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ABSTRACT

TENG, C. Accelerating the alignment phase of Minimap2 genome assembly
algorithm using GACT-X in a commercial Cloud FPGA machine. 2022.
Dissertation (Masters) - Polytechnic School, University of São Paulo, São Paulo, 2022.

Genetic sequencing can provide crucial information in medicine and in biology stud-
ies. The technologies developed in the field are advancing rapidly and the current
third-generation of genome sequencers have significant improvements over the second-
generation. In parallel to that, sequencing throughput has been increasing at an expo-
nential rate, which, coupled with price reduction, has resulted in a leap of generation of
genomic data to be processed. Transistor technology is reaching its fundamental limits,
and Moore’s Law is becoming obsolete, so other alternatives are required to efficiently
process such an amount of data.

Long-reads from the third generation of sequencers are shown to be an emerging type
of genetic data, with average lengths of thousands of nucleotides each. State-of-the-Art
algorithm Minimap2 is able to assemble these reads into the genome that was sampled,
but it is a computationally-intensive process: for the human genome size with sufficient
coverage, running times can reach up to dozens of CPU hours. Hardware acceleration
has been proposed as an effort to make Minimap2 more efficient, but up to the present
moment, only one of its main bottlenecks, the chaining step, has been successfully acceler-
ated on FPGA. No efficient solution has been proposed for the aligning step, implemented
as the ksw function. GACT-X is a Cloud FPGA design that performs a banded SWG
alignment with fixed memory, suitable for any size of input.

GACT-X with tiles of size 4,000 can be 2x faster than ksw when aligning long sequences.
Replacing the alignment function ksw in Minimap2 with GACT-X on a Cloud hybrid
system can provide up to 1.41x acceleration on the entire execution to the software
counterpart, with comparable accuracy for data that have high similarity to the reference
genome. This dissertation presents all the relevant background information, the devel-
opment stages and methods, the results achieved on three different datasets, and the
proposed future work on this acceleration project.

Keywords: Cloud Computing, Minimap2, Field Programmable Gate Arrays, Smith-
Waterman-Gotoh, Co-processors, Acceleration, Genomics.





RESUMO

TENG, C. Accelerating the alignment phase of Minimap2 genome assembly
algorithm using GACT-X in a commercial Cloud FPGA machine . 2022.
Dissertação (Mestrado) - Escola Politécnica, Universidade de São Paulo, São Paulo,
2022.

O sequenciamento genético pode forneccer informações cruciais em medicina e em estudos
de biologia. As tecnologias desenvolvidas na área estão avançando rapidamente e a at-
ual terceira-geração de sequenciadores de genoma possuem melhorias significantes sobre a
segunda-geração. Paralelamente a isso, a taxa de sequenciamento vem aumentando expo-
nencialmente, o que, aliado à redução de preços, resultou em um salto de geração de dados
genômicos a serem processados. A tecnologia de transistores está atingindo seus limites
fundamentais, e a Lei de Moore está se tornando obsoleta, então outras alternativas são
necessárias para processar tal quantidade de dados.

Long-reads da terceira geração de sequenciadores são um tipo emergente de dados
genéticos, com comprimentos médios de milhares de nucleot́ıdeos cada. O algoritmo
do Estado-da-Arte Minimap2 é capaz de montar essas reads de volta ao genoma que
foi amostrado, mas é um processo computacionalmente intensivo: para o tamanho do
genoma humano com cobertura suficiente, os tempos de execução podem chegar a dezenas
de horas de CPU. Aceleraçao em hardware foi proposta como uma aplicação para tornar
o Minimap2 mais eficiente, mas até o presente momento, apenas um de seus principais
gargalos, a etapa de chaining, foi acelerada com sucesso em FPGA. Nenhuma solução
eficiente foi proposta para a etapa de alinhamento, implementada como a função ksw.
O GACT-X é um design de FPGA em nuvem que executa o alinhamento de SWG em
banda, com consumo de memória fixo, adequado para qualquer tamanho de entrada.

O GACT-X com tiles de tamanho 4.000 pode ser 2x mais rápido que o ksw ao alinhar
sequências longas. Substituir a função de alinhamento ksw no Minimap2 pelo GACT-X
em um sistema h́ıbrido na nuvem pode proporcionar aceleração de até 1,41x sobre toda
a execução do software, com precisão comparável para dados que têm alta similaridade
com o genoma de referência. Esta dissertação apresenta todas as informações básicas
relevantes, as etapas e os métodos desenvolvimento, os resultados alcançados em três
conjuntos de dados diferentes e o trabalhos futuros propostos para este projeto de acel-
eração.

Palavras-Chave – Computação na Nuvem, Minimap2, Arranjo de Porta Pro-
gramável em Campo, Smith-Waterman-Gotoh, Co-processadores, Aceleração, Genômica.
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1 INTRODUCTION

Genetic sequencing can provide information in medicine for a wide variety of uses.

In preventative medicine, some genetic variations are shown to raise the risk for certain

diseases, such as breast cancer, heart diseases, and type II diabetes, for which therapies

or preventative strategies are available. Genetic sequencing can also be used to identify

current or future genetic diseases, such as muscular dystrophy and Waardenburg syn-

drome. This information can help with life planning and earlier treatment of symptoms.

Another use of genetic sequencing is to help asses whether a person is a carrier of variants

that might cause disease in their children, but does not affect themselves, such as cystic

fibrosis, fragile X syndrome, and sickle cell anemia (KUSHNICK, 1992).

Collecting and analyzing genetic data is also crucial in biology studies, such as in

biodiversity (HENG; HENG, 2021), evolution (ORTEU; JIGGINS, 2020) and metabolic

pathways (GEORGAKOPOULOS-SOARES et al., 2020). It has even become a commod-

ity of public interest, providing people insights on their ancestry and personal phenotypes

(GENERA, 2022).

Current sequencing technology is not capable of reading straightaway a complete hu-

man genome strand, so each DNA (deoxyribonucleic acid) molecule in the sample needs

to be cleaved into many much smaller sequences, called fragments. The sequenced frag-

ments are then called reads. Each read can also be understood as the equivalent sequence

translated into nucleotide bases represented by characters (A, T, C, G) for computer pro-

cessing. Depending on the technology used in the sequencing process, there can be two

types of reads: short-reads, with lengths of a few hundreds of bases (ILLUMINA, 2022),

and long-reads, with many thousands of bases on average (PACBIO, 2022)(OXFORD. . . ,

2022).

Currently, the so-called second-generation of sequencing technology produces short-

reads with high throughput, dominates the market (ADEWALE, 2020) and is expected

to stay prevalent for the next years. However, only the emerging third-generation of

sequencers that produce long-reads is able to identify long alterations in the DNA (MAN-
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TERE; KERSTEN; HOISCHEN, 2019). The slow transition to long-reads is explained

mainly by their higher sequencing cost compared to short-reads. Nowadays hybrid long-

and short-reads solutions for genome assembly are implemented in needed situations (AN-

TIPOV et al., 2015).

Several algorithms and programs have been developed to assemble reads back into the

original complete DNA sequence (LI, 2018)(BURROWS-WHEELER. . . , 2010)(LANG-

MEAD; SALZBERG, 2012). Some of the assembling algorithms map the reads to a

genome reference, which is used as a guide (GRCH38, 2013). First, approximate map-

ping positions are identified for the read in the reference. Then, the reads are aligned to

the reference’s mapping region to pinpoint the variations in the genome that has been

sequenced.

Some classic algorithms, such as the Smith-Waterman-Gotoh (SWG) algorithm

(SMITH; WATERMAN, 1981)(GOTOH, 1990), use dynamic-programming to align two

character strings. It was published in 1981-1990 and is still used to this day in read

assembly programs, but with many heuristics and transformations added on, such as

calculating only a portion of the matrix where the optimal alignment is more probable to

be (FUJIKI et al., 2020)(LIAO et al., 2018).

Read assembly is currently considered a major bottleneck in the entire genome analysis

pipeline (ALSER et al., 2020), that includes laboratory sampling, sequencing, processing

and annotating. Sequencing technologies have been increasing their output capacity in

terms of number of reads at an exponential rate (REUTER; SPACEK; SNYDER, 2015),

whereas computational power has been slowly reaching the limits of transistor technology

(HENNESSY; PATTERSON, 2019). Read assembly is also the bottleneck of the genome

processing pipeline (GENOME. . . , 2022), which corresponds to the technical activities

involved in genetic sequencing.

Although the cost of sequencing DNA is a more significant impediment for the tech-

nology’s diffusion in clinical settings, the speed of acquiring and interpreting genomic

information is crucial in certain applications. For instance, prenatal testing is performed

on women during pregnancy to assess whether the fetus could be born with a genetic

condition or birth defect, which can be helpful to determine the management of the preg-

nancy and delivery (SAMURA, 2020; GADSBøLL et al., 2020). Pathogen genomics can

be used in diagnosing infections, investigating outbreaks and describing transmission pat-

terns, and has been highly present in the latest COVID-19 pandemic (LIU et al., 2021;

THIEL et al., 2003).
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In order to improve the computational performance in software-based algorithms, one

alternative is designing specialized hardware for the assembly task; particularly with ap-

plication specific integrated circuits (ASICs) or field programmable gate arrays (FPGAs).

ASICs are more costly due to customized manufacturing; only a high-volume production

would justify its adoption. FPGAs, on the other hand, are configurable devices that can

surpass software performance without requiring a high manufacturing capital.

Several FPGA acceleration articles can be found in the read assembly acceleration

literature, and some have achieved improvements in processing time (KOLIOGEORGI et

al., 2019)(FUJIKI et al., 2020)(GUO et al., 2019). Given the variety of new algorithms and

tools that are developed in the field every year, and the steady evolution of sequencing

technology that now produces considerably longer reads, it is crucial for the hardware

research to constantly adapt to the new changes.
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1.1 Motivation

Many programs, such Bowtie2 (LANGMEAD; SALZBERG, 2012) have been devel-

oped to efficiently assemble short-reads at the second generation technology. However,

their strategies are often not suitable to process long-reads, having their performance ham-

pered. Hardware acceleration that has been proposed for alignment in these algorithms

on a few hundred nucleotides (KOLIOGEORGI et al., 2019) (FUJIKI et al., 2020) can’t

support sequences of many thousands of nucleotides. This is because the SWG algorithm

with banding has two scaling aspects: the number of stored backtracking pointers grows

with linear proportion to the inputs’ lengths, and the cumulative alignment scores used

in the wave-front expansion increase with the number of matching nucleotides.

BWA-MEM (BURROWS-WHEELER. . . , 2010) and Minimap2 (LI, 2018) are exam-

ples of programs/algorithms proposed to fill the software gap, the latter being 50 times

faster than the former one, besides having better mapping accuracy than most other

programs; therefore, Minimap2 is one of the current State-of-the-Art algorithms for as-

sembling long-reads. Minimap2 has a chaining algorithm that takes advantage of the

higher load of information carried by long-reads to find approximate mapping positions

with better performance and accuracy. It also uses a transformed version of the SWG

algorithm, proposed by Suzuki and Kasahara (SUZUKI; KASAHARA, 2018), for the

alignment (or extending) step, that limits data size in Streaming SIMD (Single Instruc-

tion, Multiple Data) Extensions (SSE) vector instructions to optimize parallelization of

computation of cells.

Still, mapping one human sample of reads to a reference using Minimap2 is very

time consuming, taking dozens of Central Processing Unit (CPU) hours on an Intel Xeon

processor, which further increases the already expensive genome testing budget. This

is because the human genome is really long (approximately 3.2 GB of data) and read

information need to be 8-17 times larger in order to get enough map coverage for reliable

clinical standard (i.e. to statistically cover sequencing errors and mapping heuristics,

and to identify heterozygous states) (AMARASINGHE et al., 2020). Some laboratories

even need to invest in powerful and power hungry compute clusters just to meet the

computational demands.

Previous studies have determined that the chaining and extending steps of Minimap2

are its run-time bottlenecks, taking together around 70% of the total execution time.

Focused on this, authors of such works have already successfully accelerated Minimap2’s

chaining step on FPGA and Graphic Processing Unit (GPU) (GUO et al., 2019). Others
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have also implemented the extending step on CPU, GPU and KNL (Knights Landing)

(FENG et al., 2019), with an acceleration of 3.9x times with 128 CUDA (Compute Unified

Device Architecture) streams with 512 threads each in the GPU case; but achieved lower

performance per thread in the hardware designs compared to software. To the author’s

knowledge, no work in the literature has successfully accelerated Minimap2’s extending

step on an FPGA.

Designing an application as hardware is more complex than programming it as soft-

ware. In addition, the design of an FPGA accelerator takes a longer time, and is usually

more expensive than programming a GPU accelerator. So it is important to assess which

application can achieve a better performance. According to the authors of (GUO et al.,

2019), FPGA may achieve a better performance in several applications, as in the case of

Minimap2, for the following reasons:

• When the algorithm includes a great amount of checking and filtering options, many

control and branch conditions are required, almost at the same rate as the integer

and float arithmetics. On FPGAs, these control logic will add to the pipeline without

having a significant impact on throughput;

• Tasks with irregular-width integer type might be more suitable for FPGAs;

• GPUs need to unpack the data structure, adding instructions to some applications,

whereas FPGAs’ inputs are kept in BRAM (Block Random-Access Memory) and

used immediately with combinatorial logic;

• GPUs’ performance relies on parallelism, but read assembling, although paralleliz-

able along reads, has an extensive processing pipeline for each read.

The extending step of Minimap2 is based on a banded SWG algorithm optimized for

wave-front parallelization of cells with SSE vector instructions, that consumes time and

memory in linear proportion to the input’s lengths. The chaining algorithm of Minimap2

breaks the sequence pairs into many sub-sequences that are sent separately to the ex-

tending function. With this, the extending module is prepared to deal with input data

that has an average length of a few hundred bases, but that sometimes can also be very

long. This variation of sizes requires a new hardware design that can compensate for two

issues: first, short sequences won’t be worth sending to co-processors separately, because

even if they can be processed faster in the FPGA, the time spent transferring the data

alone will be higher than the processing time taken by the software (TENG et al., 2021);
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second, long sequences can extrapolate the hardware’s resources that calculate banded

SWG matrices.

Darwin (TURAKHIA; BEJERANO; DALLY, 2018) was published at about the same

time as Minimap2 and is a software-hardware hybrid system that also assembles long-

reads, achieving up to 183.8x speedup over Edlib (ŠOŠIC; ŠIKIC, 2017). Its initial filtering

stage runs on software, presenting a high RAM (Random-Access Memory) consumption

(30-64GB of RAM for the human genome), which makes Darwin efficient only for se-

quencing cases with references of limited size. Their extending step GACT, which also

calculates the SWG matrix, has been accelerated on an FPGA and was adapted to work

with inputs of any length, since they limit BRAM consumption in hardware by dividing

the matrix into tiles of fixed size.

The same authors of Darwin also published the software-hardware hybrid whole

genome aligner Darwin-WGA that came with an improved extending architecture GACT-

X (TURAKHIA et al., 2019). It is not a read assembler, but a single long stream aligner.

It would be possible to adapt Darwin-WGA to run as a read assembler by transferring the

GACT-X module into Darwin’s software support (since both of them use the D-SOFT fil-

tering algorithm) after taking care of the RAM consumption issue. GACT-X is 2x faster

than GACT and was developed on the Amazon Web Services (AWS) Cloud platform

(AMAZON. . . , 2022c), so it can be easily replicated for other uses. The re-purposing

of Darwin-WGA’s GACT-X module, designed on an FPGA, could potentially accelerate

Minimap2’s extending bottleneck with a Cloud hybrid architecture.

In recent years, Cloud FPGAs (AMAZON. . . , 2022a) (HUAWEI. . . , 2022) (VMAC-

CEL, 2022) have become a compelling alternative to reduce the initial cost of hardware

implementation, by charging a smaller value per time of usage. Cloud FPGAs work the

same way as Cloud computers: a big cluster of processors is physically stored and managed

by a company that offers their clients scalable storage and computing capacity, charging in

proportion to their usage demand. Some companies like Amazon (AMAZON. . . , 2022c)

offer other advantages to developers. For instance, their FPGA comes with a Shell that

wraps any kernel to fit the FPGA’s I/O (Input/Output) resources, and projects developed

on their platform can be encrypted and advertised on their marketplace, with all intel-

lectual property secured. Therefore, an acceleration scheme can be tested with reduced

implementation overhead; only after the implementation has shown to be successful, the

designer may decide to move to a customized board implementation, or to rely on the

Amazon platform for business or research.
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Although Cloud FPGA providers announce large accelerations for applications when

compared to software implementations (for instance, Amazon claims that AWS FPGA

Instances can accelerate compute-bound applications up to 100x), the real acceleration

is limited by virtualized PCIe (Peripheral Component Interconnect Express) transfer’s

throughput and latency, which is dependent on the driver’s technology and whether virtual

machines are adding extra virtual interrupts. Previous work (WANG et al., 2020) has

measured the performance gap between Cloud FPGAs and physical implementation PCIe

transfers and indicated that it is the limiting bottleneck for communication-intensive

workloads, which in their examples did not perform over 2x faster than the software

counterparts. Therefore, the adoption of Cloud FPGAs for Minimap2 must be analyzed

and carefully considered.
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1.2 Objectives

This Master’s dissertation presents the development steps of a software-hardware

hybrid system that accelerates the State-of-the-Art program Minimap2’s aligning step

by using the Cloud FPGA module GACT-X from Darwin-WGA in substitution to the

Suzuki-Kasahara’s algorithm. The specific objectives are:

• Data acquisition. The selection of a set of human genome data suitable to the

experiments proposed in this dissertation is needed. Human sequencing data can

be downloaded from many different open source repositories, such as the United

State’s National Center for Biotechnology Information (NCBI) (NCBI, 2022) and

the European Nucleotide Archive (ENA) (EUROPEAN. . . , 2022); reads data can

also be generated with simulating tools such as PBSIM (ONO; ASAI; HAMADA,

2013). The consensus human genome reference is updated from time to time and

its versions are submitted at NCBI (GRCH38, 2013).

• Evaluation of Minimap2. First, Minimap2’s processing time bottlenecks need to

be determined for long-read datasets that have different read length distributions.

Minimap2’s performance running on AWS’ CPU machines need to be measured and

used as a reference to assess the acceleration. Minimap2’s mapping and aligning

accuracies need to be collected for the same purpose. Finally, some internal data

aspects need to be measured, to identify potential issues when integrating with the

FPGA design.

• Adapting GACT-X and Evaluating the Implementation. The original

GACT-X module published on GitHub must be adapted with changes in the host

for alignment of different pairs of sequences produced by the chaining step of Min-

imap2’s software. The data transfer must be analyzed in order to verify the best

sequence format to be adopted. GACT-X’s Verilog files may need to be altered to

exploit the best performance for the implementation.

• Integration. Minimap2’s compiler should be merged with GACT-X’s compiler,

and the accelerator’s host needs to be included in Minimap2’s code for an integrated

design. The integration has to be compatible with the multi-threading capacity of

Minimap2 with proper synchronization between multiple kernels and multiple cores

in the host. With this, it is possible to measure the total acceleration.

• Measuring acceleration. Execution time measurements must be made for the

GACT-X module and for the hybrid software-hardware accelerated system as well,
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in order to analyze the optimization options and difficulties. The total acceleration

and the acceleration by read length are to be measured for analysis.

• Measuring accuracy. Comparing the alignment accuracy is important to assure

the proposed accelerated solution is acceptable. The alignment accuracy is impacted

by the heuristics applied to accelerate the calculation of the SWG scores. GACT-

X and Minimap2 use different banding algorithms and both also break the pairs of

sequences into smaller sub-sequences with different methods, chaining for Minimap2

and tile for GACT-X.
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1.3 Text Organization

This dissertation is divided into 7 main chapters. The introduction to the context

of this work has been presented in this chapter. Chapter 2 probes the human genome,

genome sequencing, and FPGA concepts and fields. Chapter 3 lightly introduces works

that are related to the one proposed, presenting their main strategies and results. Chapter

4 is more theoretical and explains in detail and examples the main algorithms used in this

project. Chapter 5 shows the first steps of collecting and generating data and quantita-

tively studying the State-of-the-Art program Minimap2. Chapter 6 describes the steps of

adaptation and integration performed on the hybrid Cloud design GACT-X to be used

to accelerate Minimap2, and the final accuracy and speed measurements are presented in

the end. Chapter 7 summarizes all the results obtained in each step and proposes some

future work options.
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2 BACKGROUND

Bioinformatics is inherently a multidisciplinary field, that uses algorithms and digital

processing to help solve biological problems. This chapter gives a broad introduction to

each relevant topic involved, with concepts from both fields. It starts with an overview

of the human genome and its relevance in medicine. Then sequencing technologies are

briefly introduced, allowing readers to understand the data that is being dealt with,

the differences between long-reads and short-reads, the GATK best practices’ steps for

the genome processing pipeline, and the current reference-guided read assembly seed-and-

extend strategy. FPGAs are described in the last subsection; this can help understand how

they differ from general processors and ASICs, and how they are able to accelerate software

counterparts. At last the AWS Cloud FPGA Instance used in this project is referenced

and detailed, followed the description of the OpenCL (Open Computing Language) tool-

set.

2.1 Overview of the Human Genome

DNA is a polymeric nucleic acid macro molecule, composed of three types of unities:

a sugar of five carbons (desoxirribose), one base containing nitrogen, and a phosphate

group. The bases can be of type Adenine (A), Guanine (G), Thymine (T) and Cytosine

(C). Any of them links to the desoxirribose by the nitrogen atom, and to a phosphate

group, forming a corresponding nucleotide (Figure 1). Poly-nucleotide chains form a

double helix structure, in which one ribbon is the Watson-Crick (WC) complement of the

other (Figure 2). For the purpose of genome sequencing, the actual molecule configuration

is not relevant and the nucleotides are abstracted to the characters A, C, T, and G.
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Figure 1: Lewis structures of the four types of DNA nucleotides (KUSHNICK, 1992)

On the left, DNA bases can be Adenine (A), Thymine (T), Guanine (G), and Cytosine (C). Each base

links to the deoxyribose, which is connected to a phosphate group (on the right), by the nitrogen in

magenta, to form the corresponding nucleotides.

Figure 2: Canonical Watson-Crick base pairing in DNA

The strands are conventionally read in the direction 5’ to 3’, which is determined by the phosphodiester

5’-3’ bonds between desoxirribose adjacents. One strand is the inverted Watson-Crick complement of the

other. This complementability enables efficient and correct repair of DNA damage.
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Figure 3: Human genome reference composition vs. somatic cell composition

On the left, the human genome reference has the 22 types of autosome human chromosomes, the 2 types

of sex chromosomes, and mitochondrial DNA. On the right, human somatic cells’ autosome chromosomes

have two copies of each gene and both of them can express and generate a product, except in special

cases of allelic imbalance.

Every somatic cell (diploid cell) of the body carries it’s copy of the human genome,

which has around 6.2 billion nucleotides. Given that humans are diploid, and receive 23

chromosomes from each parent, the established reference to the human genome (more in

Subsection 2.1.1) has around 3.2 billion nucleotides containing all 24 types of chromo-

somes (Figure 3). The first human genome reference was obtained by an international

collaborative research effort called The Human Genome Project (HGP) (HUMAN. . . ,

2003), which started in 1990 and completed in 2003. The reference is updated as better

sequencing technologies emerge and more research is done. The latest version, Genome

Reference Consortium Human Build 38 (GRCh38), was published by NCBI in 2013. The

references are presented in one of the DNA strands with direction 5’ to 3’.

There are around 30,000 genes (functional units of genetic information) in the human

genome. They can be responsible for the production of proteins or functional RNAs

(ribonucleic acids). Only less than 1.5% of the human genome codifies proteins and

it is believed that around 5% of the genome influences or determines gene expression

patterns during development or in different tissues. It is still heavily debated whether

the remaining portion of the genome could also provide relevant signals for the genome’s

functions (PALAZZO; GREGORY, 2014). These sub-sequences can contribute in an

interconnected manner to the phenotypes of an organism. Genes appear in the DNA

sequence in different densities per chromosome, as shown in Figure 4.
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Figure 4: Human gene concentration graph for each chromosome (KUSHNICK, 1992)

The genome has on average 6.7 encoder genes for every mega-base; chromosomes under this line are called

gene-poor chromosomes and above this line are called gene-rich chromosomes.

Analysis of the genome sequence shows that about half of it consists of unique DNA

copies, which means that they only appear once (or a few times) throughout the whole

genome. Most of the unique DNA copies are short sequences (a couple of kilo-bases or less)

and are scattered in the genome. The other half of the DNA sequence consists of repetitive

DNA that shows up hundreds of thousands of times, identically or with small changes,

throughout the genome. They contribute to maintaining the chromosome’s structures

(e.g. centromere and telomer), are an important source of variation between different

individuals, and can be responsible for up to one every 500 genetic diseases.

Given the number of individuals in our species, it is expected that every base-pair

in the human genome varies in someone somewhere in the world. There’s about 0.5% of

genome sequence variation between any two individuals chosen at random. The majority

of these differences consists of insertions or deletions of short stretches, number or copies

of repetitive elements, or inversion of order of sequences in a certain position.

Genetic diseases can be categorized into three types. Chromosomal disorders, caused

by excess or lack of localized genes, affect around 7 out of 1,000 humans born alive and

are responsible for around half of all spontaneous abortions that happen in the first three

months of pregnancy. Monogenic diseases are caused by mutations in individual genes and

follow the autosomal recessive, autosomal dominant, or linked to X patterns. It is a rare
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Figure 5: Frequency of genetic disorder types in the population and common examples

disorder, but causes serious disturbances in 1 out of 300 humans born alive and prevails

in 1 out of 50 people throughout life. Multi-factorial diseases with complex heritage

result from the combination of several gene variations and environmental factors. It is a

prevalent genetic disorder and affects 5% of the pediatric population and more than 60%

of the population in general (Figure 5).

2.1.1 The Human Genome Reference

Genome references are created as synthetic hybrids (an archetype of the most common

variants) aimed to represent a common standard in a species. The purpose is to make

it easier to identify which variations are commonly observed in a population and which

variations are more unique. Humans are diploid organisms, which means that they carry

two copies of each autosome chromosome, one copy originating from each parent. Genome

references, however, are haploid, representing each type of chromosome only once. This

requires additional steps for identifying heterozygous states (situations where a person

carries different variants in the same position on both chromosomes).

The primary assembly of a genome reference contains the assembled chromosomes, the

unlocalized sequences (known to belong to a specific chromosome but with unknown order

or orientation) and unplaced sequences (with unknown chromosome). The latest human

genome GRCh38 came out in 2013 (GRCH38, 2013). In the “.fna” format file, the primary

assembly has 193 sub-sequences (24 chromosomes + 127 unplaced + 42 unlocalized), and

was separated from the rest of the file for use in this dissertation.
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2.2 Genome Sequencing and Genome Analysis

The Human Genome Project (HUMAN. . . , 2003) prompted the development of

cheaper DNA sequencing technologies, with the purpose of obtaining reads: pieces of

ordered genetic coding collected from a human sample material. It was a 20 year conjoint

research effort of many scientists around the world that cost around 3 billion USD (United

States Dollar) in total. At the end of the project, the cost to sequence a human genome

was reduced to 100 million USD, using traditional Sanger sequencing.

Sanger sequencing (SANGER; NICKLEN; COULSON, 1977) follows the steps: chain-

termination PCR (polymerase chain reaction) is applied to a DNA fragment, generating

multiple copies of it that are randomly terminated at different lengths, and with the last

nucleotide emitting a fluorescent label corresponding to its base; the copies are subjected

to gel electrophoresis: by applying an electric current, since DNA is negatively charged, it

moves to one direction with speed determined by its size; the final arrangement of the gel

matrix can be translated into the DNA fragment’s sequence. The original manual Sanger

sequencing method performed four PCR reactions, one for each base type, resulting in

fours columns, as shown in Figure 6. Automated Sanger sequencing performs only one

PCR amplification for all base types.

Figure 6: Sanger sequencing gel electrophoresis (SANGER; NICKLEN; COULSON, 1977)

The sequence is written from left to right and upwards, beside each corresponding band.
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Figure 7: Illumina sequencer DNA clusters captured by a microscope (CHI, 2008)

Each color corresponds to a base type being read from a cluster at a given moment.

To really understand functions of the human genome, thousands of genomes need to

be sequenced. This was only made possible with the introduction of the second-generation

sequencers. Illumina sequencing (ILLUMINA, 2022) currently takes around 90% of the

sequencing market (ADEWALE, 2020). It uses flow-cells: microscope slides with channels

inside. The sequencing process follows the steps: the sample’s library with the reads is

expanded using normal PCR amplification; adapter sequences are added to both ends

of the reads, these adapter sequences correspond to primer and capture sequences; the

DNA is denatured and captured by complement sequences that are fixed in the flow-cell;

DNA polymerase fills the complementary strand on top of the fixed capture sequence and

the original sequence is washed off; the captured sequences are copied many times until

a cluster is formed with many copies of the same sequence; fluorescent terminators are

added to the flow cell in cycles: when incorporated to the sequence, they emit a specific

frequency for the base type; a powerful microscope takes pictures of the clusters and

sequences the reads one base at a cycle (Figure 7).

In Illumina sequencing, the read lengths are limited because not every strand in a

cluster can be captured in each cycle, so as sequencing progresses, more and more strands

lag behind, affecting the fluorescent color of the cluster and reducing accuracy. This

technology achieves high throughput due to the ability to read millions of clusters of

sequences and many different samples simultaneously.

The third-generation of sequencers introduced long-reads, many orders of magnitude

longer than in the second-generation (more details in Subsection 2.2.1). One of them

is from Oxford Nanopore Technology (ONT) (OXFORD. . . , 2022). They use 18 nm

nanopores embedded in lipid membranes to sequence DNA and RNA. The single stranded

molecules are forced to thread individually through the pores and each base changes the
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Figure 8: ONT sequencer Ion current (LASZLO et al., 2014)

Each consecutive graph is a zoom-in of the red section in the previous graph.

electric current that is being measured (Figure 8). However, a pore contains around

6 bases at a time, affecting the measurement and increasing the error rate, but this is

alleviated by error correction methods (< 5%) (AMARASINGHE et al., 2020). The

reads produced can be really long (up to hundreds of Mega-bases). The sequencer is

really portable and can be directly plugged into a personal computer.

Pacific Biosciences (PacBio) (PACBIO, 2022) sequencers are also from the third-

generation, with long-reads. They use nanometer wells (Figure 9) with DNA polymerase

at the bottom. A camera underneath captures videos that register a fluorescence spike

when a new base is incorporated. The fluorescent component is able to leave after a time,

dropping the intensity of light. The error rates are similar to ONT, but are random, which

makes it possible to generate consensus sequences. For that, the same strand is connected

end-to-end as a circle and is re-sequenced many times to remove sequencing errors. With

this, the achieved accuracy can be higher than the ones achieved with Illumina technology

(AMARASINGHE et al., 2020).
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Figure 9: PacBio sequencer nanometer wells (PFEUFER; SCHULZE, 2015)

2.2.1 Short-Reads vs. Long-Reads

The second-generation of sequencing technology leveraged the clinical use of genetic

testing by steeply reducing the cost to sequence a human genome or exome (fraction of

the genome that codifies for genes). Read sequences from this generation commonly have

only a few hundreds of bases, and so, are called short-reads. Even nowadays, short-reads

are still known for being some of the most cost-effective, accurate, and popular types of

genetic data, even after the introduction of the third-generation of sequencing technology

(ADEWALE, 2020).

The third-generation came along with long-reads, that have average length of kilo-

bases, which solved many sequences in the human genome reference that short-reads

were not able to cover. Firstly, short-reads are unable to, or are really ineffective at,

detecting structural variants (SVs), which are insertions, deletions, duplications, inver-

sions, or translocations in the genome that affect more than 50 nucleotide bases. Each

human genome has > 20,000 SVs and additional thousands of indels (insertion–deletion

mutations with < 50 base-pairs or bp), and most of them have remained undetected un-

til long-reads were introduced. This poses a serious problem since SVs account for the

greatest number of divergent bases across human genomes.

Secondly, short-read sequencing technologies often require the DNA to be fragmented

and subjected to PCR amplification, which introduces GC-content coverage bias (high

GC content can affect the efficiency of PCR due to the tendency of these templates to
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Table 2: Comparison between short-read and long-read data

Short-Reads Long-Reads
Second Generation Third Generation

Technologies Illumina, BGI, Thermo Fisher PacBio, ONT
Length up to 600 bases up to hundreds of kilo-bases
Error rate < 0.1% < 5%
Cost (human genome) USD 942 USD 1500
Assembly algorithms BWA-MEM, Bowtie2, SNAP, Minimap2 Minimap2, blasr-mc, BWA-MEM

fold into complex secondary structures) and hampers the detection of base modifications,

such as methylation (when a methyl group is added to a base, changing the DNA’s ac-

tivity without changing the sequence) (AMARASINGHE et al., 2020). Long-reads have

also shown to be essential at detecting copy number variations (CNVs) (regions with

multiple copies of short sequences), at phasing alleles (assigning gene variants to paternal

or maternal chromosomes), and at differentiating pseudo-genes (sequences that resemble

functional genes but can’t produce functional proteins) (MANTERE; KERSTEN; HOIS-

CHEN, 2019).

Long-reads were known for having a large sequencing error rate compared to short-

reads, but a recent article published in 2020 (AMARASINGHE et al., 2020) showed

that error correction strategies (such as the one mentioned for the PacBio technology

in Section 2.2) reduced it considerably, closing the gap to short-reads. Short-reads now

have an error rate < 0.1% and long-reads < 5%. One of the factors that are slowing

the adoption of long-read sequencers is the higher cost to sample a human genome (USD

942 using short-reads and USD 1500 using long-reads in 2020 (ADEWALE, 2020)) (see

comparison between short- and long-reads in Table 2). Some researchers argue that it

also takes time for the scientific community to become adapted to the new technologies

from the third-generation (ADEWALE, 2020).

2.2.2 The GATK Pipeline

The next step after collecting genomic reads is processing the data to acquire useful

information, such as the specific variants in the sequenced individual’s genome. An exten-

sive pipeline of tools is used in this step, which is currently considered the bottleneck of

the complete genome analysis pipeline (ALSER et al., 2020). The most conventionalized

processing pipelines come from the Genome Analysis Toolkit (GATK) (GENOME. . . ,

2022), directed by the GATK Best Practices for different ends, with the workflows de-

signed mainly for Illumina short-reads. This subsection will skip through the processing

tools in GATK4 and also comment on changes that would be applied to process long-reads
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Figure 10: GATK4’s pipeline for variant calling (GENOME. . . , 2022)

Figure 11: Example of a read in “.fastq” format

The read sequence and read quality strings were pruned for clarity, showing only the first line of characters.

from the third-generation. The processing pipeline is divided into three main sections:

pre-processing, variant discovery, and post-processing.

The description is based on the generic germline short variant per-sample calling

pipeline, referred to as Germline Single-Sample Data in GATK4 (Figure 10). Here,

germline refers to alignment to a conventionalized genome reference, and single-sample

data refers to the analysis made on an individual genome.

Pre-processing

The pipeline’s input is composed of raw unmapped reads produced by the sequencers,

that usually come in format “.fastq”. Each read in the “.fastq” file has 4 lines: the first and

third lines are headers, the second line is the nucleotide sequence, and the fourth line is the

quality of each base of that sequence. The quality score is related to the probability of the

corresponding base call being incorrect; the lower the probability, the higher the quality

score. The scores are encrypted with ASCII (American Standard Code for Information

Interchange) codes. For the example, in Figure 11, “@S1 1” and “+S1 1” are headers,

and the quality codes for the four initial nucleotides AATC, are .++* respectively, which

means that their P error values are 0.05012, 0.10000, 0.10000, and 0.12589.

The reads are mapped to a reference genome to produce a SAM (Sequence Alignment
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Map) file, or its binary version BAM, with mapping information of each read. The purpose

of mapping reads to a reference genome is to “rebuild” the original DNA sample, from

which the molecules had to be cleaved into much shorter sub-sequences. In the processing

pipeline, read assembly is the most computationally intensive step. For Illumina short-

reads, GATK recommends the BWA-MEM (BURROWS-WHEELER. . . , 2010) assembler

tool. For long-reads, Minimap2 (LI, 2018) has better accuracy and speed.

The output file after the mapping step is of extension “.bam” or “.sam”. The first

lines (194 for the primary assembly reference) are headers. After them, for each read,

the records display read name, read sequence, read quality, alignment information, cus-

tom tags, mapped chromosome, start coordinate, alignment quality, and the Compact

Idiosyncratic Gapped Alignment Report (CIGAR) string. The alignment flag (Figure

12), the mapped chromosome, and the start coordinate are the mapping results for the

read. Figure 13 shows an example of part of a “.sam” file. The first 5 lines are still part

of the header of the file. Then the first read S1 1 is mapped with the forward direction

(flag 0) to the position 164,654,461 of the RefSeq NC 000001.11, with mapping quality

60. The CIGAR string starts with 5M1D2M1I (explained later), the read sequence starts

with AATCCCTGG, and the sequencing base quality starts with .++*../(,.

The CIGAR strings are alignment structures between the reads and the region to

which they were mapped on the reference. The CIGAR string contains pairs — number

operator — that represent the alignment path between reference and read. The number

indicate the count of sequential occurrences of the operator. The operators can be: “M”

for match or mismatch; “I” for insertion to the read; “D” for deletion from the read;

and “S” for soft-clipping, which results from semi-global or local alignments that lose the

edges of the sequences. Less often used operators are “N”, used to differentiate introns

Figure 12: SAM file alignment flags (SEQUENCE. . . , 2021)
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Figure 13: Example of last headers and first alignment report in a SAM file

This is a screenshot of part of a SAM file after the first header lines until, including, the first mapping

report. Part of the CIGAR, read sequence, and read quality strings were pruned for clarity.

from deletions; and “H”, used for hard-clipping, which works similarly to soft-clipping,

but the read string also loses the clipped edges. Section 4.1 presents the genome sequence

alignment process and some CIGAR examples.

The last step of pre-processing, which is more specifically for Illumina reads, marks

duplicates that may emerge from the replication step during library preparation. This

is done by verifying if two or more reads have the same orientation, mapping position

and length. After marking duplicates, the base quality scores are re-calibrated using

the BQSR tool (BASE. . . , 2020), which detects the systematic errors created by the

sequencer using a machine learning model, to compensate for the tendency of sequencers

to overestimate quality scores. PacBio and ONT long-read sequencing technologies do

not use PCR amplification, so this step is not required.

Section 2.2.3 will dive more into the pre-processing step of the genome analysis

pipeline, as it is the area of focus of this work.

Variant Discovery

This step identifies genomic variations in the sequenced individual using the tool

HaplotypeCaller (HAPLOTYPECALLER, 2022). It reassembles the reads in regions

presenting variation signs using the de novo process, which glues sequences suffix-to-

prefix instead of aligning them with a reference; and then calls the variants of each base

position. HaplotypeCaller has a very high sensitivity, meaning that it detects many

variants that can sometimes be irrelevant. The output file format is VCF (Variant Call

Format), which contains variants in each line and columns with chromosome, position,

identifier, reference sequence, list of alternative alleles, quality score, a filtration flag,

description of the variation, and other information. PacBio suggests using pbsv (PBSV,

2022) to call structural variants joined with DeepVariant (POPLIN et al., 2018) to call
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small variants.

Post-Processing

The germline analysis pipeline is focused on identifying variants from the individual

that are not common for the species. The undesired variants can be filtered out with the

CNNScoreVariants (CNNSCOREVARIANTS, 2020) and the FilterVariantTranches (FIL-

TERVARIANTTRANCHES, 2019) tools. CNNScoreVariants is a trained convolutional

neural network model. With relevant variants identified, the funcotator (FUNCtional

annOTATOR) (FUNCOTATOR, 2022) links them to their respective functions, using a

set of data sources provided by the user.

2.2.3 Reference Guided Read Assembly

There are several ways to re-assemble reads back into the complete genome strand.

Two of the most common methods are the de novo assembly and the reference-guided as-

sembly. The de novo assembly method matches suffix to prefix of different reads, expand-

ing the sequence in a scaffolding way into many long sequences called contigs. Genome

references themselves, including the human genome reference, and short genomes are as-

sembled with this method. The second method is mapping and aligning the reads to a

pre-established reference for the species. This method demands considerably less com-

putation and is more commonly used for assembling long genomes that have a published

reference to follow. The reference-guided assembly method is extensively used in clinical

sampling of human genomes and exomes.

Reference-guided assembly relies on the similarity between genomes of the same

species (about 99.5% for humans). It can generate reference biases; for example, vari-

ants that are predominant in an ethnicity might not be represented in the reference. The

post-processing step can be tailored to these situations and filter out variations that are

actually expected for an individual’s ancestry. The reference-guided method also relies on

statistical inference. Clinical applications require at least 8 times coverage for each base

for an acceptable accuracy (AMARASINGHE et al., 2020). This should cover random

sequencing and alignment errors and help identify heterozygous states, where a different

variant is inherited from each of the biological parents.

Figure 14 illustrates a reference-guided assembly. The reference sequence is on the

top line in red, while the read samples are in gray in following lines. The coverage is

represented by each line and each column is linked to the nucleotide of a specific position
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Figure 14: Illustrated reference-guided assembly and statistical inference for base-call

Figure 15: The seed-and-extend read assembly strategy

In the seeding stage, the algorithm finds exact or non-exact matches of very short sequences between the

read and the reference. Indexing strategies are applied to the reference to accelerate the seeding stage.

Because the seeding stage can result in a great number of false positives, often an intermediate filtering

stage is required to reduce the number of selected items. On the extending stage, the Smith-Waterman-

Gotoh algorithm (described in Section 4.1.3) is used to align the entire read sequence to the reference

region.

in the reference. Variants are determined by dissimilarities between the sequenced sample

and the reference genome. In the zoomed figure on the right, under the nucleotides “CC”

in the reference, there are two columns missing, with dashes in the reads. That would

be identified as a deletion in the sequenced genome. There is also a column where the

reference genome has the nucleotide “C” whereas the reads have the nucleotide “T”, which

would be identified as a homozygous SNV (single nucleotide variant). The variant would

be classified as homozygous because all the reads in the coverage have this SNV; if it was

heterozygous, around half of them would have the SNV.

There are many methods to map and align reads to a reference. The most successful

method has been the seed-and-extend approach (Figure 15). It was pioneered by BLAST

(ALTSCHUL et al., 1990) and it is used by almost all read assembly tools currently.
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Some examples of seeding strategies are: searching for identical matches of fixed length

scanning through fixed intervals, used in Bowtie2 (LANGMEAD; SALZBERG, 2012) and

Minimap2 (LI, 2018) (more in Section 4.2.2); finding maximal exact matches (MEMs),

the longest exact matches between read and reference, used in BWA-MEM (BURROWS-

WHEELER. . . , 2010); non-identical seeds can also be used by mapping algorithms.

Indexing the reference is essential for finding the seeds in short time. Each seeding

method can be better suited for different indexation methods. The FM-Index (FERRAG-

INA; MANZINI, 2000) is a memory efficient indexation method used in BWA-MEM and

Bowtie2 that sorts all the rotations of the sequence, and indexes each type of nucleotide

in the first and last columns. The hash table indexing method is used in Minimap2; it

converts seed sequences into an index for a table containing all positions for that seed in

the reference (more in Section 4.2.1).

The seeding process can end up pointing to many regions to align in the reference.

Some techniques can be applied to filter out the false positive seeds. Filtering for short-

reads is harder because they carry little extra information that would not result already

in a complete extension of the read. For example, the work described in Section 3.2 is at

the same time a filtering step, that calculates the alignment between read and mapped

region in the reference using a very narrow band; and an extending step, because most

of the results of these alignments correspond to the optimal alignment. For long-reads,

filtering can be applied by extending a small region near the seed and evaluating the score

obtained before deciding to extend the entire read (TURAKHIA; BEJERANO; DALLY,

2018), or by grouping the parallel seeds from the same read to find its best mapping

position in the reference as in Minimap2 (LI, 2018) (more in Section 4.2.3).

Finally, with the one or few remaining mapping positions, the algorithm needs to

align the read to the mapped region in the reference to identify potential variants. For

this alignment, a matrix is adopted, with the reference and query (read) sequences posi-

tioned in the matrix’ axes. The alignments that are performed can be global (when both

sequences are fully aligned to each other), which is preferred when they are similar and

have similar lengths; local (only a portion of the sequences is aligned), used to find regions

of similarity between two sequences; and semi-global (alignment is extended from a fixed

point between the two sequences and stops when the similarity ends), commonly used in

the seed-and-extend method.

The Smith-Waterman-Gotoh (SWG) algorithm has quadratic time and memory com-

plexities in relation to the input’s lengths. Because of that, the assembly tools usually do
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not calculate the entire SWG matrices for this step. Since the alignment path is expected

to stay around the anti-diagonal of the matrices, different banding techniques can be used

to limit computation to cells around the anti-diagonals, reducing the complexities to a

linear relation; they can adopt fixed bands or dynamic bands. Fixed bands limit the

calculation to cells in a fixed area of the matrix (FUJIKI et al., 2020). Dynamic bands

try to follow the deviation of the alignment path (LI, 2018). Other algorithms compute

overlapping quadrants of the matrix, named tiles, one at a time, limiting the memory

usage to a constant value, independent of the input’s lengths (TURAKHIA et al., 2019).

Chapter 4.2 describes the specific algorithms used in the seeding, filtering and ex-

tending steps of Minimap2. Chapter 4.3 describes a hardware implementation of the

alignment process that is taken in the extending stage. These two are combined in this

work to provide an acceleration for Minimap2.
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2.3 FPGA Acceleration

Currently, almost every 32-bit and 64-bit processor uses reduced instruction set com-

puter (RISC) instructions to communicate software and hardware. It is a type of instruc-

tion set architecture (ISA), where instructions are typically as simple as microinstruc-

tions, being executed directly by the hardware. In RISC, recently executed instructions

are stored in a fast memory called cache, since they are more likely to be reused. This

architecture adds extensive flexibility to general purpose processors, but also increases

considerably the number of clock cycles required to perform the same task as an ASIC.

The computers’ most basic components are the transistors. Their purpose is to reliably

and accurately control electric currents, used to switch or maintain voltage representing

zeroes or ones in binary logic. Specific combinations of transistors in a circuit can create

logic gates for conjunction, disjunction, and negation. Combined logic gates can perform

all sorts of more complex calculations. Transistors are fabricated with a semiconductor

like silicon, treated with elements that give it an electron emitting or electron absorbing

characteristic. Arranging these types of semiconductors in layers gives transistors the

ability to control the current propagating between its terminals based on the voltage

applied to its gate.

In 1965, Gordon Moore first predicted that the transistor density on processors would

double every year, and in 1975, he revised it to be every two years. His prediction was

so precise that it became known as Moore’s Law. From around 2000, Moore’s Law began

to slow down, and by 2018 there was a 15-fold gap between the predictions and the

technology at that time. This gap is only going to increase as CMOS (complementary

metal-oxide-semiconductor) technology approaches fundamental limits, and the costs to

deal with this skyrocket (Figure 16).

In parallel to that, Robert Dennard stated that as transistor density increased, power

consumption per transistor would decrease, allowing power consumption per mm2 to stay

nearly constant. With power density increasing, “Dennard scaling” also began to slow in

2007 and became almost nonexistent by 2012 (Figure 17).

The slowdown of Moore’s Law and the end of Dennard scaling induced architects

to exploit better data parallelism. They developed a branch prediction strategy to keep

modern processor cores’ pipelines full. However, the average misprediction rate of 19%

(on Intel Core i7 in this example) made the energy efficiency of modern processors even

worse, as additional energy is needed to restore the initial state.
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Figure 16: Moore’s Law vs. Density (HENNESSY; PATTERSON, 2019)

Figure 17: Transistors’ length vs. power/nm2 (HENNESSY; PATTERSON, 2019)

The multi-core (more than a single CPU) approach allowed the programmer to set

the best use of thread parallelism for each implementation, but did not solve the energy

consumption problem, since every active core consumes power whether or not it is con-

tributing to boost the performance. Also, according to Amdahl’s Law, the speedup from

parallel computing is limited by the portion of the program that is sequential.

Quantum effects on extremely small transistors lead to high thermal dissipation and

CMOS technology is approaching its fundamental limits (i.e. reaching lengths equivalent

to a few atoms), but there’s still a growing need for computational power. Genomics is

an example of it: the Illumina NovaSeq 6000 system can sequence about 48 human whole

genomes at 30x genome coverage in about two days. However, analyzing (performing

assembling and variant calling to) the sequencing data of a single human genome requires

over 32 CPU hours on an Intel Xeon processor, 23 of which are spent on read assembly

(GOYAL et al., 2017).
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Domain-specific architectures (DSAs) are one of the best solutions to this. They

are architectures tailored to a specific problem domain, which in this case would be

genome assembly. Some examples of DSAs are GPUs and neural network processors.

DSAs can exploit a more efficient type of parallelism for the domain, can make more

effective strategies for memory access, can use less precision when adequate, and are

energy efficient. FPGAs are programmable hardware used on DSA development that

constantly appear on genome alignment acceleration research and were argued to be the

most efficient option for the genomics domain (GUO et al., 2019).

ASICs are able to deliver a higher performance when compared to CPUs or DSAs

(GPUs and FPGAs), because their operating frequency can be adjusted and optimized to

the longest path of the circuit, becoming over 3 times higher than the operating frequency

of FPGAs (KAPLAN; YAVITS; GINOSAR, 2019); and because the components can be

distributed on the chip in the most efficient manner, under same technology. However, the

fabrication cost for ASICs is high, requiring a high volume production to become viable.

Since the genomics field is evolving extremely fast, and new algorithms are published

every year, it is not prudent to adopt a fixed solution.

2.3.1 Field Programmable Gate Array

Before explaining FPGAs, some basic electronic components need to be introduced.

Lookup Tables (LUTs) are tables that produce an output based on the input values.

They act like logic gate circuits and, in great numbers, can produce any combinational

logic function and even perform very complex computations. LUTs can be looked at as

being very small RAMs that are loaded with data when configuring the FPGA. The input

would represent a storage address and the output would be the stored data. Lookup tables

reduce significantly computation time as they can produce the same results of a circuit

that has many logic gates. They are also components that attribute a re-configurable

aspect for FPGAs.

Flip-flops (FFs) are logic circuits that work as 1 bit memories. Clock pulses can keep

or alter their output value, depending on the value set on the input. A series of flip-flops

can constitute a register that also has similar characteristics to memories. A latch is a

circuit that registers data if the input has ever been at a high value, keeping output high

after this occurs, and only going back to zero if reset is activated. Multiplexers (MUXes)

are able to switch the output to one of its multiple inputs through control signals.

FPGAs are, in a simplified way, ICs that contain configurable blocks of logic and
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Figure 18: Simplified illustration of an FPGA architecture (MAXFIELD, 2004)

Switch Matrices are the keys arranged in rows and columns that interconnect CLBs and connect them

to the inputs and outputs of the FPGA.

Figure 19: Key elements of a configurable logic block in an FPGA (MAXFIELD, 2004)

configurable interconnects between them (Figure 18). In the illustration in Figure 19, each

configurable block is formed by three key elements: a 3-input lookup table, a register that

could act as a flip-flop or a latch, and a multiplexer. A 3-input function can be loaded in

the LUT, the multiplexer could accept the output from the LUT or another input from

the logic block, and the register could be configured to act as a FF or a latch.

Another important aspect of FPGAs is how the logic is loaded into the board. Most

FPGAs use, besides LUTs for configurable logic, SRAM (static RAM) configuration cells

to hold control signals for interconnections, which is a fast re-configurable method, with

a downside of requiring configuration in every system power-up. Another issue with this

method is the hindrance to protect the intellectual property, since the configuration file

is commonly stored in an external non-volatile memory. Bit-stream encryption can be

applied with additional circuitry to avoid this, or Cloud implementations can block access

from the end user to private components.

Several modern FPGAs available in the market include in their fabric embedded Block
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RAMs (BRAMs) and high-speed Input/Output Blocks (IOB) that make the interface

between internal blocks of the FPGA and its external pins. Some FPGAs come with

embedded processor cores. Considering FPGAs adopt volatile SRAM for configuration,

booting with an external micro-controller is required to load the memory value into the

FPGA every time it is initialized. It is also possible to reconfigure the FPGA while it is

running a project with a complex system.

The FPGA project developer generates the circuit description at behavior level, at

RTL (register transfer level) with a hardware description language (HDL) or with a block

diagram graphic description. Most common HDLs are Verilog and VHDL (VHSIC (Very

High Speed Integrated Circuit) HDL). Some tools like VIVADO, from Xillinx, can trans-

late high level programming languages such as C and C++ into HDL, process known as

high-level synthesis.

On one hand, it is considerably easier and faster to design FPGA projects than ASIC

projects, since no complex backend design steps (e.g. layout generation and layout op-

timization) is needed, and the reprogrammability aspect allows the design to promptly

adapt to the market changes. On the other hand, FPGA projects are limited by on-chip

resources and mostly don’t reach the same level of ASIC performance. Manufacturing

costs per chip are lower for ASICs in large production runs, but are prohibitively high for

small reproductions. FPGAs also have high manufacturing costs, but they are shared by

the high number of users or purchasers.

Designing an FPGA accelerator takes a longer time, and is usually more expensive

than programming a GPU accelerator, although it may deliver, in general, faster pro-

cessing. GPUs are considered still efficient, when the related application present strong

data parallelism. According to the authors of (GUO et al., 2019), FPGAs may achieve

better performance than GPUs in several applications, as in the one considered in this

dissertation.
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2.3.2 Cloud FPGAs (the AWS F1 Instance)

FPGA designs can be implemented in a physical board or, nowadays, even in the

Cloud. Genomic tools, specially read assembly tools, deal with great amounts of data,

requiring processors to have higher volatile and non-volatile memory capacities. FPGA

boards with high resource count can be very costly and inaccessible for development

projects. Even if the board is accessible, developers must deal with the hardware-software

interface configurations and with system maintenance for new platform support tools.

Cloud computing services can reduce the initial cost by charging a smaller price for

usage time. Designs that are implemented in popular Cloud servers, such as Amazon

Web Services (AMAZON. . . , 2022c) and Google Cloud (GOOGLE. . . , 2022); and that

use more unique processors, such as FPGAs and GPUs; have been increasingly used in

the research environment, because they can be more easily replicated and more people

can avail the results. Considering the reasons above, this project was developed for, and

was implemented on, a Cloud machine containing many CPUs and an FPGA.

Amazon Web Services (AWS) is a Cloud platform that offers technological services

through the web. AWS provides on-demand delivery of IT resources over the internet with

pay-as-you-go pricing. On-demand Instances are more suitable for short-term, irregular

workloads that cannot be interrupted, which is typical for development and research

projects. A wide variety of Instance types are available, with different number of CPUs,

RAM and storage capacities, and network and data transfer bandwidths (AMAZON. . . ,

2022b).

Some Instance types offer accelerated computing with hardware integration. The

F1 Instances are the only AWS Instances that contain FPGAs. There are f1.2xlarge,

f1.4xlarge and f1.16xlarge Instances, in increasing performance potential, with their re-

spective resources listed in Table 3. For the purposes of this dissertation, the f1.2xlarge

will suffice.

The f1.2xlarge Instance has a server with eight CPU Cores and one Xilinx UltraScale+

VU9P FPGA in a separate board. Since this Instance is the one used in this dissertation,

from this point on, it will be referred simply as AWS F1, unless otherwise explicitly

Table 3: Resources available on AWS F1 Instances

Instance FPGAs vCPU Mem (GiB) SSD (GB) Network Performance (Gbps)
f1.2xlarge 1 8 122 470 10
f1.4xlarge 2 16 244 940 10
f1.16xlarge 8 64 976 4 x 940 25
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stated. The server is equipped with 4 DDR4 (Double Data Rate) channels, providing a

bandwidth of 4x16 GiB/s, each accessing a 72-bit wide ECC-protected memory (48 Gb/s

bandwidth). The interface with the host is done with dedicated PCIe Gen3x16 connection

(30 Gb/s bandwidth).

The advantages of AWS F1 Instances with respect to FPGAs are that they already

come integrated to a CPU host server with fast interface and drivers installed; AWS

FPGAs are pre-loaded with a Shell that wraps the kernels (HDL synthesized hardware in

FPGA that run algorithms and are called via OpenCL functions) to fit the FPGA’s I/O

range, presenting a standard AXI (Advanced eXtensible Interface) to the kernels. The

VU9P FPGAs are very powerful, and have more SRAM capacity than FPGAs currently

available at the author’s research institution.

The project’s development environment is SDAccel (SDACCEL. . . , 2019) (default

changed to Vitis in 2020 (VITIS. . . , 2022)). On the host CPU, the custom application

(written in C/C++) interacts with the FPGA by using the OpenCL API (Application

Programming Interface). OpenCL Runtime manages and services the requests sent to the

FPGA. The drivers handle the PCIe transfers between the host and devices. The FPGA

comes preloaded with the necessary logic to DMA (Direct Memory Access) the data in

local DDR memory. The custom kernels read this data, process it, and write the results

back to DDR, using standard AXI-4 (Figure 20).

The steps for hardware development in AWS are:

• Create SDAccel/Vitis kernels from C/C++, OpenCL, or RTL models; the resulting

containers (“.xo” files) contain kernel XML (eXtensible Markup Language) meta-

data, RTL files, and Vivado IP project;

Figure 20: CPU-FPGA interconnection in AWS F1 Instances (DEVELOPING. . . , 2022)
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• Compile the platform (the SDAccel/Vitis compiler links the kernels and other re-

quired hardware components), instantiate the kernels and the F1 Shell, generate

DDR interfaces and interconnect logic, make all the necessary connections, run syn-

thesis and place&route, resulting in a “.xclbin” binary file;

• Create the encrypted Amazon FPGA Image (AFI), which is stored by an AWS

back-end service.

VU9P is a stacked silicon device, meaning that a silicon interposer connects 2 or more

FPGA dies (Super Logic Regions). SLR is a slice of a device containing a subset of its

resources. VU9P has 3 SLRs, and each has access to one or more DDR interfaces. The

Shell includes the PCIe link and hardware necessary to transfer data between the host

and kernels in the CL (Custom Logic) region (Figure 21). The Shell’s clock runs at a

fixed 250 MHz. The CL supports clock frequency of up to 500 MHz.

The kernels access DDRs via AXI4 MM (Memory Mapped) that have 512 bit busses

clocked at 250 MHz. Each DDR is accessible by a maximum of 16 AXI4 busses, so

an F1 FPGA can have at most 64 kernels. The DDR global memory has an inherent

latency overhead when accessed, both for host via PCIe, and for kernel via DDR memory

controllers. One cycle of data transfer takes in total 4 DDR transfers.

Figure 21: The AWS F1 Instance’s VU9P FPGA with 3 SLRs, 4 DDRs, and AWS Shell
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2.3.3 The OpenCL Tool-Set

OpenCL is a tool-set that augments C and C++ languages with data types, data

structures, and functions for building parallel programs to run on high-performance pro-

cessors (OPENCL. . . , 2011). It is a standardized interface that allows developers to

program different devices without having to learn multiple languages.

In 2008, the company Apple was selling very popular consumer electronic products

(e.g. iPhone, iPad, iPod, and MAC). They were built using devices from third party

companies, that benefited from this with the rise in market share and developer interest.

Apple faced the need for a common interface that suited any device, so together with its

vendors, Apple formed the OpenCL Working Group, one of many in the Khronos Group

(a consortium of companies for graphics advancement).

OpenCL targets platforms as the one presented in Figure 20, which describes a hard-

ware implementation in FPGA, but the device instances could be instead, for example, a

set of GPUs running concurrent code. A custom application in C/C++ runs in the host,

along with the acceleration platform’s execution commands and its device’s functional

code. In the case of GPUs, this code corresponds to C/C++ blocks, while for FPGAs it

consists of HDL compiled binaries. OpenCL is a tool-set with a large number of specific

commands; the implementation’s host in this research practices the following steps with

their corresponding commands/functions:

• Create a platform structure: with the software development kit (SDK) previ-

ously installed on the machine, the vendor is informed (e.g. Xillinx, Nvidia, etc.)

in this step; the cl platform id data type and the clGetPlatformIDs and clGetPlat-

formInfo functions are used;

• Create a device structure: linked devices from the specified vendor are identified,

and one or more are chosen for the application; the cl device id data type and the

clGetDeviceIDs and clGetDeviceInfo functions are used;

• Create a context: devices that work together are grouped into a context, that

will have a command queue designated to it; the cl context data type and the

clCreateContext function are used;

• Create a command queue: various types of commands can be en-queued to

the device with this data structure, from transferring buffer objects to executing

kernels; the queue also synchronizes commands by using event flags, and by deter-
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mining whether the commands are ordered by FIFO (first in, first out) or not; the

cl command queue data type and the clCreateCommandQueue function are used;

• Create a program: programs are containers of kernels; both of them store exe-

cutable code, but kernel represents a single function whereas program can represent

more than one function; at this step, the binary file with instructions to build

logic in the FPGA is read and loaded in the memory; the cl program data type

and the clCreateProgramWithBinary, clBuildProgram, and clGetProgramBuildInfo

functions are used;

• Create kernels: kernels can be associated to a specific memory bank, such as

one of the DDRs from the AWS FPGA (see Section 2.3.2); the cl kernel and

cl mem ext ptr t data types and the clCreateKernel function are used;

• Create buffers: one or more buffers (regions of a memory used to temporarily

store data) are reserved in the device for it to read or write input and output data;

this step requires maximum data size and memory bank information; the cl mem

data type and the clCreateBuffer and clEnqueueMapBuffer functions are used;

• Transfer data: data is written into or read from the buffers by the host; this

is a command order sent to the command queue; the clEnqueueWriteBuffer and

clEnqueueMapBuffer functions are used;

• Set the kernel arguments: any I/O configured kernel argument is set at this

stage; the clSetKernelArg function is used;

• Execute the kernels: this is a kernel execution command order sent to the com-

mand queue; the clEnqueueTask function is used.
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3 RELATED WORK

Thousands of relevant works related to genomic read assembling can be found in

the literature. This literature review is focused on papers that use hardware designs

(e.g. GPU, FPGA, KNL, and ASIC) to achieve some improvement with respect to their

software counterparts. The first two works accelerate short-read assembly algorithms and

the other works are related to long-read assembly algorithms.

3.1 SWG on FPGA for Short-Reads (KOLIOGEORGI

et al., 2019)

This work consists of accelerating the short-read assembly program Bowtie2’s align-

ment step with FPGA implementation. In Bowtie2, the SWG step takes 60% of the

execution time, being 56% for matrix-fill and 4% for traceback. A communication over-

head on the hardware-software co-designed architectures was identified and addressed.

The wave-front parallelism is explored by an array of PEs (Processing Elements),

with the same length as the read sequence (average 270 bp for their dataset), that fills

the matrices in a skewed pattern in n+m− 1 steps (Figure 22). The matrices are stored

on on-chip memory for use by the traceback step, which is also implemented in hardware.

Figure 22: Related work - data-flow for SWG (KOLIOGEORGI et al., 2019)
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Figure 23: Related work - interleaving read sequences (KOLIOGEORGI et al., 2019)

Interleaving of L read sequences causes a skewed memory pattern for storing score matrices in BRAM.

In their architecture, they noticed that the computation of a cell value requires a chain

of multiplexers, which introduces a latency L between consecutive diagonals. To alleviate

this, L reads are interleaved in a round robin manner (Figure 23). Double buffering was

also implemented to avoid halting matrix-fill operation while streaming data to traceback.

The design was implemented on Xilinx VU9P Ultrascale FPGAs running at 200 MHz

and MAX5C DFE (data-flow engine). Compared to Bowtie2 with SIMD optimization

running in an Intel Xeon E5-2658A processor at 2.2 GHz, the accelerator achieved 18x

speed-up and the integrated system had 35% performance gain. This design is only suited

for aligning short-reads, since the number of PEs is directly linked to the length of the

query.

3.2 SeedEx: BSW on FPGA for Short-Reads (FU-

JIKI et al., 2020)

SeedEx is a co-processor implemented on an FPGA that performs seeding expansion

with narrow banded SW (BSW) as a filtering algorithm. First, they noticed that in the

BWA-MEM algorithm, more than 98% of the seed expansions required a band w ≤ 10 for

short-reads. So they developed a narrow banded accelerator with a three step optimality

check to find and rerun the non-optimal expansions on the host.

The first step calculates the theoretical highest score (upper-bound score) and com-

pares it with the score obtained within the band. Thresholds S1 and S2 are calculated

for the smaller region and the bigger region outside the band respectively (difference is

due to length asymmetry between query and reference sub-sequence) (Figure 24). The

highest score would be the seed’s score subtracted by a gap with the band’s length and

added to a match in the remaining sequence. If the score is under S1, it is automatically
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Figure 24: Related work - SeedEx’ three step optimality check (FUJIKI et al., 2020)

Thresholds S1 and S2 from 2 regions outside the band where optimal alignment could occur. On the

left is the matrix of thresholds. On the right are the three possible optimal alignment paths with scores

higher than S1.

sent to rerun on the host. If it is higher than S2, optimality is guaranteed. If it is between

S1 and S2, further checking is required.

It is proven by contradiction that if the optimal score is outside the band, then it

must be in the shaded region in Figure 24. There are two ways of reaching this region,

from above or from the side. The second step performs an E-score check by dislocating

the border cells out of the band and performing matches for all subsequent alignments.

The maximum value resulting from these interactions is the threshold of acceptance of

the band’s alignment.

Finally, in the third step they perform the Edit-distance check where they perform a

seed expansion with the lower gap penalty and edit-distance scoring on the shaded region

using S1. The best resulting score is an optimistic threshold for alignments coming into

the gray area. If the alignment score in the band passes both E-score and Edit-distance

thresholds, then it is optimal.

The design was implemented on AWS F1 instance (f1.2xlarge). They chose a band

size of 41, which resulted in a thresholding passing rate of 71.76% and a rerun rate of

1.81%.

12 BSW cores generated the narrow-band and E-check scores. 4 Edit machines per-

formed the Edit-distance check’s expansion. With perfect prefetching and appropriate

buddering, the memory access time was completely hidden. They achieved 43.9 M seed

extensions/s and 1.5 M reads/s (the latest was coupled with seeding acceleration), a 1.3x
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speed-up over BWA-MEM and BWA-MEM2.

SeedEx could be repurposed as an accelerator of a filtering step for long-read assembly

(it would be equivalent to the BSW modules in Darwin-WGA, see 3.8), but can’t be used

for long-read alignment for two reasons: the traceback memory requirement would be

prohibitive, and long-reads would hardly be limited to narrow bands.

3.3 RASSA: ASIC for Finding Mapping Positions

(KAPLAN; YAVITS; GINOSAR, 2019)

RASSA consists of an accelerator for the filtering or pre-processing step of genome

assembly. A circuit of resistive memories called memristors stores the reference genome

and, at the same time, compares it in parallel with chunks (100-200 bp) of the read

sequence to measure the Hamming distance between them (Figure 25). A threshold of

around 50% determines the mapping position(s) of the read (Figure 26).

RASSA achieved 16-77x speedup over Minimap2 with higher sensitivity. While Min-

imap2 only mapped about 20% of all reads from their dataset, RASSA always mapped

more than 72% of the reads with false positives between 6.9% and 39.2%. However,

RASSA’s tested circuit only supported small genomes (< 31.5 Mbps), and there was no

evaluation for human genome size performance.

Figure 25: Related work - circuit of memristors (KAPLAN; YAVITS; GINOSAR, 2019)

b) Single RASSA bitcell. c) ‘A’ base from reference stored in-memory compared to ‘A’ base from read

resulting in no charge loss. d) mismatch between ‘G’ and ‘T’, resulting in match line voltage reduction.
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Figure 26: Related work - mapping threshold (KAPLAN; YAVITS; GINOSAR, 2019)

Read is scanned through the reference and when it hits a potential mapping position, the mismatch rate

drops under a 50% threshold.

3.4 Minimap2’s Chaining Step on FPGA and GPU

(GUO et al., 2019)

This project aimed to accelerate the chaining step of Minimap2 in 3 processors: CPU,

GPU and FPGA, and compared the results. For the CPU, they binded a thread to a

designed core, allocated data of tasks in a neighbor NUMA (non-uniform memory access)

node, and implemented SIMD so that the weights between eight pairs of anchors can be

computed concurrently. With this, they achieved almost linear speedup to the number of

cores (13.9x with 14 cores).

For hardware implementation, they changed the order of the operation sequence be-

cause of a loop-carried dependency. Instead of comparing the current anchor with N

previous anchors to find a maximum, they compare it with N later anchors and update

the temporary value of each of them (Figure 27). They also dispatch a data batch so that,

at any clock cycle, every PE can fetch input data. This solves the problem of different

input sizes from different tasks (Figure 28).

The architecture was implemented on an AWS F1 Instance, running at 250 MHz with

8 PEs. PCIe bandwidth was the limiting factor. For long-reads, the FPGA accelerator

is 277x faster than a single-thread software, 28x faster than 14-core optimized software

and 4x faster than their GPU implementation. Since the chaining step is one of the

bottlenecks for Minimap2’s runtime on long-reads, with this acceleration the bottleneck
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Figure 27: Related work - reordered operation sequence (GUO et al., 2019)

On the left, the original algorithm with a long critical path. On the right, the reordered operation

sequence reduces the critical path.

Figure 28: Related work - fine-grained task dispatching scheme (GUO et al., 2019)

is passed to the extending step. This project has not been fully integrated into Minimap2,

but the separate module is available on GitHub (MINIMAP2-ACCELERATION, 2021).

3.5 Minimap2’s Extending Step on CPU, GPU and

KNL (FENG et al., 2019)

This article implemented acceleration techniques on Minimap2’s base-level alignment

step for long-reads on CPU, GPU and KNL. For PacBio simulated dataset on the human

genome, this step consumes 65.42% of the time. They noticed that the Suzuki-Kasahara

transformation uses linear arrays to store the matrices, reducing memory usage, but in-

troducing intra-loop data dependency. They proposed a new memory layout with another

coordinate transformation that does not alter the memory requirement (Figure 29). The

vector load procedure was reduced to a single load instruction (Figure 30).

On their setup, the CPU was running with 20 cores, GPU with 5120 and KNL with
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Figure 29: Related work - optimized memory layout for SWG (FENG et al., 2019)

Figure 30: Related work - vector load reduced to a single instruction (FENG et al., 2019)

64. For matrix fill and traceback, CPU was 1.3 to 4.5 times faster than Minimap2, GPU

was 3.2 times faster and KNL was 3.9 times faster. They concluded that, although KNL

and GPU both outperformed CPU, a high-end server CPU was still the most efficient

platform due to the others’ low single thread performance and occupancy issue.

3.6 Darwin: A Hybrid Design for Long-Read Assem-

bly (TURAKHIA; BEJERANO; DALLY, 2018)

Darwin presented the deployment of a complete genome assembly algorithm that is

optimized for hardware acceleration. It is divided in two parts: Diagonal-band Seed

Overlapping based Filtration Technique (D-SOFT) for the seeding and filtering steps,

and Genome Alignment using Constant memory Traceback (GACT) for a second filtering

stage and the sequence alignment step. With D-SOFT implemented on CPU and GACT

implemented on an Arria 10 FPGA, clocked at 150 MHz, Darwin achieves up to 183.8x

speedup over GraphMap (ŠOŠIC et al., 2016) with a single thread on a dual socket Intel

Xeon E5-2658 processor (2.2 GHz).

The reference is first indexed with a seed position table, where seed hits are stored
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Figure 31: Related work - D-SOFT mapping (TURAKHIA; BEJERANO; DALLY, 2018)

In the example, k = 4, BinSize = 10, and h = 8.

sequentially, which enables faster and fewer memory accesses. High frequency seeds that

occur more than 32 × |R|/4k times, where |R| is the size of the reference, are discarded.

Then, in D-SOFT, the reference is divided into bins of size 128. Seeds of size k = 15

are collected from a read with stride = 1 between start and end. When matched to the

position table, the hits are computed so that each bin has a count of unique bases that

account for seed hits that may overlap. When the count for a bin first exceeds a threshold

h = 13, the last hit in the bin is added to the candidate positions list.

Figure 31 shows an example with a reference with 6 bins of 10 nucleotides each. Each

of the query’s 4-mers, with stride (or dislocation) of 1 is searched in the position table.

The first k-mer finds a match in Bin 3, illustrated by a red circle and a line spanning the

k-mer’s length. When a match is found, the Bin updates its count, without considering

overlapping bases that have already been counted in previous k-mers. After iterating

through all the query’s 4-mers, the last hit from the Bins with counts that exceeded the

threshold of 8 are sent as seeds for the next stage. In the example, only Bin 3 passed the

filtration process.

GACT performs a second filtration stage and the extending step for the seeds that

passed. It computes sub-squares of the SWG matrix, called tiles, with fixed size T = 320

and overlap border O = 128, creating sequentially a band around the anti-diagonal of the

matrix. The first tile starts from the expansion point; it is the only one that starts the

traceback from the highest score and it is bigger than the other tiles (T = 384) because

it works as a second filtering stage. The expansion will only proceed if the first tile’s

score surpasses htile = 90. The traceback in each tile proceeds until the overlap boundary

is reached. The other tiles are clipped in the position where the previous tile stopped

backtracking and perform their traceback from the bottom-right cell. Figure 32 presents

an left-extension example from the seeding point in green, with T = 4 and O = 1.



67

Figure 32: Related work - GACT extension (TURAKHIA; BEJERANO; DALLY, 2018)

In the example, T = 4 and O = 1.

The memory requirement is fixed at O(T 2), ideal for hardware implementation with

limited resources, and the authors affirm that GACT gives optimal results empirically.

The hardware design is based on a systolic array. An array of NPE = 32 processing

elements (PEs) computes blocks of NPE rows from the tile, exploiting the wave-front

parallelism of the matrix. In each block, each PE holds its corresponding nucleotide from

the query sequence and the reference sequence is streamed through the array. In each

clock cycle, each PE computes the three scores and the traceback pointer. Figure 33

shows an example with NPE = 4 and T = 9.

They synthesized 4 GACT arrays with traceback support (limited by on-chip memory

— each PE required 2 KB SRAM, which equals 64 KB SRAM per array), and 36 GACT

arrays that do not perform traceback and only compute the first tile’s score. The peak

throughput was 1.3 M tiles/s. The reported 183.8x speed-up over GraphMap was in

relation to single-threaded software, but the hardware design takes multiple kernels. A

Figure 33: Related work - GACT architecture (TURAKHIA; BEJERANO; DALLY, 2018)

(a) Systolic architecture of GACT with NPE = 4. (b) Matrix fill scheme for T = 9.
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one to one comparison should have had a reduced speed-up.

Darwin was published about the same time as Minimap2, and the latter achieved sig-

nificantly better accuracy and also better performance in comparison to GraphMap. There

has not been any performance evaluation of Darwin in relation to Minimap2. D-SOFT

was developed to achieve best performance in hardware implementation and, although

the authors have simulated a fully accelerated Darwin ASIC, which would provide a great

speed-up, in the current implemented FPGA design, D-SOFT runs on software and con-

sumes prohibitive amount of RAM for long references, such as the human genome.

3.7 Improved GACT Algorithm Using BSW (LIAO

et al., 2018)

This article presents an improved version of Darwin’s GACT accelerator. The authors

replaced the tiles with bands without affecting accuracy empirically and achieved a 2.5x

speed-up in hardware (Figure 34). They also developed a dynamic programming algorithm

for band overlapping. The algorithm consists of searching for regions with high match

rates that are more likely to be in the optimal alignment, and overlapping on these

instances. Traceback was performed on the hardware.

They used a systolic array of PEs, with length equal to the band, L = 512 and

B = NPE = 128. Score cells were treated as 12-bit integers. Compared to GACT, they

reduced the total required clock cycles to 40%. They implemented the accelerator on an

Intel 40nm Stratix IV FPGA, EP4SGX230KF40C2, running at 125 MHz, with RIFFA

data communication through PCIe interface. No open-source code has been provided

by the authors for eventual third part improvements. Later, the authors of Darwin also

published an improved architecture that bands GACT and achieves higher speed-up,

which will be presented in the next Section 3.8.
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Figure 34: Related work - GACT adapted with bands (LIAO et al., 2018)

3.8 Darwin-WGA: A Hybrid Design for Whole Genome

Alignment (TURAKHIA et al., 2019)

The authors of Darwin developed a whole genome alignment (WGA) hybrid design by

adapting the D-SOFT and the GACT algorithms used in Darwin. WGA is a method that

aligns two complete genomes. It is used for identification and prediction of functional

elements (genes and regulatory sequences), for deducing the evolutionary relationship

between species, and for ancestral genome reconstruction. Darwin-WGA uses an adapted

D-SOFT algorithm for seeding, BSW for gaped filtering, and the improved GACT-X

design for aligning. The main differences in Darwin-WGA compared to Darwin are: the

query is a long genome sequence, instead of many shorter reads; aligned sequences have

a significantly lower similarity for originating from different species; longer indels are

expected in the result.

The adaptations aimed at increasing sensitivity, so that true positives could pass on

through the filtering stage. D-SOFT uses spaced seed patterns instead of perfect matches

to find seeds. A BSW filtering stage, implemented on an FPGA, is added to the design,

which also increases the algorithm’s sensitivity by allowing gaps in the filtration. Finally,

longer gaps require wider tiles to show up in the final alignments, but GACT has a

quadratic consumption of on-chip SRAM in relation to tile size. To linearize this ratio,

the X-drop algorithm was added to create a dynamic band around the alignment path in

the tiles, naming the new algorithm GACT-X. GACT-X is further detailed in Chapter

4.3.
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In their architecture, the software runs D-SOFT, configures the arrays, controls the

execution of tiles, and reconstructs the alignments from traceback pointers. 50 BSW

arrays and 2 GACT-X arrays are implemented on an AWS FPGA, operating at 150

MHz. GACT-X achieved 4.6 k tiles/s (14.6 MB/s) throughput, which is over 4x speed-up

over GACT, using 2x less memory. Although Darwin-WGA is not a read assembler, the

GACT-X module in it computes the SWG alignment for arbitrarily long sequences, which

can be repurposed to accelerate read assembling algorithms.

3.9 Minimap2’s Extending Step on FPGA (TENG et

al., 2021)

This is a work related to the author’s under-graduation project, accomplished with her

colleagues RenanWeege Achjian and Caio da Costa Braga, which consisted on accelerating

the extending step of Minimap2, using a Xilinx MPSoC Zynq Ultra96v1 board, containing

an FPGA and an Arm processor. First, the extending step was identified as Minimap2’s

main bottleneck when mapping short-reads (58.6% of the total execution time).

One of ksw extd2 sse41’s main loops, commented as “gap left-alignment” in Min-

imap2’s original code, was synthesized into VHDL, using the VIVADO High Level Syn-

thesis (HLS) tool. The SSE instructions were changed to regular C and pragma commands

were added to optimize the logic description. From the RTL files, an IP block was gener-

ated and the block design was completed in VIVADO to generate the bit-stream.

The host was loaded into the Arm processor, using PYNQ OS (operating system)

and Jupyter interface. The intermediate data was stored on an SD (Secure Digital) card

inserted in the board. This design only consumed 3% of FFs and 11% of LUTs. The

required clock cycles were reduced 155x compared to software. However, the acceleration

scheme did not provide performance increase to the ksw function, due to a data transfer

overhead that took 99.9% of the time taken by the whole design.
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4 ASSEMBLY AND ALIGNMENT

ALGORITHMS

This chapter describes the key algorithms that form the basis of the acceleration

project of this work: SWG, Minimap2, and GACT-X. The first and last algorithms per-

form sequence alignment; and the second performs read-to-reference assembly, which also

includes a sequence alignment stage. SWG is a classic biological sequence alignment

algorithm used in almost any read assembly program, usually with added heuristics to

improve performance and reduce memory consumption. The SWG’s predecessor is the

algorithm Needleman-Wunsch. Minimap2 is the State-of-the-Art algorithm for assem-

bling long-reads to a genome reference. GACT-X has the same function as Minimap2’s

extending step, and is an FPGA design suited for alignment of long sequences. GACT-X

is implemented on an AWS Instance and is going to be used in this project to accelerate

Minimap2’s extending step.

4.1 Biological Sequence Alignment

All the following methods are based on matrices. The examples given are simple for

didactic reasons, but real short and long-reads can measure up to 600 bp and hundreds

of kbp respectively.

4.1.1 The Needleman-Wunsch Algorithm

Saul Needleman and Christian Wunsch first published a method to find the best

alignments between two sequences using a matrix based dynamic programming algorithm

in 1970 (NEEDLEMAN; WUNSCH, 1970). Their method allowed comparisons involving

matches, when the letters are identical in the same position of the alignment; mismatches,

when the letters are different in the same position; and gaps, when either one of the

sequences have an insertion or a deletion of a nucleotide or sub-sequence. In other words,

it is a metric that represents the minimum number of “mutational events” required to



72

Figure 35: Example of an alignment between two DNA sequences

Alignment between sequences “CAGCCTCGCTTAG” and “AATGCCATTGACG”. Each position of the

alignment has to correspond to a match, a mismatch, or a gap. Gaps can also be called indels, insertions

or deletions, depending on the situation.

convert one sequence into another. Take the example of an alignment in Figure 35.

Given a matrix S, the axes of the Needleman-Wunsch matrix correspond, respectively,

to the query and the reference being aligned, A = a1a2...an and B = b1b2...bm. Matches

and mismatches are compensated with function s(ai, bj) which has a positive value when it

is a match and a negative value when it is a mismatch. Gaps are penalized with a constant

w. In dynamic-programming fashion, each cell contains the best score up to that position

and the best alignment interaction(s) between every pair of bases that resulted in this

score. The equation 4.1 shows how each cell of matrix S is computed.

Sij = max{Si−1,j−1 + s(ai, bj), Si−k,j − w, Si,j−1 − w}, 1 ≤ i ≤ n and 1 ≤ j ≤ m (4.1)

As an example, take the alignment between A = ATGACTCTCAGAC (reference)

and B = ATCTCGAGTGAGC (query) in Figure 36. A match score is 1, a mismatch

penalty is 0.4 and a gap penalty is 0.4. First column and row are filled as gaps, since it’s

the only possible interaction between an empty sequence and a non-empty one. The filled

Needleman-Wunsch (NW) matrix is shown in the figure. The arrows indicate the origin(s)

of the maximum score for each cell and the backtracking generates the best alignment

path(s) as shown in purple.

The backtrack pointers indicate that there is a match/mismatch when the path is

diagonal, an insertion when the path is vertical, and a deletion when the path is horizontal

(when the reference is in the x axis). The computation in S1,1 results in 1 due to the match

of “A”s, which scores +1 from the upper diagonal cell, resulting in a value larger than the

ones coming from above or from the left. After all cells are calculated, a traceback phase,
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Figure 36: Example of a Needleman-Wunsch global alignment matrix

Needleman-Wunsch global alignment matrix between sequences ATGACTCTCAGAC (reference) and

ATCTCGAGTGAGC (query), using MatchScore = 1, MismatchScore = 0.4 and GapScore = 0.4.

Figure 37: Needleman-Wunsch optimal alignment paths found in the example

Best alignments produced by NW global alignment between sequences ATGACTCTCAGAC (reference)

and ATCTCGAGTGAGC (query), using MatchScore = 1, MismatchScore = 0.4 and GapScore = 0.4.

starting from the last cell up until it reaches the origin, marks the possible interactions and

finds all the best paths for the alignment. There were in total 5 alignments that obtained

the MaximumScore = 6.2, as shown in Figure 37. The caption shows the alignment
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and the graph shows the feasible path in the matrix that represents the alignment. The

CIGAR string for the first alignment would be “2M2D3M3I4M1D1M”.

4.1.2 The Smith-Waterman Algorithm

Later in 1981, Temple Smith and Michael Waterman had noticed that the frequency

of occurrence of short insertions or deletions in nature was length-dependent, so they

added an affine function to represent the gap score (SMITH; WATERMAN, 1981). They

have also adapted the method to compute local alignment, which is useful in applications,

such as searching for similarities between two sequences that have different sizes or are

from different phylogenies.

Now gaps are penalized by the affine function Wk = a + bk, where the constant a

represents the gap opening score, the multiplier b represents the gap extension score,

and the variable k represents the length of the gap. Each cell then has to take into

consideration gaps coming from all previous cells in the same line and column. The new

equation below shows how each cell of matrix S is computed.

Sij = max{Si−1,j−1 + s(ai, bj),maxk≤1{Si−k,j−Wk},maxl≤1{Si,j−1 −Wl}}

, l ≤ i ≤ n and l ≤ j ≤ m
(4.2)

Using the same example, but aligning two sequences with an affine gap cost: A

=ATGACTCTCAGAC (reference), B = ATCTCGAGTGAGC (query), match score is 1,

mismatch penalty is 0.4, gap opening score is 1 and gap extension score is 0.3. Figure

38 shows the final Smith-Waterman matrix. S1,2, for example, evaluates to −0.3 because

the maximum value comes from S1,1 scoring 1− 1.3 = −0.3, while, from S1,0 the score is

−1.3 − 1.3 − 0.3 = −2.9, from the upper diagonal the score is −1.3 − 1.0 = −2.3, and
from the top the score is −1.6− 1.3 = −2.9.

This example produced one best alignment with Score = 3.8, shown below. The

CIGAR string for this alignment would be “2M2D3M3I4M1D1M”.

A T G A C T C - - - T C A G A C

A T - - C T C G A G T G A G - C
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Figure 38: Example of a Smith-Waterman global alignment matrix

Smith-Waterman global alignment matrix between sequences ATGACTCTCAGAC (reference) and

ATCTCGAGTGAGC (query), using MatchScore = 1, MismatchScore = 0.4, GapOpeningScore = 1

and GapExtensionScore = 0.3.

To turn this process into a local alignment between two sequences, a new arrow

pointing to the origin without penalty or reward has to be created (illustrated as a circle

in Figure 39). Therefore all the values in the matrix are going to be positive or zero, since

the score in the origin is zero. The backtracking should also start from the positions in the

table with the maximum score (the purple scores in the matrix), instead of starting from

the last cell, and end if it encounters an origin arrow. This will remove the requirement

for the alignment to stretch from the beginning to the end of each sequence.

The algorithm found two solutions for best local alignments with Score = 4.7, for

which, below, the strings are shown:

T C T C - A G T C T C A G A

T C T C G A G T C T C - G A

There is also the semi-global alignment, that is frequently used in read mapping

algorithms that apply the seed-and-extend strategy. The alignment starts at the origin,

that would be the seeding region, and extends until the max score in the matrix, so no

origin arrow is used.



76

Figure 39: Example of a Smith-Waterman local alignment matrix

Smith-Waterman local alignment matrix between sequences ATGACTCTCAGAC (reference) and

ATCTCGAGTGAGC (query), using MatchScore = 1,MismatchScore = 0.4, GapOpeningScore = 1

and GapExtensionScore = 0.3.

Although the SW Algorithm generated alignments that were more consistent biolog-

ically, it increased considerably the time complexity compared to the NW solution, from

O(MN) to O(MN(M + N)), where M and N are the lengths of the sequences being

aligned. Also, the affine gap method frequently excluded very long gaps that could be

generated from a single mutational event, such as crossing-over or transposition of a mov-

able element. Logarithmic, quadratic, or other concave functions can be implemented in

the SW algorithm to alleviate this issue, but will further increase the complexity of it.

4.1.3 The Smith-Waterman-Gotoh Algorithm

Osamu Gotoh came up with an elegant solution to the problems mentioned in the

previous section and published his algorithm in 1990 (GOTOH, 1990). By adding matrices

for each gap type, he could perform more levels of dynamic programming, eliminating the

need to check the gap score coming from each previous cell in every iteration. His method

could also extend to a piece-wise linear gap-weighting function that could approximate

concave curves without increasing the complexity extensively.

For an example with one affine gap function, two extra matrices are added, one for
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the horizontal gap score H and another for the vertical gap score V . The cells of the 3

matrices are filled simultaneously, starting from H and V . Cells in H and V only need to

compute the best score between opening a new gap from the main matrix S, or expanding

the gap from its neighbor. S needs to get the maximum score between a diagonal path

from its neighbor, or the scores computed in matrices H and V in the same cell position.

The summary of the algorithm is shown in the equations below.

Hij = max{Si−1,j − a,Hi−1,j − b}, 1 ≤ i ≤ n and 1 ≤ j ≤ m

Vij = max{Si,j−1 − a, Vi,j−1 − b}, 1 ≤ i ≤ n and 1 ≤ j ≤ m

Sij = max{Si−1,j−1 + s(ai, bj), Hij, Vij}, 1 ≤ i ≤ n and 1 ≤ j ≤ m

(4.3)

Adding two more matrices will increase the cumulative memory requirement to store

the traceback pointers by 3 times, but will reduce the time complexity in relation to the

SW algorithm from cubic back to quadratic. This is because, with SWG, each cell will

only have to consider scores from previous neighboring cells (considering “neighbor” cells

from other matrices), instead of all previous cells in the same row/column as in the SW

algorithm.

Taking the same example and aligning two sequences with an affine gap cost: A

=ATGACTCTCAGAG (reference), B = ATCTCGAGTGAGC (query), match score is 1,

mismatch penalty is 0.4, gap opening score is 1 and gap extension score is 0.3. Figure

40 shows the final Smith-Waterman-Gotoh matrices. The first matrix V computes the

vertical gaps, the second matrix H computes the horizontal gaps, and the third matrix

is the main matrix S. As in the case of S1,2 seen in Section 4.1.2 from Figure 38, it also

evaluates to −0.3, since it is the maximum among the values obtained from the upper

diagonal cell S0,1, −1.3 − 1 = −2.3, from V1,2, −2.9, and H1,2, −0.3. On their turn, V1,2

is obtained from the max from S0,2, −1.6− 1.3 = −2.9, and from V0,2, −∞− 0.3 = −∞.

Similarly, H1,2 is obtained from S1,1, 1− 1.3 = −0.3, and from H1,1, −2.6− 0.3 = −2.9.

Both the SW and the SWG Algorithms will generate the same matrix S and compute

the same alignments, but each with a different strategy. With the SWG Algorithm, any

number of affine functions L can be added to approximate a desired curve. The time

complexity is now O(MN(L+ C)), where C is a constant.
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Figure 40: Example with the Smith-Waterman-Gotoh global alignment matrices

Smith-Waterman-Gotoh global alignment matrices between sequences ATGACTCTCAGAC (query) and

ATCTCGAGTGAGC (reference), using MatchScore = 1, MismatchScore = 0.4, GapOpeningScore =

1 and GapExtensionScore = 0.3.
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4.2 Minimap2: Assembly Algorithm for Long-Reads

Minimap2 (LI, 2018) is a State-of-the-Art algorithm formulated by Heng Li and pub-

lished in 2018 in Bioinformatics. This section will present Minimap2’s heuristic strategies

to assemble genomes from short- and long-reads, achieving better accuracy and time

performance for long-reads than other previous works.

Minimap2 was developed to tackle the problem of assembling long-reads produced by

SMRT (Single Molecule Real-Time) sequencing technology and ONT. These technologies

can produce reads longer than 10 kbp, at the cost of higher error rate (∼ 15%), but error

correction methods have reduced this rate to < 5%. In general, it is not feasible for such

data to be processed by mainstream short-read assemblers, mainly due to memory and

higher error rate impediments.

The new strategies adopted in Minimap2 allowed it to be over 30 times faster than

traditional long-read assemblers, with higher accuracy: Figure 41 (a) shows that, for a

given mapping quality threshold (x axis), Minimap2 achieves the highest percentage of

mapped reads (y axis).

The algorithms that had been developed specifically to assemble long-reads, such as

BLASR (CHAISSON; TESLER, 2012) and BWA-MEM, would often perform five times

slower than the ones developed for short-reads, when processing the same amount of data.

Minimap2 running on short-reads performs 3 to 4 times faster than mainstream short-

read assemblers, such as Bowtie2, and other long-read assemblers, such as BWA-MEM,

but it is 1.3 times slower than SNAP. However, it is more accurate than Bowtie2 and

SNAP and less accurate than BWA-MEM. The accuracy can be seen in Figure 41 (b),

where, Minimap2 shows a second higher percentage of mapped reads, given a mapping

quality threshold. The author in (LI, 2018) affirmed that Minimap2 showed to be worse

than BWA-MEM in accuracy because the last one tries to locally align a read in a small

region close to its mate.

Although Minimap2 uses the typical index and seed-and-extend procedure (see the

method in Chapter 2.2.3), each of these steps has had a new improvement that was proven

to be more effective. The next topics will present each one of these new adaptations.
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Figure 41: Comparison of mapping performances between read assemblers (LI, 2018)

A read was considered correctly mapped when it overlapped the true interval by at least 10%. (a) Long-

read assembly evaluation. 33088 ≥ 1000 bp reads were simulated. (b) Short-read assembly evaluation.

10 million pairs of 150 bp reads were simulated.

4.2.1 Hash Table Indexing

Mainstream aligners often use a full-text index, such as suffix array or FM-index

(FERRAGINA; MANZINI, 2000), to index reference sequences. This allows higher seed

uniqueness which will reduce the number of unsuccessful extensions. Minimap2 uses a

table for indexing fixed length code. The fixed length allows more efficient computation:

query seeds with multiple hits can be skipped without affecting the final accuracy, com-

pensating for the advantage that seed uniqueness offers. The author ended up concluding

that a hash table is the ideal data structure for mapping long noisy sequences.

On Minimap2, a k-mer is a code sequence of length k. The k-mers are collected from

the reference during indexing stage, and later on from the reads during mapping stage,

through the same function. A window of size k scans through the target sequence with w

steps. The hash function from eq. 4.4 is applied to all these k-mers and their respective

inverted Watson-Crick complements (see Figure 2). The sub-sequence or the complement

that has the smallest hash is taken as a minimizer and is added to the set of minimizers

M (Figure 42). Minimap2 uses k = 15 and w = 5, but these can be changed by the user.

φ(s) = φ(a1)× 4k−1 + φ(a2)× 4k−2 + · · ·+ φ(ak) (4.4)

If φ(A) = 0, φ(C) = 1, φ(G) = 2 and φ(T ) = 3 are adopted, the hash function

will always map a k-mer to a distinct 2k-bit integer. Only poly-A will always get zero.
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Figure 42: Minimap2’s algorithm for collecting minimizers and indexing

In this example, the minimizer is the reverse complement of the orange k-mer. The minimizer index,

calculated with function φ(s); the choice of minimizer in the set (2); and the reverse complement flag “1”

are stored.

Because of this, Minimap2 uses φ′ = h · φ, where h is an invertible integer hash function

on [0, 4k). In short, a hash table is a dictionary where the key is the minimizer hash and

the value is a set of target sequence index, position of minimizer, and sequence. Each

value list is sorted before being added to the hash table to reduce heap allocations and

cache misses.

4.2.2 Perfect Match Seeding

For each query sequence (referring to read sequences), Minimap2 takes query minimiz-

ers as seeds and finds exact matches, called anchors, in the reference, using the previously

indexed hash table (Figure 43). From the figure, it can be noticed that a seed in the read

may be anchored in different parts of reference. This step is often used in other assemblers

but in Minimap2, the seeds have fixed length and are matched to the reference through

the hash table. The seed is skipped when it has too many occurrences in the reference.
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Figure 43: Minimap2’s seeding and anchoring steps

4.2.3 Chaining for a Filtering Stage

All sets of collinear anchors are grouped into chains (Figure 44). An anchor is a 3-

tuple (x, y, w) that indicates that interval [x−w+1, x] on the reference matches interval

[y−w+1, y] on the query. The chaining score up to the i− th anchor in the sorted chain

is given by the function 4.5. The function can be computed with dynamic programming.

f(i) = max{{f(j) + α(j, i)− β(j, i)}, wi} (4.5)

In function 4.5, α(j, i) = min{min{yi − yj, xi − xj}, wi} is the number of matching

bases between the two anchors. β(j, i) = γc((yi − yj) − (xi − xj)) is the gap cost and

equals to ∞ when yj ≥ yi or when the distance between two anchors is higher than G. A

Figure 44: Minimap2’s chaining step
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gap of length l for the average seed length w̄ costs:

γc(l) = 0.01 · w̄ · |l|+ 0.5 · log2|l| (l ̸= 0)

γc(l) = 0 (l = 0)
(4.6)

For N anchors, chaining has complexity O(N2), but is able to take a generic gap cost

function, is simple to implement, and is not associated with a large constant like in other

algorithms. Minimap2 applies an heuristic strategy to accelerate this step. It limits the

number of iterations to h = 50, since it is unlikely that an anchor i chained with j has

better score when chained against j’s predecessors. This reduces the complexity to O(hN)

and, according to Minimap2’s author, it can almost always find the optimal chain, and

even when it fails, the optimal chain is often close.

As mentioned before, the chaining process is a dynamic-programming algorithm, so

during chaining, there is a process of backtracking that appends to a chain new anchors

in order that provide the best score. When backtracking, anchors are marked as ‘used’,

so that no anchor is used in more than one chain. Sometimes chains can have significant

or complete overlaps due to repeats in the reference. To identify the primary chains, all

chains are sorted according to their scores, and an empty list Q is created. For each query,

if the chain overlaps with a chain in Q by 50% or more, the chain is marked as secondary;

otherwise, it is added to Q so, in the end, Q contains all the primary chains.

Although many chains can be detected, usually each read should only be mapped

to one place in the reference. The best primary chain is picked for this purpose to be

aligned in the next stage. At the end, each read with its associated chain will be mapped

to the reference, with each chain composed of several anchors. Sub-sequences between

adjacent anchors are called in this dissertation as anchor-separated sub-sequences, and

are individually aligned in the Smith-Waterman-Gotoh algorithm, as to be seen in the

next section. The sub-sequence in the chain that extends to the right, from the leftest

anchor to the end of the sequences is called anchor-extended sub-sequence, and will be

used at Chapter 6.1.2 in the GACT-X’s implementation.
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4.2.4 SSE Optimized Alignment

After getting the primary chains, Minimap2 uses the dynamic-programming-based

algorithm Smith-Waterman-Gotoh, with the Suzuki-Kasahara formulation (SUZUKI;

KASAHARA, 2018), to perform global alignment of anchor-separated sub-sequences in

a chain, and semi-global alignment for the head and tail sequence pairs. In this way, the

final result is a local alignment that maps the read on the reference and aligns the read

sequence to a reference sub-sequence.

Minimap2 implements its alignment with a 2-piece affine gap cost, as shown in eq.

4.7. In this way, long insertions and deletions, that often occur in complex genomes such

as the human genome, can be recovered.

γa = min{q + |l| · e, q̃ + |l| · ẽ} (4.7)

The Suzuki-Kasahara Formulation

Hajime Suzuki and Masahiro Kasahara published in 2018 a reformulation of the Smith-

Waterman-Gotoh Algorithm (SUZUKI; KASAHARA, 2018), allowing it to be the fastest

SSE SWG implementation, with a 2.1 fold higher performance than that of the fastest im-

plementation for the semi-global alignment of long-reads. They noticed that, as the read

length increases, the values of the cells in the dynamic-programming matrix increase. Tra-

ditionally, SSE implementations could achieve 16-way parallelization for short sequences,

but only 4-way parallelization for long sequences, when the peak alignment score reached

32,767, which was turning the alignment step into a significant bottleneck. This happens

because SSE vector instructions are vectors of fixed length with data that have limited

size; if the data surpasses the limit value, more cells are needed to represent it, reducing

the parallelization capacity of the vector instructions.

Difference Recurrence Relation

Instead of calculating and storing all the values in a matrix, they proposed a “differ-

ence recurrence relation”, where the differences between the neighboring cells are stored,

not the integral value of each cell. In this way, they could guarantee that the values would

have a limited range and would be able to be stored as an 8-bit integer, enabling 16-way

SSE vectorization.

First consider the following small change to the SWG formulation:
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Sij = max{Si−1,j−1 + s(ai, bj), Hi−1,j − b, Vi,j−1 − b}, 1 ≤ i ≤ n and 1 ≤ j ≤ m

Hij = max{Sij − a,Hi−1,j − b}, 1 ≤ i ≤ n and 1 ≤ j ≤ m

Vij = max{Sij − a, Vi,j−1 − b}, 1 ≤ i ≤ n and 1 ≤ j ≤ m

(4.8)

With this, four difference matrices are created, as shown in eq. 4.9 and Figure 45.

∆Hij = Sij − Si−1,j, (i ≥ 1)

∆Vij = Sij − Si,j−1, (j ≥ 1)

∆H ′
ij = Hij − Sij

∆V ′
ij = Vij − Sij

(4.9)

A new intermediate variable I is introduced to represent the diagonal difference Sij−
Si−1,j−1. The new recurrences then become:

Iij = max{s(ai−1, bj−1),∆H ′
i−1,j +∆Vi−1,j − b,∆V ′

i,j−1 +∆Hi,j−1 − b}

∆Hij = Aij −∆Vi−1,j

∆Vij = Aij −∆Hi,j−1

∆H ′
ij = max{−a,∆H ′

i−1,j −∆Hij − b}

∆V ′
ij = max{−a,∆V ′

i,j−1 −∆Vij − b}

(4.10)

Figure 45: The Suzuki-Kasahara transformation (SUZUKI; KASAHARA, 2018)

In the first transformation of the Suzuki-Kasahara algorithm, the new values ∆H, ∆V , ∆H ′ and ∆V ′

are stored in four new matrices instead of the original values S, H and V .
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All the values in the cells are now limited by:

−a− b ≤ ∆H ≤M + a+ b

−a− b ≤ ∆V ≤M + a+ b

−a ≤ ∆H ′ ≤ 0

−a ≤ ∆V ′ ≤ 0

, where M is the maximum value of s(x, y), or the match score in nucleotide alignment.

The row-column coordinate is transformed into the diagonal-antidiagonal coordinate

by letting r ← i+ j and t← i. In this way, cells with the same antidiagonal index r are

independent of each other, allowing them to fully vectorize the computation of all cells

on the same diagonal. Using smaller integer types also reduces the memory requirements.

Now all the matrices go through one more transformation:

AGij
= Aij + 2a+ 2b

∆HGij
= ∆Hij + a+ b

∆VGij
= ∆Vij + a+ b

∆H ′
Gij

= ∆H ′
ij +∆Vij + 2a+ b

∆V ′
Gij

= ∆V ′
ij +∆Hij + 2a+ b

sG(x, y) = s(x, y) + 2a+ 2b

(4.11)

The new recurrences then become:

IGij
= max{sG(ai−1, bj−1),∆H ′

Gi−1,j
,∆V ′

Gi,j−1
}

∆HGij
= AGij

−∆VGi−1,j

∆VGij
= AGij

−∆HGi,j−1

∆H ′
Gij

= max{AGij
,∆H ′

Gi−1,j
+ a} −∆HGi,j−1

∆V ′
Gij

= max{AGij
,∆V ′

Gi,j−1
+ a} −∆VGi−1,j

(4.12)

Finally, the values can be stored as an array of unsigned integers:

0 ≤ ∆HG,∆VG,∆H ′
G,∆V ′

G ≤M + 2a+ 2b
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The critical path, or the longest operation dependency chain, is reduced to 4 from 8

in the first difference recurrences transformation, and from 5 in the non-difference semi-

global alignment algorithm.

Adaptive Banded Dynamic-Programming Algorithm

In the SK (Suzuki-Kasahara) algorithm, an adaptive banded dynamic-programming

strategy is used, so that only part of the cells, specifically those around the antidiagonal,

is calculated, since it is the region where the alignment between two somewhat similar

sequences is expected to be. A forefront vector of constant width iteratively moves right

and down and forms a band, trying to move away from the cells with lower scores. The

band is divided into blocks containing vectors calculated in 32 successive updates each

(Figure 46).

Figure 46: Suzuki-Kasahara’s banding strategy (SUZUKI; KASAHARA, 2018)

(a) In the new coordinates, p = i+ j corresponds to the position of the vectors, and q is a local position

within a vector. The advancing direction (right or down) is determined by the smallest difference between

values of cells Sv[0] and Sv[W − 1]. (b) Data structure: each block has 32 vectors and is indexed as k.

L(k) is an offset integer that helps calculating the absolute value of a cell in the block.

The Z-drop heuristic

To avoid computing global alignment of unrelated sub-sequences, in query and ref-

erence, between two adjacent anchors (e.g. when there is a short inversion), Minimap2

computes an accumulative alignment score and breaks the alignment when the score drops

too fast in the anti-diagonal direction. The condition follows eq. 4.13.

S(i′, j′)− S(i, j) > Z + e · |(i− i′)− (j − j′)| (4.13)
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, where e is the gap extension cost and Z is an arbitrary threshold. The Z-drop strategy

was first used in BWA-MEM and is similar to the X-drop algorithm implemented in

BLAST (ALTSCHUL et al., 1990), but allows the presence of a single long gap.

When the alignment is broken, Minimap2 performs local alignment in the same region

but with one sub-sequence reverse complemented. This may help identify short inversions

that were missed during the chaining process.
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4.3 GACT-X: an FPGA Accelerated SWG Imple-

mentation with Fixed Memory Usage (TURAKHIA

et al., 2019)

As seen in Section 3.8, GACT-X is a hardware aligner, implemented by its develop-

ers on an AWS Cloud FPGA, that was replicated in this work to accelerate Minimap2.

GACT-X computes the SWGmatrix with limited traceback memory for any input lengths.

The memory usage is limited because the computation is performed in tiles of fixed size

(instead of on a long band as in other alignment algorithms); one tile overlaps a previous

one by a certain number of bases to expand the alignment, forming a scaffold band on the

SWG matrix. GACT-X differs from GACT from Darwin (Section 3.6) by computing cells

within an X-drop band (to be clarified next) in each tile, further reducing on-chip SRAM

usage, and allowing tiles to be considerably wider; and by using a different overlapping

strategy.

GACT-X’s expansion starts from the anchoring point and stops when the last tile’s

max score is negative or zero, or when the alignment has reached the border of query

or target sequences. The overlap system is similar to GACT’s, but if the max score cell

lies outside the overlap boundary, the next tile’s origin will be placed on that cell. In

Figure 47, tile T1 performs left-extension from the anchor, and tiles T2 and T3 perform

right-extension. T3’s origin is placed on the intersection of the alignment path from T2

and its overlap border, so the alignment tail produced by T2 in green is ignored. The

blue area in the zoomed image represents the X-drop band in T2.

X-drop is the concept of interrupting further computation of cells or further expansion

Figure 47: GACT-X tile overlap algorithm (TURAKHIA et al., 2019)
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of alignment if the new score drops below a threshold of X (Y in GACT-X) in comparison

to the maximum score registered. It is a broad definition because the term X-drop is

used in different algorithms for different purposes. Minimap2 uses X-drop to interrupt

global-alignment extension of sequences between anchors if they are too dissimilar (see

Subsection 4.2.4). GACT-X uses X-drop to create a dynamic band around the alignment

path inside of tiles.

In each tile, the matrix is filled row-wise while tracking the maximum score Vmax

of the tile. Stripes with NPE = 32 rows are calculated with wave-front parallelism. The

computation in a stripe is terminated when all the scores in a column fall below (Vmax−Y ),

Y being a given threshold. The next stripe also begins computation from the first column

with all cells exceeding (Vmax − Y ), generating a dynamic band around the alignment

(Figure 48).

The processor implementation follows approximately the same architecture as in Dar-

win. The host transfers the target and the query sequences to the DRAM. NPE query

characters are loaded to the PEs, and target elements are streamed in a systolic fashion.

A fixed memory of 1 BRAM bank per PE is allocated to store the 4-bit traceback pointers

sequentially — 2 bits for the main matrix and 2 bits for gap matrices. Start and stop

positions of each stripe are stored in separate BRAMs (Figure 49).

Figure 48: GATC-X tile with X-drop banding (TURAKHIA et al., 2019)
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Figure 49: GACT-X systolic array with 4 PEs (TURAKHIA et al., 2019)
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5 FIRST STEPS FOR PREPARATION

This chapter describes a methodical analysis of Minimap2, carried out to help develop

the acceleration strategy. The objective is to obtain and apply the algorithm on different

datasets (long-read sequences) and assess the algorithm’s characteristics assembling hu-

man genomes. First, it shows how simulated and real human input data were collected.

Then, it presents the execution time evaluation for the different datasets. Some graphic

results for mapping quality assessment and alignment characteristics are presented.

5.1 Simulating Data with PBSIM

PBSIM, a model-based simulator (ONO; ASAI; HAMADA, 2013), collects stretches

of a reference sequence, mimicking the read length distribution; and adds variants and

sequencing errors. The GRCh38 PacBio continuous long reads (CLRs) were generated

with the PBSIM tool, based on the GRCh38 reference, with error profile sampled from file

‘m131017 060208 42213 *.1.*’ downloaded at (HUMAN. . . , 2014). This group of reads

will be referred as Simulated PacBio reads. Simulated reads are useful for evaluating the

mapping accuracy, due to lack of truth in real data. Since the original reference is known,

the simulated reads can be mapped in Minimap2 to check its mapping accuracy. Min-

imap2’s author simulated PacBio data with this same process to compare their mapping

accuracy with other tools (LI, 2018).

PBSIM simulates differences introduced to reads by analyzing alignments performed

on real PacBio reads with respect to reference sequences using LAST (FRITH; HAMADA;

HORTON, 2010) (match = 1, mismatch = −2, gapopening = −1 and gapextension = −1).
Length distribution is log-normal; average accuracy over the read length has normal distri-

bution with parameters given by the user; single molecule errors are stochastic (random);

coverage depth is nearly uniform. Since PacBio nucleotide insertions have higher proba-

bility of being the same as their following neighbors, half of inserted nucleotides are the

same as their following nucleotides and the other half is random.
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PBSIM outputs simulated reads in FASTQ format, and read origins in MAF format,

for each of the 193 sequences in the GRCh38 reference’s Primary Assembly. The MAF

files can be used to evaluate the mapping accuracy, since it describes where the reads

came from. The algorithm was executed and the 193 “.fastq” and 193 “.maf” files were

merged into one of each, to facilitate the file manipulation, resulting in 121GB of CLRs.

Figure 50 shows PBSIM’s log report; the default coverage depth is 20; the read length

thresholds were 100 to 25,000; the mean length, deviation, mean accuracy, and accuracy

deviation were sampled from the given file. Some simulated reads had lengths outside of

the threshold determined, and were filtered out, resulting in the distribution in Table 4.

Over seven million reads were generated in total, which corresponds to a 20x coverage

depth. The read lengths mean, standard deviation (SD), minimum, and maximum are

respectively 8310, 106.26, 100, and 24, 988. The reads’ similarity rate to the reference

strand is on average 0.85, with 0.00017 SD. Substitution, insertion, and deletion rates

are 0.015, 0.090, and 0.046 respectively. Note that, on the sample given, there were

considerably more insertions than deletions.

Figure 50: PBSIM simulation parameters and statistics from the “.fastq” sample used

Table 4: Statistics of CLRs generated with PBSIM in sampling mode

number
of reads

coverage
depth

read length read accuracy rates
mean SD min max mean SD substitution insertion deletion

7,460,510 20 8310 106.26 100 24,988 0.85 0.00017 0.015 0.090 0.046
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5.2 Collecting Real Reads from Genomic Databases

Real datasets, obtained from real human samples, can give insights on real runtime and

accuracy behaviors of Minimap2. The datasets were chosen by size, which is expected to

be over the minimum coverage for clinical applications (≥ 8×), and by current and known

sequencing technologies. The first datasets encountered are from ethnicities that lack

representation in the most renowned databases, therefore it is expected that they might

diverge more from the genome reference used. This divergence is better for evaluating

assembly algorithms because they expose them to more situational adversities. Other

factor that should be considered when choosing the datasets is potential issues in the

library preparation, for example, contamination of foreign DNA, but this can only be said

after the pre-processing step of the genome analysis pipeline.

The first dataset was collected from real human ONT PromethION reads at the Eu-

ropean Nucleotide Archive (RUN. . . , 2018), from a project that sequenced and produced

the Yoruba reference genome NA19240, using 5 PromethION flowcells (COSTER et al.,

2019). Some researchers are working on producing regional genome references to reduce

the bias from the GRCh38 reference. However, the best practices still recommend us-

ing the later, while these projects mature with more sequencing data. The reads have

on average 16,900 bases according to ENA’s base and read counts (28,528,692,209 and

1,688,000).

The second dataset was collected from real PacBio Sequel II reads at NCBI (SRX9063500. . . ,

2019). The reads were collected from a Sri Lankan individual. The reads have an average

length of 13,329 bases according to NCBI’s base and read counts (52.2G and 3,916,231).

A script that collects the read length histograms of the simulated and the two real

datasets was written in Python, and the measurements are displayed in Figure 51. The

average read length alone sometimes can’t provide the whole information. For example,

the real PacBio dataset and the real ONT dataset have close mean lengths (13,329 and

16,900), but their length distribution is drastically different. It is important to observe

that the last length interval to the right corresponds to the accumulated frequency of

all reads larger than 30,000. In the case of real ONT dataset, the last item does not

correspond to a peak, but to a flat low frequency distribution.

The length distribution is going to be relevant when assessing the performance, as

seen in Section 5.3.
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Figure 51: Simulated PacBio, real ONT and real PacBio read length histograms

5.3 Profiling Minimap2’s Execution Time

It was already presented previously that assembly algorithms are computationally

demanding and constitute the bottleneck of the genome analysis pipeline. Before accel-

erating an algorithm, some measurements on the software’s throughput and its runtime

bottlenecks should be taken.

Profiling Minimap2 with the three read sets presented in previous Sections 5.1 and

5.2 were performed on a Dell PowerEdge R910 server1, running Ubuntu 16.04.7 LTS

(GNU/Linux 4.4.0-201-generic x86 64), with further details in Figure 52 (information was

obtained with the instruction “lscpu” on the command prompt). All three read sets were

mapped to the Primary Assembly of the GRCh38 reference. To save time, the minimizer

“.mmi” reference index was previously saved and used to substitute the reference “.fasta”

file.

The datasets were mapped using 40 threads to collect Minimap2’s throughput and

internal data information presented in Section 5.4. Minimap2 was executed to output the

alignment in “.sam” format and with optimization for ONT or PacBio reads. The gprof

Linux tool (GNU. . . , 1998) was used to profile the execution time, and each execution

was done with one thread. Since only one thread was being used for profiling, only the

first 200,000 reads of each dataset were selected for use, otherwise the execution would

take too long. The results are presented in Table 5.

1Professor Carlos Menck from Instituto de Ciências Biomédicas at University of São Paulo granted
access to the Bioinformatics Seal server, with 4 Intel® Xeon® CPU E7-4870, 80 cores and 504GB of
memory.



97

Figure 52: ICB Seal server’s CPU information

Table 5: Minimap2’s throughput and bottlenecks running on three datasets

Average
Length (nt)

Real Time
(hours) *

CPU Time
(hours) *

Dataset Size
(Gbases)

Throughput
(kbases/s)

Chaining
Time **

Extending
Time **

Simulated PacBio Reads 8,300 2:46 42:41 61.99 403.46 8% 49%
Real PacBio Reads 13,300 4:55 88:21 52.20 164.11 50% 25%
Real ONT Reads 16,900 2:14 34:27 28.53 230.00 27% 42%

* 40 threads, complete dataset
** 1 thread, first 200,000 reads

The algorithm’s speed and profile could have been influenced by input data character-

istics, such as genome reference length, read length distribution, and similarity between

reference and reads. Throughput was calculated based on the datasets’ sizes and the CPU

time. The simulated PacBio reads showed the highest throughput, but also the lowest

average read length. Real PacBio reads had the lowest throughput and highest chaining

time. More analyses presented in Section 5.4 can also help explain these differences.

The Minimap2’s functions ksw extd2 sse41 (referred to as ksw in this dissertation)

and mm chain dp, responsible for the base-level alignment and chaining steps respectively,

took together between 57% and 75% of the execution time. Other functions in order

took 10% or less of the execution time. It is possible to conclude that the aligning and

chaining steps are the bottlenecks of Minimap2’s performance when assembling long-reads.

Previous works reinforce this conclusion (GUO et al., 2019)(FENG et al., 2019) or add

that these are also the same bottlenecks of Minimap2 on short-read execution (TENG et

al., 2021).
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5.4 Analyzing Minimap2’s Intermediate Processing

Data

5.4.1 Indel Sizes, Alignment Deviation, and Mapping Quality

Another important preparation step before accelerating Minimap2 is assessing the

mapping accuracy and the characteristics of the alignments produced by it. Mapping

quality can be measured by the proportion of reads that have been mapped to the reference

and, particularly for the simulated data, mapping quality can also be assessed by the

proportion of reads that were mapped near the original position. Other information

pieces, such as indel sizes and deviation from anti-diagonal, help assess how the banding

algorithm in Minimap2 behaves with respect to different long-read profiles. For that, two

Python scripts were written to obtain statistical data from the outputs of simulated and

real data.

The first set of data refers to histograms of indel sizes as shown in Figure 53. The

indel sizes are directly collected from the numbers preceding the “I” or “D” alignment

flags in the CIGAR strings reported in the SAM files. For all three datasets, the graphs

showed that most of the indels are of a single nucleotide, and that the frequency decreases

steeply, the longer the indels.

A second set of data refers to histograms of minimum fixed half band required to

find the same alignment for the read as found in the Suzuki-Kasahara algorithm calls

Figure 53: Indel size histograms from CIGAR strings reported on the SAM files
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Figure 54: Histograms of deviation from the anti-diagonal from CIGAR strings

coupled with the chaining partitioning, and it is shown in Figure 54. The minimum half-

band represents how much the resulting alignment has deviated from the anti-diagonal;

it is calculated by adding cumulative insertions and deletions in the CIGAR string while

canceling each other. It is important to note that, for Minimap2, this deviation for reads

does not represent the deviation from the anti-diagonal in the SK matrices, to be presented

in the next section, since the reads are irregularly divided by anchors.

For the simulated data, the deviation was significant up to a number of 500 from the

anti-diagonal; this could have resulted from the higher insertion rate, compared to the

deletion rate, as shown in Table 4. On the other hand, a great portion of the alignments

stayed in a range of 50 from the anti-diagonal for real ONT and real PacBio cases, meaning

a tighter band can be adopted for better performance.

One second script collects histograms for mapping overlap and histograms for SAM

alignment flag reports. The mapping overlap can only be obtained from simulated reads,

due to lack of truth in real data. It measures how much Minimap2’s alignment overlaps

with the original position of the read, calculated in percentage of the read’s length. With

Minimap2 running on the simulated PacBio reads, 99.45% of the reads were mapped to

the correct RefSeq. From these, over 99.6% of the reads were mapped with an overlap

greater than 90% to the expected mapping region.

The histograms on SAM flags, shown in Figure 55, were obtained directly from the

SAM file, and the main report refers to the items “mapped” and “4” (see Figure 12 at
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Figure 55: Map report histograms from the SAM flags

page 42), which corresponds to reads that could not be mapped to the reference with

Minimap2. For the simulated data, the “mapped” column is separated into “correct” and

“incorrect”, since it possible to evaluate if the read was mapped to the correct reference

sub-sequence, as discussed in Section 2.1.1. For simulated PacBio, real ONT and real

PacBio reads, 6%, 27.5% and 0.04% of reads were not mapped, respectively.

With these analyses, it is possible to infer that Minimap2 has a good mapping accuracy

and can map an acceptable portion of the real data. Further investigation is required

to explain the high rate of unmapped reads in the real ONT dataset. The indel size

histograms and the deviation from anti-diagonal histograms can be used to tune the

accelerator’s banding strategy in a way that does not harm the alignment accuracy.

5.4.2 Uniformity and Distribution of Anchors

Minimap2’s original code was also edited to collect some other important internal

data information, able to attest Minimap2’s capability of generating uniform processing

data, particularly regarding adjacent anchors. Initially, as shown in Figure 56, query and

target length histograms were obtained, corresponding to the lengths of anchor-separated

sub-sequences, in read and reference streams, respectively. The first three histograms

refer to the sub-sequences in reads, while the other three refer to the sub-sequences in the

reference.
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Figure 56: Anchor-separated query and target length histograms

Minimap2’s intermediate data analysis for all the three datasets showed that the

anchoring and chaining processes divided most of the reads into sub-sequences quite

uniformly, with sizes between 200 and 300 nucleotides, as one can see in the peaks of

the graphs. However, some sub-sequences were a little larger, and a few remained with

lengths over 1000 nucleotides, meaning the need of larger SK matrices. As expected, the

histograms for query and target for each dataset were very similar, since the chaining algo-

rithm searches for more parallel anchors, meaning that the distances between consecutive
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Figure 57: Histograms of number of SK matrices per read

anchors in the read and in the reference are similar.

Another form of verifying the uniformity is through the histogram with the number

of SK matrices per read, i.e. the number of ksw calls to anchor-separated sub-sequences

in each read, which is shown in Figure 57. The distribution seems to be different for

the three datasets, but they can be better understood side-by-side with the read length

histograms shown in Figure 51. The graphs for the simulated data and the real ONT data

follow the curve of their read length histograms, indicating that the seed distribution was

homogeneous across reads. If the sizes of anchor-separated sub-sequences are similar for

most chains in a dataset, it is expected that the larger the read, the larger the number of

sub-sequences. For the simulated reads, the SK Matrices/Read decreases steadily since

the frequency also decreases when the read size diminishes. For the real ONT dataset, the

frequency of small sized reads is high, then dropping and staying constant for varied larger

sized reads; the same occurs for the SK Matrices/Read numbers. Only the real PacBio

dataset did not show exactly this behavior because small SK Matrices/Read occurred

frequently although there was no frequency of short reads in the dataset, indicating that

some longer sub-sequences could appear.

Finally, SK deviation from anti-diagonal histogram is shown in Figure 58. The devi-

ation works the same way as the previous deviation from anti-diagonal, shown in Figure

54, but it is for alignments between adjacent anchors. For simulated reads and real ONT

reads, the deviation from the anti-diagonal in each SK matrix was more compressed to
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Figure 58: Histograms of deviation from the anti-diagonal in SK matrices

under 50, but for real PacBio reads, most of the matrices had a deviation of 100 to 150.

This indicates that applying a fixed narrow band, such as the one described in Section

3.2, could be inefficient for some datasets in anchor-separated sub-sequences.
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6 MINIMAP2 WITH AWS FPGA

ACCELERATED GACT-X: ADAPTATION,

INTEGRATION AND RESULTS

This chapter describes the process of adapting, installing, and integrating the GACT-

X module in the Cloud AWS FPGA Instance to the software implementation of Min-

imap2. The module has as inputs the sequences generated in Minimap2 after the seeding

and chaining steps, that are separately aligned to the reference in the ksw function, and

as outputs the alignment results. The first section describes specific adaptations done

to GACT-X’s host and Verilog codes to improve its performance and turn it compatible

with Minimap2. Then it shows an integration option like in the original Minimap2 that

has anchor-separated sub-sequences, and results on performance are presented. It also

presents a new adaptation to the integration method, aimed to overcome problems ob-

served in the results in the first option; in this new version, anchor-extended sub-sequences

are used from the chaining step; results in performance and accuracy are presented. A

second section presents the integration process between Minimap2 and GACT-X, compat-

ible with the multi-kernel and multi-threading capabilities, using OpenCL synchronization

methods; total acceleration measurements are collected for all combinations of number of

threads and number of kernels possible in the F1 Instance.

6.1 Adapting GACT-X for Better Performance

Darwin-WGA was published on GitHub (DARWIN-WGA, 2019). The entire algo-

rithm, as well as the separated modules BSW and GACT-X, can be mirrored and imple-

mented on AWS. Only the GACT-X module was used for this project, as mentioned in

Section 4.3.

First, an AWS Instance was created with the FPGA Developer AMI (Amazon Machine

Image), version 1.4.1, in region US West (Oregon). Currently, AWS in Brazil does not

provide any Amazon FPGA instances. As mentioned before, the chosen instance type was
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f1.2xlarge, the smallest one that has an FPGA, enough for our analysis purposes. This

AWS instance is structured in its host-device environment as seen in Section 2.3.2. From

Windows, Puttygen was used to access the terminal andWinSCP was used to manage files.

tmux (TMUX, 2022), a terminal multiplexer for controlling terminals even if detached

from a screen, was installed to run long jobs remotely. The aws-fpga library was swapped

to an older version, since GACT-X was developed on the SDAccel environment and, from

2020 on, the default environment changed to Vitis. A bucket was created to keep the

Amazon FPGA Images. The VIVADO tool version was set up to version 2017.4.

Part of software in OpenCL for GACT-X at the host had to be adapted for this im-

plementation. Since Darwin-WGA is a whole genome aligner, originally it was developed

to send the two entire genomes to be aligned to the DDR, looping the pairs of positions

to be extended from them. For read mapping, as performed in Minimap2, every pair of

reference sub-sequence and read is streamed to the DDR to get the extending results.

The process of creating and managing tiles was not implemented in the original GACT-X

host, and had to be added as well.

Figure 59 shows the fluxogram for transferring data to the FPGA with the tile algo-

rithm. The inputs correspond to many pairs of read and reference sub-sequences, which

were written in a separate file after the seeding and chaining steps in Minimap2 (left of

the figure). In the example, the loop cycles 5 times, since there were 5 tiles in total. The

sequence of steps for the software-hardware interaction follows:

• Each pair is transferred to the FPGA into the ref seq and query seq buffers (see

item 1) in the figure);

• A loop sets the tile’s starting index with variables ref offset and query offset, and

the tile’s size with variables ref len and query len (see item 2) in the figure);

• The FPGA kernel or kernels calculate the alignment for the tile and write in

h tile output the alignment score, max score index with variables ref pos and

query pos, and the number of traceback pointers in the band; the traceback point-

ers are written in h tb output.

The alignment parameters were changed to have about the same proportions as the

default in Minimap2 (Table 6). The match, mismatch, and gap scores are 2, -4, -4, -

2 for Minimap2, so they were set as 10, -20, -30, -10 for the adapted GACT-X. The

difference in the gap opening score is due to different interpretations on whether an

extension occurs when opening a gap, but the resulting score is the same. GACT-X
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Figure 59: Example of GACT-X’s host-FPGA data transfer fluxogram

Table 6: Minimap2 and GACT-X’s alignment parameters

match mismatch
1st function 2nd function

Y-drop
gap open gap extend gap open gap extend

Minimap2 2 -4 -4 -2 -24 -1 -

GACT-X
original 91 to 100 -31 to -125 -430 -31 - - 9530
adapted 10 -20 -30 -10 - - 943

originally uses substitution matrices for match and mismatch scores, where different pairs

of nucleotides result in different scores. GACT-X only supports one gap function; only

the Minimap2’s affine gap function with higher slope and lower translocation was used in

GACT-X because it picks the more frequent short indels. The Y-drop value was adjusted

according to GACT-X’s new gap function, allowing the presence of a same size of gap in

the band as originally allowed.

6.1.1 GACT-X with Anchor-Separated Sub-Sequences from
Minimap2

The initial strategy to accelerate the extending step was to send, individually, every

anchor-separated sub-sequence that lay between two anchors to be aligned in the FPGA,

using global alignment. This is the strategy used originally by Minimap2, that at the

same time reduces sequence lengths and avails the matching information produced by the

chaining process.
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The sequence of steps in the host for the software-hardware interaction described in

OpenCL (see commands in Section 2.3.3) is:

• The input files are uploaded to the AWS Instance;

• The host creates input and output buffers in the DDR with sufficient space for any

input length in the dataset; for that, the clCreateBuffer command is used;

• The pairs of anchor-separated sub-sequences are collected from the input files, and

sent to the buffers in the FPGA through the clEnqueueWriteBuffer command;

• The arguments to the compute kernel (e.g. tile beginning and end positions, align-

ment scores, and buffers) are set through the clSetKernelArg command;

• The kernel is executed through the clEnqueueTask command;

• The output buffers are read back in through the clEnqueueMapBuffer command

and the results are processed to recover the alignment from the direction pointers

(traceback);

• The alignments for each pair of sequences are written into an output file.

The simulated PacBio dataset was adopted for this testing phase, and only its first

100,000 reads were used, due to the high execution time. The real ONT and PacBio

datasets are not used in this development stage, but the final design’s performance was

measured on them and will be presented later. The datasets contain some millions of input

reads each, but it is reasonable to consider that the sequencing technologies produce uni-

formly distributed read sizes, therefore, 100,000 samples can be considered representative

of the whole dataset.

The query and target anchor-separated sub-sequences that are aligned in Minimap2,

generated after the chaining step, were collected. The input length histograms have been

presented in Fig. 56 for all three datasets, showing the anchor-separated sub-sequence

sizes concentrated between 200 and 400 bases.

This Minimap2-GACT-X implementation showed performance problems, as they can

be seen in Figure 60, which presents average execution times in using Minimap2’s ksw

function and a GACT-X kernel for the alignment step. The results for the simulated

PacBio dataset showed that GACT-X performed considerably worse than ksw from Min-

imap2 in this design, that mostly aligns short sequences (although originated from long-

reads). The performances for ksw and GACT-X are similar only for sequences larger than
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Figure 60: Average processing times per length for anchor-separated sub-sequences

The first 100,000 simulated PacBio long-reads were aligned with Minimap2 to the GRCh38 genome

reference.

1,000 bases. This is because GACT-X’s processing time starts with a shifted constant

that corresponds to the data transfer time from host to FPGA and back (see item 1)

in Figure 59), for every anchor-separated sub-sequence, creating a heavy transfer latency

that undermines the gains obtained with a faster alignment performed in the kernel. For

the real ONT an PacBio datasets, the transfer latency is expected to be similar, since

the average lengths of sub-sequences, shown in the histograms of Figure 56, are highly

concentrated in the 200-300 bases range.

6.1.2 GACT-X with Anchor-Extended Sub-sequences fromMin-
imap2

For a more efficient solution, instead of aligning each anchor-separated sub-sequence,

the strategy changed to considering, in each read, the anchor-extended sub-sequences,

i.e., the portion from the first anchor to the end of the sequence and its corresponding

reference sub-sequence, expanding the alignment in a semi-global fashion. The software-

hardware interaction follows the fluxogram of Figure 59, however the item 1) is altered

to a reduced number of transfers of longer sub-sequences.

The experiments were also performed on the first 100,000 reads from the simulated

PacBio dataset. In order to confirm the effects of the new transfer, Figure 61 was gen-

erated. It shows that, for the simulated PacBio dataset, the new transferred data have

lengths to be aligned increased in one to two orders of magnitude. As expected, the

histogram follows the shape of the one presented in Fig. 51 for the reads, therefore, it is

expected that the real ONT and PacBio datasets also present increased lengths in their
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Figure 61: Anchor-extended query-target average length histogram

The first 100,000 simulated PacBio long-reads were aligned with Minimap2 to the GRCh38 genome

reference.

transferred sub-sequences.

By increasing the lengths of the transferred sub-sequences, the tile processing had to

be activated, and the heuristics described in Section 4.3 had to be implemented due to

limitations in hardware resources. In the original Verilog files, used to build the binary

code of the kernels, the tile size is set up to be at most 2, 048, determined by wires in

internal modules of size log2(2, 048) = 11. If the host forces an alignment between longer

sequences, either the result is going to turn out incorrect, or the execution will potentially

freeze, requiring forced interrupt, cleaning and reloading the AFI into the FPGA.

Each tile requires a new data transfer cycle, as at item 2) in Figure 59, so it was ex-

pected that, as tile size increases, fewer tiles would be required in each expansion, and bet-

ter the overall performance would become. In order to test the behavior of the hardware-

software implementation, its performance was measured under different tile sizes. The

max tile size value in the Verilog files was changed to 8, 192 and a new AFI was generated.

The performances for the new strategy were measured with varying tile sizes and are

shown in Figures 62 and 63. The first one presents the execution times with respect to

the many ksw calls in software along with the ones of GACT-X, for different sub-sequence

sizes. The second one refers to the total execution time for the ksw function in Minimap2

and for GACT-X.

Regarding Figure 62, as expected, GACT-X’s performance improved as tile sizes in-

creased from 1,000 to peak at 4,000, considering the same size of the input data. However,

after that, the performance started worsening, and it is suspected that it is due to BRAM

saturation, since direction pointer storage is linearly cumulative and increases with tile
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Figure 62: Average processing times per length for anchor-extended sub-sequences

The first 100,000 simulated PacBio long-reads were aligned with Minimap2 to the GRCh38 genome

reference.

Figure 63: Total processing times for ksw and GACT-X

The first 100,000 simulated PacBio long-reads were aligned with Minimap2 to the GRCh38 genome

reference.

size. Still, it was already possible to observe an acceleration compared to ksw’s perfor-

mance. As for the real ONT and PacBio datasets, it is expected also a steady increase

of performance for larger tiles, since the transfer time will be similarly reduced; due

to the BRAM limitation, tile of size 4,000 should be the one with highest performance

improvement too.

Figure 63 shows that GACT-X with tile size of 4,000 achieved the largest speed-up of

1.68x compared to Minimap2’s ksw software execution time. Other changes can further

improve this number, and are discussed later in this section and in Section 7.

GACT-X’s accuracy was also evaluated against Minimap2’s ksw function in a range

of tile sizes. Figure 64 shows two sets of results: a) from the alignments, it was possible

to compare the alignment scores obtained from the Suzuki-Kasahara algorithm, coupled

with chaining divisions, with the alignment scores obtained from the GACT-X algorithm;
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Figure 64: Histograms of GACT-X and Minimap2’s score and query percentage differences

The first 100,000 simulated PacBio long-reads were aligned with Minimap2 to the GRCh38 genome

reference.

b) the percentage of aligned inputs of query sequences.

The first histogram shows the proportion of alignments where GACT-X had a worse

(< 0), equal (0), and better (> 0) score in relation to ksw from Minimap2, for varying tile

sizes. 95.42% of alignments found with GACT-X with tile 4, 000 had the exact same score

as the ones produced in Minimap2, even with chaining information hidden from GACT-X.

It means that GACT-X with tile 4, 000 can provide a accuracy at the same level of the

ksw algorithm. The cases with tiles of 5,000 bases or more show lower accuracy and also

are the cases where the performance is low, as seen in Figures 62 and 63. Again, it is

believed that BRAM saturation causes some data dis-alignment, leading to wrong results.

The small percentage of alignments’ lower scores may be explained by these factors: the

tile heuristic adds uncertainty in the borders of each tile; GACT-X does not support a

second gap function, so frequently loses longer gaps that should be expected to appear.

The second histogram corresponds to the percentage of query sub-sequences that were

used in each alignment in Minimap2’s ksw (with global alignment with anchor-separated

sub-sequences and semi-global alignment after the last anchor) and in each alignment for

GACT-X with different tile sizes (considering a semi-global alignment from the first anchor
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to the end of the sequences). When an input sequence is aligned, it may happen that the

max score, which is where the backtrack starts in semi-global alignment (see Section 4.1.2),

does not occur in the last (right-down) cell, and only part of the sequence is used. Ideally,

the query sequence should be aligned entirely to reduce waste. By the histogram of Figure

64, 60.97% of Minimap2’s tracked alignments consumed between 90% and 100% of the

corresponding sequence, and 37.62% consumed the entire query sequence. For GACT-X

with tile 4, 000, the percentages were 55.21% and 43.04% respectively, indicating a better

usage. The accuracy for tiles from 5, 000 on decreased steeply, which could also be linked

to BRAM saturation.

Given that the tests with tile size of 4,000 showed the best performances in both

accuracy and speed for the simulated data, the same measurements were made with the

two real datasets with this same configuration, and are presented in Tables 7 and 8.

Table 7 shows that GACT-X’s accuracy was very similar to Minimap2’s on the sim-

ulated PacBio data, considerably worse on the real ONT data (41.21% of the alignments

produced had lower scores), and dissimilar for the real PacBio data, presenting high rate

of both worse (14.90%) and better (18.28%) alignments. Table 8 reinforces GACT-X’s

similar accuracy performances for the PacBio datasets, with similar ratio of aligned query

lengths, but worse for the real ONT dataset, with lower ratio of aligned query lengths.

With these results and the alignment reports presented in Figure 55, it is possible to in-

duce that the real ONT dataset has a significant disparity to the genome reference used,

which could be affecting the mapping and alignment accuracies of both of the algorithms.

The partial results obtained to this point have provided a strong indication that it is

possible to accelerate Minimap2’s extending step, even with SSE optimization, by using a

software plus hardware hybrid architecture. GACT-X’s tile heuristic allows alignment be-

Table 7: Minimap2 and GACT-X’s alignment score differences for three datasets

GACT-X Minimap2 Score Difference < 0 0 > 0
simulated PacBio 3.90% 95.42% 0.68%
real ONT 41.21% 47.79% 11.00%
real PacBio 14.90% 66.83% 18.28%

Table 8: Minimap2 and GACT-X’s aligned percentage of query sequences for three
datasets

Percentage Aligned 0-80 80-90 90-100 100
simulated
PacBio

Minimap2’s ksw 1.06% 0.22% 60.97% 37.62%
GACT-X 4,000 1.52% 0.23% 55.21% 43.04%

real ONT
Minimap2’s ksw 21.56% 2.59% 73.57% 2.29%
GACT-X 4,000 36.24% 3.64% 58.47% 1.64%

real
PacBio

Minimap2’s ksw 18.42% 0.76% 13.15% 67.67%
GACT-X 4,000 12.01% 2.71% 19.59% 65.69%
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tween arbitrarily long sequences, which was an issue that long-read mapping faced on lim-

ited FPGA resources. GACT-X’s Y-drop heuristic mimics Minimap2’s fixed bandwidth

heuristic, both decreasing memory and time complexities of the SWG algorithm from

quadratic to linear. GACT-X’s accuracy remained satisfactory compared to Minimap2’s

(considering alignment scores) and GACT-X was able to align a similar percentage of the

read sequences on the PacBio datasets. GACT-X’s accuracy is aggravated in comparison

to Minimap2 on the real ONT dataset that seems to have lower similarity to the genome

reference.

Satisfactory acceleration and accuracy has occurred as far as the tile size is not larger

than 4,000 bases, limitation imposed by the allocated BRAM size for one kernel. The

use of larger tiles may be desirable since it could further improve the performance, likely

maintaining the accuracy. With the FPGA device in the AWS F1 Instance, it is possible

to double the tile size, since just less than half of the BRAM available is consumed by

one GACT-X kernel. This ratio is explored in the next section by implementing 2 parallel

GACT-X modules in the same device. Bigger tiles can be accomplished with the use of

more expensive FPGA platforms with larger BRAM resources.
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6.2 Integrating GACT-X into Minimap2 with Multi-

kernel and Multi-threading

With the results obtained in Section 6.1, GACT-X was integrated to Minimap2 on

the host, and a series of experiments were made for the software-hardware hybrid imple-

mentation. The tile size was set to 4,000 following the results in Section 6.1.2. The hybrid

system accommodates the multi-threading and multi-kernel capabilities of the system.

In order to set the host, a new C++ file “gactx.cpp” was created and added to

Minimap2’s source to accommodate the hardware’s host lines. It contains the functions

to configure and load the binary file, initiate the acceleration context, align with GACT-

X, and clean the system. Detailed description of the OpenCL code implementation can

be found in Appendix A.

Minimap2’s original implementation allows multi-threading. Each thread performs

the sequential processing of seeding, chaining, and aligning one read at a time (process

shown in Figures 43, 44 and 46); threads can be distributed to cores in the host server

for concurrent processing. OpenCL supports multi-kernels in the same FPGA, as many

as the resources can fit.

Generally speaking, any thread could be assigned to any kernel in order to optimize

concurrent processing. However, in Minimap2, only a limited form of concurrency in using

the kernels related to GACT-X is possible, because of the sequential aspect mentioned in

the previous paragraph:

• The number of threads need to correspond to at least the number of kernels, other-

wise the excess kernels will be idle;

• A kernel cannot carry the execution of different threads interchangeably.

The restrictions above require that, whenever there are more threads than kernels

running, and the corresponding sequences generated by the chaining steps are ready for

alignment processing, a waiting list must be used in order to access an available/free

kernel. On the other hand, in situations of a single thread run (single core), whatever the

number of kernels, only one may be used.

The AWS f1.2xlarge Instance allows the implementation with up to 64 kernels and 8

cores, as explained in Section 2.3.2. This project was tested with up to 2 GACT-X kernels

and 8 Minimap2 cores, due to the number of BRAMs available in the FPGA device, that
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could only support 2 GACT-X modules with tiles of size 4,000. This test size is enough

to give a good insight on the problem, as it will be seen later in this section, and there

will be discussion on how to use it with a larger number of modules.

The analyses were made with the 100,000 first reads from the simulated PacBio, and

the real ONT and PacBio datasets. Two types of run were executed for time measure-

ments. In both of them, the measurements were made with all combinations of 1 to 8

software (sw) threads and 1 to 2 kernels.

The first run is for the comparison between the hybrid Minimap2 with GACT-X

implementation, and Minimap2 in software with ksw-based alignment. This run was to

measure the total execution time, displayed by Minimap2 in the command prompt at the

end of the execution; regarding the GACT-X kernel, command queue was used to stream

commands to the FPGA and, right away, execution proceeded to execute the next line

without waiting for the command to finish, except in synchronization points. The results

are presented in Table 9.

In the table, all three datasets, as seen in column 1, are processed in the three imple-

mentations for Minimap2 in software, Minimap2 with GACT-X implemented in 1 kernel,

and Minimap2 with GACT-X implemented in 2 kernels, as shown in column 2. Results

are shown for increasing number of threads, which were tried up to 8, as listed in columns

4 to 11. The total execution times in seconds were measured for each test instance. Two

types of acceleration were computed: a) the acceleration obtained for each implementation

with respect to the software, for the same number of threads (set for each column); b) the

integrated system’s thread acceleration, which is the acceleration for increasing the num-

Table 9: Execution times and acceleration in the Minimap2-GACT-X integrated system

Number of threads (sw) 1 2 3 4 5 6 7 8

simulated
PacBio

software total execution (s) 759.157 390.198 266.926 206.255 197.863 186.727 177.508 169.927

1 kernel
total execution (s) 539.56 299.76 233.88 208.93 203.74 253.84 409.03 453.26
acceleration 1.41 1.30 1.14 0.99 0.97 0.74 0.43 0.37
thread acceleration 1.00 1.80 2.31 2.58 2.65 2.13 1.32 1.19

2 kernels
total execution (s) 538.996 289.557 211.837 198.700 203.366 228.516 273.066 313.150
acceleration 1.41 1.35 1.26 1.04 0.97 0.82 0.65 0.54
thread acceleration 1.00 1.86 2.54 2.71 2.65 2.36 1.97 1.72

real ONT

software total execution (s) 3,105.50 1,559.59 1,056.77 806.37 774.30 719.29 684.98 646.35

1 kernel
total execution (s) 2,243.69 1,168.48 837.14 712.91 653.68 660.44 937.68 1,258.13
acceleration 1.38 1.33 1.26 1.13 1.18 1.09 0.73 0.51
thread acceleration 1.00 1.92 2.68 3.15 3.43 3.40 2.39 1.78

2 kernels
total execution (s) 2,197.265 1,126.070 794.728 638.109 586.025 576.393 672.990 858.846
acceleration 1.41 1.38 1.33 1.26 1.32 1.25 1.02 0.75
thread acceleration 1.00 1.95 2.76 3.44 3.75 3.81 3.26 2.56

real
PacBio

software total execution (s) 4,255.21 2,132.71 1,431.38 1,083.29 1,037.82 965.57 904.33 858.31

1 kernel
total execution (s) 3,570.25 1,813.39 1,243.76 1,003.40 919.39 889.68 1,077.63 1,575.97
acceleration 1.19 1.18 1.15 1.08 1.13 1.09 0.84 0.54
thread acceleration 1.00 1.97 2.87 3.56 3.88 4.01 3.31 2.27

2 kernels
total execution (s) 3,470.799 1,765.341 1,239.144 994.346 885.107 831.761 855.454 1,117.282
acceleration 1.23 1.21 1.16 1.09 1.17 1.16 1.06 0.77
thread acceleration 1.00 1.97 2.80 3.49 3.92 4.17 4.06 3.11
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ber of threads, with respect to the single threaded execution, for the software-hardware

integrated implementation.

The execution times of the software-only implementation for all datasets have shown

a steady decrease for increasing number of threads, as it is expected (it can be seen in

line 2, for example, for the simulated PacBio dataset); the relation is not linear due to the

increase in management complexity for larger number of threads. The execution times for

the integrated software-hardware systems also decreased in the initial addition of threads,

as expected, but stabilized and increased again for about 5 or 6 threads or more, whatever

the number of kernels, reflecting in reduced thread acceleration (see, for example, lines 3

and 6, for simulated PacBio dataset, and can be observed clearly through the figures on

thread acceleration in lines 5 and 8).

Another issue is that data with 7 and 8 threads had their execution times exploded,

being inconsistent with the change rate for the other measured times, and making them

unreliable for analysis (therefore, they will not be considered in later discussions); consid-

ering there are 8 available cores for processing, probably two of them are used for system

management and conflicts with the GACT-X’s host lines.

Although the integrated software-hardware systems show decreased time execution

with increased number of threads, that occurs in a lower rate than for the full software

implementation. This can be seen through the acceleration numbers in lines 3, 6, 10, 13,

17 and 20. These results show that, for the integrated implementations built in this work,

the higher number of threads do not help much. In fact, a more detailed study on the

bottlenecks must be provided, what is done in next paragraphs.

The table shows that the use of 2 kernels improved the execution time if compared

to the single kernel case, as expected, but this trend changes after 5 threads. Besides

that, the reduced time with 3 or more threads was limited, with the maximum close to

10%. Also, as commented before, for 1 or 2 threads, the availability of 2 kernels does not

help. It is expected that, with more available kernels, the workload from a larger number

of threads can be alleviated, with better acceleration, but that would require increased

hardware resources and costs.

The highest achieved acceleration therefore was of 1.41x with 1 thread for simulated

PacBio with 1 and 2 kernels, and real ONT with 2 kernels, and second highest was 1.35x

for simulated PacBio with 1 thread and 1 kernel, and real ONT with 2 threads and 2

kernels. It is worth to mention that this study with GACT-X’s acceleration only refers

to the alignment phase in Minimap2; the chaining step may also be hardware accelerated
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(GUO et al., 2019), improving the total performance of Minimap2.

Although the results in Table 9 showed some expected trends, several expectations

were not accomplished:

• The acceleration decreased as threads outnumbered kernels, performing worse than

the software counterpart when the gap is too big;

• Acceleration with 2 kernels was only slightly better than with one kernel, when a

speed-up of 2x might be expected.

The suspicion for the above behavior is the performance limitation due to competition

of the PCIe transfer channel. In order to verify it, a second run of experiments were made;

time measurements were taken with different tools for each situation, in order to deal

with the actions in separate. Every kernel processing, data transfer and waiting in line

instance has had the time measured and accumulated, respectively. These instances in

each thread were measured independent of any other of Minimap2’s execution that could

occur concurrently. Therefore, the total accumulated time cannot be directly correlated

to the total execution time, shown in Table 9, except for the case of a single thread, which

is totally sequential.

The kernel processing times were measured using the function “clGetEventProfiling-

Info” and START and END event flags. The data transfer times, which includes the

times to transfer sequences and tile information, as can be seen by the items 1 and 2,

respectively, in Figure 59, are measured similarly. The time spent by the threads waiting

in line for a kernel was measured using “clock t”. Every writing, reading, and kernel event

had to be completed for the execution of the code to proceed to the next line by setting

the “blocking write” argument as CL TRUE, or by using “clWaitForEvents”, so that the

measurements could be taken.

The results are displayed in Table 10. For each of the three datasets, shown in column

1, the two integrated implementations, with 1 and 2 kernels, were considered, as displayed

in column 2. For each implementation, the case of kernel processing, data transfer and in

line times are shown in column 3, referring to different thread numbers, from 1 to 8, as

indicated in columns 4 to 11.

Considering the kernel processing time reflects the computation of the total amount of

the inputs, which is constant throughout the different kernel implementations, the results

have shown to be as expected: for all datasets, it remained quite constant comparing 1 ker-

nel with 2 kernels cases. Also, considering any particular implementation for a dataset, the
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Table 10: Processing, transferring, and waiting times in the Minimap2-GACT-X system

Number of threads (sw) 1 2 3 4 5 6 7 8

simulated
PacBio

1 kernel
time (s)

processing 94.14 94.62 95.16 96.16 96.71 98.11 132.26 150.40
data transfer 26.90 28.81 32.07 33.24 34.13 37.59 152.30 150.51
time in line 0.21 83.11 318.66 845.77 1,789.56 3,377.48 13,990.11 21,404.43

2 kernels
time (s)

processing 94.20 94.99 95.43 95.89 96.49 110.83 129.61 141.75
data transfer 27.00 34.77 37.87 37.25 47.99 146.70 165.48 166.65
time in line 0.15 0.24 44.49 186.04 619.47 3,813.98 7,592.47 12,094.00

real ONT

1 kernel
time (s)

processing 322.29 323.02 324.33 326.42 327.82 331.18 388.75 476.91
data transfer 12.20 48.54 51.66 53.72 59.88 75.27 361.88 503.51
time in line 0.15 148.91 544.15 1,310.52 2,548.16 4,926.27 24,567.76 50,482.29

2 kernels
time (s)

processing 322.66 324.16 324.98 326.04 327.69 346.86 376.96 420.51
data transfer 42.80 53.15 61.25 60.11 86.25 227.04 347.46 476.46
time in line 0.24 0.27 54.48 242.43 802.66 4,210.88 11,777.99 25,100.46

real
PacBio

1 kernel
time (s)

processing 255.12 255.52 257.62 259.56 261.43 264.64 324.07 465.84
data transfer 53.28 57.38 61.37 65.27 74.19 91.04 383.26 723.37
time in line 0.20 63.13 219.84 499.16 962.39 1,909.10 16,175.72 53,765.80

2 kernels
time (s)

processing 255.79 257.62 258.97 259.90 261.93 284.62 333.82 388.27
data transfer 53.64 64.29 70.02 70.59 91.89 275.96 452.71 683.43
time in line 0.10 0.41 15.78 68.70 228.42 2,063.87 8,240.65 23,054.56

kernel processing times remained relatively constant among different number of threads.

With 6 or more threads, an increasing deviation occurs; since the OpenCL’s clEnqueue-

Task command is a macro, probably the management of large numbers of threads start

to affect the measurements of its time span.

For all datasets, the data transfer time increased with the number of threads (for a

fixed implementation), and with the number of kernels (for a fixed number of threads);

since the measurement is made on OpenCL commands, which involves transfer channel

liberation, probably a channel access latency component was included.

With respect to the time in line, the consistency for all datasets can be observed in the

table, by spotting the single thread case, which has a sequential nature; independent of the

implementation (1 or 2 kernels), there will always be a kernel available and the observed

waiting time is close to zero. In the case of 2 threads, for a 2 kernels implementation, the

same occurs; however, for a 1 kernel implementation, a second thread has to wait for the

kernel to be liberated from the computation of a first thread, therefore, the waiting time

in line is larger, for example, 83.11 seconds for the simulated PacBio dataset.

Another observation regarding the time in line is that, for all datasets and imple-

mentations, it increases with the number of threads. That indicates that the kernels are

getting more occupied and less available to take new jobs and clear the waiting queue.

The management complexity for the threads, what affects the data dispatching time, is

specially critic for 7 or 8 threads, probably due to the superposition with the operating

system execution. This time in line effect has a strong impact on the total execution time,

leading to the figures observed in Table 9.
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The increase in time in line has indicated that 1 or 2 kernels were not always available

for the threads, becoming the bottleneck of the integrated system. Besides that, not all

availability of a second kernel is occupied, indicating a dispute in the PCIe interface. Still,

the waiting time for the 2 kernels implementation, for all datasets, showed to be, for the

varied number of threads, significantly shorter than the corresponding ones in the 1 kernel

implementation. For example, comparison can be made between lines 4 and 7, 10 and

13, 16 and 19. This was expected since for 2 kernels implementation, chances of kernel

availability is increased; this suggests that a larger number of kernels (therefore, more

hardware resources) can bring better results as the number of threads also increases.

What the results tell about optimization:

• As expected, according to (WANG et al., 2020), PCIe turns out to be a bottleneck if

the transfer rate is high. The traffic was reduced in this research by manipulating the

data in the host, basically using anchor-extended sub-sequences instead of anchor-

separated ones;

• Another improvement option would be addressing twice the number of BRAMs to

a kernel, allowing the tile size to be twice as large, which would further reduce

the transfer rate; this would allow fitting only one kernel in the device, but would

also eliminate the PCIe channel conflict, and could potentially achieve a better

performance than 2 parallel kernels in a device;

• The number of kernels should correspond to the number of software threads for the

integrated system’s best performance; if multi-threading is wished, a corresponding

increment on hardware resources must accompany it;

• Further improvement, including hardware changes, is adding a traceback logic to the

kernel (changing the Verilog implementation), which would reduce the data transfer

sizes.
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7 CONCLUSION AND FUTURE WORK

This project started with the identification of genome sequencing data as tending to

migrate to longer reads (seen in the third-generation of sequencers), as they present several

crucial advantages over short-reads from the previous generations. The computing stage

has been identified as being the genome analysis pipeline’s bottleneck, mainly because of

the advances of highly parallelized sequencing of data which provides a great amount of

genomic data to be processed, and because of the slow-down of computing power advances.

One option for resolving this bottleneck is the development of DSAs, that use advantages

of alternative architectures to target specific domains.

Minimap2 was identified as the State-of-the-Art algorithm for assembly of long-reads,

and some works were already made on several types of processors, such as GPUs, FPGAs,

and KNL to accelerated one of its main bottlenecks, the chaining or the aligning stages.

No work that has successfully accelerated Minimap2’s aligning step on an FPGA has been

identified on the literature, which culminates on the proposition of this project.

GACT-X, an FPGA Cloud design for the SWG algorithm, was considered to be a

good option for accelerating Minimap2’s aligning step running on long-reads because

of its limited memory consumption characteristic, which solves banded SWG’s inherent

linear complexity to the inputs’ lengths.

Through the development of this work, the following conclusions could be drawn:

• There are genome data and tools available in public repositories to be used. Two

sets of real human genome long-reads with high coverage from PacBio and ONT

sequencing technologies were obtained from the NCBI and ENA databases. Another

set of reads was generated with the PBSIM tool, used to simulate PacBio long-

reads. These datasets were considered to be a reasonable sample for the experiments

done in this research. The datasets presented different read length distributions.

Simulated reads concentrated on shorter to medium lengths with average of 8,300

nucleotides; real PacBio reads concentrated on medium lengths with average of
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13,300; and real ONT reads had a homogeneous distribution of lengths up to 100,000

nucleotides, with average of 16,900;

• An analysis of the Minimap2 algorithm running the datasets was important to

understand its dynamics for later changes in the alignment or mapping step. Min-

imap2’s accuracy and speed performances varied for the three datasets. The highest

throughput of 403.46 kbases/s was for the simulated reads, that also had the lowest

average length. The lowest throughput of 164.11 kbases/s was for the real PacBio

reads, where the profiling indicated that it had the chaining step as a more signifi-

cant bottleneck (50%) than the extending step (25%), whereas the other data had

an inverted proportion. The highest frequencies of indels that showed in the final

alignments were of a single nucleotide, although simulated reads caused an abnormal

deviation from the alignment matrix’s anti-diagonal, justified by the higher ratio of

insertions. PacBio data presented high mapping rates, whereas 27.5% of ONT reads

were unmapped;

• Minimap2’s chaining process divided the read-reference pairs of sequences into many

short (200-300 nt) sub-sequences. A direct substitution of the ksw alignment func-

tion in Minimap2 by a hybrid hardware implementation, aligning anchor-separated

sub-sequences, resulted in a low performance due to data transfer latency. An alter-

native sequence execution by the aligner was developed and tested. Aligning longer

anchor-extended sub-sequences resolved this (low performance) issue;

• GACT-X’s alignment parameters were adapted to produce the most similar results

to Minimap2, changing the Y-drop threshold to keep the maximum gap size in

the band as in the original values. Internal wires defined in the Verilog code were

increased to accommodate bigger tiles, and with tests on the simulated data, it was

found that tiles of size 4,000 provided the best speed and accuracy performances,

and such a configuration would be adopted in the Minimap2 GACT-X integrated

solution. Experiments showed that, for part of the simulated data, GACT-X was

1.68x faster than ksw. With simulated data, 95.42% of the alignments had the

same score as in Minimap2; real PacBio data presented a more dissimilar accuracy,

with high rate of higher and lower scores; real ONT data had a considerable worse

alignment (41.21%). Minimap2 and GACT-X aligned a similar proportion of the

reads for the PacBio datasets, but interrupted early the alignment of many ONT

reads;

• A Minimap2 GACT-X integrated system was developed to support multi-threading
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and multi-kernel. Up to 8 threads and 2 kernels were implemented; the number

of kernels was limited by the device’s BRAM resources. The highest acceleration

of 1.41x was observed on simulated and real ONT runs on 1 thread, and of 1.23x

on real PacBio data (this lower rate can be linked to the lower occupation of the

extending step observed in profiling); the general Minimap2 performance can be

improved by hardware accelerating the chaining step;

• Detailed measurements for the kernel processing, data transfer and thread wait-

ing execution times were performed in order to understand the limitations on the

Minimap2-GACT-X integrated system. Acceleration decreased with more threads

and could be explained by two factors: the kernels were not always available to

process incoming data, increasing the time of threads waiting in line; multi-kernel

generated conflict of data transfer in the PCIe channel. The first factor indicates

that a larger amount of kernels would be needed for a larger number of threads;

the second factor could be eased by implementing multi-devices (FPGAs) with one

kernel in each having a dedicated PCIe channel.

Considering the results obtained in Chapter 6 and the analysis made on them, some

future developments could be carried on to improve these results:

• A multi-FPGA design could sustain acceleration of more threads of Minimap2 with

more kernels; for this, the implementation has to be updated to the Vitis envi-

ronment, since SDAccel instances have been deprecated during the length of this

Masters, and a new multi-FPGA AWS Instance has to be created; the increased

cost must be evaluated;

• Tile sizes could be doubled by allocating all the BRAM available on the device to

a single kernel to confirm if it could reduce data transfers, increase accuracy, and

remove the PCIe competition;

• Traceback support could be added to the design to increase the acceleration, mainly

by reducing the size of the read data (from traceback pointers to CIGAR strings);

this implies in changing the Verilog RTL description with a probable increase in

hardware area in the programmable logic;

• A second affine function could be added to the hardware design to properly mirror

Minimap2’s alignment scores, and increase the compared accuracy.
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APPENDIX A

This appendix presents the programming options adopted to integrate GACT-X’s

host lines into Minimap2’s original source code. A new C++ file “gactx.cpp” was created

and added to Minimap2’s file and to the compilation object list. It contains the functions:

• “load file to memory” loads the xclbin binary file to boot the kernel in the

FPGA;

• “fpga configuration and setup” selects a Xilinx platform from the ones avail-

able; selects a target device; creates context, command queue, program, and kernel

variables; defines memory bank mapping; and creates input and output buffers;

• “fpga shutdown and cleanup” releases memory objects and other global vari-

ables;

• “gactx align” configures tile size, tile overlap, and alignment scores; sends align-

ment input sequences; programs the tile algorithm; reads the tile outputs; encodes

the final CIGAR string; and updates Minimap2’s alignment results.

The compilation was changed to using CMake (CMAKE, 2022) with the Xilinx’s

compiler “xcpp”, and inclusion of directories, libraries, and flags necessary for running

the host’s code. OpenCL variables cl context, cl command queue, cl program, cl kernel,

cl mem ext ptr t, cl mem, cl event, as well as the pointers to the host’s memory were

initialized as global variables so that they can be shared among the multiple threads in

the multi-threading option of Minimap2.

cl kernel, cl mem ext ptr t, cl mem, and host memory pointers are initialized as arrays

of length (NUM KERNELS), which is a #define that can be set as 1 or 2 by the developer,

and indicates the number of kernels being utilized in the circumstance. A similar global

int array “kernel expanding” is used to indicate whether each kernel is free or occupied

with 0 or 1 respectively.
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The aligning process in Minimap2 is set up in the “mm align1” function in “align.c”.

It is where ksw calls are made for each sub-sequence between two anchors. This was

substituted with a complete right-extend from the first anchor using GACT-X, whenever

both of the input sequences are longer than 1,000 nucleotides.

To couple multiple CPU threads with 1 or 2 kernels, a FIFO queue (global array

variable) was created. Each thread that reaches the alignment stage goes to the end of the

queue, and waits until it is the first in line and there is a kernel available. This is done using

“pthread self” (PTHREAD SELF, 2021) as the thread identifier. Mutex (MUTEXES,

2022) is used to protect lines that edit the FIFO queue, to avoid conflicting memory

access. The function “gactx align” is called after the thread has picked its corresponding

kernel and left the queue.

When running 2 kernels in parallel, there can be conflict in the PCIe channel (e.g.

when two threads send data to the FPGA at the same time). This can result in Seg-

mentation Faults (SEGMENTATION. . . , 2022). The cl event global variable is used to

synchronize these transfers.



31 Agosto 2022



CAROLINA TENG

Accelerating the alignment phase of Minimap2
genome assembly algorithm Using GACT-X in a

commercial Cloud FPGA machine

Corrected version

São Paulo
2022





CAROLINA TENG

Accelerating the alignment phase of Minimap2
genome assembly algorithm Using GACT-X in a

commercial Cloud FPGA machine

Corrected version

Dissertation presented to the Polytech-

nic School of University of São Paulo for

obtainment of the Title of Master of Science.

São Paulo
2022





CAROLINA TENG

Accelerating the alignment phase of Minimap2
genome assembly algorithm Using GACT-X in a

commercial Cloud FPGA machine

Corrected version

Dissertation presented to the Polytech-

nic School of University of São Paulo for

obtainment of the Title of Master of Science.

Area of Concentration:

Microelectronics (Graduate Program in

Electrical Engineering)

Advisor:

Fernando Josepetti Fonseca

São Paulo
2022





ACKNOWLEDGMENTS

This author is extremely grateful first and foremost to Professor Wang Jiang Chau,
for accompanying, teaching, and advising her throughout the entirety of her Master’s
degree. The amount of learning acquired in this trajectory is of immeasurable value,
from technical subjects to introduction to what it is to have scientific thinking. Thanks
to Professor Wang for the friendship, tutoring, and great dedication, without which the
quality and detail present in this project and in this text would not have been obtained.
The shared excitement for solving bugs, relief for achieving good results, and exhaustion
from writing until late will never be forgotten and will be greatly missed.

Thanks to the author’s colleague Renan Weege Achjian, who shares the same interests
in Bioinformatics and FPGA projects, who have helped and followed this author with
many issues in the development stages, and have also cheered for all the accomplishments
on the way. It has been the best companionship and teamwork one could ask for, and
hopefully many more projects and events will be shared in the future.

Thanks to Mauricio Perez for maintaining the Wiener server from Department of
Electronic Systems Engineering, and for helping this author in many technical issues.
Thanks to Professor Carlos Menck for providing access to the Seal server from Instituto
de Ciências Biomédicas. Thanks to the qualification board members Ricardo Pires and
Fernando Josepetti Fonseca for reviewing the qualification text and suggesting improve-
ments and corrections.

Finally, thanks to the author’s family and friends for all the support.





ABSTRACT

TENG, C. Accelerating the alignment phase of Minimap2 genome assembly
algorithm using GACT-X in a commercial Cloud FPGA machine. 2022.
Dissertation (Masters) - Polytechnic School, University of São Paulo, São Paulo, 2022.

Genetic sequencing can provide crucial information in medicine and in biology stud-
ies. The technologies developed in the field are advancing rapidly and the current
third-generation of genome sequencers have significant improvements over the second-
generation. In parallel to that, sequencing throughput has been increasing at an expo-
nential rate, which, coupled with price reduction, has resulted in a leap of generation of
genomic data to be processed. Transistor technology is reaching its fundamental limits,
and Moore’s Law is becoming obsolete, so other alternatives are required to efficiently
process such an amount of data.

Long-reads from the third generation of sequencers are shown to be an emerging type
of genetic data, with average lengths of thousands of nucleotides each. State-of-the-Art
algorithm Minimap2 is able to assemble these reads into the genome that was sampled,
but it is a computationally-intensive process: for the human genome size with sufficient
coverage, running times can reach up to dozens of CPU hours. Hardware acceleration
has been proposed as an effort to make Minimap2 more efficient, but up to the present
moment, only one of its main bottlenecks, the chaining step, has been successfully acceler-
ated on FPGA. No efficient solution has been proposed for the aligning step, implemented
as the ksw function. GACT-X is a Cloud FPGA design that performs a banded SWG
alignment with fixed memory, suitable for any size of input.

GACT-X with tiles of size 4,000 can be 2x faster than ksw when aligning long sequences.
Replacing the alignment function ksw in Minimap2 with GACT-X on a Cloud hybrid
system can provide up to 1.41x acceleration on the entire execution to the software
counterpart, with comparable accuracy for data that have high similarity to the reference
genome. This dissertation presents all the relevant background information, the devel-
opment stages and methods, the results achieved on three different datasets, and the
proposed future work on this acceleration project.

Keywords: Cloud Computing, Minimap2, Field Programmable Gate Arrays, Smith-
Waterman-Gotoh, Co-processors, Acceleration, Genomics.





RESUMO

TENG, C. Accelerating the alignment phase of Minimap2 genome assembly
algorithm using GACT-X in a commercial Cloud FPGA machine . 2022.
Dissertação (Mestrado) - Escola Politécnica, Universidade de São Paulo, São Paulo,
2022.

O sequenciamento genético pode forneccer informações cruciais em medicina e em estudos
de biologia. As tecnologias desenvolvidas na área estão avançando rapidamente e a at-
ual terceira-geração de sequenciadores de genoma possuem melhorias significantes sobre a
segunda-geração. Paralelamente a isso, a taxa de sequenciamento vem aumentando expo-
nencialmente, o que, aliado à redução de preços, resultou em um salto de geração de dados
genômicos a serem processados. A tecnologia de transistores está atingindo seus limites
fundamentais, e a Lei de Moore está se tornando obsoleta, então outras alternativas são
necessárias para processar tal quantidade de dados.

Long-reads da terceira geração de sequenciadores são um tipo emergente de dados
genéticos, com comprimentos médios de milhares de nucleot́ıdeos cada. O algoritmo
do Estado-da-Arte Minimap2 é capaz de montar essas reads de volta ao genoma que
foi amostrado, mas é um processo computacionalmente intensivo: para o tamanho do
genoma humano com cobertura suficiente, os tempos de execução podem chegar a dezenas
de horas de CPU. Aceleraçao em hardware foi proposta como uma aplicação para tornar
o Minimap2 mais eficiente, mas até o presente momento, apenas um de seus principais
gargalos, a etapa de chaining, foi acelerada com sucesso em FPGA. Nenhuma solução
eficiente foi proposta para a etapa de alinhamento, implementada como a função ksw.
O GACT-X é um design de FPGA em nuvem que executa o alinhamento de SWG em
banda, com consumo de memória fixo, adequado para qualquer tamanho de entrada.

O GACT-X com tiles de tamanho 4.000 pode ser 2x mais rápido que o ksw ao alinhar
sequências longas. Substituir a função de alinhamento ksw no Minimap2 pelo GACT-X
em um sistema h́ıbrido na nuvem pode proporcionar aceleração de até 1,41x sobre toda
a execução do software, com precisão comparável para dados que têm alta similaridade
com o genoma de referência. Esta dissertação apresenta todas as informações básicas
relevantes, as etapas e os métodos desenvolvimento, os resultados alcançados em três
conjuntos de dados diferentes e o trabalhos futuros propostos para este projeto de acel-
eração.

Palavras-Chave – Computação na Nuvem, Minimap2, Arranjo de Porta Pro-
gramável em Campo, Smith-Waterman-Gotoh, Co-processadores, Aceleração, Genômica.
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1 INTRODUCTION

Genetic sequencing can provide information in medicine for a wide variety of uses.

In preventative medicine, some genetic variations are shown to raise the risk for certain

diseases, such as breast cancer, heart diseases, and type II diabetes, for which therapies

or preventative strategies are available. Genetic sequencing can also be used to identify

current or future genetic diseases, such as muscular dystrophy and Waardenburg syn-

drome. This information can help with life planning and earlier treatment of symptoms.

Another use of genetic sequencing is to help asses whether a person is a carrier of variants

that might cause disease in their children, but does not affect themselves, such as cystic

fibrosis, fragile X syndrome, and sickle cell anemia (KUSHNICK, 1992).

Collecting and analyzing genetic data is also crucial in biology studies, such as in

biodiversity (HENG; HENG, 2021), evolution (ORTEU; JIGGINS, 2020) and metabolic

pathways (GEORGAKOPOULOS-SOARES et al., 2020). It has even become a commod-

ity of public interest, providing people insights on their ancestry and personal phenotypes

(GENERA, 2022).

Current sequencing technology is not capable of reading straightaway a complete hu-

man genome strand, so each DNA (deoxyribonucleic acid) molecule in the sample needs

to be cleaved into many much smaller sequences, called fragments. The sequenced frag-

ments are then called reads. Each read can also be understood as the equivalent sequence

translated into nucleotide bases represented by characters (A, T, C, G) for computer pro-

cessing. Depending on the technology used in the sequencing process, there can be two

types of reads: short-reads, with lengths of a few hundreds of bases (ILLUMINA, 2022),

and long-reads, with many thousands of bases on average (PACBIO, 2022)(OXFORD. . . ,

2022).

Currently, the so-called second-generation of sequencing technology produces short-

reads with high throughput, dominates the market (ADEWALE, 2020) and is expected

to stay prevalent for the next years. However, only the emerging third-generation of

sequencers that produce long-reads is able to identify long alterations in the DNA (MAN-
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TERE; KERSTEN; HOISCHEN, 2019). The slow transition to long-reads is explained

mainly by their higher sequencing cost compared to short-reads. Nowadays hybrid long-

and short-reads solutions for genome assembly are implemented in needed situations (AN-

TIPOV et al., 2015).

Several algorithms and programs have been developed to assemble reads back into the

original complete DNA sequence (LI, 2018)(BURROWS-WHEELER. . . , 2010)(LANG-

MEAD; SALZBERG, 2012). Some of the assembling algorithms map the reads to a

genome reference, which is used as a guide (GRCH38, 2013). First, approximate map-

ping positions are identified for the read in the reference. Then, the reads are aligned to

the reference’s mapping region to pinpoint the variations in the genome that has been

sequenced.

Some classic algorithms, such as the Smith-Waterman-Gotoh (SWG) algorithm

(SMITH; WATERMAN, 1981)(GOTOH, 1990), use dynamic-programming to align two

character strings. It was published in 1981-1990 and is still used to this day in read

assembly programs, but with many heuristics and transformations added on, such as

calculating only a portion of the matrix where the optimal alignment is more probable to

be (FUJIKI et al., 2020)(LIAO et al., 2018).

Read assembly is currently considered a major bottleneck in the entire genome analysis

pipeline (ALSER et al., 2020), that includes laboratory sampling, sequencing, processing

and annotating. Sequencing technologies have been increasing their output capacity in

terms of number of reads at an exponential rate (REUTER; SPACEK; SNYDER, 2015),

whereas computational power has been slowly reaching the limits of transistor technology

(HENNESSY; PATTERSON, 2019). Read assembly is also the bottleneck of the genome

processing pipeline (GENOME. . . , 2022), which corresponds to the technical activities

involved in genetic sequencing.

Although the cost of sequencing DNA is a more significant impediment for the tech-

nology’s diffusion in clinical settings, the speed of acquiring and interpreting genomic

information is crucial in certain applications. For instance, prenatal testing is performed

on women during pregnancy to assess whether the fetus could be born with a genetic

condition or birth defect, which can be helpful to determine the management of the preg-

nancy and delivery (SAMURA, 2020; GADSBøLL et al., 2020). Pathogen genomics can

be used in diagnosing infections, investigating outbreaks and describing transmission pat-

terns, and has been highly present in the latest COVID-19 pandemic (LIU et al., 2021;

THIEL et al., 2003).
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In order to improve the computational performance in software-based algorithms, one

alternative is designing specialized hardware for the assembly task; particularly with ap-

plication specific integrated circuits (ASICs) or field programmable gate arrays (FPGAs).

ASICs are more costly due to customized manufacturing; only a high-volume production

would justify its adoption. FPGAs, on the other hand, are configurable devices that can

surpass software performance without requiring a high manufacturing capital.

Several FPGA acceleration articles can be found in the read assembly acceleration

literature, and some have achieved improvements in processing time (KOLIOGEORGI et

al., 2019)(FUJIKI et al., 2020)(GUO et al., 2019). Given the variety of new algorithms and

tools that are developed in the field every year, and the steady evolution of sequencing

technology that now produces considerably longer reads, it is crucial for the hardware

research to constantly adapt to the new changes.
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1.1 Motivation

Many programs, such Bowtie2 (LANGMEAD; SALZBERG, 2012) have been devel-

oped to efficiently assemble short-reads at the second generation technology. However,

their strategies are often not suitable to process long-reads, having their performance ham-

pered. Hardware acceleration that has been proposed for alignment in these algorithms

on a few hundred nucleotides (KOLIOGEORGI et al., 2019) (FUJIKI et al., 2020) can’t

support sequences of many thousands of nucleotides. This is because the SWG algorithm

with banding has two scaling aspects: the number of stored backtracking pointers grows

with linear proportion to the inputs’ lengths, and the cumulative alignment scores used

in the wave-front expansion increase with the number of matching nucleotides.

BWA-MEM (BURROWS-WHEELER. . . , 2010) and Minimap2 (LI, 2018) are exam-

ples of programs/algorithms proposed to fill the software gap, the latter being 50 times

faster than the former one, besides having better mapping accuracy than most other

programs; therefore, Minimap2 is one of the current State-of-the-Art algorithms for as-

sembling long-reads. Minimap2 has a chaining algorithm that takes advantage of the

higher load of information carried by long-reads to find approximate mapping positions

with better performance and accuracy. It also uses a transformed version of the SWG

algorithm, proposed by Suzuki and Kasahara (SUZUKI; KASAHARA, 2018), for the

alignment (or extending) step, that limits data size in Streaming SIMD (Single Instruc-

tion, Multiple Data) Extensions (SSE) vector instructions to optimize parallelization of

computation of cells.

Still, mapping one human sample of reads to a reference using Minimap2 is very

time consuming, taking dozens of Central Processing Unit (CPU) hours on an Intel Xeon

processor, which further increases the already expensive genome testing budget. This

is because the human genome is really long (approximately 3.2 GB of data) and read

information need to be 8-17 times larger in order to get enough map coverage for reliable

clinical standard (i.e. to statistically cover sequencing errors and mapping heuristics,

and to identify heterozygous states) (AMARASINGHE et al., 2020). Some laboratories

even need to invest in powerful and power hungry compute clusters just to meet the

computational demands.

Previous studies have determined that the chaining and extending steps of Minimap2

are its run-time bottlenecks, taking together around 70% of the total execution time.

Focused on this, authors of such works have already successfully accelerated Minimap2’s

chaining step on FPGA and Graphic Processing Unit (GPU) (GUO et al., 2019). Others
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have also implemented the extending step on CPU, GPU and KNL (Knights Landing)

(FENG et al., 2019), with an acceleration of 3.9x times with 128 CUDA (Compute Unified

Device Architecture) streams with 512 threads each in the GPU case; but achieved lower

performance per thread in the hardware designs compared to software. To the author’s

knowledge, no work in the literature has successfully accelerated Minimap2’s extending

step on an FPGA.

Designing an application as hardware is more complex than programming it as soft-

ware. In addition, the design of an FPGA accelerator takes a longer time, and is usually

more expensive than programming a GPU accelerator. So it is important to assess which

application can achieve a better performance. According to the authors of (GUO et al.,

2019), FPGA may achieve a better performance in several applications, as in the case of

Minimap2, for the following reasons:

• When the algorithm includes a great amount of checking and filtering options, many

control and branch conditions are required, almost at the same rate as the integer

and float arithmetics. On FPGAs, these control logic will add to the pipeline without

having a significant impact on throughput;

• Tasks with irregular-width integer type might be more suitable for FPGAs;

• GPUs need to unpack the data structure, adding instructions to some applications,

whereas FPGAs’ inputs are kept in BRAM (Block Random-Access Memory) and

used immediately with combinatorial logic;

• GPUs’ performance relies on parallelism, but read assembling, although paralleliz-

able along reads, has an extensive processing pipeline for each read.

The extending step of Minimap2 is based on a banded SWG algorithm optimized for

wave-front parallelization of cells with SSE vector instructions, that consumes time and

memory in linear proportion to the input’s lengths. The chaining algorithm of Minimap2

breaks the sequence pairs into many sub-sequences that are sent separately to the ex-

tending function. With this, the extending module is prepared to deal with input data

that has an average length of a few hundred bases, but that sometimes can also be very

long. This variation of sizes requires a new hardware design that can compensate for two

issues: first, short sequences won’t be worth sending to co-processors separately, because

even if they can be processed faster in the FPGA, the time spent transferring the data

alone will be higher than the processing time taken by the software (TENG et al., 2021);
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second, long sequences can extrapolate the hardware’s resources that calculate banded

SWG matrices.

Darwin (TURAKHIA; BEJERANO; DALLY, 2018) was published at about the same

time as Minimap2 and is a software-hardware hybrid system that also assembles long-

reads, achieving up to 183.8x speedup over Edlib (ŠOŠIC; ŠIKIC, 2017). Its initial filtering

stage runs on software, presenting a high RAM (Random-Access Memory) consumption

(30-64GB of RAM for the human genome), which makes Darwin efficient only for se-

quencing cases with references of limited size. Their extending step GACT, which also

calculates the SWG matrix, has been accelerated on an FPGA and was adapted to work

with inputs of any length, since they limit BRAM consumption in hardware by dividing

the matrix into tiles of fixed size.

The same authors of Darwin also published the software-hardware hybrid whole

genome aligner Darwin-WGA that came with an improved extending architecture GACT-

X (TURAKHIA et al., 2019). It is not a read assembler, but a single long stream aligner.

It would be possible to adapt Darwin-WGA to run as a read assembler by transferring the

GACT-X module into Darwin’s software support (since both of them use the D-SOFT fil-

tering algorithm) after taking care of the RAM consumption issue. GACT-X is 2x faster

than GACT and was developed on the Amazon Web Services (AWS) Cloud platform

(AMAZON. . . , 2022c), so it can be easily replicated for other uses. The re-purposing

of Darwin-WGA’s GACT-X module, designed on an FPGA, could potentially accelerate

Minimap2’s extending bottleneck with a Cloud hybrid architecture.

In recent years, Cloud FPGAs (AMAZON. . . , 2022a) (HUAWEI. . . , 2022) (VMAC-

CEL, 2022) have become a compelling alternative to reduce the initial cost of hardware

implementation, by charging a smaller value per time of usage. Cloud FPGAs work the

same way as Cloud computers: a big cluster of processors is physically stored and managed

by a company that offers their clients scalable storage and computing capacity, charging in

proportion to their usage demand. Some companies like Amazon (AMAZON. . . , 2022c)

offer other advantages to developers. For instance, their FPGA comes with a Shell that

wraps any kernel to fit the FPGA’s I/O (Input/Output) resources, and projects developed

on their platform can be encrypted and advertised on their marketplace, with all intel-

lectual property secured. Therefore, an acceleration scheme can be tested with reduced

implementation overhead; only after the implementation has shown to be successful, the

designer may decide to move to a customized board implementation, or to rely on the

Amazon platform for business or research.
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Although Cloud FPGA providers announce large accelerations for applications when

compared to software implementations (for instance, Amazon claims that AWS FPGA

Instances can accelerate compute-bound applications up to 100x), the real acceleration

is limited by virtualized PCIe (Peripheral Component Interconnect Express) transfer’s

throughput and latency, which is dependent on the driver’s technology and whether virtual

machines are adding extra virtual interrupts. Previous work (WANG et al., 2020) has

measured the performance gap between Cloud FPGAs and physical implementation PCIe

transfers and indicated that it is the limiting bottleneck for communication-intensive

workloads, which in their examples did not perform over 2x faster than the software

counterparts. Therefore, the adoption of Cloud FPGAs for Minimap2 must be analyzed

and carefully considered.
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1.2 Objectives

This Master’s dissertation presents the development steps of a software-hardware

hybrid system that accelerates the State-of-the-Art program Minimap2’s aligning step

by using the Cloud FPGA module GACT-X from Darwin-WGA in substitution to the

Suzuki-Kasahara’s algorithm. The specific objectives are:

• Data acquisition. The selection of a set of human genome data suitable to the

experiments proposed in this dissertation is needed. Human sequencing data can

be downloaded from many different open source repositories, such as the United

State’s National Center for Biotechnology Information (NCBI) (NCBI, 2022) and

the European Nucleotide Archive (ENA) (EUROPEAN. . . , 2022); reads data can

also be generated with simulating tools such as PBSIM (ONO; ASAI; HAMADA,

2013). The consensus human genome reference is updated from time to time and

its versions are submitted at NCBI (GRCH38, 2013).

• Evaluation of Minimap2. First, Minimap2’s processing time bottlenecks need to

be determined for long-read datasets that have different read length distributions.

Minimap2’s performance running on AWS’ CPU machines need to be measured and

used as a reference to assess the acceleration. Minimap2’s mapping and aligning

accuracies need to be collected for the same purpose. Finally, some internal data

aspects need to be measured, to identify potential issues when integrating with the

FPGA design.

• Adapting GACT-X and Evaluating the Implementation. The original

GACT-X module published on GitHub must be adapted with changes in the host

for alignment of different pairs of sequences produced by the chaining step of Min-

imap2’s software. The data transfer must be analyzed in order to verify the best

sequence format to be adopted. GACT-X’s Verilog files may need to be altered to

exploit the best performance for the implementation.

• Integration. Minimap2’s compiler should be merged with GACT-X’s compiler,

and the accelerator’s host needs to be included in Minimap2’s code for an integrated

design. The integration has to be compatible with the multi-threading capacity of

Minimap2 with proper synchronization between multiple kernels and multiple cores

in the host. With this, it is possible to measure the total acceleration.

• Measuring acceleration. Execution time measurements must be made for the

GACT-X module and for the hybrid software-hardware accelerated system as well,
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in order to analyze the optimization options and difficulties. The total acceleration

and the acceleration by read length are to be measured for analysis.

• Measuring accuracy. Comparing the alignment accuracy is important to assure

the proposed accelerated solution is acceptable. The alignment accuracy is impacted

by the heuristics applied to accelerate the calculation of the SWG scores. GACT-

X and Minimap2 use different banding algorithms and both also break the pairs of

sequences into smaller sub-sequences with different methods, chaining for Minimap2

and tile for GACT-X.
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1.3 Text Organization

This dissertation is divided into 7 main chapters. The introduction to the context

of this work has been presented in this chapter. Chapter 2 probes the human genome,

genome sequencing, and FPGA concepts and fields. Chapter 3 lightly introduces works

that are related to the one proposed, presenting their main strategies and results. Chapter

4 is more theoretical and explains in detail and examples the main algorithms used in this

project. Chapter 5 shows the first steps of collecting and generating data and quantita-

tively studying the State-of-the-Art program Minimap2. Chapter 6 describes the steps of

adaptation and integration performed on the hybrid Cloud design GACT-X to be used

to accelerate Minimap2, and the final accuracy and speed measurements are presented in

the end. Chapter 7 summarizes all the results obtained in each step and proposes some

future work options.
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2 BACKGROUND

Bioinformatics is inherently a multidisciplinary field, that uses algorithms and digital

processing to help solve biological problems. This chapter gives a broad introduction to

each relevant topic involved, with concepts from both fields. It starts with an overview

of the human genome and its relevance in medicine. Then sequencing technologies are

briefly introduced, allowing readers to understand the data that is being dealt with,

the differences between long-reads and short-reads, the GATK best practices’ steps for

the genome processing pipeline, and the current reference-guided read assembly seed-and-

extend strategy. FPGAs are described in the last subsection; this can help understand how

they differ from general processors and ASICs, and how they are able to accelerate software

counterparts. At last the AWS Cloud FPGA Instance used in this project is referenced

and detailed, followed the description of the OpenCL (Open Computing Language) tool-

set.

2.1 Overview of the Human Genome

DNA is a polymeric nucleic acid macro molecule, composed of three types of unities:

a sugar of five carbons (desoxirribose), one base containing nitrogen, and a phosphate

group. The bases can be of type Adenine (A), Guanine (G), Thymine (T) and Cytosine

(C). Any of them links to the desoxirribose by the nitrogen atom, and to a phosphate

group, forming a corresponding nucleotide (Figure 1). Poly-nucleotide chains form a

double helix structure, in which one ribbon is the Watson-Crick (WC) complement of the

other (Figure 2). For the purpose of genome sequencing, the actual molecule configuration

is not relevant and the nucleotides are abstracted to the characters A, C, T, and G.
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Figure 1: Lewis structures of the four types of DNA nucleotides (KUSHNICK, 1992)

On the left, DNA bases can be Adenine (A), Thymine (T), Guanine (G), and Cytosine (C). Each base

links to the deoxyribose, which is connected to a phosphate group (on the right), by the nitrogen in

magenta, to form the corresponding nucleotides.

Figure 2: Canonical Watson-Crick base pairing in DNA

The strands are conventionally read in the direction 5’ to 3’, which is determined by the phosphodiester

5’-3’ bonds between desoxirribose adjacents. One strand is the inverted Watson-Crick complement of the

other. This complementability enables efficient and correct repair of DNA damage.
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Figure 3: Human genome reference composition vs. somatic cell composition

On the left, the human genome reference has the 22 types of autosome human chromosomes, the 2 types

of sex chromosomes, and mitochondrial DNA. On the right, human somatic cells’ autosome chromosomes

have two copies of each gene and both of them can express and generate a product, except in special

cases of allelic imbalance.

Every somatic cell (diploid cell) of the body carries it’s copy of the human genome,

which has around 6.2 billion nucleotides. Given that humans are diploid, and receive 23

chromosomes from each parent, the established reference to the human genome (more in

Subsection 2.1.1) has around 3.2 billion nucleotides containing all 24 types of chromo-

somes (Figure 3). The first human genome reference was obtained by an international

collaborative research effort called The Human Genome Project (HGP) (HUMAN. . . ,

2003), which started in 1990 and completed in 2003. The reference is updated as better

sequencing technologies emerge and more research is done. The latest version, Genome

Reference Consortium Human Build 38 (GRCh38), was published by NCBI in 2013. The

references are presented in one of the DNA strands with direction 5’ to 3’.

There are around 30,000 genes (functional units of genetic information) in the human

genome. They can be responsible for the production of proteins or functional RNAs

(ribonucleic acids). Only less than 1.5% of the human genome codifies proteins and

it is believed that around 5% of the genome influences or determines gene expression

patterns during development or in different tissues. It is still heavily debated whether

the remaining portion of the genome could also provide relevant signals for the genome’s

functions (PALAZZO; GREGORY, 2014). These sub-sequences can contribute in an

interconnected manner to the phenotypes of an organism. Genes appear in the DNA

sequence in different densities per chromosome, as shown in Figure 4.
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Figure 4: Human gene concentration graph for each chromosome (KUSHNICK, 1992)

The genome has on average 6.7 encoder genes for every mega-base; chromosomes under this line are called

gene-poor chromosomes and above this line are called gene-rich chromosomes.

Analysis of the genome sequence shows that about half of it consists of unique DNA

copies, which means that they only appear once (or a few times) throughout the whole

genome. Most of the unique DNA copies are short sequences (a couple of kilo-bases or less)

and are scattered in the genome. The other half of the DNA sequence consists of repetitive

DNA that shows up hundreds of thousands of times, identically or with small changes,

throughout the genome. They contribute to maintaining the chromosome’s structures

(e.g. centromere and telomer), are an important source of variation between different

individuals, and can be responsible for up to one every 500 genetic diseases.

Given the number of individuals in our species, it is expected that every base-pair

in the human genome varies in someone somewhere in the world. There’s about 0.5% of

genome sequence variation between any two individuals chosen at random. The majority

of these differences consists of insertions or deletions of short stretches, number or copies

of repetitive elements, or inversion of order of sequences in a certain position.

Genetic diseases can be categorized into three types. Chromosomal disorders, caused

by excess or lack of localized genes, affect around 7 out of 1,000 humans born alive and

are responsible for around half of all spontaneous abortions that happen in the first three

months of pregnancy. Monogenic diseases are caused by mutations in individual genes and

follow the autosomal recessive, autosomal dominant, or linked to X patterns. It is a rare
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Figure 5: Frequency of genetic disorder types in the population and common examples

disorder, but causes serious disturbances in 1 out of 300 humans born alive and prevails

in 1 out of 50 people throughout life. Multi-factorial diseases with complex heritage

result from the combination of several gene variations and environmental factors. It is a

prevalent genetic disorder and affects 5% of the pediatric population and more than 60%

of the population in general (Figure 5).

2.1.1 The Human Genome Reference

Genome references are created as synthetic hybrids (an archetype of the most common

variants) aimed to represent a common standard in a species. The purpose is to make

it easier to identify which variations are commonly observed in a population and which

variations are more unique. Humans are diploid organisms, which means that they carry

two copies of each autosome chromosome, one copy originating from each parent. Genome

references, however, are haploid, representing each type of chromosome only once. This

requires additional steps for identifying heterozygous states (situations where a person

carries different variants in the same position on both chromosomes).

The primary assembly of a genome reference contains the assembled chromosomes, the

unlocalized sequences (known to belong to a specific chromosome but with unknown order

or orientation) and unplaced sequences (with unknown chromosome). The latest human

genome GRCh38 came out in 2013 (GRCH38, 2013). In the “.fna” format file, the primary

assembly has 193 sub-sequences (24 chromosomes + 127 unplaced + 42 unlocalized), and

was separated from the rest of the file for use in this dissertation.
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2.2 Genome Sequencing and Genome Analysis

The Human Genome Project (HUMAN. . . , 2003) prompted the development of

cheaper DNA sequencing technologies, with the purpose of obtaining reads: pieces of

ordered genetic coding collected from a human sample material. It was a 20 year conjoint

research effort of many scientists around the world that cost around 3 billion USD (United

States Dollar) in total. At the end of the project, the cost to sequence a human genome

was reduced to 100 million USD, using traditional Sanger sequencing.

Sanger sequencing (SANGER; NICKLEN; COULSON, 1977) follows the steps: chain-

termination PCR (polymerase chain reaction) is applied to a DNA fragment, generating

multiple copies of it that are randomly terminated at different lengths, and with the last

nucleotide emitting a fluorescent label corresponding to its base; the copies are subjected

to gel electrophoresis: by applying an electric current, since DNA is negatively charged, it

moves to one direction with speed determined by its size; the final arrangement of the gel

matrix can be translated into the DNA fragment’s sequence. The original manual Sanger

sequencing method performed four PCR reactions, one for each base type, resulting in

fours columns, as shown in Figure 6. Automated Sanger sequencing performs only one

PCR amplification for all base types.

Figure 6: Sanger sequencing gel electrophoresis (SANGER; NICKLEN; COULSON, 1977)

The sequence is written from left to right and upwards, beside each corresponding band.
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Figure 7: Illumina sequencer DNA clusters captured by a microscope (CHI, 2008)

Each color corresponds to a base type being read from a cluster at a given moment.

To really understand functions of the human genome, thousands of genomes need to

be sequenced. This was only made possible with the introduction of the second-generation

sequencers. Illumina sequencing (ILLUMINA, 2022) currently takes around 90% of the

sequencing market (ADEWALE, 2020). It uses flow-cells: microscope slides with channels

inside. The sequencing process follows the steps: the sample’s library with the reads is

expanded using normal PCR amplification; adapter sequences are added to both ends

of the reads, these adapter sequences correspond to primer and capture sequences; the

DNA is denatured and captured by complement sequences that are fixed in the flow-cell;

DNA polymerase fills the complementary strand on top of the fixed capture sequence and

the original sequence is washed off; the captured sequences are copied many times until

a cluster is formed with many copies of the same sequence; fluorescent terminators are

added to the flow cell in cycles: when incorporated to the sequence, they emit a specific

frequency for the base type; a powerful microscope takes pictures of the clusters and

sequences the reads one base at a cycle (Figure 7).

In Illumina sequencing, the read lengths are limited because not every strand in a

cluster can be captured in each cycle, so as sequencing progresses, more and more strands

lag behind, affecting the fluorescent color of the cluster and reducing accuracy. This

technology achieves high throughput due to the ability to read millions of clusters of

sequences and many different samples simultaneously.

The third-generation of sequencers introduced long-reads, many orders of magnitude

longer than in the second-generation (more details in Subsection 2.2.1). One of them

is from Oxford Nanopore Technology (ONT) (OXFORD. . . , 2022). They use 18 nm

nanopores embedded in lipid membranes to sequence DNA and RNA. The single stranded

molecules are forced to thread individually through the pores and each base changes the
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Figure 8: ONT sequencer Ion current (LASZLO et al., 2014)

Each consecutive graph is a zoom-in of the red section in the previous graph.

electric current that is being measured (Figure 8). However, a pore contains around

6 bases at a time, affecting the measurement and increasing the error rate, but this is

alleviated by error correction methods (< 5%) (AMARASINGHE et al., 2020). The

reads produced can be really long (up to hundreds of Mega-bases). The sequencer is

really portable and can be directly plugged into a personal computer.

Pacific Biosciences (PacBio) (PACBIO, 2022) sequencers are also from the third-

generation, with long-reads. They use nanometer wells (Figure 9) with DNA polymerase

at the bottom. A camera underneath captures videos that register a fluorescence spike

when a new base is incorporated. The fluorescent component is able to leave after a time,

dropping the intensity of light. The error rates are similar to ONT, but are random, which

makes it possible to generate consensus sequences. For that, the same strand is connected

end-to-end as a circle and is re-sequenced many times to remove sequencing errors. With

this, the achieved accuracy can be higher than the ones achieved with Illumina technology

(AMARASINGHE et al., 2020).
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Figure 9: PacBio sequencer nanometer wells (PFEUFER; SCHULZE, 2015)

2.2.1 Short-Reads vs. Long-Reads

The second-generation of sequencing technology leveraged the clinical use of genetic

testing by steeply reducing the cost to sequence a human genome or exome (fraction of

the genome that codifies for genes). Read sequences from this generation commonly have

only a few hundreds of bases, and so, are called short-reads. Even nowadays, short-reads

are still known for being some of the most cost-effective, accurate, and popular types of

genetic data, even after the introduction of the third-generation of sequencing technology

(ADEWALE, 2020).

The third-generation came along with long-reads, that have average length of kilo-

bases, which solved many sequences in the human genome reference that short-reads

were not able to cover. Firstly, short-reads are unable to, or are really ineffective at,

detecting structural variants (SVs), which are insertions, deletions, duplications, inver-

sions, or translocations in the genome that affect more than 50 nucleotide bases. Each

human genome has > 20,000 SVs and additional thousands of indels (insertion–deletion

mutations with < 50 base-pairs or bp), and most of them have remained undetected un-

til long-reads were introduced. This poses a serious problem since SVs account for the

greatest number of divergent bases across human genomes.

Secondly, short-read sequencing technologies often require the DNA to be fragmented

and subjected to PCR amplification, which introduces GC-content coverage bias (high

GC content can affect the efficiency of PCR due to the tendency of these templates to
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Table 2: Comparison between short-read and long-read data

Short-Reads Long-Reads
Second Generation Third Generation

Technologies Illumina, BGI, Thermo Fisher PacBio, ONT
Length up to 600 bases up to hundreds of kilo-bases
Error rate < 0.1% < 5%
Cost (human genome) USD 942 USD 1500
Assembly algorithms BWA-MEM, Bowtie2, SNAP, Minimap2 Minimap2, blasr-mc, BWA-MEM

fold into complex secondary structures) and hampers the detection of base modifications,

such as methylation (when a methyl group is added to a base, changing the DNA’s ac-

tivity without changing the sequence) (AMARASINGHE et al., 2020). Long-reads have

also shown to be essential at detecting copy number variations (CNVs) (regions with

multiple copies of short sequences), at phasing alleles (assigning gene variants to paternal

or maternal chromosomes), and at differentiating pseudo-genes (sequences that resemble

functional genes but can’t produce functional proteins) (MANTERE; KERSTEN; HOIS-

CHEN, 2019).

Long-reads were known for having a large sequencing error rate compared to short-

reads, but a recent article published in 2020 (AMARASINGHE et al., 2020) showed

that error correction strategies (such as the one mentioned for the PacBio technology

in Section 2.2) reduced it considerably, closing the gap to short-reads. Short-reads now

have an error rate < 0.1% and long-reads < 5%. One of the factors that are slowing

the adoption of long-read sequencers is the higher cost to sample a human genome (USD

942 using short-reads and USD 1500 using long-reads in 2020 (ADEWALE, 2020)) (see

comparison between short- and long-reads in Table 2). Some researchers argue that it

also takes time for the scientific community to become adapted to the new technologies

from the third-generation (ADEWALE, 2020).

2.2.2 The GATK Pipeline

The next step after collecting genomic reads is processing the data to acquire useful

information, such as the specific variants in the sequenced individual’s genome. An exten-

sive pipeline of tools is used in this step, which is currently considered the bottleneck of

the complete genome analysis pipeline (ALSER et al., 2020). The most conventionalized

processing pipelines come from the Genome Analysis Toolkit (GATK) (GENOME. . . ,

2022), directed by the GATK Best Practices for different ends, with the workflows de-

signed mainly for Illumina short-reads. This subsection will skip through the processing

tools in GATK4 and also comment on changes that would be applied to process long-reads
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Figure 10: GATK4’s pipeline for variant calling (GENOME. . . , 2022)

Figure 11: Example of a read in “.fastq” format

The read sequence and read quality strings were pruned for clarity, showing only the first line of characters.

from the third-generation. The processing pipeline is divided into three main sections:

pre-processing, variant discovery, and post-processing.

The description is based on the generic germline short variant per-sample calling

pipeline, referred to as Germline Single-Sample Data in GATK4 (Figure 10). Here,

germline refers to alignment to a conventionalized genome reference, and single-sample

data refers to the analysis made on an individual genome.

Pre-processing

The pipeline’s input is composed of raw unmapped reads produced by the sequencers,

that usually come in format “.fastq”. Each read in the “.fastq” file has 4 lines: the first and

third lines are headers, the second line is the nucleotide sequence, and the fourth line is the

quality of each base of that sequence. The quality score is related to the probability of the

corresponding base call being incorrect; the lower the probability, the higher the quality

score. The scores are encrypted with ASCII (American Standard Code for Information

Interchange) codes. For the example, in Figure 11, “@S1 1” and “+S1 1” are headers,

and the quality codes for the four initial nucleotides AATC, are .++* respectively, which

means that their P error values are 0.05012, 0.10000, 0.10000, and 0.12589.

The reads are mapped to a reference genome to produce a SAM (Sequence Alignment
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Map) file, or its binary version BAM, with mapping information of each read. The purpose

of mapping reads to a reference genome is to “rebuild” the original DNA sample, from

which the molecules had to be cleaved into much shorter sub-sequences. In the processing

pipeline, read assembly is the most computationally intensive step. For Illumina short-

reads, GATK recommends the BWA-MEM (BURROWS-WHEELER. . . , 2010) assembler

tool. For long-reads, Minimap2 (LI, 2018) has better accuracy and speed.

The output file after the mapping step is of extension “.bam” or “.sam”. The first

lines (194 for the primary assembly reference) are headers. After them, for each read,

the records display read name, read sequence, read quality, alignment information, cus-

tom tags, mapped chromosome, start coordinate, alignment quality, and the Compact

Idiosyncratic Gapped Alignment Report (CIGAR) string. The alignment flag (Figure

12), the mapped chromosome, and the start coordinate are the mapping results for the

read. Figure 13 shows an example of part of a “.sam” file. The first 5 lines are still part

of the header of the file. Then the first read S1 1 is mapped with the forward direction

(flag 0) to the position 164,654,461 of the RefSeq NC 000001.11, with mapping quality

60. The CIGAR string starts with 5M1D2M1I (explained later), the read sequence starts

with AATCCCTGG, and the sequencing base quality starts with .++*../(,.

The CIGAR strings are alignment structures between the reads and the region to

which they were mapped on the reference. The CIGAR string contains pairs — number

operator — that represent the alignment path between reference and read. The number

indicate the count of sequential occurrences of the operator. The operators can be: “M”

for match or mismatch; “I” for insertion to the read; “D” for deletion from the read;

and “S” for soft-clipping, which results from semi-global or local alignments that lose the

edges of the sequences. Less often used operators are “N”, used to differentiate introns

Figure 12: SAM file alignment flags (SEQUENCE. . . , 2021)
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Figure 13: Example of last headers and first alignment report in a SAM file

This is a screenshot of part of a SAM file after the first header lines until, including, the first mapping

report. Part of the CIGAR, read sequence, and read quality strings were pruned for clarity.

from deletions; and “H”, used for hard-clipping, which works similarly to soft-clipping,

but the read string also loses the clipped edges. Section 4.1 presents the genome sequence

alignment process and some CIGAR examples.

The last step of pre-processing, which is more specifically for Illumina reads, marks

duplicates that may emerge from the replication step during library preparation. This

is done by verifying if two or more reads have the same orientation, mapping position

and length. After marking duplicates, the base quality scores are re-calibrated using

the BQSR tool (BASE. . . , 2020), which detects the systematic errors created by the

sequencer using a machine learning model, to compensate for the tendency of sequencers

to overestimate quality scores. PacBio and ONT long-read sequencing technologies do

not use PCR amplification, so this step is not required.

Section 2.2.3 will dive more into the pre-processing step of the genome analysis

pipeline, as it is the area of focus of this work.

Variant Discovery

This step identifies genomic variations in the sequenced individual using the tool

HaplotypeCaller (HAPLOTYPECALLER, 2022). It reassembles the reads in regions

presenting variation signs using the de novo process, which glues sequences suffix-to-

prefix instead of aligning them with a reference; and then calls the variants of each base

position. HaplotypeCaller has a very high sensitivity, meaning that it detects many

variants that can sometimes be irrelevant. The output file format is VCF (Variant Call

Format), which contains variants in each line and columns with chromosome, position,

identifier, reference sequence, list of alternative alleles, quality score, a filtration flag,

description of the variation, and other information. PacBio suggests using pbsv (PBSV,

2022) to call structural variants joined with DeepVariant (POPLIN et al., 2018) to call
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small variants.

Post-Processing

The germline analysis pipeline is focused on identifying variants from the individual

that are not common for the species. The undesired variants can be filtered out with the

CNNScoreVariants (CNNSCOREVARIANTS, 2020) and the FilterVariantTranches (FIL-

TERVARIANTTRANCHES, 2019) tools. CNNScoreVariants is a trained convolutional

neural network model. With relevant variants identified, the funcotator (FUNCtional

annOTATOR) (FUNCOTATOR, 2022) links them to their respective functions, using a

set of data sources provided by the user.

2.2.3 Reference Guided Read Assembly

There are several ways to re-assemble reads back into the complete genome strand.

Two of the most common methods are the de novo assembly and the reference-guided as-

sembly. The de novo assembly method matches suffix to prefix of different reads, expand-

ing the sequence in a scaffolding way into many long sequences called contigs. Genome

references themselves, including the human genome reference, and short genomes are as-

sembled with this method. The second method is mapping and aligning the reads to a

pre-established reference for the species. This method demands considerably less com-

putation and is more commonly used for assembling long genomes that have a published

reference to follow. The reference-guided assembly method is extensively used in clinical

sampling of human genomes and exomes.

Reference-guided assembly relies on the similarity between genomes of the same

species (about 99.5% for humans). It can generate reference biases; for example, vari-

ants that are predominant in an ethnicity might not be represented in the reference. The

post-processing step can be tailored to these situations and filter out variations that are

actually expected for an individual’s ancestry. The reference-guided method also relies on

statistical inference. Clinical applications require at least 8 times coverage for each base

for an acceptable accuracy (AMARASINGHE et al., 2020). This should cover random

sequencing and alignment errors and help identify heterozygous states, where a different

variant is inherited from each of the biological parents.

Figure 14 illustrates a reference-guided assembly. The reference sequence is on the

top line in red, while the read samples are in gray in following lines. The coverage is

represented by each line and each column is linked to the nucleotide of a specific position
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Figure 14: Illustrated reference-guided assembly and statistical inference for base-call

Figure 15: The seed-and-extend read assembly strategy

In the seeding stage, the algorithm finds exact or non-exact matches of very short sequences between the

read and the reference. Indexing strategies are applied to the reference to accelerate the seeding stage.

Because the seeding stage can result in a great number of false positives, often an intermediate filtering

stage is required to reduce the number of selected items. On the extending stage, the Smith-Waterman-

Gotoh algorithm (described in Section 4.1.3) is used to align the entire read sequence to the reference

region.

in the reference. Variants are determined by dissimilarities between the sequenced sample

and the reference genome. In the zoomed figure on the right, under the nucleotides “CC”

in the reference, there are two columns missing, with dashes in the reads. That would

be identified as a deletion in the sequenced genome. There is also a column where the

reference genome has the nucleotide “C” whereas the reads have the nucleotide “T”, which

would be identified as a homozygous SNV (single nucleotide variant). The variant would

be classified as homozygous because all the reads in the coverage have this SNV; if it was

heterozygous, around half of them would have the SNV.

There are many methods to map and align reads to a reference. The most successful

method has been the seed-and-extend approach (Figure 15). It was pioneered by BLAST

(ALTSCHUL et al., 1990) and it is used by almost all read assembly tools currently.
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Some examples of seeding strategies are: searching for identical matches of fixed length

scanning through fixed intervals, used in Bowtie2 (LANGMEAD; SALZBERG, 2012) and

Minimap2 (LI, 2018) (more in Section 4.2.2); finding maximal exact matches (MEMs),

the longest exact matches between read and reference, used in BWA-MEM (BURROWS-

WHEELER. . . , 2010); non-identical seeds can also be used by mapping algorithms.

Indexing the reference is essential for finding the seeds in short time. Each seeding

method can be better suited for different indexation methods. The FM-Index (FERRAG-

INA; MANZINI, 2000) is a memory efficient indexation method used in BWA-MEM and

Bowtie2 that sorts all the rotations of the sequence, and indexes each type of nucleotide

in the first and last columns. The hash table indexing method is used in Minimap2; it

converts seed sequences into an index for a table containing all positions for that seed in

the reference (more in Section 4.2.1).

The seeding process can end up pointing to many regions to align in the reference.

Some techniques can be applied to filter out the false positive seeds. Filtering for short-

reads is harder because they carry little extra information that would not result already

in a complete extension of the read. For example, the work described in Section 3.2 is at

the same time a filtering step, that calculates the alignment between read and mapped

region in the reference using a very narrow band; and an extending step, because most

of the results of these alignments correspond to the optimal alignment. For long-reads,

filtering can be applied by extending a small region near the seed and evaluating the score

obtained before deciding to extend the entire read (TURAKHIA; BEJERANO; DALLY,

2018), or by grouping the parallel seeds from the same read to find its best mapping

position in the reference as in Minimap2 (LI, 2018) (more in Section 4.2.3).

Finally, with the one or few remaining mapping positions, the algorithm needs to

align the read to the mapped region in the reference to identify potential variants. For

this alignment, a matrix is adopted, with the reference and query (read) sequences posi-

tioned in the matrix’ axes. The alignments that are performed can be global (when both

sequences are fully aligned to each other), which is preferred when they are similar and

have similar lengths; local (only a portion of the sequences is aligned), used to find regions

of similarity between two sequences; and semi-global (alignment is extended from a fixed

point between the two sequences and stops when the similarity ends), commonly used in

the seed-and-extend method.

The Smith-Waterman-Gotoh (SWG) algorithm has quadratic time and memory com-

plexities in relation to the input’s lengths. Because of that, the assembly tools usually do
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not calculate the entire SWG matrices for this step. Since the alignment path is expected

to stay around the anti-diagonal of the matrices, different banding techniques can be used

to limit computation to cells around the anti-diagonals, reducing the complexities to a

linear relation; they can adopt fixed bands or dynamic bands. Fixed bands limit the

calculation to cells in a fixed area of the matrix (FUJIKI et al., 2020). Dynamic bands

try to follow the deviation of the alignment path (LI, 2018). Other algorithms compute

overlapping quadrants of the matrix, named tiles, one at a time, limiting the memory

usage to a constant value, independent of the input’s lengths (TURAKHIA et al., 2019).

Chapter 4.2 describes the specific algorithms used in the seeding, filtering and ex-

tending steps of Minimap2. Chapter 4.3 describes a hardware implementation of the

alignment process that is taken in the extending stage. These two are combined in this

work to provide an acceleration for Minimap2.
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2.3 FPGA Acceleration

Currently, almost every 32-bit and 64-bit processor uses reduced instruction set com-

puter (RISC) instructions to communicate software and hardware. It is a type of instruc-

tion set architecture (ISA), where instructions are typically as simple as microinstruc-

tions, being executed directly by the hardware. In RISC, recently executed instructions

are stored in a fast memory called cache, since they are more likely to be reused. This

architecture adds extensive flexibility to general purpose processors, but also increases

considerably the number of clock cycles required to perform the same task as an ASIC.

The computers’ most basic components are the transistors. Their purpose is to reliably

and accurately control electric currents, used to switch or maintain voltage representing

zeroes or ones in binary logic. Specific combinations of transistors in a circuit can create

logic gates for conjunction, disjunction, and negation. Combined logic gates can perform

all sorts of more complex calculations. Transistors are fabricated with a semiconductor

like silicon, treated with elements that give it an electron emitting or electron absorbing

characteristic. Arranging these types of semiconductors in layers gives transistors the

ability to control the current propagating between its terminals based on the voltage

applied to its gate.

In 1965, Gordon Moore first predicted that the transistor density on processors would

double every year, and in 1975, he revised it to be every two years. His prediction was

so precise that it became known as Moore’s Law. From around 2000, Moore’s Law began

to slow down, and by 2018 there was a 15-fold gap between the predictions and the

technology at that time. This gap is only going to increase as CMOS (complementary

metal-oxide-semiconductor) technology approaches fundamental limits, and the costs to

deal with this skyrocket (Figure 16).

In parallel to that, Robert Dennard stated that as transistor density increased, power

consumption per transistor would decrease, allowing power consumption per mm2 to stay

nearly constant. With power density increasing, “Dennard scaling” also began to slow in

2007 and became almost nonexistent by 2012 (Figure 17).

The slowdown of Moore’s Law and the end of Dennard scaling induced architects

to exploit better data parallelism. They developed a branch prediction strategy to keep

modern processor cores’ pipelines full. However, the average misprediction rate of 19%

(on Intel Core i7 in this example) made the energy efficiency of modern processors even

worse, as additional energy is needed to restore the initial state.
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Figure 16: Moore’s Law vs. Density (HENNESSY; PATTERSON, 2019)

Figure 17: Transistors’ length vs. power/nm2 (HENNESSY; PATTERSON, 2019)

The multi-core (more than a single CPU) approach allowed the programmer to set

the best use of thread parallelism for each implementation, but did not solve the energy

consumption problem, since every active core consumes power whether or not it is con-

tributing to boost the performance. Also, according to Amdahl’s Law, the speedup from

parallel computing is limited by the portion of the program that is sequential.

Quantum effects on extremely small transistors lead to high thermal dissipation and

CMOS technology is approaching its fundamental limits (i.e. reaching lengths equivalent

to a few atoms), but there’s still a growing need for computational power. Genomics is

an example of it: the Illumina NovaSeq 6000 system can sequence about 48 human whole

genomes at 30x genome coverage in about two days. However, analyzing (performing

assembling and variant calling to) the sequencing data of a single human genome requires

over 32 CPU hours on an Intel Xeon processor, 23 of which are spent on read assembly

(GOYAL et al., 2017).
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Domain-specific architectures (DSAs) are one of the best solutions to this. They

are architectures tailored to a specific problem domain, which in this case would be

genome assembly. Some examples of DSAs are GPUs and neural network processors.

DSAs can exploit a more efficient type of parallelism for the domain, can make more

effective strategies for memory access, can use less precision when adequate, and are

energy efficient. FPGAs are programmable hardware used on DSA development that

constantly appear on genome alignment acceleration research and were argued to be the

most efficient option for the genomics domain (GUO et al., 2019).

ASICs are able to deliver a higher performance when compared to CPUs or DSAs

(GPUs and FPGAs), because their operating frequency can be adjusted and optimized to

the longest path of the circuit, becoming over 3 times higher than the operating frequency

of FPGAs (KAPLAN; YAVITS; GINOSAR, 2019); and because the components can be

distributed on the chip in the most efficient manner, under same technology. However, the

fabrication cost for ASICs is high, requiring a high volume production to become viable.

Since the genomics field is evolving extremely fast, and new algorithms are published

every year, it is not prudent to adopt a fixed solution.

2.3.1 Field Programmable Gate Array

Before explaining FPGAs, some basic electronic components need to be introduced.

Lookup Tables (LUTs) are tables that produce an output based on the input values.

They act like logic gate circuits and, in great numbers, can produce any combinational

logic function and even perform very complex computations. LUTs can be looked at as

being very small RAMs that are loaded with data when configuring the FPGA. The input

would represent a storage address and the output would be the stored data. Lookup tables

reduce significantly computation time as they can produce the same results of a circuit

that has many logic gates. They are also components that attribute a re-configurable

aspect for FPGAs.

Flip-flops (FFs) are logic circuits that work as 1 bit memories. Clock pulses can keep

or alter their output value, depending on the value set on the input. A series of flip-flops

can constitute a register that also has similar characteristics to memories. A latch is a

circuit that registers data if the input has ever been at a high value, keeping output high

after this occurs, and only going back to zero if reset is activated. Multiplexers (MUXes)

are able to switch the output to one of its multiple inputs through control signals.

FPGAs are, in a simplified way, ICs that contain configurable blocks of logic and
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Figure 18: Simplified illustration of an FPGA architecture (MAXFIELD, 2004)

Switch Matrices are the keys arranged in rows and columns that interconnect CLBs and connect them

to the inputs and outputs of the FPGA.

Figure 19: Key elements of a configurable logic block in an FPGA (MAXFIELD, 2004)

configurable interconnects between them (Figure 18). In the illustration in Figure 19, each

configurable block is formed by three key elements: a 3-input lookup table, a register that

could act as a flip-flop or a latch, and a multiplexer. A 3-input function can be loaded in

the LUT, the multiplexer could accept the output from the LUT or another input from

the logic block, and the register could be configured to act as a FF or a latch.

Another important aspect of FPGAs is how the logic is loaded into the board. Most

FPGAs use, besides LUTs for configurable logic, SRAM (static RAM) configuration cells

to hold control signals for interconnections, which is a fast re-configurable method, with

a downside of requiring configuration in every system power-up. Another issue with this

method is the hindrance to protect the intellectual property, since the configuration file

is commonly stored in an external non-volatile memory. Bit-stream encryption can be

applied with additional circuitry to avoid this, or Cloud implementations can block access

from the end user to private components.

Several modern FPGAs available in the market include in their fabric embedded Block
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RAMs (BRAMs) and high-speed Input/Output Blocks (IOB) that make the interface

between internal blocks of the FPGA and its external pins. Some FPGAs come with

embedded processor cores. Considering FPGAs adopt volatile SRAM for configuration,

booting with an external micro-controller is required to load the memory value into the

FPGA every time it is initialized. It is also possible to reconfigure the FPGA while it is

running a project with a complex system.

The FPGA project developer generates the circuit description at behavior level, at

RTL (register transfer level) with a hardware description language (HDL) or with a block

diagram graphic description. Most common HDLs are Verilog and VHDL (VHSIC (Very

High Speed Integrated Circuit) HDL). Some tools like VIVADO, from Xillinx, can trans-

late high level programming languages such as C and C++ into HDL, process known as

high-level synthesis.

On one hand, it is considerably easier and faster to design FPGA projects than ASIC

projects, since no complex backend design steps (e.g. layout generation and layout op-

timization) is needed, and the reprogrammability aspect allows the design to promptly

adapt to the market changes. On the other hand, FPGA projects are limited by on-chip

resources and mostly don’t reach the same level of ASIC performance. Manufacturing

costs per chip are lower for ASICs in large production runs, but are prohibitively high for

small reproductions. FPGAs also have high manufacturing costs, but they are shared by

the high number of users or purchasers.

Designing an FPGA accelerator takes a longer time, and is usually more expensive

than programming a GPU accelerator, although it may deliver, in general, faster pro-

cessing. GPUs are considered still efficient, when the related application present strong

data parallelism. According to the authors of (GUO et al., 2019), FPGAs may achieve

better performance than GPUs in several applications, as in the one considered in this

dissertation.
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2.3.2 Cloud FPGAs (the AWS F1 Instance)

FPGA designs can be implemented in a physical board or, nowadays, even in the

Cloud. Genomic tools, specially read assembly tools, deal with great amounts of data,

requiring processors to have higher volatile and non-volatile memory capacities. FPGA

boards with high resource count can be very costly and inaccessible for development

projects. Even if the board is accessible, developers must deal with the hardware-software

interface configurations and with system maintenance for new platform support tools.

Cloud computing services can reduce the initial cost by charging a smaller price for

usage time. Designs that are implemented in popular Cloud servers, such as Amazon

Web Services (AMAZON. . . , 2022c) and Google Cloud (GOOGLE. . . , 2022); and that

use more unique processors, such as FPGAs and GPUs; have been increasingly used in

the research environment, because they can be more easily replicated and more people

can avail the results. Considering the reasons above, this project was developed for, and

was implemented on, a Cloud machine containing many CPUs and an FPGA.

Amazon Web Services (AWS) is a Cloud platform that offers technological services

through the web. AWS provides on-demand delivery of IT resources over the internet with

pay-as-you-go pricing. On-demand Instances are more suitable for short-term, irregular

workloads that cannot be interrupted, which is typical for development and research

projects. A wide variety of Instance types are available, with different number of CPUs,

RAM and storage capacities, and network and data transfer bandwidths (AMAZON. . . ,

2022b).

Some Instance types offer accelerated computing with hardware integration. The

F1 Instances are the only AWS Instances that contain FPGAs. There are f1.2xlarge,

f1.4xlarge and f1.16xlarge Instances, in increasing performance potential, with their re-

spective resources listed in Table 3. For the purposes of this dissertation, the f1.2xlarge

will suffice.

The f1.2xlarge Instance has a server with eight CPU Cores and one Xilinx UltraScale+

VU9P FPGA in a separate board. Since this Instance is the one used in this dissertation,

from this point on, it will be referred simply as AWS F1, unless otherwise explicitly

Table 3: Resources available on AWS F1 Instances

Instance FPGAs vCPU Mem (GiB) SSD (GB) Network Performance (Gbps)
f1.2xlarge 1 8 122 470 10
f1.4xlarge 2 16 244 940 10
f1.16xlarge 8 64 976 4 x 940 25
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stated. The server is equipped with 4 DDR4 (Double Data Rate) channels, providing a

bandwidth of 4x16 GiB/s, each accessing a 72-bit wide ECC-protected memory (48 Gb/s

bandwidth). The interface with the host is done with dedicated PCIe Gen3x16 connection

(30 Gb/s bandwidth).

The advantages of AWS F1 Instances with respect to FPGAs are that they already

come integrated to a CPU host server with fast interface and drivers installed; AWS

FPGAs are pre-loaded with a Shell that wraps the kernels (HDL synthesized hardware in

FPGA that run algorithms and are called via OpenCL functions) to fit the FPGA’s I/O

range, presenting a standard AXI (Advanced eXtensible Interface) to the kernels. The

VU9P FPGAs are very powerful, and have more SRAM capacity than FPGAs currently

available at the author’s research institution.

The project’s development environment is SDAccel (SDACCEL. . . , 2019) (default

changed to Vitis in 2020 (VITIS. . . , 2022)). On the host CPU, the custom application

(written in C/C++) interacts with the FPGA by using the OpenCL API (Application

Programming Interface). OpenCL Runtime manages and services the requests sent to the

FPGA. The drivers handle the PCIe transfers between the host and devices. The FPGA

comes preloaded with the necessary logic to DMA (Direct Memory Access) the data in

local DDR memory. The custom kernels read this data, process it, and write the results

back to DDR, using standard AXI-4 (Figure 20).

The steps for hardware development in AWS are:

• Create SDAccel/Vitis kernels from C/C++, OpenCL, or RTL models; the resulting

containers (“.xo” files) contain kernel XML (eXtensible Markup Language) meta-

data, RTL files, and Vivado IP project;

Figure 20: CPU-FPGA interconnection in AWS F1 Instances (DEVELOPING. . . , 2022)
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• Compile the platform (the SDAccel/Vitis compiler links the kernels and other re-

quired hardware components), instantiate the kernels and the F1 Shell, generate

DDR interfaces and interconnect logic, make all the necessary connections, run syn-

thesis and place&route, resulting in a “.xclbin” binary file;

• Create the encrypted Amazon FPGA Image (AFI), which is stored by an AWS

back-end service.

VU9P is a stacked silicon device, meaning that a silicon interposer connects 2 or more

FPGA dies (Super Logic Regions). SLR is a slice of a device containing a subset of its

resources. VU9P has 3 SLRs, and each has access to one or more DDR interfaces. The

Shell includes the PCIe link and hardware necessary to transfer data between the host

and kernels in the CL (Custom Logic) region (Figure 21). The Shell’s clock runs at a

fixed 250 MHz. The CL supports clock frequency of up to 500 MHz.

The kernels access DDRs via AXI4 MM (Memory Mapped) that have 512 bit busses

clocked at 250 MHz. Each DDR is accessible by a maximum of 16 AXI4 busses, so

an F1 FPGA can have at most 64 kernels. The DDR global memory has an inherent

latency overhead when accessed, both for host via PCIe, and for kernel via DDR memory

controllers. One cycle of data transfer takes in total 4 DDR transfers.

Figure 21: The AWS F1 Instance’s VU9P FPGA with 3 SLRs, 4 DDRs, and AWS Shell
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2.3.3 The OpenCL Tool-Set

OpenCL is a tool-set that augments C and C++ languages with data types, data

structures, and functions for building parallel programs to run on high-performance pro-

cessors (OPENCL. . . , 2011). It is a standardized interface that allows developers to

program different devices without having to learn multiple languages.

In 2008, the company Apple was selling very popular consumer electronic products

(e.g. iPhone, iPad, iPod, and MAC). They were built using devices from third party

companies, that benefited from this with the rise in market share and developer interest.

Apple faced the need for a common interface that suited any device, so together with its

vendors, Apple formed the OpenCL Working Group, one of many in the Khronos Group

(a consortium of companies for graphics advancement).

OpenCL targets platforms as the one presented in Figure 20, which describes a hard-

ware implementation in FPGA, but the device instances could be instead, for example, a

set of GPUs running concurrent code. A custom application in C/C++ runs in the host,

along with the acceleration platform’s execution commands and its device’s functional

code. In the case of GPUs, this code corresponds to C/C++ blocks, while for FPGAs it

consists of HDL compiled binaries. OpenCL is a tool-set with a large number of specific

commands; the implementation’s host in this research practices the following steps with

their corresponding commands/functions:

• Create a platform structure: with the software development kit (SDK) previ-

ously installed on the machine, the vendor is informed (e.g. Xillinx, Nvidia, etc.)

in this step; the cl platform id data type and the clGetPlatformIDs and clGetPlat-

formInfo functions are used;

• Create a device structure: linked devices from the specified vendor are identified,

and one or more are chosen for the application; the cl device id data type and the

clGetDeviceIDs and clGetDeviceInfo functions are used;

• Create a context: devices that work together are grouped into a context, that

will have a command queue designated to it; the cl context data type and the

clCreateContext function are used;

• Create a command queue: various types of commands can be en-queued to

the device with this data structure, from transferring buffer objects to executing

kernels; the queue also synchronizes commands by using event flags, and by deter-
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mining whether the commands are ordered by FIFO (first in, first out) or not; the

cl command queue data type and the clCreateCommandQueue function are used;

• Create a program: programs are containers of kernels; both of them store exe-

cutable code, but kernel represents a single function whereas program can represent

more than one function; at this step, the binary file with instructions to build

logic in the FPGA is read and loaded in the memory; the cl program data type

and the clCreateProgramWithBinary, clBuildProgram, and clGetProgramBuildInfo

functions are used;

• Create kernels: kernels can be associated to a specific memory bank, such as

one of the DDRs from the AWS FPGA (see Section 2.3.2); the cl kernel and

cl mem ext ptr t data types and the clCreateKernel function are used;

• Create buffers: one or more buffers (regions of a memory used to temporarily

store data) are reserved in the device for it to read or write input and output data;

this step requires maximum data size and memory bank information; the cl mem

data type and the clCreateBuffer and clEnqueueMapBuffer functions are used;

• Transfer data: data is written into or read from the buffers by the host; this

is a command order sent to the command queue; the clEnqueueWriteBuffer and

clEnqueueMapBuffer functions are used;

• Set the kernel arguments: any I/O configured kernel argument is set at this

stage; the clSetKernelArg function is used;

• Execute the kernels: this is a kernel execution command order sent to the com-

mand queue; the clEnqueueTask function is used.
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3 RELATED WORK

Thousands of relevant works related to genomic read assembling can be found in

the literature. This literature review is focused on papers that use hardware designs

(e.g. GPU, FPGA, KNL, and ASIC) to achieve some improvement with respect to their

software counterparts. The first two works accelerate short-read assembly algorithms and

the other works are related to long-read assembly algorithms.

3.1 SWG on FPGA for Short-Reads (KOLIOGEORGI

et al., 2019)

This work consists of accelerating the short-read assembly program Bowtie2’s align-

ment step with FPGA implementation. In Bowtie2, the SWG step takes 60% of the

execution time, being 56% for matrix-fill and 4% for traceback. A communication over-

head on the hardware-software co-designed architectures was identified and addressed.

The wave-front parallelism is explored by an array of PEs (Processing Elements),

with the same length as the read sequence (average 270 bp for their dataset), that fills

the matrices in a skewed pattern in n+m− 1 steps (Figure 22). The matrices are stored

on on-chip memory for use by the traceback step, which is also implemented in hardware.

Figure 22: Related work - data-flow for SWG (KOLIOGEORGI et al., 2019)



60

Figure 23: Related work - interleaving read sequences (KOLIOGEORGI et al., 2019)

Interleaving of L read sequences causes a skewed memory pattern for storing score matrices in BRAM.

In their architecture, they noticed that the computation of a cell value requires a chain

of multiplexers, which introduces a latency L between consecutive diagonals. To alleviate

this, L reads are interleaved in a round robin manner (Figure 23). Double buffering was

also implemented to avoid halting matrix-fill operation while streaming data to traceback.

The design was implemented on Xilinx VU9P Ultrascale FPGAs running at 200 MHz

and MAX5C DFE (data-flow engine). Compared to Bowtie2 with SIMD optimization

running in an Intel Xeon E5-2658A processor at 2.2 GHz, the accelerator achieved 18x

speed-up and the integrated system had 35% performance gain. This design is only suited

for aligning short-reads, since the number of PEs is directly linked to the length of the

query.

3.2 SeedEx: BSW on FPGA for Short-Reads (FU-

JIKI et al., 2020)

SeedEx is a co-processor implemented on an FPGA that performs seeding expansion

with narrow banded SW (BSW) as a filtering algorithm. First, they noticed that in the

BWA-MEM algorithm, more than 98% of the seed expansions required a band w ≤ 10 for

short-reads. So they developed a narrow banded accelerator with a three step optimality

check to find and rerun the non-optimal expansions on the host.

The first step calculates the theoretical highest score (upper-bound score) and com-

pares it with the score obtained within the band. Thresholds S1 and S2 are calculated

for the smaller region and the bigger region outside the band respectively (difference is

due to length asymmetry between query and reference sub-sequence) (Figure 24). The

highest score would be the seed’s score subtracted by a gap with the band’s length and

added to a match in the remaining sequence. If the score is under S1, it is automatically
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Figure 24: Related work - SeedEx’ three step optimality check (FUJIKI et al., 2020)

Thresholds S1 and S2 from 2 regions outside the band where optimal alignment could occur. On the

left is the matrix of thresholds. On the right are the three possible optimal alignment paths with scores

higher than S1.

sent to rerun on the host. If it is higher than S2, optimality is guaranteed. If it is between

S1 and S2, further checking is required.

It is proven by contradiction that if the optimal score is outside the band, then it

must be in the shaded region in Figure 24. There are two ways of reaching this region,

from above or from the side. The second step performs an E-score check by dislocating

the border cells out of the band and performing matches for all subsequent alignments.

The maximum value resulting from these interactions is the threshold of acceptance of

the band’s alignment.

Finally, in the third step they perform the Edit-distance check where they perform a

seed expansion with the lower gap penalty and edit-distance scoring on the shaded region

using S1. The best resulting score is an optimistic threshold for alignments coming into

the gray area. If the alignment score in the band passes both E-score and Edit-distance

thresholds, then it is optimal.

The design was implemented on AWS F1 instance (f1.2xlarge). They chose a band

size of 41, which resulted in a thresholding passing rate of 71.76% and a rerun rate of

1.81%.

12 BSW cores generated the narrow-band and E-check scores. 4 Edit machines per-

formed the Edit-distance check’s expansion. With perfect prefetching and appropriate

buddering, the memory access time was completely hidden. They achieved 43.9 M seed

extensions/s and 1.5 M reads/s (the latest was coupled with seeding acceleration), a 1.3x
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speed-up over BWA-MEM and BWA-MEM2.

SeedEx could be repurposed as an accelerator of a filtering step for long-read assembly

(it would be equivalent to the BSW modules in Darwin-WGA, see 3.8), but can’t be used

for long-read alignment for two reasons: the traceback memory requirement would be

prohibitive, and long-reads would hardly be limited to narrow bands.

3.3 RASSA: ASIC for Finding Mapping Positions

(KAPLAN; YAVITS; GINOSAR, 2019)

RASSA consists of an accelerator for the filtering or pre-processing step of genome

assembly. A circuit of resistive memories called memristors stores the reference genome

and, at the same time, compares it in parallel with chunks (100-200 bp) of the read

sequence to measure the Hamming distance between them (Figure 25). A threshold of

around 50% determines the mapping position(s) of the read (Figure 26).

RASSA achieved 16-77x speedup over Minimap2 with higher sensitivity. While Min-

imap2 only mapped about 20% of all reads from their dataset, RASSA always mapped

more than 72% of the reads with false positives between 6.9% and 39.2%. However,

RASSA’s tested circuit only supported small genomes (< 31.5 Mbps), and there was no

evaluation for human genome size performance.

Figure 25: Related work - circuit of memristors (KAPLAN; YAVITS; GINOSAR, 2019)

b) Single RASSA bitcell. c) ‘A’ base from reference stored in-memory compared to ‘A’ base from read

resulting in no charge loss. d) mismatch between ‘G’ and ‘T’, resulting in match line voltage reduction.
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Figure 26: Related work - mapping threshold (KAPLAN; YAVITS; GINOSAR, 2019)

Read is scanned through the reference and when it hits a potential mapping position, the mismatch rate

drops under a 50% threshold.

3.4 Minimap2’s Chaining Step on FPGA and GPU

(GUO et al., 2019)

This project aimed to accelerate the chaining step of Minimap2 in 3 processors: CPU,

GPU and FPGA, and compared the results. For the CPU, they binded a thread to a

designed core, allocated data of tasks in a neighbor NUMA (non-uniform memory access)

node, and implemented SIMD so that the weights between eight pairs of anchors can be

computed concurrently. With this, they achieved almost linear speedup to the number of

cores (13.9x with 14 cores).

For hardware implementation, they changed the order of the operation sequence be-

cause of a loop-carried dependency. Instead of comparing the current anchor with N

previous anchors to find a maximum, they compare it with N later anchors and update

the temporary value of each of them (Figure 27). They also dispatch a data batch so that,

at any clock cycle, every PE can fetch input data. This solves the problem of different

input sizes from different tasks (Figure 28).

The architecture was implemented on an AWS F1 Instance, running at 250 MHz with

8 PEs. PCIe bandwidth was the limiting factor. For long-reads, the FPGA accelerator

is 277x faster than a single-thread software, 28x faster than 14-core optimized software

and 4x faster than their GPU implementation. Since the chaining step is one of the

bottlenecks for Minimap2’s runtime on long-reads, with this acceleration the bottleneck
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Figure 27: Related work - reordered operation sequence (GUO et al., 2019)

On the left, the original algorithm with a long critical path. On the right, the reordered operation

sequence reduces the critical path.

Figure 28: Related work - fine-grained task dispatching scheme (GUO et al., 2019)

is passed to the extending step. This project has not been fully integrated into Minimap2,

but the separate module is available on GitHub (MINIMAP2-ACCELERATION, 2021).

3.5 Minimap2’s Extending Step on CPU, GPU and

KNL (FENG et al., 2019)

This article implemented acceleration techniques on Minimap2’s base-level alignment

step for long-reads on CPU, GPU and KNL. For PacBio simulated dataset on the human

genome, this step consumes 65.42% of the time. They noticed that the Suzuki-Kasahara

transformation uses linear arrays to store the matrices, reducing memory usage, but in-

troducing intra-loop data dependency. They proposed a new memory layout with another

coordinate transformation that does not alter the memory requirement (Figure 29). The

vector load procedure was reduced to a single load instruction (Figure 30).

On their setup, the CPU was running with 20 cores, GPU with 5120 and KNL with
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Figure 29: Related work - optimized memory layout for SWG (FENG et al., 2019)

Figure 30: Related work - vector load reduced to a single instruction (FENG et al., 2019)

64. For matrix fill and traceback, CPU was 1.3 to 4.5 times faster than Minimap2, GPU

was 3.2 times faster and KNL was 3.9 times faster. They concluded that, although KNL

and GPU both outperformed CPU, a high-end server CPU was still the most efficient

platform due to the others’ low single thread performance and occupancy issue.

3.6 Darwin: A Hybrid Design for Long-Read Assem-

bly (TURAKHIA; BEJERANO; DALLY, 2018)

Darwin presented the deployment of a complete genome assembly algorithm that is

optimized for hardware acceleration. It is divided in two parts: Diagonal-band Seed

Overlapping based Filtration Technique (D-SOFT) for the seeding and filtering steps,

and Genome Alignment using Constant memory Traceback (GACT) for a second filtering

stage and the sequence alignment step. With D-SOFT implemented on CPU and GACT

implemented on an Arria 10 FPGA, clocked at 150 MHz, Darwin achieves up to 183.8x

speedup over GraphMap (ŠOŠIC et al., 2016) with a single thread on a dual socket Intel

Xeon E5-2658 processor (2.2 GHz).

The reference is first indexed with a seed position table, where seed hits are stored
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Figure 31: Related work - D-SOFT mapping (TURAKHIA; BEJERANO; DALLY, 2018)

In the example, k = 4, BinSize = 10, and h = 8.

sequentially, which enables faster and fewer memory accesses. High frequency seeds that

occur more than 32 × |R|/4k times, where |R| is the size of the reference, are discarded.

Then, in D-SOFT, the reference is divided into bins of size 128. Seeds of size k = 15

are collected from a read with stride = 1 between start and end. When matched to the

position table, the hits are computed so that each bin has a count of unique bases that

account for seed hits that may overlap. When the count for a bin first exceeds a threshold

h = 13, the last hit in the bin is added to the candidate positions list.

Figure 31 shows an example with a reference with 6 bins of 10 nucleotides each. Each

of the query’s 4-mers, with stride (or dislocation) of 1 is searched in the position table.

The first k-mer finds a match in Bin 3, illustrated by a red circle and a line spanning the

k-mer’s length. When a match is found, the Bin updates its count, without considering

overlapping bases that have already been counted in previous k-mers. After iterating

through all the query’s 4-mers, the last hit from the Bins with counts that exceeded the

threshold of 8 are sent as seeds for the next stage. In the example, only Bin 3 passed the

filtration process.

GACT performs a second filtration stage and the extending step for the seeds that

passed. It computes sub-squares of the SWG matrix, called tiles, with fixed size T = 320

and overlap border O = 128, creating sequentially a band around the anti-diagonal of the

matrix. The first tile starts from the expansion point; it is the only one that starts the

traceback from the highest score and it is bigger than the other tiles (T = 384) because

it works as a second filtering stage. The expansion will only proceed if the first tile’s

score surpasses htile = 90. The traceback in each tile proceeds until the overlap boundary

is reached. The other tiles are clipped in the position where the previous tile stopped

backtracking and perform their traceback from the bottom-right cell. Figure 32 presents

an left-extension example from the seeding point in green, with T = 4 and O = 1.
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Figure 32: Related work - GACT extension (TURAKHIA; BEJERANO; DALLY, 2018)

In the example, T = 4 and O = 1.

The memory requirement is fixed at O(T 2), ideal for hardware implementation with

limited resources, and the authors affirm that GACT gives optimal results empirically.

The hardware design is based on a systolic array. An array of NPE = 32 processing

elements (PEs) computes blocks of NPE rows from the tile, exploiting the wave-front

parallelism of the matrix. In each block, each PE holds its corresponding nucleotide from

the query sequence and the reference sequence is streamed through the array. In each

clock cycle, each PE computes the three scores and the traceback pointer. Figure 33

shows an example with NPE = 4 and T = 9.

They synthesized 4 GACT arrays with traceback support (limited by on-chip memory

— each PE required 2 KB SRAM, which equals 64 KB SRAM per array), and 36 GACT

arrays that do not perform traceback and only compute the first tile’s score. The peak

throughput was 1.3 M tiles/s. The reported 183.8x speed-up over GraphMap was in

relation to single-threaded software, but the hardware design takes multiple kernels. A

Figure 33: Related work - GACT architecture (TURAKHIA; BEJERANO; DALLY, 2018)

(a) Systolic architecture of GACT with NPE = 4. (b) Matrix fill scheme for T = 9.
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one to one comparison should have had a reduced speed-up.

Darwin was published about the same time as Minimap2, and the latter achieved sig-

nificantly better accuracy and also better performance in comparison to GraphMap. There

has not been any performance evaluation of Darwin in relation to Minimap2. D-SOFT

was developed to achieve best performance in hardware implementation and, although

the authors have simulated a fully accelerated Darwin ASIC, which would provide a great

speed-up, in the current implemented FPGA design, D-SOFT runs on software and con-

sumes prohibitive amount of RAM for long references, such as the human genome.

3.7 Improved GACT Algorithm Using BSW (LIAO

et al., 2018)

This article presents an improved version of Darwin’s GACT accelerator. The authors

replaced the tiles with bands without affecting accuracy empirically and achieved a 2.5x

speed-up in hardware (Figure 34). They also developed a dynamic programming algorithm

for band overlapping. The algorithm consists of searching for regions with high match

rates that are more likely to be in the optimal alignment, and overlapping on these

instances. Traceback was performed on the hardware.

They used a systolic array of PEs, with length equal to the band, L = 512 and

B = NPE = 128. Score cells were treated as 12-bit integers. Compared to GACT, they

reduced the total required clock cycles to 40%. They implemented the accelerator on an

Intel 40nm Stratix IV FPGA, EP4SGX230KF40C2, running at 125 MHz, with RIFFA

data communication through PCIe interface. No open-source code has been provided

by the authors for eventual third part improvements. Later, the authors of Darwin also

published an improved architecture that bands GACT and achieves higher speed-up,

which will be presented in the next Section 3.8.
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Figure 34: Related work - GACT adapted with bands (LIAO et al., 2018)

3.8 Darwin-WGA: A Hybrid Design for Whole Genome

Alignment (TURAKHIA et al., 2019)

The authors of Darwin developed a whole genome alignment (WGA) hybrid design by

adapting the D-SOFT and the GACT algorithms used in Darwin. WGA is a method that

aligns two complete genomes. It is used for identification and prediction of functional

elements (genes and regulatory sequences), for deducing the evolutionary relationship

between species, and for ancestral genome reconstruction. Darwin-WGA uses an adapted

D-SOFT algorithm for seeding, BSW for gaped filtering, and the improved GACT-X

design for aligning. The main differences in Darwin-WGA compared to Darwin are: the

query is a long genome sequence, instead of many shorter reads; aligned sequences have

a significantly lower similarity for originating from different species; longer indels are

expected in the result.

The adaptations aimed at increasing sensitivity, so that true positives could pass on

through the filtering stage. D-SOFT uses spaced seed patterns instead of perfect matches

to find seeds. A BSW filtering stage, implemented on an FPGA, is added to the design,

which also increases the algorithm’s sensitivity by allowing gaps in the filtration. Finally,

longer gaps require wider tiles to show up in the final alignments, but GACT has a

quadratic consumption of on-chip SRAM in relation to tile size. To linearize this ratio,

the X-drop algorithm was added to create a dynamic band around the alignment path in

the tiles, naming the new algorithm GACT-X. GACT-X is further detailed in Chapter

4.3.
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In their architecture, the software runs D-SOFT, configures the arrays, controls the

execution of tiles, and reconstructs the alignments from traceback pointers. 50 BSW

arrays and 2 GACT-X arrays are implemented on an AWS FPGA, operating at 150

MHz. GACT-X achieved 4.6 k tiles/s (14.6 MB/s) throughput, which is over 4x speed-up

over GACT, using 2x less memory. Although Darwin-WGA is not a read assembler, the

GACT-X module in it computes the SWG alignment for arbitrarily long sequences, which

can be repurposed to accelerate read assembling algorithms.

3.9 Minimap2’s Extending Step on FPGA (TENG et

al., 2021)

This is a work related to the author’s under-graduation project, accomplished with her

colleagues RenanWeege Achjian and Caio da Costa Braga, which consisted on accelerating

the extending step of Minimap2, using a Xilinx MPSoC Zynq Ultra96v1 board, containing

an FPGA and an Arm processor. First, the extending step was identified as Minimap2’s

main bottleneck when mapping short-reads (58.6% of the total execution time).

One of ksw extd2 sse41’s main loops, commented as “gap left-alignment” in Min-

imap2’s original code, was synthesized into VHDL, using the VIVADO High Level Syn-

thesis (HLS) tool. The SSE instructions were changed to regular C and pragma commands

were added to optimize the logic description. From the RTL files, an IP block was gener-

ated and the block design was completed in VIVADO to generate the bit-stream.

The host was loaded into the Arm processor, using PYNQ OS (operating system)

and Jupyter interface. The intermediate data was stored on an SD (Secure Digital) card

inserted in the board. This design only consumed 3% of FFs and 11% of LUTs. The

required clock cycles were reduced 155x compared to software. However, the acceleration

scheme did not provide performance increase to the ksw function, due to a data transfer

overhead that took 99.9% of the time taken by the whole design.
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4 ASSEMBLY AND ALIGNMENT

ALGORITHMS

This chapter describes the key algorithms that form the basis of the acceleration

project of this work: SWG, Minimap2, and GACT-X. The first and last algorithms per-

form sequence alignment; and the second performs read-to-reference assembly, which also

includes a sequence alignment stage. SWG is a classic biological sequence alignment

algorithm used in almost any read assembly program, usually with added heuristics to

improve performance and reduce memory consumption. The SWG’s predecessor is the

algorithm Needleman-Wunsch. Minimap2 is the State-of-the-Art algorithm for assem-

bling long-reads to a genome reference. GACT-X has the same function as Minimap2’s

extending step, and is an FPGA design suited for alignment of long sequences. GACT-X

is implemented on an AWS Instance and is going to be used in this project to accelerate

Minimap2’s extending step.

4.1 Biological Sequence Alignment

All the following methods are based on matrices. The examples given are simple for

didactic reasons, but real short and long-reads can measure up to 600 bp and hundreds

of kbp respectively.

4.1.1 The Needleman-Wunsch Algorithm

Saul Needleman and Christian Wunsch first published a method to find the best

alignments between two sequences using a matrix based dynamic programming algorithm

in 1970 (NEEDLEMAN; WUNSCH, 1970). Their method allowed comparisons involving

matches, when the letters are identical in the same position of the alignment; mismatches,

when the letters are different in the same position; and gaps, when either one of the

sequences have an insertion or a deletion of a nucleotide or sub-sequence. In other words,

it is a metric that represents the minimum number of “mutational events” required to
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Figure 35: Example of an alignment between two DNA sequences

Alignment between sequences “CAGCCTCGCTTAG” and “AATGCCATTGACG”. Each position of the

alignment has to correspond to a match, a mismatch, or a gap. Gaps can also be called indels, insertions

or deletions, depending on the situation.

convert one sequence into another. Take the example of an alignment in Figure 35.

Given a matrix S, the axes of the Needleman-Wunsch matrix correspond, respectively,

to the query and the reference being aligned, A = a1a2...an and B = b1b2...bm. Matches

and mismatches are compensated with function s(ai, bj) which has a positive value when it

is a match and a negative value when it is a mismatch. Gaps are penalized with a constant

w. In dynamic-programming fashion, each cell contains the best score up to that position

and the best alignment interaction(s) between every pair of bases that resulted in this

score. The equation 4.1 shows how each cell of matrix S is computed.

Sij = max{Si−1,j−1 + s(ai, bj), Si−k,j − w, Si,j−1 − w}, 1 ≤ i ≤ n and 1 ≤ j ≤ m (4.1)

As an example, take the alignment between A = ATGACTCTCAGAC (reference)

and B = ATCTCGAGTGAGC (query) in Figure 36. A match score is 1, a mismatch

penalty is 0.4 and a gap penalty is 0.4. First column and row are filled as gaps, since it’s

the only possible interaction between an empty sequence and a non-empty one. The filled

Needleman-Wunsch (NW) matrix is shown in the figure. The arrows indicate the origin(s)

of the maximum score for each cell and the backtracking generates the best alignment

path(s) as shown in purple.

The backtrack pointers indicate that there is a match/mismatch when the path is

diagonal, an insertion when the path is vertical, and a deletion when the path is horizontal

(when the reference is in the x axis). The computation in S1,1 results in 1 due to the match

of “A”s, which scores +1 from the upper diagonal cell, resulting in a value larger than the

ones coming from above or from the left. After all cells are calculated, a traceback phase,
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Figure 36: Example of a Needleman-Wunsch global alignment matrix

Needleman-Wunsch global alignment matrix between sequences ATGACTCTCAGAC (reference) and

ATCTCGAGTGAGC (query), using MatchScore = 1, MismatchScore = 0.4 and GapScore = 0.4.

Figure 37: Needleman-Wunsch optimal alignment paths found in the example

Best alignments produced by NW global alignment between sequences ATGACTCTCAGAC (reference)

and ATCTCGAGTGAGC (query), using MatchScore = 1, MismatchScore = 0.4 and GapScore = 0.4.

starting from the last cell up until it reaches the origin, marks the possible interactions and

finds all the best paths for the alignment. There were in total 5 alignments that obtained

the MaximumScore = 6.2, as shown in Figure 37. The caption shows the alignment
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and the graph shows the feasible path in the matrix that represents the alignment. The

CIGAR string for the first alignment would be “2M2D3M3I4M1D1M”.

4.1.2 The Smith-Waterman Algorithm

Later in 1981, Temple Smith and Michael Waterman had noticed that the frequency

of occurrence of short insertions or deletions in nature was length-dependent, so they

added an affine function to represent the gap score (SMITH; WATERMAN, 1981). They

have also adapted the method to compute local alignment, which is useful in applications,

such as searching for similarities between two sequences that have different sizes or are

from different phylogenies.

Now gaps are penalized by the affine function Wk = a + bk, where the constant a

represents the gap opening score, the multiplier b represents the gap extension score,

and the variable k represents the length of the gap. Each cell then has to take into

consideration gaps coming from all previous cells in the same line and column. The new

equation below shows how each cell of matrix S is computed.

Sij = max{Si−1,j−1 + s(ai, bj),maxk≤1{Si−k,j−Wk},maxl≤1{Si,j−1 −Wl}}

, l ≤ i ≤ n and l ≤ j ≤ m
(4.2)

Using the same example, but aligning two sequences with an affine gap cost: A

=ATGACTCTCAGAC (reference), B = ATCTCGAGTGAGC (query), match score is 1,

mismatch penalty is 0.4, gap opening score is 1 and gap extension score is 0.3. Figure

38 shows the final Smith-Waterman matrix. S1,2, for example, evaluates to −0.3 because

the maximum value comes from S1,1 scoring 1− 1.3 = −0.3, while, from S1,0 the score is

−1.3 − 1.3 − 0.3 = −2.9, from the upper diagonal the score is −1.3 − 1.0 = −2.3, and
from the top the score is −1.6− 1.3 = −2.9.

This example produced one best alignment with Score = 3.8, shown below. The

CIGAR string for this alignment would be “2M2D3M3I4M1D1M”.

A T G A C T C - - - T C A G A C

A T - - C T C G A G T G A G - C
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Figure 38: Example of a Smith-Waterman global alignment matrix

Smith-Waterman global alignment matrix between sequences ATGACTCTCAGAC (reference) and

ATCTCGAGTGAGC (query), using MatchScore = 1, MismatchScore = 0.4, GapOpeningScore = 1

and GapExtensionScore = 0.3.

To turn this process into a local alignment between two sequences, a new arrow

pointing to the origin without penalty or reward has to be created (illustrated as a circle

in Figure 39). Therefore all the values in the matrix are going to be positive or zero, since

the score in the origin is zero. The backtracking should also start from the positions in the

table with the maximum score (the purple scores in the matrix), instead of starting from

the last cell, and end if it encounters an origin arrow. This will remove the requirement

for the alignment to stretch from the beginning to the end of each sequence.

The algorithm found two solutions for best local alignments with Score = 4.7, for

which, below, the strings are shown:

T C T C - A G T C T C A G A

T C T C G A G T C T C - G A

There is also the semi-global alignment, that is frequently used in read mapping

algorithms that apply the seed-and-extend strategy. The alignment starts at the origin,

that would be the seeding region, and extends until the max score in the matrix, so no

origin arrow is used.
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Figure 39: Example of a Smith-Waterman local alignment matrix

Smith-Waterman local alignment matrix between sequences ATGACTCTCAGAC (reference) and

ATCTCGAGTGAGC (query), using MatchScore = 1,MismatchScore = 0.4, GapOpeningScore = 1

and GapExtensionScore = 0.3.

Although the SW Algorithm generated alignments that were more consistent biolog-

ically, it increased considerably the time complexity compared to the NW solution, from

O(MN) to O(MN(M + N)), where M and N are the lengths of the sequences being

aligned. Also, the affine gap method frequently excluded very long gaps that could be

generated from a single mutational event, such as crossing-over or transposition of a mov-

able element. Logarithmic, quadratic, or other concave functions can be implemented in

the SW algorithm to alleviate this issue, but will further increase the complexity of it.

4.1.3 The Smith-Waterman-Gotoh Algorithm

Osamu Gotoh came up with an elegant solution to the problems mentioned in the

previous section and published his algorithm in 1990 (GOTOH, 1990). By adding matrices

for each gap type, he could perform more levels of dynamic programming, eliminating the

need to check the gap score coming from each previous cell in every iteration. His method

could also extend to a piece-wise linear gap-weighting function that could approximate

concave curves without increasing the complexity extensively.

For an example with one affine gap function, two extra matrices are added, one for
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the horizontal gap score H and another for the vertical gap score V . The cells of the 3

matrices are filled simultaneously, starting from H and V . Cells in H and V only need to

compute the best score between opening a new gap from the main matrix S, or expanding

the gap from its neighbor. S needs to get the maximum score between a diagonal path

from its neighbor, or the scores computed in matrices H and V in the same cell position.

The summary of the algorithm is shown in the equations below.

Hij = max{Si−1,j − a,Hi−1,j − b}, 1 ≤ i ≤ n and 1 ≤ j ≤ m

Vij = max{Si,j−1 − a, Vi,j−1 − b}, 1 ≤ i ≤ n and 1 ≤ j ≤ m

Sij = max{Si−1,j−1 + s(ai, bj), Hij, Vij}, 1 ≤ i ≤ n and 1 ≤ j ≤ m

(4.3)

Adding two more matrices will increase the cumulative memory requirement to store

the traceback pointers by 3 times, but will reduce the time complexity in relation to the

SW algorithm from cubic back to quadratic. This is because, with SWG, each cell will

only have to consider scores from previous neighboring cells (considering “neighbor” cells

from other matrices), instead of all previous cells in the same row/column as in the SW

algorithm.

Taking the same example and aligning two sequences with an affine gap cost: A

=ATGACTCTCAGAG (reference), B = ATCTCGAGTGAGC (query), match score is 1,

mismatch penalty is 0.4, gap opening score is 1 and gap extension score is 0.3. Figure

40 shows the final Smith-Waterman-Gotoh matrices. The first matrix V computes the

vertical gaps, the second matrix H computes the horizontal gaps, and the third matrix

is the main matrix S. As in the case of S1,2 seen in Section 4.1.2 from Figure 38, it also

evaluates to −0.3, since it is the maximum among the values obtained from the upper

diagonal cell S0,1, −1.3 − 1 = −2.3, from V1,2, −2.9, and H1,2, −0.3. On their turn, V1,2

is obtained from the max from S0,2, −1.6− 1.3 = −2.9, and from V0,2, −∞− 0.3 = −∞.

Similarly, H1,2 is obtained from S1,1, 1− 1.3 = −0.3, and from H1,1, −2.6− 0.3 = −2.9.

Both the SW and the SWG Algorithms will generate the same matrix S and compute

the same alignments, but each with a different strategy. With the SWG Algorithm, any

number of affine functions L can be added to approximate a desired curve. The time

complexity is now O(MN(L+ C)), where C is a constant.
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Figure 40: Example with the Smith-Waterman-Gotoh global alignment matrices

Smith-Waterman-Gotoh global alignment matrices between sequences ATGACTCTCAGAC (query) and

ATCTCGAGTGAGC (reference), using MatchScore = 1, MismatchScore = 0.4, GapOpeningScore =

1 and GapExtensionScore = 0.3.
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4.2 Minimap2: Assembly Algorithm for Long-Reads

Minimap2 (LI, 2018) is a State-of-the-Art algorithm formulated by Heng Li and pub-

lished in 2018 in Bioinformatics. This section will present Minimap2’s heuristic strategies

to assemble genomes from short- and long-reads, achieving better accuracy and time

performance for long-reads than other previous works.

Minimap2 was developed to tackle the problem of assembling long-reads produced by

SMRT (Single Molecule Real-Time) sequencing technology and ONT. These technologies

can produce reads longer than 10 kbp, at the cost of higher error rate (∼ 15%), but error

correction methods have reduced this rate to < 5%. In general, it is not feasible for such

data to be processed by mainstream short-read assemblers, mainly due to memory and

higher error rate impediments.

The new strategies adopted in Minimap2 allowed it to be over 30 times faster than

traditional long-read assemblers, with higher accuracy: Figure 41 (a) shows that, for a

given mapping quality threshold (x axis), Minimap2 achieves the highest percentage of

mapped reads (y axis).

The algorithms that had been developed specifically to assemble long-reads, such as

BLASR (CHAISSON; TESLER, 2012) and BWA-MEM, would often perform five times

slower than the ones developed for short-reads, when processing the same amount of data.

Minimap2 running on short-reads performs 3 to 4 times faster than mainstream short-

read assemblers, such as Bowtie2, and other long-read assemblers, such as BWA-MEM,

but it is 1.3 times slower than SNAP. However, it is more accurate than Bowtie2 and

SNAP and less accurate than BWA-MEM. The accuracy can be seen in Figure 41 (b),

where, Minimap2 shows a second higher percentage of mapped reads, given a mapping

quality threshold. The author in (LI, 2018) affirmed that Minimap2 showed to be worse

than BWA-MEM in accuracy because the last one tries to locally align a read in a small

region close to its mate.

Although Minimap2 uses the typical index and seed-and-extend procedure (see the

method in Chapter 2.2.3), each of these steps has had a new improvement that was proven

to be more effective. The next topics will present each one of these new adaptations.
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Figure 41: Comparison of mapping performances between read assemblers (LI, 2018)

A read was considered correctly mapped when it overlapped the true interval by at least 10%. (a) Long-

read assembly evaluation. 33088 ≥ 1000 bp reads were simulated. (b) Short-read assembly evaluation.

10 million pairs of 150 bp reads were simulated.

4.2.1 Hash Table Indexing

Mainstream aligners often use a full-text index, such as suffix array or FM-index

(FERRAGINA; MANZINI, 2000), to index reference sequences. This allows higher seed

uniqueness which will reduce the number of unsuccessful extensions. Minimap2 uses a

table for indexing fixed length code. The fixed length allows more efficient computation:

query seeds with multiple hits can be skipped without affecting the final accuracy, com-

pensating for the advantage that seed uniqueness offers. The author ended up concluding

that a hash table is the ideal data structure for mapping long noisy sequences.

On Minimap2, a k-mer is a code sequence of length k. The k-mers are collected from

the reference during indexing stage, and later on from the reads during mapping stage,

through the same function. A window of size k scans through the target sequence with w

steps. The hash function from eq. 4.4 is applied to all these k-mers and their respective

inverted Watson-Crick complements (see Figure 2). The sub-sequence or the complement

that has the smallest hash is taken as a minimizer and is added to the set of minimizers

M (Figure 42). Minimap2 uses k = 15 and w = 5, but these can be changed by the user.

φ(s) = φ(a1)× 4k−1 + φ(a2)× 4k−2 + · · ·+ φ(ak) (4.4)

If φ(A) = 0, φ(C) = 1, φ(G) = 2 and φ(T ) = 3 are adopted, the hash function

will always map a k-mer to a distinct 2k-bit integer. Only poly-A will always get zero.
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Figure 42: Minimap2’s algorithm for collecting minimizers and indexing

In this example, the minimizer is the reverse complement of the orange k-mer. The minimizer index,

calculated with function φ(s); the choice of minimizer in the set (2); and the reverse complement flag “1”

are stored.

Because of this, Minimap2 uses φ′ = h · φ, where h is an invertible integer hash function

on [0, 4k). In short, a hash table is a dictionary where the key is the minimizer hash and

the value is a set of target sequence index, position of minimizer, and sequence. Each

value list is sorted before being added to the hash table to reduce heap allocations and

cache misses.

4.2.2 Perfect Match Seeding

For each query sequence (referring to read sequences), Minimap2 takes query minimiz-

ers as seeds and finds exact matches, called anchors, in the reference, using the previously

indexed hash table (Figure 43). From the figure, it can be noticed that a seed in the read

may be anchored in different parts of reference. This step is often used in other assemblers

but in Minimap2, the seeds have fixed length and are matched to the reference through

the hash table. The seed is skipped when it has too many occurrences in the reference.
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Figure 43: Minimap2’s seeding and anchoring steps

4.2.3 Chaining for a Filtering Stage

All sets of collinear anchors are grouped into chains (Figure 44). An anchor is a 3-

tuple (x, y, w) that indicates that interval [x−w+1, x] on the reference matches interval

[y−w+1, y] on the query. The chaining score up to the i− th anchor in the sorted chain

is given by the function 4.5. The function can be computed with dynamic programming.

f(i) = max{{f(j) + α(j, i)− β(j, i)}, wi} (4.5)

In function 4.5, α(j, i) = min{min{yi − yj, xi − xj}, wi} is the number of matching

bases between the two anchors. β(j, i) = γc((yi − yj) − (xi − xj)) is the gap cost and

equals to ∞ when yj ≥ yi or when the distance between two anchors is higher than G. A

Figure 44: Minimap2’s chaining step
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gap of length l for the average seed length w̄ costs:

γc(l) = 0.01 · w̄ · |l|+ 0.5 · log2|l| (l ̸= 0)

γc(l) = 0 (l = 0)
(4.6)

For N anchors, chaining has complexity O(N2), but is able to take a generic gap cost

function, is simple to implement, and is not associated with a large constant like in other

algorithms. Minimap2 applies an heuristic strategy to accelerate this step. It limits the

number of iterations to h = 50, since it is unlikely that an anchor i chained with j has

better score when chained against j’s predecessors. This reduces the complexity to O(hN)

and, according to Minimap2’s author, it can almost always find the optimal chain, and

even when it fails, the optimal chain is often close.

As mentioned before, the chaining process is a dynamic-programming algorithm, so

during chaining, there is a process of backtracking that appends to a chain new anchors

in order that provide the best score. When backtracking, anchors are marked as ‘used’,

so that no anchor is used in more than one chain. Sometimes chains can have significant

or complete overlaps due to repeats in the reference. To identify the primary chains, all

chains are sorted according to their scores, and an empty list Q is created. For each query,

if the chain overlaps with a chain in Q by 50% or more, the chain is marked as secondary;

otherwise, it is added to Q so, in the end, Q contains all the primary chains.

Although many chains can be detected, usually each read should only be mapped

to one place in the reference. The best primary chain is picked for this purpose to be

aligned in the next stage. At the end, each read with its associated chain will be mapped

to the reference, with each chain composed of several anchors. Sub-sequences between

adjacent anchors are called in this dissertation as anchor-separated sub-sequences, and

are individually aligned in the Smith-Waterman-Gotoh algorithm, as to be seen in the

next section. The sub-sequence in the chain that extends to the right, from the leftest

anchor to the end of the sequences is called anchor-extended sub-sequence, and will be

used at Chapter 6.1.2 in the GACT-X’s implementation.
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4.2.4 SSE Optimized Alignment

After getting the primary chains, Minimap2 uses the dynamic-programming-based

algorithm Smith-Waterman-Gotoh, with the Suzuki-Kasahara formulation (SUZUKI;

KASAHARA, 2018), to perform global alignment of anchor-separated sub-sequences in

a chain, and semi-global alignment for the head and tail sequence pairs. In this way, the

final result is a local alignment that maps the read on the reference and aligns the read

sequence to a reference sub-sequence.

Minimap2 implements its alignment with a 2-piece affine gap cost, as shown in eq.

4.7. In this way, long insertions and deletions, that often occur in complex genomes such

as the human genome, can be recovered.

γa = min{q + |l| · e, q̃ + |l| · ẽ} (4.7)

The Suzuki-Kasahara Formulation

Hajime Suzuki and Masahiro Kasahara published in 2018 a reformulation of the Smith-

Waterman-Gotoh Algorithm (SUZUKI; KASAHARA, 2018), allowing it to be the fastest

SSE SWG implementation, with a 2.1 fold higher performance than that of the fastest im-

plementation for the semi-global alignment of long-reads. They noticed that, as the read

length increases, the values of the cells in the dynamic-programming matrix increase. Tra-

ditionally, SSE implementations could achieve 16-way parallelization for short sequences,

but only 4-way parallelization for long sequences, when the peak alignment score reached

32,767, which was turning the alignment step into a significant bottleneck. This happens

because SSE vector instructions are vectors of fixed length with data that have limited

size; if the data surpasses the limit value, more cells are needed to represent it, reducing

the parallelization capacity of the vector instructions.

Difference Recurrence Relation

Instead of calculating and storing all the values in a matrix, they proposed a “differ-

ence recurrence relation”, where the differences between the neighboring cells are stored,

not the integral value of each cell. In this way, they could guarantee that the values would

have a limited range and would be able to be stored as an 8-bit integer, enabling 16-way

SSE vectorization.

First consider the following small change to the SWG formulation:
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Sij = max{Si−1,j−1 + s(ai, bj), Hi−1,j − b, Vi,j−1 − b}, 1 ≤ i ≤ n and 1 ≤ j ≤ m

Hij = max{Sij − a,Hi−1,j − b}, 1 ≤ i ≤ n and 1 ≤ j ≤ m

Vij = max{Sij − a, Vi,j−1 − b}, 1 ≤ i ≤ n and 1 ≤ j ≤ m

(4.8)

With this, four difference matrices are created, as shown in eq. 4.9 and Figure 45.

∆Hij = Sij − Si−1,j, (i ≥ 1)

∆Vij = Sij − Si,j−1, (j ≥ 1)

∆H ′
ij = Hij − Sij

∆V ′
ij = Vij − Sij

(4.9)

A new intermediate variable I is introduced to represent the diagonal difference Sij−
Si−1,j−1. The new recurrences then become:

Iij = max{s(ai−1, bj−1),∆H ′
i−1,j +∆Vi−1,j − b,∆V ′

i,j−1 +∆Hi,j−1 − b}

∆Hij = Aij −∆Vi−1,j

∆Vij = Aij −∆Hi,j−1

∆H ′
ij = max{−a,∆H ′

i−1,j −∆Hij − b}

∆V ′
ij = max{−a,∆V ′

i,j−1 −∆Vij − b}

(4.10)

Figure 45: The Suzuki-Kasahara transformation (SUZUKI; KASAHARA, 2018)

In the first transformation of the Suzuki-Kasahara algorithm, the new values ∆H, ∆V , ∆H ′ and ∆V ′

are stored in four new matrices instead of the original values S, H and V .
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All the values in the cells are now limited by:

−a− b ≤ ∆H ≤M + a+ b

−a− b ≤ ∆V ≤M + a+ b

−a ≤ ∆H ′ ≤ 0

−a ≤ ∆V ′ ≤ 0

, where M is the maximum value of s(x, y), or the match score in nucleotide alignment.

The row-column coordinate is transformed into the diagonal-antidiagonal coordinate

by letting r ← i+ j and t← i. In this way, cells with the same antidiagonal index r are

independent of each other, allowing them to fully vectorize the computation of all cells

on the same diagonal. Using smaller integer types also reduces the memory requirements.

Now all the matrices go through one more transformation:

AGij
= Aij + 2a+ 2b

∆HGij
= ∆Hij + a+ b

∆VGij
= ∆Vij + a+ b

∆H ′
Gij

= ∆H ′
ij +∆Vij + 2a+ b

∆V ′
Gij

= ∆V ′
ij +∆Hij + 2a+ b

sG(x, y) = s(x, y) + 2a+ 2b

(4.11)

The new recurrences then become:

IGij
= max{sG(ai−1, bj−1),∆H ′

Gi−1,j
,∆V ′

Gi,j−1
}

∆HGij
= AGij

−∆VGi−1,j

∆VGij
= AGij

−∆HGi,j−1

∆H ′
Gij

= max{AGij
,∆H ′

Gi−1,j
+ a} −∆HGi,j−1

∆V ′
Gij

= max{AGij
,∆V ′

Gi,j−1
+ a} −∆VGi−1,j

(4.12)

Finally, the values can be stored as an array of unsigned integers:

0 ≤ ∆HG,∆VG,∆H ′
G,∆V ′

G ≤M + 2a+ 2b
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The critical path, or the longest operation dependency chain, is reduced to 4 from 8

in the first difference recurrences transformation, and from 5 in the non-difference semi-

global alignment algorithm.

Adaptive Banded Dynamic-Programming Algorithm

In the SK (Suzuki-Kasahara) algorithm, an adaptive banded dynamic-programming

strategy is used, so that only part of the cells, specifically those around the antidiagonal,

is calculated, since it is the region where the alignment between two somewhat similar

sequences is expected to be. A forefront vector of constant width iteratively moves right

and down and forms a band, trying to move away from the cells with lower scores. The

band is divided into blocks containing vectors calculated in 32 successive updates each

(Figure 46).

Figure 46: Suzuki-Kasahara’s banding strategy (SUZUKI; KASAHARA, 2018)

(a) In the new coordinates, p = i+ j corresponds to the position of the vectors, and q is a local position

within a vector. The advancing direction (right or down) is determined by the smallest difference between

values of cells Sv[0] and Sv[W − 1]. (b) Data structure: each block has 32 vectors and is indexed as k.

L(k) is an offset integer that helps calculating the absolute value of a cell in the block.

The Z-drop heuristic

To avoid computing global alignment of unrelated sub-sequences, in query and ref-

erence, between two adjacent anchors (e.g. when there is a short inversion), Minimap2

computes an accumulative alignment score and breaks the alignment when the score drops

too fast in the anti-diagonal direction. The condition follows eq. 4.13.

S(i′, j′)− S(i, j) > Z + e · |(i− i′)− (j − j′)| (4.13)
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, where e is the gap extension cost and Z is an arbitrary threshold. The Z-drop strategy

was first used in BWA-MEM and is similar to the X-drop algorithm implemented in

BLAST (ALTSCHUL et al., 1990), but allows the presence of a single long gap.

When the alignment is broken, Minimap2 performs local alignment in the same region

but with one sub-sequence reverse complemented. This may help identify short inversions

that were missed during the chaining process.
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4.3 GACT-X: an FPGA Accelerated SWG Imple-

mentation with Fixed Memory Usage (TURAKHIA

et al., 2019)

As seen in Section 3.8, GACT-X is a hardware aligner, implemented by its develop-

ers on an AWS Cloud FPGA, that was replicated in this work to accelerate Minimap2.

GACT-X computes the SWGmatrix with limited traceback memory for any input lengths.

The memory usage is limited because the computation is performed in tiles of fixed size

(instead of on a long band as in other alignment algorithms); one tile overlaps a previous

one by a certain number of bases to expand the alignment, forming a scaffold band on the

SWG matrix. GACT-X differs from GACT from Darwin (Section 3.6) by computing cells

within an X-drop band (to be clarified next) in each tile, further reducing on-chip SRAM

usage, and allowing tiles to be considerably wider; and by using a different overlapping

strategy.

GACT-X’s expansion starts from the anchoring point and stops when the last tile’s

max score is negative or zero, or when the alignment has reached the border of query

or target sequences. The overlap system is similar to GACT’s, but if the max score cell

lies outside the overlap boundary, the next tile’s origin will be placed on that cell. In

Figure 47, tile T1 performs left-extension from the anchor, and tiles T2 and T3 perform

right-extension. T3’s origin is placed on the intersection of the alignment path from T2

and its overlap border, so the alignment tail produced by T2 in green is ignored. The

blue area in the zoomed image represents the X-drop band in T2.

X-drop is the concept of interrupting further computation of cells or further expansion

Figure 47: GACT-X tile overlap algorithm (TURAKHIA et al., 2019)
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of alignment if the new score drops below a threshold of X (Y in GACT-X) in comparison

to the maximum score registered. It is a broad definition because the term X-drop is

used in different algorithms for different purposes. Minimap2 uses X-drop to interrupt

global-alignment extension of sequences between anchors if they are too dissimilar (see

Subsection 4.2.4). GACT-X uses X-drop to create a dynamic band around the alignment

path inside of tiles.

In each tile, the matrix is filled row-wise while tracking the maximum score Vmax

of the tile. Stripes with NPE = 32 rows are calculated with wave-front parallelism. The

computation in a stripe is terminated when all the scores in a column fall below (Vmax−Y ),

Y being a given threshold. The next stripe also begins computation from the first column

with all cells exceeding (Vmax − Y ), generating a dynamic band around the alignment

(Figure 48).

The processor implementation follows approximately the same architecture as in Dar-

win. The host transfers the target and the query sequences to the DRAM. NPE query

characters are loaded to the PEs, and target elements are streamed in a systolic fashion.

A fixed memory of 1 BRAM bank per PE is allocated to store the 4-bit traceback pointers

sequentially — 2 bits for the main matrix and 2 bits for gap matrices. Start and stop

positions of each stripe are stored in separate BRAMs (Figure 49).

Figure 48: GATC-X tile with X-drop banding (TURAKHIA et al., 2019)
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Figure 49: GACT-X systolic array with 4 PEs (TURAKHIA et al., 2019)
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5 FIRST STEPS FOR PREPARATION

This chapter describes a methodical analysis of Minimap2, carried out to help develop

the acceleration strategy. The objective is to obtain and apply the algorithm on different

datasets (long-read sequences) and assess the algorithm’s characteristics assembling hu-

man genomes. First, it shows how simulated and real human input data were collected.

Then, it presents the execution time evaluation for the different datasets. Some graphic

results for mapping quality assessment and alignment characteristics are presented.

5.1 Simulating Data with PBSIM

PBSIM, a model-based simulator (ONO; ASAI; HAMADA, 2013), collects stretches

of a reference sequence, mimicking the read length distribution; and adds variants and

sequencing errors. The GRCh38 PacBio continuous long reads (CLRs) were generated

with the PBSIM tool, based on the GRCh38 reference, with error profile sampled from file

‘m131017 060208 42213 *.1.*’ downloaded at (HUMAN. . . , 2014). This group of reads

will be referred as Simulated PacBio reads. Simulated reads are useful for evaluating the

mapping accuracy, due to lack of truth in real data. Since the original reference is known,

the simulated reads can be mapped in Minimap2 to check its mapping accuracy. Min-

imap2’s author simulated PacBio data with this same process to compare their mapping

accuracy with other tools (LI, 2018).

PBSIM simulates differences introduced to reads by analyzing alignments performed

on real PacBio reads with respect to reference sequences using LAST (FRITH; HAMADA;

HORTON, 2010) (match = 1, mismatch = −2, gapopening = −1 and gapextension = −1).
Length distribution is log-normal; average accuracy over the read length has normal distri-

bution with parameters given by the user; single molecule errors are stochastic (random);

coverage depth is nearly uniform. Since PacBio nucleotide insertions have higher proba-

bility of being the same as their following neighbors, half of inserted nucleotides are the

same as their following nucleotides and the other half is random.
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PBSIM outputs simulated reads in FASTQ format, and read origins in MAF format,

for each of the 193 sequences in the GRCh38 reference’s Primary Assembly. The MAF

files can be used to evaluate the mapping accuracy, since it describes where the reads

came from. The algorithm was executed and the 193 “.fastq” and 193 “.maf” files were

merged into one of each, to facilitate the file manipulation, resulting in 121GB of CLRs.

Figure 50 shows PBSIM’s log report; the default coverage depth is 20; the read length

thresholds were 100 to 25,000; the mean length, deviation, mean accuracy, and accuracy

deviation were sampled from the given file. Some simulated reads had lengths outside of

the threshold determined, and were filtered out, resulting in the distribution in Table 4.

Over seven million reads were generated in total, which corresponds to a 20x coverage

depth. The read lengths mean, standard deviation (SD), minimum, and maximum are

respectively 8310, 106.26, 100, and 24, 988. The reads’ similarity rate to the reference

strand is on average 0.85, with 0.00017 SD. Substitution, insertion, and deletion rates

are 0.015, 0.090, and 0.046 respectively. Note that, on the sample given, there were

considerably more insertions than deletions.

Figure 50: PBSIM simulation parameters and statistics from the “.fastq” sample used

Table 4: Statistics of CLRs generated with PBSIM in sampling mode

number
of reads

coverage
depth

read length read accuracy rates
mean SD min max mean SD substitution insertion deletion

7,460,510 20 8310 106.26 100 24,988 0.85 0.00017 0.015 0.090 0.046
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5.2 Collecting Real Reads from Genomic Databases

Real datasets, obtained from real human samples, can give insights on real runtime and

accuracy behaviors of Minimap2. The datasets were chosen by size, which is expected to

be over the minimum coverage for clinical applications (≥ 8×), and by current and known

sequencing technologies. The first datasets encountered are from ethnicities that lack

representation in the most renowned databases, therefore it is expected that they might

diverge more from the genome reference used. This divergence is better for evaluating

assembly algorithms because they expose them to more situational adversities. Other

factor that should be considered when choosing the datasets is potential issues in the

library preparation, for example, contamination of foreign DNA, but this can only be said

after the pre-processing step of the genome analysis pipeline.

The first dataset was collected from real human ONT PromethION reads at the Eu-

ropean Nucleotide Archive (RUN. . . , 2018), from a project that sequenced and produced

the Yoruba reference genome NA19240, using 5 PromethION flowcells (COSTER et al.,

2019). Some researchers are working on producing regional genome references to reduce

the bias from the GRCh38 reference. However, the best practices still recommend us-

ing the later, while these projects mature with more sequencing data. The reads have

on average 16,900 bases according to ENA’s base and read counts (28,528,692,209 and

1,688,000).

The second dataset was collected from real PacBio Sequel II reads at NCBI (SRX9063500. . . ,

2019). The reads were collected from a Sri Lankan individual. The reads have an average

length of 13,329 bases according to NCBI’s base and read counts (52.2G and 3,916,231).

A script that collects the read length histograms of the simulated and the two real

datasets was written in Python, and the measurements are displayed in Figure 51. The

average read length alone sometimes can’t provide the whole information. For example,

the real PacBio dataset and the real ONT dataset have close mean lengths (13,329 and

16,900), but their length distribution is drastically different. It is important to observe

that the last length interval to the right corresponds to the accumulated frequency of

all reads larger than 30,000. In the case of real ONT dataset, the last item does not

correspond to a peak, but to a flat low frequency distribution.

The length distribution is going to be relevant when assessing the performance, as

seen in Section 5.3.
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Figure 51: Simulated PacBio, real ONT and real PacBio read length histograms

5.3 Profiling Minimap2’s Execution Time

It was already presented previously that assembly algorithms are computationally

demanding and constitute the bottleneck of the genome analysis pipeline. Before accel-

erating an algorithm, some measurements on the software’s throughput and its runtime

bottlenecks should be taken.

Profiling Minimap2 with the three read sets presented in previous Sections 5.1 and

5.2 were performed on a Dell PowerEdge R910 server1, running Ubuntu 16.04.7 LTS

(GNU/Linux 4.4.0-201-generic x86 64), with further details in Figure 52 (information was

obtained with the instruction “lscpu” on the command prompt). All three read sets were

mapped to the Primary Assembly of the GRCh38 reference. To save time, the minimizer

“.mmi” reference index was previously saved and used to substitute the reference “.fasta”

file.

The datasets were mapped using 40 threads to collect Minimap2’s throughput and

internal data information presented in Section 5.4. Minimap2 was executed to output the

alignment in “.sam” format and with optimization for ONT or PacBio reads. The gprof

Linux tool (GNU. . . , 1998) was used to profile the execution time, and each execution

was done with one thread. Since only one thread was being used for profiling, only the

first 200,000 reads of each dataset were selected for use, otherwise the execution would

take too long. The results are presented in Table 5.

1Professor Carlos Menck from Instituto de Ciências Biomédicas at University of São Paulo granted
access to the Bioinformatics Seal server, with 4 Intel® Xeon® CPU E7-4870, 80 cores and 504GB of
memory.
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Figure 52: ICB Seal server’s CPU information

Table 5: Minimap2’s throughput and bottlenecks running on three datasets

Average
Length (nt)

Real Time
(hours) *

CPU Time
(hours) *

Dataset Size
(Gbases)

Throughput
(kbases/s)

Chaining
Time **

Extending
Time **

Simulated PacBio Reads 8,300 2:46 42:41 61.99 403.46 8% 49%
Real PacBio Reads 13,300 4:55 88:21 52.20 164.11 50% 25%
Real ONT Reads 16,900 2:14 34:27 28.53 230.00 27% 42%

* 40 threads, complete dataset
** 1 thread, first 200,000 reads

The algorithm’s speed and profile could have been influenced by input data character-

istics, such as genome reference length, read length distribution, and similarity between

reference and reads. Throughput was calculated based on the datasets’ sizes and the CPU

time. The simulated PacBio reads showed the highest throughput, but also the lowest

average read length. Real PacBio reads had the lowest throughput and highest chaining

time. More analyses presented in Section 5.4 can also help explain these differences.

The Minimap2’s functions ksw extd2 sse41 (referred to as ksw in this dissertation)

and mm chain dp, responsible for the base-level alignment and chaining steps respectively,

took together between 57% and 75% of the execution time. Other functions in order

took 10% or less of the execution time. It is possible to conclude that the aligning and

chaining steps are the bottlenecks of Minimap2’s performance when assembling long-reads.

Previous works reinforce this conclusion (GUO et al., 2019)(FENG et al., 2019) or add

that these are also the same bottlenecks of Minimap2 on short-read execution (TENG et

al., 2021).
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5.4 Analyzing Minimap2’s Intermediate Processing

Data

5.4.1 Indel Sizes, Alignment Deviation, and Mapping Quality

Another important preparation step before accelerating Minimap2 is assessing the

mapping accuracy and the characteristics of the alignments produced by it. Mapping

quality can be measured by the proportion of reads that have been mapped to the reference

and, particularly for the simulated data, mapping quality can also be assessed by the

proportion of reads that were mapped near the original position. Other information

pieces, such as indel sizes and deviation from anti-diagonal, help assess how the banding

algorithm in Minimap2 behaves with respect to different long-read profiles. For that, two

Python scripts were written to obtain statistical data from the outputs of simulated and

real data.

The first set of data refers to histograms of indel sizes as shown in Figure 53. The

indel sizes are directly collected from the numbers preceding the “I” or “D” alignment

flags in the CIGAR strings reported in the SAM files. For all three datasets, the graphs

showed that most of the indels are of a single nucleotide, and that the frequency decreases

steeply, the longer the indels.

A second set of data refers to histograms of minimum fixed half band required to

find the same alignment for the read as found in the Suzuki-Kasahara algorithm calls

Figure 53: Indel size histograms from CIGAR strings reported on the SAM files
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Figure 54: Histograms of deviation from the anti-diagonal from CIGAR strings

coupled with the chaining partitioning, and it is shown in Figure 54. The minimum half-

band represents how much the resulting alignment has deviated from the anti-diagonal;

it is calculated by adding cumulative insertions and deletions in the CIGAR string while

canceling each other. It is important to note that, for Minimap2, this deviation for reads

does not represent the deviation from the anti-diagonal in the SK matrices, to be presented

in the next section, since the reads are irregularly divided by anchors.

For the simulated data, the deviation was significant up to a number of 500 from the

anti-diagonal; this could have resulted from the higher insertion rate, compared to the

deletion rate, as shown in Table 4. On the other hand, a great portion of the alignments

stayed in a range of 50 from the anti-diagonal for real ONT and real PacBio cases, meaning

a tighter band can be adopted for better performance.

One second script collects histograms for mapping overlap and histograms for SAM

alignment flag reports. The mapping overlap can only be obtained from simulated reads,

due to lack of truth in real data. It measures how much Minimap2’s alignment overlaps

with the original position of the read, calculated in percentage of the read’s length. With

Minimap2 running on the simulated PacBio reads, 99.45% of the reads were mapped to

the correct RefSeq. From these, over 99.6% of the reads were mapped with an overlap

greater than 90% to the expected mapping region.

The histograms on SAM flags, shown in Figure 55, were obtained directly from the

SAM file, and the main report refers to the items “mapped” and “4” (see Figure 12 at
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Figure 55: Map report histograms from the SAM flags

page 42), which corresponds to reads that could not be mapped to the reference with

Minimap2. For the simulated data, the “mapped” column is separated into “correct” and

“incorrect”, since it possible to evaluate if the read was mapped to the correct reference

sub-sequence, as discussed in Section 2.1.1. For simulated PacBio, real ONT and real

PacBio reads, 6%, 27.5% and 0.04% of reads were not mapped, respectively.

With these analyses, it is possible to infer that Minimap2 has a good mapping accuracy

and can map an acceptable portion of the real data. Further investigation is required

to explain the high rate of unmapped reads in the real ONT dataset. The indel size

histograms and the deviation from anti-diagonal histograms can be used to tune the

accelerator’s banding strategy in a way that does not harm the alignment accuracy.

5.4.2 Uniformity and Distribution of Anchors

Minimap2’s original code was also edited to collect some other important internal

data information, able to attest Minimap2’s capability of generating uniform processing

data, particularly regarding adjacent anchors. Initially, as shown in Figure 56, query and

target length histograms were obtained, corresponding to the lengths of anchor-separated

sub-sequences, in read and reference streams, respectively. The first three histograms

refer to the sub-sequences in reads, while the other three refer to the sub-sequences in the

reference.
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Figure 56: Anchor-separated query and target length histograms

Minimap2’s intermediate data analysis for all the three datasets showed that the

anchoring and chaining processes divided most of the reads into sub-sequences quite

uniformly, with sizes between 200 and 300 nucleotides, as one can see in the peaks of

the graphs. However, some sub-sequences were a little larger, and a few remained with

lengths over 1000 nucleotides, meaning the need of larger SK matrices. As expected, the

histograms for query and target for each dataset were very similar, since the chaining algo-

rithm searches for more parallel anchors, meaning that the distances between consecutive
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Figure 57: Histograms of number of SK matrices per read

anchors in the read and in the reference are similar.

Another form of verifying the uniformity is through the histogram with the number

of SK matrices per read, i.e. the number of ksw calls to anchor-separated sub-sequences

in each read, which is shown in Figure 57. The distribution seems to be different for

the three datasets, but they can be better understood side-by-side with the read length

histograms shown in Figure 51. The graphs for the simulated data and the real ONT data

follow the curve of their read length histograms, indicating that the seed distribution was

homogeneous across reads. If the sizes of anchor-separated sub-sequences are similar for

most chains in a dataset, it is expected that the larger the read, the larger the number of

sub-sequences. For the simulated reads, the SK Matrices/Read decreases steadily since

the frequency also decreases when the read size diminishes. For the real ONT dataset, the

frequency of small sized reads is high, then dropping and staying constant for varied larger

sized reads; the same occurs for the SK Matrices/Read numbers. Only the real PacBio

dataset did not show exactly this behavior because small SK Matrices/Read occurred

frequently although there was no frequency of short reads in the dataset, indicating that

some longer sub-sequences could appear.

Finally, SK deviation from anti-diagonal histogram is shown in Figure 58. The devi-

ation works the same way as the previous deviation from anti-diagonal, shown in Figure

54, but it is for alignments between adjacent anchors. For simulated reads and real ONT

reads, the deviation from the anti-diagonal in each SK matrix was more compressed to



103

Figure 58: Histograms of deviation from the anti-diagonal in SK matrices

under 50, but for real PacBio reads, most of the matrices had a deviation of 100 to 150.

This indicates that applying a fixed narrow band, such as the one described in Section

3.2, could be inefficient for some datasets in anchor-separated sub-sequences.
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6 MINIMAP2 WITH AWS FPGA

ACCELERATED GACT-X: ADAPTATION,

INTEGRATION AND RESULTS

This chapter describes the process of adapting, installing, and integrating the GACT-

X module in the Cloud AWS FPGA Instance to the software implementation of Min-

imap2. The module has as inputs the sequences generated in Minimap2 after the seeding

and chaining steps, that are separately aligned to the reference in the ksw function, and

as outputs the alignment results. The first section describes specific adaptations done

to GACT-X’s host and Verilog codes to improve its performance and turn it compatible

with Minimap2. Then it shows an integration option like in the original Minimap2 that

has anchor-separated sub-sequences, and results on performance are presented. It also

presents a new adaptation to the integration method, aimed to overcome problems ob-

served in the results in the first option; in this new version, anchor-extended sub-sequences

are used from the chaining step; results in performance and accuracy are presented. A

second section presents the integration process between Minimap2 and GACT-X, compat-

ible with the multi-kernel and multi-threading capabilities, using OpenCL synchronization

methods; total acceleration measurements are collected for all combinations of number of

threads and number of kernels possible in the F1 Instance.

6.1 Adapting GACT-X for Better Performance

Darwin-WGA was published on GitHub (DARWIN-WGA, 2019). The entire algo-

rithm, as well as the separated modules BSW and GACT-X, can be mirrored and imple-

mented on AWS. Only the GACT-X module was used for this project, as mentioned in

Section 4.3.

First, an AWS Instance was created with the FPGA Developer AMI (Amazon Machine

Image), version 1.4.1, in region US West (Oregon). Currently, AWS in Brazil does not

provide any Amazon FPGA instances. As mentioned before, the chosen instance type was
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f1.2xlarge, the smallest one that has an FPGA, enough for our analysis purposes. This

AWS instance is structured in its host-device environment as seen in Section 2.3.2. From

Windows, Puttygen was used to access the terminal andWinSCP was used to manage files.

tmux (TMUX, 2022), a terminal multiplexer for controlling terminals even if detached

from a screen, was installed to run long jobs remotely. The aws-fpga library was swapped

to an older version, since GACT-X was developed on the SDAccel environment and, from

2020 on, the default environment changed to Vitis. A bucket was created to keep the

Amazon FPGA Images. The VIVADO tool version was set up to version 2017.4.

Part of software in OpenCL for GACT-X at the host had to be adapted for this im-

plementation. Since Darwin-WGA is a whole genome aligner, originally it was developed

to send the two entire genomes to be aligned to the DDR, looping the pairs of positions

to be extended from them. For read mapping, as performed in Minimap2, every pair of

reference sub-sequence and read is streamed to the DDR to get the extending results.

The process of creating and managing tiles was not implemented in the original GACT-X

host, and had to be added as well.

Figure 59 shows the fluxogram for transferring data to the FPGA with the tile algo-

rithm. The inputs correspond to many pairs of read and reference sub-sequences, which

were written in a separate file after the seeding and chaining steps in Minimap2 (left of

the figure). In the example, the loop cycles 5 times, since there were 5 tiles in total. The

sequence of steps for the software-hardware interaction follows:

• Each pair is transferred to the FPGA into the ref seq and query seq buffers (see

item 1) in the figure);

• A loop sets the tile’s starting index with variables ref offset and query offset, and

the tile’s size with variables ref len and query len (see item 2) in the figure);

• The FPGA kernel or kernels calculate the alignment for the tile and write in

h tile output the alignment score, max score index with variables ref pos and

query pos, and the number of traceback pointers in the band; the traceback point-

ers are written in h tb output.

The alignment parameters were changed to have about the same proportions as the

default in Minimap2 (Table 6). The match, mismatch, and gap scores are 2, -4, -4, -

2 for Minimap2, so they were set as 10, -20, -30, -10 for the adapted GACT-X. The

difference in the gap opening score is due to different interpretations on whether an

extension occurs when opening a gap, but the resulting score is the same. GACT-X
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Figure 59: Example of GACT-X’s host-FPGA data transfer fluxogram

Table 6: Minimap2 and GACT-X’s alignment parameters

match mismatch
1st function 2nd function

Y-drop
gap open gap extend gap open gap extend

Minimap2 2 -4 -4 -2 -24 -1 -

GACT-X
original 91 to 100 -31 to -125 -430 -31 - - 9530
adapted 10 -20 -30 -10 - - 943

originally uses substitution matrices for match and mismatch scores, where different pairs

of nucleotides result in different scores. GACT-X only supports one gap function; only

the Minimap2’s affine gap function with higher slope and lower translocation was used in

GACT-X because it picks the more frequent short indels. The Y-drop value was adjusted

according to GACT-X’s new gap function, allowing the presence of a same size of gap in

the band as originally allowed.

6.1.1 GACT-X with Anchor-Separated Sub-Sequences from
Minimap2

The initial strategy to accelerate the extending step was to send, individually, every

anchor-separated sub-sequence that lay between two anchors to be aligned in the FPGA,

using global alignment. This is the strategy used originally by Minimap2, that at the

same time reduces sequence lengths and avails the matching information produced by the

chaining process.
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The sequence of steps in the host for the software-hardware interaction described in

OpenCL (see commands in Section 2.3.3) is:

• The input files are uploaded to the AWS Instance;

• The host creates input and output buffers in the DDR with sufficient space for any

input length in the dataset; for that, the clCreateBuffer command is used;

• The pairs of anchor-separated sub-sequences are collected from the input files, and

sent to the buffers in the FPGA through the clEnqueueWriteBuffer command;

• The arguments to the compute kernel (e.g. tile beginning and end positions, align-

ment scores, and buffers) are set through the clSetKernelArg command;

• The kernel is executed through the clEnqueueTask command;

• The output buffers are read back in through the clEnqueueMapBuffer command

and the results are processed to recover the alignment from the direction pointers

(traceback);

• The alignments for each pair of sequences are written into an output file.

The simulated PacBio dataset was adopted for this testing phase, and only its first

100,000 reads were used, due to the high execution time. The real ONT and PacBio

datasets are not used in this development stage, but the final design’s performance was

measured on them and will be presented later. The datasets contain some millions of input

reads each, but it is reasonable to consider that the sequencing technologies produce uni-

formly distributed read sizes, therefore, 100,000 samples can be considered representative

of the whole dataset.

The query and target anchor-separated sub-sequences that are aligned in Minimap2,

generated after the chaining step, were collected. The input length histograms have been

presented in Fig. 56 for all three datasets, showing the anchor-separated sub-sequence

sizes concentrated between 200 and 400 bases.

This Minimap2-GACT-X implementation showed performance problems, as they can

be seen in Figure 60, which presents average execution times in using Minimap2’s ksw

function and a GACT-X kernel for the alignment step. The results for the simulated

PacBio dataset showed that GACT-X performed considerably worse than ksw from Min-

imap2 in this design, that mostly aligns short sequences (although originated from long-

reads). The performances for ksw and GACT-X are similar only for sequences larger than
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Figure 60: Average processing times per length for anchor-separated sub-sequences

The first 100,000 simulated PacBio long-reads were aligned with Minimap2 to the GRCh38 genome

reference.

1,000 bases. This is because GACT-X’s processing time starts with a shifted constant

that corresponds to the data transfer time from host to FPGA and back (see item 1)

in Figure 59), for every anchor-separated sub-sequence, creating a heavy transfer latency

that undermines the gains obtained with a faster alignment performed in the kernel. For

the real ONT an PacBio datasets, the transfer latency is expected to be similar, since

the average lengths of sub-sequences, shown in the histograms of Figure 56, are highly

concentrated in the 200-300 bases range.

6.1.2 GACT-X with Anchor-Extended Sub-sequences fromMin-
imap2

For a more efficient solution, instead of aligning each anchor-separated sub-sequence,

the strategy changed to considering, in each read, the anchor-extended sub-sequences,

i.e., the portion from the first anchor to the end of the sequence and its corresponding

reference sub-sequence, expanding the alignment in a semi-global fashion. The software-

hardware interaction follows the fluxogram of Figure 59, however the item 1) is altered

to a reduced number of transfers of longer sub-sequences.

The experiments were also performed on the first 100,000 reads from the simulated

PacBio dataset. In order to confirm the effects of the new transfer, Figure 61 was gen-

erated. It shows that, for the simulated PacBio dataset, the new transferred data have

lengths to be aligned increased in one to two orders of magnitude. As expected, the

histogram follows the shape of the one presented in Fig. 51 for the reads, therefore, it is

expected that the real ONT and PacBio datasets also present increased lengths in their
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Figure 61: Anchor-extended query-target average length histogram

The first 100,000 simulated PacBio long-reads were aligned with Minimap2 to the GRCh38 genome

reference.

transferred sub-sequences.

By increasing the lengths of the transferred sub-sequences, the tile processing had to

be activated, and the heuristics described in Section 4.3 had to be implemented due to

limitations in hardware resources. In the original Verilog files, used to build the binary

code of the kernels, the tile size is set up to be at most 2, 048, determined by wires in

internal modules of size log2(2, 048) = 11. If the host forces an alignment between longer

sequences, either the result is going to turn out incorrect, or the execution will potentially

freeze, requiring forced interrupt, cleaning and reloading the AFI into the FPGA.

Each tile requires a new data transfer cycle, as at item 2) in Figure 59, so it was ex-

pected that, as tile size increases, fewer tiles would be required in each expansion, and bet-

ter the overall performance would become. In order to test the behavior of the hardware-

software implementation, its performance was measured under different tile sizes. The

max tile size value in the Verilog files was changed to 8, 192 and a new AFI was generated.

The performances for the new strategy were measured with varying tile sizes and are

shown in Figures 62 and 63. The first one presents the execution times with respect to

the many ksw calls in software along with the ones of GACT-X, for different sub-sequence

sizes. The second one refers to the total execution time for the ksw function in Minimap2

and for GACT-X.

Regarding Figure 62, as expected, GACT-X’s performance improved as tile sizes in-

creased from 1,000 to peak at 4,000, considering the same size of the input data. However,

after that, the performance started worsening, and it is suspected that it is due to BRAM

saturation, since direction pointer storage is linearly cumulative and increases with tile
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Figure 62: Average processing times per length for anchor-extended sub-sequences

The first 100,000 simulated PacBio long-reads were aligned with Minimap2 to the GRCh38 genome

reference.

Figure 63: Total processing times for ksw and GACT-X

The first 100,000 simulated PacBio long-reads were aligned with Minimap2 to the GRCh38 genome

reference.

size. Still, it was already possible to observe an acceleration compared to ksw’s perfor-

mance. As for the real ONT and PacBio datasets, it is expected also a steady increase

of performance for larger tiles, since the transfer time will be similarly reduced; due

to the BRAM limitation, tile of size 4,000 should be the one with highest performance

improvement too.

Figure 63 shows that GACT-X with tile size of 4,000 achieved the largest speed-up of

1.68x compared to Minimap2’s ksw software execution time. Other changes can further

improve this number, and are discussed later in this section and in Section 7.

GACT-X’s accuracy was also evaluated against Minimap2’s ksw function in a range

of tile sizes. Figure 64 shows two sets of results: a) from the alignments, it was possible

to compare the alignment scores obtained from the Suzuki-Kasahara algorithm, coupled

with chaining divisions, with the alignment scores obtained from the GACT-X algorithm;
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Figure 64: Histograms of GACT-X and Minimap2’s score and query percentage differences

The first 100,000 simulated PacBio long-reads were aligned with Minimap2 to the GRCh38 genome

reference.

b) the percentage of aligned inputs of query sequences.

The first histogram shows the proportion of alignments where GACT-X had a worse

(< 0), equal (0), and better (> 0) score in relation to ksw from Minimap2, for varying tile

sizes. 95.42% of alignments found with GACT-X with tile 4, 000 had the exact same score

as the ones produced in Minimap2, even with chaining information hidden from GACT-X.

It means that GACT-X with tile 4, 000 can provide a accuracy at the same level of the

ksw algorithm. The cases with tiles of 5,000 bases or more show lower accuracy and also

are the cases where the performance is low, as seen in Figures 62 and 63. Again, it is

believed that BRAM saturation causes some data dis-alignment, leading to wrong results.

The small percentage of alignments’ lower scores may be explained by these factors: the

tile heuristic adds uncertainty in the borders of each tile; GACT-X does not support a

second gap function, so frequently loses longer gaps that should be expected to appear.

The second histogram corresponds to the percentage of query sub-sequences that were

used in each alignment in Minimap2’s ksw (with global alignment with anchor-separated

sub-sequences and semi-global alignment after the last anchor) and in each alignment for

GACT-X with different tile sizes (considering a semi-global alignment from the first anchor
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to the end of the sequences). When an input sequence is aligned, it may happen that the

max score, which is where the backtrack starts in semi-global alignment (see Section 4.1.2),

does not occur in the last (right-down) cell, and only part of the sequence is used. Ideally,

the query sequence should be aligned entirely to reduce waste. By the histogram of Figure

64, 60.97% of Minimap2’s tracked alignments consumed between 90% and 100% of the

corresponding sequence, and 37.62% consumed the entire query sequence. For GACT-X

with tile 4, 000, the percentages were 55.21% and 43.04% respectively, indicating a better

usage. The accuracy for tiles from 5, 000 on decreased steeply, which could also be linked

to BRAM saturation.

Given that the tests with tile size of 4,000 showed the best performances in both

accuracy and speed for the simulated data, the same measurements were made with the

two real datasets with this same configuration, and are presented in Tables 7 and 8.

Table 7 shows that GACT-X’s accuracy was very similar to Minimap2’s on the sim-

ulated PacBio data, considerably worse on the real ONT data (41.21% of the alignments

produced had lower scores), and dissimilar for the real PacBio data, presenting high rate

of both worse (14.90%) and better (18.28%) alignments. Table 8 reinforces GACT-X’s

similar accuracy performances for the PacBio datasets, with similar ratio of aligned query

lengths, but worse for the real ONT dataset, with lower ratio of aligned query lengths.

With these results and the alignment reports presented in Figure 55, it is possible to in-

duce that the real ONT dataset has a significant disparity to the genome reference used,

which could be affecting the mapping and alignment accuracies of both of the algorithms.

The partial results obtained to this point have provided a strong indication that it is

possible to accelerate Minimap2’s extending step, even with SSE optimization, by using a

software plus hardware hybrid architecture. GACT-X’s tile heuristic allows alignment be-

Table 7: Minimap2 and GACT-X’s alignment score differences for three datasets

GACT-X Minimap2 Score Difference < 0 0 > 0
simulated PacBio 3.90% 95.42% 0.68%
real ONT 41.21% 47.79% 11.00%
real PacBio 14.90% 66.83% 18.28%

Table 8: Minimap2 and GACT-X’s aligned percentage of query sequences for three
datasets

Percentage Aligned 0-80 80-90 90-100 100
simulated
PacBio

Minimap2’s ksw 1.06% 0.22% 60.97% 37.62%
GACT-X 4,000 1.52% 0.23% 55.21% 43.04%

real ONT
Minimap2’s ksw 21.56% 2.59% 73.57% 2.29%
GACT-X 4,000 36.24% 3.64% 58.47% 1.64%

real
PacBio

Minimap2’s ksw 18.42% 0.76% 13.15% 67.67%
GACT-X 4,000 12.01% 2.71% 19.59% 65.69%
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tween arbitrarily long sequences, which was an issue that long-read mapping faced on lim-

ited FPGA resources. GACT-X’s Y-drop heuristic mimics Minimap2’s fixed bandwidth

heuristic, both decreasing memory and time complexities of the SWG algorithm from

quadratic to linear. GACT-X’s accuracy remained satisfactory compared to Minimap2’s

(considering alignment scores) and GACT-X was able to align a similar percentage of the

read sequences on the PacBio datasets. GACT-X’s accuracy is aggravated in comparison

to Minimap2 on the real ONT dataset that seems to have lower similarity to the genome

reference.

Satisfactory acceleration and accuracy has occurred as far as the tile size is not larger

than 4,000 bases, limitation imposed by the allocated BRAM size for one kernel. The

use of larger tiles may be desirable since it could further improve the performance, likely

maintaining the accuracy. With the FPGA device in the AWS F1 Instance, it is possible

to double the tile size, since just less than half of the BRAM available is consumed by

one GACT-X kernel. This ratio is explored in the next section by implementing 2 parallel

GACT-X modules in the same device. Bigger tiles can be accomplished with the use of

more expensive FPGA platforms with larger BRAM resources.
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6.2 Integrating GACT-X into Minimap2 with Multi-

kernel and Multi-threading

With the results obtained in Section 6.1, GACT-X was integrated to Minimap2 on

the host, and a series of experiments were made for the software-hardware hybrid imple-

mentation. The tile size was set to 4,000 following the results in Section 6.1.2. The hybrid

system accommodates the multi-threading and multi-kernel capabilities of the system.

In order to set the host, a new C++ file “gactx.cpp” was created and added to

Minimap2’s source to accommodate the hardware’s host lines. It contains the functions

to configure and load the binary file, initiate the acceleration context, align with GACT-

X, and clean the system. Detailed description of the OpenCL code implementation can

be found in Appendix A.

Minimap2’s original implementation allows multi-threading. Each thread performs

the sequential processing of seeding, chaining, and aligning one read at a time (process

shown in Figures 43, 44 and 46); threads can be distributed to cores in the host server

for concurrent processing. OpenCL supports multi-kernels in the same FPGA, as many

as the resources can fit.

Generally speaking, any thread could be assigned to any kernel in order to optimize

concurrent processing. However, in Minimap2, only a limited form of concurrency in using

the kernels related to GACT-X is possible, because of the sequential aspect mentioned in

the previous paragraph:

• The number of threads need to correspond to at least the number of kernels, other-

wise the excess kernels will be idle;

• A kernel cannot carry the execution of different threads interchangeably.

The restrictions above require that, whenever there are more threads than kernels

running, and the corresponding sequences generated by the chaining steps are ready for

alignment processing, a waiting list must be used in order to access an available/free

kernel. On the other hand, in situations of a single thread run (single core), whatever the

number of kernels, only one may be used.

The AWS f1.2xlarge Instance allows the implementation with up to 64 kernels and 8

cores, as explained in Section 2.3.2. This project was tested with up to 2 GACT-X kernels

and 8 Minimap2 cores, due to the number of BRAMs available in the FPGA device, that
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could only support 2 GACT-X modules with tiles of size 4,000. This test size is enough

to give a good insight on the problem, as it will be seen later in this section, and there

will be discussion on how to use it with a larger number of modules.

The analyses were made with the 100,000 first reads from the simulated PacBio, and

the real ONT and PacBio datasets. Two types of run were executed for time measure-

ments. In both of them, the measurements were made with all combinations of 1 to 8

software (sw) threads and 1 to 2 kernels.

The first run is for the comparison between the hybrid Minimap2 with GACT-X

implementation, and Minimap2 in software with ksw-based alignment. This run was to

measure the total execution time, displayed by Minimap2 in the command prompt at the

end of the execution; regarding the GACT-X kernel, command queue was used to stream

commands to the FPGA and, right away, execution proceeded to execute the next line

without waiting for the command to finish, except in synchronization points. The results

are presented in Table 9.

In the table, all three datasets, as seen in column 1, are processed in the three imple-

mentations for Minimap2 in software, Minimap2 with GACT-X implemented in 1 kernel,

and Minimap2 with GACT-X implemented in 2 kernels, as shown in column 2. Results

are shown for increasing number of threads, which were tried up to 8, as listed in columns

4 to 11. The total execution times in seconds were measured for each test instance. Two

types of acceleration were computed: a) the acceleration obtained for each implementation

with respect to the software, for the same number of threads (set for each column); b) the

integrated system’s thread acceleration, which is the acceleration for increasing the num-

Table 9: Execution times and acceleration in the Minimap2-GACT-X integrated system

Number of threads (sw) 1 2 3 4 5 6 7 8

simulated
PacBio

software total execution (s) 759.157 390.198 266.926 206.255 197.863 186.727 177.508 169.927

1 kernel
total execution (s) 539.56 299.76 233.88 208.93 203.74 253.84 409.03 453.26
acceleration 1.41 1.30 1.14 0.99 0.97 0.74 0.43 0.37
thread acceleration 1.00 1.80 2.31 2.58 2.65 2.13 1.32 1.19

2 kernels
total execution (s) 538.996 289.557 211.837 198.700 203.366 228.516 273.066 313.150
acceleration 1.41 1.35 1.26 1.04 0.97 0.82 0.65 0.54
thread acceleration 1.00 1.86 2.54 2.71 2.65 2.36 1.97 1.72

real ONT

software total execution (s) 3,105.50 1,559.59 1,056.77 806.37 774.30 719.29 684.98 646.35

1 kernel
total execution (s) 2,243.69 1,168.48 837.14 712.91 653.68 660.44 937.68 1,258.13
acceleration 1.38 1.33 1.26 1.13 1.18 1.09 0.73 0.51
thread acceleration 1.00 1.92 2.68 3.15 3.43 3.40 2.39 1.78

2 kernels
total execution (s) 2,197.265 1,126.070 794.728 638.109 586.025 576.393 672.990 858.846
acceleration 1.41 1.38 1.33 1.26 1.32 1.25 1.02 0.75
thread acceleration 1.00 1.95 2.76 3.44 3.75 3.81 3.26 2.56

real
PacBio

software total execution (s) 4,255.21 2,132.71 1,431.38 1,083.29 1,037.82 965.57 904.33 858.31

1 kernel
total execution (s) 3,570.25 1,813.39 1,243.76 1,003.40 919.39 889.68 1,077.63 1,575.97
acceleration 1.19 1.18 1.15 1.08 1.13 1.09 0.84 0.54
thread acceleration 1.00 1.97 2.87 3.56 3.88 4.01 3.31 2.27

2 kernels
total execution (s) 3,470.799 1,765.341 1,239.144 994.346 885.107 831.761 855.454 1,117.282
acceleration 1.23 1.21 1.16 1.09 1.17 1.16 1.06 0.77
thread acceleration 1.00 1.97 2.80 3.49 3.92 4.17 4.06 3.11
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ber of threads, with respect to the single threaded execution, for the software-hardware

integrated implementation.

The execution times of the software-only implementation for all datasets have shown

a steady decrease for increasing number of threads, as it is expected (it can be seen in

line 2, for example, for the simulated PacBio dataset); the relation is not linear due to the

increase in management complexity for larger number of threads. The execution times for

the integrated software-hardware systems also decreased in the initial addition of threads,

as expected, but stabilized and increased again for about 5 or 6 threads or more, whatever

the number of kernels, reflecting in reduced thread acceleration (see, for example, lines 3

and 6, for simulated PacBio dataset, and can be observed clearly through the figures on

thread acceleration in lines 5 and 8).

Another issue is that data with 7 and 8 threads had their execution times exploded,

being inconsistent with the change rate for the other measured times, and making them

unreliable for analysis (therefore, they will not be considered in later discussions); consid-

ering there are 8 available cores for processing, probably two of them are used for system

management and conflicts with the GACT-X’s host lines.

Although the integrated software-hardware systems show decreased time execution

with increased number of threads, that occurs in a lower rate than for the full software

implementation. This can be seen through the acceleration numbers in lines 3, 6, 10, 13,

17 and 20. These results show that, for the integrated implementations built in this work,

the higher number of threads do not help much. In fact, a more detailed study on the

bottlenecks must be provided, what is done in next paragraphs.

The table shows that the use of 2 kernels improved the execution time if compared

to the single kernel case, as expected, but this trend changes after 5 threads. Besides

that, the reduced time with 3 or more threads was limited, with the maximum close to

10%. Also, as commented before, for 1 or 2 threads, the availability of 2 kernels does not

help. It is expected that, with more available kernels, the workload from a larger number

of threads can be alleviated, with better acceleration, but that would require increased

hardware resources and costs.

The highest achieved acceleration therefore was of 1.41x with 1 thread for simulated

PacBio with 1 and 2 kernels, and real ONT with 2 kernels, and second highest was 1.35x

for simulated PacBio with 1 thread and 1 kernel, and real ONT with 2 threads and 2

kernels. It is worth to mention that this study with GACT-X’s acceleration only refers

to the alignment phase in Minimap2; the chaining step may also be hardware accelerated
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(GUO et al., 2019), improving the total performance of Minimap2.

Although the results in Table 9 showed some expected trends, several expectations

were not accomplished:

• The acceleration decreased as threads outnumbered kernels, performing worse than

the software counterpart when the gap is too big;

• Acceleration with 2 kernels was only slightly better than with one kernel, when a

speed-up of 2x might be expected.

The suspicion for the above behavior is the performance limitation due to competition

of the PCIe transfer channel. In order to verify it, a second run of experiments were made;

time measurements were taken with different tools for each situation, in order to deal

with the actions in separate. Every kernel processing, data transfer and waiting in line

instance has had the time measured and accumulated, respectively. These instances in

each thread were measured independent of any other of Minimap2’s execution that could

occur concurrently. Therefore, the total accumulated time cannot be directly correlated

to the total execution time, shown in Table 9, except for the case of a single thread, which

is totally sequential.

The kernel processing times were measured using the function “clGetEventProfiling-

Info” and START and END event flags. The data transfer times, which includes the

times to transfer sequences and tile information, as can be seen by the items 1 and 2,

respectively, in Figure 59, are measured similarly. The time spent by the threads waiting

in line for a kernel was measured using “clock t”. Every writing, reading, and kernel event

had to be completed for the execution of the code to proceed to the next line by setting

the “blocking write” argument as CL TRUE, or by using “clWaitForEvents”, so that the

measurements could be taken.

The results are displayed in Table 10. For each of the three datasets, shown in column

1, the two integrated implementations, with 1 and 2 kernels, were considered, as displayed

in column 2. For each implementation, the case of kernel processing, data transfer and in

line times are shown in column 3, referring to different thread numbers, from 1 to 8, as

indicated in columns 4 to 11.

Considering the kernel processing time reflects the computation of the total amount of

the inputs, which is constant throughout the different kernel implementations, the results

have shown to be as expected: for all datasets, it remained quite constant comparing 1 ker-

nel with 2 kernels cases. Also, considering any particular implementation for a dataset, the
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Table 10: Processing, transferring, and waiting times in the Minimap2-GACT-X system

Number of threads (sw) 1 2 3 4 5 6 7 8

simulated
PacBio

1 kernel
time (s)

processing 94.14 94.62 95.16 96.16 96.71 98.11 132.26 150.40
data transfer 26.90 28.81 32.07 33.24 34.13 37.59 152.30 150.51
time in line 0.21 83.11 318.66 845.77 1,789.56 3,377.48 13,990.11 21,404.43

2 kernels
time (s)

processing 94.20 94.99 95.43 95.89 96.49 110.83 129.61 141.75
data transfer 27.00 34.77 37.87 37.25 47.99 146.70 165.48 166.65
time in line 0.15 0.24 44.49 186.04 619.47 3,813.98 7,592.47 12,094.00

real ONT

1 kernel
time (s)

processing 322.29 323.02 324.33 326.42 327.82 331.18 388.75 476.91
data transfer 12.20 48.54 51.66 53.72 59.88 75.27 361.88 503.51
time in line 0.15 148.91 544.15 1,310.52 2,548.16 4,926.27 24,567.76 50,482.29

2 kernels
time (s)

processing 322.66 324.16 324.98 326.04 327.69 346.86 376.96 420.51
data transfer 42.80 53.15 61.25 60.11 86.25 227.04 347.46 476.46
time in line 0.24 0.27 54.48 242.43 802.66 4,210.88 11,777.99 25,100.46

real
PacBio

1 kernel
time (s)

processing 255.12 255.52 257.62 259.56 261.43 264.64 324.07 465.84
data transfer 53.28 57.38 61.37 65.27 74.19 91.04 383.26 723.37
time in line 0.20 63.13 219.84 499.16 962.39 1,909.10 16,175.72 53,765.80

2 kernels
time (s)

processing 255.79 257.62 258.97 259.90 261.93 284.62 333.82 388.27
data transfer 53.64 64.29 70.02 70.59 91.89 275.96 452.71 683.43
time in line 0.10 0.41 15.78 68.70 228.42 2,063.87 8,240.65 23,054.56

kernel processing times remained relatively constant among different number of threads.

With 6 or more threads, an increasing deviation occurs; since the OpenCL’s clEnqueue-

Task command is a macro, probably the management of large numbers of threads start

to affect the measurements of its time span.

For all datasets, the data transfer time increased with the number of threads (for a

fixed implementation), and with the number of kernels (for a fixed number of threads);

since the measurement is made on OpenCL commands, which involves transfer channel

liberation, probably a channel access latency component was included.

With respect to the time in line, the consistency for all datasets can be observed in the

table, by spotting the single thread case, which has a sequential nature; independent of the

implementation (1 or 2 kernels), there will always be a kernel available and the observed

waiting time is close to zero. In the case of 2 threads, for a 2 kernels implementation, the

same occurs; however, for a 1 kernel implementation, a second thread has to wait for the

kernel to be liberated from the computation of a first thread, therefore, the waiting time

in line is larger, for example, 83.11 seconds for the simulated PacBio dataset.

Another observation regarding the time in line is that, for all datasets and imple-

mentations, it increases with the number of threads. That indicates that the kernels are

getting more occupied and less available to take new jobs and clear the waiting queue.

The management complexity for the threads, what affects the data dispatching time, is

specially critic for 7 or 8 threads, probably due to the superposition with the operating

system execution. This time in line effect has a strong impact on the total execution time,

leading to the figures observed in Table 9.
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The increase in time in line has indicated that 1 or 2 kernels were not always available

for the threads, becoming the bottleneck of the integrated system. Besides that, not all

availability of a second kernel is occupied, indicating a dispute in the PCIe interface. Still,

the waiting time for the 2 kernels implementation, for all datasets, showed to be, for the

varied number of threads, significantly shorter than the corresponding ones in the 1 kernel

implementation. For example, comparison can be made between lines 4 and 7, 10 and

13, 16 and 19. This was expected since for 2 kernels implementation, chances of kernel

availability is increased; this suggests that a larger number of kernels (therefore, more

hardware resources) can bring better results as the number of threads also increases.

What the results tell about optimization:

• As expected, according to (WANG et al., 2020), PCIe turns out to be a bottleneck if

the transfer rate is high. The traffic was reduced in this research by manipulating the

data in the host, basically using anchor-extended sub-sequences instead of anchor-

separated ones;

• Another improvement option would be addressing twice the number of BRAMs to

a kernel, allowing the tile size to be twice as large, which would further reduce

the transfer rate; this would allow fitting only one kernel in the device, but would

also eliminate the PCIe channel conflict, and could potentially achieve a better

performance than 2 parallel kernels in a device;

• The number of kernels should correspond to the number of software threads for the

integrated system’s best performance; if multi-threading is wished, a corresponding

increment on hardware resources must accompany it;

• Further improvement, including hardware changes, is adding a traceback logic to the

kernel (changing the Verilog implementation), which would reduce the data transfer

sizes.
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7 CONCLUSION AND FUTURE WORK

This project started with the identification of genome sequencing data as tending to

migrate to longer reads (seen in the third-generation of sequencers), as they present several

crucial advantages over short-reads from the previous generations. The computing stage

has been identified as being the genome analysis pipeline’s bottleneck, mainly because of

the advances of highly parallelized sequencing of data which provides a great amount of

genomic data to be processed, and because of the slow-down of computing power advances.

One option for resolving this bottleneck is the development of DSAs, that use advantages

of alternative architectures to target specific domains.

Minimap2 was identified as the State-of-the-Art algorithm for assembly of long-reads,

and some works were already made on several types of processors, such as GPUs, FPGAs,

and KNL to accelerated one of its main bottlenecks, the chaining or the aligning stages.

No work that has successfully accelerated Minimap2’s aligning step on an FPGA has been

identified on the literature, which culminates on the proposition of this project.

GACT-X, an FPGA Cloud design for the SWG algorithm, was considered to be a

good option for accelerating Minimap2’s aligning step running on long-reads because

of its limited memory consumption characteristic, which solves banded SWG’s inherent

linear complexity to the inputs’ lengths.

Through the development of this work, the following conclusions could be drawn:

• There are genome data and tools available in public repositories to be used. Two

sets of real human genome long-reads with high coverage from PacBio and ONT

sequencing technologies were obtained from the NCBI and ENA databases. Another

set of reads was generated with the PBSIM tool, used to simulate PacBio long-

reads. These datasets were considered to be a reasonable sample for the experiments

done in this research. The datasets presented different read length distributions.

Simulated reads concentrated on shorter to medium lengths with average of 8,300

nucleotides; real PacBio reads concentrated on medium lengths with average of
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13,300; and real ONT reads had a homogeneous distribution of lengths up to 100,000

nucleotides, with average of 16,900;

• An analysis of the Minimap2 algorithm running the datasets was important to

understand its dynamics for later changes in the alignment or mapping step. Min-

imap2’s accuracy and speed performances varied for the three datasets. The highest

throughput of 403.46 kbases/s was for the simulated reads, that also had the lowest

average length. The lowest throughput of 164.11 kbases/s was for the real PacBio

reads, where the profiling indicated that it had the chaining step as a more signifi-

cant bottleneck (50%) than the extending step (25%), whereas the other data had

an inverted proportion. The highest frequencies of indels that showed in the final

alignments were of a single nucleotide, although simulated reads caused an abnormal

deviation from the alignment matrix’s anti-diagonal, justified by the higher ratio of

insertions. PacBio data presented high mapping rates, whereas 27.5% of ONT reads

were unmapped;

• Minimap2’s chaining process divided the read-reference pairs of sequences into many

short (200-300 nt) sub-sequences. A direct substitution of the ksw alignment func-

tion in Minimap2 by a hybrid hardware implementation, aligning anchor-separated

sub-sequences, resulted in a low performance due to data transfer latency. An alter-

native sequence execution by the aligner was developed and tested. Aligning longer

anchor-extended sub-sequences resolved this (low performance) issue;

• GACT-X’s alignment parameters were adapted to produce the most similar results

to Minimap2, changing the Y-drop threshold to keep the maximum gap size in

the band as in the original values. Internal wires defined in the Verilog code were

increased to accommodate bigger tiles, and with tests on the simulated data, it was

found that tiles of size 4,000 provided the best speed and accuracy performances,

and such a configuration would be adopted in the Minimap2 GACT-X integrated

solution. Experiments showed that, for part of the simulated data, GACT-X was

1.68x faster than ksw. With simulated data, 95.42% of the alignments had the

same score as in Minimap2; real PacBio data presented a more dissimilar accuracy,

with high rate of higher and lower scores; real ONT data had a considerable worse

alignment (41.21%). Minimap2 and GACT-X aligned a similar proportion of the

reads for the PacBio datasets, but interrupted early the alignment of many ONT

reads;

• A Minimap2 GACT-X integrated system was developed to support multi-threading
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and multi-kernel. Up to 8 threads and 2 kernels were implemented; the number

of kernels was limited by the device’s BRAM resources. The highest acceleration

of 1.41x was observed on simulated and real ONT runs on 1 thread, and of 1.23x

on real PacBio data (this lower rate can be linked to the lower occupation of the

extending step observed in profiling); the general Minimap2 performance can be

improved by hardware accelerating the chaining step;

• Detailed measurements for the kernel processing, data transfer and thread wait-

ing execution times were performed in order to understand the limitations on the

Minimap2-GACT-X integrated system. Acceleration decreased with more threads

and could be explained by two factors: the kernels were not always available to

process incoming data, increasing the time of threads waiting in line; multi-kernel

generated conflict of data transfer in the PCIe channel. The first factor indicates

that a larger amount of kernels would be needed for a larger number of threads;

the second factor could be eased by implementing multi-devices (FPGAs) with one

kernel in each having a dedicated PCIe channel.

Considering the results obtained in Chapter 6 and the analysis made on them, some

future developments could be carried on to improve these results:

• A multi-FPGA design could sustain acceleration of more threads of Minimap2 with

more kernels; for this, the implementation has to be updated to the Vitis envi-

ronment, since SDAccel instances have been deprecated during the length of this

Masters, and a new multi-FPGA AWS Instance has to be created; the increased

cost must be evaluated;

• Tile sizes could be doubled by allocating all the BRAM available on the device to

a single kernel to confirm if it could reduce data transfers, increase accuracy, and

remove the PCIe competition;

• Traceback support could be added to the design to increase the acceleration, mainly

by reducing the size of the read data (from traceback pointers to CIGAR strings);

this implies in changing the Verilog RTL description with a probable increase in

hardware area in the programmable logic;

• A second affine function could be added to the hardware design to properly mirror

Minimap2’s alignment scores, and increase the compared accuracy.
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APPENDIX A

This appendix presents the programming options adopted to integrate GACT-X’s

host lines into Minimap2’s original source code. A new C++ file “gactx.cpp” was created

and added to Minimap2’s file and to the compilation object list. It contains the functions:

• “load file to memory” loads the xclbin binary file to boot the kernel in the

FPGA;

• “fpga configuration and setup” selects a Xilinx platform from the ones avail-

able; selects a target device; creates context, command queue, program, and kernel

variables; defines memory bank mapping; and creates input and output buffers;

• “fpga shutdown and cleanup” releases memory objects and other global vari-

ables;

• “gactx align” configures tile size, tile overlap, and alignment scores; sends align-

ment input sequences; programs the tile algorithm; reads the tile outputs; encodes

the final CIGAR string; and updates Minimap2’s alignment results.

The compilation was changed to using CMake (CMAKE, 2022) with the Xilinx’s

compiler “xcpp”, and inclusion of directories, libraries, and flags necessary for running

the host’s code. OpenCL variables cl context, cl command queue, cl program, cl kernel,

cl mem ext ptr t, cl mem, cl event, as well as the pointers to the host’s memory were

initialized as global variables so that they can be shared among the multiple threads in

the multi-threading option of Minimap2.

cl kernel, cl mem ext ptr t, cl mem, and host memory pointers are initialized as arrays

of length (NUM KERNELS), which is a #define that can be set as 1 or 2 by the developer,

and indicates the number of kernels being utilized in the circumstance. A similar global

int array “kernel expanding” is used to indicate whether each kernel is free or occupied

with 0 or 1 respectively.
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The aligning process in Minimap2 is set up in the “mm align1” function in “align.c”.

It is where ksw calls are made for each sub-sequence between two anchors. This was

substituted with a complete right-extend from the first anchor using GACT-X, whenever

both of the input sequences are longer than 1,000 nucleotides.

To couple multiple CPU threads with 1 or 2 kernels, a FIFO queue (global array

variable) was created. Each thread that reaches the alignment stage goes to the end of the

queue, and waits until it is the first in line and there is a kernel available. This is done using

“pthread self” (PTHREAD SELF, 2021) as the thread identifier. Mutex (MUTEXES,

2022) is used to protect lines that edit the FIFO queue, to avoid conflicting memory

access. The function “gactx align” is called after the thread has picked its corresponding

kernel and left the queue.

When running 2 kernels in parallel, there can be conflict in the PCIe channel (e.g.

when two threads send data to the FPGA at the same time). This can result in Seg-

mentation Faults (SEGMENTATION. . . , 2022). The cl event global variable is used to

synchronize these transfers.
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