
MARCIO BARBADO JUNIOR

Efficient Gaussian sampling for the construction of
lattice-based post-quantum cryptosystems

Revised Version

Dissertation submitted to Escola Politécnica

da Universidade de São Paulo fulfilling the

requirements for the degree of Master of

Science.

São Paulo
2023



MARCIO BARBADO JUNIOR

Efficient Gaussian sampling for the construction of
lattice-based post-quantum cryptosystems

Dissertation submitted to Escola Politécnica

da Universidade de São Paulo fulfilling the

requirements for the degree of Master of

Science.

Concentration area: Computer Engineering

Supervisor: Pedro Luiz Pizzigatti Corrêa

São Paulo
2023



Autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio

convencional ou eletrônico, para fins de estudo e pesquisa, desde que citada a fonte.

Este exemplar foi revisado e corrigido em relação à versão original, sob
responsabilidade única do autor e com a anuência de seu orientador.

São Paulo, 18 de Dezembro de 2023.

Assinatura do autor:

Assinatura do orientador:

Catalogação-na-publicação

Barbado Junior, Marcio
Amostragem gaussiana eficiente para a construção de sistemas

criptográficos pós-quânticos baseados em reticulados/M. Barbado Ju-
nior -- versão corr. -- São Paulo, 2023.

120 p.

Dissertação (Mestrado) – Escola Politécnica da Universidade de
São Paulo. Departamento de Engenharia de Computação e Sistemas
Digitais (PCS).

1. Criptologia. 2. Aprendizado com erros em anel.
3. Amostragem gaussiana discreta. 4. Teorema central do limite.
5. Transformada rápida de Walsh–Hadamard. I. Universidade de São
Paulo. Escola Politécnica. Departamento de Engenharia de Com-
putação e Sistemas Digitais (PCS). II. t.



ACKNOWLEDGMENTS

Not without efforts I got this masters. As one can infere, starting to pursue such
degree with 42 has required me to build a self-motivation foundation to begin with.
An even harder task amid the global COVID-19 pandemic, and the very own life at
fourty two. At some point during my lattice-based cryptography learning process,
weird associated subjects started to pop up, and that has put me in a confusion state. I
remember reading the expression “ring learning with errors”, and thinking, as of where
that had came from. It took me some time to figure out semantics, only to realize the
bigger challenge before me. Luckily, the studied subject was fascinating enough, and
also, I was surrounded by relevant people and organizations with valuable things to
share, be it of emotional, technical or financial nature.

For emotional support, thank you, beloved daughter Beatriz and beloved son Paulo.
You have helped me in many ways. I’ve always had my motivation reaffirmed when
we were together. I am also grateful for having been raised by my parents, who pro-
vided me with strength to face troublesome situations like this challenging adventure.
Also, attending therapy sessions has proven to be effective in making self-motivation
flourish. Thus, thank you, Mateus Pinheiro, for optimizing my insanity.

Additionally, people endowed with outstanding knowledge has supported me in
this work. Thank you, Prof. Dr. Pedro Luiz Pizzigatti Corrêa, Prof. Dr. Marcos Simp-
licio, Prof. Dr. Átila Madureira Bueno, and Prof. Dr. Anarosa Alves Franco Brandão,
for offering me the amazing opportunity to walk and complete this memorable path.
LARC colleagues Marcos Vinicius, Erina and Renan shared pleasant moments and in-
valuable technical remarks with me. Plus, for helping me with all of the paperwork in
the final steps of this journey, and also with many reminders, Mariza Ushijima Leone,
from the PCS office, just became my new favorite hero. Thank you, guys. I am also
grateful for the insightful observations of Prof. Dr. Routo Terada, which stimulated me
to think and consider different aspects of the problems in this work. Dr. Geovandro
Pereira provided this work with a tremendous upgrade in technical quality, due to his
careful and thorough review. As a reputed professional, Dr. Jefferson Evandi Ricar-
dini Fernandes de Oliveira enriched this work with his wide experience in lattice-based
cryptography, remarking valuable security information points. Even the essential as-
pects of lattice theory are covered herein, due to the great contributions of Prof. Dr.
Kacper Pluta, who shared his notable knowledge on geometry. Cieszę się, że mój
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RESUMO

Com o avanço da computação quântica, a segurança computacional de esquemas crip-
tográficos assimétricos clássicos amplamente utilizados, como os baseados em prob-
lemas de fatoração de inteiros e logaritmo discreto, encontra-se sob ameaça. Por essa
razão, pesquisadores na área de criptografia têm buscado esquemas alternativos re-
sistentes a ataques quânticos. Nesse cenário, abordagens criptográficas tais quais as
baseadas em teoria de reticulados, que até então eram menos usadas por serem con-
sideradas computacionalmente custosas, recuperam a atenção dos criptógrafos, e pas-
sam a figurar como opções viáveis. Este trabalho tem como objetivo contribuir para
consolidar essa retomada na adoção da abordagem baseada em reticulados. Especifi-
camente, tem-se como alvo a formulação do problema de aprendizado com erros em
anel (ring learning with errors), aqui usada para a produção de erro, o que propicia
a criação de chaves criptográficas supostamente mais seguras. As referidas chaves
são formadas como polinômios de coeficientes produzidos através de amostragem, re-
alizada em uma função de probabilidade associada a uma distribuição gaussiana. A
construção de amostradores dessa natureza é parte da maioria dos projetos criptográ-
ficos baseados em reticulados, e frequentemente representa duas barreiras principais:
um gargalo de eficiência, e um risco de vazamento de informação devido a ataques
de canal colateral baseados em temporização. Procura-se reduzir a barreira de inefi-
ciência através de técnicas para a aceleração da convergência do teorema central do
limite durante as criações de distribuições normais, e também através do emprego da
transformada rápida de Walsh–Hadamard para a geração de valores aleatórios. Já o
vazamento de informação por ataques de temporização tem seu risco atenuado pela
implementação (em software) da primitiva como um gerador de números aleatórios
com rotinas isócronas. Métricas estatísticas clássicas empregadas mostram os bene-
fícios do esquema e sua adequação, quando comparado a uma amostragem gaussiana
discreta baseada na tabela de distribuição acumulada, aqui considerado o método de
referência, dada a sua adoção em diversos esquemas criptográficos baseados em retic-
ulados. Testes com até 223 amostras são conduzidos, e os resultados são favoráveis ao
amostrador aqui apresentado.

Palavras-chave: Criptologia. Aprendizado com erros em anel. Amostragem gaussiana
discreta. Teorema central do limite. Transformada rápida de Walsh–Hadamard.



ABSTRACT

As quantum computing advances, the computational security of widely adopted clas-
sic cryptographic schemes, like the asymmetric ones based on integer factorization and
discrete logarithm problems, is put at risk. For that reason, cryptography researchers
seek alternatives to resist quantum attacks. In that scenario, cryptographic approaches
like the one based on lattice theory, mostly despised until then for being considered
too computationally costly, regain the attention of cryptographers as viable alterna-
tives. This work aims at contributing to consolidating that lattice-based approach re-
sumption. Specifically, focus is given to the ring learning with errors problem for-
mulation, explored herein for artificial noise generation, which propitiates stronger
cryptographic keys. The referred keys are built as polynomials, whose coefficients are
produced through sampling from a probability mass function, associated with a trun-
cated normal distribution. Crafting a sampler like that, called Gaussian, is a part of
most lattice-based cryptographic projects, and it often imposes two major barriers: an
efficiency bottleneck, and an information leakage risk due to side-channel timing at-
tacks. Part of the efficiency problem is overcome by accelerating convergence of the
central limit theorem in the creation of a normal distribution, and by obtaining samples
through a fast Walsh–Hadamard transform strategy. As for the information leakage
risk, it is mitigated via software implementation of isochronous routines in the random
number generator. Classic statistical metrics are employed to show the advantages and
suitability of the scheme, when compared to a cumulative distribution table sampler,
here considered as a reference, given the fact it is used in many lattice-based crypto-
graphic schemes. Tests with up to 223 sampling queries are conducted, and the results
are favorable to the sampler presented herein.

Keywords: Cryptology. Ring learning with errors. Discrete Gaussian sampling. Cen-
tral limit theorem. Fast Walsh–Hadamard transform.
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1 INTRODUCTION

This work addresses efficiency and security issues related to post-quantum cryp-

tography or quantum-safe cryptography, i.e., cryptographic schemes that are suppos-

edly resistant against quantum computer attacks. Such schemes can be built upon

different types of computational problems. This work is interested in problems arising

from lattice theory (GRÄTZER, 2011; WEHRUNG et al., 2016), which form what is

called the lattice-based cryptography.

As for this introductory chapter, it firstly presents historical moments regarding

the subject, which support the following section about motivation. The motivation

section also includes a short description of the problem involved, which completes

the stimulus explanation. Next section presents the goal, followed by related works

and method. Finally, as our research report enforces the style of presenting something

presumably better, this chapter concludes in Section 1.6 with a brief description of the

contribution herein provided.

1.1 A brief history of lattice-based cryptography

Until circa 1990, mathematical theories supporting lattices were mostly used in

cryptology for cryptanalytic purposes (ODLYZKO, 1990). That scenario changed af-

ter Peter Shor described polynomial-time quantum solvers able to deal with widely-

adopted problems (SHOR, 1994; SHOR, 1996), namely the discrete log problem and

the factoring problem. The discrete log problem serves as the basis for elliptic-curve
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cryptography (ECC) (KOBLITZ, 1987) and for the Digital Signature Algorithm (DSA)

standard (KERRY; GALLAGHER, 2013), whereas the factoring problem serves as the

basis for RSA (RIVEST; SHAMIR; ADLEMAN, 1978). What the solvers of Shor rep-

resent since then are risks to the asymmetric cryptography practiced in regular comput-

ers. Such risks are inflicted by the supposed existence of quantum computers. Then,

quantum-resistant cryptographic approaches proved to be necessary.

In 1996, an answer addressing the referred theoretical adversary is provided by (AJ-

TAI, 1996), which presented a quantum-safe lattice-based exploration of a problem

known as short integer solution (SIS). It served as the basis for the NTRU public-key

cryptosystem (HOFFSTEIN; PIPHER; SILVERMAN, 1998).

In the year 2000, an NTRU patent application is granted in the United States of

America (HOFFSTEIN; PIPHER; SILVERMAN, 2000; HOFFSTEIN; PIPHER; SIL-

VERMAN, 2020). Later on, a few relevant studies arose, related to that new kind

of cryptography, e.g., the NTRU-like cryptosystem known as GGH (GOLDREICH;

GOLDWASSER; HALEVI, 1997). Though, the machines supposed to take advantage

of the quantum routines described by Shor seemed distant from reality, and advance-

ments occurred slowly. In 2008, more than a decade after (AJTAI, 1996), a stan-

dard from the Institute of Electrical and Electronics Engineers (IEEE) corroborated

the lattice-based alternative (WHYTE et al., 2008). In the same year, a reference book

covering quantum-resistant cryptographic approaches, including lattice-based ones, is

published (BERNSTEIN et al., 2008). The referred group of approaches are generi-

cally called post-quantum.

As quantum computing approached feasible implementations, the threat of quan-

tum attacks became imminent, and in 2016, the National Institute of Standards and

Technology (NIST), a United States federal agency, publish a standardization call for

post-quantum cryptography candidates (KIMBALL, 2016; CSRC, 2019). As a result,
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a fierce competition took place 1.

1.2 Motivation of this work

Given the relevance of lattice-based cryptography, and its learning with errors

computation problem (LWE) (REGEV, 2009), it is appropriate to focus research ef-

forts for the benefit of asymmetric cryptography. As mentioned, this work is about the

LWE problem, precisely in its algebraically structured variant named ring learning with

errors (RLWE) (LYUBASHEVSKY; PEIKERT; REGEV, 2013b; PEIKERT; PEPIN,

2019). The LWE problem consists in distinguishing between two types of equations:

truly random ones, and those whose underlying structure have been masked by some

controlled amount of noise. The RLWE problem has an analogous formulation, the

main difference being that the underlying structure hidden involves polynomial rings.

The interest in the RLWE problem lies in the fact that, besides being conjectured to

be as hard as LWE for quantum computers, it also facilitates the construction of ef-

ficient cryptographic schemes. Not surprisingly, the RLWE assumption is adopted

by many submissions to the NIST competition, as further discussed in Section 1.4.

Still, it has some relevant shortcomings. Often, the generation of random values in

RLWE-based cryptosystems make use of discrete Gaussian sampling (DGS) routines,

which may suffer from efficiency issues (DWARAKANATH; GALBRAITH, 2014;

ORTIZ, 2016), and may be vulnerable to timing attacks (BERNSTEIN et al., 2008;

ORTIZ, 2016; ALKIM et al., 2019; PÖPPELMAN et al., 2019; ZHAO; STEINFELD;

SAKZAD, 2020).
1A short description of the NIST post-quantum cryptography standardization process is available in

Section A.1.
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1.3 Goal

The goal is to elaborate a new and competitive discrete Gaussian sampling strategy

for lattice-based cryptography. Firstly, this new DGS strategy intends to offer more effi-

cient parameter setups, which intends to be accomplished in a relative manner, through

comparison against a widely-accepted reference DGS strategy. Such comparison is es-

tablished through measures of central processing unit (CPU) cycles. Secondly, the

DGS construction presented in this work intends to be resistant against timing side-

channel attacks. Evidences of the need for efficiency and security improvements in

the DGS primitive are being provided by many state-of-the-art works, mostly stim-

ulated by the post-quantum cryptography standardization process being promoted by

NIST (CSRC, 2019). Both the justification for the DGS efficiency goal, and the jus-

tification for addressing the referred side-channel vulnerability, are provided in 1.2.

Lastly, it is also in interest of this work to publish obtained results, so as to contribute

with the cryptography community.

1.4 Related works

The following paragraphs present the main sources this work benefits from. It

starts presenting essential lattice-based cryptography material, which paves the way

for the specific subjects used here. Following, it focus on LWE and RLWE works, and

then in discrete Gaussian sampling, which constitutes a major source of inefficiency

problems for LWE and RLWE cryptographic schemes. Next, the works on the Cen-

tral Limit Theorem (CLT) are presented, for that subject is explored as a means of

achieving advantageous efficiency. Another subject whose related works are presented

is the fast Walsh–Hadamard transform (FWHT), which connects all other topics, since

it is used here as the structure of an alternative lattice-based DGS strategy, and it also

stands as a resourceful artifice towards efficiency improvements.
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1.4.1 Lattice theory in cryptography

A panorama of lattice-based cryptography previous research efforts in Brazil is

given in (ORTIZ; ARANHA; DAHAB, 2015; BARGUIL, 2015; ORTIZ, 2016).

Recent efforts focusing on the trade-off between efficiency and security for state-

of-the-art lattice-based schemes can be found in (ALBRECHT et al., 2018; ALBRECHT

et al., 2019), which offer comparison benchmarks, and the possibility of simulating a

few parameter combinations for NIST candidate submissions. The latter works helped

in modeling the Gaussian sampling approach hereby presented, as further discussed in

Section 3.2.

1.4.2 Learning with errors and ring learning with errors

In 2009, the learning with errors (LWE) problem formulation was presented to

the world (REGEV, 2009). A few months after, the same author, Regev, along with

Lyubashevsky and Peikert came up with the first formulation of the ring learning with

errors (RLWE) problem, which has an updated text in (LYUBASHEVSKY; PEIK-

ERT; REGEV, 2013b). In the following year,(BARRETO et al., 2014) was published,

consisting in a chapter whose information is presented in a straightforward manner,

assisting the present work. Lastly, a fortunate presentation helped in understanding

how the noise vector is mathematically constructed (DING, 2019).

1.4.3 Discrete Gaussian sampling in lattice-based cryptography

Comprehensive web pages, listing works about discrete Gaussian sampling (DGS)

in lattice-based cryptography can be found on (MICCIANCIO, 2019; BERNSTEIN

et al., 2021). A historical perspective of optimizations is available in (FOLLÁTH,

2014). Prominent lattice-based cryptography works that rely on DGS are the Bimodal

Lattice Signature Scheme (BLISS) digital signature scheme (DUCAS et al., 2013), the
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qTESLA digital signature scheme (ALKIM et al., 2019; AKLEYLEK et al., 2019), the

FrodoKEM key encapsulation or key exchange scheme (ALKIM et al., 2020), and the

Falcon digital signature scheme (HOWE et al., 2019; FOUQUE et al., 2020). BLISS

uses the SIS problem assumption, and its DGS is based on inversion and rejection. The

qTESLA scheme uses the RLWE problem assumption, and its DGS is based on CDT

and rejection. Falcon uses a SIS over NTRU problem assumption, and its sampling

strategy is based on the fast Fourier transform, i.e., it uses a trapdoor sampler, which

requires floating-point arithmetic, but it also relies on DGS with CDT and rejection.

Those related works comprise cryptographic schemes with embedded samplers.

There are also related works about standalone samplers. It is the case of the

GALACTICS sampler (BARTHE et al., 2019), and the FACCT sampler (ZHAO; STE-

INFELD; SAKZAD, 2020), both being based on the BLISS embedded sampler. It is

also the case of (SUN et al., 2021), which offers an alternative sampler for Falcon. Be-

sides the standalone samplers inspired by previously existing cryptographic schemes,

there is COSAC (ZHAO; STEINFELD; SAKZAD, 2019), a Gaussian sampler from

the creators of FACCT, which is not based on previously existing works.

Additionally,(WANG; LYU; LIU, 2019) presents the DGS topic from an informa-

tion theory perspective, and (CHEN, 2019) approaches the decision versions of RLWE

with possible DGS primitives, questioning the hardness for some cyclotomic number

fields and specific DGS interval widths. Further insights on DGS implementation,

regarding generic and specific prerequisites, e.g., isochrony and CDT implications,

are offered by (REPARAZ; BALASCH; VERBAUWHEDE, 2016; KARMAKAR et

al., 2018; MICCIANCIO; WALTER, 2018; WANG; LING, 2019), and also by two

C language implementations, namely the GNU Scientific Library (GSL) (GALASSI;

THEILER, 2019), and the Open Quantum Safe library (liboqs) (STEBILA; MOSCA,

2021).

A comparison of sampling strategies among related works is present in Table 1.
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The hereby proposed work is referred to as "DiGS" in the table, which is short for

"discrete Gaussian sampling".

Table 1: DGS base strategies for DiGS and related works.

Sampler Assumption DGS strategy

DiGS (ours) RLWE FWHT
BLISS (DUCAS et al., 2013) SIS Inversion and rejection
FACCT (ZHAO; STEINFELD; SAKZAD, 2020) generic Inversion and rejection via CDT
Falcon (FOUQUE et al., 2020) SIS over NTRU CDT and rejection
FrodoKEM (ALKIM et al., 2020) LWE CDT
qTESLA (ALKIM et al., 2019) RLWE CDT and rejection

Source: author (2023).

1.4.4 General central limit theorem

Some efforts in the present work are motivated by (DWARAKANATH; GAL-

BRAITH, 2014), which constitutes one of its initial influences, regarding the use of the

general central limit theorem (CLT). Then, (BHARUCHA-REID; SAMBANDHAM,

1986) added valuable information about the relationships among the CLT, the number

of zeros in random polynomials, and also the products and sums of random companion

matrices. Resources for getting to understand the CLT formally are (BILLINGSLEY,

1961; BILLINGSLEY, 1995; COVER; THOMAS, 2006). Those works present a

number of CLT enunciations, e.g., the Lindeberg–Lévy, and the Lyapounov theorems,

both assuming probability distributions in asymptotic contexts, but independent ran-

dom variables with high probability of being small. Insights are provided by (BERRY,

1940), which affords relevant roles to both the second and third order absolute mo-

ments of a given Gaussian distribution, respectively variance and skewness, regarding

its least upper bound. Earlier works seeking applications of the CLT for fast generation

of Gaussian random variables were found in (RADER, 1969). In it, the author presents

an Hadamard transform sampling strategy for a context in which many random vari-

ables are necessary, but only one is obtained by conventional means.
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1.4.5 The fast Walsh–Hadamard transform as a shuffling strategy

Regarding the fast Walsh–Hadamard transform (FWHT), didactic resources to

support this work are (SYLVESTER, 1867; PRATT; KANE; ANDREWS, 1969; RADER,

1969; HARWIT; SLOANE, 1979; EVANGELARAS; KOUKOUVINOS; SEBERRY,

2003; LU et al., 2013). Hadamard matrices and the Sylvester method originate in (SYLVESTER,

1867). The FWHT is detailed in 2.4.1.

Random variable generation by means of the Hadamard matrix is found both

in (RADER, 1969) and in the appendix of (HARWIT; SLOANE, 1979), the latter

being more didactic. Besides, it also covers the relationships between Hadamard ma-

trices and Walsh functions, the Hadamard transform, and its fast variant. In (EVAN-

GELARAS; KOUKOUVINOS; SEBERRY, 2003), it is also possible to study how

Hadamard matrices relate to Walsh functions. Additionally, the referred work suggests

FWHT as a potential helper in speeding up Hadamard transforms.

In the search for efficiency, even the image compression subject was studied. As

a matter of fact, FWHT is a long known solution for such purpose (PRATT; KANE;

ANDREWS, 1969).

Finally, the work in (LU et al., 2013) has contributed to arouse interest in the

FWHT. The referred article uses the transform in an alternative ridge regression al-

gorithm, and results are compared against other constructions, e.g., a general ridge

regression algorithm, a standard principal component algorithm, and a randomized

principal component algorithm. Comparisons are established, based upon measures of

floating point operations per second (FLOPS). Concerning the general ridge regres-

sion algorithm, computational gains of 70 percent are reported, favoring the FWHT

approach. The proposed construction is also favored against the principal component

algorithms in all of the tested setups. Computational gains of at least 82 percent are

reported.
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1.5 Method

For this work, a scientific method is enforced. It assumes there are efficient dis-

crete Gaussian sampling parameter setups, which take advantage of a fast Fourier

transform (FFT) in its sampling strategy. Namely, the FFT used herein is the fast

Walsh–Hadamard transform (FWHT). In the pursuit of the goal presented in Sec-

tion 1.3, computer routines are then built to test the referred hypothesis, according to

Chapter 3. As reference for comparison purposes, a sampler based upon cumulative

distribution table (CDT) is used, due to CDT being adopted by many state-of-the-art

lattice-based schemes. Further details are present in Table 1.

1.5.1 Steps

The experimental approach is organized in steps, corresponding to the next enu-

merated item list, all of them being eligible to suffer interventions by the author.

i) Problem identification.

Mostly built upon critical reading and reasoning, added to discussion activities

with supervisor and other students.

ii) Hypothesis and prediction.

As presented in Section 1.4, the fast Walsh–Hadamard transform (FWHT), and

the Central Limit Theorem (CLT) can be used to improve the efficiency of DGS.

In this step, the mathematics to support this work is elaborated, and an initial

parameter setting, described in Section 3.2 is defined.

iii) Prototyping.

Mathematical formalization, produced by hypothesis and prediction, is imple-

mented in isochronous computer routines. Initial values for input variables, in-

cluding the initial probability density function (PDF), follow the initial param-



25

eter setting present in Section 3.2. Then, two distinct sampling strategies are

implemented, a CDT-based, which is the default trustworthy construction for

comparisons, and an FWHT-based, which is the one presented by this work.

iv) First sampling.

Computer routines implemented in the prototyping step are used to generate data

by means of sampling. This is done by sampling the initial PDF with both CDT

and FWHT strategies, in order to build two probability mass functions. The

probability mass function (PMF) is a discrete version of a probability density

function (PDF). Next, the CDT PMF and the FWHT PMF are compared with the

algebraic PDF. In the scope of this work, that is called a first-level comparison

One bad PMF invalidates the process, which should then start over.

v) Second sampling.

The qualified CDT PMF and FWHT PMF are tested and compared against each

other. In the scope of this work, that is called a second-level comparison The

metrics of quality and efficiency are obtained from output variables, described

in 3.1, and the results are organized for the subsequent, final step.

vi) Discussion.

This is an analytical step, performed on the generated data, regarding the goal

of this work. Additional insights and remarks on this work as a whole may be

produced. Also, in this step, an article is prepared and submitted to publication.

Lastly, it is noted that the first-level and second-level comparisons stand as falsifi-

ability tests (POPPER, 2005).

1.6 Contribution

The discrete Gaussian sampling construction presented by this work is efficient and

isochronous. It is shown that carefully chosen parameters will make a fast Walsh–Hadamard
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transform sampler more efficient and more precise than a typical CDT-based construc-

tion. Additionally, its isochronous routines make the sampler side-channel resistant.

1.7 Document structure

Beyond the present chapter, the following structure is applied to this document.

Chapter two covers the technical building blocks for the Gaussian sampler, i.e., a

few mathematical concepts, the RLWE problem, lattice-based cryptography, and side-

channel attacks. The mathematical concepts include algebra, calculus and probability,

e.g., polynomial rings, lattice theory, the discrete Fourier transform, the Hadamard

matrix, the fast Walsh–Hadamard transform, normal distribution, sampling algorithms,

the central limit theorem, and the metrics adopted herein.

Chapter three presents specifications and implementation details regarding the

Gaussian sampler, i.e., its variables, modeling, and computer routine specifications.

Tests and results are presented in Chapter four, and discussed in Chapter five.

Appendix A presents full tables with values of metrics and Gaussian sampling

results for both the CDT and FWHT routines compared in this work.
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2 GENERAL CONCEPTS

Cryptology is referred here as the body of knowledge comprising both cryptog-

raphy and cryptanalysis. In general, the former, which is the subject of this work,

is a group of protocols, schemes, specifications, standards, and techniques, meant to

be useful for authentication, privacy and integrity requirements. Since ancient times,

cryptology have provided societies with solutions to their problems, and history has

provided the concept of secret with a determinant role in making societies thrive or

fall (KAHN, 1996).

Given the threats regarding information security (TERADA, 2008), the concepts

of cryptology have been implemented in a variety of applications, and they go far be-

yond protecting money transfers and electronic government transactions. Solutions to

diverse fields have cryptology in their cores, and some of the new quandaries to be con-

fronted by modern-day societies can be satisfactorily addressed by astute cryptologic

perspectives.

In networking, cryptology is embedded in state-of-the-art protocols (ION et al.,

2019), and wireless sensors (MARGI et al., 2009; TSCHOFENIG; BACCELLI, 2019).

Data exchange in the deluging Internet of Things (IoT) constitutes a new focus of

major security concerns, as its variety of constrained devices creates a growing attack

surface (TSCHOFENIG; BACCELLI, 2019).

Even abrupt cultural changes can benefit from appropriated cryptologic solutions.

Take the 2019–2021 coronavirus pandemic dilemma, in which infected people needed
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to be rapidly recognized. Privacy-related issues rapidly arose from such context, as

societies worldwide tried to figure out to which extent could privacy jeopardize public

health. If exposure of medical data records pose as a reason of concern by one side, it

may also form the solution to the other, and as the latter needed to be addressed, cryp-

tology provided the world with balance by dealing with the contact tracing pandemic

problem (ANDERSON, 2020; REICHERT; BRACK; SCHEUERMANN, 2020). Ei-

ther by modelling old and new threats, or by managing their risks, the cryptology body

of knowledge proves to be a significant actor in paving the road to an interconnected

mankind.

Profusion of new paradigms seems to be inescapable (CONTE et al., 2017). Decades

ago, computers have led to the development of cryptography, and nowadays, the em-

bryonic phase of quantum computing triggers a new wave of research initiatives whereby

improvement and recycling for this area of knowledge is sought. Many researchers

think post-quantum cryptography, also called quantum-resistant or quantum-safe cryp-

tography, constitutes such recycling. It should be noted the post-quantum designation

has been used for some time, and it was even adopted in the NIST standardization

process, the reasons why the referred designation seems to occur more often (CSRC,

2019). This new area of study refers to cryptographic approaches based upon problems

which are supposedly harder to be solved by quantum computers than those based on

integer factoring, or discrete logarithm.

In the scope of this work, the main subjects of mathematics used are algebra, cal-

culus, and probability. Those three subjects, along with cryptology itself form the

structuring sections for this chapter. In algebra, the basic topics used, in order to

deal with lattice theory, revolve around polynomials. Calculus is mainly about inte-

gral transforms, precisely, the Fourier transform, which serves as basis for the FWHT.

Probability stands as the substance for sampling and the CLT. The terms sample and

random variable (r.v.) are used commutably in this text, referring to a given set of ob-
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servations. The number of observations in a sample is the sample size, here denoted as

s.

2.1 Algebra

This section covers algebra-related topics used in this work, namely polynomial

rings and lattices.

2.1.1 Polynomial rings

In abstract algebra, the algebraic structure called ring is a set R of finite or infinite

elements, provided with the binary operations of addition and multiplication (SHOUP,

2008). Inputs and outputs of referred binary operations belong to the R ring, and all

elements of a given ring should assume a common nature, e.g., integers, matrices, or

polynomials. As for the binary operations, addition is always commutative, that is, for

a, b ∈ Z, then a + b = b + a, whereas multiplication might not be commutative in

some cases. An instance of the referred multiplication constraint is that, considering

two matrices A and B of same order, it is not possible to state AB produces the same

result of BA. If the commutative property does apply to multiplication, as it does for

integers and polynomials, then the ring is called a commutative ring, which is in the

interest of this work, precisely as finite commutative rings of polynomials, provided

with integer coefficients and identity elements both for addition and multiplication.

Those rings can be represented as Equation 2.1.

R[x] = {rs−1xs−1 + rs−2xs−2 + ... + r1x + r0 | ri, s ∈ Z} (2.1)

Since a finite polynomial ring representation should somehow express its modulus,

this can be done by means of specific mathematical notation in which the denominator
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is called an ideal generator, as in Equation 2.2.

R[x] =
Z[x]

xs − x − 1
. (2.2)

The ring example represented by equation 2.2 has a modulus of xs − x − 1.

Finally, there are five properties for polynomial rings to satisfy:

i) identity for addition

represented as 0A;

ii) identity for multiplication

represented as 1A;

iii) associative multiplication

a · (b · c) = (a · b) · c ;

iv) commutative multiplication

a · b = b · a; and

v) distributive multiplication

a · (b · c) = a · b + a · c.

2.1.2 Lattice theory

In this section, the subject known as lattice theory (GRÄTZER, 2011; WEHRUNG

et al., 2016) is briefly covered. Such theory formalizes conceptual nets called lattices.

A lattice is distinguished by its structural periodicity through which a pattern occurs.

Mathematics can formalize that concept through many approaches, e.g., geometry,

group theory, and order theory. Geometry has a less abstract approach, describing

a lattice as an L geometric object, which is an array formed by i vertex or vector

elements, as inL(v1, v2, . . . , vi) with v1, v2, . . . , vi ∈ R
j, with i, j ∈ N.
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This versatile theory finds applications in many fields derived from chemistry and

physics, like crystallography and communications (HEFFERON, 2017). In cryptology,

lattice theory serves as a framework to answer a number of demands. A few of those

are covered in section 2.5.

2.1.2.1 A concrete example

Although lattice theory is an abstract subject with a variety of approaches, it can

be introduced by a concrete and simple instance. In chemistry, the table salt molecule

makes an example of a real-world lattice. Figure 1 portrays an equalized greyscale

photography of real table salt, and Figure 2 presents the basic structure of its molecule.

Figure 1: Photography of table salt.

Source: author (2021).

Figure 2: Lattice of a salt molecule.

Source: author (2021).

The table salt in Figure 1 is a compound known as sodium chloride, whose molecule

can be denoted by the three-dimensional crystal structure in Figure 2, with bigger

darker atoms representing the chloride element and the smaller lighter atoms represent-

ing the sodium element. Still in Figure 2, considering the distances involved, element

combination, and angles, a structural repetition can be observed in the cuboid paral-

lelepiped, regarding atom order. By comparing the atom sequence in parallel edges,

a repetition is observed, and that periodic arrangement constitutes the basic idea sup-

porting lattice theory in mathematics. As the structure repeats itself, it is possible to

infer bigger lattices by joining polyhedrons like that of Figure 2.

By removing atoms in the representation of Figure 2, and adding three-dimensional
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Euclidean space reference axes, as in Figure 3, it is possible to visualize the existing

lattice structure, thus providing geometric means to deal with the referred lattice. The

lattice theory formalizes those concepts as to offer a tool to many areas of knowledge

other than chemistry.

Figure 3: The lattice structure of a salt molecule.

x

y

z
Source: author (2021).

The observed cubic pattern in Figure 3 is supposed to replicate itself in any of the

three axes. Lattice theory uses that idea to build on its pattern periodicity concepts

for complex algebraic structures. In linear algebra, a linear combination can describe

such structural recurrence through the unit vectors composing the basic parallelepiped.

Since our example deals with a three-dimensional geometry, the basic polyhedron from

Figure 2 is able to provide up to three linearly independent vectors. For algebraic gen-

eralization intentions, one might consider higher-dimensional polytopes, which allows

i basis vectors, i ∈ N, each of them featuring a j norm, j ≤ i, j ∈ N, which can be

denoted as v1, v2, ..., vi ∈ R
j. Remarkably, as a generalization, i and j do not nec-

essarily assume the same value. However, if the number of vectors i equals the norm

j for each basis vector, the lattice is categorized as full-rank, which is the standard

adopted in this work. The use of full-rank lattices for cryptographic purposes is cov-
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ered in Section 2.5. For simplicity, considering a three-dimensional Euclidean space,

as in Figure 3, it is possible to represent basis vectors v1, v2, v3 ∈ Z
3, presented by

Figure 4. Such representation emphasizes the lattice elements arranged in the vertices,

to the detriment of edges, which are now denoted by dashed lines. This is a lattice

graph known as a grid.

Figure 4: A delimited region of a cubic lattice, and a possible basis.
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Source: author (2021).

Figure 4 portrays a delimited region of a lattice in a Euclidean space originated in

O, and its correspondent basis, which is orthogonal for this example. Infinite elements

of that lattice may be obtained by combining v1, v2, and v3. Although the example

in Figure 4 portrays a lattice with an orthogonal basis, that might not always be the

case. At that point, where bases are not orthogonal, lattice theory starts offering levels

of computational complexity enough to make it interesting to cryptography. Later on,

in Section 2.5, the lattice theory approach to cryptography is resumed. But before

that, and in order to get to the referred section with the proper comprehension bases,

it is also relevant to present the ring learning with errors (RLWE) problem, plus a few

concepts on probability, and on the discrete Fourier transform (DFT).
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2.2 The ring learning with errors problem

Firstly described in (LYUBASHEVSKY; PEIKERT; REGEV, 2013b; LYUBA-

SHEVSKY; PEIKERT; REGEV, 2013a), the learning with errors over rings or ring

learning with errors (RLWE) problem is a particular case of the learning with errors

problem (LWE), which is a question over a system of equations, as of how random the

referred equations are. LWE assumes equations may be artificially perturbed, then it

takes them in pairs and tells which pairs are artificially random, and which are uni-

formly random. RLWE in its turn is an algebraically structured LWE, i.e., it imple-

ments LWE by means of polynomial rings, and in that sense, its origins are preceded

by a structure the authors have previously adopted in the SWIFFT set of compression

functions (LYUBASHEVSKY et al., 2008).

In practice, by enforcing the same security of LWE, RLWE is often more efficient,

and if a public key is generated by RLWE instead of LWE, it occupies less memory.

There are two versions of RLWE, the decision version and the search version.

Those versions are respectively based on the decision and search versions of the lattice

problem known as the shortest vector problem (SVP). Decision RLWE is easier than

search RLWE for the purpose of ideal lattices approximation, and for the matter of

classical hardness characterization of the problem as a whole, hardness inherent to the

decision version prevails. The decision version relies on figuring out pseudorandom-

ness in a group of polynomials. More precisely, the goal in decision RLWE is to find

out how pseudorandomness occurs in error distributions. The search version is about

finding one polynomial, given a group of polynomials. More precisely, the goal in

search RLWE is to recover a secret polynomial from the Rq polynomial ring (LYUBA-

SHEVSKY; PEIKERT; REGEV, 2013b). For both versions, the ring has two moduli,

f (x) and q. Considering the even sample size output variable s (lowercase s), as

described in 3.1, function f (x) = xs + 1, s ∈ Z, denotes a generic R[x] polyno-
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mial ring modulus, as described in 2.1.1. The second modulus an RLWE polynomial

ring should obey is q, a large public prime. The notation for such a ring is present in

Equation 2.3.

Rq =
Zq[x]
xs + 1

. (2.3)

Security parameter s also implies polynomials in Rq should have degrees smaller

than s (LYUBASHEVSKY; PEIKERT; REGEV, 2013b).

Thus, by considering a set of s monic polynomials as in:

p1(x) = a1 1xs−1 + a1 2xs−2 + . . . + a1 s−2x2 + a1 s−1x + a1 s

p2(x) = a2 1xs−1 + a2 2xs−2 + . . . + a2 s−2x2 + a2 s−1x + a2 s

...

ps−2(x) = as−2 1xs−1 + as−2 2xs−2 + . . . + as−2 s−2x2 + as−2 s−1x + as−2 s

ps−1(x) = as−1 1xs−1 + as−1 2xs−2 + . . . + as−1 s−2x2 + as−1 s−1x + as−1 s

ps(x) = as 1xs−1 + as 2xs−2 + . . . + as s−2x2 + as s−1x + as s

The s polynomials constitute an Rq finite commutative ring of polynomials, as

explained in Section 2.1.1. By making the referred polynomials equal to zero, and

separating their constant terms, it is possible to write the following system of equations:
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

a1 1xs−1 + a1 2xs−2 + . . . + a1 s−2x2 + a1 s−1x = −a1 s

a2 1xs−1 + a2 2xs−2 + . . . + a2 s−2x2 + a2 s−1x = −a2 s

...

as−2 1xs−1 + as−2 2xs−2 + . . . + as−2 s−2x2 + as−2 s−1x = −as−2 s

as−1 1xs−1 + as−1 2xs−2 + . . . + as−1 s−2x2 + as−1 s−1x = −as−1 s

as 1xs−1 + as 2xs−2 + . . . + as s−2x2 + as s−1x = −as s

(2.4)

From that system, it is possible to write the following matrix equation:



a1 1 a1 2 . . . a1 s−2 a1 s−1 a1 s

a2 1 a2 2 . . . a2 s−2 a2 s−1 a2 s

...
...
. . .

...
...

...

as−2 1 as−2 2 . . . as−2 s−2 as−2 s−1 as−2 s

as−1 1 as−1 2 . . . as−1 s−2 as−1 s−1 as−1 s

as 1 as 2 . . . as s−2 as s−1 as s


×



xs−1

xs−2

...

x2

x

1


=



−a1 s

−a2 s

...

−as−2 s

−as−1 s

−as s


. (2.5)

By representing the constant terms vector as b, Equation 2.5 can be written as:

A × X = b. (2.6)

Once matrix A is invertible, there is:

X = A−1 × b. (2.7)

In Equation 2.7, A−1 is the inverse matrix of A, the solution being represented by
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the X vector.

As previously stated, LWE problems are supposed to deal with artificially per-

turbed equations. Thus, Equation 2.7 is modified, and a pseudo-random error is added

to it, hardening access to the X system solution:

X + e , A−1 × b. (2.8)

At this point, the problem is about distinguishing e influence in ring elements,

i.e., in the left-hand side of Inequation 2.8. Tuning e is actually a relevant aspect for

RLWE applications, and it should consider the large public prime q and the lattice

dimension (LYUBASHEVSKY; PEIKERT; REGEV, 2013a).

2.3 Probability

This section covers discrete Gaussian sampling, probability distribution, the cen-

tral limit theorem (CLT), and statistical metrics used herein. The terms Gaussian dis-

tribution and normal distribution are used interchangeably throughout this document.

2.3.1 Distribution

A distribution of probability can present itself in many sorts, and in any of those,

it can be described by two mathematical functions. In the continuous case, they are the

probability density function (PDF) and the cumulative density function (CDF). The

latter keeps its name in the discrete case, but the former is called probability mass

function (PMF).

A uniform distribution is a sort of probability distribution whose domain of possi-

ble samples offer zero probability, except for a bounded interval in which probability

is a non-null positive constant. Binomial distributions are well-known discrete-case
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probability distributions, used for modelling success chances in yes/no experiments.

Normal distributions, also called Gaussian distributions, are the ones used throughout

the present work. They are explained in Section 2.3.1.1.

2.3.1.1 Normal distribution

Considering N as a one-dimensional independent random variable (BERRY, 1940)

associated to a continuous-case normal distribution of probabilities, two parameters are

typically used to describe it. The mean µ and the variance σ2 are those parameters, as

in equations 2.9 and 2.10.

N ∼ N(µ, σ2) (2.9)

Equation 2.9 shows a simplified normal PDF representation. According to (WEIS-

STEIN, 2021), the function itself can be written as in Equation 2.10.

P(x) =
1

σ
√

2π
· e−

1
2 ( x−µ
σ )2, x ∈ R (2.10)

Thus, the N random variable denoted by Equation 2.9 corresponds to the probabil-

ity function P(x) expressed by Equation 2.10. In Figure 5, the graphical representation

of two generic normal distribution PDF functions are portrayed. A continuous line and

a dashed one representing respectivelyN1 andN2. They have the same generic mean

value µ but different variance values σ1
2 and σ2

2, such that σ1
2 < σ2

2. Also, the

tail-cut factor τ is the same for both.

Figure 5 reveals that bigger variance values spread the probability distribution

more, that is, the chances of sampling values more distant from the mean increase

while the chances of sampling values near the mean decrease. A numeric example is
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Figure 5: Two normal distribution PDF plots with different variance values.

Probability

µ

Possible sample values

—N1(µ, σ1
2)

—N2(µ, σ2
2), σ2

2 > σ1
2

Source: author (2021).

given in Figure 6. It portrays a normal distribution PDF graphical representation, in

which the PDF is truncated or bounded inside the [−4, 4] domain. Its mean is 0, and

variance is 1, such values denoting a standard normal distribution.

Figure 6: A [−4, 4] truncated-domain view of a standard normal distribution PDF.

-4 4

0.4

Possible sample values

Probability

µ = 0 and σ2 = 1

Source: author (2021).

Though, in order to help in Gaussian PDF manipulation, this work enforces a third

parameter, known as the tail-cut factor τ. It constitutes an artificial resource used in

some works of lattice-based cryptography (KARMAKAR et al., 2018; ZHAO; STE-
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INFELD; SAKZAD, 2020), serving the purpose of interval manipulation. Gaussian

domain then becomes [µ − τσ, µ + τσ].

Lastly, as for sampling uncertainty, if proper mean and variance values are used,

normal distributions offer Shannon entropy values at least as great as those of uniform

distributions (COVER; THOMAS, 2006; MORAIS, 2018).

2.3.2 Sampling

According to (HOUSE, 1989), sampling is the process of selecting a sample for a

given purpose, e.g., analysis. A sample may be composed by one or more observations.

In probability and statistics, sampling is a standard procedure performed on probability

distributions. In cryptology, it supports the concept of random value generation.

2.3.2.1 Discrete Gaussian sampling

Gaussian sampling refers to sampling from a normal or Gaussian probability dis-

tribution. Discrete Gaussian sampling (DGS) is a term used to indicate a Gaussian

sampling of integer values. In lattice-based cryptography, it stands as a primitive for

random number generation.

The sampling precision required by cryptography represents computationally costly

routines. In general, DGS complexity resides in low-level mathematical evaluations of

integrals and series, which require specialist routines (SAARINEN, 2015).

As a pillar of lattice-based cryptosystems (GENISE et al., 2020), DGS has received

many recent contributions, offering a variety of methods, such as (KARMAKAR et al.,

2018; WANG, 2019; WANG; LING, 2019). Additionally, there are valuable works on

computer-based Gaussian sampling in previous decades, e.g., (RADER, 1969).

In this work, the referred primitive picks its observations from a truncated normal

distribution probability mass function (PMF). It is strenghtened by a shuffling strategy
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based on the fast Walsh–Hadamard transform (FWHT). Often in lattice-based cryp-

tography, the DGS primitive is used to build polynomial rings, but here it generates

noise for already existing polynomials, according to RLWE premises.

2.3.3 Sampling-related algorithms

As the random number generation primitive of this work is a discrete Gaussian

sampler, this section portrays some notorious sampling strategies.

2.3.3.1 Algorithm: rejection

The rejection sampling strategy follows the premise that computations not achiev-

ing certain criteria should be discarded. Its first formal explanation supposedly hap-

pens in (NEUMANN, 1951), as the author discusses the production of randomness by

physical methods, through coin tossing. By assuming independence of two successive

tosses, he proposes that at least one pair of tosses is necessary for obtaining one sin-

gle random result, which can be either heads or tails. In such process, two successive

tosses are made. Then if the results are equal, those two tosses are rejected, and an-

other pair of tosses takes place, until the results are different. Thus, it is emphasized

that potential process repetition stands as a downside for rejection sampling, which in

its turn, can be mitigated by means of having random values recorded somewhere.

2.3.3.2 Algorithm: binary

This section covers a sampling strategy for discrete distributions known as bi-

nary, which was introduced by (DUCAS et al., 2013) for the lattice-based BLISS

digital signature scheme. The binary sampling algorithm builds upon a combina-

tion of two strategies, inversion sampling and rejection sampling (NEUMANN, 1951;

DWARAKANATH; GALBRAITH, 2014). While the inversion strategy translates sam-

pling from a normal distribution into a uniform one on a different set, the rejection
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strategy samples from a slightly modified normal distribution, and then performs a

rejection test on the result.

In BLISS, rejection sampling uses two resembling, but still distinct, normal distri-

butions. They are mixed, and the result is a single bimodal distribution, whose PDF is

presented by Equation 2.11.

P(x) = 2−x2
, x ∈ Z (2.11)

Regarding the rejection test, Bernoulli functions are used, here denoted as B(x).

BLISS expects rejection tests to return either zero or one. It needs no precomputed

table, relying on a binary representation system supposed to compensate probability

distributions being computed on the fly (FOLLÁTH, 2014).

A possible binary sampling construction is presented in Algorithm 2.1, which is a

contribution of this work.

Algorithm 2.1 A possible binary sampling construction.

1: algorithm binary_dgs ( k : natural)

2:

3: y← random from {0, 1, ..., k − 1};
4:

5: do

6: x← random from P(x);

7: while (B(x) = 0)
8:

9: return kx + y;

10:

11: end algorithm

Source: author (2022).

In Algorithm 2.1, variable y stores the inversion sampling result, and variable x
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stores the rejection sampling result. Line number seven represents the Bernoulli func-

tion performing the rejection test for the random value stored in x. If the Bernoulli

rejection test returns a zero, then the value stored in variable x is rejected, and the

rejection sampling routine is performed again, followed by another rejection test. That

routine repeats until the Bernoulli function returns one, meaning the value in x is ac-

cepted. Finally, the algorithm returns the result of kx+ y. That is a simple explanation

of binary sampling. There are modified approaches, such as the one present in the

FACCT sampler (ZHAO; STEINFELD; SAKZAD, 2020).

2.3.3.3 Algorithm: cumulative distribution table

This section presents a DGS algorithm built upon a cumulative distribution func-

tion, namely the cumulative distribution table (CDT) sampling algorithm. Besides de-

noting the name of the algorithm, CDT also refers to the table used by that algorithm.

Before sampling, the cumulative distribution function must fill that table with proba-

bility values. Thus, in CDT, persistence must precede sampling, i.e., a regular CDT

strategy should consider the implications of memory access and memory consumption.

The core of the algorithm takes a random real value r ∈ [0, 1), and performs a

search operation on the precomputed table, comparing r to each value of the table. The

last value of the CDT to be bigger than r has its index s returned as a valid observation

for the sample. More formally, the algorithm tries to find an s index such that the

CDT s−1 < r < CDT s condition is satisfied. According to (ZHAO; STEINFELD;

SAKZAD, 2020), the CDT-based DGS can be O(τσ), its main drawback being the

high memory consumption involved, as the algorithm requires a precomputed CDT.

DGS routines like that are specially relevant to this work for their generic con-

struction is used as a basis for comparisons with the FWHT strategy. The use of

a CDT-based DGS algorithm as reference is justified by the fact many lattice-based

cryptography works use it for Gaussian sampling, as mentioned in Section 1.4. One
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example is (ALKIM et al., 2019), which presents a detailed CDT-based algorithm,

which includes the table filling. Their construction receives a seed and a nonce as in-

puts, and then it outputs a sequence of samples. The isochronous construction uses a

precision variable, and keeps track of the original sampling order. Another example

is (HOWE et al., 2019), which presents a Gaussian sampler based both on CDT and

rejection. Just as in (ALKIM et al., 2019), this construction is isochronous, and it also

enforces a precision variable to both generate cumulative distribution tables, and get

random-like numbers in [0, 1). The latter are then used to obtain index values from

the cumulative distribution table initially generated. More specifically, after getting a

random number from [0, 1) , that number is compared to each value of the table. Then,

the last value of the table to be greater than the referred number has its index chosen

as a sample observation.

A possible CDT sampler, based upon (ALKIM et al., 2019) and (HOWE et al.,

2019), is presented by Algorithm 2.2, which is a contribution of this work. It works in

the [0, 1] interval, and its input parameters are a cumulative distribution table, named

cdt, and the desired number of observations to compose a sample. The natural value

in n holds the number of elements in the table, that is, the number of elements to be in

the cdt input variable. The n_aux variable serves as an iteration control through the

table. Variable nobs_aux is used to control iterations through v. Variable p stands

for the natural-valued precision used to populate the table. Variable r is a random

value, which can also be used as a seed, depending on the sample size. It is uniformly

obtained by means of the generate_random() function sampling from the [0, 1]

real interval. The integer vector v stores index values obtained, and it is returned by

the end. According to (HOWE et al., 2019), isochrony enforcement is achieved if each

r value takes the entire table to be read.

Before using a CDT-based sampler, it is necessary to compute a cumulative distri-

bution table, using a precision of p .
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Algorithm 2.2 A possible CDT-based DGS construction.

1: algorithm cdt_dgs (cdt : vector, nobs : natural)

2: n : natural;

3: n_aux : natural;

4: nobs_aux : natural;

5: p : natural;

6: r : real;

7: v : integer vector;

8:

9: n← get_length(cdt) ;

10: p← get_precision(cdt) ;

11: v← 0 ;

12:

13: for ( nobs_aux from 0 to nobs − 1 , step 1 )

14: r ← generate_random([0, 1)) ;

15: for ( n_aux from 0 to n − 1, step 1 )

16: if r < cdtn_aux

17: vnobs_aux ← n_aux ;

18: break;

19: end if

20: end for

21: end for

22:

23: return v;

24: end algorithm

Source: author (2022).

The returned variable v stands for a sample.

2.3.3.4 Algorithm: Knuth–Yao

This section presents an overview of the Knuth–Yao sampling algorithm (KNUTH;

YAO, 1976). In the article, a known non-uniform probability distribution is sampled

via random walk in a type of binary tree called a discrete distribution generating (DDG)
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tree. Authors end up concluding that further investigation is needed as to understand

how efficiently a normal distribution can be generated with simple algorithms. Ac-

cording to the text, the ability to work with binary representations could be a desirable

characteristic for such algorithms. The referred DDG tree can be implemented as a

matrix, according to the following rule: the number of nodes in the tree at the ith level

should be equal to the Hamming weight of the matrix in its ith column. Each leaf node

corresponds then to a sample, denoted here as z.

A possible construction is presented in Algorithm 2.3, which is a contribution of

this work. It receives a probability matrix v as an argument, and returns a sample z.

Variable d is the distance between the visited node and the rightmost internal node of

the DDG tree. Variable t should be zero until sampling hits a terminal node, which

changes its value to one.
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Algorithm 2.3 A possible Knuth–Yao DGS construction.
1: algorithm dgs_knuthyao (v: real matrix)

2: d ← 0;

3: j← 0;

4: t ← 0;

5:

6: do

7: d ← 2d + random_bit();

8:

9: for (i← max_row; i > 1; i−−)
10: d ← d − vi j ;

11:

12: if d = −1 then

13: z← i;
14: t ← 1;

15: break;

16: end if

17: end for

18:

19: j++;

20: while t = 0
21:

22: return z;

23:

24: end algorithm

Source: author (2022).

Implementations of the original Knuth–Yao sampling strategy used to experience

two main downsides, inefficiency and potential information leakage. The former refers

to the use of arbitrary-precision in floating-point arithmetic, and the latter is related to

timing vulnerabilities. Recent versions of Knuth–Yao are proposed in (ROY; VER-

CAUTEREN; VERBAUWHEDE, 2014; KARMAKAR et al., 2018; MICCIANCIO;

WALTER, 2018). They deal with the referred downsides using different approaches.
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In (KARMAKAR et al., 2018), authors highlight the referred timing vulnerabilities in

the original algorithm, presenting then an isochronous construction as to mitigate those

risks. Although it does not require large precomputed tables, its routines execution de-

mands considerable memory.

2.3.4 Cental limit theorem

The central limit theorem (CLT) refers to a number of enunciations, some of them

being referenced in Section 1.4. The core idea behind most enunciations is that by

sampling randomly and repeatedly from a given population distribution, e.g., a uniform

distribution, and then computing an average for each sample, the resulting distribution

of averages tends to a normal distribution. Samples correspond to any uncorrelated

random variables, and the obtained distribution of averages tends to a normal random

variable (RADER, 1969; MENDONÇA, 2022). Thus, the CLT can also be used to

estimate values, e.g., as a maximum likelihood estimator (MLE).

In this work, the CLT is verified, and most importantly, it is exploited in order to ac-

celerate the generation of Gaussian random variables, e.g., seemingly normal distribu-

tions, in a more efficient fashion. The µD mean of 2β random variables approaches the

theoretical population average as the number of samples grows. Equation 3.3 presents

the formula used to obtain µD. As mentioned, a supposedly uniform population distri-

bution is to be sampled. In this point lies a part of the CLT exploitation, precisely, in

population choice. For that matter, the chosen population is previously manipulated,

forcing the original, supposedly uniform population distribution to be normal already.

Considering the samples obtained in this work, it is desirable to understand how far

results are from a trustable normal distribution.
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2.3.5 Metrics

This section briefly presents the metrics chosen to be used by this work. Further

information, e.g., adapted formulas, using the variables of this work, are supplied by

Section 3.1.

Shannon entropy: it constitutes a metric to assess the uncertainty of random vari-

ables (COVER; THOMAS, 2006). According to (KARMAKAR et al., 2018), higher

values of standard deviation produce higher values of entropy.

Relative entropy: it is also known as the Kullback–Leibler divergence (COVER;

THOMAS, 2006). The relative entropy is a particular case of the Rényi divergence. It

is used to obtain the amount of information one probability distribution has of another

probability distribution.

Mean: a metric of the normal distribution PMF functions, which is expected to be

near zero, because that is the fixed mean value of the algebraic Gaussian.

Standard deviation: measure of dispersion, determining a confidence interval to

sample from.

Coefficient of skewness: it regards the symmetry of the curve, corresponding to

the third moment of the discrete Gaussian.

Kurtosis: a measure of quality, corresponding to the fourth moment of the discrete

Gaussian.
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2.4 Discrete Fourier transform

The Fourier transform is a mathematical function of frequency, often represented

as g(ω), used to find the frequencies of a time-domain function, often f (t). For an

integrable function f (t), it is possible to write g(ω) as in Equation 2.12:

g(ω) =
∫ ∞

−∞

f (t)e−i2πωt dt, ω ∈ R. (2.12)

In equation 2.12, g(ω) is a complex value, and it tells how much the ω frequency

is present in f (t). As a function of frequency, the Fourier transform has conceptual

ties with PDF functions, because both frequency and probability carry the idea of like-

lihood (GILLIES, 2012). In fact, relative frequency is closely related with probability,

e.g., it is possible to carry out a probability experiment with a given range of possi-

ble results. After a number of repetitions, by observing the relative frequencies for

the referred results, these values approach the ones previously obtained with probabil-

ity (NEYMAN, 1937). The Fourier transform of a PDF, e.g., P(x), actually results

in a characteristic function, which can be used as an alternative probability distribu-

tion analysis means (SAKAMOTO; MORI; SEKIOKA, 1997; KARDAR, 2019), as in

Equation 2.13. In this case, it is necessary to treat the probability domain of possible

sample values as a time domain.

g(ω) =
∫ ∞

−∞

P(x)e−i2πωx dx, ω ∈ R. (2.13)

The characteristic function expressed by Equation 2.13 basically denotes the ex-

pected value for the random variable N (see Equation 2.9). As the expected value of

a given random variable returns an average value, thus it is possible to infer Equa-

tion 2.13 results in µ.
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In terms of computational complexity, the Fourier transform integral covers the

full real line, which makes it unattractive, mostly if efficiency is regarded. However, its

approximation known as discrete Fourier transform (DFT) rises as a computationally-

viable option (ORSINI, 1994). Generic formulation of the DFT can be put as that of

equation 2.14, which operates on a finite number of n samples:

g(ω) =
n−1∑
t=0

f (t)e−i2πωt, ω ∈ R. (2.14)

As in equation 2.12, in equation 2.14, the g(ω) value is a complex number show-

ing how much the ω frequency is present in f (t), but this time regarding only the

considered sequence of samples. Algorithms to implement the DFT are typically

O(n log n), like (COOLEY; TUKEY, 1965). Called fast Fourier transform (FFT)

algorithms, they are used in many applications, e.g., image processing. As enhance-

ments kept coming for FFT algorithms, the use of Hadamard matrices stood out as a

valuable feature (PRATT; KANE; ANDREWS, 1969).

In this work, for the benefit of efficient Gaussian sampling, an FFT algorithm

known as the Fast Walsh–Hadamard transform (FWHT), based on Hadamard matrices,

is used. The FWHT is introduced in Section 2.4.1.3.

2.4.1 The Hadamard matrix and transform

An Hadamard matrix H can be described as a symmetric, and thus square, matrix

whose elements are either one or minus one, meaning H obeys a binary system. Not all

orders are possible for the construction of such matrices, e.g., it is impossible to build

an Hadamard matrix of order three (RADER, 1969). Though, it is relatively simple

to build it with order 2β, β ∈ N∗. Examples are provided in equations 2.15, 2.16,

and 2.17.
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Hβ=1 =

1 1

1 −1

 (2.15)

Hβ=2 =



1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1


(2.16)

Hβ=2 =



−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1


(2.17)

From 2.16, and 2.17, it can be seen there might be more than one Hadamard matrix

for a given 2β order. However, some works, like (RADER, 1969), only make use of

those in which both the initial row and column are composed of plus ones.

As for notation, considering an Hadamard matrix H of order h, HT denotes its

transpose, and Ih denotes an identity matrix of order h. Some properties are presented

next.

Property one: since H is symmetric, that is, hi, j = h j, i, its transpose HT is also

an Hadamard matrix.

Property two: for matrices of order h, H × HT = h × Ih.

Property three: H × HT = HT × H.
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Property four: orthogonality is verified for rows, and also for columns, of H.

Property five: from property four, by comparing two rows or two columns of H,

half the elements in one vector will find correspondence in the other.

Property six: known as the Sylvester method, it says that if H is an Hadamard

matrix of order 2β, then

H H

H −H

 is also an Hadamard matrix (SYLVESTER, 1867).

The sixth property is used to generate the matrix in equation 2.16 from the one in equa-

tion 2.15. As in (RADER, 1969), for both matrices, an element hi j can be described

as in Equation 2.18.

hi j = (−1)h1 1 (−1)h2 2 . . . (−1)h2β 2β (2.18)

Property seven: considering an Hadamard matrix in which both the initial row and

column are formed by plus ones, i.e., elements hi j, h1 j = 1 and hi 1 = 1, then there

are two rows which, by having their elements multiplied produce a third row which is

also in the matrix (RADER, 1969), as in Equation 2.19. The cited work also points

out that such property means hl j is the result of an ⊕ (exclusive or) operation between

elements of rows i and k, and that, by symmetry, it holds true for columns.

hi j · hk j = hl j (2.19)

The Hadamard transform is a DFT in R, basically constituting an operation of

multiplication between two matrices. One of those matrices is an H matrix, as in

equation 2.20, which portrays an Hadamard transform of a given matrix η. In its turn,

matrix η is a 2β-lengthened initialization vector, storing randomly-generated binary
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values obtained from the normal distribution.

g(ω) = H × η (2.20)

2.4.1.1 Randomness in the Hadamard matrix

H is said to be normalized if the first row and column contain only ones (HAR-

WIT; SLOANE, 1979), e.g., the matrices in equations 2.15 and 2.16. By removing the

referred row and column, a square matrix G of order h − 1 is obtained. Now if ones

are changed to zeros, and minus ones to ones, then an S-matrix of order h − 1, S h−1,

is produced. For the 2.16 equation, its referring S-matrix is described in equation 2.21.

S 3 =


1 0 1

0 1 1

1 1 0

 (2.21)

If a given S-matrix has the property of having each row as a left shift of the former,

as in equation 2.21, then that S-matrix is said to be cyclic, and its first row is considered

a pseudo-random sequence (HARWIT; SLOANE, 1979).

2.4.1.2 Relationship with Walsh functions

Walsh functions describe zero-centered square waves in the −1
2 ≤ t ≤ 1

2 domain,

and their general form can be expressed as w(i, t), i ∈ N, i being the number of

times the t axis is crossed. So, w(6, t) crosses the t axis six times and is called the

6th Walsh function. Similarly, w(7, t) crosses the t axis seven times and is called the

7th Walsh function, and so on. According to (HARWIT; SLOANE, 1979), the most

important property of Walsh functions is that they form a complete orthonormal family

of functions.
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Hadamard matrices relate to Walsh functions because, considering the former,

alternation of values in a given row can be treated as a function whose behavior is

similar to that of the latter (SYLVESTER, 1867; HARWIT; SLOANE, 1979; BEER,

1981; EVANGELARAS; KOUKOUVINOS; SEBERRY, 2003). The first row of ma-

trix Hβ=2 in equation 2.16 is 1, 1, 1, 1. Starting in the first element, it is possible

to verify there is zero changes of sign from a position to its next. So, the referred

Hadamard matrix associates to the 0th Walsh function, or w(0, t), because the latter

expresses what happens in the transitions between the Hadamard matrix row elements.

In Figure 7, the Walsh function to describe transitions taking place in the first row of

Hβ=2 is presented.

Figure 7: The 0th Walsh function.
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Source: author (2021).

An additional example considers a row formed by 1, −1, −1, 1 from another

Hβ=2 matrix. Starting in the first element, it is possible to verify two changes of sign,

the first occuring in the transition from element one to element two, and the second

occurring in the last transition. It is an association to the 2nd Walsh function, or

w(2, t), which is presented in Figure 8.
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Figure 8: The 2nd Walsh function.
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Axiom 1. From (HARWIT; SLOANE, 1979), it is possible to infer that if a given

Hadamard matrix row relates to the i th Walsh function, then all Walsh functions to

cross the t axis a number of times smaller than i also relate to the referred Hadamard

matrix.

2.4.1.3 The Fast Walsh–Hadamard transform

Hadamard transforms can benefit from the fact Hadamard matrices are populated

by ones and minus ones elements only. Thus, the matrix product, represented by g(ω)

in equation 2.20, can be obtained without multiplication operations between scalars,

only additions being used (EVANGELARAS; KOUKOUVINOS; SEBERRY, 2003).

Remarkably, that characteristic meets a suggestion in the conclusion of (KNUTH;

YAO, 1976), as explained in 2.3.3.4. Done that way, the transform is said to be fast, and

it is called a fast Hadamard transform, or a fast Walsh–Hadamard transform (FWHT).

The latter emphasizes the relationship between Hadamard matrices and Walsh func-

tions, something that is explained in Section 2.4.1.2.
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The number of steps needed to compute an Hadamard transform of order n, Hβ=log2n

is n2 − n, whilst a fast Hadamard transform reduces the number of steps to approx-

imately n log2 n (HARWIT; SLOANE, 1979), or simply nβ, considering the main

input variable of this work. Indeed, as mentioned in Section 1.4, speedups are reported

by some works using the FWHT. Besides benefiting from reduced computational com-

plexity, adoption of FWHT still offers the randomness facilities of Hadamard matrices,

as seen in Section 2.4.1.1. Though, only Sylvester method-supported Hadamard matri-

ces, e.g., property six in Section 2.4.1, offer the referred fast transform option (HAR-

WIT; SLOANE, 1979). This work uses those benefits to formulate an FWHT-based

shuffling routine inside its discrete Gaussian sampler.

As an example, the diagram in Figure 9 presents the transform evolution of an

initialization vector (IV) with sixteen positions, that is, β = 4. Loaded with binary

values, the vector corresponds to the η matrix of Equation 2.20, and the resulting

FWHT of η is presented in column g(ω). Continuous arrows generate positive num-

bers, and dashed arrows generate negative numbers. A stage can be understood as a

vector shuffling procedure. There are β = 4 stages, and in each stage, 24 operations

are computed, one for each vector position.

Regarding the FWHT inverse computation, a number of β stages corresponds to

solving β systems of 2β equations in a set of 2β variables each.
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Figure 9: Diagram of FWHT for input vector size 16.

η g(ω)

00 0 0 + 0 = 0 0 + 2 = 2 2 + 3 = 5 5 + 3 = 8

01 0 0 + 1 = 1 1 + 1 = 2 2 + 1 = 3 - 3 + 5 = 2

02 1 1 + 0 = 1 1 + 2 = 3 - 3 + 2 =-1 - 1 + 1 = 0

03 0 0 + 1 = 1 1 + 0 = 1 - 1 + 2 = 1 - 1 - 1 = -2

04 1 1 + 1 = 2 - 2 + 0 =-2 - 2 - 1 =-3 - 3 + 1 = -2

05 1 1 + 0 = 1 - 1 + 1 = 0 0 + 1 = 1 - 1 - 3 = -4

06 1 1 + 1 = 2 - 2 + 1 =-1 1 - 2 =-1 - 1 - 1 = -2

07 0 0 + 0 = 0 0 + 1 = 1 - 1 + 0 =-1 1 - 1 = 0

08 0 0 + 0 = 0 0 + 0 = 0 0 + 1 = 1 1 - 1 = 0

09 1 - 1 + 0 =-1 - 1 + 1 = 0 0 - 1 =-1 1 + 1 = 2

10 0 0 + 1 = 1 1 + 0 = 1 - 1 + 0 =-1 - 1 + 1 = 0

11 1 - 1 + 0 =-1 - 1 + 0 =-1 1 + 0 = 1 - 1 - 1 = -2

12 1 - 1 + 1 = 0 0 + 0 = 0 0 + 1 = 1 1 - 3 = -2

13 0 0 + 1 = 1 - 1 - 1 =-2 - 2 - 1 =-3 3 + 1 = 4

14 1 - 1 + 1 = 0 0 + 1 = 1 - 1 + 0 =-1 - 1 - 1 = -2

15 0 0 + 0 = 0 0 - 1 =-1 1 - 2 =-1 1 - 1 = 0

Source: author (2021).

The leftmost grayed column in Figure 9 presents the η initialization vector of

Equation 2.22, storing binary values.

η = (0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0) (2.22)

As stages are done from left to right, columns of Figure 9 assume lighter tones of

gray, indicating the transform computation is closer to its end, when the g(ω) vector is

ready, as in Equation 2.23. Each g(ω) result consists in one observation for a sample

being formed.
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g(ω) = (8, 2, 0,−2,−2,−4,−2, 0, 0, 2, 0,−2,−2, 4,−2, 0) (2.23)

Each stage contains one or more cycles. For convenience, in Figure 10, stages

and cycles are contoured by approximate rectangles with rounded corners. It repeats

Figure 9, this time with stages marked as four grayed rectangles, and cycles marked as

inner darker gray rectangles. From left to right, the four gray rectangles correspond to

the first, second, third, and fourth stages.

Figure 10: Diagram of FWHT with stages and cycles marked.

η g(ω)

00 0 0 + 0 = 0 0 + 2 = 2 2 + 3 = 5 5 + 3 = 8

01 0 0 + 1 = 1 1 + 1 = 2 2 + 1 = 3 - 3 + 5 = 2

02 1 1 + 0 = 1 1 + 2 = 3 - 3 + 2 =-1 - 1 + 1 = 0

03 0 0 + 1 = 1 1 + 0 = 1 - 1 + 2 = 1 - 1 - 1 = -2

04 1 1 + 1 = 2 - 2 + 0 =-2 - 2 - 1 =-3 - 3 + 1 = -2

05 1 1 + 0 = 1 - 1 + 1 = 0 0 + 1 = 1 - 1 - 3 = -4

06 1 1 + 1 = 2 - 2 + 1 =-1 1 - 2 =-1 - 1 - 1 = -2

07 0 0 + 0 = 0 0 + 1 = 1 - 1 + 0 =-1 1 - 1 = 0

08 0 0 + 0 = 0 0 + 0 = 0 0 + 1 = 1 1 - 1 = 0

09 1 - 1 + 0 =-1 - 1 + 1 = 0 0 - 1 =-1 1 + 1 = 2

10 0 0 + 1 = 1 1 + 0 = 1 - 1 + 0 =-1 - 1 + 1 = 0

11 1 - 1 + 0 =-1 - 1 + 0 =-1 1 + 0 = 1 - 1 - 1 = -2

12 1 - 1 + 1 = 0 0 + 0 = 0 0 + 1 = 1 1 - 3 = -2

13 0 0 + 1 = 1 - 1 - 1 =-2 - 2 - 1 =-3 3 + 1 = 4

14 1 - 1 + 1 = 0 0 + 1 = 1 - 1 + 0 =-1 - 1 - 1 = -2

15 0 0 + 0 = 0 0 - 1 =-1 1 - 2 =-1 1 - 1 = 0
1st stage 2nd stage 3rd stage 4th stage
1 cycle 2 cycles 4 cycles 8 cycles

Source: author (2021).

Further details to support this work are presented in Section 3.2.
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2.5 Lattice-based cryptography

This section intends to retrieve the concepts of lattice theory, in order to present

their use within cryptography, in what is referred to as lattice-based cryptography. Ear-

lier, in the introductory chapter, and then in Section 2.1.2, lattice theory was briefly pre-

sented. It constitutes a pillar for this section, since lattice-based cryptography is built

upon nondeterministic polynomial (NP) problems from lattice theory. Lattice-based

cryptosystems rely on the NP-hardness of those problems, e.g., the shortest vector

problem (SVP), the closest vector problem (CVP), the short integer solution problem

(SIS), and the learning with errors problem (LWE). SIS and LWE are closely re-

lated, and they can be built upon SVP and CVP (BOAS, 1981; AJTAI, 1996; REGEV,

2009). Typically, algorithms to solve SVP use the idea of lattice basis reduction, being

often based on Lenstra–Lenstra–Lovász (LLL) (LENSTRA; JR.; LOVÁSZ, 1982), and

blockwise Korkine–Zolotarev (BKZ) (SCHNORR; EUCHNER, 1994). Their approx-

imation regimes vary, e.g., common strategies enforce enumeration, pruning, sieving,

or a combination of those (SCHNORR, 2003; AONO; NGUYEN, 2017; TERUYA;

KASHIWABARA; HANAOKA, 2018). Recent solutions of the Technische Universität

Darmstadt Lattice Challenge show the best LWE and SVP results are being achieved

by sieving-based algorithms for lattice dimensions in the 102 order (LINDNER et al.,

2021).

Nowadays, lattice-based cryptography is said to address as many requirements as

the current cryptosystems do, and more, e.g., sophisticated applications featuring ho-

momorphic encryption (COMINETTI, 2019; ION et al., 2019). A survey on the appli-

cability of lattice theory to cryptography, previous to the NIST standardization process,

is available in (PEIKERT, 2016). Lattice-based cryptosystems hold high asymptotic

efficiency, and strong provable security, backed by the computational complexity na-

ture of lattice problems (PEIKERT, 2014). Their intrinsic computational complexity

offers worst-case to average-case reduction support, meaning that, theoretically, if a



61

given algorithm solves an average-case lattice problem, than it is possible to have that

same algorithm solve a worst-case lattice problem. That may seem contradictory from

an attacker perspective but it is a necessity for legitimate parts involved in a secured

communication. They need attackers to see their communication data as a worst-case

problem only, and, as legitimate parts have their supposedly worst-case cryptosystem

modeled after an average-case problem, once these parts hold proper secrets, they man-

age to communicate securely, solving polynomial-time problems.

2.5.1 Schemes family: LWE

LWE cryptography is built upon hard problems from lattice theory. The family

schemes derive from (AJTAI, 1996), whose asymptotic behavior is secure and rea-

sonably efficient. Downsides for the lattice-based LWE approach include efficiency

bottlenecks where DGS is present, and overly-sized keys and ciphertexts (PEIKERT;

PEPIN, 2019).

A generic Ring-LWE or RLWE scheme is an LWE scheme built upon poly-

nomial rings (LYUBASHEVSKY; PEIKERT; REGEV, 2013b; LYUBASHEVSKY;

PEIKERT; REGEV, 2013a). Most RLWE cryptosystems make use of a discrete Gaus-

sian sampling primitive to generate pseudo-random values, which by its turn can be

modeled via many different sampling strategies. In the scope of this work, those val-

ues form an artificial noise vector supporting a considerable number of RLWE keys.

So far, RLWE DGS imposes costly computational issues.

The CRYSTALS-Dilithium scheme or simply Dilithium is a module learning with

errors (module-LWE) and module short integer solution (module-SIS) digital signa-

ture scheme, which samples from uniform distributions in order to improve its effi-

ciency (BAI et al., 2021). By the end of the third round in the NIST post-quantum
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cryptography process, Dilithium was selected for standardization, being a primary rec-

ommendation for digital signature purposes (CSRC, 2019; ALAGIC et al., 2022).

The CRYSTALS-Kyber scheme or simply Kyber is a module-LWE key encapsula-

tion or key exchange scheme, which samples from binomial and uniform distributions,

in order to improve its efficiency (AVANZI et al., 2021). By the end of the third round

in the NIST post-quantum cryptography process, Kyber was selected for standardiza-

tion, being a primary recommendation for key-establishment purposes (CSRC, 2019;

ALAGIC et al., 2022).

The NewHope scheme claims to be an RLWE-based replacement for RSA and

ECC, addressing key-exchange purposes. It implements no DGS but a centered bino-

mial distribution, in order to improve its efficiency. Authors argue DGS has a marginal

impact in their scheme, being crucial only to signature and trapdoor schemes. It was

a candidate for the NIST post-quantum cryptography standardization process, having

been excluded by the beginning the third round of the competition (CSRC, 2019; PÖP-

PELMAN et al., 2019).

The qTESLA scheme is an RLWE-based digital signature scheme. It enforces

DGS after a CDT strategy, for key-generation purposes only. Other than that, it uses a

uniform distribution after a rejection strategy. qTESLA has been submitted to the NIST

post-quantum cryptography standardization process, and as the NewHope scheme, it

was excluded by the beginning of the third round of the competition (CSRC, 2019;

ALKIM et al., 2019).

The FrodoKEM scheme is a plain LWE-based key encapsulation or key exchange

scheme, whose DGS is modeled via CDT. Its implementation is isochronous. It lived

up to the third round of the NIST post-quantum cryptography standardization process,
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when it failed in being selected for standardization (CSRC, 2019; ALKIM et al., 2020).

2.5.2 Schemes family: NTRU

Originally, the NTRU term referred to a single lattice-based cryptographic scheme,

which was patented in 1996. The anticipated expiration for the NTRU patent occurred

in 2017 (HOFFSTEIN; PIPHER; SILVERMAN, 1998; HOFFSTEIN; PIPHER; SIL-

VERMAN, 2000; HOFFSTEIN; PIPHER; SILVERMAN, 2020). As the patent ex-

pired, cryptologic research started to benefit from it, and variant works were published.

Today, NTRU-based schemes covers a variety of requirements, from key encapsula-

tion (HÜLSING et al., 2017) to digital signatures (HOWE et al., 2019).

The Falcon scheme is based on SIS over NTRU, and it specifies a trapdoor sam-

pling strategy. Such strategy relies on isochronous DGS routines, which are mod-

eled via CDT and rejection sampling (FOUQUE et al., 2020). It covers digital sig-

nature requirements, making use of floating-point operations for key generation and

signing. Falcon inspired ulterior schemes like MITAKA and Hawk, the latter differ-

ing from its inspiration by refraining from floating-point operations (ESPITAU et al.,

2021; DUCAS et al., 2022). By the end of the third round in the NIST post-quantum

cryptography process, Falcon was selected for standardization (CSRC, 2019).

2.5.3 Independent discrete Gaussian samplers

This section presents standalone samplers which are independent of schemes, as it

is the case of DiGS itself.

The FACCT sampler is a general-purpose lattice-based discrete Gaussian sam-

pler (ZHAO; STEINFELD; SAKZAD, 2020). Its sampling strategy is binary, ex-

plained in Section 2.3.3.2, and it can be integrated in both LWE-based and NTRU-
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based schemes.

2.6 Side-channel attacks

In a broad sense, a side-channel attack is a real-world threat to cryptographic con-

structions, meaning it targets cryptographic implementations. It exploits hardware and

software, in order to unduly access sensitive information which otherwise would hardly

be available. For example, an attack can be performed by means of probing a given

CPU output, and analyzing its signal with an oscilloscope, in order to detect differ-

ences and patterns in electric signals. Risks associated to simultaneous multithreading,

which is a CPU parallelization facility, constitute a notable case (LOU et al., 2021).

Alternatively to the CPU, it is also possible to use exploitation vectors like the main

memory, and even the network (BRUMLEY; BONEH, 2003).

2.6.1 Mitigation of timing side-channel attacks

There is a specific type of side-channel attack, known as timing, which might

use signal analysis to measure times in runtime. Negligent RLWE implementations

expose their samples to timing attacks. Mitigation measures to timing and other side-

channel attacks can be implemented in application, operating system, and hardware

levels. As an LWE-based proposal, this work addresses timing-attack risks through

vulnerability-reduction measures in the application level, implementing isochrony in

parts of its construction (ORTIZ, 2016; REPARAZ; BALASCH; VERBAUWHEDE,

2016).

A regular DGS implementation may be susceptible to timing side-channel attacks.

Thus it is necessary to build the primitive in a way to mitigate timing risks in vulner-

able routines. Achieving that is possible either through isochrony and random time

insertion (ORTIZ, 2016). Isochrony in coding can be described as a design pattern
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which imposes an invariant execution time to a given routine. Random time insertion

on the other hand adds random execution time values to vulnerable routines. DiGS,

the sampler presented in this work, implements isochrony, following works that ac-

complish positive DGS results using invariant time routines (REPARAZ; BALASCH;

VERBAUWHEDE, 2016; ORTIZ, 2016; KARMAKAR et al., 2018; ALKIM et al.,

2019; HOWE et al., 2019; ALKIM et al., 2020).

2.7 Summary for general concepts

The general concepts chapter covers the algebra topics polynomial rings and lattice

theory. It then presents the RLWE problem.

Next, the probability subject is covered in its distribution, sampling and CLT. The

statistical metrics used are then presented.

In order to support the Fast Walsh–Hadamard Transform, a brief Discrete Fourier

transform section is present.

Finally, the chapter presents recent lattice-based cryptography works, and relates

them to the one presented herein. Table 2 summarizes key characteristics of the lattice-

based cryptographic samplers previously presented.

Table 2: Comparison among works on lattice-based cryptography samplers.

sampler primitive lattice assumption distribution

DiGS (ours) digital signature RLWE Gaussian
Dilithium (BAI et al., 2021) digital signature module-LWE uniform
FACCT (ZHAO; STEINFELD; SAKZAD, 2020) generic generic Gaussian
Falcon (FOUQUE et al., 2020) digital signature SIS over NTRU Gaussian
FrodoKEM (ALKIM et al., 2020) key exchange LWE Gaussian
Kyber (AVANZI et al., 2021) key exchange module-LWE uniform
NewHope (PÖPPELMAN et al., 2019) key exchange RLWE binomial
qTESLA (ALKIM et al., 2019) digital signature RLWE Gaussian and uniform

Source: author (2023).

In Table 2, grayed rows denote standalone samplers whereas regular white rows
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denote embedded samplers. Italicized text in column sampler indicates participation

in NIST post-quantum cryptography standardization process.
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3 EFFICIENT AND SECURE FWHT GAUSSIAN
SAMPLER

This chapter presents the construction of an efficient and secure discrete Gaussian

sampler as a primitive for digital signing in RLWE-based cryptosystems.

Efficiency gains are pursued through the CLT convergence acceleration, and also

through FWHT shuffling. Security is addressed as a vulnerability mitigation to timing

side-channel attacks, which is built upon algorithmic isochrony (REPARAZ; BAL-

ASCH; VERBAUWHEDE, 2016; MICCIANCIO; WALTER, 2018; HOWE et al.,

2019; WANG; LING, 2019).

A generic CDT-based Gaussian sampler is also constructed for comparison pur-

poses, following Section 2.3.3.3.

Building of approximate Gaussians is achieved by means of sampling algebraic

Gaussian distributions, instead of uniform distributions, meaning a biased procedure

is enforced. This is also the phase of CLT convergence, which consists in getting to

a probability distribution fitting in reduced time. The number of sampling iterations

are reduced by a precision acceptability criteria, which estimates tolerance values for

differences between the mean of the polynomial roots and the roots of the algebraic

polynomial (BHARUCHA-REID; SAMBANDHAM, 1986), offering opportunities for

routines to be terminated prematurely, still being effective. The FWHT is then used for

shuffling, as shown in 2.4.1.3. Sampling is always performed in a fixed regime, i.e.,

Gaussian parameter values do not change during a sampling session.
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Metrics regarding efficiency and approximation quality are used. The term first-

level comparison denotes a comparison between a PDF and its resulting PMF, for a

given sampling strategy, and the term second-level comparison denotes a comparison

between results of distinct sampling strategies.

Regarding the structure of this chapter, the first section introduces the many vari-

ables dealt with herein. Then, section 3.2 details the FWHT-based random number

generator, Section 3.2.1 presents mathematical formalization, and Section 3.3 presents

implementation details for computer routines. In 2.4.1.3, pseudocode and diagrams,

related to the implemented routines, are presented.

3.1 Variables

Variables may have anN index if they relate to the algebraic normal distribution

PDF, or aD index if they relate to the approximate Gaussian PMF. Additionally, the

following presentation of variables divides them in two groups, input and output, all of

them are presented in the following sections. Values of input variables are supposed to

be secret.

Input variable: σN 2 denotes the variance for a Gaussian PDF. Its square root is

the standard deviationσ, which is used to determine where to bound the PDF, for prac-

tical purposes. Standard deviation is directly proportional to the Gaussian parameter

S , as presented by Equation 3.1:

σ =
S
√

2π
(3.1)

Many works present the normal distribution standard deviation or variance as rel-

evant parameters for discrete Gaussian sampling (DWARAKANATH; GALBRAITH,
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2014; FOLLÁTH, 2014).

Input variable: τN is the tail-cut factor. It is not often used for simple Gaussian

descriptions, but it constitutes an artificial resource for bound manipulation.

Input variable: β is a scalar, β ∈ N∗, created to comply with dimension require-

ments of Hadamard matrices. The variable influences all of the sampling routines,

both on PDF and PMF functions. This is because the FWHT-based sampling strategy

demands a 2β number of positions on its input vector. See Section 2.4.1.3 for further

details on the transform. As a consequence, not only does the β exponent dictate the

number of stages in the FWHT algorithm presented by this work, but it also determines

a 2β order square matrix, the full-rank lattice dimension to work with, and the number

of keys to be supported. In practical terms, β influences the sample size, that is, the

number of observations in each sample, and it also influences the number of samples

itself. Thus, a β value of 8 produces a sample size and a number of samples of 256.

Regarding the sample size, denoted in this work as s, each observation corresponds to

one polynomial coefficient, that is, a sample size of 256 implies a polynomial of de-

gree 255 with 256 coefficients. As for the number of samples, each sample represents

a polynomial, so 256 samples stand for 256 polynomials.

Output variable: σD denotes the standard deviation for the Gaussian PMF. The

formula used is presented in Equation 3.2.

σD =

√√√
1
2β

2β∑
i=1

(Di − µD)2 (3.2)

Output variable: µD denotes the mean of a normal distribution PMF.
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Equation 3.3 calculates the mean for 2β samples.

µD, 2β =

∑2β
i=1 Di

2β
(3.3)

Output variable: s lowercase s is the even 2β sample size to be used both by

PDF and PMF sampling routines, and it also represents a security parameter of the

RLWE problem (LYUBASHEVSKY; PEIKERT; REGEV, 2013b). The sample size is

the number of observations in each sample, and, in this work, that also means the num-

ber of coefficients in each RLWE polynomial. Bigger values are expected to reduce

tails, and make statistical distance smaller between algebraic PDF and approximated

PMF (DWARAKANATH; GALBRAITH, 2014).

Output variable: skewnessD denotes quality. An approximated normal distri-

bution PMF whose skewness value is closer to zero indicate a more likely bell-shaped

function. The already adapted formula used here is presented in Equation 3.4.

skewnessD =
∑2β

i=1(Di − µD)3 PMF[(Di − µD)3]
σD3

(3.4)

Output variable: kurtosisD as skewnessD, the kurtosisD variable stands as

a measure of quality. Higher values of kurtosis indicate lower-quality PMF approxi-

mation. The formula used is presented by Equation 3.5.

kurtosisD =
∑2β

i=1(Di − µD)4 PMF[(Di − µD)4]
σD4

(3.5)



71

Output variable: CPUcyclesN portrays an efficiency metric, reporting the

number of CPU cycles spent until CLT convergence. Typically, it can be calculated

by a formula like that of Equation 3.6.

CPUcycles = f requency · time (3.6)

In Equation 3.6, f requency represents a CPU clock frequency, given in hertz

(Hz), and time represents the time spent in a computer routine, given in seconds (s).

Output variable: CPUcyclesD portrays an efficiency metric, reporting the

number of CPU cycles spent in the production of a noise vector. As it is the case

for CPUcyclesN , CPUcyclesD can be calculated by a formula like that of Equa-

tion 3.6.

Output variable: CPUcyclestotal portrays an efficiency metric, corresponding

to the total CPU cycles, from the moment routines start trying to achieve CLT conver-

gence until the production of a noise vector, that is

CPU cyclestotal = CPU cyclesN +CPU cyclesD. (3.7)

Output variable: entropy is also known as the Shannon entropy. For the pur-

poses of this work, higher values of this variable are desirable, as they offer more

randomness. Given in bits, the maximum entropy value possible for a 2β sample size

is described by Equation 3.8.
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entropy ≤ log2 2β (3.8)

Equation 3.8 shows that, for the purposes of this work, the maximum entropy

possible is less than or equal to β bits.

Output variable: DKL is the relative entropy, measured in bits. Values closer to

zero are desirable in this work, as they stand for PMF functions better representing the

original PDF function. Equation 3.9 describes how the relative entropy is computed

from a continuous-case distribution to a discrete-case one.

DKL(D||N) =
2β∑
i=1

log(
Di

Ni
) (3.9)

3.2 Sampler modeling

Theoretical modeling background for the FWHT-based DGS sampler is presented

in this section.

The FWHT routine presented in Algorithm 3.1 is a contribution of this work. It is

supposed to be provided with argumentative values for the following parameters: the

exponent β, the σN standard deviation for the Gaussian PDF, the τN tail-cut factor,

and the option sampling algorithm. As for the algorithm variables, ℓ is expected

to store the number of cycles on a given stage. Variable ℓl is expected to store the

current cycle length, that is, the number of vector positions the current cycle takes.

Variable ℓlh is expected to store half the cycle length, and it also helps didactically

in the pseudocode, emphasizing the idea cycles always have two equal-sized chunks,

one for addition operations and other for subtraction operations. Variable v is a 2β-
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sized vector, which firstly stores an η initialization vector, produced by the sample()

function, and the PDF sampling strategy to be performed by this function is arbitrated

by the option parameter. Variable vaux serves the purpose of preserving the value

stored in vector position ℓauxℓl + ℓlaux before it is altered. Variables βaux, ℓaux, and

ℓlaux help in counting and controlling the number of iterations in each of the three loop

structures. Variable ℓp is expected to store a relative position in vector v, always in

the first chunk of the current cycle, computed as ℓauxℓl + ℓlaux.
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Algorithm 3.1 An FWHT isochronous construction.

1: algorithm fwht_non_recursive (β: natural, σN : real, τN : real, option: natural)

2: ℓ: natural; // Number of cycles on a given stage.

3: ℓl: natural; // Current cycle length.

4: ℓlh: natural; // Half the cycle length.

5: ℓp: natural; // Position in the first chunk of the current cycle.

6: v[2β], vaux: integer;

7: βaux, ℓaux, ℓlaux: natural;

8:

9: v ← sample(β, σN , τN , option);

10: ℓ ← 1;

11: ℓl ← 2β;
12:

13: for (βaux from 0 to β − 1, step 1)
14: ℓ ← ℓ · 2βaux ;

15: ℓl ← ℓl/2βaux ;

16: ℓlh ← ℓl/2;

17: for (ℓaux from 0 to ℓ, step 1)
18: for (ℓlaux from 0 to ℓlh − 1, step 1)
19: ℓp ← ℓauxℓl + ℓlaux;

20: vaux ← v[ℓp];

21: v[ℓp] ← vaux + v[ℓp + ℓlh];

22: v[ℓp + ℓlh]← vaux − v[ℓp + ℓlh];

23: end for

24: end for

25: end for

26:

27: return v;

28: end algorithm

Source: author (2022).

Algorithm 3.1 presents a non-recursive isochronous FWHT construction, using

imperfectly-nested loop nests (KODUKULA; PINGALI, 1996), with the purpose of

mitigating timing vulnerabilities. Vector v has its content successively overwritten
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throughout the iterated β stages, and it is also returned with the g(ω) final stage cal-

culation result.

The first loop structure iterates β times, corresponding to the number of stages.

The second loop structure iterates on the number of cycles of the current stage. In the

first stage, there is only one cycle. Then, in the second stage, there are two cycles,

and that value keeps being doubled at each new stage. The third and last loop is based

on the length of the current cycle, but it iterates upon only half that value. In the first

stage, the cycle length equals 2β. In the second stage, the cycle length becomes 2β−1.

Then 2β−2 in the third stage, and the exponent keeps being decremented by one at each

new stage, until it reaches the value of one, meaning the last stage has cycles with

2 elements. Thus, as the number of cycles double, the number of elements in each

cycle decreases in an exponential rate. Using only half the cycle length for iteration is

due to the FWHT always breaking a cycle length into two equal-sized chunks. In this

work, a chunk corresponds to half the length of a cycle. For each chunk element, there

is a sign attribution, followed by an addition or a subtraction operation, respectively

represented by lines 21 and 22 of Algorithm 3.1. Line 21 represents the first of the two

chunks, so its first position corresponds to the first position of the current cycle, which

is determined by ℓp. In the first chunk, vector elements are given plus signs, and then

each of those elements is used in two operations, the first operation occurring in the

first chunk itself, and the second operation occurring in the second chunk. Line 22

represents the second of the two chunks, so its first position corresponds to the middle

of the current cycle, which is determined by ℓp + ℓlh. In the second chunk, vector

elements are given plus signs for operations in the first chunk, and minus signs for

operations in the second chunk itself.

Lastly, v is returned as the g(ω) transform output. It has the same 2β length of the

η input, and its content is a set of integer coefficients for a polynomial. Those integer

values may be turned into binaries if necessary. Possible options to generate the η
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input, and to convert the FFT output, are discussed in Chapter 5.

In the example represented by Figure 9 and Figure 10, didacticism is addressed,

and many one-valued positions are used in the η vector. However, for the sampling rou-

tine of this work, there is a single non-zero value in the referred IV, all other positions

being occupied by zeros. The η initialization vector is obtained from a preliminary

Gaussian sampling observation. Thus, still considering the β = 4 example, the re-

ferred sampling is performed in the positive portion of a N(0, σ2) truncated PDF,

whose domain is divided into 16 equally-sized intervals, as that of Figure 11. Each

interval corresponds to one η vector position.

Figure 11: The possible intervals to be observed for β = 4.
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Source: author (2021).

In this work, the µ mean assumes a value of zero, and the positive bound, τσ.

Thus, a sampling like that of Figure 11 uses a (0, τσ] domain, and observed values

assume alternating signs minus and plus. Thus, in practice, half the number of intervals

is used, as in Figure 12, and the alternating signs simulate a (−τσ, τσ] domain. As

an exception is forced in the negative bound, the first sign is chosen to be minus.

In Figure 12, intervals corresponding to positions [00], [01], [02], [03], [04], [05],

[06], and [07] are not shown because they stand in the negative side of the curve. A

negative [08] corresponds to [07], a negative [09] corresponds to [06], a negative [10]

corresponds to [05], a negative [11] corresponds to [04], a negative [12] corresponds

to [03], a negative [13] corresponds to [02], a negative [14] corresponds to [01], and a
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Figure 12: The intervals to be observed for β = 4.
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Source: author (2021).

negative [15] corresponds to [00].

Previously to observations, the vector is filled with zeros. Then, after having one

of its positions occupied by 1, such position corresponding to the observed interval, η

is subjected to the FWHT, in order to generate a g(ω) transform representation.

For the purpose of obtaining initial standard deviation values to start modeling

DGS, (ALBRECHT et al., 2018; ALBRECHT et al., 2019) are used. Results, pre-

sented in Table 3, are picked for available schemes in the interest of this work, which

are Falcon, FrodoKEM, and qTESLA. They all make use of isochronous and discrete

Gaussian sampling. The primal attack is used as a filter because its results are available

for both LWE and NTRU lattice assumptions, the referred attack being a solver vari-

ant for Shortest Vector Problem (SVP) lattice problems. Column security represents

the security level, β is the exponent for the number of samples, and σ is the standard

deviation.

Table 3: Comparison of NIST lattice-based candidates.

scheme security (bits) β σ

Falcon 103 512 4.05
FrodoKEM 150 976 2.30
qTESLA 128 1024 8.49

Source: author (2021).

Although the Falcon signing scheme is built upon NTRU lattice assumptions, the
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works (ALBRECHT et al., 2018; ALBRECHT et al., 2019) test it with LWE premises.

Thus, it should be pointed out that the first row in Table 3 refers to numbers from those

LWE-adapted Falcon tests.

Variance of the PDF: initialσN value is 4.9467, obtained by computing the mean

for the three σ values present in Table 3. Thus, initial variance is 4.9467 2, that is,

24.4695.

Mean of the PDF: PDF functions in this work are constantly centered in zero,

meaning their mean value, µN , is fixed to zero.

Bounds of the PDF: as explained in Section 2.3.1.1, the PDF functions of this work

are truncated in the interval [−τNσN , τNσN]. Regarding the PDF tail-cut factor τN ,

in (KARMAKAR et al., 2018), authors propose values of τN between six and twelve,

and in (ZHAO; STEINFELD; SAKZAD, 2020), tail-cut factor values are said to be

between ten and twelve. Here, initial value for the input variable τN is ten.

Security level: the discrete Gaussian sampler presented by this work enforces a

128-bit security level, meaning PMF functions should offer 2128 possible values in

their considered intervals. PMF bounds and output variable σD should produce val-

ues to comply with such level. Considering the integers necessary to offer 128-bit

resolution, if PMF is centered in zero, a (−2127, 2127] domain interval supports such

resolution. Also, the referred security level implies in a 128-bit valued seed.

Number of samples, and sample size: the sampler assumes a full-rank lattice,

which means the number of samples is equal to the number of observations inside each

sample. A square matrix is to be built, and its order should meet Hadamard matrices

requirements, meaning both the number of samples, and the sample size, are computed
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as 2β, and β initial value is one. That same value determines the size of the e error

vector, and ultimately, the number of RLWE keys covered. Preliminary tests indicate

feasibility of computation for β values up to twenty.

3.2.1 Mathematical formalization

This section uses the RLWE problem presented in 2.2. For the efficiency purpose

of this work, only one random variable needs to be formed by sampling. Others can be

derived from the first (RADER, 1969). This strategy could be applied to key generation

but in this case, we are generating noise.

Initially, concerning the statistical model, it consists in a bounded normal probabil-

ity distribution with zero mean, which is enforced as the sampling source. The relation

between lattice-based cryptosystems and sampling from truncated normal distribution

PDF functions is close enough to make works like the estimator of (ALBRECHT et al.,

2018) assume every error vector distribution to be a discrete normal, even if they are

normal or binomial distributions. Since the FWHT is used, there is a requirement for a

2β sample vector size, β ∈ N. As for context, we consider such vector as an element

of a 2β -dimension lattice, thus we also need 2β samples or polynomials, constituting

a polynomial ring. Also, a 2β lattice dimension means polynomials having a degree of

2β − 1 .

The data structure into which samples are stored is a square matrix A of order 2β,

and its inverse is later denoted as A−1.

From the e error vector in Equation 2.8, which is supposed to harden the system

solution, it is possible to write the matrix inequation in 3.10:



80



x2β−1

x2β−2

...

x2

x

1


+



e1 1

e2 1

...

e2β−2 1

e2β−1 1

e2β 1


,



c1 1 c1 2 . . . c1 2β−2 c1 2β−1 c1 2β

c2 1 c2 2 . . . c2 2β−2 c2 2β−1 c2 2β

...
...

. . .
...

...
...

c2β−2 1 c2β−2 2 . . . c2β−2 2β−2 c2β−2 2β−1 c2β−2 2β

c2β−1 1 c2β−1 2 . . . c2β−1 2β−2 c2β−1 2β−1 c2β−1 2β

c2β 1 c2β 2 . . . c2β 2β−2 c2β 2β−1 c2β 2β


×



−a1 2β

−a2 2β

...

−a2β−2 2β

−a2β−1 2β

−a2β 2β


.

(3.10)

The discrete Gaussian sampler presented herein generates the e vector from a trun-

cated normal distribution.

For the main tests, values of β varies from 0 to 23, meaning that in the context of

this work, the maximum number of polynomials to deal with in a system like 2.4, is

223.

3.3 Specification and implementation of computer rou-
tines

This section presents implementation information for DiGS, which is an interactive

computer routine, having evolved from a SageMath script to a Python 3 script, and

also to a C language program, which is depicted by the flowchart in Figure 13. The

C programming language standard used is C99. Even though the standard has been

replaced, it is almost fully supported by the GNU Compiler Collection (GCC), which

in turn is the software chosen for compilation (Technical Committee: ISO/IEC JTC

1/SC 22, 1999; GCC Team, 2023).

Its inputs are algebraic Gaussian probability distributions, and outputs are intended

to be approximate Gaussian probability distributions. The referred script was initially

ported to the Python language, and the concept was verified as consistent. Then it was
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Figure 13: DiGS routine flowchart.
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Source: author (2023).
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rewritten in the C language, with improvements. The program builds discrete Gaus-

sian sampling primitives following two distinct strategies, namely CDT, and FWHT

shuffling.

Input variable values, e.g., those listed under Section 3.1, may be provided in

runtime. However, the code offers default values, for quick exemplifying.

Efficiency remarks: regarding the FWHT, improvements are built upon avoidance

of floating-point computations, restricting operations to sums and subtractions only.

Isochrony remarks: isochrony is implemented with an invariant number of steps

during shuffling iterations in computing routines.

Sampling remarks: the coefficient matrix is implemented as a simple C array data

structure with pointers because it is generally considered faster for regular comput-

ers (SUMMIT, 2019). FWHT construction in DiGS receives a 2β-sized array of point-

ers, pointing to binary values, as input. Variable β is described in 3.1. Assuming initial

parameter values set, the routine is described next, respecting the steps in Section 1.5.

Samples are generated and then processed, as described in Section 1.5.1. Firstly, his-

tograms are built, and then, interpolated Gaussian-like PMF functions too. A simple

example of that process is present in A.2. For quality assurance of CDT and FWHT

strategies, the PDF used in the last step is compared to each of the produced PMF

functions, using the statistical metrics presented in Section 3.1. The first comparison

round is referred to in this work as a first-level comparison. It embraces a comparison

between the original PDF and the computed CDT PMF, and a comparison between

the original PDF and the computed FWHT PMF. Results considered as unacceptable

force the whole dataset to be discarded, and the process start over. In that case, one

or more of the initial values defined in the prototyping step of Section 1.5.1 may be

changed, until acceptable statistical values are obtained. Once acceptable statistical
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results are achieved, the two distinct PMF functions are available for sampling. Then,

CDT sampling is performed on the CDT PMF, and FWHT sampling is performed on

the FWHT PMF. Results are compared, and that is referred to in this work as the

second-level comparison. If no FWHT efficiency advantage nuance is present, former

steps are reviewed, and variations might be tested, e.g., different initial values. Finally,

the data persistence takes place.

DiGS FWHT routine outputs another array of pointers, with the same length of the

one received as input, but this time pointing to integers. DiGS grabs the FWHT output,

and in order to produce its binary noise vector, it turns even numbers in zeroes, and

odd numbers in ones. Then, FWHT input and output are then destroyed for security.

Yet, there is an additional remark regarding g(ω), for the conversion of its contents

to zeros and ones. According to (MARINGER; FRITZMANN; SEPÚLVEDA, 2019),

β influences stochastic dependence of LWE cryptosystems in a directly proportional

manner, that is, for the purposes of this work, bigger values of β would tend to reduce

randomness. Indeed, it is observed that bigger β values in the FWHT DGS make parity

predictability grow on the output vector. Its numbers tend to be even. That does not

impose a problem to DiGS because its binary vector of noise is built upon k, k ∈ Z,

which by its turn form all even numbers, as 2k.

Execution remarks: in order to run it on a Linux operating system command line

interface, considering one is already on the directory containing the executable file,

then in a regular bash shell, DiGS should be manually invoked as:

$ ./digs

3.3.1 Calculation precision

In regular computer routines, calculation precision is limited by the largest number

registers can hold. That is sometimes called fixed-size arithmetic. DiGS routines deal
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with numbers bigger than those supported by regular registers. So it would be affected

by the aforementioned limitation. Two options of library categories were considered

to circumvent such issue:

i) arbitrary-precision arithmetic

sometimes called multiple-precision arithmetic, as opposed to fixed-size arith-

metic, arbitrary-precision arithmetic libraries work with floating-point numbers;

and

ii) symbolic computation

this category of library do not work with floating-point numbers, but symbols.

In the Python proof-of-concept (PoC) phase, the following libraries were consid-

ered:

• decimal

Python-native library;

• gmpy

Python version of the GNU Multiple Precision Arithmetic Library (GMP) pro-

gram; and

• mpmath

Python-native library, which was the choice during the Python development

phase, for providing an easy interface to work with gmpy. The mpmath library

can be found alone or bundled in the larger SymPy library (JOHANSSON et al.,

2013).

Afterwards, in the C development phase, the following arbitrary-precision arith-

metic libraries were considered:
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• GNU Multiple Precision Arithmetic Library (GMP)

the choice for this work is a portable library written in C, and it works with

integers, rational numbers, and floating-point numbers;

• libgcrypt

a cryptology library which has its arbitrary-precision arithmetic routines as a

fork of an old GMP release; as a part of the GnuPG project, it is adapted to suit

its main project requirements; and

• RELIC

a library for working with integers (ARANHA; GOUVÊA, 2020).

3.4 Summary for efficient FWHT Gaussian sampler

Development of an efficient Gaussian sampler, and a method to measure it, are

present in the current chapter. It details how to improve DGS, and the full set of

variables used to achieve it. Mathematical background is also provided, as well as the

computer routines specifications.
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4 TESTS AND RESULTS

Results for the discrete Gaussian sampling tests with computer routine software

implementations are presented in this chapter. The tests are executed with the cumula-

tive distribution table strategy, and with the fast Walsh–Hadamard transform strategy.

Initial setting for both samplers is described in Section 3.2, and the CDT itself is pre-

sented in A.3. The referred routines compute the metrics specified in Section 2.3.5.

Testing sequence is detailed as enumerated steps in Section 1.5. The continuous-case

algebraic normal probability distribution used isN(0, 14.71025358).

Table 4 presents the results for the CDT sampling strategy . For all of the listed β

values, skewness is zero and kurtosis is −2. Relative entropy values are truncated for

cleaner presentation.
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Table 4: Results for the cumulative distribution table strategy.

β s CPU cycles ×106 µD σD relative entropy

1 2 16.40 21.0 15.0 ∞

2 4 16.42 -1.5 4.5 ∞

3 8 16.40 9.0 19.0 ∞

4 16 14.35 7.0 12.0 0.346

5 32 14.35 4.0 17.0 0.415

6 64 13.32 11.0 10.0 0.485

7 128 12.81 -9.0 17.0 0.346

8 256 12.82 -8.0 10.0 0.462

9 512 13.95 -1.0 12.0 0.356

10 1024 13.72 -13.5 2.5 0.373

11 2048 13.49 -13.0 8.0 0.360

12 4096 13.41 -4.5 10.5 0.353

13 8192 13.60 -1.0 10.0 0.366

14 16384 13.31 -22.0 1.0 0.360

15 32768 13.33 4.0 26.0 0.355

16 65536 14.35 -2.0 2.0 0.359

17 131072 14.13 -3.5 23.5 0.363

18 262144 14.34 -12.5 7.5 0.359

19 524288 14.20 3.5 2.5 0.359

20 1048576 14.19 -17.0 15.0 0.360

Source: author (2021).

Table 5 presents the results for the FWHT sampling strategy . For all of the listed β

values, the obtained µ′ is zero. The same applies to skewness values. Relative entropy

values are truncated for cleaner presentation.
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Table 5: Results for the fast Walsh–Hadamard transform strategy.

β s CPU cycles ×103 σD kurtosis relative entropy

4 16 0.00 18 -2 0.277

5 32 0.00 17 -2 0.207

6 64 0.00 11 -2 0.306

7 128 0.00 10 -2 0.346

8 256 128.10 2 -2 0.346

9 512 64.05 12 -2 0.306

10 1024 96.18 2 -2 0.301

11 2048 96.18 2 -2 0.333

12 4096 104.16 14 -2 0.332

13 8192 110.67 12 -2 0.325

14 16384 124.11 10 -2 0.316

15 32768 114.24 10 -2 0.320

16 65536 111.72 6 -2 0.319

17 131072 111.51 15 -2 0.320

18 262144 109.83 8 -2 0.317

19 524288 111.72 0 -3 0.318

20 1048576 109.20 18 -2 0.317

21 2097152 108.57 7 -2 0.317

22 4194304 107.73 2 -2 0.318

23 8388608 108.36 12 -2 0.318

Source: author (2021).

A histogram plot corresponding to FWHT tests is present in Figure 14.



89

Figure 14: Histogram of observations for the fast Walsh–Hadamard transform sam-
pling strategy.

Source: author (2021).

4.1 Summary for tests and results

In this chapter, quantitative content is presented in an organized manner. Table 6

presents some of the results, combining both strategies side by side, for comparison

convenience. In this comparison, the β discrete domain used starts in 4 because lower

values produce unwanted relative entropy. Then it ends in β = 20 because bigger

values proved to be computationally costly regarding the CDT strategy, given the con-

text of this work. Values are subjected to approximations, in order to make a cleaner

presentation.

Discussion about Table 6 is present in Chapter 5, and complete tables are present
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Table 6: Comparison of results.

σD CPU cyclesN relative entropy

β CDT FWHT CDT ×106 FWHT ×103 CDT FWHT

4 12.00 18.00 14.35 0.00 0.34 0.28
5 17.00 17.00 14.35 0.00 0.41 0.21
6 10.00 11.00 13.32 0.00 0.48 0.30
7 17.00 10.00 12.81 0.00 0.34 0.34
8 10.00 2.00 12.82 128.10 0.46 0.34
9 12.00 12.00 13.95 64.05 0.35 0.30

10 2.50 2.00 13.72 96.18 0.37 0.30
11 8.00 2.00 13.49 96.18 0.36 0.33
12 10.50 14.00 13.41 104.16 0.35 0.33
13 10.00 12.00 13.60 110.67 0.36 0.32
14 1.00 10.00 13.31 124.11 0.36 0.31
15 26.00 10.00 13.33 114.24 0.35 0.32
16 2.00 6.00 14.35 111.72 0.36 0.32
17 23.50 15.00 14.13 111.51 0.36 0.32
18 7.50 8.00 14.34 109.83 0.36 0.32
19 2.50 0.00 14.20 111.72 0.36 0.32
20 15.00 18.00 14.19 109.20 0.36 0.32

Source: author (2021).

in Appendix A.
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5 CONCLUSIONS

Like many other fields, cryptology is being pushed forward by quantum comput-

ing, and the efforts spent in this work represent a contribution to further advancements.

Schedule delays were caused by the COVID-19 pandemic consequences but the goal,

as described in 1.3, is successfully achieved. Preliminary results were presented in VIII

Workshop de Pós-Graduação em Engenharia de Computação, and published in the cor-

responding proceedings, in (JÚNIOR; JUNIOR, 2019). Final results were presented

in XXII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computa-

cionais, and published in the corresponding proceedings, in (JÚNIOR, 2022). As the

NIST process is still in course, fresh material related to lattice-based cryptography is

often published. Efforts are made in order to work with accurate and updated informa-

tion as much as possible.

As for the input parameters, the β exponent determines the most relevant aspects

of the sampler, from lattice dimension, and polynomial degrees, to CLT convergence

rate, the entropy of samples, and the key size to be supported. Additionally, in terms

of implementation, β is directly responsible for the CPU cycles spent. Modeling DGS

via the β parameter alone reveals itself as a challenge in searching for optimal values,

because higher values raise entropy, but they also lower efficiency. Thus, the β expo-

nent represents a trade-off involving efficiency and security. Natural values ranging

from zero (0) to twenty (20) are tested for both CDT and FWHT. Still, the values of

twenty one (21), twenty two (22) and twenty three (23) are tested for the FWHT case
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only. Given the context and setup of this work, those β exponent values prove to be

unfeasible for CDT.

The standard deviation σN of the PDF is an input value, which influences inflec-

tion points of the function. In cases of bounded domains, it is possible to affirm that

σN also influences the cardinality of the sample space. For the settings of this work,

the optimal standard deviation value of the PDF is σN = 14.71025358.

The tail-cut factor τN of the PDF was initially planned to be used as an input

parameter because, along with σN , it influences the cardinality of sample spaces.

However, acceptable efficiency results are obtained without it, thus, for the sake of

simplicity, this work chooses not to use it.

As for the outputs, feasible lattice dimensions of up to 223, that is, 8, 388, 608, are

covered herein. Regarding σD values, Table 6 shows that in most cases, the obtained

numbers are more than 10% above or below σN . That is not considered as a good

approximation result for this work.

Regarding the Kullback–Leibler divergence values, the fact that all measures are

closer to zero than they are to one denotes a reasonable approximation achievement.

Such values indicate PMFs resemble their respective PDFs.

Regarding the quality of the PMFs, there are the results for coefficient of skewness,

and kurtosis. All of the obtained coefficient of skewness values are zero, showing

maximum quality is achieved for that metric. Kurtosis is always −2 in all tests but

one, in which a value of −3 is obtained, corresponding to the FWHT test for β = 19.

Approaching zero from the left, with absolute values below 3 means the PMFs are

platykurtic, i.e., they are flatter than they should be.

As for the lattice-based approach, some conceptual coherence is perceived in its

cryptologic utility. This is due to the periodic structure of lattices adhering to generic



93

modulus specifications often used in cryptology. Regarding lattice dimensions, the

highest values solved, by the time of this work, are in the 102 order, but specifically for

LWE, the biggest dimensions solved do not reach the value of one hundred (LINDNER

et al., 2021). In this work, which is based on the LWE problem, sampling works with

lattice dimensions in the 106 order.

As for practical applications, this work specifies and implements a discrete Gaus-

sian sampler for lattice-based cryptosystems. Also, with a few adaptations, it can gen-

erate full sets of polynomial coefficients if needed, covering sets of up to 223 RLWE

keys. The sampler intends to be useful for RLWE-based digital signature schemes.

DiGS implementation is planned to be available as a C language library, e.g., the gen-

erated e error vector, presented in Equation 3.10, may be easily returned to cryptosys-

tems used in the context described.

5.1 Efficiency conclusions

DGS is considered expensive both in computational and memory terms, if com-

pared to, e.g., uniform sampling, which causes some works to reject the former or to

use it moderately, as seen in section 2.5. That is due to DGS extensive low-level eval-

uation of integrals or series through specialist algorithms. As a typical FFT algorithm,

the fast Walsh–Hadamard transform (FWHT) is O(n · log n). Such complexity holds

for the isochronous shuffling algorithm of this work, which is O(β · 2β), if expressed

through the β exponent.

As for alternative constructions, a feasible workaround to avoid isochronous con-

structions and keep implementations secure is to insert random delay times in timing-

vulnerable routines. That alternative may be worthwhile if the random delay time gen-

eration alternative takes less time than using the invariant routine. Greater delay values
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could be detected, which would jeopardize the referred workaround. Also, as it can be

seen in the diagram of Figure 9, parallelization may be an option, e.g., from the second

stage on, cycles belonging to the same stage do not depend on each other. Notwith-

standing, simultaneous multithreading may also increase susceptibility to side-channel

attacks.

As for the comparison between FWHT and CDT, regarding efficiency, firstly,

it is relevant to resume the algorithm complexities involved. Then, while CDT is

O(τN · σN), the FWHT shuffling routine is O(n · log n), or O(β · 2β) in terms

of the β parameter. Adoption of the CDT strategy as a reference is justified in 1.4,

and 1.5. CDT sampling complexity, being governed by τ, the tail-cut factor, and σ,

the standard deviation, depends on the size of the sampling interval. FWHT sampling

complexity is governed by the β exponent, responsible for the number of samples, the

lattice dimension, and other variables.

In the scope of this work, a more efficient algorithm is the one which takes less

central processing unit (CPU) cycles to securely complete the noise generation routine

for a given parameter setup. Considering the values of β in the interval 4 ≤ β ≤ 20,

and the further settings of this work, the results of efficiency for the FWHT strategy are

better than the CDT strategy results. The difference, measured in CPU cycles, tends to

be two orders of magnitude, in favor of the FWHT approach, as it is shown in Table 6.

As for the values of µD, which are supposed to follow the µN value of zero, that

is observed in all of the FWHT tests but is not observed in the CDT tests. This issue,

regarding the mean of the Gaussian, is consistent with the relative entropy results,

which are generally bigger for CDT tests. Thus, the relative entropy values show that

the PMF vector is closer to the algebraic function as the FWHT strategy is used. In the

tests performed, the only case of similar Kullback–Leibler values for CDT and FWHT

is β = 7. The values of µD following those of µD denote successful exploitation of
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the CLT. As seen in Section 2.3.4, the theorem converges as µD approaches µN .

Regarding memory, while the CDT strategy requires it for the table it works with,

the FWHT strategy does not.

5.2 Security conclusions

Firstly, it is relevant to discuss how the normal distribution of probability makes

sampling secure. Frequently observed in nature, normal distributions present higher

complexity and often lower randomness if compared to uniform distributions. If noth-

ing is known about a probability distribution, maximum entropy lies in the uniform

case. It would not be attractive to cryptographic ends, but if variance σ2 is specified,

which happens in this work, the Gaussian case happens to offer maximum entropy.

Such idea is present in Figure 5. Thus, two of the parameters used, β and σ2, influ-

ence Shannon entropy. Regarding resistance to attacks, if properly adjusted, the ran-

dom number generator presented here provides RLWE cryptosystems with adequate

Shannon entropy levels.

Standard deviation is expected to influence the security level of RLWE-based dis-

crete Gaussian samplers, and so it is verified with regards to the σN input variable,

introduced in Section 3.1. Note that σN is a dispersion metric, and for random num-

ber generation purposes, the bigger dispersion value assumes, the better for that matter.

As for resistance against timing attacks, a strengthening isochronous design is im-

plemented in parts of the code. Though, isochrony is not a binary characteristic, and it

demands cautious code study, e.g., a given conditional statement often represent a vul-

nerability to timing attacks, and in that case, an invariant execution time structure can

reduce the referred risk. But enforcing isochrony in the referred conditional statement

may also lead to severe efficiency damage.

By testing the isochronous timing-resistant FWHT-based DGS scheme in a soft-
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ware implementation running on a simple hardware setup, its feasibility is verified.

5.3 Downsides

Downsides of this work firstly evoke the fact that isochronous DGS constructions

are considered computationally costly in lattice-based cryptography. Also, it is rele-

vant to mention the established comparison presented here is built only upon suitable

dimensions for Hadamard matrices, that is, 2β. Finally, software tests of this work do

not reach high values of β.

5.4 Open questions

This section presents barriers future research is expected to overcome. In the scope

of this work, there are both general and specific points needing attention for continued

improvement.

Generally considering lattice-based cryptography there are relevant questions

that remain open, concerning the rationale of the present work. Sampling from discrete

normal distributions is one of those questions, regarding the low-level inner workings

of its supporting algorithms, which are based on computationally costly evaluations of

integrals and series. Additionally, in terms of key size, e.g., in bits, classical schemes

like the RSA system deal with smaller values. As sample sizes of this work are pro-

portional to key sizes, smaller keys could reduce sampling time.

Specifically considering the present work harder scrutiny can be conducted by

finding ways to obtain better numbers of σD. Also, cryptology cares about the in-

verse of functions, thus, it might be worthwhile to analyze the inverse of the FWHT.

Once it is considered as an FFT, a computational complexity of O(n log n) is ex-
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pected for both the FWHT and for its inverse. But given the many properties involved

in an FWHT, proper analyses should be conducted, in order to better understand if the

referred properties can affect the asymptotic behavior of its inverse.
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APPENDIX A -- TABLES AND
SUPPLEMENTARY
INFORMATION

The first section of this appendix presents a short description of the NIST stan-

dardization process for post-quantum cryptography. The following section presents a

simple discretization example for a normal probability distribution. Then, there is a

section showing the complete tables containing values of metrics, and Gaussian sam-

pling samples for both FWHT and CDT sampling strategies, as regarded in this work.

A.1 The NIST standardization process

The National Institute of Standards and Technology (NIST) is a federal agency

of the United States of America government. They have successfully conducted the

creation of notable cryptography standards such as the SHA family of hash functions,

and the AES block cipher (TERADA, 2008).

Since 2016, the NIST is officially conducting another standardization process.

This time they are working on post-quantum cryptographic schemes, which are ex-

pected to offer resistance against classical and quantum computing attacks. Supposed

to be concluded in the year of 2024, the current process evaluates schemes covering

primitives for digital signing, key exchange, and public-key encryption. Candidate

proposals should comply with up to five security levels, according to Table 7, and the

evaluation criteria is mainly based on security and performance. The standardization
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process is formatted as a competition, divided into a number of stages or rounds. An

open public call was initially announced by the NIST, and since then, interested parties

started submitting their candidate schemes, firstly for public scrutiny, and then for the

NIST evaluation itself (KIMBALL, 2016; CSRC, 2019; NIST, 2021; MOODY, 2022).

Table 7: The security levels.

Level Minimal hardness

I AES-128 against an exhaustive key search attack.

II SHA-256 against a collision search attack.

III AES-192 against an exhaustive key search attack.

IV SHA-384 against a collision search attack.

V AES-256 against an exhaustive key search attack.

Source: (MOODY, 2022).

In Table 7, the Level column presents the five possible security levels a given can-

didate scheme can address. Column Minimal hardness describes each security level. If

a given candidate scheme claims to offer a security level I parameter set, then by using

the referred parameter set, the scheme should be at least as hard to break as AES-128

against an exhaustive key search attack. A candidate scheme can support more than

one security levels, e.g., the already selected scheme know as CRYSTALS-Dilithium

supports levels II, III and V.

By the end of a given competition stage, some candidates are declared ineligible

for standardization, a few may be considered good enough, being early picked for

standardization, while other schemes qualify for the next stage. Three rounds were

initially planned but additional ones proved necessary (ALAGIC et al., 2022). In July

2023, NIST announced additional digital signature candidates to be considered in the

process (CSRC, 2023).

An independent annotated compendium on the standardization process evolution
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is available in (PERSICHETTI et al., 2021).

A.2 Discretization of a continuous Gaussian

This appendix section presents the basics for the practical process of turning a

continuous-case normal distribution probability density function into its discrete-case

counterpart. Bounds for the PDF are defined by the [-183, 183] interval limits. By

using the notation of Equation 2.9, a continuous-case algebraic Gaussian function

is N (0, 216.391560416985) is used. It denotes a σN standard deviation value of

14.7102535809885, and a µN mean value of zero. This test is executed with a Python

language routine, supported by the mpmath library (JOHANSSON et al., 2013). Ini-

tially, a seed value of 31415926536 is defined, and the routine randomly acquires 2,048

observation values from the bounded PDF, in order to form a sample. Table 8 presents

earlier results obtained with DiGS. An Obs. header title denotes the observation po-

sition in the sample vector, and a Val. header title denotes the value observed. Cor-

responding plots for the histogram, the approximate function made of line segments,

and the approximate normal PDF are presented next, in Figure 15. The approximate

Gaussian is loosely related to the algebraic one. It has a σD value of 1.33863166279,

and a µD mean value of -178.668457031 for which the maximum probability of 0.445

occurs. Nevertheless, for this work, it represents the beginning of successful Gaussian

fitting routines. The routine completes in 2.206545996669 · 109 CPU cycles, and

the entropy obtained for σD is 7.62459100595 bits.

Table 8: Python calibration-testing samples, using the mpmath library.

Obs. Val. Obs. Val. Obs. Val. Obs. Val. Obs. Val. Obs. Val. Obs. Val. Obs. Val.

0 -178 256 -183 512 -183 768 -181 1024 -178 1280 -179 1536 -179 1792 -180

1 -178 257 -177 513 -178 769 -181 1025 -181 1281 -178 1537 -177 1793 -178

2 -182 258 -181 514 -179 770 -179 1026 -179 1282 -180 1538 -180 1794 -179

3 -181 259 -183 515 -177 771 -178 1027 -178 1283 -178 1539 -180 1795 -179

4 -177 260 -181 516 -178 772 -180 1028 -179 1284 -178 1540 -179 1796 -181

5 -178 261 -180 517 -179 773 -180 1029 -178 1285 -183 1541 -179 1797 -181
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Table 8 continuation from previous page.

Obs. Val. Obs. Val. Obs. Val. Obs. Val. Obs. Val. Obs. Val. Obs. Val. Obs. Val.

6 -179 262 -178 518 -178 774 -179 1030 -178 1286 -178 1542 -183 1798 -177

7 -179 263 -181 519 -183 775 -180 1031 -182 1287 -179 1543 -179 1799 -181

8 -178 264 -179 520 -180 776 -178 1032 -178 1288 -178 1544 -177 1800 -179

9 -178 265 -178 521 -177 777 -178 1033 -178 1289 -181 1545 -178 1801 -178

10 -182 266 -178 522 -178 778 -181 1034 -179 1290 -179 1546 -179 1802 -180

11 -177 267 -178 523 -178 779 -178 1035 -182 1291 -179 1547 -178 1803 -183

12 -177 268 -179 524 -178 780 -178 1036 -180 1292 -180 1548 -178 1804 -178

13 -178 269 -180 525 -179 781 -179 1037 -179 1293 -178 1549 -178 1805 -179

14 -178 270 -180 526 -178 782 -179 1038 -178 1294 -180 1550 -180 1806 -181

15 -178 271 -178 527 -179 783 -178 1039 -178 1295 -178 1551 -179 1807 -178

16 -178 272 -178 528 -180 784 -177 1040 -179 1296 -183 1552 -180 1808 -179

17 -178 273 -182 529 -183 785 -178 1041 -178 1297 -179 1553 -180 1809 -178

18 -181 274 -177 530 -179 786 -178 1042 -178 1298 -178 1554 -178 1810 -180

19 -180 275 -179 531 -177 787 -183 1043 -181 1299 -179 1555 -178 1811 -180

20 -178 276 -178 532 -179 788 -177 1044 -179 1300 -178 1556 -179 1812 -178

21 -177 277 -178 533 -181 789 -178 1045 -178 1301 -178 1557 -177 1813 -179

22 -177 278 -177 534 -183 790 -178 1046 -178 1302 -179 1558 -178 1814 -178

23 -179 279 -178 535 -177 791 -179 1047 -179 1303 -178 1559 -179 1815 -180

24 -178 280 -179 536 -178 792 -178 1048 -180 1304 -179 1560 -178 1816 -181

25 -178 281 -177 537 -178 793 -178 1049 -180 1305 -178 1561 -178 1817 -178

26 -180 282 -179 538 -178 794 -178 1050 -178 1306 -178 1562 -177 1818 -180

27 -178 283 -181 539 -179 795 -177 1051 -180 1307 -179 1563 -178 1819 -177

28 -178 284 -177 540 -178 796 -178 1052 -180 1308 -178 1564 -178 1820 -178

29 -178 285 -179 541 -178 797 -179 1053 -178 1309 -179 1565 -178 1821 -180

30 -181 286 -178 542 -179 798 -182 1054 -179 1310 -177 1566 -178 1822 -178

31 -178 287 -178 543 -178 799 -179 1055 -178 1311 -177 1567 -178 1823 -180

32 -179 288 -177 544 -181 800 -177 1056 -180 1312 -178 1568 -178 1824 -178

33 -180 289 -179 545 -179 801 -177 1057 -179 1313 -179 1569 -178 1825 -178

34 -178 290 -180 546 -178 802 -179 1058 -178 1314 -178 1570 -177 1826 -177

35 -179 291 -180 547 -180 803 -177 1059 -178 1315 -179 1571 -178 1827 -182

36 -178 292 -181 548 -179 804 -178 1060 -178 1316 -178 1572 -178 1828 -178

37 -178 293 -177 549 -178 805 -179 1061 -180 1317 -178 1573 -178 1829 -178

38 -177 294 -178 550 -179 806 -179 1062 -179 1318 -178 1574 -179 1830 -177

39 -179 295 -178 551 -178 807 -179 1063 -178 1319 -178 1575 -177 1831 -178

40 -179 296 -180 552 -178 808 -179 1064 -177 1320 -178 1576 -182 1832 -180

41 -178 297 -177 553 -179 809 -178 1065 -177 1321 -177 1577 -179 1833 -179

42 -179 298 -177 554 -178 810 -178 1066 -181 1322 -177 1578 -178 1834 -178

43 -179 299 -179 555 -181 811 -180 1067 -178 1323 -178 1579 -179 1835 -179

44 -179 300 -178 556 -178 812 -178 1068 -178 1324 -178 1580 -178 1836 -180
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Table 8 continuation from previous page.

Obs. Val. Obs. Val. Obs. Val. Obs. Val. Obs. Val. Obs. Val. Obs. Val. Obs. Val.

45 -178 301 -179 557 -178 813 -180 1069 -177 1325 -178 1581 -179 1837 -180

46 -179 302 -180 558 -179 814 -178 1070 -180 1326 -180 1582 -178 1838 -178

47 -179 303 -177 559 -178 815 -179 1071 -179 1327 -178 1583 -183 1839 -179

48 -178 304 -178 560 -178 816 -178 1072 -178 1328 -179 1584 -178 1840 -179

49 -179 305 -177 561 -177 817 -178 1073 -179 1329 -179 1585 -181 1841 -177

50 -178 306 -181 562 -178 818 -178 1074 -179 1330 -179 1586 -178 1842 -178

51 -178 307 -178 563 -180 819 -179 1075 -177 1331 -178 1587 -178 1843 -182

52 -178 308 -179 564 -180 820 -179 1076 -178 1332 -178 1588 -181 1844 -177

53 -178 309 -179 565 -178 821 -179 1077 -178 1333 -179 1589 -178 1845 -177

54 -179 310 -178 566 -178 822 -178 1078 -180 1334 -177 1590 -179 1846 -178

55 -179 311 -178 567 -178 823 -183 1079 -178 1335 -179 1591 -178 1847 -179

56 -178 312 -180 568 -178 824 -178 1080 -181 1336 -178 1592 -178 1848 -177

57 -178 313 -178 569 -179 825 -179 1081 -178 1337 -179 1593 -179 1849 -178

58 -177 314 -181 570 -177 826 -177 1082 -177 1338 -178 1594 -179 1850 -178

59 -181 315 -179 571 -181 827 -178 1083 -178 1339 -179 1595 -178 1851 -178

60 -177 316 -179 572 -177 828 -180 1084 -180 1340 -178 1596 -179 1852 -179

61 -178 317 -178 573 -179 829 -180 1085 -178 1341 -177 1597 -178 1853 -177

62 -179 318 -178 574 -179 830 -177 1086 -178 1342 -181 1598 -182 1854 -178

63 -181 319 -178 575 -179 831 -178 1087 -178 1343 -182 1599 -178 1855 -178

64 -178 320 -178 576 -178 832 -178 1088 -178 1344 -178 1600 -177 1856 -180

65 -178 321 -178 577 -178 833 -182 1089 -178 1345 -178 1601 -179 1857 -178

66 -178 322 -178 578 -181 834 -178 1090 -178 1346 -178 1602 -178 1858 -180

67 -178 323 -178 579 -178 835 -178 1091 -178 1347 -180 1603 -178 1859 -179

68 -178 324 -177 580 -180 836 -179 1092 -178 1348 -177 1604 -178 1860 -177

69 -178 325 -179 581 -178 837 -183 1093 -178 1349 -179 1605 -178 1861 -178

70 -179 326 -178 582 -181 838 -177 1094 -178 1350 -178 1606 -177 1862 -178

71 -178 327 -180 583 -178 839 -178 1095 -178 1351 -178 1607 -177 1863 -177

72 -177 328 -178 584 -177 840 -177 1096 -178 1352 -178 1608 -180 1864 -177

73 -178 329 -179 585 -178 841 -180 1097 -178 1353 -177 1609 -178 1865 -180

74 -178 330 -178 586 -179 842 -177 1098 -178 1354 -179 1610 -183 1866 -178

75 -178 331 -178 587 -179 843 -178 1099 -180 1355 -179 1611 -178 1867 -178

76 -178 332 -178 588 -179 844 -178 1100 -183 1356 -178 1612 -178 1868 -180

77 -178 333 -178 589 -178 845 -181 1101 -178 1357 -179 1613 -179 1869 -179

78 -178 334 -179 590 -178 846 -183 1102 -178 1358 -178 1614 -178 1870 -181

79 -179 335 -178 591 -178 847 -180 1103 -177 1359 -178 1615 -180 1871 -181

80 -179 336 -179 592 -178 848 -178 1104 -178 1360 -178 1616 -177 1872 -179

81 -178 337 -178 593 -180 849 -179 1105 -179 1361 -178 1617 -180 1873 -180

82 -178 338 -178 594 -179 850 -178 1106 -177 1362 -178 1618 -178 1874 -180

83 -180 339 -178 595 -177 851 -178 1107 -178 1363 -182 1619 -179 1875 -178
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Table 8 continuation from previous page.

Obs. Val. Obs. Val. Obs. Val. Obs. Val. Obs. Val. Obs. Val. Obs. Val. Obs. Val.

84 -179 340 -178 596 -180 852 -179 1108 -179 1364 -178 1620 -179 1876 -182

85 -178 341 -182 597 -178 853 -181 1109 -178 1365 -179 1621 -180 1877 -180

86 -178 342 -179 598 -180 854 -178 1110 -178 1366 -178 1622 -178 1878 -178

87 -178 343 -178 599 -178 855 -178 1111 -180 1367 -178 1623 -177 1879 -178

88 -180 344 -178 600 -181 856 -182 1112 -178 1368 -178 1624 -179 1880 -177

89 -178 345 -179 601 -178 857 -179 1113 -183 1369 -178 1625 -178 1881 -179

90 -178 346 -180 602 -178 858 -180 1114 -181 1370 -178 1626 -179 1882 -178

91 -182 347 -178 603 -178 859 -178 1115 -178 1371 -178 1627 -179 1883 -177

92 -179 348 -180 604 -179 860 -178 1116 -178 1372 -178 1628 -178 1884 -180

93 -178 349 -179 605 -178 861 -178 1117 -179 1373 -177 1629 -178 1885 -179

94 -178 350 -178 606 -178 862 -181 1118 -182 1374 -178 1630 -178 1886 -178

95 -178 351 -178 607 -178 863 -181 1119 -177 1375 -178 1631 -178 1887 -178

96 -180 352 -179 608 -177 864 -178 1120 -179 1376 -178 1632 -179 1888 -179

97 -177 353 -179 609 -178 865 -179 1121 -179 1377 -177 1633 -178 1889 -179

98 -178 354 -178 610 -180 866 -179 1122 -178 1378 -178 1634 -179 1890 -181

99 -178 355 -180 611 -178 867 -180 1123 -177 1379 -177 1635 -178 1891 -178

100 -178 356 -178 612 -177 868 -177 1124 -178 1380 -179 1636 -179 1892 -178

101 -180 357 -178 613 -177 869 -179 1125 -178 1381 -177 1637 -178 1893 -177

102 -177 358 -178 614 -177 870 -178 1126 -178 1382 -177 1638 -180 1894 -180

103 -179 359 -177 615 -178 871 -180 1127 -178 1383 -182 1639 -178 1895 -178

104 -180 360 -178 616 -180 872 -179 1128 -178 1384 -178 1640 -178 1896 -178

105 -179 361 -180 617 -182 873 -178 1129 -177 1385 -179 1641 -178 1897 -180

106 -183 362 -180 618 -180 874 -178 1130 -180 1386 -179 1642 -178 1898 -178

107 -181 363 -181 619 -179 875 -180 1131 -178 1387 -177 1643 -183 1899 -178

108 -178 364 -178 620 -178 876 -178 1132 -178 1388 -179 1644 -177 1900 -178

109 -180 365 -179 621 -179 877 -179 1133 -178 1389 -178 1645 -177 1901 -178

110 -178 366 -178 622 -179 878 -179 1134 -179 1390 -178 1646 -179 1902 -179

111 -178 367 -177 623 -179 879 -178 1135 -182 1391 -179 1647 -178 1903 -182

112 -178 368 -177 624 -177 880 -178 1136 -178 1392 -179 1648 -178 1904 -181

113 -180 369 -179 625 -179 881 -179 1137 -177 1393 -178 1649 -178 1905 -180

114 -178 370 -178 626 -177 882 -178 1138 -180 1394 -177 1650 -180 1906 -178

115 -180 371 -180 627 -177 883 -179 1139 -178 1395 -178 1651 -178 1907 -178

116 -178 372 -179 628 -179 884 -177 1140 -179 1396 -178 1652 -178 1908 -180

117 -178 373 -178 629 -178 885 -179 1141 -178 1397 -179 1653 -180 1909 -178

118 -177 374 -183 630 -178 886 -179 1142 -181 1398 -178 1654 -180 1910 -178

119 -179 375 -179 631 -178 887 -179 1143 -180 1399 -177 1655 -180 1911 -178

120 -181 376 -183 632 -179 888 -178 1144 -181 1400 -179 1656 -179 1912 -178

121 -178 377 -179 633 -179 889 -179 1145 -178 1401 -179 1657 -179 1913 -179

122 -177 378 -178 634 -179 890 -181 1146 -177 1402 -179 1658 -180 1914 -180
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Table 8 continuation from previous page.

Obs. Val. Obs. Val. Obs. Val. Obs. Val. Obs. Val. Obs. Val. Obs. Val. Obs. Val.

123 -177 379 -180 635 -178 891 -179 1147 -179 1403 -180 1659 -180 1915 -178

124 -179 380 -179 636 -178 892 -179 1148 -177 1404 -177 1660 -181 1916 -178

125 -181 381 -178 637 -183 893 -178 1149 -178 1405 -177 1661 -181 1917 -177

126 -177 382 -179 638 -177 894 -178 1150 -178 1406 -179 1662 -178 1918 -179

127 -178 383 -178 639 -180 895 -178 1151 -178 1407 -178 1663 -177 1919 -178

128 -179 384 -178 640 -180 896 -177 1152 -180 1408 -180 1664 -178 1920 -180

129 -177 385 -179 641 -178 897 -179 1153 -178 1409 -180 1665 -179 1921 -177

130 -179 386 -177 642 -180 898 -179 1154 -178 1410 -178 1666 -178 1922 -178

131 -179 387 -182 643 -181 899 -178 1155 -178 1411 -178 1667 -180 1923 -178

132 -178 388 -179 644 -178 900 -177 1156 -178 1412 -180 1668 -178 1924 -179

133 -182 389 -179 645 -178 901 -178 1157 -177 1413 -181 1669 -178 1925 -180

134 -177 390 -178 646 -179 902 -178 1158 -179 1414 -178 1670 -177 1926 -178

135 -179 391 -178 647 -182 903 -178 1159 -180 1415 -177 1671 -179 1927 -177

136 -178 392 -180 648 -179 904 -180 1160 -177 1416 -177 1672 -181 1928 -179

137 -178 393 -177 649 -179 905 -177 1161 -178 1417 -178 1673 -178 1929 -177

138 -177 394 -178 650 -179 906 -178 1162 -183 1418 -178 1674 -178 1930 -177

139 -178 395 -179 651 -178 907 -180 1163 -181 1419 -178 1675 -178 1931 -178

140 -178 396 -179 652 -178 908 -179 1164 -179 1420 -180 1676 -178 1932 -181

141 -179 397 -178 653 -182 909 -182 1165 -178 1421 -180 1677 -177 1933 -183

142 -183 398 -178 654 -178 910 -180 1166 -178 1422 -178 1678 -178 1934 -178

143 -180 399 -178 655 -180 911 -178 1167 -178 1423 -179 1679 -178 1935 -181

144 -183 400 -181 656 -177 912 -181 1168 -181 1424 -181 1680 -180 1936 -177

145 -178 401 -180 657 -178 913 -179 1169 -178 1425 -178 1681 -179 1937 -179

146 -178 402 -180 658 -181 914 -179 1170 -178 1426 -177 1682 -178 1938 -179

147 -179 403 -177 659 -178 915 -178 1171 -178 1427 -180 1683 -178 1939 -177

148 -182 404 -178 660 -179 916 -182 1172 -179 1428 -178 1684 -183 1940 -178

149 -178 405 -179 661 -177 917 -177 1173 -180 1429 -178 1685 -178 1941 -179

150 -179 406 -177 662 -180 918 -177 1174 -178 1430 -178 1686 -178 1942 -178

151 -179 407 -177 663 -178 919 -177 1175 -178 1431 -179 1687 -178 1943 -177

152 -178 408 -178 664 -179 920 -178 1176 -178 1432 -179 1688 -178 1944 -178

153 -179 409 -182 665 -182 921 -179 1177 -183 1433 -178 1689 -182 1945 -178

154 -177 410 -178 666 -180 922 -181 1178 -178 1434 -177 1690 -181 1946 -180

155 -178 411 -178 667 -180 923 -178 1179 -177 1435 -183 1691 -177 1947 -179

156 -179 412 -177 668 -177 924 -181 1180 -177 1436 -177 1692 -178 1948 -183

157 -180 413 -178 669 -178 925 -178 1181 -178 1437 -177 1693 -180 1949 -178

158 -179 414 -178 670 -177 926 -177 1182 -183 1438 -177 1694 -179 1950 -177

159 -180 415 -182 671 -181 927 -178 1183 -177 1439 -178 1695 -178 1951 -178

160 -179 416 -180 672 -179 928 -179 1184 -177 1440 -179 1696 -181 1952 -178

161 -179 417 -178 673 -177 929 -179 1185 -180 1441 -180 1697 -178 1953 -179
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Table 8 continuation from previous page.

Obs. Val. Obs. Val. Obs. Val. Obs. Val. Obs. Val. Obs. Val. Obs. Val. Obs. Val.

162 -178 418 -178 674 -178 930 -178 1186 -180 1442 -181 1698 -177 1954 -178

163 -178 419 -182 675 -180 931 -182 1187 -178 1443 -179 1699 -178 1955 -182

164 -181 420 -179 676 -178 932 -179 1188 -178 1444 -177 1700 -177 1956 -178

165 -178 421 -178 677 -179 933 -178 1189 -178 1445 -180 1701 -178 1957 -178

166 -178 422 -178 678 -179 934 -182 1190 -177 1446 -178 1702 -179 1958 -179

167 -178 423 -182 679 -177 935 -178 1191 -178 1447 -177 1703 -179 1959 -178

168 -178 424 -180 680 -180 936 -181 1192 -183 1448 -177 1704 -177 1960 -178

169 -180 425 -178 681 -178 937 -179 1193 -180 1449 -179 1705 -178 1961 -179

170 -178 426 -179 682 -179 938 -178 1194 -177 1450 -178 1706 -177 1962 -179

171 -179 427 -179 683 -178 939 -178 1195 -180 1451 -178 1707 -178 1963 -183

172 -178 428 -178 684 -178 940 -179 1196 -180 1452 -179 1708 -179 1964 -178

173 -178 429 -177 685 -179 941 -177 1197 -178 1453 -180 1709 -177 1965 -178

174 -178 430 -181 686 -177 942 -177 1198 -179 1454 -178 1710 -178 1966 -182

175 -178 431 -179 687 -179 943 -183 1199 -178 1455 -179 1711 -177 1967 -179

176 -180 432 -180 688 -178 944 -179 1200 -179 1456 -180 1712 -180 1968 -179

177 -178 433 -178 689 -178 945 -179 1201 -180 1457 -180 1713 -183 1969 -178

178 -177 434 -181 690 -178 946 -181 1202 -178 1458 -180 1714 -181 1970 -178

179 -179 435 -183 691 -178 947 -178 1203 -178 1459 -182 1715 -178 1971 -178

180 -178 436 -178 692 -178 948 -183 1204 -182 1460 -177 1716 -178 1972 -178

181 -177 437 -181 693 -177 949 -178 1205 -178 1461 -178 1717 -178 1973 -182

182 -183 438 -178 694 -181 950 -178 1206 -178 1462 -177 1718 -177 1974 -178

183 -179 439 -182 695 -182 951 -177 1207 -177 1463 -179 1719 -178 1975 -180

184 -178 440 -178 696 -179 952 -179 1208 -178 1464 -179 1720 -178 1976 -178

185 -182 441 -180 697 -178 953 -178 1209 -178 1465 -179 1721 -178 1977 -179

186 -182 442 -179 698 -181 954 -178 1210 -177 1466 -178 1722 -179 1978 -178

187 -178 443 -179 699 -181 955 -178 1211 -181 1467 -178 1723 -178 1979 -178

188 -181 444 -180 700 -181 956 -178 1212 -177 1468 -178 1724 -177 1980 -177

189 -178 445 -178 701 -178 957 -180 1213 -177 1469 -179 1725 -178 1981 -178

190 -179 446 -179 702 -179 958 -182 1214 -177 1470 -178 1726 -181 1982 -179

191 -179 447 -178 703 -180 959 -179 1215 -179 1471 -177 1727 -178 1983 -178

192 -177 448 -179 704 -178 960 -182 1216 -178 1472 -177 1728 -180 1984 -177

193 -178 449 -177 705 -179 961 -178 1217 -178 1473 -177 1729 -178 1985 -177

194 -178 450 -177 706 -180 962 -178 1218 -181 1474 -181 1730 -178 1986 -178

195 -178 451 -179 707 -177 963 -178 1219 -178 1475 -178 1731 -178 1987 -178

196 -177 452 -178 708 -178 964 -182 1220 -179 1476 -177 1732 -178 1988 -178

197 -177 453 -178 709 -178 965 -179 1221 -180 1477 -178 1733 -177 1989 -178

198 -180 454 -179 710 -178 966 -179 1222 -178 1478 -178 1734 -179 1990 -179

199 -178 455 -178 711 -178 967 -178 1223 -179 1479 -179 1735 -178 1991 -178

200 -180 456 -180 712 -178 968 -178 1224 -177 1480 -177 1736 -179 1992 -178
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Table 8 continuation from previous page.

Obs. Val. Obs. Val. Obs. Val. Obs. Val. Obs. Val. Obs. Val. Obs. Val. Obs. Val.

201 -179 457 -179 713 -177 969 -178 1225 -177 1481 -178 1737 -178 1993 -178

202 -181 458 -179 714 -178 970 -178 1226 -178 1482 -178 1738 -178 1994 -178

203 -178 459 -178 715 -179 971 -177 1227 -177 1483 -178 1739 -179 1995 -178

204 -178 460 -179 716 -179 972 -178 1228 -178 1484 -177 1740 -179 1996 -177

205 -180 461 -179 717 -183 973 -180 1229 -181 1485 -179 1741 -178 1997 -179

206 -179 462 -178 718 -178 974 -178 1230 -180 1486 -179 1742 -179 1998 -179

207 -181 463 -178 719 -178 975 -179 1231 -178 1487 -178 1743 -178 1999 -177

208 -180 464 -177 720 -177 976 -181 1232 -179 1488 -178 1744 -178 2000 -178

209 -179 465 -182 721 -178 977 -179 1233 -178 1489 -179 1745 -177 2001 -178

210 -180 466 -181 722 -178 978 -177 1234 -178 1490 -180 1746 -178 2002 -181

211 -179 467 -178 723 -179 979 -178 1235 -178 1491 -178 1747 -179 2003 -178

212 -178 468 -177 724 -177 980 -178 1236 -178 1492 -178 1748 -178 2004 -178

213 -179 469 -178 725 -179 981 -179 1237 -177 1493 -178 1749 -179 2005 -178

214 -178 470 -178 726 -178 982 -178 1238 -178 1494 -182 1750 -179 2006 -178

215 -180 471 -180 727 -178 983 -178 1239 -179 1495 -180 1751 -179 2007 -178

216 -183 472 -179 728 -178 984 -178 1240 -179 1496 -179 1752 -180 2008 -178

217 -178 473 -179 729 -178 985 -178 1241 -180 1497 -178 1753 -178 2009 -178

218 -178 474 -178 730 -177 986 -179 1242 -178 1498 -180 1754 -179 2010 -179

219 -179 475 -177 731 -177 987 -177 1243 -179 1499 -178 1755 -177 2011 -178

220 -178 476 -177 732 -180 988 -178 1244 -178 1500 -181 1756 -180 2012 -178

221 -177 477 -177 733 -180 989 -180 1245 -178 1501 -179 1757 -179 2013 -178

222 -178 478 -177 734 -181 990 -177 1246 -179 1502 -183 1758 -178 2014 -178

223 -179 479 -179 735 -179 991 -178 1247 -177 1503 -178 1759 -178 2015 -178

224 -178 480 -178 736 -178 992 -178 1248 -178 1504 -178 1760 -179 2016 -178

225 -177 481 -178 737 -178 993 -178 1249 -177 1505 -177 1761 -177 2017 -177

226 -180 482 -181 738 -178 994 -178 1250 -179 1506 -179 1762 -178 2018 -177

227 -178 483 -178 739 -179 995 -177 1251 -178 1507 -177 1763 -179 2019 -178

228 -178 484 -177 740 -178 996 -178 1252 -177 1508 -178 1764 -178 2020 -183

229 -178 485 -179 741 -178 997 -181 1253 -177 1509 -179 1765 -178 2021 -181

230 -179 486 -179 742 -179 998 -178 1254 -178 1510 -178 1766 -179 2022 -177

231 -178 487 -177 743 -177 999 -179 1255 -177 1511 -178 1767 -180 2023 -178

232 -180 488 -177 744 -177 1000 -179 1256 -177 1512 -177 1768 -178 2024 -178

233 -178 489 -178 745 -178 1001 -178 1257 -178 1513 -177 1769 -180 2025 -178

234 -179 490 -178 746 -179 1002 -179 1258 -179 1514 -178 1770 -180 2026 -178

235 -179 491 -178 747 -179 1003 -178 1259 -178 1515 -178 1771 -179 2027 -178

236 -178 492 -179 748 -179 1004 -178 1260 -179 1516 -178 1772 -179 2028 -180

237 -181 493 -178 749 -178 1005 -178 1261 -180 1517 -178 1773 -180 2029 -181

238 -181 494 -177 750 -177 1006 -178 1262 -178 1518 -178 1774 -179 2030 -178

239 -178 495 -177 751 -178 1007 -178 1263 -178 1519 -177 1775 -181 2031 -179
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Table 8 continuation from previous page.

Obs. Val. Obs. Val. Obs. Val. Obs. Val. Obs. Val. Obs. Val. Obs. Val. Obs. Val.

240 -178 496 -177 752 -183 1008 -178 1264 -178 1520 -179 1776 -177 2032 -180

241 -180 497 -177 753 -180 1009 -177 1265 -179 1521 -178 1777 -179 2033 -178

242 -178 498 -178 754 -179 1010 -181 1266 -180 1522 -180 1778 -177 2034 -182

243 -177 499 -178 755 -178 1011 -178 1267 -181 1523 -181 1779 -178 2035 -179

244 -179 500 -181 756 -178 1012 -180 1268 -180 1524 -179 1780 -178 2036 -178

245 -180 501 -179 757 -179 1013 -177 1269 -177 1525 -178 1781 -178 2037 -179

246 -178 502 -179 758 -178 1014 -178 1270 -178 1526 -178 1782 -177 2038 -178

247 -178 503 -178 759 -178 1015 -178 1271 -183 1527 -179 1783 -178 2039 -178

248 -179 504 -178 760 -179 1016 -181 1272 -179 1528 -178 1784 -182 2040 -178

249 -179 505 -178 761 -178 1017 -179 1273 -178 1529 -178 1785 -179 2041 -178

250 -180 506 -182 762 -178 1018 -179 1274 -180 1530 -178 1786 -178 2042 -178

251 -179 507 -183 763 -178 1019 -178 1275 -178 1531 -179 1787 -178 2043 -182

252 -178 508 -179 764 -180 1020 -178 1276 -179 1532 -178 1788 -178 2044 -177

253 -182 509 -180 765 -178 1021 -177 1277 -179 1533 -179 1789 -178 2045 -178

254 -182 510 -178 766 -179 1022 -180 1278 -178 1534 -178 1790 -179 2046 -180

255 -177 511 -178 767 -178 1023 -180 1279 -179 1535 -177 1791 -179 2047 -178

Source: author (2021).
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Figure 15: Histogram of observations, and Gaussian approximation.

Source: author (2021).

A.3 The cumulative distribution table used

This appendix section presents in Table 9 the cumulative distribution table (CDT)

used in the tests of the CDT-based discrete Gaussian sampler.

Table 9: The cumulative distribution table used by this work.

Position Value Position Value

0 0 97 340282366902788985317896529203028560353

1 9228462493351110473597041657947797092 98 340282366909461681135086961316997321092

2 27642789659143819934692025361980055762 99 340282366913713946414412559132152934149

3 45929912339185481206974167095818864061 100 340282366916411265894161291135121729086

4 64006977247976486123651496194149979097 101 340282366918114355282467857200614032189

5 81794008662808119598967550596620492198 102 340282366919184729187249640618211905803
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Table 9 continuation from previous page.

Position Value Position Value

6 99214967010543519719527723982122616624 103 340282366919854346383310497515313483120

7 116198718570185839248173721556362105814 104 340282366920271322037738061722552979678

8 132679895809032129485237851807443093831 105 340282366920529778750018355527593467690

9 148599631277039782639814771967288384067 106 340282366920689241022080314156838418824

10 163906151856162374745290895274741469911 107 340282366920787172226455454882666338026

11 178555224346767839709539400552399419832 108 340282366920847037815352332287494207629

12 192510447711147483407448520742454256647 109 340282366920883465069693266007857866034

13 205743391622772455628744117035017830165 110 340282366920905528276344232158095493526

14 218233585133794971304219977848862993467 111 340282366920918829875096654603813664759

15 229968363129746213565316406163284007235 112 340282366920926812249040363447839731974

16 240942581665693854082205362525868016057 113 340282366920931580436382437767102927622

17 251158216172002921770481550717083362665 114 340282366920934415531066409418642660678

18 260623858806746505114691852226601027586 115 340282366920936093464935720427947186385

19 269354132870709165905526117913527246739 116 340282366920937081961419531051917797029

20 277369043173590454192770916761457234520 117 340282366920937661614879909918756760010

21 284693281557884949750179305992168359467 118 340282366920937999955976427751912035217

22 291355506486676852442751272614702640149 119 340282366920938196533603231539009314689

23 297387614741713670208101001790230752188 120 340282366920938310219459865522637422106

24 302824021934610738559622041384292999210 121 340282366920938375663756591334491989430

25 307700966795635144557768932918957406644 122 340282366920938413163663289681020643343

26 312055852167739877852802764089557951894 123 340282366920938434552225187682149463164

27 315926633397728357937842503713030363383 124 340282366920938446695225278270824484201

28 319351262479228085846041229665079340378 125 340282366920938453557426158857674219280

29 322367193955305743664346087034485275350 126 340282366920938457417484527860251694780

30 325010956314605435946813411768504745518 127 340282366920938459578795867256495467918

31 327317790484558076752574972980945282764 128 340282366920938460783370762814764232092

32 329321355095645417755941825328303916953 129 340282366920938461451627428274575360296

33 331053496504581822367938598164939798159 130 340282366920938461820643946068958880120

34 332544080149682245136832795231139185736 131 340282366920938462023478214034466375672

35 333820878682692463596365006169060202807 132 340282366920938462134454418509984731758

36 334909511479213505440293948529744414348 133 340282366920938462194892604558729646256

37 335833429564599848145021829589587742578 134 340282366920938462227655780254438251843

38 336613939684627828788307393185703765487 135 340282366920938462245334612545605103389

39 337270261173934837195825998906436035728 136 340282366920938462254830032492351639936

40 337819609398823282862144715854695818333 137 340282366920938462259906572265589767112

41 338277299840159867617134524799962596041 138 340282366920938462262608131069520674070

42 338656867301382879444154781925233325266 139 340282366920938462264039178646791852691

43 338970195241265506721993563170537548183 140 340282366920938462264793726409988784362

44 339227650808253032038440903731776363832 141 340282366920938462265189742120070265265
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Table 9 continuation from previous page.

Position Value Position Value

45 339438221763109584782516034148317213384 142 340282366920938462265396628123152951141

46 339609652093265732827765441962657935273 143 340282366920938462265504210917267147280

47 339748573723863218674739391754985659825 144 340282366920938462265559897112441174990

48 339860632299656076346434833343566197087 145 340282366920938462265588588086088029936

49 339950605535596306043330422086896686103 146 340282366920938462265603302265377355723

50 340022513103149665187694553655575855342 147 340282366920938462265610813646807090556

51 340079717428902553538171454761371537605 148 340282366920938462265614630422206142293

52 340125015129807829022926769953448126673 149 340282366920938462265616560907102454639

53 340160719096135231850585043070367197286 150 340282366920938462265617532824212264950

54 340188731461631912016860203677173672351 151 340282366920938462265618019887126183316

55 340210607874941583169578684213845612839 152 340282366920938462265618262846641953090

56 340227613612444904872291704014997276637 153 340282366920938462265618383482322801688

57 340240772156474223096304505698880551789 154 340282366920938462265618443104888604256

58 340250906910681973641524361347082489522 155 340282366920938462265618472436678069855

59 340258676742503432739092215018291397605 156 340282366920938462265618486800151397578

60 340264606037148044339979539544772440333 157 340282366920938462265618493801366179249

61 340269109923897641173573541977057476264 158 340282366920938462265618497198247277555

62 340272515298608963745510402213100540331 159 340282366920938462265618498838762654389

63 340275078220479752248548421531777799685 160 340282366920938462265618499627392631141

64 340276998209934281211602988011139621644 161 340282366920938462265618500004755593342

65 340278429920846833669409456228479717399 162 340282366920938462265618500184492920557

66 340279492606561684163118977281270278900 163 340282366920938462265618500269706792993

67 340280277747035410469601142564771442911 164 340282366920938462265618500309920613934

68 340280855155178466467342323362955809018 165 340282366920938462265618500328810676378

69 340281277834944774093105230899685556540 166 340282366920938462265618500337643192989

70 340281585822400801920940256530947823350 167 340282366920938462265618500341754013813

71 340281809204112302163003653234724474176 168 340282366920938462265618500343658446594

72 340281970474717317553901953463590866790 169 340282366920938462265618500344536651309

73 340282086367350892940184522243560420621 170 340282366920938462265618500344939756969

74 340282169266383848123707234149974020989 171 340282366920938462265618500345123933820

75 340282228291399701676933390984801831882 172 340282366920938462265618500345207695273

76 340282270124088138432650281313180044007 173 340282366920938462265618500345245613357

77 340282299635395903851266206075114275335 174 340282366920938462265618500345262699403

78 340282320358468582862967655190722194527 175 340282366920938462265618500345270362949

79 340282334843280509558140703121923758314 176 340282366920938462265618500345273784405

80 340282344921053857622417845235828264621 177 340282366920938462265618500345275304900

81 340282351900313069332539850050451495281 178 340282366920938462265618500345275977493

82 340282356711443000621385556860036325483 179 340282366920938462265618500345276273643

83 340282360012688778320785941847082130970 180 340282366920938462265618500345276403440
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Position Value Position Value

84 340282362267455660587782539040615659220 181 340282366920938462265618500345276460065

85 340282363800371993390626989531164892809 182 340282366920938462265618500345276484654

86 340282364837729063796944129682366535053 183 340282366920938462265618500345276495282

87 340282365536494004322210194491509825597 184 340282366920938462265618500345276499855

88 340282366005012734817613777873088096491 185 340282366920938462265618500345276501813

89 340282366317704053877358501294218166755 186 340282366920938462265618500345276502647

90 340282366525433329569361423227664819231 187 340282366920938462265618500345276503001

91 340282366662797227047845184570220926209 188 340282366920938462265618500345276503150

92 340282366753212233632867345370957481661 189 340282366920938462265618500345276503212

93 340282366812450378220363228485688267561 190 340282366920938462265618500345276503238

94 340282366851083107627671162948427431413 191 340282366920938462265618500345276503248

95 340282366876161653578565443519559930409 192 340282366920938462265618500345276503252

96 340282366892366403327902636518806646673 193 340282366920938462265618500345276503253

Source: author (2021).

A.4 Cumulative distribution table results

Table 10 presents all of the discrete Gaussian sampling values, regarding the cu-

mulative distribution table sampling strategy.

Table 10: Sampling results for the cumulative distribution table implementation.

β s elapsed time (ms) CPU cycles ×106 µD σD skewness kurtosis relative entropy

1 2 7.8 16.40 21.0 15.0 0 -2 ∞

2 4 7.8 16.42 -1.5 4.5 0 -2 ∞

3 8 7.8 16.40 9.0 19.0 0 -2 ∞

4 16 6.8 14.35 7.0 12.0 0 -2 0.3465735903
5 32 6.8 14.35 4.0 17.0 0 -2 0.4158883083
6 64 6.3 13.32 11.0 10.0 0 -2 0.4852030264
7 128 6.1 12.81 -9.0 17.0 0 -2 0.3465735903
8 256 6.1 12.82 -8.0 10.0 0 -2 0.4628886713
9 512 6.6 13.95 -1.0 12.0 0 -2 0.3564175976

10 1024 6.5 13.72 -13.5 2.5 0 -2 0.3732798688
11 2048 6.4 13.49 -13.0 8.0 0 -2 0.3608235965
12 4096 6.4 13.41 -4.5 10.5 0 -2 0.3538642674
13 8192 6.4 13.60 -1.0 10.0 0 -2 0.3663805817
14 16384 6.3 13.31 -22.0 1.0 0 -2 0.3603741576
15 32768 6.3 13.33 4.0 26.0 0 -2 0.3557731270
16 65536 6.8 14.35 -2.0 2.0 0 -2 0.3590101838
17 131072 6.7 14.13 -3.5 23.5 0 -2 0.3630296207
18 262144 6.8 14.34 -12.5 7.5 0 -2 0.3596341891
19 524288 6.7 14.20 3.5 2.5 0 -2 0.3599337052
20 1048576 6.7 14.19 -17.0 15.0 0 -2 0.3609803212

Source: author (2021).
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A.5 Fast Walsh–Hadamard transform results

Table 11 presents all of the discrete Gaussian sampling values, regarding the fast

Walsh–Hadamard transform sampling strategy.

Table 11: Sampling results for the fast Walsh–Hadamard transform implementation.

β s elapsed time (µs) CPU cycles ×103 µD σD skewness kurtosis relative entropy

0 1 00.0 0.00 0 02 0 -2 ∞

1 2 00.0 0.00 0 03 0 -2 ∞

2 4 00.0 0.00 0 02 0 -2 ∞

3 8 00.0 0.00 0 12 0 -2 ∞

4 16 00.0 0.00 0 18 0 -2 0.2772588722
5 32 00.0 0.00 0 17 0 -2 0.2079441542
6 64 00.0 0.00 0 11 0 -2 0.3060270795
7 128 00.0 0.00 0 10 0 -2 0.3465735903
8 256 61.0 128.10 0 02 0 -2 0.3465735903
9 512 30.5 64.050 0 12 0 -2 0.3060270795

10 1024 45.8 96.18 0 02 0 -2 0.3019448800
11 2048 45.8 96.18 0 02 0 -2 0.3334159545
12 4096 49.6 104.16 0 14 0 -2 0.3320553893
13 8192 52.7 110.67 0 12 0 -2 0.3252011573
14 16384 59.1 124.11 0 10 0 -2 0.3164474572
15 32768 54.4 114.24 0 10 0 -2 0.3206531674
16 65536 53.2 111.72 0 06 0 -2 0.3195664039
17 131072 53.1 111.51 0 15 0 -2 0.3202583187
18 262144 52.3 109.83 0 08 0 -2 0.3176651006
19 524288 53.2 111.72 0 00 0 -3 0.3185097623
20 1048576 52.0 109.20 0 18 0 -2 0.3176811012
21 2097152 51.7 108.57 0 07 0 -2 0.3179489186
22 4194304 51.3 107.73 0 02 0 -2 0.3184993903
23 8388608 51.6 108.36 0 12 0 -2 0.3181674804

Source: author (2021).


