
CAIO FABRICIO DEBERALDINI NETTO

PHYSICS-INFORMED GRAPH
REPRESENTATION LEARNING FOR OCEAN

DYNAMICS

São Paulo
2023

CAIO FABRICIO DEBERALDINI NETTO

PHYSICS-INFORMED GRAPH
REPRESENTATION LEARNING FOR OCEAN

DYNAMICS

Corrected Version

Dissertação apresentada à Escola

Politécnica da Universidade de São Paulo

para obtenção do T́ıtulo de Mestre em

Ciências.

São Paulo
2023

CAIO FABRICIO DEBERALDINI NETTO

PHYSICS-INFORMED GRAPH
REPRESENTATION LEARNING FOR OCEAN

DYNAMICS

Corrected Version

Dissertação apresentada à Escola

Politécnica da Universidade de São Paulo

para obtenção do T́ıtulo de Mestre em

Ciências.

Área de Concentração:

Engenharia de Computação

Orientador:

Prof. Dr. Fabio Gagliardi Cozman

São Paulo
2023

 Autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio
convencional ou eletrônico, para fins de estudo e pesquisa, desde que citada a fonte.

Este exemplar foi revisado e corrigido em relação à versão original, sob
responsabilidade única do autor e com a anuência de seu orientador.

São Paulo, ______ de ____________________ de __________

Assinatura do autor: ________________________

Assinatura do orientador: ________________________

Catalogação-na-publicação

Netto, Caio Fabricio Deberaldini
 Physics-Informed Graph Representation Learning for Ocean Dynamics /
C. F. D. Netto -- versão corr. -- São Paulo, 2023.
 73 p.

 Dissertação (Mestrado) - Escola Politécnica da Universidade de São
Paulo. Departamento de Engenharia de Computação e Sistemas Digitais.

 1.Inteligência Artificial 2.Redes Neurais de Grafos 3.Predição 4.Sistemas
Dinâmicos I.Universidade de São Paulo. Escola Politécnica. Departamento de
Engenharia de Computação e Sistemas Digitais II.t.

ACKNOWLEDGMENTS

Accomplishing this work was a challenging but rewarding task. And as I look back on
this journey, I deeply recognize and express my immense gratitude to the many individuals
who have been part of it. However, listing each individually would make this document
excessively lengthy and the acknowledgments tedious for the reader. Therefore, I would
like to dedicate a special recognition to those who have closely accompanied this evolution:

To my parents, Hilda and Nivaldo, my sincere thanks for teaching me the value of
education and supporting me in another dream. You have been the best teachers in
life that I could ever have. Your teachings about education as a tool for transforming
realities, as well as the importance of hard and ethical work, and perseverance as a virtue,
will never be forgotten by me. They are an integral part of what I aspire to transmit to
others, whatever humble legacy I may leave. My priority will always be to try to repay
you for all the dedication you have given me.

To my partner, Kissya, and my brother, Markus, I want to thank you for always being
by my side, and believing in my dreams, even when they seemed unclear. Know that this
feeling is mutual. I will support you in your dreams, cheer for you, and celebrate your
achievements.

To my advisor, Prof. Dr. Fabio Cozman, my heartfelt gratitude for your guidance
throughout these years. Under your mentorship, I have learned the true meaning of
science and how to conduct high-level research. I feel prepared for the following academic
challenges and dedicate a significant part of the knowledge I have gained during this
journey to you. Thank you for your friendship, patience, and understanding, especially
during the toughest moments we have faced in recent years.

To Itaú-Unibanco, I express my gratitude for the financial support provided through
the Programa de Bolsas Itaú – PBI.

Lastly, I would like to extend my appreciation to all the faculty and sta↵ members
of the department who have directly or indirectly contributed to the completion of this
work and my ethical and professional development.

“To achieve importance in a field of
knowledge, talent must be disciplined.
Understanding that talent is an en-
abler is accepting that this is your main
struggle.”

ABSTRACT

The perception of environmental elements surrounding us and how they a↵ect our
physical integrity leads us to design models of the real world, aiming to anticipate or
mitigate the e↵ects of disadvantageous situations for human life caused by events both in
space and time. On that matter, we have had huge advances in physical sciences modeling,
especially in environmental and engineering domains. One particular domain of interest is
that of the oceans. Typically, researchers resort to numerical methods to understand and
predict ocean dynamics in order to master its phenomena. Nonetheless, such methods
reach limitations in a variety of scenarios. For instance, if the topographic map is complex
(thus making the mesh generation also complex), the underlying processes are partially
or completely unknown, or we are dealing with high-dimensional problems, numerical
discretizations of the governing equations may not be suitable. Machine learning has been
proven to be an alternative when oceanic data is available. The best current models,
deep neural networks, require big data to perform well in prediction tasks, and given
that ocean dynamics spans both space and time, there is the real challenge of being
capable of relating information in di↵erent dimensions when modeling these systems with
learning algorithms. Currently, the lack of big data in scientific problems is tackled by
combining such neural networks with physical prior knowledge in the so-called physics-
informed learning paradigm. On the other hand, graph neural networks from the field of
graph representation learning have shown far excellent results when dealing with relational
problems such as the prediction of spatiotemporal phenomena. However, the intersection
between those two research fields is not well explored in general, and even less so in
real-world problems. In this work we focus our e↵orts on bonding the fields of physics-
informed machine learning and graph representation learning, devising a deep learning
method for the task of forecasting oceanic variables, such as water sea surface height and
current velocity. Experiments have been run within real-world data from two di↵erent
locations in the southeast coastal region of Brazil, the Sepetiba/Ilha Grande Bay and the
Santos-São Vicente-Bertioga Estuarine System. Our model can exploit both temporal
and spatial inductive biases by joining state-of-the-art sequence and relational models
and physical knowledge from a numerical model, with significant improvements in data
e�ciency and prediction accuracy.

Keywords – physical systems, ocean dynamics, physics-informed machine learning, graph
representation learning, graph neural networks, forecasting.

RESUMO

A percepção dos elementos ambientais que nos cercam e como eles afetam nossa
integridade f́ısica nos levam a projetar modelos do mundo real, visando antecipar ou
mitigar os efeitos de situações desvantajosas para a vida humana, causadas por eventos
tanto no espaço quanto no tempo. Nesse sentido, tivemos grandes avanços na mode-
lagem das ciências f́ısicas, principalmente nos domı́nios ambiental e de engenharia. Um
domı́nio particular de interesse é o dos oceanos. Normalmente, os pesquisadores recorrem
a métodos numéricos para entender e prever a dinâmica dos oceanos, a fim de domi-
nar seus fenômenos. No entanto, tais métodos têm suas limitações em diversos cenários.
Por exemplo, se o mapa topográfico é complexo (tornando a geração da malha também
complexa), os processos fundamentais são parcial ou completamente desconhecidos, ou
estamos lidando com problemas de alta dimensão, discretizações numéricas das equações
governantes podem não ser adequadas. Aprendizado de máquina se mostra uma alter-
nativa interessante quando dados oceânicos estão dispońıveis. Mesmo assim, os melhores
modelos, redes neurais profundas, exigem grandes massas de dados para desempenharem
bem em tarefas de predição; dado que a dinâmica dos oceanos se estende tanto no espaço
quanto no tempo, há um desafio real para conseguir relacionar informações em diferentes
dimensões, ao modelar esses sistemas com algoritmos de aprendizado. Atualmente, a
falta de grandes bases de dados em problemas cient́ıficos é abordada combinando redes
neurais com conhecimento f́ısico prévio, no chamado paradigma de aprendizado infor-
mado pela f́ısica. Por outro lado, as redes neurais de grafos, inseridas na área de apren-
dizado de representação de grafos, tem apresentado excelentes resultados ao lidar com
problemas relacionais, como a previsão de fenômenos espaço-temporais. No entanto, a
interseção entre esses dois campos de pesquisa não é bem explorada em geral, e muito
menos em problemas do mundo real. Neste trabalho concentramos nossos esforços em
unir os campos de aprendizado de máquina informado por f́ısica e aprendizado de rep-
resentação gráfica, desenvolvendo um método de aprendizado profundo para a tarefa de
predição de variáveis oceânicas, como altura da superf́ıcie do mar e velocidade da cor-
rente. Experimentos foram conduzidos com dados reais de dois locais diferentes da região
costeira do sudeste do Brasil, a Báıa de Sepetiba/Ilha Grande e o Sistema Estuarino de
Santos-São Vicente-Bertioga. Nosso modelo tem sido capaz de explorar vieses indutivos
temporais e espaciais ao unir modelos sequenciais estado-da-arte, modelos relacionais e
conhecimento f́ısico de um modelo numérico, com melhorias significativas na eficiência do
uso dos dados e acurácia de predição.

Palavras-Chave – sistemas f́ısicos, dinâmica de oceanos, aprendizado de máquina infor-
mado por f́ısica, aprendizado de representação de grafos, redes neurais de grafos, predição.

LIST OF FIGURES

1 Examples of physical systems modeled as a graph. From left to

right: (1) Mass-Spring System, (2) n�Body System, and (3) Rigid Body

System. 16

2 Spectrum into which a physical problem can be framed. On the

leftmost side, the small data regime, we are dealing with the scenario where

all the physics of the problem is known, and su�cient data is available,

i.e., initial and boundary conditions, and the equations’ coe�cients. As

expected, in the majority of the cases, researchers may know little about

the physics of the problem, and some observational data is available, which

is represented as the middle case scenario. Inversely, on the rightmost side,

we have little to no knowledge about the physics, though there is plenty of

data available — the big data regime. In this case, physics may be inferred

from the data with techniques like machine learning ones. 17

3 Equivariant and invariant translation symmetries. Given a transla-

tion operation G from a collection S (G 2 S) of symmetry translation oper-

ations, a function f is (left) translation equivariant in S if f(Gx) = Gf(x),

and (right) translation invariant in S if f(Gx) = f(x). In this example,

a dog pattern is shifted in the image grid, and the corresponding function

(equivariant/invariant) is applied to the image. 21

4 Example of graph and di↵usion function applied to it. (Left) Local

function � applied to node ni (blue) and its neighbourhood Ni. (Right)

Outcome of the message-passing applied to node ni, which results in the

new embedding hi. 24

5 Graph Neural Network blueprint. Example of how a GNN learns new

node representations h0

⇤. Here, the di↵usion function is being applied only

on the nodes of the graph. However, it is noteworthy that an embedding

layer can be applied in every graph’s entities. 25

6 Locations of Sepetiba/Ilha Grande Bay’s main port terminals.

Locations in order of appearance: 1 - Angra Terminal (Oil) – TEBIG; 2 -

Guaiba Island Terminal (Ore) – TIG; 3 - Port of Sepetiba; 4 - CSN Terminal. 33

7 Sensor buoys’ locations. Oceanic phenomena, such as current and

wind velocity, and tides are measured in each site. Buoys’ names:

1) B18 2) BEV 3) TIG 4) TIG 1 5) Bifurcação 6) Evolução 7) Pier 8) BPA

9) B22. 34

8 Schematic of a graph with entities’ features. Here nodes, edges, and

global attributes are presented. 35

9 Current speed on the x-axis observed on Bifurcação buoy. For this

specific region, the sensors are more robust and have periodic maintenance.

Therefore, the data is complete. 39

10 Current speed on the x-axis observed on B22 buoy. Like most of

the other buoys, this one has a missingness problem. Almost the entirety

of the time, the sensor is faulty. 40

11 Forecasting process. A visual representation of the process to forecast

target variables, taking into account the 48h past time window. 41

12 Results on specific time window. Proposed models and baseline com-

parisons. On the top, the forecasting of the di↵erent models against the

observed values. On the bottom, the mean-squared error (MSE) compari-

son between the best GNN model and the LSTM baseline. 42

13 Results on specific time window. Forecasting of the best GNN model

against the observed values on a di↵erent time window. 43

14 The Santos-São Vicente-Bertioga Estuarine System. At the bot-

tom, the main locations: 1 - São Vicente Channel; 2 - Santos Port Channel;

3 - Bertioga Channel. 46

15 Observation sites at Santos-São Vicente-Bertioga Estuarine Sys-

tem. Location and name of all six observation sites used in the experi-

ments: 1) TIPLAM, 2) Alemoa, 3) Ilha Barnabé, 4) CPSP, 5) Praticagem,

6) Palmas. 47

16 Dynamic graph time flow. The structure of the graph, locally, on node

and edge feature level, and globally, in its topology, can change over time. . 48

17 Representation of the SSVBES as a graph. Since the sensors are

present in the wild, for each inference time t⇤ certain nodes can be present

or not. Therefore, the graph structure will dynamically change within the

inference time. 50

18 Di↵erentiable Graph Module (DGM) components and details.

The latent graph inference DGM module can be divided into 3 parts: (1)

the graph feature learning, responsible for encoding the node features into a

latent space where the probability (distance) between nodes is computed;

(2) the probabilistic graph generator, which is where the matrix of un-

normalized probabilities are calculated de facto; (3) the graph sampling,

where the Gumbel-Top-k Trick is applied for sampling without the need for

normalizing the probability distributions. 51

19 Encoder-Decoder architecture. Each node type is related to a Tempo-

ral Encoder and a Decoder, whereas all nodes share the same GNN Block

module. Specifically, the Graph Neural Network is a stack of GNN Blocks,

internally composed of a sequence of graph convolutions, normalization

layers, and non-linear activation functions. 53

20 DGM+GNN composition. We compose the DGM module and the

GNN, where they mutually feed one another. DGM receives the trans-

formed graph feature matrix X̂(l)
g and the graph adjacency matrix E

(l), and

returns a new representation of the features X̂(l+1)
g and a new adjacency

matrix Ê
(l). The new adjacency matrix is then used as the new graph

structure in the GNN Block. 54

21 Water current velocity distribution on Praticagem station as a

polar histogram. The water current velocity is almost entirely in the

channel direction, i.e., the east-west direction. 57

LIST OF TABLES

1 Dataset structure. 38

2 Water current optimization considering unsigned current. Results

obtained for water current velocity and direction forecasting at Praticagem

station w.r.t. the input data. A fully-connected graph was imposed on

that experiment. Presented values are the mean performance for 5-fold

cross-validation. The best results are in bold. 58

3 Sea surface height (SSH) optimization considering unsigned cur-

rent. Results obtained for SSH forecasting at Praticagem station w.r.t.

the input data. A fully-connected graph was imposed on that experiment.

Presented values are the mean performance for 5-fold cross-validation. The

best result is in bold. 59

4 Graph connectivity optimization considering unsigned current.

Results obtained for graph connectivity optimization as a function of the

model’s performance on water current velocity and direction forecasting

at Praticagem station, using the [Current+SSH] ! [Velocity, Direction]

scenario. Presented values are the mean performance for 5-fold cross-

validation for di↵erent graph topology configurations. The best results

are underscored in bold. As one can see, the connected model does not al-

ways produce the best result. Actually, there are node types that can hurt

the prediction of others. This is evidence for the case of using a technique

to infer the graph structure. 60

5 Forecasting test considering unsigned current. Results obtained

for water current and SSH forecasting at Praticagem station compared to

SOFS performance. We used the configuration [Current+SSH] ! [Veloc-

ity, Direction] for water current prediction, and the configuration [SSH] !

[SSH] for sea surface height forecasting. A fully-connected graph was used

given the results from graph connectivity optimization. Presented values

are the mean performance for the entire test set. The best results are in

bold. 61

6 Water current optimization considering signed current. Results

obtained for water current speed forecasting at Praticagem station w.r.t.

the input data. At this moment, we had access to di↵erent simulation

data, s.a. SOFS current and SSH prediction, and Astronomical Tide. A

fully-connected graph was imposed on that experiment. Presented values

are the mean performance for 5-fold cross-validation. The best result is in

bold. 61

7 Sea surface height (SSH) optimization considering signed cur-

rent. Results obtained for SSH forecasting at Praticagem station w.r.t.

the input data. At this moment, we had access to di↵erent simulation

data, s.a. SOFS current and SSH prediction, and Astronomical Tide. A

fully-connected graph was imposed on that experiment. Presented values

are the mean performance for 5-fold cross-validation. The best result is in

bold. 61

8 Graph connectivity optimization considering signed current. Re-

sults obtained for graph connectivity optimization as a function of the

model’s performance on water current speed forecasting at Praticagem sta-

tion, using the [Current+SSH+SOFS SSH+Astronomical Tide] ! [Speed]

scenario. Presented values are the mean performance for 5-fold cross-

validation for di↵erent graph topology configurations. The best result is in

bold. Analogously, a specific connection can degrade the result. This is,

again, evidence for the case of using a technique to infer the graph structure. 62

9 Forecasting test considering signed current. Results obtained for wa-

ter current and SSH forecasting at Praticagem station compared to SOFS

and ARIMA-like models’ performance. We used the configuration [Cur-

rent+SSH+SOFS SSH+Astronomical Tide] ! [Speed] for water current

speed prediction, and the configuration [SSH+SOFS SSH+Astronomical

Tide] ! [SSH] for sea surface height forecasting. For the GNN without

the DGM module, i.e. the Encoder-Decoder structure only, we used the

same type or location graph connectivity. For the complete model, i.e.

DGM+GNN, the model learned the optimal structure together with the

model’s parameters. Presented values are the mean performance for the

entire test set. The best results are in bold. 62

10 Models’ time complexity considering signed current. Related train-

ing and inference time for each model. ARIMA-like models optimize their

parameters during inference. Therefore, it does not make sense to consider

the time it takes to train these models. On the other hand, by analyz-

ing graph-based neural models’ time complexity, we can see a significant

drop in training time when we incorporate the DGM module. More specif-

ically, we had a 54% increase in the model’s training speed, i.e., a 35%

reduction in training time. Also, coupling the DGM module enables us to

bypass the optimization stages, reducing even more the training time be-

cause the hyperparameter optimization phase is part of a model’s training.

That is remarkable because, di↵erently from classical statistical models,

s.a. ARIMA-like, ML ones have near instantaneous time-response in in-

ference mode. Furthermore, machine learning models are able to better

generalize to unseen data without the need to retrain the model, which is

the case for those statistical models. 63

CONTENTS

1 Introduction 15

2 Background 19

2.1 Machine Learning . 19

2.1.1 Deep Learning . 20

2.1.2 Geometric Deep Learning . 21

2.2 Graph Neural Networks . 22

2.3 Physics-Informed Learning . 25

3 Related Work 27

3.1 Machine Learning on Physical Systems . 27

3.2 Physics-Informed Machine Learning . 29

3.3 Research Gap . 31

4 Exploiting Relational Biases with Graph Neural Networks 32

4.1 Background . 33

4.1.1 The Sepetiba/Ilha Grande Bay Forecasting Problem 33

4.1.2 Graph Neural Networks . 35

4.2 Proposed Model . 36

4.3 Experiments . 37

4.3.1 Datasets . 38

4.3.2 Model Configuration . 40

4.3.3 Discussion . 41

5 Physics-Induced Dynamic Graph Neural Networks: Learning more Ex-

pressive Representations 44

5.1 Background . 45

5.1.1 Forecasting the SSVBES dynamics 45

5.1.2 Dynamic Graphs and Message-Passing 47

5.1.3 Latent Graph Inference . 48

5.2 Proposed Architecture . 49

5.2.1 Di↵erentiable Graph Module (DGM) 51

5.2.1.1 Graph Feature Learning 51

5.2.1.2 Probabilistic Graph Generator 52

5.2.1.3 Graph Sampling . 52

5.2.2 Graph Learning . 53

5.2.3 Decoders . 54

5.2.4 Composing DGM and GNN . 54

5.3 Experiments . 54

5.3.1 Datasets . 55

5.3.2 Experimental Design . 55

5.3.3 Metrics . 56

5.3.4 Model Configuration . 58

5.3.5 Discussion . 58

6 Conclusion 64

References 66

15

1 INTRODUCTION

The last ten years have witnessed major changes in the field of machine learning.

There has been a significant advance in techniques that employ local optimization to

fit large models from huge datasets. On the other hand, advances in processing capac-

ity and data collection allowed such models and data to be e↵ectively processed. Top-

ics such as machine translation (BAHDANAU; CHO; BENGIO, 2014), computer vision

(KRIZHEVSKY; SUTSKEVER; HINTON, 2012; REDMON et al., 2016), and natural

language processing (VASWANI et al., 2017) have been greatly a↵ected.

Machine learning techniques, specifically deep learning ones, have seen an increase

in interest in applying them to advance scientific discovery in various domains. For

instance, researchers have made remarkable advances in fields of science as varied as

physics (RAISSI; PERDIKARIS; KARNIADAKIS, 2019; CRANMER et al., 2020), bio-

logical sciences (STOKES et al., 2020; JUMPER et al., 2021), and material engineering

(RACCUGLIA et al., 2016), applying these learning algorithms to real problems.

In particular, environmental and engineering domains, where first principle models

dominated until recently, have benefited from those advances, especially in scenarios

where domain knowledge is unknown or incomplete, problem complexity is enormous,

and there is su�cient data available. One such field is that of physical systems (KUTZ,

2017; BERGEN et al., 2019; REICHSTEIN et al., 2019). A myriad of physical sys-

tems span both temporal and spatial dimensions, and much research focuses its e↵orts

on approaching one of these dimensions with greater emphasis while modeling a specific

problem with machine learning.

The parallel progress in the area of Graph Representation Learning (GRL) (HAMIL-

TON; YING; LESKOVEC, 2017), particularly due to the development of practical and

theoretical foundations for Graph Neural Networks (GNNs) (GORI; MONFARDINI;

SCARSELLI, 2005; SCARSELLI et al., 2009; BRONSTEIN et al., 2017), has drawn

attention to use them in scenarios where spatiotemporal relations are paramount. In

physical systems, GNNs are used to model the domain of application in the form of

16

Figure 1: Examples of physical systems modeled as a graph. From left to right:
(1) Mass-Spring System, (2) n�Body System, and (3) Rigid Body System. Adapted from
(BATTAGLIA et al., 2018).

a graph, with the domain’s entities/objects as nodes and their relations represented as

edges between them. Also, the system’s dynamics are encoded as temporal sequences in-

puts to the GNN. With that framework, GNNs can learn powerful representations of the

physical systems and exploit the domain’s spatiotemporal biases. Figure 1 shows some

examples of those systems modeled in the form of a graph.

Despite those advances in data collection and the creation of new machine learning

models and techniques, purely data-driven approaches highly depend on data availability.

More crucially, they are prone to have weak extrapolation power of the knowledge learned

to outside the training domain. In the context of this work, in physical systems, this poor

generalization performance is easily seen due to physical inconsistencies and theoretical

implausibility.

Researchers have, therefore, devoted e↵orts to integrating domain knowledge as prior

information, in the form of explicit knowledge, hard constraints, or inductive biases, into

learning models. One can imagine a range of scenarios for physical systems problems,

with respect to those two variables, i.e., physical knowledge and data availability. Figure

2 presents how this relationship is organized. As a result, research on physical systems

has experienced, recently, a fast-growing pace in the adoption of physics-informed ma-

chine learning1 models (WILLARD et al., 2021; KARNIADAKIS et al., 2021) to solve

diverse tasks (BRUNTON; PROCTOR; KUTZ, 2016; BATTAGLIA et al., 2016; RAISSI;

PERDIKARIS; KARNIADAKIS, 2019; SANCHEZ-GONZALEZ et al., 2020).

In this work, physics-informed machine learning refers to algorithms enhanced by

(human) prior knowledge derived from our empirical, physical, or mathematical concep-

tualization of the world (KARNIADAKIS et al., 2021). These algorithms are robust to

missing or noisy data (most commonly in real-world scenarios), interpretable, given the

1It is worth mentioning that this field has been labeled with other names, such as physics-guided
machine learning, or physics-induced machine learning. Throughout this work, these terms are used
interchangeably.

17

Figure 2: Spectrum into which a physical problem can be framed. On the leftmost
side, the small data regime, we are dealing with the scenario where all the physics of the
problem is known, and su�cient data is available, i.e., initial and boundary conditions,
and the equations’ coe�cients. As expected, in the majority of the cases, researchers may
know little about the physics of the problem, and some observational data is available,
which is represented as the middle case scenario. Inversely, on the rightmost side, we have
little to no knowledge about the physics, though there is plenty of data available — the
big data regime. In this case, physics may be inferred from the data with techniques like
machine learning ones. Extracted from (KARNIADAKIS et al., 2021).

embedded domain knowledge, and capable of providing accurate and consistent physics

predictions, thus, more e�cient to generalize to out-of-distribution data.

The goal of this work is to develop a physics-informed graph neural network to model

ocean dynamics’ variables, such as water sea surface height and current velocity. We

aim to build a model capable of (1) dealing with temporally and spatially distributed

phenomena, while (2) being robust to missing or noisy data, (3) learning representations

grounded in physics, and (4) producing accurate and consistent predictions with the

physical knowledge of the domain. More generally, we want to devise a model that can

be extrapolated to any oceanic area in which data and physical prior knowledge are

available, and any of those characteristics are present, with guarantees that it also works

in real-world conditions.

To achieve that, we first reduced our scope to the southeast coastal region of Brazil, for

which we have oceanic data available, and divided the project timeline into two moments.

In the first one, we focused our e↵orts on gaining theoretical and practical experience with

modeling and predicting oceanic variables with GNNs, in a purely data-driven setting,

where we are only concerned about goal (1) above. We have built and compared our

model with classical statistical learning and state-of-the-art models, with respect to the

prediction of water current velocity in the region of Sepetiba/Ilha Grande Bay, located in

the state of Rio de Janeiro.

In a second moment, we addressed a more complex problem: modeling the Port of

18

Santos Bay. Characteristics (1) and (2) explained above are present in this problem,

and given that we do have a physical model of that region, we are able to enhance the

knowledge learned by our GNN. As we had already made our proof of concept in the first

part of the project, we focused on finding the best architecture by extensive empirical

design in this stage.

So far, we have gathered robust evidence of the benefits of relational models, such as

GNNs, in scenarios that require modeling of multiple dimensions (space and time, in the

case of the oceanic domain). We have found that GRL models are data e�cient (require

fewer data), can handle noise and missing data, learn powerful representations and take

advantage of information sharing, and, ultimately, perform excellently on real problems.

In short, this dissertation is an e↵ort to contribute to the advance of physical sys-

tems modeling with both first principle and machine learning models, standing at the

intersection between physics-informed machine learning and graph representation learn-

ing. This text is structured as follows: in Chapter 2, we discuss the necessary background

information about Machine Learning (ML), Deep Learning (DL), priors for DL models,

the Graph Neural Network (GNN) model, and how to leverage learning algorithms with

physical priors. Following that, i.e. Chapter 3, we present the related works in which we

developed our methods on top of and contributed to, putting our work in context. Chap-

ters 4 and 5 present the real problems we seek to solve, the methods developed to address

them, the reasoning behind our hypothesis, the experimental results we attained, and

practical and theoretical limitations. Finally, in Chapter 6, we summarize our findings

and discuss about future work that could improve our results.

19

2 BACKGROUND

This chapter covers the fundamental background information that is relevant to un-

derstand this work. It is worth emphasizing that the clarification of the concepts in here

are by no means a definitive and/or complete exposition of them, but cover their essence

to facilitate understanding of the remaining text.

2.1 Machine Learning

In a broad perspective, machine learning is an area of the AI research field in which

researchers are concerned about developing systems capable of learning how to accomplish

tasks using data, without being explicitly hard-coded. Mitchell (1997) states that an

algorithm with learning capabilities is a computer program that is able to improve its

performance in a class of tasks in light of experience. Thus, one can define, naively,

a machine learning algorithm as data responsive, i.e., it improves its performance when

more data is presented.

A machine learning algorithm can often be seen as a mapping from a (data)set of

observations X 2 Rm⇥n to the task’s domain y 2 Rd, i.e., a functional mapping f :

Rm⇥n
! Rd, where each one of the m observations is represented as a real-valued vector

x 2 Rn, composed of n characteristics (features) that may be important to describe and

help in the task. Therefore, the challenge for a learning algorithm is to find out inductively

the function that best represents the data-generating process, which is constrained by the

task’s objective. At first sight, it seems to be an ill-posed problem, given the infinite

possibilities one can define f .

Yet, ML is now a successful paradigm to a wide range of important problems (POMER-

LEAU, 1988; LEWIS; RINGUETTE, 1994; CORTES; VAPNIK, 1995). The reason why

machine learning works well on those problems is because inductive biases are imposed

on the function being searched, thus limiting the search space. For example, one may

know beforehand that the problem’s outcome variable is linearly dependent on features,

20

so the function f must be linear, or that the learned function f is 1-Lipschitz continuous,

i.e., little perturbations in the input won’t a↵ect the outcome. These hypotheses (or a

combination of them) are what define a model, which together with su�cient data, is

capable of solving a myriad of problems.

However, machine learning is not only concerned about performing well on observed

data but also with generalizing to distributions outside the training data. If one is tack-

ling a narrow task, simple models like linear regression will serve just fine. But, when

confronted with human-relevant problems, such as speech recognition, object detection,

natural language understanding, or modeling environmental systems, those models fail.

Those problems (and many others) are high-dimensional ones, su↵ering from a phe-

nomenon known as the ‘curse of dimensionality’. In order to capture patterns in such

high-dimensional data, it is necessary to use more complex models. Nonetheless, complex

machine learning models are prone to have poor performance on data not seen before. So,

in the urge to solve the weak generalization capacity of the model, one would seek more

data. But, the problem is that the amount of training data needed grows exponentially

with its dimension and we end up in a vicious cycle.

2.1.1 Deep Learning

The previous challenge was the main driver for researchers to seek more powerful mod-

els that could scale to high dimensions, and neural networks have stood over other classical

machine learning models. A few reasons for that are their flexibility and the theoretical

guarantees that (multilayer) neural networks are able to approximate any continuous mul-

tivariate function to a desired degree of accuracy (CYBENKO, 1989; HORNIK, 1991).

A paradigm shift – as defined by Kuhn (1962) – was the advance of computational ge-

ometry and theoretical e↵orts on neural networks through this lens. The search for and

the injection of strong and regular geometric properties into neural network architectures,

constructing powerful inductive biases in association with deeper models was the game

changer that revolutionized the field of machine learning. It is worth citing the (nowadays)

criticized work of Minsky and Papert (1969) for their introduction of those theories in the

study of neural networks, especially theoretical progress with respect to group invariance

properties that neural networks display.

A popular deep neural network architecture with those geometric properties is the

Convolutional Neural Networks (CNNs). Authors of seminal papers, Fukushima (1980)

and LeCun et al. (1989), respectively with the Neocognitron and LeNet model, established

21

f(Gx) = Gf(x) f(Gx) = f(x)

Figure 3: Equivariant and invariant translation symmetries. Given a translation
operation G from a collection S (G 2 S) of symmetry translation operations, a function
f is (left) translation equivariant in S if f(Gx) = Gf(x), and (right) translation invariant
in S if f(Gx) = f(x). In this example, a dog pattern is shifted in the image grid, and the
corresponding function (equivariant/invariant) is applied to the image.

the foundations for recent deep neural network architectures, based on the work of Hubel

andWiesel (1959, 1962). The gist of their work resided on the concepts of compositionality

and hierarchy, inspired by the biological evidence found by the latter researchers, and the

introduction of geometric priors to the neural network’s architecture.

Both Fukushima (1980) and LeCun et al. (1989) hypothesized that patterns in an

image were defined by local information. However, this information can appear anywhere

on the image. Therefore, the desired function f must be robust to translation transfor-

mations. That is, f must have translation invariance. In other words, the output of

the model should not depend on the position of the aimed pattern in the image. Fig-

ure 3 explains mathematically and visually the geometric properties of equivariance and

invariance to the group of translations.

To summarize, if one knows what kinds of regularities the function to be learned must

observe, this knowledge can be used to constrain the search space.

2.1.2 Geometric Deep Learning

Many tasks of interest can be narrowed to prior regularities that come from low-

dimensional structures of the physical world, such as exposed through CNNs. Inspired

by that, researchers have recently contributed to the emergence of a new field known

as Geometric Deep Learning (GDL), which focuses on unifying these regularities into a

framework of geometric principles.

22

Bronstein et al. (2021) show how state-of-the-art models, such as Convolutional Neural

Networks (CNNs), Recurrent Neural Networks (RNNs) and Transformers, can be devised

through the lens of symmetry groups. Another model that has had significant advances

in recent years due to theoretical advances in the GDL field, and which is of particular

interest for this work, are Graph Neural Networks.

2.2 Graph Neural Networks

Graphs are structures that model systems of relations and interactions, used in many

fields of science, from biology and physics to sociology.

A graph G = {V , E} is defined as set of nodes V and edges E ✓ V⇥V between pairs of

nodes. We assume that each node v 2 V is embedded with a d�dimensional node feature

xv 2 Rd. One common example is the modeling of social networks as graphs, where users

and their interactions are represented, respectively, as nodes and edges of the graph, and

user information, such as name, age, birth place and profile picture, are modeled as node

features.

A key structural property of graphs is that the order of the nodes v 2 V is not assumed

to be in any particular configuration. In other words, if one performs any operation on

graphs, it is desirable that it does not depend on the ordering of the nodes. Thus, functions

applied on graphs should respect the property of permutation invariance, so any two

isomorphic graphs have the same outcome from that function.

To formalize that notion, assume a generic graph G = {V , E}, with n nodes endowed

with node features X, and E 6= ?. Node connectivity is represented with a n⇥n adjacency

matrix A defined as follows:

ai,j =

8
<

:
1, (i, j) 2 E ,

0, otherwise.

Therefore, following the definitions of invariant and equivariant functions described previ-

ously, given a permutation operation P , a function F applied1 to this graph is permutation

invariant if it satisfies:

F (PX,PAP T) = F (X,A),

1Given that F is applied to a graph, it depends on both the node features X, and the adjacency
matrix A.

23

and permutation equivariant, if it satisfies:

F (PX,PAP T) = PF (X,A).

Due to the invariance constraint, it is reasonable to define the functional mapping in

terms of node-wise operations, given that (1) ordering is not relevant, and that (2) each

node depends only on a local subset of nodes in V , named as the node’s neighbourhood.

A neighbourhood of a node v is defined as:

Nv = {u : (u, v) or (v, u) 2 E}.

Moreover, the neighbourhood also defines the neighbourhood features2 of node v:

XNv = {{xu : u 2 Nv}}.

Equipped with that knowledge, such a function F is constructed applying a permuta-

tion invariant � function3 to each node locally, i.e., � is applied taking into consideration

each node feature vector and its neighbourhood features:

F (X,A) =

2

666664

�(x1, XN1)

�(x2, XN2)
...

�(xn, XNn)

3

777775
.

Thus, a Graph Neural Network (GNN) can be specified as a function F devised above,

with stacked layers computing, one after another, a latent representation of each entity

of the graph. Figures 4 and 5 represent how each node feature is updated through the

permutation invariant local function �, and the blueprint of a GNN, respectively. In

the field jargon, � is also known as the di↵usion or message-passing function and F is

defined as the GNN Layer. Each GNN model has a particular F and � functions. Those

are parameterized di↵erentiable functions, which enable gradient-descent algorithms for

optimization.

We have used the definition of a graph considering nodes as the only entities with po-

tential features. However, in the most general definition, each one of the graph’s entities,

e.g. its edges, or even the graph itself, may possibly have attributes. So, the characteri-

zation of the functions explained above will vary depending on which entity has features

2The neighbourhood features is a multiset {{...}} because the features of any two di↵erent nodes can
have the same value.

3Bronstein et al. (2021) prove that if � is permutation invariant, then F is permutation equivariant.

24

Figure 4: Example of graph and di↵usion function applied to it. (Left) Local
function � applied to node ni (blue) and its neighbourhood Ni. (Right) Outcome of the
message-passing applied to node ni, which results in the new embedding hi.

in it.

In this work, we use two complementary definitions to characterize GNNs’ functions.

The most general of them, inspired by (BATTAGLIA et al., 2018), a GNN Layer has

functions associated with all its entities, i.e., nodes, edges, and global attributes:

e0
k
= �e(ek,xrk

,xsk
, u), ē0

i
= ⇢e!v(E 0

i
),

x0

i
= �v(ē0

i
,xi, u), ē0 = ⇢e!u(E 0),

u0 = �u(ē0, x̄0, u), x̄0 = ⇢v!u(V 0),

where updated features are primed in the above definitions. Nodes, edges, and global

attributes, respectively xi, ek, and u, are updated by learnable �⇤ functions. Moreover,

edges are aggregated by permutation invariant ⇢⇤ functions. Instances of such permuta-

tion invariant functions are the mean, median, or sum. The same (permutation invariant)

aggregation is made to update nodes that are pointed by edges or by the global attributes.

This is also true when one aggregates node attributes for global features’ updating. That

is the scheme we employ in Chapter 4.

Nonetheless, when dealing with a graph with only node features, as it is presented in

Chapter 5, the above equations can be compressed following the message-passing mech-

anism defined in (GILMER et al., 2017). This mechanism can be summarized by the

following equation:

x0

i
= � (xi, XNi) = �v

xi,

M

j2Ni

�e (xi,xj)

!
, (2.1)

25

Input Graph

⇥
N

GNN layer

Output Graph

Figure 5: Graph Neural Network blueprint. Example of how a GNN learns new
node representations h0

⇤. Here, the di↵usion function is being applied only on the nodes
of the graph. However, it is noteworthy that an embedding layer can be applied in every
graph’s entities.

where xi is the hidden representation (or node features) of a node i, �e is a di↵erentiable

message function that constructs a message to be propagated based on both sender (xj)

and receiver (xi) nodes, linked through an edge,
L

denotes a non-parametric, permutation

invariant aggregation function that gathers all messages from neighbour nodes, and �v is

a di↵erentiable update function, that updates the node’s hidden representation. Each �⇤

is parameterized by a set of learnable parameters that are iteratively updated during the

training process, as shown in Figure 5. Examples of such functions would be MLPs.

2.3 Physics-Informed Learning

As previously exposed, a physics-informed machine learning algorithm is an algorithm

enhanced by empirical, physical, or mathematical models of the world. Concretely, how-

ever, that improvement in learning algorithms informed through physics is accomplished

introducing any combination of relevant observational, inductive, or learning biases into

the learned model. This process must be able to shift the learning algorithm towards

physically plausible solutions, compared to free-prior solutions.

Observational biases are introduced into the model via data that captures the

26

underlying physics of the addressed problem, either through a natural data generating

process or augmentation procedures. Given that the model will learn a functional mapping

accordingly to the data, it will reflect the physical structures embodied in the data.

On the other hand, inductive biases are associated with the insertion of prior as-

sumptions into the model’s architecture, such that the learned function is guaranteed to

satisfy certain physical laws. One successful example is the convolution operation for-

merly detailed in the discussion of CNNs. The physical information mostly accounts for

mathematical constraints through symmetry groups, s.a. translation, permutation, and

rotation.

Lastly, learning biases are introduced in learning algorithms by adjusting the loss

function to attain some behaviour. An example of learning biases are regularization

methods, s.a. L1 and L2 regularization, where a model is penalized when its solutions

diverge from those allowed by the imposed constraint. An example of physics-informed

learning algorithm that fits in this concept is the Physics-Informed Neural Network model

(RAISSI; PERDIKARIS; KARNIADAKIS, 2019).

Again, it is noteworthy that those di↵erent ways of biasing a learning algorithm to-

wards physically consistent results are not mutually exclusive. In fact, many recent break-

throughs in AI were only possible through a clever and engineered combination of those

approaches, producing powerful hybrid machine learning models physically-informed.

27

3 RELATED WORK

This work spans multiple fields and builds on similar previous works. However, as

it will be explained in the following sections, few works in the literature to date, to the

best of our knowledge, have investigated the relationship between graph learning models

and models guided by the domain’s physical knowledge. In ocean-related domains, a

few studies we have found di↵er from ours in the use of simulated data, resulting in

applications not compatible with real-world scenarios.

We first lay out, in Section 3.1, related work that uses learning algorithms to tackle

physical systems’ prediction tasks. The e↵orts presented in this section ranges from

classical machine learning methods for di↵erent domains, narrowing down to the modeling

of physical systems through graphs processed by GNNs. After that, Section 3.2 gives an

overview of the literature on learning algorithms guided through physics, with applications

to graph-structured tasks. Special focus is given to works on domains that are mostly

related to the oceanic domain. Lastly, in Section 3.3 some key research gaps of those

proposals, which our work seeks to solve, are discussed.

3.1 Machine Learning on Physical Systems

As we previously discussed, machine learning has been adopted recently in various

fields of science, or even replacing traditional first-principle models. Even though one

would take a long time describing the space of ML applications, it is worth citing rele-

vant disciplines encompassed in the field of physical systems that are important to this

work. For instance, ML has had success in physical systems problems from fluid dy-

namics prediction (XIAO et al., 2019; BRUNTON; PROCTOR; KUTZ, 2016), earth

systems and climate science simulation (KRASNOPOLSKY; FOX-RABINOVITZ, 2006;

O’GORMAN; DWYER, 2018), and particle interactions (GLIELMO; SOLLICH; VITA,

2017).

In the context of this work, classical ML methods are used as surrogate models to

28

predict physical systems’ dynamics. Models such as Support-Vector Machines (SVMs),

Gaussian Processes (GPs), and even shallow neural networks replace appropriate modules

of numerical simulators to speed up simulations, while preserving accurate results. For

example, in (XIAO et al., 2019) the authors make use of GPs as a Reduced Order Model

(ROM) to predict turbulence flows, given data from large scale turbulence fluctuation

simulations. In another work, O’Gorman and Dwyer (2018) use random forests as a

parameterization of convection terms, which are informative to predict extreme events,

however, di�cult to model.

Deep learning has helped accelerate the adoption of learning algorithms for system

dynamics prediction. As similar problems to those described above tend to be high-

dimensional, DL can outperform both classical ML and numerical methods, learning

powerful representations, while keeping its flexibility. For deep learning approaches, re-

searchers resort to di↵erent inputs and architectures in order to model system dynamics

accurately. For instance, Ravuri et al. (2021) propose a generative model – specifically,

Generative Adversarial Networks (GANs) – for the task of precipitation nowcasting. The

deep learning model is fed with high-resolution radar data and learns to forecast the

amount, timing, and location of rainfall at short time period. Numerical weather pre-

diction systems, for instance, have excellent performance in forecasting several days of

world-scale weather, some argue. Nonetheless, though powerful, these numerical methods

struggle when generating high-resolution predictions for short lead time intervals (TOTH;

KALNAY, 1997), i.e., nowcasting.

When dealing with physical systems where interactions and relations are paramount,

graph-based learning models excel. For instance, in (BATTAGLIA et al., 2016) the au-

thors present their Interaction Network (IN), which is a graph-based model that takes

graphs representing complex object-interaction systems as inputs, di↵use object-level and

relation information through the graph with a similar mechanism as message-passing

GNNs (GILMER et al., 2017), and predicts the system dynamics. Relation systems such

as n-body and rigid-body problems have had their dynamics predicted accurately within

this framework, even in settings with distinct number of objects or relations, and time-

steps to predict.

Also in the context of modeling physical systems through GRL (HAMILTON; YING;

LESKOVEC, 2017) models, Sanchez-Gonzalez et al. (2020) developed a learning frame-

work that can simulate various physical systems, such as fluid, rigid and non-rigid solid

materials, interacting (or not) with each other. Their Graph Network-based Simulator

(GNS) framework models the physical domain of interest with (discrete) particles as nodes

29

in a graph, each one of them connected with a finite neighbourhood of nodes. The nodes

have feature vectors containing, e.g., the particles properties (mass, sti↵ness) or their

dynamics (velocity, acceleration), as well as the edges. Graph information is propagated

through message-passing mechanism (GILMER et al., 2017; BATTAGLIA et al., 2018).

GNS is capable of predicting system dynamics for flexible time windows, generalizing

for diverse domains, and speeding up simulations, while keeping accuracy and physical

fidelity.

3.2 Physics-Informed Machine Learning

Another key topic here is Physics-Informed Machine Learning (PIML). As previously

detailed, the main objective of PIML is to enhance learning algorithms’ capabilities in-

jecting prior (physical) knowledge into it, where priors are devised through empirical or

mathematical formulations. Specifically, this is possible by introducing any combination

of observational, inductive, or learning biases into the model.

Xu and Valocchi (2015) proposed an ML framework to address a problem in a domain

similar to ours. The authors aim to enhance the predictive capabilities of a physics-

based model of the groundwater flow of a specific river region, where they already have a

numerical model. Given the predictions performed by the physical model, they compare it

with real (observational) data and compute the residual between simulated and observed

data points. After that, a machine learning model is fed with observed environmental

variables that a↵ect the water flow and predicts the residual error previously computed.

Finally, the predicted bias from the data-driven model is then used as an uncertainty bias

interval. So, with that bias interval, they are able to compute a confidence interval, using

the prediction of the physical model as the center of this interval. In short, they proposed

a bias-correcting model (DEMISSIE et al., 2009) guided via physical data of a numerical

model.

On the other hand, regarding deep learning approaches, and, more specifically, those

that make use of GNNs, it is worth diving into a few proposals. For example, in (HU

et al., 2020) the authors deal with power flow prediction in electric systems. For that,

they built a model with both inductive and learning biases, as described before. Based

on the concept of (multi-task) supervised autoencoders and their (proved) regularization

attribute (LE; PATTERSON; WHITE, 2018), they developed an autoencoder that solves

the direct and inverse problem of interest. While the encoder is a vanilla Multi-Layer

Perceptron (MLP), which maps inputs to the target variables, the decoder is designed as

30

a neural network inspired on fundamental circuit laws. Thus, the model is constrained

both in the learning process, through the optimization of both the direct and inverse

problem solving, and the model’s architecture, via the introduction of physical knowledge

into its design.

Similarly to (HU et al., 2020), the work by Lemos et al. (2022) is another one that

falls into those two categories on how to bias a learning algorithm, i.e., both inductive

and learning biases are present in their proposal. In that work, the authors’ objective is

to demonstrate a new approach to discover both physical laws and unobserved properties

of complex physical domains with data and well-established scientific frameworks. Specif-

ically, they use observations of the orbital trajectories of the Sun, planets, and moons

in order to rediscover Newton’s law of gravitation and the masses of these bodies. To

do so, they defined a two-step approach to address both learning the law of gravitation

and bodies’ masses. First, they fit a GNN-based model using the observed trajectories of

the celestial bodies. After that, symbolic regression is used to fit an analytical formula

with internal components of the GNN. Precisely, the celestial bodies are positioned as the

nodes of the graph, and the (physical) forces between bodies are embedded into the edges.

The learned edge function is enforced to mimic Newton’s law of gravitation, which was

devised by an external symbolic regression module (CRANMER et al., 2020). Therefore,

their model is able to predict the system dynamics adhering to the underlying physical

equations and also to derive properties from it.

In (PARK; PARK, 2019), the authors focused their e↵orts to deal with wind-farm

power estimation. Wind turbines positioned in wind farms handle interactions due to

wake generation in the process of energy production. Thus, power production is a↵ected

by these wake interactions, reducing the wind farm’s full power-generating capacity. In

this sense, the authors proposed a physics-guided model, titled PGNN (Physics-induced

Graph Neural Network), to estimate the power outputs of wind turbines. They modeled

that problem by representing the wind farm and the environmental conditions in the form

of a graph, processed by a GNN. With that, they are able to represent both the wind

turbines as nodes and those interactions within the edge features of the link between

turbines. Also, physics information is injected into their architecture with the help of a

weak model, proposed in (PARK; LAW, 2015), that captures the intensity of interaction

between wind turbines, weighting the relation between nodes.

31

3.3 Research Gap

The works here presented have clever and principled solutions to hard and important

problems. However, as one can infer, they reside in specific niches. Therefore, there is

not a one-fits-all solution to all of them. Even so, it is interesting to note the recent trend

of approaching physical problems with learning algorithms. Not only that, works in the

intersection PIML \ GRL seems to produce better results in predicting (physical) system

dynamics. That points to a research direction not well explored, with promising results.

We believe that only a handful of e↵orts have been interested in addressing real-world

problems; most of them focus on problems with reduced scope and/or making use of

limited analytical models with toy data. That suggests a stimulating gap of research that

drew our attention and that is the subject of this work.

Therefore, the main goal of this research is to build a graph neural network that is able

to incorporate physics principles to model oceanic variables, such as sea surface height

and water current velocity. The specific objectives are the development of a model that

can handle spatially and temporally distributed phenomena, tolerate missing or noisy

data, generate physics-grounded representations, and provide accurate and consistent

predictions based on domain-specific knowledge. In summary, we seek to design a flexible

model that can be applied to any oceanic region where data and prior physical knowledge

are available while also performing e↵ectively in real-world conditions. In essence, this

dissertation pursues to contribute to the advancement of physical systems modeling by

bridging the gap between physics-informed machine learning and graph representation

learning.

32

4 EXPLOITING RELATIONAL BIASES WITH
GRAPH NEURAL NETWORKS

In this chapter, we explore a practical problem of both technological and economic

significance that involves managing a large volume of temporal data within a known

spatial framework. Specifically, our focus is on determining the water current speed at a

specific location within a major port area in South America. To accomplish this, we use

measurements collected by a network of sensors attached to nearby sea buoys. However,

due to technical glitches, a significant number of data points are missing from these

sensors. The prediction of sea conditions in the port area is crucial for port authorities

who need to coordinate the movement of numerous heavy ships, such as those transporting

oil or ore. Current physical models for this task are expensive to develop and support,

as they require high-quality environmental measurements, accurate boundary conditions,

and a detailed 3D representation of the location, including topological and bathymetry

studies.

Abstractly, our problem falls within the realm of sequential data collection through

a network of sensors with a fixed spatial structure, wherein the sensors often su↵er from

faults. Consequently, our specific application represents a broad category of significant

forecasting challenges encountered by various industries that could benefit significantly

from the properties of graph neural networks.

To address this problem, we developed a GNN-based model that grasps the spatial

relationships within the domain. By leveraging historical real-world data collected from

the Sepetiba/Ilha Grande Bay in Brazil, we are able to train and optimize the parameters

of our model. In this chapter, we provide a detailed description of the GNN design

we adopted and explore various nontrivial assumptions regarding its structural aspects,

analyzing their impact. Our results demonstrate that the GNN achieves outstanding

performance when compared to classical and state-of-the-art auto-regressive models. More

importantly, it benefits from the spatial structure imposed upon it, which is the initial

hypothesis that motivated our implementation.

33

Ilha Grande Bay

Sepetiba Bay
1

2
3 4

Figure 6: Locations of Sepetiba/Ilha Grande Bay’s main port terminals. Lo-
cations in order of appearance: 1 - Angra Terminal (Oil) – TEBIG; 2 - Guaiba Island
Terminal (Ore) – TIG; 3 - Port of Sepetiba; 4 - CSN Terminal.

4.1 Background

In the following sections, we detailed our problem and its characteristics (Section

4.1.1), and recap definitions previously discussed, in order to understand the hypothesis

adopted and how we approached the problem via GNN modeling (Section 4.1.2).

4.1.1 The Sepetiba/Ilha Grande Bay Forecasting Problem

The Sepetiba/Ilha Grande Bay is situated in Brazil’s southeastern region, specifically

in the State of Rio de Janeiro. This bay is a protected area in close proximity to the city

of Rio de Janeiro, characterized by its diverse port infrastructure and significant maritime

tra�c. To provide visual context, Figure 6 illustrates the region of interest within South

America (left) and highlights the regions’ main port terminals: TEBIG, TIG, Port of

Sepetiba, and CSN (right).

The operational e�ciency and safety of commercial sea vessels are directly influenced

by sea conditions and weather phenomena, which play a crucial role in navigation. Ex-

treme events like low visibility or strong currents can disrupt ship tra�c, necessitating

the interruption of operations. Port authorities are responsible for accurately predicting

environmental parameters, particularly within the short-term range of 24 to 48 hours.

This task becomes even more critical in shared channels accommodating vessels of vary-

ing sizes, as in the present case. That is the case for the present problem, as we are

interested in predictions within the 24-hour time window.

Typically, the prediction of environmental parameters relies on physical models of

atmospheric and hydrodynamic circulation. These models incorporate global-scale model

and low-resolution satellite data, measurements of local wind, and tidal variations bound-

ary conditions (PIANC MarCom, 2012). Additionally, accurate 3D grid models of the

34

1 2
3

4

5

6

7

8
9

Figure 7: Sensor buoys’ locations. Oceanic phenomena, such as current and
wind velocity, and tides are measured in each site. Buoys’ names: 1) B18 2) BEV
3) TIG 4) TIG 1 5) Bifurcação 6) Evolução 7) Pier 8) BPA 9) B22.

area, encompassing coastline and bathymetry information, are employed.

However, with advancements in sensing, data transmission, and storage technolo-

gies, there has been increased availability of measured data. This, in turn, has fueled

the demand for more intricate data-driven techniques for forecasting time series (WU

et al., 2019). These data-driven models operate independently of physics-based mod-

els and domain-knowledge inputs, automatically updating as new measurements become

available. Our work aligns with this trend toward data-driven modeling.

In this study, we propose a novel modeling approach that leverages a spatially dis-

tributed network of sensors present along the Sepetiba/Ilha Grande Bay to forecast the

speed of water current at a specific buoy, hereby defined as Bifurcação. The network con-

sists of nine navigational buoys, indicated in Figure 7 (with Bifurcação labeled as number

6). Each buoy measures a set of oceanic variables, including tide elevation, current and

wind speed, and visibility. The speed of the water current in the bay is significantly

influenced by tide elevation, with a weaker dependence on wind speed through surface

drag, and meteorological e↵ects (indirectly indicated by visibility). A reliable forecasting

system must capture these dependencies and their temporal evolution.

Every buoy within the network has a sampling frequency of ten minutes for data

measurement. Considering the fairly slow dynamics of the system, we made the decision

to sub-sample the data and focus on twenty-minute intervals between measurements. It is

35

important to highlight that the data collection process is prone to faults, with numerous

missing features in many measurement rounds. Additionally, there are instances where

buoys fail to report one or more features for extended periods, stretching to months.

These challenges highlight the advantages of employing a Graph Neural Network (GNN)

approach that can e↵ectively leverage spatial information to address such issues.

4.1.2 Graph Neural Networks

In various scenarios that require the recognition and utilization of hierarchical pat-

terns, deep neural networks have proven to deliver remarkable and occasionally unex-

pected performance. Nonetheless, fully connected neural networks encounter challenges

when it comes to capturing constant relationships between entities (BATTAGLIA et al.,

2018). While certain neural networks, such as Convolutional Neural Networks (CNNs)

or Recurrent Neural Networks (RNNs), incorporate weight sharing among multiple units,

these connections primarily remain local within the model, either in a spatial or temporal

sense.

vi
vj vk

ei,j ek,i u

Figure 8: Schematic of a graph with entities’
features. Here nodes, edges, and global attributes
are presented.

To recap, GNNs have been

developed to model a domain’s

structure, expressed through re-

lations between entities. Specif-

ically, a GNN uses nodes (rep-

resentative of multiple classes),

edges, and global attributes to

codify the domain. Figure 8 illustrates a piece of a graph with such objects.

In order to comprehend, concretely, the components of a GNN, take into consideration

a simpler example weakly related to the application later described. Imagine a mass-spring

system. Our goal is to accurately predict the mass position of such a system. One can

model it using a graph abstraction, where nodes represent the system’s masses, while

edges represent the physical relations between nodes, i.e. interactions between masses

due to the springs. The node features vi are its position, velocity, and mass value, for

instance. The edge features, on the other hand, ek are the sti↵ness and the natural length

of the spring connecting the respective masses. Lastly, the global attribute u, which is

visible and shared within all entities, is the gravity force. To predict the model’s features,

a prediction function is applied to entities. For example, one may wish to predict one

mass (node) position after n-time steps in that hypothetical mass-spring system.

36

In this chapter, we employ the comprehensive definition of Graph Neural Networks

(GNNs) as outlined by Battaglia et al. (2018), which was introduced in Chapter 2. To

recapitulate, within this general framework, a GNN encompasses functions that are asso-

ciated with nodes, edges, and global attributes:

e0
k
= �e(ek,xrk

,xsk
, u), ē0

i
= ⇢e!v(E 0

i
),

x0

i
= �v(ē0

i
,xi, u), ē0 = ⇢e!u(E 0),

u0 = �u(ē0, x̄0, u), x̄0 = ⇢v!u(V 0),

where primed attributes represent updated features. Nodes, edges, and global attributes,

respectively xi, ek, and u, are obtained by learnable functions �⇤. Additionally, these

entities’ attributes are aggregated by permutation invariant ⇢⇤ functions.

4.2 Proposed Model

In accordance with Battaglia et al. (2018), we consider a graph to be represented

by a tuple G = (V , E), where V = {v1, . . . , vN} denotes a set of nodes. Each node vi is

associated with a real-valued feature vector xi. The set of triples E = {(ek, rk, sk) | k =

1, . . . , N} defines the edges, where each triple contains an edge attribute ek represented

as a real-valued vector associated with the edge (rk, sk)1.

The structure of our underlying graph is defined as follows. Each node in the graph

corresponds to a buoy, associated with a set of features such as current velocity in the

x-axis and y-axis, wind velocity in the x-axis and y-axis, local sea level, temperature,

and visibility. To capture the relationships between nodes, domain experts have selected

specific node attributes that influence other nodes’ features. These relationships are

represented by the edges in the graph. The edge attributes are derived from the adjacent

node attributes, including the current velocity components in the x-axis and y-axis, as

well as the local sea level.

We consider two graph topologies: a fully connected (coined as non-local model) and

a fully disconnected version (called local model). The first one captures e↵ects between

sensors, given that they share a geographic location and, thus, are spatially related. The

second does not use the full strength of GNNs and was built only for comparison purposes.

Illustrating these two schemes we have:

1It is worth noting that in our work, we do not utilize the global attribute u defined by Battaglia et
al. (2018).

37

• The non-local graph neural network updates node features taking all relational

information into account, inspired by (WANG et al., 2018). A representation of this

architecture can be seen below:

V �v

E �e

⇢e!v

V
0

The function �e(ek) = e0
k
is responsible for updating each edge attribute ek. Next,

these updated attributes are aggregated using a simple sum operation, which results in

ēi = ⇢e!v({e0
k
}) =

P
k:(i,k)2E e

0

k
. Furthermore, the function �v(ēi,xi) = x0

i
updates each

node vi based on the aggregated edges’ attributes ēi. As discussed in Section 2.2, in the

context of GNNs, the update functions applied to the entities of a graph are di↵erentiable.

In this particular case, the update functions �e and �v correspond to basic neural networks,

specifically Multi-Layer Perceptrons (MLPs), which take the entity’s attributes as input.

In other words, given the features observed by the sensors at a given time step, which are

stored in the nodes and edges of the graph, the values of these features are predicted in the

next time step by updating the edge attributes using e0
k
= MLPe(ek), and subsequently

updating the node attributes using x0

i
= MLPv(ēi,xi).

• The local graph neural network, on the other hand, looks only at node-level at-

tributes, i.e., it only updates x0

i
= �v(xi).

It is worth emphasizing that while information does not flow between nodes in the

second scheme, it still benefits from the graph structure, given that the nodes share the

same update function �v = MLPv(xi).

To facilitate the GNNs in capturing the temporal changes in signals, we construct

node and edge attributes by concatenating measurements from the previous 48 hours,

which are obtained at 20-minute intervals. This concatenation results in node feature-

vectors xi 2 R145⇥7 and edge feature-vectors ek 2 R145⇥3, encompassing 144 observed

data points along with the inference time from which a prediction is made.

4.3 Experiments

In the following sections, we make an in-depth discussion of topics related to the

experimental part of the work. In Section 4.3.1 it is detailed the dataset, its characteristics,

di�culties dealing with it, and how we overcome them. Next, the model configuration

38

timestamp bcx mean bcy mean . . . B18v
01� 01� 2018 00h00 0.789 0.567 . . . NaN
01� 01� 2018 00h10 0.743 0.598 . . . 1.0

.
31� 12� 2019 23h50 0.722 NaN . . . 1.0

Table 1: Dataset structure.

is presented in Section 4.3.2. Lastly, in Section 4.3.3, experimental results and their

implications are discussed in detail.

4.3.1 Datasets

The set of observations consists of a large database from 01/01/2018 00:00 to 12/31/2019

23:50 (2 years of measurements), sampled every 10 minutes, from the four sites in Sepetiba

Bay/Ilha Grande (TEBIG, TIG, CSN, and Porto de Sepetiba), which provides approxi-

mately 105 thousand points.

The data consist of measurements of maritime and climatic phenomena through a

network of sensors placed on buoys, totaling 9 measurement points. Seven are the ob-

served phenomena: components of water current velocity on the x and y axes, wind speed

components on the x and y axes, sea level and local temperature, and visibility. Table 1

illustrates the arrangement of the obtained data.

Despite the great progress in recent years in terms of capturing, processing, and

distributing data in di↵erent areas, and considering that the referred network of sensors

is vulnerable to all sorts of inclement weather, it would be naive to think that the data

would not be faulty. Thus, there was a considerable deficiency, to the point that it was

necessary to implement algorithms capable of completing our base with some fidelity:

roughly 3.2 million cells are absent in the dataset, corresponding to approximately 43%

of the cells.

As an example, Figure 9 presents the distribution for current speed on the x-axis

observed in the Bifurcação buoy. It is possible to notice that, for this specific region,

there isn’t faulty data. However, as it’s presented afterward, there are regions that have

huge bands of missingness due to sensor damage.

As stated above, in a completely opposite way, Figure 10, which presents the distribu-

tion for the same phenomenon, yet observed by the buoy B22, shows that some of these

sensors failed to measure these phenomena for a large part of the period (if not, in some

39

Figure 9: Current speed on the x-axis observed on Bifurcação buoy. For this
specific region, the sensors are more robust and have periodic maintenance. Therefore,
the data is complete.

cases, as illustrated in the figure, in most of it.)

After understanding the problem related to the database, two di↵erent methods were

applied to perform data imputation:

1. MICE (Multiple Imputation by Chained Equations) (RAGHUNATHAN et

al., 2001; BUUREN, 2007; AZUR et al., 2011): this method works from the a

posteriori probability maximization scheme (MAP). The central idea is to use the

information from the a priori distributions of the missing variables together with the

relationship between them. Initially, the base is completed from the distributions of

the variables themselves. Next, one of these is defined as the dependent variable and

a regression is performed having the other variables as independent variables. This

process is repeated for all other variables, updating their values in each regression

round, until the values of the variables cease to change, that is, when the values are

optimized.

2. Imputation via spatio-temporal distribution: suppose we consider a buoy

and an attribute is absent at some point. If this attribute is present for most buoys,

we impute their mean when the variance is smaller than one threshold ; otherwise,

we impute the median. However, if most of the buoys also have this attribute

absent, we take the average of this attribute over time for the buoy measurements.

That is, in the first scheme, the spatial distribution of the attribute is taken into

account, while in the second, the temporal distribution. The value of threshold was

40

Figure 10: Current speed on the x-axis observed on B22 buoy. Like most of the
other buoys, this one has a missingness problem. Almost the entirety of the time, the
sensor is faulty.

obtained through several attempts, followed by sampling intervals to qualitatively

define whether the imputation had a good result or not — the value found was 0.25.

We empirically noticed slightly better performance using the average-based imputation,

so the following reported results were obtained with an average-completed dataset.

4.3.2 Model Configuration

Our GNN implementation utilized the Graph Nets library developed by DeepMind2.

We made necessary adaptations to the library to suit our specific model requirements.

During training, we used a batch size of 5,000 data points and employed a sliding window

approach with 6 data points for training and 3 data points for testing, resulting in a

2:1 split between the training and test sets. For optimization, we employed the Adam

optimizer with a learning rate of 1e-4. The models underwent training for 5 iterations.

The neural networks employed in the model had 5 layers with 256 units per layer. We

determined these hyperparameters, including the learning rate, number of layers, and

number of units per layer, through grid search with cross-validation.

2Available at hhttps://github.com/deepmind/graph netsi.

41

T � 144 T � 143 · · · T T+1
Predict

T � 143 T � 142 · · · T + 1 T+2
Predict

Figure 11: Forecasting process. A visual representation of the process to forecast target
variables, taking into account the 48h past time window.

4.3.3 Discussion

We employed the developed model to make sequential predictions of the water current

at Bifurcação for the next 24 hours. In this sequential approach, we utilized data from

the previous 48 hours to forecast the subsequent measurement. For that, we used the

same procedure used on auto-regressive tasks. After predicting a data point, we shift

the time window, so that it incorporates the predicted value as an actual observation.

This process is continued for the following 20-minute intervals, until all 72 measurements,

corresponding to a 24-hour period with 3 measurements per hour, were predicted. Figure

11 provides an illustrative example of a 2-step prediction. As previously mentioned, since

our objective was to forecast the water current for the subsequent 24 hours, we needed to

perform 72 similar steps, as depicted in Figure 11.

Empirical evaluations demonstrated that average imputation yielded the most fa-

vorable outcomes, thus we retained it for further analysis. Moreover, assessments were

conducted for both local and non-local neural network approaches (Section 4.1.2), af-

firming that the learned models successfully captured the dynamic nature of the signals.

Specifically, the predictions accurately reflected the number of peaks within the forecasted

period, which is a nontrivial characteristic given the variable nature of peak occurrences,

as depicted in Figures 12 and 13. Nevertheless, the models encountered challenges in pre-

cisely estimating the peak values of the signals. The overall mean squared error for the

non-local model amounted to a Root-Mean-Square error of 0.02 knots2, while the local

model yielded a slightly higher value of 0.10 knots2. The squared error was computed by

calculating the di↵erence between the observed and predicted values across time.

Figure 12 illustrates a comparative evaluation of our model against widely used base-

line models, namely ARIMA (BROCKWELL; DAVIS, 1987) and LSTM (HOCHREITER;

SCHMIDHUBER, 1997), in the context of time series prediction. Both baselines were

trained with a dataset of 20,000 data points over 50 iterations. Our model outperforms

ARIMA significantly and shows a slight improvement over LSTM while demonstrating

notable data e�ciency. Specifically, our model required fewer data points and iterations

42

1 20 40 60 72

0.5
0.25

0
�0.25

�0.79

1.34

Timestep

C
u
rr
en
t
S
p
ee
d
(X

-A
xi
s)

[k
n
ot
s] observed GNN Non-Local GNN Local LSTM ARIMA

1 20 40 60 72
0

0.05

0.1

Timestep

S
q.

E
rr
or

[k
n
ot
s2
]

GNN Non-Local LSTM

Figure 12: Results on specific time window. Proposed models and baseline compar-
isons. On the top, the forecasting of the di↵erent models against the observed values.
On the bottom, the mean-squared error (MSE) comparison between the best GNN model
and the LSTM baseline.

for training, approximately one-fourth of the baseline models’ requirements. Comparing

the two graph-based models, we observed that the non-local model achieved the best

results, verifying our hypothesis that leveraging information sharing and combination

among entities would yield benefits. Additionally, Figure 12 presents the squared error

of both the LSTM baseline and the GNN non-local model across the time window. It is

worth noting that at the Bifurcação buoy, the dominant current component is along the

x-axis. A positive current velocity indicates an eastward direction, whereas a negative

speed indicates a westward direction.

43

1 20 40 60 72

0.5

0.25

0

�0.25

�0.55

0.74

Timestep

C
u
rr
en
t
S
p
ee
d
(X

-A
xi
s)

[k
n
ot
s] observed GNN Non-Local

Figure 13: Results on specific time window. Forecasting of the best GNN model
against the observed values on a di↵erent time window.

44

5 PHYSICS-INDUCED DYNAMIC GRAPH
NEURAL NETWORKS: LEARNING MORE
EXPRESSIVE REPRESENTATIONS

In the last chapter, we presented our first graph-based approach to forecasting ocean

dynamics, yet in a less complex scenario, and used data imputation techniques to handle

data missingness. Our goal with that was to establish a proof-of-concept and to under-

stand whether our relational modeling hypothesis in that domain is feasible.

In this chapter, we are not only interested in exploring a more challenging problem

in a more important region but also in distilling physical knowledge into our model as

Karniadakis et al. (2021) define.

This chapter revolves around tackling the challenging task of forecasting the ocean

dynamics within the Santos-São Vicente-Bertioga Estuarine system. This particular re-

gion has an intricate topography and multiple driving forces that wield a more significant

influence on the system’s dynamics compared to the region in the previous chapter. Fur-

thermore, the area encompasses the Port of Santos, the largest port in Latin America.

A key element here is the existence of a physics-based numerical model implemented

in the estuarine system. That numerical model, which forms an essential part of our

approach, provides valuable outputs that guide the modeling process. By leveraging

the outputs of the physics-grounded model, we are able to bias our spatiotemporal Graph

Neural Network (GNN) architecture to align it with the underlying physical laws governing

the dynamics of the region. This integration empowers our model to e↵ectively capture

and respect the fundamental principles determining the prediction of current velocity and

sea surface height within the region. Lastly, inspired by the literature, we incorporated

a module into our model that automatically learns an optimal graph topology. This

is important as it eliminates the need to assume a predefined graph structure. As a

result, we achieve improved performance while simultaneously reducing the time and

space complexity of our model.

Extensive experimentation has been performed. A detailed ablation study was per-

45

formed to understand the limitations and advantages of each module within our proposed

model. Furthermore, we conducted a comparative analysis, pitting classical and state-

of-the-art baselines against our model. The rigorous analysis of our modeling approach,

coupled with the careful consideration of alternative methods, serves as a robust founda-

tion for our findings and conclusions.

5.1 Background

At the risk of redundancy, throughout this section we revisit concepts previously

discussed and present and deepen new ideas included in our final model. We first introduce

the Santos-São Vicente-Bertioga Estuarine system (SSVBES), detailing its characteristics,

the gears of the region’s numerical model, and the location of the sensors responsible for

capturing the data (Section 5.1.1). Then we present the definition of dynamic graphs,

which is necessary to subsequently understand how we are dealing with missing data and

how that di↵ers from the previous implementation, as well as a recap about the most

common GNNs’ framework for graphs with only node features, i.e., the message-passing

mechanism (Section 5.1.2). Finally, we show one of the limitations of current neural

graph-based models, the graph structure hypothesis, and how to circumvent that issue by

incorporating the task of inferring the graph’s topology into the model (Section 5.1.3).

5.1.1 Forecasting the SSVBES dynamics

The Santos-São Vicente-Bertioga Estuarine System (SSVBES) is situated along the

southeastern coast of Brazil within the South Brazil Bight region. Similar to estuarine

systems worldwide, the hydrodynamics of SSVBES is primarily influenced by three pro-

cesses: astronomical tide, meteorological tide, and river discharge. The meteorological

tide is determined by the synoptic winds blowing across the adjacent continental shelf,

following simple Ekman dynamics. Consequently, it manifests as a gravity wave entering

the Santos Bay. The sea surface height (SSH) within the bay experiences a decrease when

winds blow from the North-Northeast direction, while an increase is observed when winds

blow from the South-Southwest. Figure 14 illustrates the geographical representation

of this region, including the three main channels comprising the estuarine system: São

Vicente Channel, Santos Port Channel, and Bertioga Channel.

To understand the dynamics of the SSVBES as influenced by these driving forces, a

dedicated system known as the Santos Operational Forecasting System (SOFS) (COSTA

46

Santos Bay

1 2

3

Figure 14: The Santos-São Vicente-Bertioga Estuarine System. At the bottom,
the main locations: 1 - São Vicente Channel; 2 - Santos Port Channel; 3 - Bertioga
Channel.

et al., 2020) has been developed by a large group of researchers. That system aims to

o↵er daily forecasts for the region, employing a finite di↵erence model that applies the

Navier-Stokes equation with sigma vertical coordinates. It takes into account the e↵ects

of winds, tides, density gradients, and river discharge. The model exhibits remarkable

performance in accurately predicting both sea surface height (SSH) and current velocity

within the system.

Nonetheless, the precision of the model outputs is constrained by the limited availabil-

ity of river discharge data, as it is not readily obtainable in near real-time. This constraint

predominantly a↵ects the accuracy of current predictions as river discharge in estuaries

directly impacts flow patterns and induces changes in vertical density stratification, both

of which can alter currents.

In this context, and analogously to the Sepetiba/Ilha Grande problem, we have ex-

plored the presence of a network of sensors in that region, as shown in Figure 15, to build a

data-driven model for the forecasting task, but exploiting the implemented physics-based

model (SOFS) in order to guide our model’s optimization.

47

1

2
3

4

5

6

Figure 15: Observation sites at Santos-São Vicente-Bertioga Estuarine System.
Location and name of all six observation sites used in the experiments: 1) TIPLAM, 2)
Alemoa, 3) Ilha Barnabé, 4) CPSP, 5) Praticagem, 6) Palmas.

5.1.2 Dynamic Graphs and Message-Passing

A dynamic graph is defined as a graph whose structure changes over time. More

broadly, that change can occur both in the graph’s topology and at the node and edge

feature level. Figure 16 shows how dynamic graphs behave over time.

In our scenario, for example, given the tendency to have missing data in the observa-

tion window used to train the model, a graph representation would be dynamic. In the

Sepetiba/Ilha Grande Bay, we decided to impute the missing data and to have a fixed

graph topology. However, that approach leads to biases for the model, as imputations

start from hypotheses generally unrelated to the data-generating process. We adopted

the strategy of first generating fixed representations (embeddings) for each node in our

graph from the observation window, thus working with a dynamic graph (because not all

variables will be present, depending on the time window).

Finally, recapping the definition of a Graph Neural Network through the perspective

of message-passing mechanism (GILMER et al., 2017), described in Chapter 2, we have

48

Figure 16: Dynamic graph time flow. The structure of the graph, locally, on node
and edge feature level, and globally, in its topology, can change over time.

the following equation:

x0

i
= � (xi, XNi) = �v

xi,

M

j2Ni

�e (xi,xj)

!
, (5.1)

where xi is the hidden representation of a node i, �e and �v are, respectively, the message

and update di↵erentiable functions, and
L

is a non-parametric, permutation invariant

aggregation function. Here, we used the message-passing approach of GATv2 (BRODY;

ALON; YAHAV, 2021).

5.1.3 Latent Graph Inference

Since its introduction (SCARSELLI et al., 2009), Graph Neural Networks have seen

growing research on devising new architectures, following the same trend other neural

network models have displayed in recent years. However, one constant throughout ev-

ery work in that direction, from simple ones like those inspired by signal processing and

spectral theory (BRUNA et al., 2013), passing by CNN-inspired ones (DEFFERRARD;

BRESSON; VANDERGHEYNST, 2016; KIPF; WELLING, 2017), to complex architec-

tures incorporating attention mechanisms (VELIČKOVIĆ et al., 2018; BRODY; ALON;

YAHAV, 2021), is the fact that the underlying graph is always “given” or easily inferred

depending on the task domain and the graph’s topology is assumed to be fixed.

This is a restrictive and, sometimes, even prohibitive hypothesis. In scenarios where

the graph structure is dynamic or the test set has graph structures not seen during

training, it is a hard constraint.

A few researchers have developed techniques to learn not only a specific task but

also the graph itself. Some e↵orts have explored the graph’s geometric properties as

49

encompassed within its Laplacian matrix (LI et al., 2018) to infer the topology, while

others have proposed methods that take advantage of the latent representations that

machine learning models are able to leverage (WANG et al., 2019), also known as latent

graph inference.

Graph topology inference is also interesting due to its ability to reduce GNNs’ com-

plexity, given that these models are sensitive to the number of edges it has to traverse

(OGNN(|E|), where |E| is the number of edges.)

Therefore, we implemented a latent graph inference module as part of our final archi-

tecture, using the Di↵erentiable Graph Module (DGM) (KAZI et al., 2022) implementa-

tion as inspiration, and making important compatibility adjustments with our modeling.

The details of this module and the experimental results will be discussed in the following

sections.

5.2 Proposed Architecture

We propose a modular architecture, composed of two elements: the Di↵erentiable

Graph Module (DGM) and the Encoder-Decoder. This section, hence, provides a wide

description of each module, along with the associated concepts and definitions.

To abstract and model the Santos-São Vicente-Bertioga Estuarine System as a dy-

namic graph, we adopt a graph representation G = (V , E), where V denotes the set of

nodes vi = (⇢, `), with each node vi consisting of a node type ⇢ at a corresponding location

`, and E is the graph initial adjacency matrix. The node types correspond to measured

and predicted ocean-related variables, such as sea surface height (SSH), water current,

astronomical tide, and SOFS predictions, for instance. The node locations represent the

six measuring stations, previously depicted in Figure 15.

Thus, every data point corresponds to an event associated with a specific node vi. For

instance, a measurement from an SSH sensor at the Alemoa station (site 2) is considered

an event associated with the node (SSH, Alemoa).

Events are represented as pairs (xi

t
, t), where xi

t
2 Rd⇢ and t 2 R. These pairs denote

either measurements or forecast values, such as astronomical tide and SOFS forecast data,

which can serve as input to the model. The length d⇢ of the feature vector depends on

the node type. For instance, water current measurements consist of two features, namely

speed and direction, while SSH measurements lead to a single feature.

50

Figure 17: Representation of the SSVBES as a graph. Since the sensors are present
in the wild, for each inference time t⇤ certain nodes can be present or not. Therefore, the
graph structure will dynamically change within the inference time.

In order to build the graph that abstracts the SSVBES dynamics at a specific infer-

ence time t0, we first take past and future time windows in days, with sizes sr and sf ,

respectively. After that, for each pair (⇢, `) of node type and location, we check if there

is at least one measurement in both time windows. With that, we are able to define the

set of nodes V0 and edges E0 for the underlying graph in that inference time. Figure 17

shows how the graph changes dynamically depending on the inference time it is related

to, due to the presence/absence of data measured by the di↵erent sensors in the network.

However, we still need to handle missing data inside time windows. For that, we

implemented a temporal encoder that takes the sequence of observed and simulated time-

series data, aggregates it with the timestamp encoding, and send it into a Recurrent Neural

Network (RNN), producing a fixed-size embedding vector that represents the time-series

for that specific time window, node type, and location.

The timestamp encoder is implemented following the description provided by

Time2Vec (KAZEMI et al., 2019). It is defined as Time2Vec : R ! RT and is responsible

for embedding a scalar representation of time, derived from event timestamps, into vectors

of size T .

51

Figure 18: Di↵erentiable Graph Module (DGM) components and details. The
latent graph inference DGM module can be divided into 3 parts: (1) the graph feature
learning, responsible for encoding the node features into a latent space where the probabil-
ity (distance) between nodes is computed; (2) the probabilistic graph generator, which is
where the matrix of unnormalized probabilities are calculated de facto; (3) the graph sam-
pling, where the Gumbel-Top-k Trick (JANG; GU; POOLE, 2017) is applied for sampling
without the need for normalizing the probability distributions. Extracted from (KAZI et
al., 2022).

The Temporal Encoder is devised for both the past and future window of each

node type, i.e., F r

T ,⇢
and F

f

T ,⇢
, respectively. For our work, F⇤

T ,⇢
is implemented as sep-

arate LSTMs (HOCHREITER; SCHMIDHUBER, 1997) in both cases. Mathematically,

the temporal encoder is a function FT ,⇢ : (Rsr⇥(d⇢+T),Rsf⇥(d⇢⇤C+T)) ! RH . It is worth

pointing out that C indicates whether this is a simulation variable (C is set to 1), or an

observed one (C is set to 0).

5.2.1 Di↵erentiable Graph Module (DGM)

The DGM module is composed of three parts, as shown in Figure 18. Each one of

them is responsible for important operations to infer the latent graph topology. These

components are described below.

5.2.1.1 Graph Feature Learning

This part of the module consists of a learnable function f✓(·), used for graph repre-

sentation in a latent space. This function can be any non-linear function, for instance an

MLP, or a graph convolution operator, in case we have an input graph, i.e., E 6= ?. In our

experiments with the DGM module, we used a 1-layer MLP, i.e. a linear layer followed

by a nonlinearity.

52

5.2.1.2 Probabilistic Graph Generator

The probabilistic generator assumes the hypothesis of a fully-connected graph and

computes the probability for each (i, j) 2 E based on the following expression:

pi,j = e�t||x̂i�x̂j ||
2
2 ,

with t being a learnable temperature parameter. In this work, we embraced Kazi et al.

(2022) suggestion and fixed the temperature parameter with a value of 4.0.

Additionally, we used the Euclidean distance to define the probability of two nodes

being linked in the same way Kazi et al. (2022) did. Yet, other geometric spaces can be

used.

5.2.1.3 Graph Sampling

After estimating the edge probability matrix P , a fixed k�degree graph is sampled

To do that, it is used the Gumbel-Top-k Trick (JANG; GU; POOLE, 2017) method

for sampling from the unnormalized probability distribution defined for each pi. From

another perspective, this is similar to imposing a stochastic relaxation of the k-NN rule

for sampling. This method uses:

• The unnormalized probability distribution pi = [pi,j : j = 1, ..., N] of a receiver node

i;

• The k edges extracted given the first k elements of the result of the operation

argsort(log(pi)� log(�log(q))), where q 2 RN is uniform i.i.d. in the interval [0, 1];

• The new set of edges formed by k elements, denoted by Ê .

Finally, the DGM outputs the graph Ĝ = {V̂ , Ê}. For the experiments with DGM module,

we used a k = 6 neighborhood.

A key distinction between our implementation and the approach described in (KAZI

et al., 2022) lies in our ability to handle graphs with varying numbers of nodes within a

batch. While we employ the same optimization algorithm (mini-batch gradient descent)

as Kazi et al. (2022) to optimize our model, our problem necessitates the inclusion of

di↵erent node types within the same batch, resulting in varying node counts, and the

author’s implementation assumes graphs with a fixed number of nodes within the batch.

53

Figure 19: Encoder-Decoder architecture. Each node type is related to a Temporal
Encoder and a Decoder, whereas all nodes share the sameGNN Block module. Specifically,
the Graph Neural Network is a stack of GNN Blocks, internally composed of a sequence
of graph convolutions, normalization layers, and non-linear activation functions.

Consequently, we had to adapt their algorithm to accommodate this particular charac-

teristic and ensure compatibility with our problem setting.

5.2.2 Graph Learning

The graph learning module is the element inside the Encoder-Decoder that is re-

sponsible for propagating/di↵using the information encompassed into each node’s feature

vector between them. It takes the fixed-size embedding produced by the temporal en-

coder discussed above and transforms it into new representations in a more expressive

latent space. For that, it makes use of a local GNN Convolution operation, defined as

FG : Rki⇥H
! Rhi

0
, where ki is the set of neighborhood nodes of the node i, followed by

normalization and nonlinearity. We also apply a skip connection (HE et al., 2016).

That set of operations defines the message-passing process of our architecture, which

we called GNN Block because we can stack them as layers. For the graph convolution,

we used the Graph Attention proposed in (VELIČKOVIĆ et al., 2018), followed up with

improvements in (BRODY; ALON; YAHAV, 2021).

54

Figure 20: DGM+GNN composition. Inspired by Kazi et al. (2022), we compose the
DGM module and the GNN, where they mutually feed one another. DGM receives the
transformed graph feature matrix X̂(l)

g and the graph adjacency matrix E
(l), and returns

a new representation of the features X̂(l+1)
g and a new adjacency matrix Ê

(l). The new
adjacency matrix is then used as the new graph structure in the GNN Block. Adapted
from (KAZI et al., 2022).

5.2.3 Decoders

Lastly, we get back to the original time-series space through decoders, in order to

forecast the signal of interest. The decoder is defined as FD,⇢ : Rhi
0
! Rsf⇥d⇢ , providing

the forecast vector Ŷ . In our model, we used MLP as decoders.

The Encoder-Decoder module is illustrated in details in Figure 19. This module

comprises the Temporal Encoder, the GNN Block and the Decoder.

5.2.4 Composing DGM and GNN

Figure 20 represents how the GNN Block and the DGM are coupled in a modular

fashion. These modules’ operation alternates as information propagate forward. DGM

first computes the graph’s topology, and then, the GNN uses that information as input

together with the nodes’ features.

5.3 Experiments

Here we describe our dataset and its characteristics (Section 5.3.1), the experimental

design in detail (Section 5.3.2), the metrics used to train and assess our model (Section

5.3.3), the configurations and the stack of tools used to implement and run our experiments

(Section 5.3.4), and discussions raised after empirically testing our model (5.3.5).

55

5.3.1 Datasets

Our dataset contains a diverse set of observed environmental data collected from the

6 SSVBES’ sites illustrated above, and simulated data, such as forecasted astronomical

tides and SOFS predictions. Each location measures oceanic variables, such as SSH and

water current speed and direction, accounting for a total of 32 time series, or 32 node

pairs (⇢, `). For the labels, we have two signals of interest: the prediction of water current

and SSH at Praticagem station, or, in our notation, the two pairs (SSH, Praticagem) and

(water current, Praticagem).

We gathered, approximately, 2 years of data between the years 2020 and 2021, with

a sampling frequency of 10 minutes. We split the data in the proportion 4:1 between

the train and test sets. Specifically, the first 80% of data were used for training and

validating the model, while the remaining 20% were for testing. To define each inference

time, observed data was aggregated using steps of 30 minutes between windows, meaning

there are 3 graphs for each hour. Moreover, data were normalized using the Z-score.

It is worth explaining that even though SOFS simulations and the sensors’ measured

data have di↵erent sample frequencies (the former is obtained every 3 hours, while the

latter every 10 minutes), this is not a problem for our model, given that it can incorporate

new variables that appear in the 7-days time window used for forecasting. However, we

were careful when computing the metric for comparison between our model and SOFS,

using the latter’s frequency to calculate the metric.

5.3.2 Experimental Design

To evaluate our model performance, we made a series of thorough experiments taking

into consideration three experiments. The following is a description of how our experi-

mental scenarios were designed:

Water Current and SSH Forecasting Optimization. For the first experiment,

we used the train set to determine which combination of node types optimizes our model

for the task of forecasting, separately, the water current and the sea surface height (SSH).

We run 5-fold cross-validation for each combination of input variables (node types).

Graph Connectivity Optimization Next, we experimented with di↵erent graph

topologies. Using the best (input) node types combination previously obtained, we op-

56

timized our architecture for the most promising graph structure. We followed the same

hyperparameter optimization process as the last experiments, i.e., we run 5-fold cross-

validation.

Water Current and SSH Forecasting Test Lastly, we compared our model to

baselines, using the best configuration we got from the two other experiments. In this

setup, we trained the model using the whole training set and forecasting for the test set.

As explained in the last section, we were aware of the sampling frequency caveat. Thus,

the forecasted time series, for all models, is subsampled to a 3-hour frequency, following

SOFS’s behavior, and then we compute its metric.

These experiments were performed in two distinct phases. Initially, we worked without

employing SOFS’ outputs as a node of our graph. Additionally, we treated the water

current as a multivariate time series, using the water current’s velocity and direction as

separate features. Nonetheless, though the results were intriguing, after a closer look at

the water current data, we recognized that the dominant component of the water current

velocity was along the x-axis (see Figure 21).

Afterward, we started using the water current speed and SOFS’s predictions as part of

our modeling. It is important to highlight that in this second moment, we also introduced

the Di↵erentiable Graph Module (DGM) to further enhance our experiments. However,

it is worth noting that when utilizing the DGM, we bypassed the first two optimization

experiments. This is due to the inherent nature of the DGM, which not only learns the

optimal topology but also determines the most influential nodes within the graph.

5.3.3 Metrics

To train and, therefore, to optimize the parameters of our model, we defined a multi-

objective loss function, combining the graph-objective and the task-objective.

Graph-Objective Loss We adapted the graph loss defined in (KAZI et al., 2022)

to a forecasting task. Here, we defined a graph loss that takes into account the mean

absolute error of the prediction, modulated by the influence of each edge preserved during

the graph’s topology inference. Mathematically, the graph loss is defined as follows:

LG =
1

N

NX

i=1

|ŷi � yi|
LY

l=1

Y

j:(i,j) 2 Ê(l)

p(l)
i,j
. (5.2)

57

Figure 21: Water current velocity distribution on Praticagem station as a polar
histogram. The water current velocity is almost entirely in the channel direction, i.e.,
the east-west direction.

Task-Objective Loss We evaluated our model’s performance w.r.t. the forecasting

task with the metric known as Index of Agreement (IoA) (WILLMOTT, 1981). This

metric is defined as:

LO = 1� IoA =

P
N

n=1(ŷi � yi)2P
N

n=1(|ŷi � ȳi|+ |yi � ȳi|)2
. (5.3)

Finally, the model’s total loss is the sum of both losses:

L(Ŷ , Y) = LG + LO. (5.4)

It is important to clarify that the complete loss function above is not used in all

our experiments. In fact, we only use the multi-objective when the DGM is present.

Otherwise, we just use the second term, i.e., task-objective loss. Besides, the IoA is the

go-to metric for comparing the implemented models’ results.

Additionally, we present results for Root-Mean-Square Error (RMSE) in meters (SSH)

58

Current optimization
(Current w/o signal)

Velocity (m/s) Direction (degrees)

Scenarios IoA " Std. Dev. # IoA " Std. Dev. #

Current 0.706 0.005 0.818 0.009
Current+SSH 0.726 0.011 0.842 0.015

Table 2: Water current optimization considering unsigned current. Results ob-
tained for water current velocity and direction forecasting at Praticagem station w.r.t.
the input data. A fully-connected graph was imposed on that experiment. Presented
values are the mean performance for 5-fold cross-validation. The best results are in bold.

and meters per second (water current) when showing the results from the last experiment.

5.3.4 Model Configuration

We employed well-known frameworks, namely Pytorch and Pytorch Geometric (PASZKE

et al., 2019; FEY; LENSSEN, 2019), to implement the model, and Weights&Biases

(BIEWALD, 2020) to track all experiments.

As stated above, we used one-layer LSTMs as temporal encoders with a hidden di-

mension (embedding size) of size 20, two GNN Blocks with GATv2 (BRODY; ALON;

YAHAV, 2021) as GNN convolution, and MLPs as the DGM feature learning part and as

the decoders in the Encoder-Decoder, as said earlier on. The model’s training ran for 15

epochs with a learning rate of 5e-3.

5.3.5 Discussion

The results shown in the following tables point out three main findings. Even though

our complete model benefits from sharing and propagating information between nodes/o-

cean variables, when optimizing for the input data, all experiments showed that the tem-

poral encoder is a crucial part of the model. Sparser graphs have good performance

compared to denser ones as can be seen in Tables 2, 3, 4, 6, 7 and 8.

However, that does not mean that the GNN’s sharing capabilities are useless. On

the contrary, they helped the model be more accurate, at the same time they are flexible

enough to incorporate/eliminate input data, due to the modular aspect of the model.

That is vital in real-world applications, especially those critical ones, such as the one we

are dealing with. For example, the water current prediction greatly benefits when SSH or

59

Astronomical Tides’ simulations are incorporated into the model, which is presented in

the first experiment, regardless of the use of water current with or without signal (Tables

2 and 6).

It is also worth highlighting how the same behavior happens when we are forecasting

SSH. Though less intense, sea surface height also has better performance when information

between node types is shared, as presented in Tables 3 and 7. Nonetheless, it is clear that

the task of predicting SSH displays narrow improvement, taking SOFS’s performance

into consideration. Finally, one interesting and common aspect is the fact that for both

tasks, forecasting water current or SSH, the model performs better when simulated data is

present, especially SOFS SSH and Astronomical Tide. This agrees with our position that

physical knowledge, in the form of observational biases, can physically guide our model.

Graph connectivity optimization, our second experiment, also provides insights. In

Tables 4 and 8, one can infer that specific (connected) graph structures can have worst

performance than disconnected ones. Here, we raise the hypothesis that, because we

are dealing with a heterogeneous graph, which means that di↵erent node types share

information between them, and use the same � and � functions (eq. 5.1) to every node, our

model might be su↵ering from a phenomenon known as over-squashing (ALON; YAHAV,

2021). But we should emphasize that, on average, connected graph schemes outperform

disconnected ones.

The third experiment, which we designed for baseline comparison, follows similar

conclusions to those discussed above. Tables 5 and 9 show that our model has better

performance than SOFS, outperforming the physics-based model by 11% in forecasting

water current speed, and keeping on par with the numerical model at the task of predicting

the sea surface height.

When compared with statistical models, ours is still competitive and is at the forefront.

SSH optimization
(Current w/o signal)

Scenarios IoA " Std. Dev. #

SSH 0.940 0.008
SSH+Current 0.939 0.012

Table 3: Sea surface height (SSH) optimization considering unsigned current.
Results obtained for SSH forecasting at Praticagem station w.r.t. the input data. A
fully-connected graph was imposed on that experiment. Presented values are the mean
performance for 5-fold cross-validation. The best result is in bold.

60

Graph Connectivity optimization
(Current w/o signal)

Velocity (m/s) Direction (degrees)

Scenarios IoA " Std. Dev. IoA " Std. Dev.

Disconnected 0.719 0.021 0.830 0.013
Same type 0.706 0.017 0.818 0.008
Fully connected 0.726 0.007 0.842 0.005

Table 4: Graph connectivity optimization considering unsigned current. Results
obtained for graph connectivity optimization as a function of the model’s performance on
water current velocity and direction forecasting at Praticagem station, using the [Cur-
rent+SSH] ! [Velocity, Direction] scenario. Presented values are the mean performance
for 5-fold cross-validation for di↵erent graph topology configurations. The best results are
underscored in bold. As one can see, the connected model does not always produce the
best result. Actually, there are node types that can hurt the prediction of others. This is
evidence for the case of using a technique to infer the graph structure.

We implemented two ARIMA-like models for that experiment: (1) SARIMAX - fixed, and

(2) SARIMAX - reoptimized. In the SARIMAX - fixed scheme, optimal parameters were

determined for the initial training window and then utilized for all subsequent sliding

windows. On the other hand, the SARIMAX - reoptimized scheme aimed to improve

the modeling accuracy by dynamically searching for optimal parameters on a daily basis.

This reoptimization process accounted for the seasonality characteristics inherent in the

data. Our model outperforms both SARIMAX models by more than 5%.

Finally, the last two fascinating pieces of evidence empirically raised are associated

with the use of the Di↵erentiable Graph Module (DGM). First: when compared to a

GNN without the DGM (Encoder-Decoder only), it is possible to see a significant drop in

training time. Numerically, we had a 54% increase in the model training speed or a 35%

reduction in training time. Moreover, since the DGM module enables the model to bypass

the optimization processes (first and second experiments), we have a greater reduction in

training time, given that the hyperparameter-tuning phase is part of a model’s training.

Second: that is remarkable due to the near real-time response of the DGM+GNN model,

when operating in inference mode. As ARIMA-like models optimize their parameters

during inference time, our complete model is also more advantageous. In summary, the

DGM+GNN is better at generalizing to unseen data without the need to retrain the entire

model, which is the case for those statistical models (see Table 10.)

61

Forecasting test
(Current w/o signal)

Velocity (m/s) Direction (degrees) SSH (m)

Models IoA " RMSE # IoA " RMSE # IoA " RMSE #

SOFS 0.599 0.178 0.755 85.18 0.935 0.133

Ours 0.718 0.160 0.842 65.29 0.938 0.123

Table 5: Forecasting test considering unsigned current. Results obtained for water
current and SSH forecasting at Praticagem station compared to SOFS performance. We
used the configuration [Current+SSH]! [Velocity, Direction] for water current prediction,
and the configuration [SSH] ! [SSH] for sea surface height forecasting. A fully-connected
graph was used given the results from graph connectivity optimization. Presented values
are the mean performance for the entire test set. The best results are in bold.

Current optimization

Scenarios IoA " Std. Dev.

Current 0.859 0.003
Current+SSH 0.870 0.010
Current+Astronomical Tide 0.879 0.006
Current+SOFS Current 0.865 0.005
Current+SOFS SSH 0.863 0.015
Current+SSH+Astronomical Tide 0.887 0.006
Current+SSH+SOFS SSH+Astronomical Tide 0.888 0.008

Table 6: Water current optimization considering signed current. Results obtained
for water current speed forecasting at Praticagem station w.r.t. the input data. At this
moment, we had access to di↵erent simulation data, s.a. SOFS current and SSH predic-
tion, and Astronomical Tide. A fully-connected graph was imposed on that experiment.
Presented values are the mean performance for 5-fold cross-validation. The best result is
in bold.

SSH optimization

Scenarios IoA " Std. Dev.

SSH 0.877 0.007
SSH+Current 0.871 0.013
SSH+Astronomical Tide 0.900 0.009
SSH+SOFS SSH 0.900 0.019
SSH+SOFS Current 0.853 0.008
SSH+SOFS SSH+Astronomical Tide 0.920 0.006

Table 7: Sea surface height (SSH) optimization considering signed current. Re-
sults obtained for SSH forecasting at Praticagem station w.r.t. the input data. At this
moment, we had access to di↵erent simulation data, s.a. SOFS current and SSH predic-
tion, and Astronomical Tide. A fully-connected graph was imposed on that experiment.
Presented values are the mean performance for 5-fold cross-validation. The best result is
in bold.

62

Graph Connectivity optimization

Scenarios IoA " Std. Dev.

Disconnected 0.867 0.016
Same type 0.873 0.010
Same location 0.893 0.006
Same type or location 0.895 0.006
Fully connected 0.885 0.005

Table 8: Graph connectivity optimization considering signed current. Results
obtained for graph connectivity optimization as a function of the model’s performance on
water current speed forecasting at Praticagem station, using the [Current+SSH+SOFS
SSH+Astronomical Tide] ! [Speed] scenario. Presented values are the mean performance
for 5-fold cross-validation for di↵erent graph topology configurations. The best result is in
bold. Analogously, a specific connection can degrade the result. This is, again, evidence
for the case of using a technique to infer the graph structure.

Forecasting test

Speed (m/s) SSH (m)

Models IoA " RMSE # IoA " RMSE #

SOFS 0.812 0.220 0.935 0.133
SARIMAX (fixed) 0.856 0.202 0.900 0.164
SARIMAX (reoptimized) 0.859 0.193 0.915 0.146

GNN (Enc.-Dec. only) 0.891 0.173 0.938 0.107
DGM+GNN 0.902 0.167 0.939 0.105

Table 9: Forecasting test considering signed current. Results obtained for
water current and SSH forecasting at Praticagem station compared to SOFS and
ARIMA-like models’ performance. We used the configuration [Current+SSH+SOFS
SSH+Astronomical Tide] ! [Speed] for water current speed prediction, and the configu-
ration [SSH+SOFS SSH+Astronomical Tide] ! [SSH] for sea surface height forecasting.
For the GNN without the DGM module, i.e. the Encoder-Decoder structure only, we used
the same type or location graph connectivity. For the complete model, i.e. DGM+GNN,
the model learned the optimal structure together with the model’s parameters. Presented
values are the mean performance for the entire test set. The best results are in bold.

63

Time complexity

Models Training (s) Inference (s)

SARIMAX (fixed) - 18.4
SARIMAX (reoptimized) - 739.2

GNN (Enc.-Dec. only) 13, 980 0.1
DGM+GNN 9,180 0.1

Table 10: Models’ time complexity considering signed current. Related training
and inference time for each model. ARIMA-like models optimize their parameters during
inference. Therefore, it does not make sense to consider the time it takes to train these
models. On the other hand, by analyzing graph-based neural models’ time complexity, we
can see a significant drop in training time when we incorporate the DGM module. More
specifically, we had a 54% increase in the model’s training speed, i.e., a 35% reduction
in training time. Also, coupling the DGM module enables us to bypass the optimization
stages, reducing even more the training time because the hyperparameter optimization
phase is part of a model’s training. That is remarkable because, di↵erently from classical
statistical models, s.a. ARIMA-like, ML ones have near instantaneous time-response in
inference mode. Furthermore, machine learning models are able to better generalize to
unseen data without the need to retrain the model, which is the case for those statistical
models.

64

6 CONCLUSION

This dissertation carries a significant contribution to the field of physical systems

modeling, specifically in the ocean domain, by bridging gaps between physics-informed

machine learning and graph representation learning. By developing a physics-induced

graph neural network and by leveraging graph representation learning techniques, we have

successfully addressed the challenges of modeling temporally and spatially distributed

phenomena while incorporating physical knowledge into the modeling process.

In our study, we investigated two specific problems in the context of predicting ocean

dynamics in the southeast coastal region of Brazil. Through comprehensive empirical

evaluations, we have gained valuable insights and made important findings.

In the Sepetiba/Ilha Grande Bay problem, where our focus was on forecasting water

current velocity, we demonstrated the e↵ectiveness of our GNN model in capturing the

dynamic nature of the signals. Our model exhibited robust performance, outperforming

traditional statistical learning and state-of-the-art models, such as ARIMA and LSTM. By

leveraging information sharing and combination among entities, the GNN model showed

superior performance, showcasing the benefits of relational modeling in the oceanic do-

main.

In the SSVBES problem, we further enhanced our model by incorporating physical

knowledge and automatic graph structure learning. The results highlighted three main

findings. Firstly, the temporal encoder was identified as a crucial component of the

model, significantly influencing its performance. Secondly, while sparser graphs showed

good performance compared to denser ones, the sharing capabilities of the GNN proved

to be valuable. The model’s accuracy was improved by incorporating additional input

data, especially those coming from simulations, such as SOFS’ sea surface height and

astronomical tides. This showed how our model benefited from physical knowledge in the

form of observational biases. Lastly, automatically learning the graph’s topology proved

to be competitive, providing significant advantages. The inclusion of the Di↵erentiable

Graph Module (DGM) gave a better and faster model when compared with both the

65

physics-based (SOFS) and statistical models (SARIMAX).

In summary, the findings from our study provide valuable insights for future research

and have practical implications for improving the understanding and management of

oceanic systems. Future research could focus on further optimizing the GNN architecture

and on developing methods to include additional physical knowledge into the modeling

process. Additionally, exploring the generalizability of our model to other domains and

expanding its application to other coastal regions would contribute to cross-fertilize these

two broader fields: physics-informed machine learning and graph representation learning.

66

REFERENCES

ALON, U.; YAHAV, E. On the Bottleneck of Graph Neural Networks and its Practical
Implications. In: International Conference on Learning Representations (ICML). [s.n.],
2021. Available in: hhttps://openreview.net/forum?id=i80OPhOCVH2i. cit. on p. 59.

AZUR, M. et al. Multiple imputation by chained equations: What is it and how does it
work? International Journal of Methods in Psychiatric Research, John Wiley and Sons
Ltd, v. 20, n. 1, p. 40–49, mar. 2011. ISSN 1049-8931. cit. on p. 39.

BAHDANAU, D.; CHO, K.; BENGIO, Y. Neural Machine Translation by Jointly
Learning to Align and Translate. arXiv preprint arXiv:1409.0473, 2014. cit. on p. 15.

BATTAGLIA, P. et al. Interaction Networks for Learning about Objects, Relations and
Physics. Advances in neural information processing systems, v. 29, 2016. cit. on pp. 16
and 28.

BATTAGLIA, P. W. et al. Relational inductive biases, deep learning, and graph
networks. arXiv preprint arXiv:1806.01261, 2018. cit. on pp. 16, 24, 29, 35, and 36.

BERGEN, K. J. et al. Machine learning for data-driven discovery in solid Earth
geoscience. Science, v. 363, n. 6433, 2019. Available in: hhttps://www.science.org/doi/
abs/10.1126/science.aau0323i. cit. on p. 15.

BIEWALD, L. Experiment Tracking with Weights and Biases. 2020. Software available
from wandb.com. Available in: hhttps://www.wandb.com/i. cit. on p. 58.

BROCKWELL, P. J.; DAVIS, R. A. Time Series: Theory and Methods. [S.l.]: Springer,
1987. cit. on p. 41.

BRODY, S.; ALON, U.; YAHAV, E. How Attentive are Graph Attention Networks?
arXiv preprint arXiv:2105.14491, 2021. cit. on pp. 48, 53, and 58.

BRONSTEIN, M. M. et al. Geometric Deep Learning: Grids, Groups, Graphs, Geodesics,
and Gauges. arXiv, 2021. Available in: hhttps://arxiv.org/abs/2104.13478i. cit. on pp.
22 and 23.

BRONSTEIN, M. M. et al. Geometric Deep Learning: Going beyond Euclidean data.
IEEE Signal Processing Magazine, IEEE, v. 34, n. 4, p. 18–42, 2017. cit. on p. 15.

BRUNA, J. et al. Spectral Networks and Locally Connected Networks on Graphs. arXiv
preprint arXiv:1312.6203, 2013. cit. on p. 48.

BRUNTON, S. L.; PROCTOR, J. L.; KUTZ, J. N. Discovering governing equations
from data by sparse identification of nonlinear dynamical systems. Proceedings of
the National Academy of Sciences, v. 113, n. 15, p. 3932–3937, 2016. Available in:
hhttps://www.pnas.org/doi/abs/10.1073/pnas.1517384113i. cit. on pp. 16 and 27.

67

BUUREN, S. V. Multiple imputation of discrete and continuous data by fully conditional
specification. Statistical Methods in Medical Research, v. 16, p. 219–242, 2007. cit. on p.
39.

CORTES, C.; VAPNIK, V. Support-Vector Networks. Machine Learning, v. 20, n. 3, p.
273–297, Sep 1995. ISSN 1573-0565. Available in: hhttps://doi.org/10.1007/BF00994018i.
cit. on p. 19.

COSTA, C. G. et al. An operational forecasting system for physical processes in the
Santos-Sao Vicente-Bertioga Estuarine System, Southeast Brazil. Ocean Dynamics,
Springer, v. 70, n. 2, p. 257–271, 2020. cit. on p. 46.

CRANMER, M. et al. Discovering Symbolic Models from Deep Learning with Inductive
Biases. Advances in Neural Information Processing Systems, v. 33, p. 17429–17442, 2020.
cit. on pp. 15 and 30.

CYBENKO, G. Approximation by superpositions of a sigmoidal function. Mathematics
of Control, Signals, and Systems (MCSS), Springer London, v. 2, n. 4, p. 303–314, dez.
1989. ISSN 0932-4194. Available in: hhttp://dx.doi.org/10.1007/BF02551274i. cit. on
p. 20.

DEFFERRARD, M.; BRESSON, X.; VANDERGHEYNST, P. Convolutional Neural
Networks on Graphs with Fast Localized Spectral Filtering. Advances in neural
information processing systems, v. 29, 2016. cit. on p. 48.

DEMISSIE, Y. K. et al. Integrating a calibrated groundwater flow model with
error-correcting data-driven models to improve predictions. Journal of Hydrology, v. 364,
n. 3, p. 257–271, 2009. ISSN 0022-1694. Available in: hhttps://www.sciencedirect.com/sc
ience/article/pii/S002216940800543Xi. cit. on p. 29.

FEY, M.; LENSSEN, J. E. Fast Graph Representation Learning with PyTorch
Geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds.
[S.l.: s.n.], 2019. cit. on p. 58.

FUKUSHIMA, K. Neocognitron: A Self-Organizing Neural Network Model for
a Mechanism of Pattern Recognition Una↵ected by Shift in Position. Biological
Cybernetics, v. 36, p. 193–202, 1980. cit. on pp. 20 and 21.

GILMER, J. et al. Neural Message Passing for Quantum Chemistry. In: PMLR.
International conference on machine learning. [S.l.], 2017. p. 1263–1272. cit. on pp. 24,
28, 29, and 47.

GLIELMO, A.; SOLLICH, P.; VITA, A. D. Accurate interatomic force fields via machine
learning with covariant kernels. Physical Review B, APS, v. 95, n. 21, p. 214302, 2017.
cit. on p. 27.

GORI, M.; MONFARDINI, G.; SCARSELLI, F. A new model for learning in graph
domains. In: Proceedings. 2005 IEEE International Joint Conference on Neural
Networks, 2005. [S.l.: s.n.], 2005. v. 2, p. 729–734 vol. 2. cit. on p. 15.

HAMILTON, W.; YING, Z.; LESKOVEC, J. Inductive Representation Learning on
Large Graphs. Advances in neural information processing systems, v. 30, 2017. cit. on
pp. 15 and 28.

68

HE, K. et al. Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE,
2016. p. 770–778. ISBN 978-1-4673-8851-1. cit. on p. 53.

HOCHREITER, S.; SCHMIDHUBER, J. Long Short-Term Memory. Neural computation,
MIT Press, v. 9, n. 8, p. 1735–1780, 1997. cit. on pp. 41 and 51.

HORNIK, K. Approximation capabilities of multilayer feedforward networks. Neural
Networks, v. 4, p. 251–257, 1991. cit. on p. 20.

HU, X. et al. Physics-guided deep neural networks for power flow analysis. IEEE
Transactions on Power Systems, IEEE, v. 36, n. 3, p. 2082–2092, 2020. cit. on pp. 29
and 30.

HUBEL, D.; WIESEL, T. Receptive fields, binocular interaction, and functional
architecture in the cat’s visual cortex. Journal of Physiology, v. 160, p. 106–154, 1962.
cit. on p. 21.

HUBEL, D. H.; WIESEL, T. N. Receptive Fields of Single Neurons in the Cat’s Striate
Cortex. Journal of Physiology, v. 148, p. 574–591, 1959. cit. on p. 21.

JANG, E.; GU, S.; POOLE, B. Categorical reparameterization with gumbel-softmax.
International Conference on Learning Representations (ICLR), 2017. cit. on pp. 51
and 52.

JUMPER, J. et al. Highly accurate protein structure prediction with Alphafold.
Nature, v. 596, n. 7873, p. 583–589, Aug 2021. ISSN 1476-4687. Available in:
hhttps://doi.org/10.1038/s41586-021-03819-2i. cit. on p. 15.

KARNIADAKIS, G. E. et al. Physics-informed machine learning. Nature Reviews
Physics, v. 3, n. 6, p. 422–440, Jun 2021. ISSN 2522-5820. Available in: hhttps:
//doi.org/10.1038/s42254-021-00314-5i. cit. on pp. 16, 17, and 44.

KAZEMI, S. M. et al. Time2Vec: Learning a Vector Representation of Time. arXiv
preprint arXiv:1907.05321, 2019. cit. on p. 50.

KAZI, A. et al. Di↵erentiable Graph Module (DGM) for Graph Convolutional Networks.
IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE, 2022. cit. on
pp. 49, 51, 52, 54, and 56.

KIPF, T. N.; WELLING, M. Semi-Supervised Classification with Graph Convolutional
Networks. International Conference on Learning Representations (ICLR), 2017. cit. on
p. 48.

KRASNOPOLSKY, V. M.; FOX-RABINOVITZ, M. S. Complex hybrid models
combining deterministic and machine learning components for numerical climate
modeling and weather prediction. Neural Networks, v. 19, n. 2, p. 122–134, 2006. ISSN
0893-6080. Earth Sciences and Environmental Applications of Computational Intelligence.
Available in: hhttps://www.sciencedirect.com/science/article/pii/S0893608006000050i.
cit. on p. 27.

69

KRIZHEVSKY, A.; SUTSKEVER, I.; HINTON, G. E. ImageNet Classification
with Deep Convolutional Neural Networks. In: Proceedings of the 25th International
Conference on Neural Information Processing Systems - Volume 1. Red Hook, NY, USA:
Curran Associates Inc., 2012. (NIPS’12), p. 1097–1105. cit. on p. 15.

KUHN, T. S. The Structure of Scientific Revolutions. Chicago: University of Chicago
Press, 1962. cit. on p. 20.

KUTZ, J. N. Deep learning in fluid dynamics. Journal of Fluid Mechanics, Cambridge
University Press, v. 814, p. 1–4, 2017. cit. on p. 15.

LE, L.; PATTERSON, A.; WHITE, M. Supervised Autoencoders: Improving
Generalization Performance with Unsupervised Regularizers. In: Proceedings of the 32nd
International Conference on Neural Information Processing Systems. Red Hook, NY,
USA: Curran Associates Inc., 2018. (NIPS’18), p. 107–117. cit. on p. 29.

LECUN, Y. et al. Backpropagation Applied to Handwritten Zip Code Recognition.
Neural Computation, v. 1, p. 541–551, 1989. cit. on pp. 20 and 21.

LEMOS, P. et al. Rediscovering orbital mechanics with machine learning. arXiv preprint
arXiv:2202.02306, 2022. cit. on p. 30.

LEWIS, D. D.; RINGUETTE, M. A Comparison of Two Learning Algorithms for Text
Categorization. In: In Third Annual Symposium on Document Analysis and Information
Retrieval. [S.l.: s.n.], 1994. p. 81–93. cit. on p. 19.

LI, R. et al. Adaptive Graph Convolutional Neural Networks. In: Proceedings of the
AAAI conference on artificial intelligence. [S.l.: s.n.], 2018. v. 32, n. 1. cit. on p. 49.

MINSKY, M.; PAPERT, S. Perceptrons: An Introduction to Computational Geometry.
Cambridge, MA, USA: MIT Press, 1969. cit. on p. 20.

MITCHELL, T. Machine Learning. McGraw-Hill, 1997. (McGraw-Hill International
Editions). ISBN 9780071154673. Available in: hhttps://books.google.com.br/books?id=
EoYBngEACAAJi. cit. on p. 19.

O’GORMAN, P. A.; DWYER, J. G. Using Machine Learning to Parameterize Moist
Convection: Potential for Modeling of Climate, Climate Change, and Extreme Events.
Journal of Advances in Modeling Earth Systems, v. 10, p. 2548 – 2563, 2018. cit. on pp.
27 and 28.

PARK, J.; LAW, K. H. Layout optimization for maximizing wind farm power production
using sequential convex programming. Applied Energy, v. 151, p. 320–334, 2015. ISSN
0306-2619. Available in: hhttps://www.sciencedirect.com/science/article/pii/S030626191
5004560i. cit. on p. 30.

PARK, J.; PARK, J. Physics-induced graph neural network: An application to wind-farm
power estimation. Energy, v. 187, p. 115883, 2019. ISSN 0360-5442. Available in:
hhttps://www.sciencedirect.com/science/article/pii/S0360544219315555i. cit. on p. 30.

PASZKE, A. et al. Pytorch: An Imperative Style, High-Performance Deep Learning
Library. Advances in neural information processing systems, v. 32, 2019. cit. on p. 58.

70

PIANC MarCom. Use of Hydro/Meteo Information for Port Access and operations. [S.l.],
2012. cit. on p. 33.

POMERLEAU, D. ALVINN: An Autonomous Land Vehicle in a Neural Network. In:
NIPS. [S.l.: s.n.], 1988. cit. on p. 19.

RACCUGLIA, P. et al. Machine-learning-assisted materials discovery using failed
experiments. Nature, v. 533, n. 7601, p. 73–76, May 2016. ISSN 1476-4687. Available in:
hhttps://doi.org/10.1038/nature17439i. cit. on p. 15.

RAGHUNATHAN, T. et al. A multivariate technique for multiply imputing missing
values using a sequence of regression models. Survey Methodology, v. 27, p. 85–95, 2001.
cit. on p. 39.

RAISSI, M.; PERDIKARIS, P.; KARNIADAKIS, G. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear
partial di↵erential equations. Journal of Computational Physics, v. 378, p. 686–707,
2019. ISSN 0021-9991. Available in: hhttps://www.sciencedirect.com/science/article/pi
i/S0021999118307125i. cit. on pp. 15, 16, and 26.

RAVURI, S. et al. Skilful precipitation nowcasting using deep generative models of
radar. Nature, Nature Publishing Group, v. 597, n. 7878, p. 672–677, 2021. cit. on p. 28.

REDMON, J. et al. You only look once: Unified, real-time object detection. In:
Proceedings of the IEEE conference on computer vision and pattern recognition. [S.l.:
s.n.], 2016. p. 779–788. cit. on p. 15.

REICHSTEIN, M. et al. Deep learning and process understanding for data-driven Earth
system science. Nature, v. 566, n. 7743, p. 195–204, Feb 2019. ISSN 1476-4687. Available
in: hhttps://doi.org/10.1038/s41586-019-0912-1i. cit. on p. 15.

SANCHEZ-GONZALEZ, A. et al. Learning to Simulate Complex Physics with Graph
Networks. In: PMLR. International Conference on Machine Learning. [S.l.], 2020. p.
8459–8468. cit. on pp. 16 and 28.

SCARSELLI, F. et al. The Graph Neural Network Model. IEEE Transactions on Neural
Networks, v. 20, n. 1, p. 61–80, jan. 2009. ISSN 1045-9227, 1941-0093. cit. on pp. 15
and 48.

STOKES, J. M. et al. A Deep Learning Approach to Antibiotic Discovery. Cell, v. 180,
n. 4, p. 688–702.e13, fev. 2020. cit. on p. 15.

TOTH, Z.; KALNAY, E. Ensemble forecasting at NCEP and the breeding method. Mon.
Wea. Rev, p. 3297–3319, 1997. cit. on p. 28.

VASWANI, A. et al. Attention is All you Need. Advances in neural information
processing systems, v. 30, 2017. cit. on p. 15.

VELIČKOVIĆ, P. et al. Graph Attention Networks. arXiv:1710.10903 [cs, stat], fev.
2018. cit. on pp. 48 and 53.

WANG, X. et al. Non-local neural networks. In: IEEE Conference on Computer Vision
and Pattern Recognition. [S.l.: s.n.], 2018. p. 7794–7803. cit. on p. 37.

71

WANG, Y. et al. Dynamic graph cnn for learning on point clouds. Acm Transactions On
Graphics (tog), ACM New York, NY, USA, v. 38, n. 5, p. 1–12, 2019. cit. on p. 49.

WILLARD, J. et al. Integrating scientific knowledge with machine learning for
engineering and environmental systems. ACM Computing Surveys (CSUR), ACM New
York, NY, 2021. cit. on p. 16.

WILLMOTT, C. J. On the validation of models. Physical Geography, Taylor Francis, v. 2,
n. 2, p. 184–194, 1981. Available in: hhttps://doi.org/10.1080/02723646.1981.10642213i.
cit. on p. 57.

WU, M. et al. Prediction of short-term wind and wave conditions for marine operations
using a multi-step-ahead decomposition-ANFIS model and quantification of its
uncertainty. Ocean Engineering, v. 188, p. 106300, 2019. cit. on p. 34.

XIAO, D. et al. A reduced order model for turbulent flows in the urban environment using
machine learning. Building and Environment, v. 148, p. 323–337, 2019. ISSN 0360-1323.
Available in: hhttps://www.sciencedirect.com/science/article/pii/S0360132318306607i.
cit. on pp. 27 and 28.

XU, T.; VALOCCHI, A. J. Data-driven methods to improve baseflow prediction of a
regional groundwater model. Computers & Geosciences, v. 85, p. 124–136, 2015. ISSN
0098-3004. Statistical learning in geoscience modelling: Novel algorithms and challenging
case studies. Available in: hhttps://www.sciencedirect.com/science/article/pii/S0098300
415001284i. cit. on p. 29.

