitos acadêmicos. Nenhuma informação será compartilhada
ou aberta para terceiros fora do âmbito desta pesquisa. Você concorda com
esses termos?

*

Qual a sua idade? *

Qual seu número USP *
Apenas para �ns de atribuição de nota, para saber quem participou.

Com qual gênero você se identifica? *

7/9/23, 7:59 PM Explicações sobre Recomendações

https://docs.google.com/forms/d/1agzs7S8EbNGrpSkNp059ocBVXstLdYoG4kx_PH3mJ8Q/edit 2/9

5.

Marcar apenas uma oval.

Norte

Nordeste

Sudeste

Centro-oeste

Sul

Outro País de Língua Portuguesa

Outros Países

6.

Marcar apenas uma oval.

Discordo totalmente

1

2

3

4

5

Concordo totalmente

Explicações sobre Recomendações

Ana é estudante de graduação de engenharia de computação e é entusiasta de
Inteligência Arti�cial. Para aprender mais sobre o tema, ela pede a ajuda de um sistema
de recomendação de disciplinas da USP.

Qual a sua região de origem? *

O quanto você concorda com a afirmação "Uso computador ou smartphone
diariamente e tenho total afinidade com novas tecnologias"

7/9/23, 7:59 PM Explicações sobre Recomendações

https://docs.google.com/forms/d/1agzs7S8EbNGrpSkNp059ocBVXstLdYoG4kx_PH3mJ8Q/edit 3/9

Ana, ao pedir por disciplinas sobre Inteligência Artificial, recebe as seguintes
recomendações: PMR3508 e PCS3838. Para entender melhor qual disciplina deve
escolher, ela pede por explicações.

Formatos de Explicação

As seguintes explicações foram apresentadas a Ana. Avalie os formatos de explicação
abaixo, para as mesmas recomendações.

7/9/23, 7:59 PM Explicações sobre Recomendações

https://docs.google.com/forms/d/1agzs7S8EbNGrpSkNp059ocBVXstLdYoG4kx_PH3mJ8Q/edit 4/9

7.

Marcar apenas uma oval.

Discordo Totalmente

1

2

3

4

5

Concordo Totalmente

Explicação Gama: Em uma escala de 1-5, diga o quanto você concorda com a
seguinte afirmação: "Eu sinto que a explicação abaixo me ajudou/foi útil"

*

7/9/23, 7:59 PM Explicações sobre Recomendações

https://docs.google.com/forms/d/1agzs7S8EbNGrpSkNp059ocBVXstLdYoG4kx_PH3mJ8Q/edit 5/9

8.

Marcar apenas uma oval.

Discordo Totalmente

1

2

3

4

5

Concordo Totalmente

Explicação Kapa: Em uma escala de 1-5, diga o quanto você concorda com a
seguinte afirmação: "Eu sinto que a explicação abaixo me ajudou/foi útil"

*

7/9/23, 7:59 PM Explicações sobre Recomendações

https://docs.google.com/forms/d/1agzs7S8EbNGrpSkNp059ocBVXstLdYoG4kx_PH3mJ8Q/edit 6/9

9.

Marcar apenas uma oval.

Discordo Totalmente

1

2

3

4

5

Concordo Totalmente

Esta seção se aplica para todo os formatos de explicação apresentados

10.

Explicação Csi: Em uma escala de 1-5, diga o quanto você concorda com a seguinte
afirmação: "Eu sinto que a explicação abaixo me ajudou/foi útil"

*

Caso você tenha uma sugestão de como melhorar as explicações
apresentadas, escreva-a abaixo:

7/9/23, 7:59 PM Explicações sobre Recomendações

https://docs.google.com/forms/d/1agzs7S8EbNGrpSkNp059ocBVXstLdYoG4kx_PH3mJ8Q/edit 7/9

11.

Marcar apenas uma oval.

Explicação Gama

Explicação Kapa

Explicação Csi

12.

Marcar apenas uma oval.

Outro:

Sim

Não

13.

Marcar apenas uma oval.

Outro:

Sim

Não

Gerando uma explicação

Qual das explicações anteriores te ajuda melhor a escolher a disciplina? *

Nas explicações fornecidas, você identificou alguma razão para aceitar a
recomendação? Ou seja, para cursar alguma das disciplinas recomendadas.

*

Nas explicações fornecidas, você identificou razões para cursar a disciplina
PCS3838 ao invés de PMR3508?

*

7/9/23, 7:59 PM Explicações sobre Recomendações

https://docs.google.com/forms/d/1agzs7S8EbNGrpSkNp059ocBVXstLdYoG4kx_PH3mJ8Q/edit 8/9

14.

Comentário final

15.

Este conteúdo não foi criado nem aprovado pelo Google.

Dado o contexto da imagem abaixo, como você explicaria esta recomendação? *

Algum comentário adicional que você queira expressar:

 Formulários

7/9/23, 7:59 PM Explicações sobre Recomendações

https://docs.google.com/forms/d/1agzs7S8EbNGrpSkNp059ocBVXstLdYoG4kx_PH3mJ8Q/edit 9/9

96

ANNEX A – RELATED PAPER -

FACCTREC @ RECSYS 2020

The following article was published in the 3rd FAccTRec Workshop: Responsible Rec-
ommendation, part of the 14th ACM Recommender Systems Conference (RecSys2020) to
report on research carried out using the system described in this thesis (Calisto).

Why should I not follow you? Reasons For and Reasons Against
in Responsible Recommender Systems

Gustavo P. Polleti
Universidade de São Paulo
gustavo.polleti@usp.br

Douglas L. de Souza
Universidade de São Paulo
douglas.luan.souza@usp.br

Fabio G. Cozman
Universidade de São Paulo

fgcozman@usp.br

ABSTRACT
A few Recommender Systems (RS) resort to explanations so as to
enhance trust in recommendations. However, current techniques for
explanation generation tend to strongly uphold the recommended
products instead of presenting both reasons for and reasons against
them. We argue that an RS can better enhance overall trust and
transparency by frankly displaying both kinds of reasons to users.
We have developed such an RS by exploiting knowledge graphs and
by applying Snedegar’s theory of practical reasoning. We show that
our implemented RS has excellent performance and we report on an
experiment with human subjects that shows the value of presenting
both reasons for and against, with signi�cant improvements in trust,
engagement, and persuasion.

ACM Reference Format:
Gustavo P. Polleti, Douglas L. de Souza, and Fabio G. Cozman. 2020. Why
should I not follow you? Reasons For and Reasons Against in Responsible
Recommender Systems. In RecSys ’20: Proceedings of the 14th ACMConference
on Recommender Systems. ACM, New York, NY, USA, 6 pages. https://doi.
org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Human subjects �nd it hard to make a decision when a very large
number of options is available; a Recommender System (RS) pro-
vides valuable help by selecting a small set of options that are then
evaluated by the user [20]. However, even if an RS produces sen-
sible recommendations, users may reject them if their rationale is
not understood [22]. It is thus clearly desirable to have RSs that
o�er sensible, transparent and trustworthy recommendations; one
strategy that seems particularly promising is for the RS to generate
explanations that clarify the recommendations [25].

Explanations presumably enhance transparency and trust. How-
ever, explanation generation techniques now in use in RSs focus
solely on advocacy for the recommended options. By describing
only the bene�ts of those options, they may fail to o�er a balanced
perspective to the user, ultimately squandering overall trust. A user
may be at �rst happy to get some positive clari�cation about recom-
mended products, but if she never sees information about possible
downsides, she will ultimately lose interest in the recommenda-
tions.

We argue that an RS should provide responsible explanations
in the sense that both reasons for and reasons against explicitly
escort recommendations. We take Snedegar’s theory of reasons
for/against [23], a philosophical theory of practical reasoning, and
realize it in the context of RSs. To do so, we start with existing

FAccTRec2020, September 26, 2020, Online
2020. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

procedures that generate reasons for by analyzing paths in knowl-
edge graphs [1, 15, 18]. We then modify such procedures so as to
detect paths (or their absence) that count as reasons against. Snede-
gar’s theory relies on �ve schemes of reasons against; we examine
their computational implementation, identifying the most promis-
ing strategies. We also describe an RS we have implemented and
its practical operation with reasons for/against. Additionally, we
have carried out experiments with human subjects that show our
approach to responsible recommendations to yield higher overall
trust in generated explanations.

The paper is organized as follows. Section 2 presents some ba-
sic notions on recommender systems, explainability, transparency,
and trust. In Section 3 we propose strategies to generate reasons
for/against. We then present our empirical results, and o�er con-
cluding remarks in the last section.

2 A BIT OF BACKGROUND:
RECOMMENDATIONS, TRUST,
INTERPRETABILITY, EXPLANATIONS

An RS has a set of users and a set of items, usually producing a
score r (u, i) that captures the a�nity between useru and item i [20].
An RS often relies on the score to rank a number N of items to
be presented to the user. The de�nition of a�nity varies wildly,
depending on the application domain [8, 21]. The current state of
the art is to learn the a�nity between users and items from past
experience using latent variable models, often dependent on matrix
factorization and embedding techniques [5–7]. These techniques
map items to a (numeric) latent space where similar items appear
near to each other, usually by optimizing distances between related
objects as they are mapped [16].

Opaquemodels, such as the ones produced by embeddings, create
obstacles to the interpretability of recommendations [3]. Here we
take interpretability as the degree to which a human can understand
the cause of a decision [13]. A device may be transparent in that
the user can access all elements of its operation, yet its output may
have low interpretability. When interpretability is low, one possible
strategy is to generate explanations for the decisions. There are
several techniques for explanation generation [14]; for instance,
some of them investigate the sensitivity of outputs to inputs or to
elements of a model — the explanation is an indication of which
parts of input/model a�ect the output. Other techniques aim at
more elaborate explanations. Some of them are dependent on a
particular model; for instance, some techniques focus on neural
networks, producing explanations that involve particular neurons
and layers. Other techniques for explanation generation are model
agnostic; that is, they only look at inputs and outputs of the model
to be explained. We focus on model-agnostic explanations in this
work.

ar
X

iv
:2

00
9.

01
95

3v
2

 [c
s.A

I]
 8

 S
ep

 2
02

0

FAccTRec2020, September 26, 2020, Online Gustavo P. Polleti, Douglas L. de Souza, and Fabio G. Cozman

It is commonly stated that performance and interpretability are
opposing goals [19]; for instance, an accurate classi�er is a complex
and hard to interpret one. However, matters are more delicate in
the context of RSs, as performance itself depends on trust [17], and
high interpretability is bound to increase trust (when interpretation
fails, existing RSs may fail in surprising ways [4]). Previous e�orts
have explored various ways to obtain high performance and high
interpretability [10, 11, 28], in some cases generating explanations
that support recommendations [1, 15, 24].

3 EXPLANATIONS WITH REASONS FOR AND
REASONS AGAINST

Recent RSs that rely on explanations do o�er useful information to
the user; however, we argue that they run into a di�cult balancing
act [12]. This is not unlike the salesperson who always proposes
products with complimentary words, as opposed to the salesper-
son who frankly discusses the advantages and disadvantages of
products. A perceptive customer will gradually favor a salesperson
who chooses sincerity over persuasion — exactly the behavior we
propose for responsible RSs.

The solution, then, is to build RSs that state reasons for recom-
mended items together with reasons against the same items. This is
the main idea in this paper; to make it concrete, we �rst discuss tech-
niques that generate reasons for (Section 3.1) and then we propose
novel ideas on the generation of reasons against (Section 3.2).

3.1 Reasons For: What They Are, and How to
Generate Them

Reasons for a given recommendation can be produced using an
auxiliary knowledge graph (KG), a strategy that has been explored
in previous e�orts [1, 15, 18].

The idea is to use a KG containing all entities handled by the RS
so as to �nd connections between users and items. A knowledge
graph (KG) consists of a set of entities E = {e1, . . . , eNe } and a set
of binary relations R = {r1, . . . , rNr }. Using RDF notation [26], an
edge in the graph can be interpreted as a triple hh, r , ti where h, r
and t are, respectively, the subject (head), predicate (relation) and
object (tail). The existence of a triple xh,r,t = hh, r , ti is indicated
by a random variable �h,r,t with values in {0, 1}. A path type � is
a sequence of relations r1 � r2 � ... � rl , some of which may be the
inverses of relations in R (the inverse of relation r is denoted by r�).
A given path � holds for entities h and t if there exists a set of enti-
ties e1, e2, ... so that all the variables {�h,r1,e1 ,�e1,r2,e2 , ...�el�1,rl ,t }
have value 1. We assume a set � of permissible path types is speci-
�ed (by the RS designers) so that those path types capture sensible
connections between entities [18].

Suppose an RS suggests item ei to user eu (note that items and
users are represented by entities in the assumed auxiliary KG).
A reason for this recommendation is simply taken to be a path
� 2 � that takes ei to eu in the KG. Thus we have an function
f that starts with the KG and the path � , takes inputs ei and eu ,
and returns a set of reasons for the recommendation of ei to eu .
While this function can be implemented in several ways, in our
implementation (described later) we employed depth-�rst search
in the KG [18].

Red Phone Cutting Edge OS

LaptopUser

has

is recommended

bought

has

(a) Reason for recommending Red Phone.

Green Phone Long Duration Battery

LaptopUser

has

is recommended

bought
has

(b) Reason for recommending Green Phone.

Figure 1: Examples of reasons for and reasons against in
item-based recommendation.

To illustrate, Figure 1a shows through graphs an example where
the recommendation of the Red Phone to a user is explained by the
path �3 = (bought, has, has�), which goes through entities User,
Laptop, Cutting Edge OS and Red Phone.

3.2 Reasons Against: What They Are, and How
to Generate Them

We now focus on the main technical challenge in this work: how to
generate reasons against a particular recommendation. To do so, we
resort to the literature on practical reasoning in Philosophy, where
we �nd Snedegar’s rather comprehensive theory of reasoning [23].
Snedegar presents �ve schemes by which reasons against can be
generated by an agent contemplating competitive options:

Scheme 1 (S1) : a reason against an item A is a reason for a
competing option;

Scheme 2 (S2) : a reason against an item A is only a reason
for NOT A (not for any particular other option);

Scheme 3 (S3) : a reason against an item A is just a reason for
the disjunction of the other options (say B _C _ D);

Scheme 4 (S4) : a reason against an itemA is a reason for each,
i.e. all, of the alternatives to it.

Scheme 5 (S5) : a reason against an item A explains (or is part
of the explanation as to) why A promotes or respects some
objective less well than some other option.1

These schemes have been de�ned by Snedegar at a highly ab-
stract level; we must taken them to a concrete level. We present
our implementations in the remainder of this section.

Our implementation of S1 generates a reason against a given
item by generating reasons for other options. For instance, take the
case where the RS has recommended two phones — Red and Green
— as in Figure 1. A reason against the Red Phone then would be
that the Green Phone has a “Long Duration Battery”.

Scheme S2 is more delicate: how to de�ne the negation of an
item in the context of recommendations? The vague nature of this
question led us to skip this scheme.
1This scheme requires one to specify a quantitative objective.

Why should I not follow you? Reasons For and Reasons Against in Responsible Recommender Systems FAccTRec2020, September 26, 2020, Online

Our implementation of S3 goes through all competing options,
collecting reasons for them that are not reasons for the option of
interest; we then trim the list of reasons against to an arbitrary
small number of reasons (e.g. 3). In our running example we can
imagine there is a Blue Phone and as reasons against the Red Phone
we have that the Green Phone, the Blue Phone or both of them
have long duration batteries. In practice S1 and S3 produce identical
reasons against.

The implementation of S4 is similar to that of S3 to the extent that
S4 takes reasons for all competing options into account (reasons
against according to S4 are also reasons against according to S3).
An example of reason against the Red Phone using S4 would be
that both the Blue Phone and the Green Phone from the example
above have adequate battery duration. The stringent nature of this
scheme, where the intersection of reasons is required, makes it hard
to generate reasons against in practical circumstances.

Scheme S5 depends on a quantitative objective that can be the
basis of explanations; this objective is used to determine whether a
reason is for or against an option. Consider in our phone example
that the user has the objective of long battery life for her phone;
with that piece of information, the RS can present the user with the
reason against buying the Red Phone because it has a short duration
battery. We have implemented S5 by assuming that an objective
function is known; however, this is not a realistic assumption and
future work should address the elicitation of objectives at running
time.

To illustrate the implemented algorithm, suppose an RS recom-
mended N items in an ordered set I : {i1, i2, ...iN } to user u. In
Schema S1 (and S3) we de�ne as reason against an item ir the union
of reasons for each of its alternatives I\{ir } that are not reasons
for ir itself. Hence we must iterate over the alternatives, extracting
reasons for each one of them � � [�u,i 8i 2 I\{ir }. Note that
at this point we assume that function f , as described in Section 3.1,
is available. We then remove from � the reasons for our recommen-
dation of interest, if any. The remaining reasons � = �/�u,ir are
the reasons against ir – as presented in the Algorithm 1.

Regarding the implementation of Schema 4 (S4), we follow a very
similar procedure, except that instead of considering the union of
reasons for its alternatives, we take the intersection. That is, we just
replace the line 15 of the Algorithm 1 so as to take the intersection
of sets � � \ �u,i 8i 2 I\{ir }.

To close this section, consider an extended example using Scheme
S1. We focus on Scheme 1 due to the fact that it captures most of
the content of Scheme S3 as well; as noted already, Scheme 2 does
not seem conducive to a concrete implementation, and Scheme 5
requires elicitation of user objectives — �nally, as discussed later
in connection with our experiments, Scheme 4 does not seem very
promising in practice.

Example 3.1. We have built an RS to suggest University classes
called Ganimedes. A student asks for courses by presenting a few
topics to Ganimedes; the RS then uses information from syllabuses
and an associated knowledge graph to produce recommendations.
The knowledge graph, called USPedia, collects information about
topics and their relationships; it was automatically harvested from
Wikipedia pages [18]. We have de�ned a number of permissible
paths for explanations (Section 3.1). For instance, one of them is

Algorithm 1 Explanation Generation using Scheme S1

1: procedure �����������(i,u,�,G)
2: �u,i = {} . Set of reasons for i
3: for all � 2 � do
4: � f (u, i,� |G) . Function described in Section 3.1
5: �u,i �u,i [�
6: end for
7: return �u,i
8: end procedure
9: procedure ����������������S1(ir , u, I,�,G)
10: �u,ir {} . Set of reasons against ir
11: � = {}
12: �u,ir �����������(ir , u, �, G) . Set of reasons for ir
13: for i 2 I\{ir } do . Iterate over ir alternatives
14: �u,i �����������(i , u, �, G)
15: � � [�u,i
16: end for
17: �u,ir �\�u,ir
18: return �u,ir
19: end procedure

(subject, broader�, broader); as this permissible path indicates that
a subject is of the same broader category as another topic of interest.
That is, subject(X ,Y) broader(Z ,Y) broader(Z ,W) means that Y is
a topic of X, Z has the same broader categories of Y and W and,
�nally, that W is of the same broader category of a topic of X.

We assume that a course is likely to be about a given subject when
it deals with topics that are related to that subject. For instance,
a student who is a machine learning (ML) enthusiast would be
satis�ed with a course that is about statistical models even if the
course is not focused on ML itself.

Figure 2 conveys a number of explanations generated by our RS.
In this case, the student asked our RS for courses about Stochastic
Resonance, and was suggested classes with codes PME3430 and
PME3479. The RS found two reasons for PME3430 (Fig. 2a and Fig.
2b) and one for PME3479 (Fig. 2c). Note that both recommendations
share the reason for depicted in Fig. 2b and 2c, thus it cannot be a
reason against for none of them. On the other hand, the one in Fig.
2a is a reason for only PME3430; therefore, it is a reason against
PME3479. ⇤

4 EXPERIMENTS
In this section we describe experiments with simulated and real
users; we �rst examine the feasibility of our techniques in Section
4.1 and then we discuss the reaction of human users to our approach
in Section 4.2.

4.1 Evaluation of feasibility: simulated
interactions

We have �rst evaluated our proposal from two perspectives: (1) the
fraction of recommendations for which we can �nd at least one
explanation (we refer to it as coverage) and (2) the average number
of reasons we can �nd to support/attack a given recommendation
(we refer to it as support) [18, 27]. These metrics o�er a glimpse
at the workings of our proposal in a real-world scenario from a

FAccTRec2020, September 26, 2020, Online Gustavo P. Polleti, Douglas L. de Souza, and Fabio G. Cozman

PME3430

Robotic Sensing

Sensorial System

Stochastic Resonance

subject broader broader

(a) Reason for PME3430 and against PME3479.

PME3430

Auditive System

Sensorial System

Stochastic Resonance

subject broader broader

(b) Reason for PME3430.

PME3479

Auditive System

Sensorial System

Stochastic Resonance

subject broader broader

(c) Reason for PME3479.

Figure 2: Examples of S1 with two reasons for and against
the recommendation PME3430.

objective perspective. To carry out our experiments, we trained
an RS based on TransE [2] embedding from the USPedia knowl-
edge graph employed in Example 3.1, using the same set-up as in
Ref. [18]. We built our simulated interactions by asking for the
Top-4 recommendations of randomly sampled 100 cases. Next, for
each interaction, we used our proposed method to retrieve both
reasons for and against.

Regarding reasons for, Table 1 shows that we obtained 79.33%
coverage and a support mean of 2.0, similar results to those re-
ported in previous works [18, 27]. As for reasons against, we ran
our experiments considering Schemas S1 and S4. Both the coverage
(85.1%) and support (2.3) obtained for S1 are higher than those
from reasons for. This result was expected since S1 implementation
considers more aggregated reasons for alternatives than it removes
from the recommendation being explained.

On the other hand, Scheme S4 could not generate a single reason
against at all (coverage 0%!). As Scheme S4 requires that a reason
against an option must be a reason for all of its alternatives, it
imposes a restriction so rigorous that it is in fact unfeasible in
practice.

Explanation Type Coverage Support

Reason For 79.3% 2.0 ± 1.0
Reason Against (S1) 85.1% 2.3 ± 1.4
Reason Against (S4) 0% -

Table 1: Coverage and Support for reasons for and reasons
against using Schemas S1 and S4.

Metric Question

transparency The explanation on the right helped me under-
stand why the items were recommended better
than the explanation on the left

persuasion Based on the explanation on the right, I was
more prone to follow the recommendation than
based on the explanation on the left

engagement The explanation on the right helped me learn
more about the recommended items than the
explanation on the left

trust The explanation on the right contributed more
to increase my con�dence in the recommenda-
tions than the explanation on the left

e�ectiveness The explanation on the right made me more
con�dence about making the best choice than
the explanation on the left

Table 2: The �ve explanation metrics that subjects had to
take into account in the experiment.

4.2 Evaluation with Human Subjects
One could expect the fact that an RS can be built with reasons
for/against does not mean that human subjects would be satis�ed
with it; to determine whether indeed our approach is a valuable one,
we carried out an experiment to address the following questions:
1) Do reasons for/against have value for users?
2) Do reasons against reduce an RS persuasion?
3) Do users perceive a con�ict of interest in their interaction with
an RS?
4) Do reasons for/against in�uence user choices?

Our experiment took 31 subjects, all of which are undergraduate
students, and asked them to evaluate two RS implementations, one
displaying only reasons for recommendations, and the other dis-
playing reasons for and against them. Subjects were presented with
an e-commerce mock-up where they received recommendations
concerning smartphones. Each subject �rst received a recommen-
dation and one reason for, and was asked to select an item; then the
subject received a recommendation with one reason for and one
reason against, and was again asked to select an item. Note that we
avoided presenting too many reasons at once. Figure 3 depicts the
information presented.

Each subject then evaluated the two RSs individually using �ve
explanation metrics [25] that are presented in Table 2. Each subject
ranked each RS with respect to each explanation metric using a
survey-based Likert psychometric scale [9] from 1 to 5 (standing
for “Strongly disagree”, 2 “Disagree”, 3 “Neither agree nor disagree”,
4 “Agree”, and 5 “Strongly agree”). This scale was used to reduce
central tendency and social desirability biases where subjects do not
want to be identi�ed with extreme positions. Finally, each subject
could write a short free text with thoughts about the RSs.

Figure 4a shows the percentage of responses given by subjects.
Responses, notably for engagement, trust and e�ectiveness, are con-
centrated around scores 4 and 5. This result indicates that users
mostly agree that showing reasons against a recommendation adds

Why should I not follow you? Reasons For and Reasons Against in Responsible Recommender Systems FAccTRec2020, September 26, 2020, Online

Figure 3: Experiment: just one reason for (left); one reason for and one reason against (right).

value with respect to trust, engagement and e�ectiveness of RS.
Figures 4a and 4b show that there was a divergence amongst users
about whether the proposed explanation paradigm increases trans-
parency. As our method is model-agnostic (it makes no assump-
tions about the RS internal behavior), the explanations were unable
to shed light on how items were actually recommended. As the
transparency score peaked around 3, this does not mean reasons
for/against were adverse to transparency; it means that they were
as good as just reasons for.

We expected a possible drawback of our proposal would be a re-
duction in persuasion (as reasons against might make the users less
likely to follow recommendations). Figure 4b shows that the down
whisker is longer for persuasion than it is for trust, engagement
and e�ectiveness. However, note that the boxplot for persuasion
is skewed up; thus most users felt more convinced when reasons
against were present. By doing a further analysis of textual com-
ments, we found out that persuasion increases are produced by
higher trust in the RS. Consider two comments:

1) I always think that recommendations that bring posi-
tive and negative aspects are fairer, and could in�uence
me more into buying the product, once I feel I am not
being misled.
2) As the �rst example [the �rst RS] shows only strong
points for each product, it leads the user to have a certain
mistrust about the suggestions.

Comments also indicate that many users expect the RSs to try
to lead them into a decision, sensing a con�ict of interest in the
process. Consider the following comment:

3) Di�erently from marketing which always idealize
the product, this one seems to show the reality about it,
thus I feel I understand the recommended product in its
real form.

These comments corroborate our hypothesis that, indeed, rea-
sons against have a signi�cant positive impact on the user decision-
making process. As a matter of fact, a full 45% of our test subjects
changed their choices after we presented reasons against.

(a) Visual representation for explanation metrics average scores.

(b) Boxplots for the explanation metrics.

Figure 4: Results from the experiment with human subjects.

FAccTRec2020, September 26, 2020, Online Gustavo P. Polleti, Douglas L. de Souza, and Fabio G. Cozman

5 CONCLUSION
In this paper we have proposed a novel feature for RSs, whose goal
is to enhance trust by acting responsibly; namely, we investigated
the generation of reasons for and against recommendations. By
displaying such reasons, an RS not only helps the user to reach
the most rewarding decision, but the RS acts on its own interest in
building trust.

We have developed ways to generate reasons for/against using
an auxiliary KG by adapting Snedegar’s theory of practical reason-
ing. Our implementation demonstrates that additional calculations
needed to generate such reasons do not a�ect overall performance.
By implementing Snedegar’s theory we have found di�culties with
some of his schemes for reasons against; we suggest that his Scheme
1 is the most appropriate in practice at the moment. Moreover, our
experiment with human subjects demonstrated that reasons against
can signi�cantly increase trust, engagement, and even persuasion.
Overall we demonstrated that adding reasons against items does
improve RSs.

Future work should investigate how much information should
be given to users when presenting reasons for/against. It would
also be useful to explore mental models of the user so as to extract
quantitative objectives to use in Snedegar’s Scheme S5. Moreover,
it would be important to evaluate our proposals at scale.

6 ACKNOWLEDGMENTS
This work was carried out with the support of Itaú Unibanco S.A.;
the second author has been supported by the Itaú Scholarship Pro-
gram (PBI), linked to the Data Science Center (C2D) of the Escola
Politécnica da Universidade de São Paulo. The third author has
been partially supported by the Conselho Nacional de Desenvolvi-
mento Cientí�co e Tecnológico (CNPq), grant 312180/2018-7. This
work has been partially supported by the Fundação de Amparo
à Pesquisa do Estado de São Paulo (FAPESP), grant 2019/07665-4.
We acknowledge support by CAPES �nance code 001. We are also
grateful to the Center for Inovation at Universidade de São Paulo
(InovaUSP) for hosting our lab.

REFERENCES
[1] M. Alshammari, O. Nasraoui, and S. Sanders. 2019. Mining Semantic Knowledge

Graphs to Add Explainability to Black Box Recommender Systems. IEEE Access 7
(2019), 110563–110579. https://doi.org/10.1109/ACCESS.2019.2934633

[2] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Durán, Jason Weston, and Ok-
sana Yakhnenko. 2013. Translating Embeddings for Modeling Multi-Relational
Data. In Proceedings of the 26th International Conference on Neural Information Pro-
cessing Systems - Volume 2 (Lake Tahoe, Nevada) (NIPSâĂŹ13). Curran Associates
Inc., Red Hook, NY, USA, 2787âĂŞ2795.

[3] Finale Doshi-Velez and Been Kim. 2017. Towards A Rigorous Science of Inter-
pretable Machine Learning. http://arxiv.org/abs/1702.08608 cite arxiv:1702.08608.

[4] Evan Estola. 2016. When Recommendation Systems Go Bad. In Proceedings of
the 10th ACM Conference on Recommender Systems (Boston, Massachusetts, USA)
(RecSys âĂŹ16). Association for Computing Machinery, New York, NY, USA, 367.
https://doi.org/10.1145/2959100.2959117

[5] Ruining He, Wang-Cheng Kang, and Julian McAuley. 2017. Translation-Based
Recommendation. In Proceedings of the Eleventh ACM Conference on Recommender
Systems (Como, Italy) (RecSys âĂŹ17). Association for Computing Machinery,
New York, NY, USA, 161âĂŞ169. https://doi.org/10.1145/3109859.3109882

[6] Veronika Henk, Sahar Vahdati, Mojataba Nayyeri, Mehdi Ali, Hamed Shariat
Yazdi, and Jens Lehmann. 2018. Metaresearch Recommendations using Knowl-
edge Graph Embeddings.

[7] Xiao Huang, Jingyuan Zhang, Dingcheng Li, and Ping Li. 2019. Knowledge
Graph Embedding Based Question Answering. In Proceedings of the Twelfth
ACM International Conference on Web Search and Data Mining (Melbourne VIC,

Australia) (WSDM âĂŹ19). Association for Computing Machinery, New York, NY,
USA, 105âĂŞ113. https://doi.org/10.1145/3289600.3290956

[8] Y. Koren, R. Bell, and C. Volinsky. 2009. Matrix Factorization Techniques for
Recommender Systems. Computer 42, 8 (2009), 30–37.

[9] Rensis Likert. 1932. A Technique for the Measurement of Attitudes. Archives of
Psychology 140 (1932), 1–55.

[10] Hao Ma, Dengyong Zhou, Chao Liu, Michael R. Lyu, and Irwin King. 2011.
Recommender Systems with Social Regularization. In Proceedings of the Fourth
ACM International Conference on Web Search and Data Mining (Hong Kong,
China) (WSDM âĂŹ11). Association for Computing Machinery, New York, NY,
USA, 287âĂŞ296. https://doi.org/10.1145/1935826.1935877

[11] Paolo Massa and Paolo Avesani. 2007. Trust-Aware Recommender Systems. In
Proceedings of the 2007 ACM Conference on Recommender Systems (Minneapolis,
MN, USA) (RecSys âĂŹ07). Association for Computing Machinery, New York, NY,
USA, 17âĂŞ24. https://doi.org/10.1145/1297231.1297235

[12] Silvia Milano, Mariarosaria Taddeo, and Luciano Floridi. 2020. Recommender
systems and their ethical challenges. AI & SOCIETY 35 (2020). https://doi.org/
10.1007/s00146-020-00950-y

[13] Tim Miller. 2019. Explanation in arti�cial intelligence: Insights from the social
sciences. Arti�cial Intelligence 267 (2019), 1 – 38. https://doi.org/10.1016/j.artint.
2018.07.007

[14] Christoph Molnar. 2019. Interpretable Machine Learning. [Online]. https:
//christophm.github.io/interpretable-ml-book/.

[15] Cataldo Musto, Fedelucio Narducci, Pasquale Lops, Marco de Gemmis, and Gio-
vanni Semeraro. 2019. Linked open data-based explanations for transparent rec-
ommender systems. International Journal of Human-Computer Studies 121 (2019),
93 – 107. https://doi.org/10.1016/j.ijhcs.2018.03.003 Advances in Computer-
Human Interaction for Recommender Systems.

[16] Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. 2015.
A Review of Relational Machine Learning for Knowledge Graphs. https://doi.
org/10.1109/JPROC.2015.2483592 cite arxiv:1503.00759Comment: To appear in
Proceedings of the IEEE.

[17] John OâĂŹDonovan and Barry Smyth. 2005. Trust in Recommender Systems.
In Proceedings of the 10th International Conference on Intelligent User Interfaces
(San Diego, California, USA) (IUI âĂŹ05). Association for Computing Machinery,
New York, NY, USA, 167âĂŞ174. https://doi.org/10.1145/1040830.1040870

[18] G. P. Polleti, H. N. Munhoz, and F. G. Cozman. 2020. Explanations within Con-
versational Recommendation Systems: Improving Coverage through Knowledge
Graph Embedding. In 2020 AAAI Workshop on Interactive and Conversational
Recommendation System. AAAI Press, New York City, New York, USA.

[19] Marco T. Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Model-Agnostic
Interpretability of Machine Learning. arXiv:1606.05386.pdf http://arxiv.org/abs/
1606.05386.pdf

[20] Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B. Kantor. 2010. Recom-
mender Systems Handbook (1st ed.). Springer-Verlag, Berlin, Heidelberg.

[21] Ruslan Salakhutdinov and Andriy Mnih. 2007. Probabilistic Matrix Factorization.
In Proceedings of the 20th International Conference on Neural Information Processing
Systems (Vancouver, British Columbia, Canada) (NIPSâĂŹ07). Curran Associates
Inc., Red Hook, NY, USA, 1257âĂŞ1264.

[22] Rashmi Sinha and Kirsten Swearingen. 2002. The Role of Transparency in Recom-
mender Systems. In CHI ’02 Extended Abstracts on Human Factors in Computing
Systems (Minneapolis, Minnesota, USA) (CHI EA ’02). ACM, New York, NY, USA,
830–831. https://doi.org/10.1145/506443.506619

[23] Justin Snedegar. 2018. Reasons for and reasons against. Philosophical Studies 175,
3 (2018), 725–743.

[24] Maartje ter Hoeve, Anne Schuth, Daan Odijk, and Maarten de Rijke. 2018. Faith-
fully Explaining Rankings in a News Recommender System. CoRR abs/1805.05447
(2018). arXiv:1805.05447 http://arxiv.org/abs/1805.05447

[25] Nava Tintarev and Judith Mastho�. 2007. A Survey of Explanations in Recom-
mender Systems. In Proceedings of the 2007 IEEE 23rd International Conference on
Data Engineering Workshop (ICDEW ’07). IEEE Computer Society, Washington,
DC, USA, 801–810. https://doi.org/10.1109/ICDEW.2007.4401070

[26] W3. 2019. RDF 1.1 Concepts and Abstract Syntax. https://www.w3.org/TR/2014/
REC-rdf11-concepts-20140225/

[27] Wen Zhang, Bibek Paudel, Wei Zhang, Abraham Bernstein, and Huajun Chen.
2019. Interaction Embeddings for Prediction and Explanation in Knowledge
Graphs. Proceedings of the Twelfth ACM International Conference on Web Search
and Data Mining (Jan 2019). https://doi.org/10.1145/3289600.3291014

[28] Yongfeng Zhang and Xu Chen. 2018. Explainable Recommendation: A Survey
and New Perspectives. CoRR abs/1804.11192 (2018), 1–101. arXiv:1804.11192
http://arxiv.org/abs/1804.11192

103

ANNEX B – RELATED PAPER - UMUAI

2023

The following paper is under review by the UMUAI Special Issue on Conversational
Recommender Systems: Theory, Models, Evaluations, and Trends.

We previously sent an expanded abstract and received approval for submitting the
journal paper.

Generating Explanations for Knowledge-Aware
Conversational Recommendation Systems

Gustavo P. Polleti†, Douglas L. de Souza† and Fabio G. Cozman

Escola Politécnica, Universidade de São Paulo, Av. Prof. Luciano
Gualberto, São Paulo, 05508-010, SP, Brazil.

*Corresponding author(s). E-mail(s): gustavo.polleti@usp.br;
Contributing authors: douglas.luan.souza@usp.br; fgcozman@usp.br;

†These authors contributed equally to this work.

Abstract
Conversational recommendation systems can greatly benefit from techniques that
explain the reasons behind their actions. We propose techniques that generate
explanations by resorting to an auxiliary knowledge graph and an associated
knowledge embedding. By exploiting the embedding plausibility score in depth
first search, we present a method that effectively generates reasons for a rec-
ommendation. We then propose a host of techniques to generate balanced
reasons both for and against a recommendation, so as to enhance user trust
in the conversational recommendation system. To do so, we develop a concrete
implementation of Snedegar’s theory of reasons for/against. Experiments at func-
tional, human, and application levels demonstrate that our proposals do improve
the interpretability of conversational recommendations systems with controlled
computational cost.

Keywords: Conversational Recommendation Systems, Explainable AI,

Interpretability, Knowledge Graphs

1 Introduction
Regardless of how accurate a recommendation system may be, users can always reject
recommendations they do not trust. Not surprisingly, the interpretability of recom-
mended options has received significant attention in the literature on recommendation

1

systems [1–3]. Detailed studies suggest that users prefer to follow recommendations
that are properly escorted by some sort of explanation [4].

In this paper we introduce a number of novel, model-agnostic, explanation
generation techniques for knowledge-aware conversational recommendation systems.

The fact that we deal with conversational recommendation systems (CRSs) raises
a number of specific challenges [5]. While existing explanation generation methods are
designed to work offline and may take up to minutes to generate an explanation [6, 7],
conversational recommendation systems operate online and must therefore be respon-
sive; if an explanation is to be provided, then it must be produced quickly. No user
will wait a minute to grasp the reasons why a particular product has been suggested.

Explanation generation methods that meet tight time constraints typically employ
large-scale knowledge graphs to display connections between chosen and recommended
items [8–10]. However, the effectiveness of such methods is limited because knowledge
graphs themselves are often incomplete [11]; many recommendations may remain un-
explained due to missing links [12, 13]. This is particularly damaging for conversational
recommendation systems because users can be easily disappointed if the system fails
to respond when asked for an explanation. Our proposed techniques, which benefit
from knowledge embeddings [11, 14], deal with time constraints and knowledge graph
incompleteness simultaneously.

Although existing explanation methods do reach some degree of interpretability [1–
3], such methods typically provide only positive aspects of a recommendation [15, 16].
This does not offer a balanced perspective to the user, ultimately squandering overall
trust [17]. Such methods might be compared to a salesperson who always proposes
products with complimentary words, as opposed to the salesperson who frankly dis-
cusses the advantages and disadvantages of the products; a perceptive customer will
gradually favor a salesperson who chooses sincerity over persuasion. Similarly, a proper
explanation method should fully inform the human end-users so they can make an
informed decision when choosing to either follow or to reject a recommendation.

We use Snedegar’s theory of reasons [18], a philosophical theory of practical rea-
soning, to develop explanation generation methods that provide explanations with
both reasons for and against the system’s recommendations. In short, our methods
start from existing procedures that generate reasons for by processing and analyzing
paths in knowledge graphs [10, 19]. We then modify such procedures so as to detect
paths (or their absence) that count as reasons against. Snedegar’s theory relies on
five schemes of “reasons against”; we examine their computational implementation in
conversational recommendation systems and identify the most promising strategies.

We have evaluated our approach through user studies (to examine overall trust in
balanced explanations) and through simulated interactions with a real-world data-set
(to evaluate performance in several dimensions). We show that our proposed methods
are feasible and able to meet strict time constrains for conversational recommendation
systems. The user studies show evidence that our techniques have a beneficial impact
on the user perspective.

The paper is organized as follows. Section 2 presents some basic notions on general
and conversational recommendation systems, interpretability, knowledge graphs and
embeddings, mostly to fix terminology. In Section 3 and Section 4 we propose novel

2

techniques and describe them in detail. We then present our experiments and analysis
in Sections 5 and 6, and offer concluding remarks in the last section.

2 Background
This section summarizes a few relevant issues related to conversational recommenda-
tion systems and to interpretability (Section 2.1), as well as basic notions related to
knowledge graphs and knowledge embeddings (Section 2.2). It then reviews literature
that is directly tied to the topic of this paper (Section 2.3).

2.1 Recommendation Systems and Interpretability
Recommendation systems support decision-making processes in scenarios with a large
variety of options [20]. Primitive recommendation systems can be traced back to rank-
ings of best movies or lists of top ten artists that can still be seen in magazines and
newspapers to date. Those rudimentary tools, however, do not take into account user-
specific intentions. Recommendation systems, on the other hand, take user-specific
interests to be a central guide in finding recommendations.

There are many ways to implement a recommendation system, depending on
how the system handles similarities among items and users. Implementations have
been classified into six different groups: Content-based, Collaborative filtering, Demo-
graphic, Knowledge-based, Community-based and Hybrid [21]. In practice, successful
strategies often take a hybrid approach [20].

One way to build content-based systems is to map semantically rich features into
numerical vectors, so as to operate with numerical vectors that capture the underlying
semantics. Such embeddings are expected to map similar items to nearby vectors; thus
one can select items that are similar to any given item.

State-of-the-art recommendation systems take into account substantial informa-
tion, to the point that some systems seem to “know more about users preferences
than the users themselves” [22]. However, this improvement in accuracy has produced
opaque models, often based on embeddings, that harm overall interpretability [23].
Here we define interpretability, rather concisely, as the degree to which a human
can understand the cause of a decision [24]. Note that a device may be transparent
in that the user can access all elements of its operation, yet its output may have
low interpretability. When interpretability is low, one possible strategy is to generate
explanations for the decisions [25–27].

An explanation can be perceived as the answer to a “why” question [24]. For exam-
ple, popular methods from the literature typically answer the question “why did the
model yield a certain output given its input?” To answer such a question, explanations
list the features or input values most correlated with the model output [28]. These
methods explain outputs on the assumption that features themselves are interpretable,
a weak assumption in the context of embeddings and recommendation systems. When
applied to embeddings, explanations might be, for instance, that “dimensions 158 and
254 are significant for the recommendation” — a sentence that is hard to interpret as
such an explanation convey little meaning. We obviously hope that every recommenda-
tion can be properly explained; in practice, a system may fail to provide explanations

3

in some cases. The fraction of recommendations that are explained is the coverage of
the explanatory process.

Furthermore, instead of understanding why a given item was recommended, users
may be more interested in why they should follow a given recommendation and not
its alternative options. Hence the goal of explanation generation in recommendation
systems may differ from the objectives in most of the explainability literature.

The act of explaining requires a social interaction between at least two agents: the
explainer and the explainee. The explanation model proposed by Miller argues that
the explanation is a compound process with two steps: the cognitive and the social.
While the first describes the process of identifying the causes of why a given decision
was made, the second is the process of conveying or communicating such reasons
to the explainee. Figure 1 offers a visualization of this process, that starts with the
opaque black-box model, for which we find the explanations comprising the cognitive
and social phases; then the explanation is given to the inquirer, the explainee.

2.2 Knowledge Graphs and Knowledge Embeddings
An emergent class of state-of-the-art content-based techniques, knowledge-aware ones,
typically benefit from knowledge graphs to model item contents [14, 29]. Such struc-
tures provide enough flexibility to describe items through multiple sources and formats
(e.g. tabular, image, text, etc) so that the recommendation content can be modeled
more finely than traditional user-item interaction matrices. In this work we analyze
graph-like approaches from the unified perspective of knowledge graphs and their
related embedding models, often referred to as knowledge embeddings.

We loosely follow RDF notation [30], focusing on data-sets where a triple represent-
ing a fact is denoted by hh, r, ti where h, r and t are, respectively, the subject (head),
predicate (relation) and object (tail). A knowledge graph KG is defined by triples
containing entities in set E = {e1, . . . , eNe} and relations in set R = {r1, . . . , rNr}.
The presence/absence of a triple xh,r,t = hh, r, ti is indicated by a random vari-
able yh,r,t 2 {0, 1}. For instance, the information that “Exoplanets is a topic of
Astronomy” can be described as the triple hExoplanets, topic_of,Astronomyi, in which
both Exoplanets and Astronomy are entities, and topic_of is the relation connecting
them. A knowledge graph consists of a collection of triples where the head and the
tail represent nodes and the relation is a directed edge connecting head to tail.

Large-scale knowledge graphs often have limited applicability due to their severe
incompleteness. For instance, the place of birth attribute was missing for 71% of all
people in Freebase in 2012 [11]. While existing triples encode known true or positive
relationships between entities, there is no explicit representation for false relationships
in a knowledge graph. For instance, the statement: “JaneDoe has a son called BobDoe”
can be encoded by the triple hJaneDoe, son,BobDoei. However the exact opposite, i.e.
“JaneDoe does not have a son called BobDoe” is usually encoded by the absence of
the triple. Such semantics does not distinguish between false and unknown facts in a
knowledge graph; hence the incompletness represents an even more severe limitation.

Several approaches have been developed to address the task of Knowledge Base
Completion (KBC), i.e. to find true or false facts among the unknown triples in
a knowledge graph [11]. Approaches based on knowledge embeddings now display

4

Black-Box Model Cognitive Social Explainee

Explanation

Figure 1 Visual representation of the explanation processes.

state-of-the-art performance in knowledge base completion [31]. Knowledge embed-
dings operate by learning latent features from observed data and using them to
infer missing facts in the original knowledge graph. Typically, a model based on
an embedding defines a particular scoring function fr(h, t | ⇥) to measure the
plausibility of fact hh, r, ti, where ⇥ is a set of parameters. The greater the plau-
sibility score for a given fact, the more likely it is to hold. For instance, one can
infer the triple hExoplanets, topic_of,Astronomyi by evaluating the plausibility score
ftopic_of(Exoplanets,Astronomy | ⇥). Even though the plausibility function depends
on the embedding model, its intuition is similar to a measure of distance between
knowledge graph entities represented in an embedding space. The closer the enti-
ties embeddings are in this learned space, the more plausible their relationship is to
hold. To illustrate, one simple plausibility function is the Euclidean norm of the dis-
tance between the tail and the head entity embeddings after a linear translation, i.e.
� k h+ r� t k 1

2
; this is exactly the TransE model [32].

Despite being originally proposed for knowledge base completion, knowledge em-
beddings are also used to produce recommendations [14, 33]. Proposals in the literature
typically employ the plausibility scoring function to rank entities and to return those
with the highest plausibility as recommendations. Even though these approaches are
accurate, they are not interpretable as they operate in the latent space of embeddings,
and they do not attempt to generate explanations for/with embeddings (as we do).

2.3 Finding Explanations in a Graph
There has been significant effort to endow conversational recommendation systems
with explanatory facilities. In this section we review the relevant literature about this
topic. We first discuss methods that build explanations connected with knowledge
embeddings, and then we will examine approaches that build explanations out of
varied sources.

There are several techniques that try to interpret the content of specific knowledge
embeddings, such as SimplE [34], ITransF [35] and CrossE [36]. SimplE looks at each
dimension of an entity embedding as a feature, and takes the corresponding relation
representation as a measure of that feature’s importance to the relation. Even though
this approach reaches a certain degree of transparency, it does not really interpret
the embeddings. Similarly to SimplE, ITransF also deals with interpretability at the
level of individual mappings between entities and relations to vectors. ITransF pro-
poses a version of the attention mechanism, usually employed to define the transformer
architecture [37], to find shared concepts among relations. For instance, relations
nominated_for and honored_for are both connected to similar concepts even though
they are distinct. The attention mechanism of ITransF identifies concepts, but does

5

not really interpret them. Insights generated by SimplE and ITransf provide some de-
gree of interpretability, mostly understandable by experts, but those techniques focus
on internal structure encapsulated through numeric quantities.

On the other hand, CrossE exploits a particular type of interaction between
relations and entities, referred to as crossover interactions, to explain embedding pre-
dictions through symbolic means. As such, CrossE is clearly related to proposals we
advance later. To illustrate the behavior of CrossE, suppose one has to explain the
triple hJohn, father_of,Bobi. An explanation that supports this triple could be the
path haswife����! haschild����! connecting head and tail entities. The output of CrossE is easily
interpretable and faithful to the underlying knowledge graph, but CrossE cannot ex-
plain all triples as it is affected by incompleteness of the knowledge graph; another
drawback of CrossE is that it is not affected by negative instances (absence of triples).
Furthermore, CrossE restricts its explanations to crossover interactions, while other
proposals in the literature suggest that more expressive types of graph features can
produce better explanations [12, 38].

Techniques discussed in the previous paragraphs are model-specific; we now
examine a few model-agnostic approaches in the literature.

Gusmão et al. [12] introduced procedures, collectively referred as “eXplainable
Knowledge Embeddings” (XKE), that use knowledge embeddings to generate predic-
tions from a given input and then produce explanations as paths extracted using the
Subgraph Feature Extraction (SFE) algorithm [38]. These paths, together with the
output produced by the knowledge embedding, are used to train an interpretable ma-
chine learning model that serves as a surrogate for the complex knowledge embedding
to be explained. However, the incompleteness of knowledge graphs causes XKE to
miss explanations for some recommendations (that is, XKE has low explanation cov-
erage). In variants of XKE, missing links are “filled in” by the surrogate model itself
(a logistic regressor in reported implementations).

The various relevant existing approaches are summarized in Table 1. In the next
sections we offer improvements over previous techniques so as to close a few research
gaps we have identified in our practical evaluation of systems. We should also mention
the work of Mauro et al. [39], which examines strategies to communicate explanations
to users; our experimental study is similar to theirs.

3 High Coverage Explanations through Embeddings
In this section we describe the sort of Conversational Recommendation System (CRS)
we deal with in the present work, and propose techniques to improve coverage through
knowledge embeddings. This sets the stage for our main contributions, described in
Section 4.

We suppose the CRS receives a query from the user; the query asks for a topic
of interest that is represented as an entity eh in an auxiliary knowledge graph. The
CRS must then find items (entities) that are linked to the entity eh though some
relation r that represents the affinity between the user preference and the items. That
is, the system must find triples following the pattern heh, r, eti for possibly many
tail entities et. To do so, the CRS must predict links connecting various entities; we

6

Table 1 Comparative summary of related works. Note: we use X-DFS-KE to refer to the

“Explanations based on DFS over Knowledge Embeddings” proposed by [40]; we use X-DFS-FA to

refer to the “Explanations For/Against by DFS” [41].

Method Lay User Agnostic Faithful RT High Cov. Resp.

SimplE [34] No No - No Yes No
ITransF [35] No No - No Yes No
CrossE [36] Yes No Yes Yes No No
XKE [12] Yes Yes No Yes No No
LISTEN [6] Yes Yes Yes No Yes No
ExpLOD [42] Yes Yes No Yes No No
ASEMF_UIB [19] Yes Yes No Yes No No
X-DFS-KE [40] Yes Yes Yes Yes Yes No
XFA-DFS [41] Yes Yes Yes Yes – Yes

suppose that link prediction operates using a selected knowledge embedding. That is,
the CRS returns the top N ranked entities, where N is an hyper-parameter fixed for
the CRS, and the ranking follows the plausibility score fr(eh, et | ⇥) specified through
the embedding; here the score given by the embedding is a predicted measure of how
strong the item entities relate to the user preference. Note that parameters ⇥ are tied
to the embedding and are learned from previously processed training data.

To illustrate, take a system that recommends classes to students based on a
given topic of interest. Suppose a student sends the query “recommend me something
about Astronomy to which the CRS might produce the output “I recommend you
Exoplanets101”. The CRS presumably identified Astronomy as the topic (item) of inter-
est, and found the possible classes to recommend by accessing a previously computed
list T containing the plausibility of a link to each entity in its auxiliary knowledge
graph through the relation subject. Possibly the CRS had several entities at its dis-
posal in descending order of plausibility, from Exoplanets101 to say Mechanics101,
Mechanics202, and so on. In our example, we have

T =

2

64
fsubject(Astronomy,Exoplanets101|⇥)

...
fsubject(Astronomy,Mechanics202|⇥)

3

75 .

Note that this conceptual model of the CRS is agnostic to the specific embedding
and plausibility function, as it only assumes the existence of a plausibility function.
In short, the CRS recommends the entities that best fill in the query heh, r, ?i, where
r is a relation modelling how tail entities meet user preferences eh.

In this context, we assume that explanations should assist users in their decision-
making processes, so as to let them choose the best possible options in harmony with
their own opinions, even if their best decision is not to follow recommendations at all.
In this section we focus on techniques that generate reasons for selecting a particular
recommended item; in the next section we expand the discussion to include reasons
against items.

7

We introduce a novel method that produces explanations in a feasible time, fash-
ioned for online and interactive systems as required by CRSs, while resorting to
knowledge graphs that may be incomplete. We should emphasize that speed is of the
essence: in a CRS, the user must not wait too much. We have tried solutions based
on surrogate methods and topic models,1 only to find that they were too slow. As
we demonstrate in our experiments (Section 5), the direct strategy we present here is
indeed effective in practice.

An explanation is here a path of length at most L, where L is an hyper-parameter,
starting and ending at selected entities eh and et. For instance, we may find the ex-
planation for an example where the user wishes to learn about Astronomy and receives
Exoplanets101 by examining the following part of the knowledge graph:

Astronomy
subject����! Exoplanets

subject����! Exoplanets101.

We refer to such a graph fragment as a reason for a recommendation.
We build explanations by first selecting a set of paths ⇧L of length at most L;

for instance, we may focus on paths that have sequences of links labeled with relation
subject, or perhaps by either subject or topic_of. We take the construction of ⇧L

to be domain-dependent; of course one may use all possible paths of length at most
L, but this may be unfeasible. There is a trade-off, of course: if one selects too few
paths, good explanations may be unavailable. We find it reasonable to assume that
a professional building a CRS will be able to impose sensible restrictions on possible
paths (or perhaps consult a domain expert that will do so). For large knowledge graphs,
automated methods such as graph feature selection algorithms [38] may be needed.

To generate an explanation, we go through every path ⇡ 2 ⇧L starting from eh,
using a depth-first search (DFS). If the search reaches et, the path from eh to et is
a possible explanation. Note that the search-tree height is at most L; that is why we
use DFS instead of, for example, breadth-first search.

The drawback of a DFS that only uses links in fact present in the knowledge graph
is low coverage, by which we mean that many pairs of entities may not be connected
by any path. Ideally, we would like to have a hundred percent coverage, covering every
recommendation with an explanation. In preliminary testing, we have observed that
the number of paths generated in usual knowledge graphs is rather low, given that
such graphs are sparse. We need to improve coverage by moving beyond the edges that
are in the knowledge graph; we do so by running the search in an enlarged (weighted)
graph.

That is, we wish to run the search in the space containing completions of the
knowledge graph as established by the knowledge embedding. However, the embedding
is a continuous mapping, not a graph. How do we conduct DFS on it? Our solution is
to build a weighted graph Ĝ from the knowledge embedding. We build Ĝ by adding
links connecting all entities, and weighing those links by their plausibility score as long
as the score is higher than a threshold �r (note that there is a threshold per relation).
This obviously assumes that the higher the plausibility, the more we should expect the

1Some of those solutions have been discussed in previous workshop papers [7, 40, 41]; those publications
also mention some of the ideas that we explore, with substantial improvements, in the present paper.

8

eh

e1 e2 . . . en

ei ej et

1 3

2 4 5

Figure 2 Depth-First Search toy example.

link to be present — an assumption that is aligned with the behavior of embeddings.
Note that we do not have to build a graph in memory; we simply run DFS with the
possible moves encoded by the embedding. That is, we prioritize edges with a high
plausibility in the DFS. The result is that paths resemble the ones produced by the
Path Ranking Algorithm for knowledge graph completion [43].

To summarize, an explanation is a sequence of relations ⇡ = {r1, r2, . . . , rL}, that
is built only if we can find triples from the selected eh to et going through the relations,
such that each triple hei, rk, eji either is in the original knowledge base, or displays
a plausibility score such that frk(ei, ej |⇥) > �rk . The DFS starts from eh, moving
downward, according to the plausibility scores, to another entity. Even though the
search must stop as the number of possible paths is finite, it may be useful to abort
the process after some practical time limit (we do so in our implementation).

To illustrate this procedure, consider the example of a DFS in Figure 2. The nodes
are sorted from the highest plausibility score on the left to the lowest on the right.
The numbers on the edges show the order each node is visited. Please also consider
the toy example in Figure 3; it indicates that Exoplanets101 is recommended because
it is about Exoplanets, which is a topic of Astronomy. The graph also contains the
explanation for recommending Aeronautics102 because it teaches Rocket Science that
is also a topic of Astronomy. Note that the student wishes to learn about Astronomy

in this case.

4 Responsible Explanations through Reasons-Theory
We have developed, in the last section, a model-agnostic method that generates fast
and faithful explanations based on an auxiliary knowledge graph and an associated
knowledge embedding, while keeping high coverage (that is, a high percentage of rec-
ommendations are duly explained). We have thus addressed the cognitive phase of the
explanatory process, in the sense of Miller [24], as depicted in Figure 1. However, ex-
planations so far do not shed any light on possible downsides of recommended items:
Users may feel that the explanations are given solely to persuade them to agree with
the recommendation system, and may lose their trust in the system.

We now move to our main contribution, where we look at the social phase of the
explanatory process; we focus on the construction of explanations that contain both
reasons for and reasons against recommendations. We claim that both kinds of reasons

9

Exoplanets101 Astronomy

Aeronautics102Exoplanets

Rocket

Science

subject

subject

subject

subject
subject

topic_of

topic_of

Figure 3 Sub-graph illustrating reasons for Exoplanets101 and Aeronautics102. For example, the

path Exoplanets101
subject�����! Exoplanets

topic_of
������! Astronomy is a reason for Exoplanets101.

must be communicated to users so that they can appropriately trust recommendations
and decide what is in their best interest.

We thus focus on the main technical challenge in this work: how to generate reasons
against a particular recommendation. To do so, we resort to the literature on practical
reasoning in Philosophy. There, we find Snedegar’s rather comprehensive theory of
reasoning [18], a philosophical study of the nature of reasons for and reasons against
given options.

Snedegar classifies five schemes through which an agent contemplating competing
options may build reasons against options. We give a summary of these views below,
which we refer to as Schemes S1, S2, S3, S4, and S5.

1. (S1): a reason against an item A is a reason for a competing option;
2. (S2): a reason against an item A is only a reason for not A (and not for any

particular other option);
3. (S3): a reason against an item A is a reason for the disjunction of alternatives.
4. (S4): a reason against an item A is a reason for the conjunction of alternatives.
5. (S5): a reason against an item A explains (or is part of the explanation as to)

why A promotes or respects some objective less well than some other option.2
Snedegar has defined these schemes at a highly abstract level, so much so that he

distinguishes S1 and S3, a distinction that in our instantiation is not relevant. For us
to succeed in bringing those ideas to the realm of CRSs, we must translate them to
a more concrete form. We do so by discussing specific instantiations in the remainder
of this section.

Our instantiation of S1 generates a reason against a given item by generat-
ing reasons for other possible items. For instance, take the case where the system
has recommended two classes for someone wishing to learn about Astronomy —
Exoplanets101 and Aeronautics102 (Figure 3). A reason against Exoplanets101 would be
that Aeronautics102 is about Rocket Science. The intuition behind S1 is similar to the
concept of opportunity cost. If one chooses Exoplanets101 instead of Aeronautics102

they will miss the opportunity to learn (or learn less) about rocket science.
Suppose, then, that a system suggests item et as a recommendation related to

entity eh. We define as � the function that starts with the knowledge embedding
parameters ⇥ and the path ⇡, takes inputs eh and et, and returns a set of reasons
for the recommendation of et for the topic eh. The function � represents the cognitive

2This scheme requires specifying a quantitative objective.

10

process of an explanation, and, in the context of this work, it is produced by the
DFS-style algorithm in Section 3.

Scheme S2 is rather obvious in real life (a reason against buying a particular
product may be that it is known to cause some damage to the environment). However,
Scheme S2 does not seem relevant in our context, as we usually have connections
among users and items, not reasons specifically against products. We decided not to
explore this scheme any further.

Our instantiation of S3 simplifies Snedegar’s scheme; it goes through all competing
options, collecting reasons for them that are not reasons for the option of inter-
est. In our running example, we can imagine there is a third recommended course,
Astrobiology101, and as reasons against Exoplanets101 we have that Aeronautics102,
Astrobiology101, or both of them are about rocket science. But we will only present two
options at a time, as noted above. In our approach, both S1 and S3 produce identical
reasons against.

The instantiation of S4 is similar in spirit to that of S3 to the extent that S4 takes
reasons for all competing options into account (reasons against according to S4 are
also reasons against according to S3). An example of a reason against Exoplanets101

using S4 would be that necessarily both Astrobiology101 and Aeronautics102 from the
example above are about rocket science. The stringent nature of this scheme, where
the intersection of reasons is required, makes it hard to generate reasons against in
the practical circumstances where an CRS may be used.

Algorithms for S1, S3 and S4 can be easily derived from their descriptions. Suppose
a CRS recommends N items in an ordered set I : {i1, i2, ...iN} to user u. In Scheme
S1 (and S3) we define as reason against an item ir as the union of reasons for each of
its alternatives I\{ir} that are not reasons for ir itself. Hence we must iterate over
the alternatives, extracting reasons for each one of them � � [�u,i 8i 2 I\{ir}.
Note that at this point we assume that the function representing the cognitive process
of explanation, � as described earlier in this section, is available. We then remove
from � the reasons for our recommendation of interest, if any. The remaining reasons
⌦ = �/�u,ir are the reasons against ir. as presented in the Algorithm 1. Regarding
the implementation of Scheme 4 (S4), we follow a similar procedure, except that we
take the intersection instead of considering the union of reasons for its alternatives.
That is, we just replace the line 13 of Algorithm 1 so as to take the intersection of
sets � � \ �u,i 8i 2 I\{ir}.

Figure 4 illustrates the differences between S1, S3, and S4.
Scheme S5 is significantly more complex than the previous ones; we devote the

remainder of this section to it. Scheme S5 differs from the other schemes in that
it depends on a quantitative objective as the basis of explanations. This objective
is used to determine whether a reason is for or against an item. Consider in our
toy example that the user has the objective of learning about Exoplanets. With that
piece of information, the CRS can present the user with the reason against choosing
Aeronautics102 because it is less related to Exoplanets than Exoplanets101 even though
Aeronautics102 addresses the subject marginally.

Consequently, the implementation of S5 is quite different from the other schemes.
While all the other schemes are implemented by modeling reasons as an unweighted

11

Reasons for
Item 2

Reasons for
Item 3

Reasons for
Item 1

Reasons for
Item 2

Reasons for
Item 3

Reasons for
Item 1

Figure 4 Suppose we have three items; each rectangle contains reasons for an item. Left: according

to S1 and S3, the reasons against item 1 are all reasons for the other items that are not reasons for
item 1; they are painted orange. Right: according to S4, the reasons against item 1 must be reasons

that are for both the other two items but that are not for item 1; again, they are painted orange.

Algorithm 1 Explanation Generation using Scheme S1
1: procedure reasons-for(ir: rec. item, u: user, ⇧: paths set, ⇥: parameters)
2: �u,ir = {} . Set of reasons for i
3: for all ⇡ 2 ⇧ do

4: � �(u, ir,⇡ | G) . Function describing the cognitive process
5: �u,ir �u,ir [�
6: end for

7: return �u,ir

8: end procedure

9: procedure reasons-against-S1(ir: rec. item, u: user, I: rec. set, ⇧: paths set)
10: ⌦u,ir {} . Set of reasons against ir
11: � = {}
12: �u,ir reasons-for(ir, u, ⇧, G) . Set of reasons for ir
13: for i 2 I\{ir} do . Iterate over ir alternatives
14: �u,i reasons-for(i, u, ⇧, G)
15: � � [�u,i

16: end for

17: ⌦u,ir �\�u,ir

18: return ⌦u,ir

19: end procedure

directed graph, in Scheme S5 we must consider weights. To understand this, consider
again our toy example in Figure 3. If we look at reasons and disregard weights, we
are limited to categorical comparisons, i.e. one can only tell “Aeronautics102 teaches
Rocket Science, but Exoplanets101 does not”. This limitation imposes difficulties when
we need more granular information to compare two recommended items. For example,
we can tell that both Exoplanets101 and Aeronautics102 are about Exoplanets, but we
cannot compare them since we do not know how strong the link relates each course to
its subjects. On the other hand, if we model relations with weights, we can capture that
“Exoplanets101 is more related to Exoplanets than Aeronautics102”. Therefore, using a

12

more sophisticated weighted directed graph model to represent our reasons, we can
leverage the expressiveness of our explanations while improving coverage and support.

We propose to use the plausibility scores from the knowledge embedding itself
to rank the recommended entities according to the quantitative objective available
beforehand. While the objectives of users are hard to guess, we assume that in our
context users pursue strong links connecting their recommended items to their pref-
erences. Thus, in our explanatory framework, the “available objective” for Scheme S5
takes the form of paths in the graph, while the embedding plausibility score measures
how well each path meets the user goal. For instance, in our example where students,
who want to learn about Astronomy, finds themselves choosing between two courses:
Exoplanets101 and Aeronautics102. We know both courses are about Exoplanets, which
is a topic of Astronomy, and we know that the fact that a course is about a topic of
Astronomy is a compelling reason for choosing the particular course. In this example,
our proposal for Scheme S5 takes that the “available objective” is to learn about top-
ics of Astronomy and that the predicted strength of the links connecting a course and
topics of Astronomy (the embedding plausibility score) is the measure of how well each
course meets this objective.

So, firstly, we collect all the reasons for the recommended item of interest, ir, and
we rank ir for each reason according to the embedding plausibility score. Secondly, we
iterate over all the alternatives to ir repeating the same procedure we described. If
an alternative is better ranked than ir, this alternative is more related to that reason
than ir, so it is a reason against ir. The whole procedure is described in Algorithm 2.

5 Experiments
Our work focuses on improving the interpretability of conversational recommendation
systems through novel approaches for explanation generation. We have developed a
system that recommends classes offered by the University of São Paulo (USP) to
undergraduates so as to test our proposals. Our recommendation system is developed
upon a real-world large-scale knowledge graph called USPedia that we have also built
in this work [40]. The recommendation task consists in recommending the top three
classes given a topic of interest informed by the user. For instance, if the user asks for
classes related to subject Astronomy, our CRS should output a ranking of the three
most related classes.

We evaluate interpretability at three different levels: the functional, the human and
the application ones [23]. These levels grow in complexity and implementation cost
from the first to the last one (Figure 5). The functional level evaluates the explanation
in objective terms based on a proxy task and, thus, does not require human subjects.
The functional level alone is not appropriate to test the subjectivity of explanations,
as that relies on the perception of users. The human level provides insights about
user perception, and the application level tests the system as a whole and, thus,
considers practical aspects, such as response delays, in the evaluation. We highlight
in the following sections some of the limitations related to each evaluation level in
the context of our work and discuss approaches from the literature to mitigate the
observed drawbacks [44, 45].

13

Algorithm 2 Explanation Generation using Scheme S5
1: procedure rank(�: reasons set, u: user, ⇥: parameters)
2: r = �i 2 � . The quantitative objective entity
3: ⇢ fr(u, i | G)
4: sort_desc(�, by=⇢) . Sort by the embedding plausibility score
5: return
6: end procedure

7: procedure scheme-S5(ir: rec. item, u: user, I: rec. set, ⇧: paths, G: parameters)
8: ⌦u,ir {} . Set of reasons against ir
9: � = {}

10: �u,ir reasons-for(ir, u, ⇧, G) . Set of reasons for ir
11: ir rank(�u,ir , u,G)
12: for i 2 I\{ir} do . Iterate over ir alternatives
13: �u,i reasons-for(i, u, ⇧, G)
14: i rank(�u,i, u,G) . Reason against ir
15: if (ir < i) then . Compare if i better meets the objective than ir
16: ⌦u,ir ⌦u,ir [(�u,i\�u,ir)
17: end if

18: end for

19: return ⌦u,ir

20: end procedure

Functional
Level

Human
Level

Application
Level

Expensive
Realistic

Figure 5 The three levels at which we evaluate the interpretability of our proposals.

We employed functional level tests to evaluate the feasibility of our proposals in
practical settings. We moved forward by resorting to surveys with users where we
asked them to compare examples from different explanation methods. These examples
were simplified interactions with the real application. Additionally, we have carried
out a preliminary application level evaluation. We integrated the most promising ex-
planation methods into versions of the real CRS that were then compared in a survey
with real users from our application domain.

We examine each one of these evaluation procedures and the metrics we used in
the next three subsections; we explain the set-up in the final subsection.

5.1 Functional Level
A CRS cannot impose long delays on its users; in addition, an adequate interpretabil-
ity method should be able to explain most if not all the recommendations. None of

14

these characteristics rely on human subjectivity and, thus, they can be evaluated at a
functional level.

We define the following three metrics to evaluate at this level:
1. Coverage or Recall : The fraction or percentage of recommended items for which

the interpretability method can find at least one explanation.
2. Support : The average number of explanations the interpretability method can

find for each recommended item.
3. Response or Execution Time: The average time the interpretability method takes

to find explanations for each recommended item.
The main goal of our functional level is to evaluate the feasibility of an inter-

pretability method. Therefore, we want to verify whether the method achieves high
coverage while coping with the strong execution time constraints of interactive appli-
cations. Support is an auxiliary metric that tells us how the method scales in scenarios
where multiple explanations are required.

To realize our functional level evaluation, firstly, we built a data-set of simulated
user interactions from 10% randomly selected entities of USPedia [40], where each
entity represents a subject that one student could ask class recommendations for. We
collected the recommendations for each one of the sampled entities. Next, we ran each
interpretability method in an offline manner and recorded the metrics of interest.

Our functional level evaluation has the following limitations and caveats:

• Domain Generalization: We carried out all experiments in the single application
domain of class recommendation, so we cannot ascertain the generalization of our
methods toward other domains.

• Simulation Generalization: We built simulations randomly selecting entities from
USPedia, so we did not account for any popularity bias that may appear in real-world
scenarios. It is reasonable to expect that students will ask for recommendations of
some popular topics more often than others. Thus, we could observe different results
in applications if our methods perform poorly for the most popular subjects.

5.2 Human Level
The human-level evaluation is intended to offer preliminary insights or early validation
of an interpretability method from the user perspective. To translate the subjective
user perception into quantifiable measures, we adopt the following five explanation
aims [1]: transparency, trust, persuasion, engagement, and effectiveness. Each one
of them represents a particular goal of an explanation and is commonly used as a
benchmark for recommendation systems [1, 10].

The evaluation was carried out with undergraduate engineering students at the
University of São Paulo (USP). All students ranked each interpretability method with
respect to the explanation metrics using a survey-based Likert psychometric scale [46]
from 1 to 5 (standing for “Strongly disagree”, 2 “Disagree”, 3 “Neither agree nor dis-
agree”, 4 “Agree”, and 5 “Strongly agree”). We used this scale to reduce central tendency
and social desirability biases where participants do not want to be identified with ex-
treme positions. Finally, each volunteer could write a short, free text with thoughts
about the methods they had just evaluated.

15

In the remainder of this section we discuss the limitations and strengths of our
human-level evaluation other than the ones already discussed in the previous section:

• Sample Generalization: We used a few handpicked recommendation examples to
build the surveys used in our human-level evaluation, so we cannot ascertain how
our proposed methods would generalize for different ones.

• Demographic Generalization: All surveys were targeted toward engineering stu-
dents from USP, so our results are still very limited to a young, male community
from southeast Brazil.

• History and Maturation: To minimize the effects of time passage, we ensured
that all participants had to complete the survey in one go.

• Instrumentation: To minimize the impact of learning effects on our results, i.e.
participants improving over repetition, we randomized the order of questions they
were asked to answer. Thus, we expect an overestimation due to learning effects but
equally distributed, allowing relative comparisons.

• Experimenter Bias: To minimize any unconscious bias being conveyed to
participants, experimenters were only allowed to answer technical questions.

• Misunderstanding: To minimize the risk of participants misunderstanding the
survey instructions due to lack of clarity, we asked some volunteers, without any
contact with the actual participants, to fill the survey. In addition, we required every
participant to answer correctly a series of practice questions before moving forward
with the experiment.

• Technical Variance: To minimize variance due to participants using different
hardware and software, we asked in advance for preparing an environment with a
stable internet connection and implemented the survey in a Google Form to avoid
compatibility issues.

• Multiple Submissions: Participants were allowed to answer the survey only once.
• Selection: Participants were asked to join in the experiment as an optional re-

warded task in a USP engineering class. So, even though the participants had to
volunteer, there were incentives in place. Since our results were drawn from this
self-selected population, they might not generalize. On the other hand, all partici-
pants were potential real users from our application domain, which strengthens our
results.

• Ecological Validity: The fact that our surveys were carried out remotely, instead of
in a physical environment like a laboratory, increases their ecological validity. Since
participants were in their usual surroundings, the effects of being in an unfamiliar
setting were mitigated.

• Drop out: Even though participants were free to drop out of the experiment, this
effect was minimized due to the incentive of receiving an additional grade in the
USP engineering class.

5.3 Application Level
As our target audience, USP undergraduate students, was directly accessible, the appli-
cation level evaluation was similar to the human level one. However, at the application
level, we asked participants to interact with a real recommendation system instead

16

of a mocked scenario. Thus, functional factors such as response time and coverage
impacted the user perception evaluation.

Regarding the limitations and caveats related to our application level evaluation,
while the concerns regarding sample and simulation generalization are minimized (i.e.
users can freely interact with the system as in a real-world scenario), other three issues
become more evident. These are learning effects from the order of questions, misun-
derstanding of the interface, and technical variance from the computer or internet
connection they have.

5.4 Experiment Set-Up
This research depends on the development of a CRS where our hypothesis can be
properly evaluated, including with human volunteers. We developed a complete CRS
that recommends classes offered by USP to undergraduate students. Our CRS is built
upon a real-world, large-scale knowledge graph called USPedia [40].

Once we constructed our knowledge graph, we trained a TransE [32] knowledge
embedding model with 500 dimensions for 1000 epochs. We opted for using a batch
size of 500, alpha equal to 0.001, margin 1.0, and the optimizer ADAGRAD to perform
the training. We selected TransE because it is commonly used as a benchmark in the
literature [12, 31].

Using the trained knowledge embedding, we implemented a neighborhood-based
recommendation system. Our recommendation system does entity ranking in the form
of hhead, relation, ?i, in which the head is a conceptual entity representing a preference
of theme provided by the user and relation is the subject relationship modeling classes.
Therefore, we consider the plausibility score provided by the knowledge embedding
to rank entities and, then, realize a Top-3 recommendation following the abstract
mechanism described earlier in our proposal.

6 Results and Discussion
In this section, we describe the results from our simulated experiments and those with
real users. First, we present some anecdotal examples in Section 6.1 that highlight the
strengths and weakness of our proposals in the current set-up. Next, we examine the
feasibility of our techniques in Section 6.2 and then we discuss the reaction of human
users to our approach in Section 6.3.

6.1 Anecdotal Examples
To illustrate the explanations generated by our proposals, Figure 6 depicts a real
explanation example generated by our method. Entities and relations found in the
graph appear in the figure, while the textual explanation derived from them ap-
pears in the caption. In this particular case, the system recommended the class titled
Legal Engineering to attend the requested preference about History subject. Here, the
system explains by arguing that the recommended class is about Law, which is a
Humanities topic just like History. This example highlights the ability of our methods

17

to leverage ontological connections to offer a rationale for recommendations. In addi-
tion, in this example, the relationship between the class Legal Engineering and Law was
inferred by the embedding and was not present in the original knowledge graph due to
its inherent incompleteness. The ability to benefit from the embedding to infer miss-
ing links, besides increasing coverage, can potentially shed light on which relationships
are viewed as important by the embedding when producing recommendations.

On the other hand, the ability to leverage inferred relationships can have draw-
backs. As the reasons produced by our explanation methods can employ relationships
that are not necessarily grounded on known facts, explanations may resort to false
facts, which can be often easily spotted by the end user. When the system is forced to
explain a bad recommendation, i.e. a suggestion that poorly fits the preference subject,
weak or clearly false relationships tend to arise in the system explanations. For in-
stance, Figure 7 explains the connection between the recommendation of a class titled
HeavyConstruction and the subject of interest Medicine by saying that both Medicine

and WorkAccident are correlated themes. Despite hurting the chance of a user follow-
ing the system’s choice, we argue that even non-sense explanations serve the purpose
of empowering the user to critique and disregard bad recommendations.

6.2 Results from Simulated Experiments
In this section we report on functional level experiments that were designed to address
the following research questions:

1. Are our explanation schemes feasible from an implementation perspective?
2. Can we find at least one explanation for a greater fraction of recommendations

when we search the knowledge embedding than the original graph given timeout
constraints?

3. How long does it take to find explanations using the knowledge embedding? Is
time-to-response acceptable?

We designed user-simulated experiments to evaluate coverage and support. We
arbitrarily established a timeout constraint of 5 seconds to account for responsiveness
requirements of a conversational system.

Regarding reasons for, Table 2 shows the overall coverage and support for our pro-
posed DFS-based interpretability method using the knowledge embedding as source
for explanations (referred to as PRED) as compared to the baseline using the original
incomplete knowledge graph (referred to as TRUE). The results show that we obtained
79.33% coverage and a support mean of 2.0 for the embedding-based approach, com-
pared to 42.3% coverage and 1.8 support in the graph-based. We observe that indeed
our proposal of replacing the original knowledge graph by the knowledge embedding
improves coverage significantly.

As for reasons against, we ran experiments with Schemes S1, S4 and S5; all schemes
were implemented with the embedding-based approach. Both the coverage (85.1%)
and support (2.3) obtained for S1 (the same for S5) are higher than those from reasons
for. This result was expected as S1 considers more aggregated reasons for alternatives
than it removes from the explained recommendation. On the other hand, Scheme S4
could not generate a single reason against at all (coverage 0%!). As Scheme S4 requires

18

History Legal Engineering

LawHumanities

subject

topic_of

topic_of

subject

Figure 6 “LegalEngineering is recommended as it is about Law and both Law and History are topics

of Humanities”

Medicine Heavy Construction

Work AccidentHealth

subject

topic_of

topic_of

subject

Figure 7 “HeavyConstruction is recommended as it is about WorkAccident and both WorkAccident

and Medicine are topics of Health”

that a reason against an option must be a reason for all of its alternatives, it imposes
a restriction so rigorous that it is in fact unfeasible in practice.

Figure 8 presents the behavior of the recall for our reasons for proposed method
PRED (embedding recall) compared to the baseline TRUE (graph recall). It also shows
the average number of explanations found (avg. explanation number) and average exe-
cution time (avg. exec. time) for our proposed method, when varying time constraints
(timeout).

While the baseline method, which uses only the original graph to search for expla-
nations, is by far faster than our proposed method, we observe that the graph recall
achieves a certain degree of “saturation” at 42%, which is a significantly lower level
than the embedding one at 99%. Here we consider “saturation level” the point where
one does not have timeout constraints, i.e., virtually infinite time to search for expla-
nations. Thus, we verify that the original knowledge graph cannot find explanations
for less than half of recommendations in our experiment; also, it is not sensitive to
time constraints, i.e. saturates into a flat line within milliseconds. On the other hand,
the embedding recall, despite having a slow start (close to 0 for timeouts shorter than
2.3 seconds), grows larger than the graph recall for timeouts longer than 3 seconds.
Indeed, for a timeout of 5 seconds (that can be considered acceptable for an inter-
active application), we observe that our proposed method can explain almost two
times more recommendations than the original graph alone. This answers our second
research question. Note that the average number of explanations and the average ex-
ecution time behave linearly, for this timeout value. This points out that it may be
expensive, in terms of computation cost, to find multiple explanations for the same
recommendation.

19

Table 2 Coverage and support for reasons for using the

embedding-based (PRED) and the graph-based approach

(TRUE), and reasons against using Schemes S1, S4 and

S5. Note the support for each scheme is presented with

its respective standard deviation.

Type Scheme Coverage Support

Reason For
TRUE 42.3% 1.8± 1.0
PRED 79.3% 2.0± 1.0

Reason Against

S1 85.1% 2.3± 1.4
S4 0% -

S5 83% 1.0± 0.5

Figure 8 Comparing recall between our proposal (embedding recall) and the baseline (graph recall).

Also we display the average explanation number (avg. explanation no.) and the average execution

time (avg. exec. time) for our proposal.

Figure 9 shows the boxplots, with suppressed outliers for better visualization, of the
execution time of our proposed method PRED for different numbers of explanations.
In this experiment, we aim to evaluate how long it takes to find a given number of
explanations for a recommendation. We can observe that all boxplots are skewed down,
and the top whiskers are longer than the bottom ones; also, the variability of execution
time increases as more explanations are demanded. Considering an acceptable response
time (for instance, 5 seconds), for a small number of explanations (one to three), the
median value is acceptable, and for a single explanation, even the maximum value is
acceptable. Therefore, our approach does produce multiple explanations but not too
many of them, answering the third question.

6.3 Results from Tests with Human Subjects
We run four user tests. We first run an application level experiment focused on the rea-
sons for generation and intended to compare the embedding-based approach (PRED)

20

Figure 9 Execution time of PRED method considering explanation number constraints.

against the graph-based baseline (TRUE). We then run a human level evaluation to
validate our hypothesis about the introduction of reasons against in explanations.
We run the final application level test where we compared multiple reasons against
schemes against the reasons for only baseline. Finally, we run a final human level test
to assert the user perception on multiple reasons against schemes.

We present the results for the human level evaluation in Section 6.3.1, and we
discuss the two application level tests together in Section 6.3.2.

6.3.1 Human Level Evaluation

In this section we report on human-level evaluation experiments that were designed
to address the following questions:

1. Do users perceive value in the explanations produced by our schemes?
2. If they do perceive value, which scheme performs best?

We conducted a user study involving 54 subjects from the engineering post-
graduate program at USP (88% = male, 78% = born in Brazil’s southeast, 72% =
age <= 30, and 98% = high tech affinity). All demographic data was reported by the
subjects.

To run our experiment, we asked the subjects to evaluate explanations generated
using our proposed Schemes S1 and S5 for six recommendation instances. The set
up was designed to run a block-randomized experiment within subjects. Each user
evaluated explanations from both S1 and S5, according to a five point Likert-scale, for
three explanation aims: persuasion, trust and transparency, respectively. The order
the schemes were presented at each step varied randomly.

Figure 10 depicts the entire experimental set up. Each subject involved in the
experiment carried out the following steps:

(1) Disclosure Agreement: First, we ask the user to accept a disclosure term
granting access of their answers for academic purposes.

21

Figure 10 Diagram representing the human-level experimental set-up we adopted.

(2) Collection of demographic data: Subjects were asked to provide common
demographic information regarding age, gender self-identification, Brazilian macro re-
gion as place of birth and tech affinity, with guarantees on privacy concerning personal
data. Our goal was to better understand our sample.

(3) Introduction and metrics: We presented all the explanations aim [2] and
asked each subject to read them carefully.

(4) Practice questions: Subjects were asked to respond multiple answer ques-
tions about all the explanation aims. When the user answers all questions correctly,
they proceed, otherwise they were asked to go back to step 3 and repeat the question-
naire. This phase guarantees that all subjects understood the experiment purpose and
its metrics.

(5) Explanation scheme evaluation through questionnaire: Subjects were
asked to evaluate S1 and S5 according to the explanation aims: persuasion, trust and
transparency, respectively, in a five point Likert-scale. Table 3 contains the details of
the questionnaire presented.

Figure 11 presents the arithmetic mean scores obtained from the survey for each
explanation aim considering Schemes S1 and S5. The confidence intervals were calcu-
lated with bootstrapping at 95% confidence. We can observe that mean scores for all
explanation aims were closer to “neutral” or “agree” in the Likert-scale, which indicates
that, at least in our specific set up, users perceived value in the explanations.

22

Table 3 Questionnaire details.

Aim Question

persuasion I feel the explanation persuaded me to follow

the recommendation

trust I feel more confidence in the system after

receiving the explanation

transparency I feel I better understood the recommendation

after receiving the explanation

In addition, note that scheme S5 (µpersuasion = 3.3 and µtrust = 3.83) received
greater mean scores than S1 (µpersuasion = 2.48 and µtrust = 3.07) for persuasion and
trust. Note the confidence interval whiskers do not overlap; indeed this difference is
statistically significant considering a t-test (the p-value for persuasion is 0.000838 <
0.05 and the p-value for trust is 0.000971 < 0.05). On the other hand, for transparency,
S1 obtained a greater mean value than S5, however, for this metric we didn’t achieved
statistical significance (the p-value for transparency is 0.2 > 0.05). All average values
are summarized in Table 4. These results indicate that S5 appears to perform better
than S1 in persuasion and trust, while having similar results in transparency.

Note that our experimental set up consists of a human-level evaluation and, thus,
fails to take into account the impact of practical circumstances, such as system
response time and explanation coverage, in the user perception.

6.3.2 Application Level Evaluation

In this section we report on experiments that were designed to provide a first glance
on the following research questions:

1. Does the quality of the explanations found using the knowledge embedding de-
teriorate when compared to those using the original graph in a real application
scenario?

2. Do reasons for/against have value for users in a real application scenario? If yes,
which scheme performs best?

As described previously, in our first application level experiment (focused on rea-
sons for only), we produced two conversational recommendation systems, one with the
automatically generated knowledge graph as a source of explanations, and the other
with our proposed (embeddings-based search) method as a source of explanations. Our
goal was to compare both techniques.

We conducted a user study involving 26 undergraduate engineering students from
USP, in which each user evaluated two systems, one employing our proposed method
and the other one using the original knowledge graph as a source for explanations.
The users were asked to evaluate the five explanation aims (summarized in Table 5)
using a Likert psychometric scale from 1 to 5 [46]. One interaction consisted of the
user asking for a recommendation for 5 different subjects, so we collected a total of
130 interactions.

Figure 12 depicts the whole experimental set up. Each subject executed the
following steps:

23

Figure 11 Visual representation for explanation metrics arithmetic mean scores.

Table 4 Arithmetic mean scores for explanations from

our user study. The highest scores with statistical

significance for each metric are highlighted in bold.

Statistical significance was assessed by t-tests, with

p < 0.05.

Scheme Persuasion Trust Transparency

S1 2.48 3.07 3.41
S5 3.3 3.83 2.8

Table 5 Questionnaire details.

Aim Question

transparency Did the explanation help you understand the recommendation?

persuasion On the basis of the explanation, would you follow

the recommendation?

engagement Did the explanation have a pedagogical effect?

trust Did the explanation contribute to increase

your confidence in the recommendation system?

effectiveness Did the explanation sound coherent?

(1) Disclosure Agreement: First, we ask the users to sign a term accepting to
disclose their data for academic purposes.

(2) Introduction: Next, we present a detailed description of each explanation aim
to be used as evaluation metric. Also, we allow the user to explore a conversational
recommendation system without explanation facilities as warm up and to get familiar
with the interface.

(3) Evaluation: Finally, subjects start the evaluation by asking three recom-
mendations and their respective explanations, at the end of the interaction, the user

24

Figure 12 Diagram representing the application-level experimental set up we adopted.

evaluates all explanation aims. Note the experiment is within subjects and each scheme
is evaluated in order. Thus, this evaluation does not account for learning effects and
can, potentially, lead to positive bias for the later schemes. This step is repeated for
every scheme.

We should emphasize that this experiment had a small sample size, and in this
case we did not collect demographic data.

Keeping in mind the exploratory nature of the survey, we now describe the perfor-
mance indicators from the users’ interaction with the conversational recommendation
systems. Table 6 presents the arithmetic mean scores provided by the students in our
user study for each one of the explanation aims. The upper half of the Table 6 con-
tains the scores acquired in our first application level experiment, where we compared
the embedding-based explanations to the graph-based ones. Figure 13 depicts these
scores on a continuum representing visually the scale. Comparing both algorithms’
overall mean, the knowledge embedding approach (PRED) was better from the user’s
perspective, µ = 2.7 corresponding to the “neutral” evaluation at the Likert scale.

On the other hand, for the graph approach (TRUE) µ = 2.21 is closer to “Disagree”
in the Likert scale. Taking the variable in isolation, effectiveness got the highest aver-
age value for both µpred = 2.92 and µtrue = 2.64. This signals that users perceived the
explanations as coherent. The TRUE approach had a bad evaluation when the trust
was at stake (µtrust = 1.92). As TRUE suffers from knowledge graph incompleteness,
it cannot posit explanations for every suggestion. When compared to a better per-
formance of the knowledge embedding approach (µtrust = 2.52), we might conjecture
that users prefer any explanation instead of no explanations at all.

The second half of Table 6 presents the scores from our second application level
test (focused on both reasons for/ against). In this second experiment, we asked
35 undergraduate engineering students from USP to evaluate three conversational
recommendation systems, one producing only reasons for as explanations (PRED) and
the other two with both reasons for and reasons against (one using S1 scheme and the
other S5 scheme). The second experiment was carried out using the same questionnaire
(see Table 5) and evaluation procedures as the first one.

The second experiment was focused on comparing multiple techniques of reasons
against generation (S1 and S5), and evaluating the presence of reasons against in an
explanation against the reasons for only baseline. Note that the baseline PRED was

25

Table 6 Average scores for explanation aims from our user study.

Algorithm Transp. Persuasion Engag. Trust Effect.

TRUE 2.21 2.36 2.17 1.92 2.64
PRED 2.92 2.28 2.84 2.52 2.92

RF 2.87 2.41 2.87 2.58 2.96
S1 2.68 2.50 2.18 2.59 2.40
S5 2.94 2.65 2.68 2.68 2.74

Figure 13 Visual representation for explanation aims average scores in our first experiment. TRUE

and PRED results are in green and blue, respectively.

the same embedding-based method as in the first experiment; indeed, we can observe
that the mean arithmetic scores for PRED method in both experiments are similar.
Figure 14 depicts these scores on a continuum representing visually the scale. We
observe that the systems employing scheme S5 approach has the lead from the user’s
perspective in terms of transparency (µtransparency = 2.94), trust (µtrust = 2.68) and,
notably, persuasion (µpersuasion = 2.65). Furthermore, the scheme S5 appears to be
better than S1 in all the evaluated metrics.

As a side effect of introducing reasons against in explanations, we observe a drop
in engagement and effectiveness, i.e. the baseline (PRED) achieved the highest scores
in both metrics (µeffectiveness = 2.96 and µengagement = 2.87).

If we compare these results with the ones we obtained in the human level evalua-
tion, from Section 6.3.1, improvements in trust and persuasion were observed, however,
the drop in effectiveness and engagement was unexpected. We suppose the bad per-
formance in effectiveness and engagement is due to the complexity overhead added in
explanations, i.e. explanations with both reasons for and against are harder to grasp
than with reasons for only.

These results serve as initial and exploratory analysis to drive further research
focused on properly evaluating these explanation schemes in real-world applications;
note that neither attained p-values smaller than 0.05.

7 Conclusion
In this paper we have proposed techniques for explanation generation in conversational
recommendation systems. Our proposed methods benefit both from knowledge graphs
and from related embeddings; our main novel contribution is an emphasis on “reasons

26

Figure 14 Visual representation for explanation aims average scores in our second experiment.

PRED, S1 and S5 results are in purple, red and yellow, respectively.

against” to improve the user experience when interacting with a conversational rec-
ommendation system. First, we proposed a high-coverage explanations method so as
to enable a recommendation system to explain its decisions within reasonable time
limits, aiming at the cognitive phase of the explanatory process. Aiming at the so-
cial phase, we exploited Snedegar’s schemes, in particular the scheme S5, to improve
the quality of explanations by presenting reasons for and against items. We presented
experiments that show our methods to be valuable in practice.

The main limitation of this work is that techniques have been tested in a particular
domain; namely, the class recommendation domain. The extent to which our results are
valid to a variety of other practical domains must be examined; future work should in-
clude testing our methods in other application domains. Moreover, future work should
explore other embedding models, in particular state-of-the-art models that improve
on TransE, but also other promising paradigms such as semantic embeddings. Effort
should also be directed to study the best ways to communicate explanations to users,
balancing conciseness, clarity and other factors that affect the impact of explanations.

References
[1] Tintarev, N., Masthoff, J.: A survey of explanations in recommender systems. In:

Proceedings of the 2007 IEEE 23rd International Conference on Data Engineering
Workshop. ICDEW ’07, pp. 801–810. IEEE Computer Society, Washington, DC,
USA (2007). https://doi.org/10.1109/ICDEW.2007.4401070 . http://dx.doi.org/
10.1109/ICDEW.2007.4401070

[2] Tintarev, N.: Explanations of recommendations. In: Proceedings of the 2007 ACM
Conference on Recommender Systems. RecSys ’07, pp. 203–206. Association for
Computing Machinery, New York, NY, USA (2007). https://doi.org/10.1145/
1297231.1297275 . https://doi.org/10.1145/1297231.1297275

[3] Friedrich, G., Zanker, M.: A taxonomy for generating explanations in recom-
mender systems. AI Mag. 32, 90–98 (2011)

[4] Sinha, R., Swearingen, K.: The role of transparency in recommender systems.
In: CHI ’02 Extended Abstracts on Human Factors in Computing Systems. CHI
EA ’02, pp. 830–831. Association for Computing Machinery, New York, NY,
USA (2002). https://doi.org/10.1145/506443.506619 . https://doi.org/10.1145/
506443.506619

27

[5] Jannach, D., Manzoor, A., Cai, W., Chen, L.: A Survey on Conversational
Recommender Systems. arXiv e-prints, 2004–00646 (2020) [cs.HC]

[6] Hoeve, M., Schuth, A., Odijk, D., Rijke, M.: Faithfully explaining rankings in a
news recommender system. CoRR abs/1805.05447 (2018)

[7] Padilha Polleti, G., Gagliardi Cozman, F.: Faithfully explaining predictions of
knowledge embeddings. In: Encontro Nacional de Inteligência Artificial (ENIAC),
pp. 1–12 (2019)

[8] Lv, Q., Ding, M., Liu, Q., Chen, Y., Feng, W., He, S., Zhou, C., Jiang, J., Dong,
Y., Tang, J.: Are we really making much progress? revisiting, benchmarking and
refining heterogeneous graph neural networks. KDD ’21, pp. 1150–1160. Associa-
tion for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.
1145/3447548.3467350 . https://doi.org/10.1145/3447548.3467350

[9] Hogan, A., Blomqvist, E., Cochez, M., D’amato, C., Melo, G.D., Gutierrez, C.,
Kirrane, S., Gayo, J.E.L., Navigli, R., Neumaier, S., Ngomo, A.-C.N., Polleres, A.,
Rashid, S.M., Rula, A., Schmelzeisen, L., Sequeda, J., Staab, S., Zimmermann,
A.: Knowledge graphs 54(4) (2021) https://doi.org/10.1145/3447772

[10] Musto, C., Narducci, F., Lops, P., de Gemmis, M., Semeraro, G.: Linked
open data-based explanations for transparent recommender systems. Interna-
tional Journal of Human-Computer Studies 121, 93–107 (2019) https://doi.
org/10.1016/j.ijhcs.2018.03.003 . Advances in Computer-Human Interaction for
Recommender Systems

[11] Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A Review of Relational
Machine Learning for Knowledge Graphs. cite arxiv:1503.00759Comment: To ap-
pear in Proceedings of the IEEE (2015). https://doi.org/10.1109/JPROC.2015.
2483592 . http://arxiv.org/abs/1503.00759

[12] Gusmão, A.C., Correia, A.C., De Bona, G., Cozman, F.G.: Interpreting Em-
bedding Models of Knowledge Bases : A Pedagogical Approach. In: 2018 ICML
Workshop on Human Interpretability in Machine Learning (WHI 2018), pp. 79–86
(2018)

[13] Ruschel, A., Gusmão, A.C., Polleti, G.P., Cozman, F.G.: Explaining completions
produced by embeddings of knowledge graphs. In: Kern-Isberner, G., Ognjanovic,
Z. (eds.) Symbolic and Quantitative Approaches to Reasoning with Uncertainty,
15th European Conference, ECSQARU 2019, Belgrade, Serbia, September 18-20,
2019, Proceedings. Lecture Notes in Computer Science, vol. 11726, pp. 324–335.
Springer, ??? (2019). https://doi.org/10.1007/978-3-030-29765-7_27 . https://
doi.org/10.1007/978-3-030-29765-7_27

[14] He, R., Kang, W.-C., McAuley, J.: Translation-based recommendation. In:
Proceedings of the Eleventh ACM Conference on Recommender Systems.

28

RecSys ’17, pp. 161–169. Association for Computing Machinery, New York,
NY, USA (2017). https://doi.org/10.1145/3109859.3109882 . https://doi.org/10.
1145/3109859.3109882

[15] Biran, O., Cotton, C.V.: Explanation and justification in machine learning: A
survey. In: IJCAI-17 Workshop on Explainable AI (XAI), vol. 8, pp. 8–13 (2017)

[16] Anelli, V.W., Bellogín, A., Noia, T.D., Donini, F.M., Paparella, V., Pomo, C.:
Adherence and constancy in LIME-RS explanations for recommendation. CoRR
abs/2109.00818 (2021)

[17] Chen, L.: Adaptive tradeoff explanations in conversational recommenders.
In: Proceedings of the Third ACM Conference on Recommender Systems.
RecSys ’09, pp. 225–228. Association for Computing Machinery, New York,
NY, USA (2009). https://doi.org/10.1145/1639714.1639754 . https://doi.org/10.
1145/1639714.1639754

[18] Snedegar, J.: Reasons for and reasons against. Philosophical Studies 175(3), 725–
743 (2018)

[19] Alshammari, M., Nasraoui, O., Sanders, S.: Mining semantic knowledge graphs to
add explainability to black box recommender systems. IEEE Access 7, 110563–
110579 (2019) https://doi.org/10.1109/ACCESS.2019.2934633

[20] Ricci, F., Rokach, L., Shapira, B., Kantor, P.B.: Recommender Systems Hand-
book, 1st edn. Springer, Berlin, Heidelberg (2010)

[21] Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 42(8), 30–37 (2009) https://doi.org/10.1109/MC.2009.263

[22] Peters, M.A.: Platform ontologies, the AI crisis and the ability to hack humans
‘An algorithm knows me better than I know myself’. Taylor & Francis (2020)

[23] Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine
learning. arXiv preprint arXiv:1702.08608 (2017)

[24] Miller, T.: Explanation in artificial intelligence: Insights from the social sciences.
Artificial Intelligence 267, 1–38 (2019) https://doi.org/10.1016/j.artint.2018.07.
007

[25] Gunning, D., Aha, D.: DARPA’s Explainable Artificial Intelligence (XAI) Pro-
gram. AI Magazine 40(2), 44–58 (2019) https://doi.org/10.1609/aimag.v40i2.
2850

[26] Weidinger, L., Mellor, J., Rauh, M., Griffin, C., Uesato, J., Huang, P., Cheng,
M., Glaese, M., Balle, B., Kasirzadeh, A., Kenton, Z., Brown, S., Hawkins, W.,
Stepleton, T., Biles, C., Birhane, A., Haas, J., Rimell, L., Hendricks, L.A., Isaac,

29

W., Legassick, S., Irving, G., Gabriel, I.: Ethical and social risks of harm from
language models. CoRR abs/2112.04359 (2021)

[27] Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., Yang, G.-Z.: Xai:
Explainable artificial intelligence. Science Robotics 4(37), 7120 (2019) https:
//doi.org/10.1126/scirobotics.aay7120

[28] Ribeiro, M.T., Singh, S., Guestrin, C.: "why should I trust you?": Explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, San Francisco, CA,
USA, August 13-17, 2016, pp. 1135–1144 (2016)

[29] Zhang, F., Yuan, N.J., Lian, D., Xie, X., Ma, W.-Y.: Collaborative knowledge
base embedding for recommender systems. KDD ’16, pp. 353–362. Association
for Computing Machinery, New York, NY, USA (2016). https://doi.org/10.1145/
2939672.2939673 . https://doi.org/10.1145/2939672.2939673

[30] Wood, D., Lanthaler, M., Cyganiak, R.: RDF 1.1 Concepts and Abstract Syntax
(2014). http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/ Accessed
2015-03-15

[31] Wang, Y., Ruffinelli, D., Gemulla, R., Broscheit, S., Meilicke, C.: On evaluating
embedding models for knowledge base completion. In: Proceedings of the 4th
Workshop on Representation Learning for NLP (RepL4NLP-2019), pp. 104–112.
Association for Computational Linguistics, Florence, Italy (2019). https://www.
aclweb.org/anthology/W19-4313

[32] Bordes, A., Usunier, N., Garcia-Durán, A., Weston, J., Yakhnenko, O.: Translat-
ing embeddings for modeling multi-relational data. In: Proceedings of the 26th
International Conference on Neural Information Processing Systems - Volume 2.
NIPS’13, pp. 2787–2795. Curran Associates Inc., Red Hook, NY, USA (2013)

[33] Henk, V., Vahdati, S., Nayyeri, M., Ali, M., Yazdi, H.S., Lehmann, J.: Metare-
search Recommendations using Knowledge Graph Embeddings (2018)

[34] Kazemi, S.M., Poole, D.: Simple embedding for link prediction in knowledge
graphs. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi,
N., Garnett, R. (eds.) Advances in Neural Information Processing Systems 31,
pp. 4284–4295. Curran Associates, Inc., ??? (2018)

[35] Xie, Q., Ma, X., Dai, Z., Hovy, E.H.: An interpretable knowledge transfer model
for knowledge base completion. In: ACL, pp. 950–962 (2017)

[36] Zhang, W., Paudel, B., Zhang, W., Bernstein, A., Chen, H.: Interaction embed-
dings for prediction and explanation in knowledge graphs. Proceedings of the
Twelfth ACM International Conference on Web Search and Data Mining (2019)
https://doi.org/10.1145/3289600.3291014

30

[37] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,
Kaiser, L.u., Polosukhin, I.: Attention is all you need. In: Guyon, I., Luxburg,
U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.)
Advances in Neural Information Processing Systems, vol. 30 (2017)

[38] Gardner, M., Mitchell, T.: Efficient and Expressive Knowledge Base Comple-
tion Using Subgraph Feature Extraction. In: Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing, pp. 1488–1498. Asso-
ciation for Computational Linguistics, ??? (2015). https://doi.org/10.18653/v1/
D15-1173

[39] Mauro, N., Hu, Z.F., Ardissono, L.: Justification of recommender systems results:
a service-based approach. User Modeling and User-Adapted Interaction, 1–43
(2022)

[40] Polleti, G.P., Munhoz, H.N., Cozman, F.G.: Explanations within conversa-
tional recommendation systems: Improving coverage through knowledge graph
embedding. In: 2020 AAAI Workshop on Interactive and Conversational Rec-
ommendation System, p. 8. AAAI Press, New York City, New York, USA
(2020)

[41] Polleti, G.P., Souza, D.L., Cozman, F.: Why should I not follow you? Reasons For
and Reasons Against in Responsible Recommender Systems. In: 3rd FAccTRec
Workshop: Responsible Recommendation, p. 6 (2020)

[42] Musto, C., Narducci, F., Lops, P., De Gemmis, M., Semeraro, G.: Explod:
A framework for explaining recommendations based on the linked open data
cloud. In: Proceedings of the 10th ACM Conference on Recommender Systems.
RecSys ’16, pp. 151–154. Association for Computing Machinery, New York,
NY, USA (2016). https://doi.org/10.1145/2959100.2959173 . https://doi.org/10.
1145/2959100.2959173

[43] Lao, N., Mitchell, T., Cohen, W.W.: Random walk inference and learning in a
large scale knowledge base. In: Proceedings of the 2011 Conference on Empirical
Methods in Natural Language Processing, pp. 529–539. Association for Compu-
tational Linguistics, Edinburgh, Scotland, UK. (2011). https://aclanthology.org/
D11-1049

[44] Roman, N.T., Piwek, P., Carvalho, A.M.B.R.: A web-based experiment on
dialogue summarisation. Technical Report IC-05-05, Institute of Computing,
University of Campinas (March 2005)

[45] Roman, N., Piwek, P., Carvalho, A.: A web-experiment on dialogue classifica-
tion. In: International Joint Conference IBERAMIA/SBIA/SBRN 2006 - 4th
Workshop in Information and Human Language Technology (TIL’2006), pp. 1–10
(2006)

31

[46] Likert, R.: A technique for the measurement of attitudes. Archives of Psychology
140, 1–55 (1932)

32

