
MARCOS MENON JOSÉ

A DEEP REINFORCEMENT LEARNING
QUESTION ANSWERING SYSTEM FOR

COMPLEX QUESTIONS USING TEXTS AND
TABLES

São Paulo
2024

MARCOS MENON JOSÉ

A DEEP REINFORCEMENT LEARNING
QUESTION ANSWERING SYSTEM FOR

COMPLEX QUESTIONS USING TEXTS AND
TABLES

Dissertation presented to Escola Politécnica

of Universidade de São Paulo to obtain

Master of Sciences degree in Eletrical

Engineering.

São Paulo
2024

MARCOS MENON JOSÉ

A DEEP REINFORCEMENT LEARNING
QUESTION ANSWERING SYSTEM FOR

COMPLEX QUESTIONS USING TEXTS AND
TABLES

Final Version

Dissertation presented to Escola Politécnica

of Universidade de São Paulo to obtain

Master of Sciences degree in Eletrical

Engineering.

Concentration Area

Computer Engineering

Advisor:

Fabio Gagliardi Cozman

São Paulo
2024

 Autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio
convencional ou eletrônico, para fins de estudo e pesquisa, desde que citada a fonte.

Este exemplar foi revisado e corrigido em relação à versão original, sob
responsabilidade única do autor e com a anuência de seu orientador.

São Paulo, ______ de ____________________ de __________

Assinatura do autor: ________________________

Assinatura do orientador: ________________________

Catalogação-na-publicação

José, Marcos
 A Deep Reinforcement Learning Question Answering System for
Complex Questions using Texts and Tables / M. José -- versão corr. -- São
Paulo, 2024.
 81 p.

 Dissertação (Mestrado) - Escola Politécnica da Universidade de São
Paulo. Departamento de Engenharia de Computação e Sistemas Digitais.

 1.Perguntas e respostas 2.Aprendizado por Reforço 3.Multi-Hop 4.Redes
Neurais Transformer 5.Inteligência Artificial I.Universidade de São Paulo.
Escola Politécnica. Departamento de Engenharia de Computação e Sistemas
Digitais II.t.

16 fevereiro 2024

ACKNOWLEDGMENTS

This research has been carried out with support by Itaú Unibanco S.A. through
the scholarship program Programa de Bolsas Itaú (PBI); it is also supported in part
by the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior (CAPES), Fi-
nance Code 001, Brazil. Computational resources of the Center for Artificial Intelligence
USP/IBM/FAPESP were employed, thanks to FAPESP and IBM Corporation for that
support.

Any opinions, findings, and conclusions expressed in this manuscript are those of the
authors and do not necessarily reflect the views, official policy or position of the Itaú-
Unibanco, FAPESP, IBM, and CAPES.

I wish to express appreciation for the invaluable assistance and insights provided by
Maria Fernanda Ribeiro, Flávio Nakasato, Paulo Pirozelli, and Rafael Cheang. Their help
has been instrumental in the success of this work.

A special thanks goes to my supervisor, Prof. Fabio G. Cozman, for guiding me not
only through my master’s program but teaching me lessons that will shape my path as a
researcher.

Finally, I extend my sincere thanks to my family—my mother, Márcia; my father,
Artur; my brother, Luis; and my wife, Fernanda—for their support at every step of this
journey.

“If a machine is expected to be infalli-
ble, it cannot also be intelligent”

-Alan Turing-

RESUMO

A geração de respostas a questões é um dos principais tópicos atuais em proces-
samento de linguagem natural, podendo ser utilizado em diversas aplicações distintas.
Este projeto propõe uma arquitetura original para resolver questões de domı́nio aberto e
multi-hop entre textos e tabelas, utilizando o conjunto de dados OTT-QA para validação
e treinamento. Para responder tais questões, é necessário buscar informações em um
grande corpus percorrendo vários trechos e tabelas, pois a resposta não pode ser encon-
trada diretamente; é preciso raciocinar usando diferentes passagens. Uma das soluções
mais comuns é recuperar as informações de forma sequencial, onde um texto encontrado
ajuda na busca do próximo. Como diferentes modelos podem ter diferentes funções nessa
busca iterativa de informações, um desafio é como coordená-los, visto que não há dados
rotulados do caminho a ser seguido. Portanto, optou-se por utilizar um modelo treinado
por meio de aprendizado por reforço para escolher entre diferentes ferramentas de última
geração de forma sequencial até que, ao final, opte por chamar um bloco responsável pela
geração da resposta. A nossa arquitetura atingiu F1-score de 19,03, um valor compat́ıvel
com sistemas iterativos semelhantes da literatura.

Palavras-Chave – Perguntas e respostas, Aprendizado por Reforço, Multi-Hop, Redes
Neurais Transformer, Inteligência Artificial.

ABSTRACT

Question Answering is one of the main current topics in natural language processing,
as it can be used in many different applications. This project proposes an original archi-
tecture to solve open domain and multi-hop questions between texts and tables, using the
OTT-QA dataset for validation and training. To answer such questions, it is necessary
to search for information in a large corpus by going through several excerpts and tables,
as the answer may not be found directly; it is necessary to reason over multiple passages.
One of the most common solutions is retrieving information sequentially, where a selected
text helps search for the next. As different models can have different functions in this
iterative information search, a challenge is how to coordinate them, given that there is no
labeled data of the path to be followed. Our architecture uses a model trained through
reinforcement learning to choose between different state-of-the-art tools sequentially un-
til, in the end, a block is selected as responsible for generating the answer. Our system
achieved an F1-score of 19.03, a value compatible with similar iterative systems in the
literature.

Keywords – Question Answering, Reinforcement Learning, Multi-Hop, Transformer Neu-
ral Networks, Artificial Intelligence.

LIST OF FIGURES

1 Multi-hop QA example. 18

2 QA-pair example taken from hotptQA (YANG et al., 2018) 24

3 QA-pair example taken from OTT-QA (CHEN et al., 2021) 25

4 The basic loop of Reinforcement Learning: an agent interacts with the

environment, obtains a reward, and changes the environment as a result of

the action. Adaptated from Sutton and Barto (2018). 32

5 Neural Question Answering Reasoner using the retriever-reader architec-

ture. Source: authors, taken from José et al. (2022). 39

6 Architecture of the “Dense Passage Retrieval” by Karpukhin et al. (2020). 40

7 Comparison of a generic encoder-decoder transformers reader and Fusion-

in-Decoder by Izacard and Grave (2021). The former concatenates the text

of the question and all passages, while the latter processes each passage

with the question individually in the encoder first and then concatenates

the resulting vectors for the decoder. 41

8 Representation of the Tri-encoder architecture of the work “Multimodal Re-

trieval of Tables and Texts Using Tri-encoder Models” (KOSTIĆ; RISCH;

MÖLLER, 2021). 47

9 Training workflow of Reinforced Ranker-Reader (R3) system by Wang et

al. (2018). 48

10 Proposed architecture. 51

11 Training workflow. 55

12 Feature extractor example. 59

13 Training curves for DQN using the BM25 retriever. 63

14 Training curves for PPO using the BM25 Retriever. 64

15 Training curves for DQN using the Tri-encoder Retriever. 65

16 Training curves for PPO using the Tri-encoder Retriever. 66

LIST OF TABLES

1 Characteristics of QA datasets . 26

2 Examples for the metrics Exact Match and F1-score. 27

3 Adapted OTT-QA leaderboard presented at ⟨https://github.com/wenhuchen/

OTT-QA⟩ at the time of writing this document. 46

4 Baseline results for the OTT-QA validation dataset using our framework

with BM25 as the retriever. 62

5 Baseline results for the OTT-QA dataset using our framework with Tri-

encoder as the retriever . 62

6 Results for different networks and training algorithms on OTT-QA valida-

tion set using BM25. 64

7 Results for different networks and training algorithms on OTT-QA valida-

tion set using Tri-encoder. 66

LIST OF SYMBOLS

E - Expected value

L - Loss

t - Time instant in an episode

S; St; s - States of the environment.

A; At; a - Actions that the agent can perform.

R; Rt - Reward function.

T - State transition.

γ - Discount factor of future rewards.

π - Policy.

π∗ - Optimal policy.

Gt - Return.

Vπ(s) - Value function of a state

Qπ(s, a) - Value function of a state-action

δt - Temporal difference error

yi - Target update

w - Weights for the value network

θ - Weights for the policy network

ϵ - hyperparameter that determines amount of exploration for DQN

ϵ - acceptable threshold of divergence for PPO

A(s, a) - Advantage function

IDF - Inverse Document Frequency

avgdl - Average document length

α - Learning rate

qi - Keywords that are contained by a document

n(qi) - Number of documents that contain the keyword qi

f(qi, D) - Frequency of the keyword in the document D N - total number of documents

ki and b - both hyperparameters for BM25

arc - Predicted answer

ag - Golden answer

τ - selected passage

q - Question

p; pi; pi,j - Retrieved passage

bi - Blocks containing the question and retrieved passages

B - Vector with blocks bi

RI - Reader input

A1 - Action retrieve texts

A2 - Action retrieve tables

A3 - Action generate answer

eq - Embedding of the question q

ei - Embedding of the passage pi

E - Vector with embeddings eq and ei

LIST OF ACRONYMS

A2C - Advantage Actor Critic

A3C - Asynchronous Advantage Actor Critic

ARC - AI2 Reasoning Challenge

BART - Bidirectional and Auto-Regressive Transformers

BERT - Bidirectional Encoder Representations from Transformers

BLAB - BLue Amazon Brain

BM25 - Best Matching

CARP - ChAincentric Reasoning and Pre-training framework

CORE - Chain Of REasoning

COS - Chain-of-Skills

DNN - Deep Neural Networks

DPR - Dense Passage Retrieval

DQN - Deep Q-Network

DRL - Deep Reinforcement Learning

DuRePa - Dual Reader-Parser

ELECTRA - Efficiently Learning an Encoder that Classifies Token Replacements
Accurately

EM - Exact Match

ETC - Extended Transformer Construction

F1-score - F1 macro-average-score

FiD - Fusion-in-Decoder

FiE - Fusion in Encoder

GAN - Generative Adversarial Network

GPT - Generative Pre-trained Transformer

GPT-2 - Second generation Generative Pre-trained Transformer

GPT-3 - Third generation Generative Pre-trained Transformer

GRU - Gated Recurrent Unit

IDF - Inverse Document Frequency

IR - Information Retrieval

LSTM - Long Short-Term Memory

MDP - Markov Decision Process

MER - Modality-Enhanced Representation

MLM - Masked-Language Modeling

MLP - MultiLayer Perceptron

MMHN - Mixed-Modality Hard Negative

MPNet - Masked and permuted language modeling network

MSCQA - Multi-Step Coarse to Fine Question Answering

MSE - Minimum Square Error

MS MARCO - Microsoft Machine Reading Comprehension

NLP - Natural Language Processing

NQ - Natural Questions Dataset

OTTER - OpenQA Table-Text Retriever

OTT-QA - Open Table-and-Text Question Answering

PLM - Permuted Language Modeling

PPO - Proximal Policy Optimization

PTT5 - Portuguese Text-To-Text Transfer Transformer

QA - Question Answering

QA-pair - Question-Answer Pair

R3 - Reinforced Ranker-Reader

RL - Reinforcement Learning

RLHF - Reinforcement Learning with Human Feedback

RNN - Recurrent Neural Network

RoBERTa - Robustly Optimized BERT

Seq2seq - Sequence-to-sequence

SOTA - State-Of-The-Art

SQuAD - Stanford Question Answering Dataset

T5 - Text-To-Text Transfer Transformer

T0 - T5 variation for zero shot

TaPas - Table Parser

TD - Temporal Difference

TF - Term Frequency

TRPO - Trust Region Policy Optimization

USP - University of São Paulo

CONTENTS

1 Introduction 17

1.1 Objectives . 19

1.2 Organization of the dissertation . 20

1.3 Relevant Authored Publications . 20

2 Background 22

2.1 Automatic Question Answering Datasets 22

2.1.1 Open-Domain . 22

2.1.2 Open Setting . 23

2.1.3 Multi-Hop . 23

2.1.4 Open Table-and-Text Question Answering 23

2.1.5 Question Answering Evaluation Metrics 25

2.2 Neural Networks . 26

2.2.1 Long Short-Term Memory Neural Networks (LSTM) 26

2.2.2 Gated Recurrent Unit (GRU) . 28

2.2.3 Transformer Neural Networks . 28

2.3 Reinforcement Learning . 31

2.3.1 Deep Reinforcement Learning Algorithms 33

2.3.1.1 Deep-Q-Network (DQN) 33

2.3.1.2 Proximal Policy Optimization (PPO) 34

2.3.2 Available Libraries . 36

3 Related Work 38

3.1 Open-Domain and Open Setting Question Answering 38

3.1.1 Retriever . 38

3.1.2 Reader . 41

3.2 Table and Text Question Answering . 42

3.2.1 Architectures for OTT-QA . 42

3.3 Reinforcement Learning in Question Answering 45

4 Proposed Architecture 50

4.1 Initial Concepts . 50

4.2 Reward . 52

4.3 Actions . 53

4.3.1 Retriever . 53

4.3.2 Reader . 54

4.4 State/Observation . 54

4.5 Agent . 54

4.6 Environment . 55

5 Experiments 57

5.1 Baselines . 57

5.2 Training . 57

5.2.1 DQN . 58

5.2.2 PPO . 58

6 Results and Discussion 61

6.1 Baselines . 61

6.2 Deep Reinforcement Learning Agent Results 61

6.2.1 BM25 . 63

6.2.2 Tri-encoder . 65

6.3 Discussion . 65

6.4 Limitations . 67

7 Conclusion and Future Work 69

References 71

Appendix A – Published Papers 80

17

1 INTRODUCTION

Question Answering (QA) is a field dedicated to developing automated systems that

can answer questions posed in natural language. Its history dates back to 1961, with early

application noted in Green’s work on a QA system about baseball (GREEN et al., 1961).

Since then, QA has been widely used to dynamically assist human users by addressing

their queries without the need for a human teacher or specialist.

In contemporary applications, QA typically relies on labeled datasets composed of

question-answer pairs, which serve as training and evaluation resources for various mod-

els. These datasets are essential for objectively assessing and comparing the performance

of different models. As modern State-Of-The-Art (SOTA) transformer-based models

(VASWANI et al., 2017) require extensive training data, large datasets are of paramount

importance. A prominent example of a QA dataset is the Stanford Question Answer-

ing Dataset (SQuAD) (RAJPURKAR et al., 2016), where questions are associated with

supporting texts containing answers.

In real-world scenarios, QA often encounters questions without an accompanying con-

text, mirroring how humans commonly ask questions. This case is regarded as open set-

ting, wherein the answering model does not just have to comprehend the context and

reason about it but has to deduce or find the answer elsewhere. There are two primary

methods for knowledge retrieval: encoding all information within the model’s parame-

ters (parametric memory) or searching external corpora or databases (non-parametric

memory).

A specific type of QA dataset in an open setting format is a multi-hop one. Here,

finding the answer involves navigating multiple passages, because it impossible to directly

locate the answer within a single passage. Instead, the model must gather information

from various sources to reason and deduce the answer. This is important, because when

seeking information on a specific topic, one may need to follow a series of interconnected

facts and concepts to arrive at a comprehensive answer. Figure 1 shows one example of a

multi-hop question.

18

Figure 1: When asking the question q: “When was the largest public Brazilian University
founded?” one may require first identifying that the University of São Paulo (USP) is the
largest public Brazilian university and then searching for its founding date, 1934. If, for
some reason, a system retrieves an incorrect passage p′ from the corpus C in any part of
the path, it will lead to wrong answer in the end.

While textual data is the most common choice for building corpora, other sources such

as graphs (BERANT et al., 2013) and tabular data (CHEN et al., 2020) can be valuable.

The latter is particularly important because it complements textual information with

structured data, including recurring events, which can be challenging to find in pure

textual databases. Consequently, combining textual and tabular data in open domain

QA offers significant potential.

This study focuses on addressing challenges in tabular and textual QA, with emphasis

on the Open Table-and-Text Question Answering (OTT-QA) dataset (CHEN et al., 2021).

It supports open-domain questions, operates in an open setting, and involves multi-hop

answering. Due to its complexity, the current best-performing model in its leaderboard

only achieves an accuracy of 54.9% (MA et al., 2023), indicating substantial room for

improvement. In contrast, simpler datasets like SQuAD have seen transformer-based

systems achieve over 90% accuracy, surpassing human performance in 2020 (ZHANG;

YANG; ZHAO, 2020).

To tackle open setting and open-domain QA datasets, systems typically employ two

19

components: a retriever and a reader (CHEN et al., 2017; LEWIS et al., 2020b). The

retriever fetches relevant passages from a given corpus, which are then concatenated with

the question. The reader generates the final answer. This separation is essential since

parametric memory has limitations in storing vast knowledge, and the retriever can access

extensive databases like Wikipedia. Furthermore, using a retriever can mitigate possible

errors due to the information coming from a curated corpus, and it helps in interpretability

since it is possible to check the source of the information.

In multi-hop datasets like OTT-QA, a common approach is sequential retrieval, where

the system iteratively selects between textual and tabular data retrieval to find the answer.

A decision-making model is crucial for determining the optimal retrieval method and the

reader to use at each step. Reinforcement Learning (RL) is a suitable choice for this

decision-making task, as the sequence of tool/model selection depends on the evolving

information gathered (CAÇÃO; COSTA, 2023). Supervised learning is not possible due

to a lack of labeled data of the sequence of actions that the agent should make. RL can

adapt to the situation using future rewards, like comparing the final system answer to the

expected answer.

Given the extensive input space, a function approximator is necessary to reduce com-

putational costs. Deep Neural Networks (DNNs) have shown their effectiveness in learning

abstractions and generalizing, thus making Deep Reinforcement Learning (DRL) a fitting

choice for the decision-making model.

In summary, we propose an architecture tested on the OTT-QA dataset that features

a DRL-based decision maker whose responsibility is to iteratively select among various

SOTA tools (primarily retrievers and readers)1.

1.1 Objectives

This work is based on constructing a multi-hop, open-domain, and open setting QA

system using a corpus of texts and tables. Our core system leverages Deep Reinforcement

Learning (DRL) for decision-making. The goal is to enable the system to iteratively

select the most appropriate tools for sequential document retrieval, ultimately assisting

the reader in accurately answering questions.

We highlight the main objectives as follows:

1Data and code available at: ⟨https://github.com/MMenonJ/DRL QA TT⟩

20

• Our primary objective is to construct a DRL-based decision-making system that can

intelligently select from a predefined set of tools. This system aims to answer open

setting multi-hop questions about texts and tables. OTT-QA dataset was selected

as the testbed for our system, a challenging benchmark for QA tasks.

• We aim to design a system that is not bound by static tools. It should possess the

flexibility to adapt to emerging and superior technologies. Whether a more recent

reader or retrieval method becomes available, our system must be able to seamlessly

integrate such advancements.

• To ensure broad compatibility and integration with various model-free DRL algo-

rithms, we adhere to the architectural standards set forth by the GYM Python

library. By following GYM’s conventions, our system can be seamlessly combined

with different DRL frameworks (BROCKMAN et al., 2016).

This work represents a step towards building adaptable and sophisticated QA systems

that can efficiently handle multimodal complex questions.

1.2 Organization of the dissertation

This dissertation is organized as follows: in Chapter 2 we present some basic concepts

concerning Automatic Question Answering, Neural Networks, and Reinforcement Learn-

ing. In Chapter 3, some of the main works published in the area are discussed, divided

by Open Domain QA, QA over Tables and Text, and the use of Reinforcement Learning

on QA.

In Chapter 4, we present our architecture. Chapter 5 contains information about our

experiments, and we present the results in Chapter 6. Finally, we conclude our work in

Chapter 7.

1.3 Relevant Authored Publications

Throughout the master’s program, the author contributed to multiple papers within

the domains of QA and RL. In this context, we provide a brief overview of two papers that

are particularly relevant to the this work. Additional details about other contributions

can be found in Appendix A.

21

• The author took part in building an architecture called DeePagé, a system designed

to answer questions in Portuguese related to Brazil’s environment. We constructed a

corpus by collecting information from Wikipedia articles and recent news sources on

the subject. Retrieving pertinent text from this corpus was made possible through

the utilization of the classical retrieval method BM25 (ROBERTSON; ZARAGOZA,

2009). The reader was a fine-tuned PTT5 (Portuguese T5) (CARMO et al., 2020).

Our questions were derived from the Probably-Asked Questions dataset (LEWIS et

al., 2021), specifically filtered for the Brazilian environment, and then translated

from English to Portuguese using the Google Translate API. An article about that

effort was published at the “Brazilian Conference on Intelligent Systems” (BRACIS

2021) (CAÇÃO et al., 2021).

The work demanded an investigation of all the main tools available for retriever and

reader modules, which was a crucial experience for tackling open setting QA.

• In a paper presented at the “International Conference on the Computational Pro-

cessing of Portuguese” (PROPOR 2022) (JOSÉ et al., 2022), we introduced a system

to answer questions based on both text and tabular data. The architecture combines

transformers trained to answer questions based on textual data with neural models

capable of responding to database queries in natural language, often referred to as

text-to-SQL interfaces. Additionally, as there has been little effort in developing

QA tools for the Portuguese language, we targeted this language. Our proposed

architecture selects the appropriate answerer for natural-language questions using

a text classifier. We experimented with two text classifiers, a naive Bayes classi-

fier and a neural classifier based on the Portuguese pre-trained transformer network

BERTimbau (SOUZA; NOGUEIRA; LOTUFO, 2020), with the latter demonstrat-

ing superior performance.

Upon classification, questions are directed either to a neural reader-retriever model

comprised of a BM25 retriever (ROBERTSON; ZARAGOZA, 2009) and a PTT5

reader (CARMO et al., 2020) (same as DeePagé, as mentioned earlier) or to the

text-to-SQL model mRAT-SQL (ARCHANJO; COZMAN, 2021), which employs

an mT5 model (XUE et al., 2021) to generate SQL queries for obtaining answers.

This architecture’s construction revealed the question classifier’s capability to de-

termine question types with over 99% accuracy. This led to the question: “What

about questions requiring reasoning from both text and tables simultaneously?” To

address this, we decided to explore the OTT-QA multi-hop dataset, which presents

a significantly more complex challenge in bridging text and tabular information.

22

2 BACKGROUND

This chapter reviews some of the main concepts that are necessary for the under-

standing of this work. The topics covered are Automatic Question Answering Datasets,

Neural Networks, and Reinforcement Learning.

2.1 Automatic Question Answering Datasets

This section delves into key characteristics of Question Answering QA that are pre-

sented in this work such as: open-domain, open setting, and multi-hop.

2.1.1 Open-Domain

Closed-domain datasets confine their questions to specific domains, such as PUBMED-

QA (JIN et al., 2019) and MIMICSQL (WANG; SHI; REDDY, 2020), which are centered

around biomedicine, or Pirá (PASCHOAL et al., 2021), which pertains to the Brazil’s

maritime coast. In contrast, open-domain datasets encompass questions on a wide array

of topics without such constraints.

There are many different open-domain datasets. Some of the more famous are Nat-

ural Questions (NQ) (KWIATKOWSKI et al., 2019), and Microsoft Machine Reading

Comprehension (MS MARCO) (NGUYEN et al., 2016). The first consists of questions

anonymized from search queries of users of the Google Search platform, while MS MARCO

is derived from Bing. One of their significant advantages is that they are based on actual

questions that people ask, unlike other artificially created datasets. Ultimately, human

editors wrote down answers to each question using retrieved passages from Wikipedia for

NQ and web pages for MS MARCO.

23

2.1.2 Open Setting

As there is no consensus on how to define this type of dataset, we use the terminology

employed in the OTT-QA paper (CHEN et al., 2021); an open setting QA dataset means

that the questions are not accompanied by a text, table, or image that contains the answer.

This implies that an open setting question does not require additional context to convey

its intended meaning. An open set question, such as “What was the mean temperature

of Brazil in March 2019?” contains adequate information within itself to be answered.

One example of a multiple-choice, open-domain and open setting dataset is the AI2

Reasoning Challenge (ARC) (CLARK et al., 2018), with questions about science. It

comes with a corpus, and to answer its questions correctly, one must retrieve the correct

passages and reason about them.

2.1.3 Multi-Hop

Multi-hop question answering requires a more intricate retrieval process as compared

to standard QA. Here it is necessary to traverse through multiple passages before reaching

the text that holds the answer. This requires iterative retrieval methods, where informa-

tion gathered in one text implicitly indicates where to find the next passage, continuing

until the answer is located.

HotpotQA is a multi-hop dataset built using Wikipedia hyperlinks between articles

(YANG et al., 2018). The questions in this dataset were crafted to exploit multiple

connections between texts, ensuring that the answerer must hop between these passages

to ultimately recover the final answer. Obtaining the conclusive response to a question is

only possible by effectively accumulating knowledge from the intermediary passages. One

QA-pair highlighting the sequential nature of a multi-hop QA dataset is shown in Figure

2.

2.1.4 Open Table-and-Text Question Answering

Numerous question-answering datasets and architectures are designed to address ques-

tions that require understanding textual information, such as SQuAD, NQ, MSMARCO,

HotpotQA, or tabular data, as MIMICSQL exemplifies. However, there has been a

scarcity of resources capable of handling both text and tables simultaneously. To bridge

this gap, HybridQA was introduced as a closed-domain multi-hop multimodal question-

answering dataset (CHEN et al., 2020). In HybridQA, each question is accompanied by a

24

Figure 2: QA-pair example taken from hotptQA (YANG et al., 2018). This question
asks about an athlete who won a gold medal in the Winter Olympics, but it is impossible
to find this information directly in a single passage. Firstly, it is necessary to get the
athlete’s name by searching the information (in pink) “the first woman to be the chef de
mission of an Australian Olympic team” and the first passage found contains the name
(in yellow) “Alisa Camplin”. With this data, one can find the second passage that has the
information about the gold medal won (in green) and the corresponding Winter Olympics
(in blue). Reasoning about the question and both passages, it is possible to generate the
answer “2022 Winter Olympics”.

table and multiple passages, and generating an answer necessitates the utilization of the

combination of several of these sources. The dataset was built in three steps: firstly, 13000

different tables with corresponding passages and appropriate sizes were gathered from

Wikipedia (the passages were retrieved using Wikipedia’s hyperlink structure). Then,

human annotators constructed QA-pairs that required two or more steps over the infor-

mation in the table and passage. Finally, a de-biasing stage was implemented to mitigate

potential annotator biases, such as favoring information from the top of the table or from

the beginning of the passages.

Open Table-and-Text Question Answering (OTT-QA) (CHEN et al., 2021) is an En-

glish dataset with 45841 QA pairs built over HybridQA. The core aim behind OTT-QA

was to create an open-domain, open setting dataset that combined both text and tabular

information while simultaneously enhancing the complexity of the task. The first step

in the construction of OTT-QA was the “decontextualization” of the questions, meaning

that all the answers can be determined from the question alone. Then, new QA pairs

were introduced for the development and testing phases to minimize potential bias in the

evaluation process. The dataset has an accompanying corpus of tables and texts with

answers for every question, so that the QA system can find them. One example of a

QA-pair is shown in Figure 3.

25

Figure 3: QA-pair example taken from OTT-QA (CHEN et al., 2021). This question asks
who created the series in which the character Robert appeared. To accurately answer
this question, one must locate the relevant table labeled “Nonso Anozie” (highlighted
in pink) and identify the cell that contain “Prime Suspect” (highlighted in yellow) by
referencing the role “Robert” (highlighted in green). With this information, it is possible
to retrieve the associated text, which reveals the creator of the movie was “Lynda La
Plante” (highlighted in blue). Importantly, it should be noted that the table and the
passage were not directly provided with the question but were instead gathered through
information retrieval.

Table 1 shows a comparison between QA datasets mentioned in this section.

2.1.5 Question Answering Evaluation Metrics

This study aims to assess the performance of Table-and-Text Question Answering

(QA) systems through the utilization of two widely recognized QA evaluation metrics:

Exact Match (EM) and Macro Average F1-score. These metrics, popularized by the

SQuAD dataset, are among the most commonly employed benchmarks in the field of

Natural Language Processing (NLP). Additionally, they are featured on the leaderboard

of OTT-QA, our testbed.

• Exact Match: measures the percentage of the predicted answers that are exactly

equal to the golden answers.

• Macro Average F1-score: measures the overlap between the predicted and the

golden answers. The precision is calculated as the ratio of shared words between

the golden and prediction answers over the total number of prediction words. The

recall is the ratio of shared words over the number of words in the golden answer.

26

Open-
Domain

Created using
free queries

Open
Setting

Multi-
hop

Tables

SQuAD X

ARC X X X

MSMARCO X X X

NQ X X X

HotpotQA X X X

PUBMED-QA

Pirá X

MIMICSQL X

HybridQA X X X

OTT-QA X X X X

Table 1: This table presents the main differences between the datasets mentioned. An
open-domain dataset can have questions about any subject. NQ and MSMARCO were
created using queries from Google and Bing, respectively. In ARC, the questions were
made using scientific knowledge. The questions in the other datasets were developed by
directly looking at passages. Open setting datasets have questions that do not need an
accompanying context and could be answered freely. Multi-hop questions require more
than one passage in the corpus to be answered effectively. Finally, tables indicate the
datasets that require some form of table manipulation to find the answer.

The F1-score is then determined by

F1 = 2 ∗ precision ∗ recall
precision + recall

.

The final metric is the average value of all the F1-scores for all QA pairs.

Table 2 illustrates the use of both metrics, as well as some of their advantages and

limitations. Although one metric can be better depending on the context, they are both

deeply flawed because they only match strings and do not consider any meaning.

2.2 Neural Networks

This section covers all the networks used or mentioned in this work.

2.2.1 Long Short-Term Memory Neural Networks (LSTM)

Long Short-Term Memory (LSTM) is a type of Recurrent Neural Network (RNN)

(HOCHREITER; SCHMIDHUBER, 1997) that has been widely used in many different

27

True
Answer

Predicted
Answer

Exact
Match

F1-score Notes

University
of São
Paulo

University
of São
Paulo

100 100 The true and predicted answers are
the same. Therefore, both metrics

gave perfect scores.

Two 2 0 0 This example shows that even if the
predicted answer is correct as ‘2”

and “Two” have the same meaning,
the metrics can only match strings.

São Paulo Brazil 0 0 If the question “Where is the
University of São Paulo located?”

the model could answer Brazil,
which is technically correct.

However, both metrics returned
zero since the strings do not match.

27 people 27 0 66.7 This is one of the advantages of
using F1-score instead of EM. The
model answered correctly, but EM
returns 0 since the strings are not

identical. F1-score detects that
“27” is present on both strings and

assesses that at least part of the
answer is correct.

University
of

Campinas

University
of São
Paulo

0 57.1 This case shows that the F1-score
may be fooled by coinciding words

in distinct answers, and for this
reason, may overestimate the score.

Table 2: Examples for the metrics Exact Match and F1-score.

28

applications. LSTMs are engineered to effectively handle sequences of varying lengths by

employing an encoder for input sequences and a decoder for generating output. These

encoder-decoder networks are also known as sequence-to-sequence (seq2seq) models.

One of the significant advances of LSTM networks is that they suffer relatively fewer

problems of vanishing gradients. In a vanilla RNN, the gradient update tends to be

small in the earlier layers, resulting in poor training. RNNs may forget the beginning of

long input sequences; therefore, they only have short-term memory (BENGIO; SIMARD;

FRASCONI, 1994). In contrast, LSTMs use three different gates that control the amount

of information passed in and out of each cell, meaning that the network learns what part

of the input sequence is important to keep and what can be forgotten.

2.2.2 Gated Recurrent Unit (GRU)

A Gated Recurrent Unit (GRU) (CHO et al., 2014) is a type of RNN that is very

similar to LSTM but has two gates (reset and update gates) instead of the three gates.

As it has a relatively straightforward structure, it is less computationally expensive than

LSTMs, and, even with the same number of parameters, it can outperform LSTMs on some

datasets in terms of convergence time, parameter updates, and generalization (CHUNG

et al., 2014).

2.2.3 Transformer Neural Networks

Transformer neural networks, presented by Vaswani (VASWANI et al., 2017), are

another milestone in sequence-to-sequence neural network architectures. These networks

have seen widespread applications across various fields, with a significant impact in NLP.

Consider the SQuAD dataset mentioned before (RAJPURKAR et al., 2016): transformers

have achieved state-of-the-art performance, with accuracy rates surging from around 70%

in 2018 to over 90% in 2020, as reported in Zhang, Yang and Zhao (2020) work, thus

surpassing human performance.

Unlike RNNs, transformer networks utilize a self-attention mechanism, which differ-

entially weighs the significance of each component in the input sequence. This addresses

a key limitation of sequential processing, as it allows transformer networks to consider

all components simultaneously, preventing the network from forgetting distant elements.

Additionally, this self-attention mechanism can be parallelized, leading to significantly

faster computation.

29

Transformer networks follow a two-step process akin to language learning, beginning

with self-supervised learning techniques in pre-training, followed by fine-tuning for specific

tasks. A common pre-training strategy involves Masked-Language Modeling (MLM),

wherein the network learns to predict masked words in a given context. For example, for

the sentence “I finished [MASK] a book yesterday”, the network is trained to predict the

masked word, which, in this case, might be “reading”.

While there are many different pre-trained transformer networks, we describe here

the ones that are the most relevant for this dissertation:

Encoder models:

• BERT: One of the most famous pre-trained transformer neural networks is the

Bidirectional Encoder Representations from Transformers (BERT) (DEVLIN et al.,

2019). BERT is an encoder network that reads the entire input sequence at once

and not sequentially from just left to right. This property allows a better awareness

of the whole surroundings of a word, thus improving context awareness.

• RoBERTa: Robustly Optimized BERT (RoBERTa) (LIU et al., 2019) is an im-

proved version of BERT with key differences: it underwent more extensive training

with larger batch size, used more data, employed longer sequences in the Masked

Language Model (MLM) task, and introduced dynamic MLM, which randomizes

masked data preprocessing for more varied training.

• ELECTRA: Efficiently Learning an Encoder that Classifies Token Replacements

Accurately (ELECTRA) (CLARK et al., 2020) is an encoder transformer network

that is not trained using MLM token prediction but rather by training a discrim-

inative model that predicts whether a generator replaced each token. This means

that instead of passing the sentence “I finished [MASK] a book yesterday” and re-

questing what word would fit, it would send a “corrupted” like “I finished watching

a book yesterday” and requiring the model to correctly predicting that “watching”

was not the original word in the corpus. This adversarial training style resembles

the discriminator of a Generative Adversarial Network (GAN) (GOODFELLOW et

al., 2014).

• MPNET: Masked and permuted language modeling network (MPNET) is another

encoder network proposed by Song et al. (2020) that proposes a novel pre-training

method. It is based on BERT, however, since the MLM training does not consider

dependency between tokens, it is pre-trained incorporating ideas from the Permuted

30

Language Modeling (PLM) (YANG et al., 2019).

• ETC: One of the main difficulties of using transformer neural networks is the

quadratic computational complexity with respect to the input size. With this in

mind, Ainslie et al. (2020) created the encoder model Extended Transformer Con-

struction (ETC) by introducing the global-local attention, which divides the input

sentence into global input and the long input. This technique reduces the complexity

and allows the use of bigger inputs.

• Longformer: Similar to ETC, Longformer (BELTAGY; PETERS; COHAN, 2020)

is an encoder transformers network (there is also a sequence-to-sequence Longformer

variant, but in the context of this manuscript, we will refer to Longformer as the

encoder version) that uses a different strategy attention strategy to allow more

extensive input texts. Instead of using the standard self-attention, the authors

proposed an attention mechanism that scales linearly with sequence length that

combines local windowed attention with task-specific global attention, enabling the

processing of longer input texts efficiently.

Decoder models:

• GPT-2: Second generation Generative Pre-trained Transformer (GPT-2) (RAD-

FORD et al., 2019) is an unidirectional decoder network that can perform many

different text generation tasks. It has approximately ten times more parameters

than its predecessor GPT-1 (RADFORD et al., 2018), and trained in a much larger

dataset than his predecessor.

• GPT-3: (BROWN et al., 2020) is the third generation of GPT models and is a

decoder transformer with approximately 175 billion parameters. The authors also

evaluated it in several tasks using only few-shot learning: in this setting, GPT-3

achieved SOTA performance even without direct fine-tuning.

Encoder-Decoder models:

• BART: (Bidirectional and Auto-Regressive Transformers) (LEWIS et al., 2020a) is

an encoder-decoder network architecture with a bidirectional encoder (like BERT)

and a left-to-right decoder (like GPT). It is pre-trained using denoising techniques:

a noised/corrupted input sentence is fed to the model, and it has to reconstruct

the original text. Various corruption methods were tested: token masking (as in

BERT), token deletion, text infilling, sentence permutation, and document rotation.

31

• T5: Text-To-Text Transfer Transformer (T5) (RAFFEL et al., 2020) is also an

encoder-decoder transformers network that is pre-trained in multiple tasks in a

text-to-text setup. It can work in different tasks with the same network by just

changing the prefix, like summarization and translation.

• T0 (SANH et al., 2022) is a model based on the architecture of T5; however, it

distinguishes itself by being designed explicitly for zero-shot tasks. The researchers

conducting this study have demonstrated that through explicit training on a diverse

range of tasks, a technique known as multitask learning, the model can be induced

to exhibit zero-shot generalization. In other words, it can perform tasks for which

it was not originally trained.

The most widely used Python library for working with transformer networks and

their applications is the Transformers library maintained by the HuggingFace team.1

This library provides APIs to download SOTA transformers models in various languages

and contains code for training networks. It offers a wide range of off-the-shelf models

for different applications, including text, images, and audio, and including all the models

used in this work.

2.3 Reinforcement Learning

Reinforcement Learning (RL) is a key machine learning paradigm, alongside super-

vised and unsupervised learning, in which an agent takes actions to maximize cumulative

rewards within an environment. Unlike supervised learning, there is no need for labeled

data; instead, in RL, the only intervention is assigning a scalar reward value, either posi-

tive or negative, for each interaction. The concept of learning in RL comes from the agent’s

desire to explore the environment in a way that generalizes into intelligent behavior. This

process is illustrated in Figure 4.

The agent-environment interaction loop can be described by a Markov Decision Pro-

cess (MDP), defined as a tuple (S,A,R, T, γ) (SUTTON; BARTO, 2018), where:

• S: represents the states of the environment in which the agent can be placed.

• A: corresponds to the actions that the agent can perform.

• R: is the reward function.

1Available here: ⟨https://huggingface.co/docs/transformers/index⟩

32

Figure 4: The basic loop of Reinforcement Learning: an agent interacts with the environ-
ment, obtains a reward, and changes the environment as a result of the action. Adaptated
from Sutton and Barto (2018).

• T : is the state transition.

• γ: is the discount factor of future rewards. It is a scalar value between zero and one

that determines the importance of future rewards.

The agent’s objective is to find an optimal policy, denoted as π∗, which prescribes the

best action for each state. Optimality is defined as maximization of the expected value of

the return function, which sums up the discounted future rewards. For a timestep t, and

the reward Ri, the return is defined as:

Gt =
∞∑
k=0

γkRt+k+1. (2.1)

The expected return for a given policy is captured by the value function. For a state

s, it is expressed as

Vπ(s) = E[Gt|St = s], (2.2)

or, for the state-action pair,

Qπ(s, a) = E[Gt|St = s, At = a]. (2.3)

Temporal Difference (TD) learning is a key concept in Reinforcement Learning. It

enables agents to update their value estimates continually as they explore the environment.

They take into account the immediate rewards and the expected value of the subsequent

state instead of the return, incorporating the bootstrapping concepts. The TD error

quantifies the difference between the predicted value of a state or state-action pair and

the observed reward. For a state-value function (V), the TD error formula is as follows:

δt = Rt+1 + γV (St+1)− V (St), (2.4)

33

and the agent adjusts its value estimates by reducing the TD error through learning and

exploration.

When compared to other types of learning, RL can be thought as being based on trial

and error. This allows the learning process to be carried out somewhat autonomously and

without direct supervision. As the discounted rewards obtained are accumulated over an

entire episode, the agent is trained to consider future states; actions with low rewards in

the present may bring higher rewards in the future, and vice versa. The capacity to learn

through exploration and experimentation endows the agent with adaptability, enabling

it to adjust to novel tasks and excel in unforeseen scenarios, extending beyond the scope

originally envisaged by the programmer.

However, tabular RL has faced difficulties in scaling to more complex tasks. The

“curse of dimensionality”, coined by Bellman (BELLMAN, 1957), highlights the com-

putational difficulties that arise due to high-dimensional input data. To mitigate these

challenges, various function approximators have been explored to replace tabular storage

and reduce the computational costs. Deep Reinforcement Learning (DRL) utilizes deep

neural networks as such function approximator.

2.3.1 Deep Reinforcement Learning Algorithms

Two DRL algorithms were used in our work. We explain them below.

2.3.1.1 Deep-Q-Network (DQN)

One of the most famous RL algorithms is Q-Learning proposed by Watkins and Dayan

(1992). Its main idea is to make the update for the value of the state-action pair by

approximating π∗ taking into consideration the maximum value of all possible future

actions and not what the agent actually took as action. The update is done as follows:

Q(St, At)← Q(St, At) + α[Rt+1 + γ max
a

Q(St+1, a)−Q(St, At)]. (2.5)

To balance exploration and exploitation, Q-Learning employs the ϵ-greedy policy.

This policy is determined by the probability of action a:

π(a|s) =

1− ϵ + ϵ
|A(s)| , if a = arg maxa′ Q(a′, s)

+ ϵ
|A(s)| for every other a

(2.6)

where ϵ is an hyperparameter with values between 0 and 1 and |A(s)| is the number of

34

actions for a given state s. The main idea is that the bigger ϵ, the more the agent will

explore and, therefore, will exploit less what has already been learned.

Mnih et al. (2013) built upon Q-Learning to create Deep Q-network (DQN) using a

neural network with weights w as a function approximator. However, transitioning from a

Q-table to a neural network presented new challenges, primarily related to stability. The

first challenge that was addressed was that training is sequential, following a particular

trajectory, which may lead to forgetting of the others. To solve this issue, they utilized

an experience replay, which stored past transitions. Instead of training just with the last

transition, the training occurred by randomly sampling a minibatch of stored transitions.

In 2015, further improvements were made to the DQN by Mnih et al. (2015) to solve

another issue: the training target depends on the network that is being trained, leading

to instability. They introduced the concept of a target network with separate weights w′,

a copy of the Q-network that is only updated periodically. The updates of the Q-network

followed the target network, reducing instability. The target update is given by:

yi = ri + γ max
a′

Q(s′i, a
′, w′), (2.7)

and the loss to make the updates is the Mean Squared Error (MSE) with respect to the

target, given a minibatch with size N :

L(w) =
1

N

∑
i

(Q(si, ai, w)− yi)
2. (2.8)

Using the loss above, the updates on the network follow the gradient descent opti-

mization. The pseudo-code for DQN is shown in Algorithm 1.

2.3.1.2 Proximal Policy Optimization (PPO)

Unlike value-based methods that optimize a value network and generalize a policy

from it, policy gradient methods optimize a policy network directly. Williams (1992)

described the REINFORCE method, which applies gradient ascent optimization to the

policy network in the direction that maximizes the return Gt:

L(θ) = Gt
π(a|s, θ)

π(a|s, θold)
, (2.9)

where π(a|s, θ) indicate the policy given the weights θ and state s.

Actor-critic methods combine both policy gradient methods with value-based methods

using two neural networks. Mnih et al. (2016) developed the Asynchronous Advantage

35

Algorithm 1: Deep Q-Network (DQN)

Environment with states S, actions A, and reward function R
Initialize Q-network with random weights w
Initialize Replay memory D
Initialize Target Q-network with weights w′ Parameters: ϵ-greedy exploration,
learning rate α, discount factor γ, target network update rate C
while not converged do

Observe current state s
Choose action a using ϵ-greedy policy based on Q(s, a, w)
Execute action a, observe reward r and new state s′

Store transition (s, a, r, s′) in D
Sample mini-batch from D
Compute target values: yi = ri + γ maxa′ Q

′(s′i, a
′, w′)

Update the weights w of the Q-network with gradient descent on:
L(w) = 1

N

∑
i(Q(si, ai, w)− yi)

2

Every C steps, update the target Q-network: w′ ← w
end while

Actor-Critic (A3C) algorithm, that uses an advantage function in place of Gt, defined as:

A(s, a) = Rt+1 + γV (St+1, w)− V (St, w). (2.10)

The use of the advantage, instead of the return, has two benefits. First, bootstrapping

can be more effective. Second, instead of the absolute value of a state-action pair, the

advantage can precisely represent how one action compares to just following the policy.

Trust Region Policy Optimization (TRPO), presented by Schulman et al. (2015),

makes similar updates as A3C to the policy network but adds constraints to limit the size

of the updates. This is done to improve stability, as a single bad step or overshoot will

not have an excessive impact on the network.

However, since TRPO requires expensive computation, Proximal Policy Optimization

(PPO), proposed by Schulman et al. (2017), serves as a simpler alternative for limiting

the updates:

L(θ) = min

(
π(a|s, θ)

π(a|s, θold)
A(s, a), clip

(
π(a|s, θ)

π(a|s, θold)
, 1− ϵ, 1 + ϵ

)
A(s, a)

)
. (2.11)

Here, ϵ is a small hyperparameter that limits how far the new policy is allowed to deviate

from the old one. Note that this ϵ is not the same as the one used in Q-Learning or DQN.

The main idea behind PPO is to prevent significant updates, as L(θ) is clipped on both

the positive and negative boundaries.

The pseudo-code for PPO is shown in Algorithm 2.

36

Algorithm 2: Proximal Policy Optimization (PPO)

Environment with states S, actions A, and reward function R
Initialize V-network with random weights w
Initialize Policy network with weights θ Parameters: Clip parameter ϵ, learning
rate α, discount factor γ
while not converged do

Collect a batch of trajectories using policy πθ

Compute advantages A(s, a) = Rt+1 + γV (s′, w)− V (s, w)
for each epoch do

Compute surrogate objective:

L(θ) = min

(
π(a|s, θ)

π(a|s, θold)
A(s, a), clip

(
π(a|s, θ)

π(a|s, θold)
, 1− ϵ, 1 + ϵ

)
A(s, a)

)
Update the weights θ policy network with gradient ascent on L(θ)
Update value function V (s, w) using mean squared error

end for
Update old policy: θold ← θ

end while

While DQN may be more sample-efficient than PPO in most cases due to its use of

batching and experience replay (which store past experiences and make constant updates

based on that), PPO is usually more stable and easier to converge.

2.3.2 Available Libraries

DRL applications are divided into two systems: the agent and the environment. The

first performs actions and learns to maximize the discounted cumulative rewards by in-

teracting with the latter.

A prevalent approach for implementing the environment is by constructing a gym-like

environment. This is achieved through the utilization of OpenAI Gym (BROCKMAN et

al., 2016)2, a comprehensive open-source Python library. OpenAI Gym provides a robust

framework, including valuable wrappers and standardization, facilitating the development

and experimentation of various reinforcement learning algorithms.

The primary motivation for adopting a gym-like environment is to ensure compati-

bility with various Python libraries equipped with built-in agents. In this context, our

emphasis is on Stable-Baselines3 (RAFFIN et al., 2021) 3, an open-source framework that

offers efficient implementations of state-of-the-art R) algorithms. Notable examples in-

2https://gym.openai.com/
3https://stable-baselines3.readthedocs.io/en/master/

37

clude DQN, PPO, and the Advantage Actor Critic (A2C) (MNIH et al., 2016), which is

a synchronous variant of the A3C.

38

3 RELATED WORK

This chapter discusses important previous works, starting with open-domain and open

setting QA and discussing relevant modules. We then review Tables and Texts Question

Answering and noteworthy publications concerning OTT-QA. To conclude, we examine

proposals using RL to tackle QA challenges.

3.1 Open-Domain and Open Setting Question An-

swering

One of the most interesting tasks in automatic QA is the open-domain and open

setting task. In this case, the system only receives a question and has to deduce or search

in a corpus for the answer. Question Answering systems usually resort to two blocks:

a retriever and a reader (as illustrated in Figure 5). The retriever’s role is to search

the corpus for relevant texts and passages while the reader processes this information to

generate an appropriate answer. Some proposals employ neural transformers in both the

retriever and the reader (LEWIS et al., 2020b; GUU et al., 2020), while others opt for

keyword-based models for the retriever (CHEN et al., 2017; CAÇÃO et al., 2021).

3.1.1 Retriever

One of the most widely used keyword-based retriever models in QA is BM25 (ROBERT-

SON; ZARAGOZA, 2009), which ranks the passages based on matching the words on the

passages of the corpus to the question. BM25 is an improvement over TF-IDF (Term Fre-

quency–Inverse Document Fequency), as it incorporates document length normalization.

This means that a smaller document will be ranked higher than a lengthier document

with the same matched words. It ranks the pages using the formula of the score, being D

the Document and Q the question:

39

Figure 5: Neural Question Answering Reasoner using the retriever-reader architecture.
Source: authors, taken from José et al. (2022).

score(D, q) =
n∑

i=1

IDF (qi) ∗
f(qi, D) ∗ (ki + 1)

f(qi, D) + k1 ∗ (1− b + b ∗ |D|
avgdl

)
, (3.1)

where avgdl is the average document length. IDF is the inverse document frequency of

the keyword compared to the entire corpus calculated by the formula:

IDF (qi) = ln

(
N − n(qi + 0.5)

n(qi) + 0.5
+ 1

)
, (3.2)

where:

• qi: is any keyword that the document contains.

• n(qi): is the number of documents that contain the keyword qi.

• f(qi, D): is the frequency of the keyword in the document D

• N : is the total number of documents.

• ki and b: are both hyperparameters.

However, relying solely on keyword matching introduces two challenges: a lack of

contextual understanding and the inability to identify synonymous words. For the first

case, imagine the phrase “I did not eat the cake, I only ate the pizza” in contrast to “I did

not eat the pizza, I only ate the cake”. Both have opposite meanings, but for BM25, they

are a perfect match. For the second problem, some words may not match, even though

they are synonyms like “terrible” and “horrible”.

Dense Passage Retrieval (DPR) (KARPUKHIN et al., 2020) can be described as a

cornerstone of transformers neural retrievers for text in QA. It was developed to diminish

problems indicated in the previous paragraph, as DPR’s idea is to rank passages based

on their meaning rather than just keywords. The architecture is depicted in Figure 6.

DPR consists of two BERT models, one for the passages and one for the questions. Both

40

Figure 6: Architecture of the “Dense Passage Retrieval” by Karpukhin et al. (2020).

networks are trained jointly to approximate the dense vector representation of the golden

passage (passage which contains the answer) and the question, using the dot product as

a similarity function. By contrast, there is also the training using hard negative passages

(passages that does not contain the answer) but diminishing the proximity. The intuition

is if the passage contains the answer, the closer the resulting dense vector should be to

the question.

The training of the networks uses the loss function L for a question qi, golden passage

p+i and hard negative passages p−i,n:

L(qi, p
+
i , p

−
i,1, ..., p

−
i,n) = −log esim(qi,p

+
i)

esim(qi,p
+
i) +

∑n
j=1 e

sim(qi,p
−
i,j)

. (3.3)

It is noteworthy that DPR often surpasses BM25 in terms of performance. While

BM25 shines when answers precisely match the keywords in the question, DPR offers

advantages in scenarios where exact keyword matching is not the sole determinant of

success.

One potential drawback of DPR is its strong association with Wikipedia-based train-

ing datasets. Fine-tuning is often necessary for diverse domains, incurring computational

costs. In contrast, BM25 does not require such domain-specific adjustments, making it a

more straightforward choice for certain applications.

41

Figure 7: Comparison of a generic encoder-decoder transformers reader and Fusion-in-
Decoder by Izacard and Grave (2021). The former concatenates the text of the question
and all passages, while the latter processes each passage with the question individually in
the encoder first and then concatenates the resulting vectors for the decoder.

3.1.2 Reader

State-of-the-art reader models are typically fine-tuned neural transformer networks.

These models usually receive a concatenated input of the question and the passages re-

trieved by the retriever and are designed to generate answers. Some architectures utilize

an encoder model for the reader, like BERT (GUU et al., 2020), in which the predicted

answer is a substring of the retrieved passages. Others utilize encoder-decoder models

treating the problem as a text-to-text task, like T5(KHASHABI et al., 2020), PTT5 or

Portuguese T5 (CAÇÃO et al., 2021), and BART (LEWIS et al., 2020b).

Another reader that is getting attention is the Fusion-in-Decoder (IZACARD; GRAVE,

2021). Instead of simply concatenating the question with all retrieved passages into a sin-

gle text and using an encoder-decoder network directly, this system processes each passage

independently in the encoder and then concatenates the resulting vectors as input to the

decoder, as shown in Figure 7. The main advantage of this approach is the ability to

process a larger number of documents efficiently. The self-attention mechanism is applied

to each passage independently, reducing computational costs and enabling more focused

information gathering without significantly losing critical details.

Similarly, Fusion in Encoder (FiE) (KEDIA; ZAIDI; LEE, 2022) is an architecture

that allows the fusion of information from multiple passages in the encoder rather than

the decoder. FiE creates a global representation and performs cross-sample attention

42

over all tokens across different samples. The authors have also proposed an alternative

approach for calculating answer span probability to consider all passages effectively. This

design enables the incorporation of multiple passages without dealing with the challenges

of handling extensive concatenated inputs. FiE has achieved state-of-the-art performance

on datasets such as NQ, even with a comparatively smaller and non-generative model.

3.2 Table and Text Question Answering

As previously discussed, accessing a wide range of databases and tables can signifi-

cantly enhance a model’s performance. An illustrative example is found in the landmark

work on the Watson engine by Ferrucci et al. (2010), where a question is input to an

ensemble of predictors. Their confidence scores play a pivotal role in determining which

answer, if any, to return.

To solve the HybridQA dataset, its authors proposed Hybrider (CHEN et al., 2020).

The architecture consists of two main phases: Linking and Reasoning. In the Linking

phase, Hybrider links questions to related cells from two sources - explicitly mentioned cells

in the question and implicitly mentioned cells via hyperlinked passages. The Reasoning

phase models multi-hop reasoning in the table and passage using three stages: Ranking,

Hop, and Reading Comprehension. The architecture leverages neural networks and a

BERT encoder to make predictions and select relevant cells, hop to neighboring cells, and

extract answers.

In Chapter 2, we explored many transformer models that deal with textual data.

Table Parser (TaPas) (HERZIG et al., 2020) is another transformer neural network, but

designed and pre-trained using tables and related text segments from Wikipedia. TaPas

has been evaluated across a wide range of tasks involving tables and text; notably, in the

HybridQA dataset, it has demonstrated one of the best results to date.

3.2.1 Architectures for OTT-QA

The authors of OTT-QA (CHEN et al., 2021) presented a variety of solutions, which

we will now discuss. The first solution, known as “BM25-HYBRIDER” serves as a baseline

for OTT-QA. It involves retrieving the top 1, 2, 3, or 4 texts or tables from the corpus

using the BM25 algorithm. These combinations of retrieved texts or tables (from 1 to 4)

are then input to the hybrider reader mentioned in the previous section, and the answer

selected was the one with the highest confidence interval. However, this approach is

43

somewhat simplistic as it does not consider that the reader was originally trained for the

closed setting of HybridQA. Furthermore, it does not actively seek passages addressing

the multi-hop problem since the query is only based on the question.

The second solution we will discuss is the “Iterative-Retrieval + Cross-Block Reader”,

which features two iterative retriever variations:

• Sparse: This variant employs BM25 to retrieve 10 text passages and 10 table seg-

ments. For each retrieved text passage, it further retrieves 5 table segments using

the concatenation of the question with each retrieved text passage, and vice-versa

for each table segment.

• Dense: In this approach, a model resembling DPR is used for retrieval. It starts by

searching for 8 text or table passages. For each of these 8 passages, it searches for

4 more passages, and for each of those 8 blocks (concatenation of the question with

5 passages), it conducts an additional search for 2 passages.

The retrieved passages are then fed to the Cross-Block Reader, which is a finetuned ETC,

generating the answer.

The authors also introduced a novel solution called the “Fusion Retriever + Cross-

Block Reader” which demonstrated improved performance compared to the previous one.

This approach first combines tables and text into blocks by linking them with BM25 and

enhancing queries through GPT-2. The Fusion Retriever is a dual-encoder setup, based on

DPR, that retrieves k blocks based on their similarity to the question while maintaining

the same Cross-Block Reader to generate the answer.

Other techniques have also been tested in OTT-QA, like the work of Li et al. (2021),

which proposes a Retriever-Reader system and a Joint Reranking model known as DuRePa.

The Retriever component utilizes BM25 to select 100 textual and 100 table passages rele-

vant to the question. These passages are then fed into the Joint Reranking model, which

employs a BERT-based architecture to assign scores to each passage, ultimately selecting

the top 50 passages. The Reader component, based on a Fusion-in-Decoder approach

with T5, determines whether the answer relies on a table, in which case it generates a

SQL query, or if it is text-based, the model generates the final response.

It is worth noting that while DuRePa has demonstrated impressive results in other

datasets, it falls short of achieving SOTA performance in the context of OTT-QA. This

limitation is attributed to its non-iterative retrieval approach, which solely relies on

44

question keywords and lacks multi-hop capability. Furthermore, the Reader is primar-

ily trained to locate answers within either textual or tabular data and does not effectively

link both information sources. Nevertheless, the application of Joint Reranking can en-

hance the performance of a retrieve+reader model in OTT-QA.

The ChAincentric Reasoning and Pre-training framework (CARP) (ZHONG et al.,

2022) incorporates an innovative approach for building text and passage blocks by utiliz-

ing early fusion techniques. This process involves employing a BERT model to establish

entity links known as BLINK (PARTALIDOU; CHRISTOU; TSOUMAKAS, 2022), while

a DPR, trained from RoBERTa, serves as the retriever for searching these blocks. Subse-

quently, CARP employs a Hybrid chain extractor, which is based on BART, to identify

and extract links of knowledge. CARP’s reader, based on Longformer, then leverages the

assembled text blocks and knowledge chains to generate the answer.

OpenQA Table-Text Retriever (OTTER) (HUANG et al., 2022) is another QA system

tested on the OTT-QA dataset that utilizes an early fusion method equal to CARP, and

the Cross-Block Reader from OTT-QA’s original paper. However, it makes significant

improvements in the retriever. First, it enhances mixed-modality representation learn-

ing through modality-enhanced representation (MER) and mixed-modality hard negative

sampling (MMHN). MER enriches the semantics by incorporating fine-grained representa-

tions of both tabular and textual data. MMHN, on the other hand, generates challenging

hard negatives by substituting partial information within tables or texts to encourage

better discrimination of relevant evidence. To overcome the data sparsity problem, the

authors implement retrieval-centric mixed-modality synthetic pre-training. This involves

constructing a large-scale synthesized corpus through mining relevant table-text pairs and

generating pseudo questions using a BART model.

The CORE (Chain Of REasoning) QA system employs a retriever-reader architecture

but includes two intermediary components, the Linker and the Chainer (MA et al., 2022).

The retriever is built on DPR and is responsible for retrieving 100 tables from the corpus.

Subsequently, a Linker system based on BERT models retrieves passages from the corpus

based on the rows obtained from the retrieved tables. However, since the linker can

provide an excessive amount of information for the reader to process, the Chainer’s role

is to select the top 50 chains (table row and text passage), which consist of a table row

and a corresponding text passage. The Chainer accomplishes this task by employing a

T0 network in a zero-shot manner. It assesses the probabilities of the model generating

a question based on specific text passages and table rows (the higher the probability of

that question being generated, the higher the rank of the chain). Finally, to answer the

45

question, the system uses a FiD model, which relies on the information curated by the

Chainer.

Chain-of-Skills (COS) (MA et al., 2023) is, at the moment of writing, the architecture

that achieves the best performance on OTT-QA. Drawing inspiration from the sparse

Transformer (FEDUS; ZOPH; SHAZEER, 2022), the authors introduced a modularization

approach that facilitates efficient multi-task training across various Open-Domain QA

datasets. The tasks tackled include single retrieval, expanded query retrieval, entity span

proposal, entity linking, and reranking. In the inference phase, the system initiates by

identifying 100 tables through single retrieval. These tables are subsequently divided into

rows, and the reranking process selects the top 200 rows. For each row, the system collects

10 passages from the expanded query retrieval and one passage from linked entities. The

system then leverages the same Chainer used in CORE to select the top 100 passages,

which are subsequently input into a fine-tuned FiE reader tailored for OTT-QA.

Table 3 provides a comprehensive list with the performances of each systems in OTT-

QA dataset.

It is also worth highlighting the work “Multi-modal Retrieval of Tables and Texts

Using Tri-encoder Models” (KOSTIĆ; RISCH; MÖLLER, 2021), which builds upon the

foundation laid by DPR to develop a neural retrieval system capable of efficiently retriev-

ing both tables and texts. They achieved state-of-the-art results in retriever performance

across table and text datasets. The training utilized various datasets, and, for OTT-QA,

the authors only utilized the golden tables, since the golden texts passages are not avail-

able for the public. The architecture employed in this work leverages a Tri-encoder design,

where three small-BERT networks are utilized for encoding questions, texts, and tables

individually, as visually depicted in Figure 8. This research underscores the significance

of using distinct neural networks for handling different types of knowledge bases, leading

to significantly improved retrieval results. As a simplification, we refer this retriever as

Tri-encoder.

3.3 Reinforcement Learning in Question Answering

One of the first proposals to successfully combine DRL and QA is the architecture Re-

inforced Ranker-Reader (R3) (WANG et al., 2018) in 2017. The primary concept revolves

around the joint training of both the retriever (referred to as the ranker in the paper for

the purpose of ranking passages) and the reader, using the DRL algorithm REINFORCE

46

Model Reference Dev-EM Dev-F1 Test-EM Test-F1

COS Ma et al.
(2023)

56.9 63.2 54.9 61.5

CORE Ma et al.
(2022)

49.0 55.7 47.3 54.1

OTTeR Huang et al.
(2022)

37.1 42.8 37.3 43.1

CARP Zhong et al.
(2022)

33.2 38.6 32.5 38.5

Fusion-Retrieval +
Cross-Block Reader

Chen et al.
(2021)

28.1 32.5 27.2 31.5

Iterative-Retrieval
(sparse) +

Cross-Block Reader

Chen et al.
(2021)

17.1 20.7 16.9 20.9

Iterative-Retrieval
(dense) +

Cross-Block Reader

Chen et al.
(2021)

14.4 18.5 - -

Dual Reader-Parser Li et al.
(2021)

15.8 - - -

BM25-Hybrider Chen et al.
(2021)

10.3 13.0 9.7 12.8

Table 3: Adapted OTT-QA leaderboard presented at ⟨https://github.com/wenhuchen/
OTT-QA⟩ at the time of writing this document.

47

Figure 8: Representation of the Tri-encoder architecture of the work “Multimodal Re-
trieval of Tables and Texts Using Tri-encoder Models” (KOSTIĆ; RISCH; MÖLLER,
2021).

for the former and a supervised approach for the latter. A key advantage of this approach

lies in the absence of supervision during retriever training, with rewards solely based

on the reader’s output and the golden answer. The retriever reward mechanism can be

defined as follows:

R(ag, arc|τ) =

2, if ag = arc,

F1(a
g, arc), else if ag ∩ arc ̸= ∅,

−1, else.

(3.4)

In this reward system, a retriever earns a reward of 2 if the generated answer arc

perfectly matches the golden answer ag, and τ is the selected passage. If there is an

intersection between the two answers, the reward is computed based on the F1-score

discussed in Section 2.1.5. In cases where no matching words are found, the reward is -1.

Notably, the reader and retriever networks in this approach are based on LSTM networks.

The Figure 9 shows (R3) training workflow.

Another relevant previous work is the “A Deep Reinforcement Learning Based Multi-

Step Coarse to Fine Question Answering (MSCQA) System” (WANG; JIN, 2019). This

proposal embraces a DRL approach for training an action selector, which, in turn, chooses

among three different trained components for QA. The available actions include answering

the question by invoking the reader, selecting additional passages through the retriever

48

Figure 9: Training workflow of Reinforced Ranker-Reader (R3) system by Wang et al.
(2018).

module, and removing a potentially incorrect answer from the document memory.

In alignment with MSCQA, the research outlined in “A deep reinforcement learning

approach to complex open-domain question answering” (CAÇÃO; COSTA, 2023) also

employs a DRL agent with three similar actions: retriever, reader, and a cleaner tasked

with removing passages that may be detractors. The primary contribution of this work

lies in utilizing the DRL approach to address multi-hop questions, where the retriever

operates iteratively, using previously retrieved passages to obtain new ones.

An interesting proposal that uses Reinforcement Learning for automatic QA is NLP-

GYM by Ramamurthy, Sifa and Bauckhage (2020). It is a Python library made for testing

RL Algorithms in three different NLP tasks: multiple choice QA, label sequence genera-

tion, and the sequence tagging. The QA task is based on the QASC dataset (KHOT et

al., 2019), the state comprises the embedding of a question, two facts, and an alternative.

The agent is equipped with two actions: answering using the provided alternative or re-

questing a new one. While it does not provide the best performance for multiple choice

QA in general, it is a handy Python library for QA and RL that is compatible with GYM

and various essential RL Python libraries, facilitating agent training and experimentation.

Reinforcement Learning with Human Feedback (RLHF) is an approach that has

gained traction in the development of natural language models. It addresses the need

for language models to better align with users, reduce instances of misinformation, toxic-

ity, and harmful sentiment expression. RLHF involves training models through a process

that combines Reinforcement Learning, where models learn from their actions and con-

sequences, with Human Feedback, which involves human reviewers providing feedback

49

and rankings on model-generated content. One example is ChatGPT (or GPT3.5), a

conversational agent built upon the foundation of GPT3. While the specifics of Chat-

GPT’s training process are not fully disclosed, available information indicates similarities

to InstructGPT (OUYANG et al., 2022), which was also trained from GPT3. The RLHF

training was executed through the PPO algorithm to enhance ChatGPT’s alignment with

users and minimizing issues related to misinformation, toxicity, and harmful sentiments.

50

4 PROPOSED ARCHITECTURE

The multi-hop and multimodal nature of OTT-QA presents a significant challenge due

to the sequential retrieval process it requires. To address these challenges, we propose a

novel architecture. Our approach involves training a Deep Reinforcement Learning (DRL)

agent that selects from a set of already trained modules in the existing literature.

As done for MSCQA (WANG; JIN, 2019), we employ a DRL agent as an action

selector to determine which already trained component should be activated. As depicted

in Figure 10, we have the following actions: Retrieve Texts, Retrieve Tables, and Generate

the Answer.

Given that OTT-QA does not specify the correct path for information retrieval, in-

cluding the sequence of passages to retrieve, we have adopted a Reinforcement Learning

approach. We incorporate a delayed reward mechanism, which compares the predicted

answers to the gold standard answers at the end of each episode.

One notable advantage of our proposed architecture is its flexibility. All components,

including the reader and retrievers, can be easily replaced with newer and superior mod-

els as they become available for public use. Furthermore, the system can be enhanced

by incorporating additional components, such as a graph retrieval model, or employing

multiple readers optimized for specific scenarios. The RL agent learns when to use each

component in different situations through experiential training.

In the following sections, we will provide a more detailed explanation of each archi-

tecture component.

4.1 Initial Concepts

Our approach draws inspiration from the Iterative-Retrieval + Cross-Block Reader

architecture introduced by Chen et al. (2021) and described in Section 3.2.1.

We also propose an iterative system. For a given question q, the initial retrieval step

51

Figure 10: Proposed architecture. At each time step, the agent selects one of three actions:
Retrieve Texts, Retrieve Tables, or Generate the Answer, based on the question and the
information gathered so far.

involves searching for 10 passages pi,j, which can be either textual (tei,j) or tabular (tai,j)

in nature. These passages are used to create 10 different blocks bi as follows:

B = [b1, b2, ..., b10],

B = [[q, p1,1], [q, p2,1], ..., [q, p10,1]],
(4.1)

where i denotes the block number, and j represents the index of the passage within the

block.

Should the agent opt to perform an additional retrieval step, it concatenates the items

within each block to retrieve four new passages, be they textual or tabular. This process

generates a new set of blocks:

B = [[q, p1,1, p1,2, p1,3, p1,4, p1,5], ..., [q, p10,1, p10,2, p10,3, p10,4, p10,5]]. (4.2)

The agent may undergo one more retrieval step, leading to the selection of 4 new passages

for each block. To maintain the quality of retrieved information and prevent excessive

noise, we limit the maximum number of retrieval steps to three. This limitation is in-

tended to avoid an accumulation of uncertainty, as additional passages introduce more

52

information, making it more challenging for the retrieval process to distinguish between

valuable information and noise.

Suppose the agent decides to generate the answer or has reached the maximum number

of steps. In that case, the reader is presented with the question and all non-repeated

passages (note that different blocks may contain the same passage). This consolidated

set of information is referred to as “Reader Input”:

RI = [q, p1, p2, ...]. (4.3)

The reader utilizes the Reader Input to generate a predicted answer arc, which is subse-

quently compared to the golden answer ag. In cases where the reader is invoked before

any passage has been retrieved, a preliminary Table Retrieval is run to ensure that a

minimum of 10 documents are available for processing. We opted for table retrieval due

to its smaller document pool compared to texts. This decision increases the likelihood of

reaching the answer, even without resorting to multi-hop steps.

4.2 Reward

Defining the reward function is arguably the most critical task in an RL environment

because it is precisely what the agent seeks to maximize. However, it is not straight-

forward, as it provides an indirect training signal. We do not have prior knowledge of

the correct sequence of actions for the agent to follow (if we did, we could use super-

vised learning). In our scenario, we must rely on a single signal: the comparison between

the expected (golden) answer and the agent’s predicted answer to construct the reward

function.

We adopted the reward function from R3 (WANG et al., 2018) as the base for our

work, which indirectly trains the retriever using the final answer (as expressed in Equation

3.4). However, given the complexity of OTT-QA, the penalty of -1 for cases where the

generated answer has no intersection with the golden answer appeared excessive, partic-

ularly when considering that the Iterative-Retrieval + Cross-Block Reader, which served

as our inspiration, achieved only a 20.9 F1-score on the test set, below the results for R3

in all datasets that it was tested. Consequently, we decided to reduce this penalty to -0.5.

53

R(ag, arc) =

2, if ag = arc,

F1(a
g, arc), else if ag ∩ arc ̸= ∅,

−0.5, else,

(4.4)

where the reward is assigned a value of 2 when the golden answer ag precisely matches the

predicted answer arc. In cases of partial match, the reward is determined by the F1-score

as described in the Section 2.1.5. Lastly, when no match occurs, the reward defaults to

-0.5, as mentioned before. We also introduced a minor penalty of -0.02 for each retrieval

action taken. This penalty encourages the agent to minimize retrieving unnecessary texts

and tables.

4.3 Actions

As mentioned previously, we have three different actions:

• A1 - Retrieve Texts: If this action is selected, a retriever model is activated

to search for relevant textual information based on the already retrieved passages

concatenated with the question.

• A2 - Retrieve Tables: If this action is chosen, a retriever model searches for rele-

vant tables based on the already retrieved passages concatenated with the question.

• A3 - Generate Answer: When this action is selected, a reader model generates

the answer using the extracted textual passages and tables. This action terminates

the episode.

In the following subsections, we discuss our choices for the models for the reader and

retriever. We decided not to retrain any of the models taken from the literature, so we

had the restriction of using only the ones that were made publicly available.

4.3.1 Retriever

The retriever module is responsible for gathering information for the reader. We con-

ducted tests using two distinct retrievers: BM25 (ROBERTSON; ZARAGOZA, 2009) and

Tri-encoder (KOSTIĆ; RISCH; MÖLLER, 2021). This approach allowed us to evaluate

both classical sparse retrieval and neural dense retrieval methods, mirroring the approach

taken in the Iterative-Retrieval + Cross-Block Reader architecture.

54

4.3.2 Reader

One of the most important modules of a QA system is the reader, responsible for

generating answers. For OTT-QA, the publicly available reader with the best perfor-

mance is the Fusion-in-Encoder (FiE) model from the COS system (MA et al., 2023). A

distinguishing feature of this model is its ability to process passages separately, making

it highly versatile for handling numerous passages as input. In line with the recommen-

dations provided by the authors, we limited the number of input passages to 50, as this

configuration yielded the best results in their validation experiments.

4.4 State/Observation

The observation is the information that the agent uses for the decision-making process.

In our case, this information comprises the question and the passages that have been

retrieved up to that point. Rather than working directly with pure texts and tables, we

first convert these elements into numerical data using embeddings.

We employ two distinct encoders to perform this transformation into embeddings.

When the retriever is the Tri-encoder, we utilize its embeddings to represent the question,

retrieved texts, and retrieved tables. However, in the case when we utilized BM25, we

leverage the representations provided by a fine-tuned MPNET model trained for semantic

search in QA1. Each embedding is a vector with length of 512 for Tri-encoder (same as

small-BERT) and 768 for the MPNET model.

This information is then translated into a sequence of 11 vectors, with one vector for

the question (eq) and one for each of the 10 blocks (ei). For each block, we calculate the

average of the representation values for each passage, considering the question in isolation,

generating the embedding sequence E:

E = [eq, e1, e2, ...e10]. (4.5)

4.5 Agent

In DRL applications, the agent’s primary function is to process observations and

generate corresponding actions. Our specific observations consist of a sequence comprising

1The MPNET model can be at ⟨https://huggingface.co/sentence-transformers/
multi-qa-mpnet-base-dot-v1⟩

55

Figure 11: The training workflow of the proposed architecture. The green arrows represent
the rewards utilized for training the agent, while the yellow arrows depict raw data,
consisting of questions and passages. The red arrows signify the outputs of the retriever
and reader modules. Blue arrows represent the actions taken by the agent. Finally, the
pink arrows denote the embeddings employed as input to the DRL agent.

11 vectors, and in our exploration, we experimented with four distinct neural network

architectures: MultiLayer Perceptron (MLP), LSTM, GRU, and Transformer.

For the MLP, we flattened the entire sequence into a single vector, which meant

adding zeros in the first step to account for the lack of retrieved passages at that point.

In contrast, the other networks process this information as a sequence.

To train the agent, we explored two widely-used algorithms: DQN and PPO. Our

implementation is based on the Stable-Baselines3 Python library, selected for its robust-

ness and reliability. We chose these algorithms for specific reasons—DQN is known for

its sample-efficiency as it stores experiences in a replay buffer, while PPO offers stability

due to loss clipping in network updates.

The training workflow of the agent is depicted in Figure 11.

4.6 Environment

As mentioned before, the environment in a RL setting includes everything that is

outside the agent. As shown in Figure 4, it receives the actions dictated by the agent and

returns the reward and new observation. The complete pseudo-code for the environment

is presented in Algorithm 3.

56

Algorithm 3: Environment

Initialize Retriever and Reader
Initialize Agent
foreach episode do

Sample a random question q with the corresponding answer ag

step← 1
Get the embedding E from q
Done← True
while not Done do

Agent acts according to its policy π(a|s) and returns Action
if Action is A1 then

if step is 0 then
Retrieve 10 texts passages using q to create blocks vector B

else
foreach block bi in B do

pi,j ← Retrieve 4 texts passages using bi
Append pi,j to bi

end foreach

end if
R← −0.02

end if
if Action is A2 then

if step is 0 then
Retrieve 10 tables using q to create blocks vector B

else
foreach block bi in B do

pi,j ← Retrieve 4 tables using bi
Append pi,j to bi

end foreach

end if
R← −0.02

end if
if Action is A3 or step is 3 then

if step is 0 then
Retrieve 10 tables using q to create blocks vector B

end if
Transformation of B to create the reader input RI
With RI, the Reader generates the predicted answer arc

R←

2, if ag = arc,

F1(a
g, arc), else if ag ∩ arc ̸= ∅,

−0.5, else.
Done← True

end if
step← step + 1
Calculate the embedding sequence vector E
The agent receives E as the state and the reward R

end while

end foreach

57

5 EXPERIMENTS

In this chapter, we present the experimental evaluation of our architecture. The goal

is to assess a DRL agent’s performance by exploring various baselines and training ap-

proaches. We conducted a comprehensive set of experiments, testing 28 different baselines

and running 16 distinct training sessions.

5.1 Baselines

Before training the DRL agent, we explored baseline scenarios using our architecture.

These baselines involved fixed sets of actions chosen independently of the question and

retrieved information. Each conceivable combination of actions was systematically evalu-

ated across a validation dataset. For example, one baseline involved the agent consistently

choosing to retrieve texts (Action A1) twice and then invoking the reader to generate the

answer. In total, we explored 14 different configurations of actions, encompassing two

retriever types–—BM25 and Tri-encoder—–resulting in 28 baselines.

The primary purpose of these baseline tests was to establish a benchmark for com-

parison, determining if the trained DRL agent could outperform or at least match the

performance of fixed action paths without contextual understanding.

5.2 Training

The training of the DRL agent involved sampling a random question from the OTT-

QA training set for each episode. We evaluated the impact of training both retriever

solutions and compared their performance. For the Tri-encoder, we trained for a total of

one million timesteps, a reasonable number considering the dataset size of 41,469 training

questions. Each question could take up to three timesteps, allowing for revisiting the

same question multiple times. Due to the higher inference time of BM25 (up to 20 times

more than Tri-encoder), we opted to train for only 100 thousand timesteps.

58

We implemented the DQN and PPO algorithms using the Stable-Baselines3 Python

library, employing various neural network architectures, including MLP, LSTM, GRU,

and transformer. Subsequent subsections provide detailed explanations of these imple-

mentations.

5.2.1 DQN

For training DQN, we utilized most of the default hyperparameters of Stable-Baselines31.

However, we made a few adjustments, primarily to account for the number of training

steps. We set the buffer size to 500,000 (maximum number of transitions stored in the ex-

perience replay) and learning starts (number of steps taking random actions just to store

some transitions in the buffer before training) to 50,000 for the system with Tri-encoder

as the retriever. For BM25, we decreased the learning starts by a factor of 5, taking into

account that the training has only 100,000 steps.

Concerning network configurations, we used the following:

• MLP: The MLP network is a simple network with three hidden layers having 512,

128, and 64 neurons.

• LSTM: We employed two LSTM layers with a hidden size of 512 for the Tri-encoder

and 768 for the BM25 architecture to match the size of the vectors of the embedding

sequence E, with a dropout of 0.1. On top of that, there are two hidden layers, 128

and 64 nodes, respectively.

• GRU: Similar to LSTM, but replacing the LSTM layers with GRU layers.

• Transformer: We opted for two encoder transformer layers with two attention

heads, a feature dimension matching the input embedding size, and the same 128

and 64 nodes hidden layers.

5.2.2 PPO

Similar to DQN, we primarily relied on the default hyperparameters for training us-

ing the PPO implementation from Stable-Baselines32. Our modifications were minimal,

1For more information about DQN hyperparameters: ⟨https://stable-baselines3.readthedocs.io/en/
master/modules/dqn.html⟩

2For more information about PPO hyperparameters: ⟨https://stable-baselines3.readthedocs.io/en/
master/modules/ppo.html⟩

59

Figure 12: Feature Extractor for the LSTM in our setting. The agent receives the em-
bedding sequence E = [eq, e1, ...e10] that is processed through two LSTM/GRU layers and
a hidden layer with 128 nodes. The result is then fed to both the actor and the critic
networks with two hidden layers with sizes 64 and 32.

primarily addressing the need for more frequent updates due to potentially limited expe-

rience accumulation in our context. We set the number of steps to run before training as

128, with a batch size of 32, and 60 as the number of epochs to optimize the surrogate

loss.

As PPO is an Actor-Critic algorithm, it employs two different networks: the actor and

the critic. Instead of using entirely separate networks, a common approach is to utilize

a feature extractor to avoid redundant computations. This involves using shared layers

between the networks for pre-processing the input, with these shared layers being trained

jointly. Figure 12 illustrates our setup for LSTM and GRU networks as an example.

We employed two hidden layers with 64 and 32 neurons for both the actor and critic

networks. Below are the configurations for the feature extractors we utilized, maintaining

consistency with the configurations used for DQN:

• MLP: A two-layered network with hidden sizes of 512 and 128.

• LSTM: We used two LSTM layers with a hidden size of 512 for the Tri-encoder and

768 for the BM25 architecture to match the size of the vectors of the embedding

sequence E, with a dropout of 0.1. Additionally, there is one hidden layer with 128

nodes.

• GRU: Similar to LSTM, but with the LSTM layers replaced by GRU layers.

60

• Transformer: We opted for two encoder transformer layers with two attention

heads, a feature dimension matching the input embedding size, and the same 128

hidden layer.

61

6 RESULTS AND DISCUSSION

In this chapter, we present and discuss the outcomes of our architecture on the OTT-

QA dataset, utilizing the experiments outlined in the previous chapter. The evaluation is

based on the metrics EM and F1-score explained in section 2.1.5.

6.1 Baselines

The complete results of our baselines are provided in Table 4 for the system with

BM25 as the retriever and in Table 5 for the Tri-encoder Retriever.

For the BM25 retriever, it is evident that retrieving tables is less effective than re-

trieving texts. This imbalance results in the best sequence of actions always being the

retrieval of texts and never tables, yielding an F1-score of 19.03.

For the Tri-encoder, the results are more balanced. The optimal sequence of actions

involves retrieving texts, followed by tables, and then retrieving texts again, resulting in a

total F1-score of 8.24. However, it is notable that the performance when retrieving texts

is considerably lower than the BM25 retriever.

6.2 Deep Reinforcement Learning Agent Results

In this section, we present detailed results for the trained DRL agents, which are

conveyed through two formats: firstly, a graphical representation of training curves, and

secondly, a table showcasing model performance on the validation set.

The left graphs illustrates the Average Episodic Training reward, highlighting vari-

ations among different neural networks. Simultaneously, the right side focuses on the

Average Episode Length. To facilitate the analysis, all graphs were generated with a

smoothing factor of 0.95. This choice enhances clarity in the visual representation, par-

ticularly given the inherent high variance in results, where outcomes are typically binary

62

Action 1 Action 2 Action 3 Action 4 EM F1-score

A1 A3 - - 12.92 16.80

A2 A3 - - 2.17 4.20

A1 A1 A3 - 14.60 18.79

A1 A2 A3 - 13.15 16.88

A2 A1 A3 - 5.01 7.97

A2 A2 A3 - 2.12 4.07

A1 A1 A1 A3 14.81 19.03

A1 A1 A2 A3 14.23 18.21

A1 A2 A1 A3 13.32 17.36

A1 A2 A2 A3 7.59 10.52

A2 A1 A1 A3 5.15 8.08

A2 A1 A2 A3 3.61 6.17

A2 A2 A1 A3 3.21 5.45

A2 A2 A2 A3 2.08 4.15

Table 4: Baseline results for the OTT-QA validation dataset using our framework with
BM25 as the retriever. In this experiment, we assumed that the agent always takes the
same sequence of actions, regardless of the question. In this experiment, A1 corresponds
to retrieving texts, A2 is retrieving tables, and A3 calls the reader to generate the answer.

Action 1 Action 2 Action 3 Action 4 EM F1-score

A1 A3 - - 3.52 6.32

A2 A3 - - 2.94 4.41

A1 A1 A3 - 4.34 7.11

A1 A2 A3 - 4.83 7.54

A2 A1 A3 - 5.42 7.89

A2 A2 A3 - 2.66 4.40

A1 A1 A1 A3 4.65 7.35

A1 A1 A2 A3 4.79 7.56

A1 A2 A1 A3 5.55 8.24

A1 A2 A2 A3 3.66 5.81

A2 A1 A1 A3 5.51 8.06

A2 A1 A2 A3 4.29 6.45

A2 A2 A1 A3 4.07 6.24

A2 A2 A2 A3 2.89 4.52

Table 5: Baseline results for the OTT-QA dataset using our framework with Tri-encoder
as the retriever.

63

Figure 13: Training curves for DQN using the BM25 retriever.

(correct or incorrect), resulting in rewards ranging from 2 to -0.5.

6.2.1 BM25

The training curves for DQN, as illustrated in Figure 13, showcase the agent’s ability

to enhance its performance amidst the considerable variance and complexity of the envi-

ronment. Despite the challenges presented, a discernible upward trend in performance is

evident. In contrast, the improvements for PPO, depicted in Figure 14, do not exhibit

the same level of clarity as observed in the case of DQN.

The performance of trained algorithms using the BM25 retriever is detailed in Table

6. Among the various training algorithms, the PPO agent equipped with a transformer

neural network demonstrated the best result. Surpassing other configurations, this agent

converged to always acting the same as the best baseline, which involved consistently

selecting the A1 action regardless of the question or context.

64

Figure 14: Training curves for PPO using the BM25 Retriever.

Training Algorithm Network EM F1-score

DQN MLP 11.70 15.44

DQN LSTM 12.33 16.42

DQN GRU 13.23 17.16

DQN Transformer 11.65 15.12

PPO MLP 8.54 11.63

PPO LSTM 6.78 9.85

PPO GRU 11.25 14.90

PPO Transformer 14.81 19.03

Table 6: Results for different networks and training algorithms on OTT-QA validation
set using BM25.

65

Figure 15: Training curves for DQN using the Tri-encoder Retriever.

6.2.2 Tri-encoder

Similar to the observed trend with the BM25 retriever, a comparable pattern is notice-

able when employing the Tri-encoder Retriever. In Figure 15, the training performance

of DQN exhibits a more consistent and stable improvement over time compared to PPO,

as depicted in Figure 16.

The outcomes of trained algorithms utilizing the Tri-encoder retriever are presented in

Table 7. Notably, the best-performing agent emerged from the PPO algorithm, employing

the MLP network, demonstrating a F1-score of 8.18.

6.3 Discussion

Analyzing the baseline results reveals a substantial advantage for text retrieval over

table search for BM25. This discrepancy may stem from the inherent characteristics

of tables as structured data entities. BM25, being a text-based ranking function, may

struggle to discern relevance in structured tables where factors like column presence and

data types play a pivotal role.

66

Figure 16: Training curves for PPO using the Tri-encoder Retriever.

Training Algorithm Network EM F1-score

DQN MLP 3.61 6.01

DQN LSTM 3.52 5.68

DQN GRU 3.79 6.13

DQN Transformer 3.34 5.09

PPO MLP 5.65 8.18

PPO LSTM 3.75 5.53

PPO GRU 2.94 4.93

PPO Transformer 2.80 4.34

Table 7: Results for different networks and training algorithms on OTT-QA validation
set using Tri-encoder.

67

Despite being a prominent choice in OTT-QA solutions, the Tri-encoder exhibited F1-

scores below 10. Two potential contributing factors are identified. First, the absence of

multi-hop training may have limited its ability to navigate complex information hierarchies

effectively. Also, the data used to train it had text retrieval taken from other datasets

since this information is not present in OTT-QA.

Before discussing the results for the trained agents, we must acknowledge that we ran

the training experiments with only one seed because each training execution took weeks.

Therefore, they may be representative and just outliers, which makes it difficult to be

conclusive about comparisons.

The DRL agents demonstrated comparable or slightly inferior performance to the best

baseline, particularly for BM25. This trend aligns with the DRL agents often favoring

the action of retrieving texts, mirroring the optimal baseline strategy.

Although the PPO algorithm demonstrated a slightly lower median performance, it

yielded the best results for both retrievers. Particularly, the PPO agent equipped with a

Transformer network for BM25 achieved the best performance by converging to the trivial

solution of consistently selecting the best action: always retrieving texts. In the case of

the Tri-encoder, the PPO agent utilizing an MLP network achieved an F1-score of 8.18,

demonstrating a performance closely comparable to the best baseline of 8.24.

Furthermore, the neural network type revealed no discernible trend, underscoring the

necessity for additional experimentation with an expanded set of trials to arrive at a more

conclusive understanding in this regard

The best-performing DRL agent achieved an F1-score of 19.03 using BM25, approach-

ing the performance 20.7 from the Iterative-Retrieval (sparse) + Cross-Block solution,

which served as our primary inspiration. However, when comparing our dense approach,

our best result was only 8.24 compared to theirs, 18.5, indicating that the our setup with

Tri-encoder needs further refinement.

6.4 Limitations

The inherent exploratory character of RL and the stochastic behavior of neural net-

works underscore the importance of conducting multiple test runs for each experiment,

followed by calculating the average outcomes. Unfortunately, we could not execute this in

our experiments due to time constraints, which extended beyond a week for each training

execution.

68

Moreover, when training the solution with the BM25 retriever, we utilized only 100,000

training steps. That is too few considering the dataset size of 41,469 training questions,

each potentially taking up to three steps.

Another limitation of our work was the performance of the Tri-encoder in our setting.

As mentioned before, it was not trained to retrieve in an iterative setting, which may have

hindered its performance. A possible solution is utilizing other solutions or adapting the

model’s training for multi-hop.

Furthermore, the process of retrieving tables is noisy, particularly in iterative search.

This happens because tables have too much data and, usually, only one row has the

desired information. Addressing this issue may involve breaking each table into rows or

smaller content sets, aligning with approaches proposed by other researchers (MA et al.,

2022).

69

7 CONCLUSION AND FUTURE WORK

In this work, we introduced a novel system designed to tackle open-domain multi-hop

questions across texts and tables. Our approach relies on a DRL decision-maker system

that iteratively selects among three distinct modules: Text Retriever, Table Retriever,

and Reader.

Our best system achieved an F1-score of 19.03, demonstrating competitive perfor-

mance compared to the non DRL similar system Iterative-Retrieval (sparse) + Cross-

Block solution, which scored 20.7. However, the architecture falls short comparing to

other systems with entirely different retrieval strategies on the literature, such as the 63.2

achieved by the COS architecture on the dev set.

While our results may appear comparatively lower than those presented in existing

literature, we posit that there exists untapped potential for performance enhancement by

modifying various modules within the system.

Our forthcoming efforts involve the implementation of the Joint-Reranking system

from DuRePa. A key focus in this augmentation is the reinforcement of the architec-

ture’s ability to clear excess passages and tables from memory. This refinement aims to

mitigate potential adverse effects on the reader’s performance by eliminating undesirable

information.

Furthermore, we are exploring alternative methods to generate observations for the

agent. The current approach involves averaging the embeddings of each block, but an-

other possibility is utilizing the observation as sequence with the encoding of all distinct

retrieved passages.

An approach for improving our system would be to integrate our DRL agent with the

modules of the COS architecture, which is known for achieving the best performance in

OTT-QA at the time of writing this document. COS implements a retrieval with different

skills that can be called in any order, so our DRL agent could decide the paths depending

on the question and retrieved passages.

70

Lastly, to bolster the robustness of our findings, we intend to conduct experiments

with different seeds for a more comprehensive statistical analysis.

71

REFERENCES

AINSLIE, J.; ONTANON, S.; ALBERTI, C.; CVICEK, V.; FISHER, Z.; PHAM, P.;
RAVULA, A.; SANGHAI, S.; WANG, Q.; YANG, L. ETC: Encoding long and structured
inputs in transformers. In: Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 2020. p. 268–284. Available at:
⟨https://aclanthology.org/2020.emnlp-main.19⟩.

ARCHANJO, J. M.; COZMAN, F. G. mRAT-SQL+GAP: A Portuguese Text-to-SQL
Transformer. In: Intelligent Systems. [S.l.]: Springer International Publishing, 2021,
(Lecture Notes in Computer Science, v. 13074). p. 511–525. ISBN 978-3-030-91698-5.

BELLMAN, R. Dynamic Programming. 1. ed. Princeton, NJ, USA: Princeton University
Press, 1957.

BELTAGY, I.; PETERS, M. E.; COHAN, A. Longformer: The long-document
transformer. arXiv:2004.05150, 2020.

BENGIO, Y.; SIMARD, P.; FRASCONI, P. Learning long-term dependencies with
gradient descent is difficult. IEEE transactions on neural networks, v. 5, n. 2, p. 157–166,
1994. ISSN 1045-9227 (Print).

BERANT, J.; CHOU, A. K.; FROSTIG, R.; LIANG, P. Semantic parsing on freebase
from question-answer pairs. In: Conference on Empirical Methods in Natural Language
Processing. [s.n.], 2013. Available at: ⟨https://api.semanticscholar.org/CorpusID:
6401679⟩.

BROCKMAN, G.; CHEUNG, V.; PETTERSSON, L.; SCHNEIDER, J.; SCHULMAN,
J.; TANG, J.; ZAREMBA, W. Openai gym. CoRR, abs/1606.01540, 2016. Available at:
⟨http://arxiv.org/abs/1606.01540⟩.

BROWN, T. B.; MANN, B.; RYDER, N.; SUBBIAH, M.; KAPLAN, J.; DHARIWAL,
P.; NEELAKANTAN, A.; SHYAM, P.; SASTRY, G.; ASKELL, A.; AGARWAL,
S.; HERBERT-VOSS, A.; KRUEGER, G.; HENIGHAN, T.; CHILD, R.; RAMESH,
A.; ZIEGLER, D. M.; WU, J.; WINTER, C.; HESSE, C.; CHEN, M.; SIGLER, E.;
LITWIN, M.; GRAY, S.; CHESS, B.; CLARK, J.; BERNER, C.; MCCANDLISH, S.;
RADFORD, A.; SUTSKEVER, I.; AMODEI, D. Language models are few-shot learners.
CoRR, abs/2005.14165, 2020. Available at: ⟨https://arxiv.org/abs/2005.14165⟩.

CAÇÃO, F. N.; JOSÉ, M. M.; OLIVEIRA, A. S.; SPINDOLA, S.; COSTA, A. H. R.;
COZMAN, F. G. DEEPAGÉ: Answering questions in portuguese about the brazilian
environment. In: BRITTO, A.; DELGADO, K. V. (Ed.). Intelligent Systems. Cham:
Springer International Publishing, 2021. p. 419–433. ISBN 978-3-030-91699-2.

CARMO, D.; PIAU, M.; CAMPIOTTI, I.; NOGUEIRA, R.; LOTUFO, R. de A.
PTT5: pretraining and validating the T5 model on brazilian portuguese data. CoRR,
abs/2008.09144, 2020. Available at: ⟨https://arxiv.org/abs/2008.09144⟩.

72

CAÇÃO, F. N.; COSTA, A. H. R. A deep reinforcement learning approach to complex
open-domain question answering. Dissertação (Mestrado) — Universidade de São Paulo,
2023.

CHEN, D.; FISCH, A.; WESTON, J.; BORDES, A. Reading Wikipedia to answer
open-domain questions. In: Annual Meeting of the Association for Computational
Linguistics. Vancouver, Canada: Association for Computational Linguistics, 2017. p.
1870–1879.

CHEN, W.; CHANG, M.-W.; SCHLINGER, E.; WANG, W. Y.; COHEN, W. W.
Open question answering over tables and text. In: International Conference on
Learning Representations. [s.n.], 2021. Available at: ⟨https://openreview.net/forum?id=
MmCRswl1UYl⟩.

CHEN, W.; ZHA, H.; CHEN, Z.; XIONG, W.; WANG, H.; WANG, W. Y. HybridQA: A
dataset of multi-hop question answering over tabular and textual data. In: Findings of the
Association for Computational Linguistics. Association for Computational Linguistics,
2020. p. 1026–1036. Available at: ⟨https://aclanthology.org/2020.findings-emnlp.91⟩.

CHO, K.; MERRIËNBOER, B. van; GULCEHRE, C.; BAHDANAU, D.; BOUGARES,
F.; SCHWENK, H.; BENGIO, Y. Learning phrase representations using RNN
encoder–decoder for statistical machine translation. In: MOSCHITTI, A.; PANG,
B.; DAELEMANS, W. (Ed.). Conference on Empirical Methods in Natural Language
Processing. Doha, Qatar: Association for Computational Linguistics, 2014. p. 1724–1734.
Available at: ⟨https://aclanthology.org/D14-1179⟩.

CHUNG, J.; GULCEHRE, C.; CHO, K.; BENGIO, Y. Empirical evaluation of gated
recurrent neural networks on sequence modeling. In: NIPS 2014 Workshop on Deep
Learning, December 2014. [S.l.: s.n.], 2014.

CLARK, K.; LUONG, M.; LE, Q. V.; MANNING, C. D. ELECTRA: pre-
training text encoders as discriminators rather than generators. In: International
Conference on Learning Representations. OpenReview.net, 2020. Available at:
⟨https://openreview.net/forum?id=r1xMH1BtvB⟩.

CLARK, P.; COWHEY, I.; ETZIONI, O.; KHOT, T.; SABHARWAL, A.;
SCHOENICK, C.; TAFJORD, O. Think you have solved question answering? try
ARC, the AI2 Reasoning challenge. CoRR, abs/1803.05457, 2018. Available at:
⟨http://arxiv.org/abs/1803.05457⟩.

COTRIM, L.; JOSÉ, M.; CABRAL, E. Reinforcement learning control of robot
manipulator. Revista Brasileira de Computação Aplicada, v. 13, n. 3, p. 42–53, 2021.
Available at: ⟨http://seer.upf.br/index.php/rbca/article/view/12091⟩.

DEVLIN, J.; CHANG, M.-W.; LEE, K.; TOUTANOVA, K. BERT: Pre-training
of deep bidirectional transformers for language understanding. In: Conference of
the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers). Minneapolis,
Minnesota: Association for Computational Linguistics, 2019. p. 4171–4186. Available at:
⟨https://aclanthology.org/N19-1423⟩.

73

FEDUS, W.; ZOPH, B.; SHAZEER, N. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, v. 23,
n. 120, p. 1–39, 2022. Available at: ⟨http://jmlr.org/papers/v23/21-0998.html⟩.

FERRUCCI, D.; BROWN, E.; CHU-CARROLL, J.; FAN, J.; GONDEK, D.;
KALYANPUR, A. A.; LALLY, A.; MURDOCK, J. W.; NYBERG, E.; PRAGER, J.;
SCHLAEFER, N.; WELTY, C. Building watson: An overview of the deepQA project.
AI Magazine, v. 31, n. 3, p. 59–79, 2010. ISSN 07384602.

GOODFELLOW, I.; POUGET-ABADIE, J.; MIRZA, M.; XU, B.; WARDE-FARLEY,
D.; OZAIR, S.; COURVILLE, A.; BENGIO, Y. Generative adversarial nets. In:
Advances in Neural Information Processing Systems. Curran Associates, Inc., 2014.
v. 27. Available at: ⟨https://proceedings.neurips.cc/paper files/paper/2014/file/
5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf⟩.

GREEN, B. F.; WOLF, A. K.; CHOMSKY, C. L.; LAUGHERY, K. Baseball: an
automatic question-answerer. In: IRE-AIEE-ACM ’61 (Western). [S.l.: s.n.], 1961.

GUU, K.; LEE, K.; TUNG, Z.; PASUPAT, P.; CHANG, M. W. REALM: Retrieval-
Augmented language model pre-training. International Conference on Machine Learning,
PartF168147-6, p. 3887–3896, 2020.

HERZIG, J.; NOWAK, P. K.; MÜLLER, T.; PICCINNO, F.; EISENSCHLOS, J. TaPas:
Weakly supervised table parsing via pre-training. In: Annual Meeting of the Association
for Computational Linguistics. Association for Computational Linguistics, 2020. p.
4320–4333. Available at: ⟨https://aclanthology.org/2020.acl-main.398⟩.

HOCHREITER, S.; SCHMIDHUBER, J. Long Short-Term Memory. Neural
Computation, v. 9, n. 8, p. 1735–1780, 11 1997. ISSN 0899-7667. Available at:
⟨https://doi.org/10.1162/neco.1997.9.8.1735⟩.

HUANG, J.; ZHONG, W.; LIU, Q.; GONG, M.; JIANG, D.; DUAN, N. Mixed-modality
representation learning and pre-training for joint table-and-text retrieval in OpenQA.
In: Conference on Empirical Methods in Natural Language Processing. Abu Dhabi,
United Arab Emirates: Association for Computational Linguistics, 2022. p. 4117–4129.
Available at: ⟨https://aclanthology.org/2022.findings-emnlp.303⟩.

IZACARD, G.; GRAVE, E. Leveraging passage retrieval with generative models for open
domain question answering. In: Conference of the European Chapter of the Association
for Computational Linguistics. Online: Association for Computational Linguistics, 2021.
p. 874–880. Available at: ⟨https://aclanthology.org/2021.eacl-main.74⟩.

JIN, Q.; DHINGRA, B.; LIU, Z.; COHEN, W.; LU, X. PubMedQA: A dataset for
biomedical research question answering. In: Conference on Empirical Methods in Natural
Language Processing and the International Joint Conference on Natural Language
Processing. Association for Computational Linguistics, 2019. p. 2567–2577. Available at:
⟨https://aclanthology.org/D19-1259⟩.

JOSÉ, M. M.; JOSÉ, M. A.; MAUÁ, D. D.; COZMAN, F. G. Integrating question
answering and text-to-SQL in portuguese. In: PINHEIRO, V.; GAMALLO, P.;
AMARO, R.; SCARTON, C.; BATISTA, F.; SILVA, D.; MAGRO, C.; PINTO, H. (Ed.).

74

Computational Processing of the Portuguese Language. Cham: Springer International
Publishing, 2022. p. 278–287. ISBN 978-3-030-98305-5.

KARPUKHIN, V.; OGUZ, B.; MIN, S.; LEWIS, P.; WU, L.; EDUNOV, S.; CHEN, D.;
YIH, W.-t. Dense passage retrieval for open-domain question answering. In: Conference
on Empirical Methods in Natural Language Processing. Association for Computational
Linguistics, 2020. p. 6769–6781. Available at: ⟨https://www.aclweb.org/anthology/2020.
emnlp-main.550⟩.

KEDIA, A.; ZAIDI, M. A.; LEE, H. FiE: Building a global probability space by
leveraging early fusion in encoder for open-domain question answering. In: Conference
on Empirical Methods in Natural Language Processing. Abu Dhabi, United Arab
Emirates: Association for Computational Linguistics, 2022. p. 4246–4260. Available at:
⟨https://aclanthology.org/2022.emnlp-main.285⟩.

KHASHABI, D.; MIN, S.; KHOT, T.; SABHARWAL, A.; TAFJORD, O.; CLARK, P.;
HAJISHIRZI, H. UNIFIEDQA: Crossing format boundaries with a single QA system.
In: COHN, T.; HE, Y.; LIU, Y. (Ed.). Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics, 2020. p. 1896–1907.
Available at: ⟨https://aclanthology.org/2020.findings-emnlp.171⟩.

KHOT, T.; CLARK, P.; GUERQUIN, M.; JANSEN, P. A.; SABHARWAL, A. QASC:
a dataset for question answering via sentence composition. In: AAAI Conference
on Artificial Intelligence. [s.n.], 2019. Available at: ⟨https://api.semanticscholar.org/
CorpusID:204915921⟩.

KOSTIĆ, B.; RISCH, J.; MÖLLER, T. Multi-modal retrieval of tables and texts using tri-
encoder models. In: FISCH, A.; TALMOR, A.; CHEN, D.; CHOI, E.; SEO, M.; LEWIS,
P.; JIA, R.; MIN, S. (Ed.). Proceedings of the 3rd Workshop on Machine Reading for
Question Answering. Punta Cana, Dominican Republic: Association for Computational
Linguistics, 2021. p. 82–91. Available at: ⟨https://aclanthology.org/2021.mrqa-1.8⟩.

KWIATKOWSKI, T.; PALOMAKI, J.; REDFIELD, O.; COLLINS, M.; PARIKH, A.;
ALBERTI, C.; EPSTEIN, D.; POLOSUKHIN, I.; DEVLIN, J.; LEE, K.; TOUTANOVA,
K.; JONES, L.; KELCEY, M.; CHANG, M.-W.; DAI, A. M.; USZKOREIT, J.; LE,
Q.; PETROV, S. Natural questions: A benchmark for question answering research.
Transactions of the Association for Computational Linguistics, MIT Press, Cambridge,
MA, v. 7, p. 452–466, 2019. Available at: ⟨https://aclanthology.org/Q19-1026⟩.

LEWIS, M.; LIU, Y.; GOYAL, N.; GHAZVININEJAD, M.; MOHAMED, A.; LEVY,
O.; STOYANOV, V.; ZETTLEMOYER, L. BART: Denoising sequence-to-sequence
pre-training for natural language generation, translation, and comprehension. In:
JURAFSKY, D.; CHAI, J.; SCHLUTER, N.; TETREAULT, J. (Ed.). Annual Meeting of
the Association for Computational Linguistics. Association for Computational Linguistics,
2020. p. 7871–7880. Available at: ⟨https://aclanthology.org/2020.acl-main.703⟩.

LEWIS, P.; PEREZ, E.; PIKTUS, A.; PETRONI, F.; KARPUKHIN, V.; GOYAL, N.;
KüTTLER, H.; LEWIS, M.; YIH, W.-t.; ROCKTäSCHEL, T.; RIEDEL, S.; KIELA,
D. Retrieval-augmented generation for knowledge-intensive nlp tasks. In: Advances in
Neural Information Processing Systems. [S.l.]: Curran Associates, Inc., 2020. v. 33, p.
9459–9474.

75

LEWIS, P.; WU, Y.; LIU, L.; MINERVINI, P.; KÜTTLER, H.; PIKTUS, A.;
STENETORP, P.; RIEDEL, S. PAQ: 65 million probably-asked questions and
what you can do with them. Transactions of the Association for Computational
Linguistics, MIT Press, Cambridge, MA, v. 9, p. 1098–1115, 2021. Available at:
⟨https://aclanthology.org/2021.tacl-1.65⟩.

LI, A. H.; NG, P.; XU, P.; ZHU, H.; WANG, Z.; XIANG, B. Dual reader-parser on hybrid
textual and tabular evidence for open domain question answering. In: Annual Meeting
of the Association for Computational Linguistics and the Joint Conference on Natural
Language Processing (Volume 1: Long Papers). [S.l.]: Association for Computational
Linguistics, 2021. p. 4078–4088.

LIU, Y.; OTT, M.; GOYAL, N.; DU, J.; JOSHI, M.; CHEN, D.; LEVY, O.;
LEWIS, M.; ZETTLEMOYER, L.; STOYANOV, V. RoBERTa: A robustly
optimized BERT pretraining approach. CoRR, abs/1907.11692, 2019. Available at:
⟨http://arxiv.org/abs/1907.11692⟩.

MA, K.; CHENG, H.; LIU, X.; NYBERG, E.; GAO, J. Open-domain question
answering via chain of reasoning over heterogeneous knowledge. In: Conference
on Empirical Methods in Natural Language Processing. Abu Dhabi, United Arab
Emirates: Association for Computational Linguistics, 2022. p. 5360–5374. Available at:
⟨https://aclanthology.org/2022.findings-emnlp.392⟩.

MA, K.; CHENG, H.; ZHANG, Y.; LIU, X.; NYBERG, E.; GAO, J. Chain-of-skills:
A configurable model for open-domain question answering. In: ROGERS, A.;
BOYD-GRABER, J.; OKAZAKI, N. (Ed.). Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). Toronto, Canada:
Association for Computational Linguistics, 2023. p. 1599–1618. Available at:
⟨https://aclanthology.org/2023.acl-long.89⟩.

MATOS, V.; GRAVA, R.; TAVARES, R.; JOSé, M.; PIROZELLI, P.; BRANDãO,
A.; PERES, S.; COZMAN, F. Coordination within conversational agents with
multiple sources. In: Encontro Nacional de Inteligência Artificial e Computacional.
Porto Alegre, RS, Brasil: SBC, 2023. p. 939–953. ISSN 2763-9061. Available at:
⟨https://sol.sbc.org.br/index.php/eniac/article/view/25755⟩.

MNIH, V.; BADIA, A. P.; MIRZA, M.; GRAVES, A.; LILLICRAP, T.; HARLEY,
T.; SILVER, D.; KAVUKCUOGLU, K. Asynchronous methods for deep reinforcement
learning. In: International Conference on Machine Learning. New York, New York,
USA: PMLR, 2016. (Proceedings of Machine Learning Research, v. 48), p. 1928–1937.
Available at: ⟨https://proceedings.mlr.press/v48/mniha16.html⟩.

MNIH, V.; KAVUKCUOGLU, K.; SILVER, D.; GRAVES, A.; ANTONOGLOU, I.;
WIERSTRA, D.; RIEDMILLER, M. A. Playing atari with deep reinforcement learning.
CoRR, abs/1312.5602, 2013. Available at: ⟨http://arxiv.org/abs/1312.5602⟩.

MNIH, V.; KAVUKCUOGLU, K.; SILVER, D.; RUSU, A. A.; VENESS, J.;
BELLEMARE, M. G.; GRAVES, A.; RIEDMILLER, M.; FIDJELAND, A. K.;
OSTROVSKI, G.; PETERSEN, S.; BEATTIE, C.; SADIK, A.; ANTONOGLOU,
I.; KING, H.; KUMARAN, D.; WIERSTRA, D.; LEGG, S.; HASSABIS, D.
Human-level control through deep reinforcement learning. Nature, Nature Publishing

76

Group, v. 518, n. 7540, p. 529–533, 2015. ISSN 14764687. Available at: ⟨http:
//dx.doi.org/10.1038/nature14236⟩.

NGUYEN, T.; ROSENBERG, M.; SONG, X.; GAO, J.; TIWARY, S.; MAJUMDER, R.;
DENG, L. MS MARCO: A human generated MAchine reading COmprehension dataset.
CEUR Workshop Proc., v. 1773, p. 1–10, 2016. ISSN 16130073.

OUYANG, L.; WU, J.; JIANG, X.; ALMEIDA, D.; WAINWRIGHT, C.; MISHKIN, P.;
ZHANG, C.; AGARWAL, S.; SLAMA, K.; RAY, A.; SCHULMAN, J.; HILTON, J.;
KELTON, F.; MILLER, L.; SIMENS, M.; ASKELL, A.; WELINDER, P.; CHRISTIANO,
P. F.; LEIKE, J.; LOWE, R. Training language models to follow instructions with human
feedback. In: KOYEJO, S.; MOHAMED, S.; AGARWAL, A.; BELGRAVE, D.; CHO, K.;
OH, A. (Ed.). Advances in Neural Information Processing Systems. Curran Associates,
Inc., 2022. v. 35, p. 27730–27744. Available at: ⟨https://proceedings.neurips.cc/
paper files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf⟩.

PARTALIDOU, E.; CHRISTOU, D.; TSOUMAKAS, G. Improving zero-shot entity
retrieval through effective dense representations. In: Hellenic Conference on Artificial
Intelligence. New York, NY, USA: Association for Computing Machinery, 2022. (SETN
’22). ISBN 9781450395977. Available at: ⟨https://doi.org/10.1145/3549737.3549771⟩.

PASCHOAL, A. F. A.; PIROZELLI, P.; FREIRE, V.; DELGADO, K. V.; PERES,
S. M.; JOSé, M. M.; NAKASATO, F.; OLIVEIRA, A. S.; aO, A. A. F. B.;
COSTA, A. H. R.; COZMAN, F. G. Pirá: A bilingual portuguese-english dataset
for question-answering about the ocean. In: ACM International Conference on
Information & Knowledge Management. New York, NY, USA: Association for
Computing Machinery, 2021. p. 4544–4553. ISBN 9781450384469. Available at:
⟨https://doi.org/10.1145/3459637.3482012⟩.

PIROZELLI, P.; CASTRO, A. B. R.; OLIVEIRA, A. L. C. de; OLIVEIRA, A. S.;
CAçãO, F. N.; SILVEIRA, I. C.; CAMPOS, J. G. M.; MOTHEO, L. C.; FIGUEIREDO,
L. F.; PELLICER, L. F. A. O.; JOSé, M. A.; JOSé, M. M.; LIGABUE, P. de M.; GRAVA,
R. S.; TAVARES, R. M.; MATOS, V. B.; SYM, Y. V.; COSTA, A. H. R.; BRANDãO, A.
A. F.; MAUá, D. D.; COZMAN, F. G.; PERES, S. M. The blue amazon brain (blab): A
modular architecture of services about the brazilian maritime territory. In: AI: Modeling
Ocean and Climate Change Workshop @ International Joint Conference on Artificial
Intelligence. [s.n.], 2022. p. 1–11. Available at: ⟨https://arxiv.org/pdf/2209.07928.pdf⟩.

PIROZELLI, P.; JOSé, M. M.; SILVEIRA, I.; NAKASATO, F.; PERES, S. M.;
BRANDãO, A. A. F.; COSTA, A. H. R.; COZMAN, F. G. Benchmarks for Pirá 2.0,
a Reading Comprehension Dataset about the Ocean, the Brazilian Coast, and Climate
Change. 2023.

RADFORD, A.; NARASIMHAN, K.; SALIMANS, T.; SUTSKEVER, I. et al. Improving
language understanding by generative pre-training. OpenAI, 2018.

RADFORD, A.; WU, J.; CHILD, R.; LUAN, D.; AMODEI, D.; SUTSKEVER, I.
Language models are unsupervised multitask learners. In: . [S.l.: s.n.], 2019.

RAFFEL, C.; SHAZEER, N.; ROBERTS, A.; LEE, K.; NARANG, S.; MATENA, M.;
ZHOU, Y.; LI, W.; LIU, P. J. Exploring the limits of transfer learning with a unified

77

text-to-text transformer. Journal of Machine Learning Research, v. 21, n. 140, p. 1–67,
2020. Available at: ⟨http://jmlr.org/papers/v21/20-074.html⟩.

RAFFIN, A.; HILL, A.; GLEAVE, A.; KANERVISTO, A.; ERNESTUS, M.;
DORMANN, N. Stable-baselines3: Reliable reinforcement learning implementations.
Journal of Machine Learning Research, v. 22, n. 268, p. 1–8, 2021. Available at:
⟨http://jmlr.org/papers/v22/20-1364.html⟩.

RAJPURKAR, P.; ZHANG, J.; LOPYREV, K.; LIANG, P. SQuAD: 100,000+ questions
for machine comprehension of text. Conference on Empirical Methods in Natural
Language Processing, Proceedings, n. ii, p. 2383–2392, 2016.

RAMAMURTHY, R.; SIFA, R.; BAUCKHAGE, C. NLPGym – A toolkit for evaluating
RL agents on Natural Language Processing Tasks. 2020.

ROBERTSON, S.; ZARAGOZA, H. The probabilistic relevance framework: BM25 and
beyond. [S.l.: s.n.], 2009. v. 3. 333–389 p. ISSN 15540669. ISBN 1500000019.

SANH, V.; WEBSON, A.; RAFFEL, C.; BACH, S.; SUTAWIKA, L.; ALYAFEAI, Z.;
CHAFFIN, A.; STIEGLER, A.; RAJA, A.; DEY, M.; BARI, M. S.; XU, C.; THAKKER,
U.; SHARMA, S. S.; SZCZECHLA, E.; KIM, T.; CHHABLANI, G.; NAYAK, N.;
DATTA, D.; CHANG, J.; JIANG, M. T.-J.; WANG, H.; MANICA, M.; SHEN, S.;
YONG, Z. X.; PANDEY, H.; BAWDEN, R.; WANG, T.; NEERAJ, T.; ROZEN, J.;
SHARMA, A.; SANTILLI, A.; FEVRY, T.; FRIES, J. A.; TEEHAN, R.; SCAO, T. L.;
BIDERMAN, S.; GAO, L.; WOLF, T.; RUSH, A. M. Multitask prompted training enables
zero-shot task generalization. In: International Conference on Learning Representations.
[s.n.], 2022. Available at: ⟨https://openreview.net/forum?id=9Vrb9D0WI4⟩.

SCHULMAN, J.; LEVINE, S.; ABBEEL, P.; JORDAN, M.; MORITZ, P. Trust
region policy optimization. In: International Conference on Machine Learning. Lille,
France: PMLR, 2015. (Machine Learning Research, v. 37), p. 1889–1897. Available at:
⟨https://proceedings.mlr.press/v37/schulman15.html⟩.

SCHULMAN, J.; WOLSKI, F.; DHARIWAL, P.; RADFORD, A.; KLIMOV, O.
Proximal policy optimization algorithms. CoRR, abs/1707.06347, 2017. Available at:
⟨http://arxiv.org/abs/1707.06347⟩.

SONG, K.; TAN, X.; QIN, T.; LU, J.; LIU, T.-Y. MPNet: masked and permuted
pre-training for language understanding. In: International Conference on Neural
Information Processing Systems. Red Hook, NY, USA: Curran Associates Inc., 2020.
ISBN 9781713829546.

SOUZA, F.; NOGUEIRA, R.; LOTUFO, R. BERTimbau: pretrained BERT models for
Brazilian Portuguese. In: Brazilian Conference on Intelligent Systems. [S.l.: s.n.], 2020.

SPINDOLA, S.; JOSÉ, M. M.; OLIVEIRA, A. S.; CAÇÃO, F. N.; COZMAN, F. G.
Interpretability of attention mechanisms in a portuguese-based question answering
system about the blue amazon. In: Encontro Nacional de Inteliência Artificial e
Computacional. Porto Alegre, RS, Brasil: SBC, 2021. p. 775–786. ISSN 0000-0000.
Available at: ⟨https://sol.sbc.org.br/index.php/eniac/article/view/18302⟩.

78

SUTTON, R. S.; BARTO, A. G. Reinforcement Learning: An Introduction. Cambridge,
MA, USA: A Bradford Book, 2018. ISBN 0262039249.

SYM, Y.; CAMPOS, J.; JOSé, M.; COZMAN, F. Comparing computational
architectures for automated journalism. In: Encontro Nacional de Inteligência Artificial
e Computacional. Porto Alegre, RS, Brasil: SBC, 2022. p. 377–388. ISSN 2763-9061.
Available at: ⟨https://sol.sbc.org.br/index.php/eniac/article/view/22797⟩.

VASWANI, A.; SHAZEER, N.; PARMAR, N.; USZKOREIT, J.; JONES, L.; GOMEZ,
A. N.; KAISER, L.; POLOSUKHIN, I. Attention is all you need. Advances in Neural
Information Processing Systems, v. 2017-Decem, p. 5999–6009, 2017. ISSN 10495258.

WANG, P.; SHI, T.; REDDY, C. K. Text-to-SQL generation for question answering
on electronic medical records. In: Web Conference. New York, NY, USA: Association
for Computing Machinery, 2020. p. 350–361. ISBN 9781450370233. Available at:
⟨https://doi.org/10.1145/3366423.3380120⟩.

WANG, S.; YU, M.; GUO, X.; WANG, Z.; KLINGER, T.; ZHANG, W.; CHANG, S.;
TESAURO, G.; ZHOU, B.; JIANG, J. R3: reinforced ranker-reader for open-domain
question answering. In: Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference
and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence. [S.l.]:
AAAI Press, 2018. ISBN 978-1-57735-800-8.

WANG, Y.; JIN, H. A deep reinforcement learning based multi-step coarse to fine
question answering (MSCQA) system. AAAI Conference on Artificial Intelligence, v. 33,
n. 01, p. 7224–7232, 2019. Available at: ⟨https://ojs.aaai.org/index.php/AAAI/article/
view/4707⟩.

WATKINS, C. J. C. H.; DAYAN, P. Q-learning. Machine Learning, v. 8, n. 3, p. 279–292,
maio 1992. ISSN 1573-0565. Available at: ⟨https://doi.org/10.1007/BF00992698⟩.

WILLIAMS, R. J. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, Springer, v. 8, p. 229–256, 1992.

XUE, L.; CONSTANT, N.; ROBERTS, A.; KALE, M.; AL-RFOU, R.; SIDDHANT,
A.; BARUA, A.; RAFFEL, C. mT5: A massively multilingual pre-trained text-to-text
transformer. In: Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies. [S.l.]: Association for
Computational Linguistics, 2021. p. 483–498.

YANG, Z.; DAI, Z.; YANG, Y.; CARBONELL, J.; SALAKHUTDINOV, R. R.;
LE, Q. V. Xlnet: Generalized autoregressive pretraining for language understanding.
In: Advances in Neural Information Processing Systems. Curran Associates, Inc.,
2019. v. 32. Available at: ⟨https://proceedings.neurips.cc/paper files/paper/2019/file/
dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf⟩.

YANG, Z.; QI, P.; ZHANG, S.; BENGIO, Y.; COHEN, W.; SALAKHUTDINOV, R.;
MANNING, C. D. HotpotQA: A dataset for diverse, explainable multi-hop question
answering. In: Conference on Empirical Methods in Natural Language Processing.
Brussels, Belgium: Association for Computational Linguistics, 2018. p. 2369–2380.
Available at: ⟨https://aclanthology.org/D18-1259⟩.

79

ZHANG, Z.; YANG, J.; ZHAO, H. Retrospective reader for machine reading
comprehension. In: AAAI Conference on Artificial Intelligence. [s.n.], 2020. Available at:
⟨https://api.semanticscholar.org/CorpusID:210920624⟩.

ZHONG, W.; HUANG, J.; LIU, Q.; ZHOU, M.; WANG, J.; YIN, J.; DUAN, N.
Reasoning over hybrid chain for table-and-text open domain question answering. In:
International Joint Conference on Artificial Intelligence. [s.n.], 2022. p. 4531–4537. Main
Track. Available at: ⟨https://doi.org/10.24963/ijcai.2022/629⟩.

80

APPENDIX A – PUBLISHED PAPERS

During the master’s program, contributions to six additional papers were made, sup-

plementing those outlined in Section 1.3. These endeavors provided valuable insights into

QA datasets, transformer neural networks, and DRL:

• The author contributed to the development of Pirá, one of the first bilingual Ques-

tion Answering datasets in Portuguese and English. This dataset focuses on the

Blue Amazon or the Brazilian maritime coast, containing curated question-answer

pairs extracted from scientific article abstracts. Our research outcomes were show-

cased at the resources track of the “ACM International Conference on Information

and Knowledge Management” (CIKM 2021) (PASCHOAL et al., 2021).

Participating in this project yielded a valuable lessons about Question Answering

dataset generation and the critical distinctions between various types. This knowl-

edge is instrumental in shaping the design of suitable architectures and constructing

efficient models.

• During the research, the author worked on the control of a robotic manipulator using

DQN and Episodic REINFORCE. This work was published in the journal “Revista

Brasileira de Computação Aplicada” (RBCA) in November 2021 (COTRIM; JOSÉ;

CABRAL, 2021).

Although this application is not directly linked to QA, it provided essential insights

into model-free DRL theory and the practical aspects of building an environment

and training a suitable agent.

• The author participated in a paper published at “Encontro Nacional de Inteligência

Artificial e Computacional” (ENIAC 2021) (SPINDOLA et al., 2021), centered

around creating a small QA dataset about the Blue Amazon and interpretting

transformers models. We applied an off-the-shelf QA system based on a fine-tuned

BERTimbau Model (SOUZA; NOGUEIRA; LOTUFO, 2020) and explored how vi-

sualizing attention weights can aid in interpreting the system’s responses.

81

The development of this work brought important knowledge about transformer neu-

ral networks and their layers of attention in a QA applications. The ability to

interpret such models is essential for identifying areas of improvement and com-

prehending potential pitfalls, thereby contributing to the overall refinement of QA

systems

• The author participated in an article outlining the initial stages of the “BLue Ama-

zon Brain” (BLAB), an artificial agent designed for conversation about the Brazilian

maritime territory. It encompasses a range of research on the topic, including QA

Systems and conversational agents. This work was presented at the “AI: Modeling

Oceans and Climate Change (IJCAI-ECAI), 2022” (PIROZELLI et al., 2022).

• The author contributed to the development to a project focused on creating a jour-

nalist robot for reporting on the Blue Amazon using three of the most important

Natural Language Generation techniques: template-based, pipeline-based, and neu-

ral end-to-end. Results were published at “Encontro Nacional de Inteligência Arti-

ficial e Computacional” (ENIAC 22) (SYM et al., 2022).

• The author participated in a research paper titled “Coordination within Conversa-

tional Agents with Multiple Sources” which describes how a Large Language Model

can effectively coordinate various sources and systems to develop a conversational

agent. This work was presented in the proceedings of “XIX Encontro Nacional de

Inteligência Artificial e Computacional” (ENIAC 23) (MATOS et al., 2023).

There is also an approved paper that is yet to be published:

• As a continuation of the construction of the dataset Pirá mentioned above, the

author participated in a paper focused on improving it and creating benchmarks

and tests for several tasks, including closed generative question answering, machine

reading comprehension, information retrieval, open question answering, answer trig-

gering, and multiple choice question answering. This paper has been accepted by

the journal “Data Intelligence” and is currently available on ArXiV (PIROZELLI

et al., 2023).

