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ABSTRACT

The source seeking is a relevant topic on autonomous robotics. In a few words, it
consists of seeking a scalar signal source position with only local information on base
X-space. In such, the seek agent, for instance, a mobile tracking A-robot, samples by
hypothesis C∞-class source signal ϕ-map constrained by hull (A) ⊆X. Among available
seeking methods, this work utilizes the barycenter method, first presented on work [2], as a
direct optimization method due to derivatives’ absence. The applied algorithm estimates
the source ŷn-position and designs a suitable reference γ̂(t)-curve, hopefully towards a suf-
ficiently close vicinity of the actual source y⋆s -position. In case there are multiple critical
points, the {d(y⋆s , ŷn)}-sequence may not converge asymptotically to a sufficiently close
neighborhood of zero due to its local behavior, a challenge for these garden-like optimiza-
tion algorithms. This work succeeds to obtain results in direction of the source signal
position. Therefore, the proposed methodology provides an alternative for source-seeking
applications by defined-to-be exploration strategy by different agent seekers, source signal
maps, and obstacle modeling.

Keywords – source seeking, optimization, barycenter.





RESUMO

A busca da fonte de um sinal tem relevância em robótica autônoma. Seu enunciado
consiste na busca estimada da y⋆s -posição de uma fonte de sinal escalar apenas com infor-
mação local sobre sua disponibilidade no X-espaço base. Em tal situação, o agente de
busca, por exemplo, um A-robô rastreador móvel, tem acesso à magnitude do ϕ-mapa
sinal de C∞-classe (por hipótese) restrito ao (hull (A) ⊂ X)-feixo do agente de busca.
Esta dissertação de mestrado utiliza o método do baricentro, disponível em artigo [2],
como método de otimização direta, por satisfazer critério de ausência de derivadas. O
algoritmo proposto estima ŷn-pontos para a posição da fonte e sintetiza uma γ̂(t)-curva
de referência em direção à estimativa calculada, a fim de atingir a vizinhança de um y⋆s -
ponto extremal. Caso múltiplos pontos críticos existam, a {dYs(y

⋆
s , ŷn)}-sequência pode

não convergir assintoticamente a uma vizinhança suficientemente próxima de zero devido
à característica local do método de otimização aplicado, um desafio a algoritmos desta
classe. Os resultados em direção à fonte do sinal escalar são satisfatórios. Portanto, a
metodologia oferece uma alternativa à aplicações da busca de fonte para diferentes com-
binações de estratégias de exploração, por meio de agentes de busca, mapas de sinal de
fonte e modelagem de obstáculos a definir.

Palavras-Chave – busca de fonte, otimização, baricentro.
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1 INTRODUCTION: THE SOURCE SEEKING
STATEMENT

“Without continual growth and progress, such
words as improvement, achievement, and

success have no meaning.”

-- Benjamin Franklin

The source-seeking statement consists of agent navigation around the environment.
It searches for an unknown source locus with its local available scalar signal magnitude.
There are physical source examples with signal magnitude proportional to their posi-
tion. Among others, we cite chemical or biological concentration and acoustic or thermal
intensities.

Figure 1: Source seeking ilustration.

Verbosely, the statement corresponds
to seeking a source position y⋆s -point by sig-
nal reading samples of distributed sensors
on an A-agent, e.g., a mobile robot, while
it traverses the environment, also known
as configuration X-space. Given X-space
and dynamical Σ-system descriptions nec-
essary for the statement under investiga-
tion, the current work proposes a solution
based on the estimation of source signal
map gradient gradϕ-field to provide a ref-
erence for the dynamical source seeker rep-
resentation.

Originally this work stems from au-
thors Aström and Wittenmark’s concerns in [3]-textbook about the extremum-seeking
algorithm in control applications. Its nature relies on sinusoidal disturbance and numer-
ical differentiation, prone to noise amplification. The most prolific research team among
topic-concerned researchers corresponds to Prof. Dr. Miroslav Krstic’s laboratory at
UCSD San Diego. They apply the extremum seeking algorithm for the source position
search and hence gradient vector field estimation of a scalar signal map. [4]-Textbook
describes the estimation procedure for source localization.

Among others, the researchers Angélico et al. on article [5] explore in his recent
work a simulation application of the above-mentioned method. The proposed systematic
overcome the challenging requirements combination of unknown source signal topology
and obstacle avoidance. As a requirements configuration alternative, the current work
explores statement topological features to provide insights for further methodologies on a
similar scenario. This work investigation succeeds in its research results and presents its
main results in published [6]-article on the XV Brazilian Simposium of Smart Automation
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- SBAI 2021 (English translation for original "XV Simpósio Brasileiro de Automação
Inteligente - SBAI 2021").

In addition to the above application, we cite the following works: the authors in [7]-
article consider a unicycle as the source seeker and linear speed tune as a control strategy;
similarly, researchers in [8]-work tune the angular velocity instead. The same author, in
work [9], modulates the estimated linear velocity by the extremum seeking algorithm
through sensor reading feedback, with further improvement on [10]-work. [11]-Application
exploits the stochastic extremum seeking. Other application examples are available in
([12], [13])-articles.

The source-seeking statement allows requirement relaxation by the introduction of
distributed sample points available by embedded sensors and/or multiple seeker agents:
in [14]-article, mobile agents utilize the Particle Swarm algorithm to locate an electromag-
netic source. In [15]-essay, multiple UAVs tracks the source gradient vector by reference
input tracking map. Azuma et al. on [16]-article apply a stochastic simultaneous pertur-
bation for source estimation by nearby waypoints. [17]-Reference utilizes a mobile sensor
network based on the finite difference mesh grid-specific points in a distributed stochastic
source-seeking fashion for signal gradient field estimation.

The current Master thesis explores the Barycenter method properties, first suggested
by the physicist Richard Feynman in its [18]-work and further developed by Prof. Dr.
Felipe Pait on vector X-space on [2]-work. Intuitively, the method computes the weighted
sum of reading positions by the respective exponential negative of evaluated reading sam-
ples. The discrete acquisition of reading samples derives from the agent’s environment
exploration.

The current author organizes methodologically this work, aside from this introduc-
tion, into seven chapters and the appendix: chapter two explains the building blocks
necessary to compose the here-proposed source seeking heuristics, given by applied op-
timization method for source position estimation, dynamic modeling aspects as well as
source-seeking agent control; chapter three proposes trajectory curves planning synthesis
between two points, either with or without initial and final orientations; the fourth chap-
ter introduces the obstruction topology and allows to treat obstacles from a geometric
perspective; based on previous chapters topics, chapter five depicts the proposed source
seeking solution rationale in a flow diagram format and presents briefly some possible
exploration possibilities; chapter six deals with application examples for each building
block presented on previous chapters: we choose a flat surface as navigation environ-
ment, a curvature-free curve as reference trajectory i.e. a line, an omnidirectional robot
as seeker agent, simulation instances for multiple scenarios with environmental curious
exploration and multiple simulation instances averaging for behaviour investigation; we
discuss on chapter seven the main project development decisions, method properties and
computational implementation caveats; we conclude this work on chapter eight with a
summary of this work main results both from development construction, results investi-
gation and future research opportunities. Finally, in the appendix chapter, we compile
geometric control topics necessary for reading comprehension, reproduction instructions
on a computational environment, and the algorithmic rationale for control map synthesis
and source-seeking.
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2 SOURCE SEEKING BUILDING BLOCKS

“When a new building block is discovered, the
result is usually a range of innovations.”

-- John Henry Holland

Barycenter method: The source seeking optimizer

This chapter summarizes the original [2]-work. Optimization is a recurrent topic in
Robotics. From the source-seeking perspective, we aim to obtain a well-suited scalar
source signal configuration, e.g., for communication. Among thematic works, the possible
algorithms and scenarios provide multiple application opportunities.

In this work, the applied source-seeking algorithm corresponds to the Barycenter
Method. It resembles stochastic optimization algorithms and emulates the map gradi-
ent vector field based on the weighted average of available local information. The local
data availability requirement is suitable for the source-seeking statement. In words, the
barycenter method consists of an optimization algorithm of non-degenerate critical x⋆-
points on the linear position X-space of so-called oracle f -map. In addition, it requires
only signal evaluations available on given points {xn}-sequence.

In a nostalgic recall, the arithmetic average corresponds to the sum of each element
divided by its set n-cardinality. In turn, the weighted average of the same set represents
the sum of each element xi-point weighted by a scalar wi-map divided by these weights
sum. This description induces the following property: the greater the wi-weight, the
greater its contribution to the resulting barycenter x̂n-point. The barycenter method
exploits this property to obtain either local or global critical points.

This method presents batch and recursive procedures. For narrative, we present the
former. On this work, we utilize often Einstein’s summation convention: the lower-index
notation xi accompanied by upper-index wi := e−νf i refers to the sum over repeated
indexes i.

xi w
i

1i wi
(2.1)

The recursive form

In recursive form, the method exhibits the (2.2).-formula In the case of coincidental
evaluation points, the resulting point for both batch and recursive points coincide.
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{
mn = mn−1 + e−νfn

x̂n = mn−1

mn
x̂n−1 +

e−νfn

mn
xn

(2.2)

This method belongs to the class of direct optimization algorithms whose gradient
vector and Hesse 2-form are unknown, present in [19]-textbook. However, for a judicious
choice of curiosity term as Gaussian stochastic noise, the recursive version estimation
∆x̂n-steps converges proportionally to the gradient gradX f -vector on (x̂n−1 + zn)-point,
for Gaussian support p(z)-map of stochastic zn-vector as the 2.3-expression.

1√
(2π)nz |Σ|

exp

(
− 1

2
(z − z̄)⊺Σ−1(z − z̄)

)
(2.3)

We achieve the right-hand term of point (x̂n− x̂n−1)-difference on equation (2.2) equal
to stochastic linear expression Fn zn, for map Fn equal to

(
e−νf(x̂n−1+zn)

mn−1+e−νf(x̂n−1+zn)

)
-expression.

(2.4)-Expression presents the most relevant method result: it determines the barycenter
step expected E[∆x̂n]-value along with the algorithm recursion.

E[Fn] z̄n − ν Σ E[F̄n grad
X
x̂n
f ] (2.4)

We call (ν,Σ)-hyperparameters as real speed enhancer scalar and covariance ten-
sor: The former intensifies the map magnitude; the latter provides the points dispersion
broadness around space. This property allows utilizing the method both as a minimizer
for (ν > 0)-condition or a maximizer for (ν < 0)-condition as [20]-work explains. The
corner case equality (ν = 0)-condition degenerates to the usual arithmetic average with
weights equal to 1. Moreover, the exponential curve slope suggests a careful parameter
choice.

Remark 1. The exponential map is positive for every point of the real line. Its steep
slope for exponents lower than 0 suggests the addition of linear coefficient η i.e. η − ν f ,
to mitigate numerical undesirable truncation. Intuitively, we do not wish to stop the
barycentric optimal search in the extremum direction. Therefore, for the batch version,
it is reasonable to apply the difference f − f− for minimization (ν > 0) i.e. f − f+ for
maximization (ν < 0). The (f−, f+)-symbols stand for lowest i.e. greatest batch values.
The recursive version adopts the same strategy for values acquired so far.

Remark 2. A further numerically motivated remark regards the floor/ceiling numerical
evaluation ±E-limits. The barycentric operations require algebraic sums and exponen-
tial maps. A due statement lack of magnitude information suggests the application of
minimum/maximum (min(E, ·),max(−E, ·))-operators to involving entries respective to
maximization/minimization statement goals.

Improvement on convergence performance

Pait suggests a method’s convergence improvement by choice of mean z̄n-vector as
proportional ξ∆x̂n−1-step. The approach considers the Gaussian support mean vector
proportional to the previous algorithm step, in turn, proportional to the gradient esti-
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mation at the previous x̂n−1-point. We choose it as the null vector if it is not given
beforehand. Additionally, we may choose the mean z̄n-vector as the barycentric weighted
average of the previous steps. The proposed approach is proportional to the last step
and recovers the gradient information of earlier estimations. The improvement may not
account for all previous estimation x̂i-points of the evaluation set, but rather a subset: In
the recursive application, we call it historical barycentric horizon.

Let us consider for mean z̄n-vector the barycentric average of the previous steps.
Therefore, its batch and recursive formulas follow below.

z̄n = ∆ x̂i e
−ν fi

1i e−ν fi
⇐⇒ z̄n = e−νfn−1

mn−1
∆ x̂n−1 +

mn−2

mn−1
z̄n−1 (2.5)

An inquiry arises about mean vector convergence on stochastic support p(z)-map
given convexity assumptions almost everywhere for the map under optimization. Then,
the following lemma contributes to the barycenter method respective to the parameter
choice.

Lemma 2.1. The ηn ∆x̂n−1-map, proportional to the barycentric step, majorates the mean
vector deviation ∆z̄n-step.

Proof. Its proof begins by
(
mn−2

mn−1
< 1
)
-condition respective to denominator mn-term. In

words, the mn-term is monotonically crescent. Since this ratio never holds null values for
finite natural n-constant, also the ηn-term, equal to

(
1− mn−2

mn−1

)
-expression.

mn−1 = mn−2 + e−ν f(xn−1)

(·)
mn−1
=⇒ 1 =

mn−2

mn−1

+
e−ν f(xn−1)

mn−1

(·)
mn−1
=⇒ e−ν f(xn−1)

mn−1

= 1− mn−2

mn−1

= ηn < 1

Since the mean vector ∆z̄n-step corresponds to (z̄n − z̄n−1)-difference , we obtain the
decay formation

(
− ηn z̄n−1 + ηn Fn−1 z

)
-rule. ■

Remark 3. We remark (ηn < 1)-condition, for scalar
(
ηn ∈ R

)
-constant, as a decreasing

behavior to mean vector sequence, similar to a discrete linear system for an eigenvalue
within unit

(
∥z̄n∥ < 1

)
-locus.

Exploration with forgetting factor

The method aims to explore the oracle map’s Df -domain to seek critical points with
map evaluation lower than on the current point. A judicious choice of forgetting λ-factor,
such that

(
λ < 1

)
-condition holds, broadens the exploration domain to both batch and

recursive versions. For a constant forgetting factor λ, both batch and recursive forms are
below. For the current work, the forgetting factor application justifies time-variant oracle
maps.
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x̂n =
λn−ixie

−νf i

λn−i
i e−νf i

{
mn = λnmn−1 + e−νfn

x̂n = 1
mn

(
λnmn−1x̂n−1 + e−νfnxn

)
The mean vector enhancement from subsection 2 might carry on gradient history.

Thus, the application of a forgetting λz-factor mitigates the effect of afar gradient vectors.
The relation with the additional factor follows below. We notice an upper bound on
decreasing behavior of z̄n-vector, since it multiplies a natural power of forgetting factor
λz.

z̄n = λn−i
z ∆ x̂i e

−ν fi

λn−i
z e−ν fi

⇐⇒ z̄n = e−νfn−1

mn−1
λz ∆ x̂n−1 +

mn−2

mn−1
z̄n−1 (2.6)

Discrete application on a continuous curve

The barycenter method statement requires an evaluation points set. The current
application suggests the choice of the points on a γ(t)-curve. Henceforth, we state the
following result based on its batch form.

Corollary 2.1. Given γ(t)-curve, for instant t ∈ [t0, t1], and instant partition {tn} such
that (ti−1 < ti)-condition holds, for (ti ∈ [t0, t1])-instants. Then, the barycenter γ̂n-point
for {tn}-partition corresponds to batch evaluation (2.1) on curve (γn := γ(tn))-points.

Corollary 2.1 allows the barycenter point definition within interval [t0, t1]. Its recursive
version also emerges from the statement below.

Corollary 2.2. Given γ(t)-curve, for (t ∈ [t0, t1])-instant and instant partition {tn}-
sequence such that

(
ti ∈ [t0, t1], ti−1 < ti

)
-conditions hold. Then, the barycenter γ̂-point

for {tn}-partition follows by recursive evaluation of formula (2.2) as curve
(
γn := γ(tn)

)
-

points.

Although numerically equivalent to the batch version, the above result presents a
computational advantage of online data sampling for a given evaluation set. The recursive
version is preferable for online applications due to its compact design and is suitable for
data sampling.

Convergence analysis

This subsection discusses the convergence criterium for the barycenter method prob-
abilistic version. Due to its discrete stochastic behavior, expected value and discrete
Lyapunov’s stability criterium are helpful interpretations. Moreover, Jensen’s inequality
is also proof-relevant.
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Lemma 2.2 (Jensen’s inequality [21]). E [f(x)] < f(E [x]).

Theorem 2.1 ([2]). Given barycenter {x̂n}-sequence and respective evaluation {f̂n}-
sequence, (2.7)-condition is necessary for barycenter method convergence.

E[f̂n − f̂n−1)] < 0 (2.7)

Proof. The following steps explore the Lyapunov stability criterium for discrete dynamical
systems, on [22]-work. Consider for instance the series formation rule for the recursive
barycenter method, given by

(
x̂n−1+Fn zn

)
-expression. By first-order approximation, we

obtain (2.8)-equality. The R(·)-map corresponds to the Taylor series residuum.

f̂n − f̂n−1 = f(x̂n−1 + Fn zn)− f(x̂n−1)

= df̂n−1∆ x̂n +R(F 2
n)

= Fn︸︷︷︸
:= e−νfn

mn−1+e−νfn

df̂n−1 zn +R(F 2
n)

=
1

mn−1 eνf̂n−1 eν dfn−1 zn + 1
df̂n−1 zn +R(F 2

n)

(2.8)

We rename above equality by equalities
(
df̂n−1 = a⊺,mn−1 e

νf(x̂n−1) = m̄n

)
-notation,

the above difference expression exhibits the formula below.

∆f̂n =
ai zni

m̄n eν ai zni + 1
+R(F 2

n) (2.9)

We develop its expected E[∆f̂n]-value from Jensen’s 2.2-condition for stochastic pro-
cesses, available on [23]-textbook, resulting on (2.10)-condition.

E
[

ai zni
eν ai zni m̄n + 1

+R(F 2
n)

]
≤ ai z̄ni
eν ai z̄ni m̄n + 1

+R(E[F 2
n ]) (2.10)

The mean z̄n-vector is a degree of freedom: for the null vector choice, the right-
hand-side is lesser than 0; for other reasonable mean vector choices e.g. to cite ξ∆x̂n−1,
its expected value, analogous to (2.4)-expression, is proportional to oracle differential
−df(x̂n−1)-map. The squared F 2

n -term decreases congruently to the Fn-term, strictly lesser
than 1. Since the mn-term increases monotonically and the Fn-expression is greater than
0, it converges asymptotically to zero as mn-term increases. Hence, stability according to
(2.10)-condition is necessary for algorithm convergence.

■
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Mechatronic robotic systems as source seekers

Source seeking relies on dynamic agents to explore the environment and sample source
signals. In this work, we apply mobile robots as source seekers. In special, terrestrial
mobile robots utilize wheels to provide their steering movement. From an engineering
perspective, a mobile robot is a mechatronic system with sensors and actuators in the
physical world.

In topological terms, we call state Q-space and observation Y-space, which we relate
(q ∈ Dh)-points to output

(
y ∈ Y

)
-points by a C∞-class observation h-map on

(
Q → Y

)
-

relation. Their dynamical description exhibits linear equality constraints respective to
velocity (q̇ ∈ TqQ)-vector, we call Pfaffian constraint equalities.

The following subsections describe both kinematic and dynamic modeling descrip-
tions: we describe affine-constrained mechatronic systems in the Lagrangian framework.

Lagrangian maps under Pfaffian constraints: a brief overview

Physical systems description emerges from the Euler-Lagrange variational statement
(2.11): Mathematicians call this integral the curve length minimization problem and
physicists as action minimization. The Lagrangian ℓ-map on

(
Q × T Q → R

)
-relation

corresponds to the difference
(
mij q̇

i q̇j − ϱ
)
-map, for

(
mij, ϱ

)
(q)-maps as geometrical

and potential contributions respectively: the former relates to kinetic density throughout
geometry respective to velocity

(
q̇ ∈ Tq Q

)
-vector; ϱ-map represents a potential map on

given state
(
q ∈ Q

)
-point. The formal statement and its solution, if exists, emerges

from developments on subjects like Variational Calculus, Differential Geometry, among
others. It also receives further treatment on theories like Measure and Stochastic processes
theories.

∫ τ

σ

ℓ(q(s), q̇(s)) ds under na < n Pfaffian constraints
(
Ak q̇

k = 0
)
-equalities (2.11)

The common resolution approach for the above statement utilizes Lagrange linear
λ-multipliers to span the dual space of constraint A⊺-codistribution. For completeness,
authors Udwadia and Kalaba propose in their [24]-textbook an extension approach for
non-conservative contributions e.g. Coulomb friction forces on Lagrangian maps. Addi-
tionally, they obtain the Lagrange λ-multipliers for given linear constraints.

The Euler-Lagrange equality takes (2.12)-format for a Lagrangian system subject to
Pfaffian constraints

(
Aj q̇

j = 0
)
-equalities, on every state

(
q ∈ Dm∩Dϱ

)
-point and velocity(

q̇ ∈ span (Ann (A)) ⊂ TqQ
)
-vector. The statement extension by Pfaffian equalities

appears on Frobenius’ [25]-work. American researchers Bloch et al. figure among subject-
concerned researchers. His formal description on this particular class of dynamical systems
refers to

(
[27], [26]

)
-works. This class’s first appearance in literature reports to Gauss’

[28]-work.

D (∂q̇ℓ)− ∂qℓ = A⊺k λ
k + fq (2.12)
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The right-hand fq-term on (2.12)-equality refers to the generalized state forces re-
spective to state

(
q ∈ Q

)
-points: it represents each external effort’s contribution to or

from the system. However, usual applications describe fx-efforts in configuration tangent
Tx X-space on configuration X-space.

The necessary toolset to obtain state fq-efforts calls Virtual Displacement Method
(VDM) or D’Alembert principle, available on classical [29]-textbook. Given an effort(
fq ∈ Tq Q

)
-vector, equivalence equality between a fx-vector in configuration tangent

Tx(q) X-space emerges naturally from lemma below.

Lemma 2.3 (Virtual Displacement Method on Manifolds [29]). The equivalence equal-
ity between respective fq-vectors on tangent state TqQ-space and fx-vectors on tangent
configuration Tx(q)X-space for given locally isomorphic1 x-map on

(
Q → X

)
-relation

corresponds to equivalence (2.13)-relation, for q-map on
(
X → Q

)
-relation such that(

x ◦ q = IdX, q ◦ x = IdQ

)
-equalities hold on open

(
X̃ ⊆X, Q̃ ⊆ Q

)
-sets.

fx = x∗ fq ⇐⇒ fq = q∗ fx (2.13)

We require a further toolset to clear away Lagrange’s λk-multipliers dependency. The
forthcoming statement originates from the dual vector spaces relation from linear algebra,
available in

(
[30], [31]

)
-textbooks. We represent these distributions and co-distributions

as well as their dual spaces respectively by
(
B,A,B⊺, A⊺

)
-letters.

Given codistribution spanned by {ai}na-covectors, its annihilator B-distribution spans
from C∞-class column {bn−na}-vectors, defined on [32]-textbook, such that variant as well
as covariant

(
aik b

k
j , b

j
k a

k
i

)
-products are equal 0 for the open Dai ∩ Dbj -set. It means the

velocity q̇-vector corresponds to the linear Bj p
j-span of distribution column bj-vectors.

Researchers Baruh and Tsai calls p-vector as quasi-velocities.

The A⊺kλ
k-contribution constrains the velocity q̇-vector to directions spanned by its

co-annihilators {bnb} on cotangent T ∗Q-space. As a further interpretation step, we left-
multiply (2.12)-equality by annihilatorB⊺-codistribution: It annihilatesA⊺-codistribution,
resulting in a constrained covariant derivative equality as follows.

B⊺D (∂q̇ℓ)−B⊺∂qℓ = B⊺ q∗ fx (2.14)

We expand the D
(
∂q̇iℓ
)
-derivative by chain

(
Dφ(x) = φ∗(ẋ) = (dkφ) ẋ

k := Lẋ φ
)
-

rule. In our case, the desired result corresponds to the expression below. In this work,
we consider Clairaut’s theorem2-compatible maps. The required map derivative exhibits
(2.14)-equality for differential d-operator.

D (∂q̇ℓ) := dq̇c (∂q̇ℓ) q̈
c + dqk (∂q̇ℓ) q̇

k

1An isomorphic x-map corresponds to a morphism with right and left inverse
(
x◦x−1 = IdX , x−1◦x =

IdY
)
-equalities.

2Clairaut’s Theorem states the 2-order derivative symmetry
(
∂i∂j = ∂j∂i

)
-equality, available on

[35]-textbook.
3The Levi-Civita connection corresponds to a well-defined unique affine symmetric operator on Q-

manifold endowed with parallel transport linear L-relation on tangential vector T Q-bundle that preserves
⟨·, ·⟩Q-metric
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Time derivatives on 2.14-expression represent map dependency on q-states and its ve-
locity q̇-vector. Velocity vector derivative Dq̇-operation is the usual acceleration q̈-vector
and corresponds to linear combination

(
(DBc) p

c+Bc ṗ
c
)
-span. We express the distribu-

tion derivative DBc-operation by the Lie derivative linear
(
d(Bc)Bb p

b := (LBb
Bc) p

b
)
-

span, here-denoted by Λcb.

B⊺ dq̇c (∂q̇ℓ) q̈
c +B⊺ dqk (∂q̇ℓ) q̇

k −B⊺ ∂qℓ = B⊺ fq (2.15)

We also require the differential
(
dqk (∂q̇aℓ) , dq̇c (∂q̇aℓ)

)
-terms with row and column(

a, c, k
)
-indexes, below.


∂qaℓ = mij;a q̇

i q̇j − ϱ; a
∂q̇aℓ = mij

(
δia q̇

j + q̇i δja
)
= maj q̇

j +mai q̇
i

dqk (∂q̇aℓ) = maj;k q̇
j +mia;k q̇

i

dq̇c (∂q̇aℓ) = mac +mca = 2mac

(2.16)

The above differential results substitution on (2.16)-equalities and velocity vector
derivative D q̇-operation leads to expanded (2.17)-format of equality left-hand-side (2.15)-
term.

B⊺a macBc︸ ︷︷ ︸
θac

ṗc +
1

2
B⊺a
(
maj;k B

j
b B

k
c +mia;k B

i
bB

k
c −mij;aB

i
bB

j
c + 2macΛcb

)
︸ ︷︷ ︸

Iabc

pb pc (2.17)

Due document spacing, we omit the potential
(
1
2
B⊺a ϱ; a

)
-contribution. Likewise, the

right-hand-side term on (2.17)-equality turns into constrained force 1
2
B⊺ q∗ fx-vector. Fi-

nally, the above equality left-multiplication by tensor inverse θda and equality
(
θda θac =

δdc
)
-property application leads to (2.18)-equality, the constrained geodesic curve differen-

tial equality.

ṗd + Idbc(q) p
b pc + (gradϑ ϱ)d(q) = fd

p (2.18)

It represents the geodesic γ(t)-curve on foliation i.e.
(
ϑ ⊆ Q

)
-submanifold en-

dowed with Θ-metric: it emerges from covariant derivative ∇ṗ ṗ-vector, by means of
the constrained Levi-Civita connection3, under potential map gradient vector gradϑ ϱ-
field and external force fp-vectors at

(
q ∈ Q

)
-point constrained by ϑ-foliation4. We

utilize the Hadamard’s equality
(∑

ij (A ◦ B)ij := tr (AB⊺)
)
-identity to define each row(

Id(q, p) := tr (Id p p⊺)
)
-element of constrained Christoffelian

(
I(q, p) ∈ Tq ϑ

)
-vector.

ṗ+ I(q, p) + gradϑ ϱ = fp (2.19)

Remark 4. The differentiable structure of constrained ϑ-manifold relies on metric inverse
Θ−1-tensor. Therefore, the domain open set corresponds to the collection of state points

4We remark on the composition of foliation ϑ by holonomic and non-holonomic coordinate frame
since its original Pfaffian distribution does not exhibit a particular holonomicity.
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q such that the equality det (Θ) ̸= 0 holds.

Bβ-Objects’ total potential ϱβ-map corresponds to the integral (2.20)-calculation over
each (Bβ ⊂X)-body. Given the object’s geometrical and inertial representation in con-
figuration X-manifold, by notation abuse, x-map brings state

(
q ∈ Q

)
-points to

(
x(q) ∈

X
)
-points and vice-versa. We adopt dense continuous measures for both local mass and

potential density
(
ρβ, µβ

)
-maps as well as metric g-tensor for configuration X-manifold.

∫
Bβ

µβ(x) dm =

∫
Bβ

ρβ µβ(x) dυβ =

∫
Bβ

ρβ µβ

√
|g| dnx x

=

∫
x−1(Bβ)

[(
ρβ µβ

√
|g| |dx|

)
◦ x−1

]
dnqq

(2.20)

The resulting dynamical Σ-system consists of the velocity q̇p-vector on product
(
Q ×

Tq ϑ
)
-space defined by the affine vector field below:

[
B p

−I(q, p)− gradϑ ϱ

]
+

[
0

IdTqϑ

]
fp (2.21)

Objects’ kinetic measure in classical mechanics corresponds to the sum of each β-
object kinetic continuous mβ

ij q̇
i q̇j-map. Each such map composes of translational and

rotational additional kinetic differentiable measures. Commercial computer-aided analysis
software embeds numerical algorithms to compute the inertial tensor given mass density
ρβ-map distributed over each Bβ-body.

For the current application, configuration X-manifold is our familiar 3-dimensional
Euclidean R3-manifold. The geometrical mβ

ij q̇
i q̇j-contribution follows below.

1

2
m̄ βv⊺g

βvg +
1

2
βω⊺ I βω (2.22)

Thus, the 2-form g-metric regarding the center of the mass point of each body, familiar
to geometers, follows on (2.23)-expression below.

1

2

∑
β

[
m̄ v⊺∗ v∗ 0

0 ω⊺∗ I ω∗

]
β

(2.23)

In the next section, we describe the input-output partial linearization control syn-
thesis for regular affine dynamical systems; its sufficient conditions under the given hy-
pothesis set, i.e. morphism construction and zero inner dynamics, in close. Finally, we
expose briefly the dynamic partial compensator for non-regular affine dynamic systems.
[36]-Textbook provides in 5-chapter an elucidative topic introduction. Further thematic
research is available in

(
[37], [38]

)
-works.
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The input-output partial linearization on affine dynam-
ical system

This section presents the partial linearization of smooth affine system structure as
described in A.22-appendix on smooth manifolds. Its description is to find standard
geometric control theory

(
[39], [40], [41], [36]

)
-textbooks. It aims to provide the main

concepts and educate the reader regarding the elements involved. [42]-Textbook provides
theme-related applications on this section, as well as Ph.D. [43]-thesis and [44]-reference.

Formerly, the desired procedure evaluates on output-point y given by smooth C∞-class
h-map on

(
X → Y

)
-relation to obtain a diffeomorphic φ-map from affine dynamical Σ-

system to a feedback equivalent linear system, even if partially. A prior necessary property
for the existence of such output h-map is called flatness, presented by authors Fliess et al.
on [45]-work. In usual control terms, flatness is a synonym to controllability. Since there
is such a map h, the next verification step is to test its observability.

Although the topic development accounts for the broad class of smooth dynamical
systems, we aim our attention on affine smooth dynamical systems. For simplicity, we
consider square input-output systems i.e. given nu-input and ny-output dimensions re-
spectively, we consider the family of the affine dynamical system such that the equality(
ny = nu

)
-condition holds. The current author remarks on research for the over- and

underactuated case, i.e.,
(
ny ≶ nu

)
-condition if there is insufficient work on the subject.

The control map

In this section, we present procedural statements for the construction of control u-map
with the goal to track the desired trajectory γ⋆(t)-curve by means of y-output given by
h-map on

(
X → Y

)
-relation. For brevity, the current author omits the local dependency

under subject for vector
(
f, gk

)
-fields as well as h-map if it is not confusion-prone from

context.

Lemma 2.4 ([40]). An affine dynamical Σ-system, defined in A.22-appendix, is exactly
linearizable if there is a (local) diffeomorphic φ-map from linear Z-space to X-manifold
and control u(x, v)-map such that the Σ-system is (partially) feedback equivalent to the
controllable linear affine dynamical system below:

Σ̃ :

{
ż = Az +B v

y = C z
(2.24)

The result above is strong enough to allow the following question: we pursue a φ-
diffeomorphism to bring an affine non-linear smooth system to a feedback equivalent affine
linear system on a coordinate (Z, φ)-chart.

Theorem 2.2. The control u-map on
(
X × V → U

)
-relation at (2.25)-expression con-

verts, partial or exact, an affine dynamical system Σ to the feedback equivalent linear 2.24-
form. The structure for

(
Aκ, Bκ, Ai, Bi, A, B

)
-matrices follows on (2.26)-equalities.

∆−1
(
yκ +Bκ

kv
k − Aκ

l z̃
l
κ − Lκ

fh
)

(2.25)
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Ai =

[
0δi−1,1 IdRδi−1

−ai
]

and Bi =

[
0δi−1,m

bi

]

A = blkdiag ({Ai}ny) and B =

 B
1

...
Bny


Aκ = blkdiag ({ai}ny) and Bκ =

 b
1

...
bny


C = blkdiag({e1i }ny

), for co-versor e1i ∈ R1×δi

(2.26)

Proof. Let us consider indexed output hi-map of the system under subject, then indexed
derivative D(j)yi-map is equal to Lie Lj

fh
i-derivative, for

(
j ∈ N∗

≤δi−1

)
-index. The system

exhibits the following form for j-index equal to relative δi-degree .

(yi)(δi) = Lδi
f h

i + (LgkL
δi−1
f hi)︸ ︷︷ ︸
∆i

j

uj (2.27)

The control u-map converts the non-linear affine dynamical system on A.22-appendix
to a, partial or exact, feedback equivalent linear dynamical Σ̃-system. For such, we
consider the error decay for

(
i ∈ N∗

≤n

)
-index below.

(ỹi)(δi) + aiδi−1(ỹ
i)(δi−1) + · · ·+ ai0ỹ

i = bijv
j (2.28)

Real
(
aik ∈ R

)
-coefficients, for k-index within 0 and δi − 1, correspond to monomials

of the characteristic polynomial whose roots are given by {λi, j}-set of δi
(
λij ∈ C−)-

eigenvalues. We define a new state δ coordinate (Xδ, φδ)-chart employing δ L(j)
f hi-maps.

Hence, the equivalent dynamical system on the constructed coordinate chart is linear and
the deviation velocity ˙̃zi-vector is below.

Ai
k(z̃

i)k +Bi
kv

k (2.29)

In the above description, z̃i-vector, for
(
i ∈ {ζi, · · · , ζi+1− 1}

)
-index5 corresponds to

output states and its δi−1 derivatives, given by map
[
z̃ζi · · · z̃ζi+1

]⊺-vector. A necessary
condition consists of controllable linear (Ai, Bi)-tuples. We assemble equality (2.27) to
obtain control equality below:

∆ju
j + Lκ

fh = yκ − Aκ
l z̃

l
κ +Bκ

kv
k (2.30)

The rearrangement and left-multiplication by resulting coupling (co-)distribution ∆−1
q -

inverse on regular
(
q ∈ Q

)
-points brings the control u-map on (2.25)-expression to

light. ■

5Definition of accumulated relative degree ζi is on appendix.
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The poles for the deviation polynomial are relevant for system tracking precision and
dynamic behavior. 2.5-Lemma provides physical time constants intuition for the one-
variable case. The systematic is similar to the multivariable case, such that λ-factor
corresponds to the eigenvalue with the greatest real part negative magnitude.

Lemma 2.5. Given an ordinary differential linear
(
ẋ = −λx

)
-equality , λ ∈ C−, than

the states come close to 0 by a p-factor on time Tp-scalar if the real R{λ}-part corresponds
to real

(
− 1

Tp
ln p
)
-constant.

Proof. The x(t)-solution for the proposed equation is eλ t x0. For decay time Tp-constant
and x-point at this instant as

(
x(Tp) = p x0

)
-equality, then the steps to obtain λ-factor

follow.

exp (λT )x0 = p x0 ⇐⇒ λ =
1

Tp
ln (p) (2.31)

■

We complete the φδ-map composed by δ maps relative to y-outputs and its δi Lie-
derivatives with a ψ-map of

(
n− δ

)
-dimension.

The diffeomorphic state-coordinate map

Given output h-map, the interpretation of diffeomorphic φ-map as a coordinate map
of coordinate (Z, φδ)-chart to X-manifold is natural by the collection of δi output Lie
derivatives as a new coordinate map.

For system dimensionality and geometry constraints, it is impossible to exist a diffeo-
morphism of nx-dimension only by choice of δ maps, lesser than state manifold dimension.
Hence, we must choose a map ψ to obtain the required morphism.

In a broad sense, it is not simple to acquire the necessary ψ-map. Additionally,
for given ψ-map, the inverse φ−1(φδ, ψ)-map may require cumbersome implicit maps. A
possible choice procedure for ψ-map is e.g. to annotate missing variables of acquired Lie-
derivative zi-maps and aggregate them as map-elements ψ-vector. In this way, we bring
ease to the inverse procedure. The unavoidable drawback of the inverse φ−1-computation
corresponds to its Dφ−1-domain.

zi =


L0
fh

i

L1
fh

i

...
Lδi−1
f hi

 , φδ =

z
1

...
zp

 , φ =

[
φδ

ψ

]
(2.32)

Remark 5. The resting
(
xe ∈Xe

)
-points of the original affine dynamical Σ-system remain

unchanged by this map since the
(
(Lk

f φ) (xe) = (φ∗ ◦ f) ◦ xe := 0
)
-equalities hold.



35

The zero dynamics

The zero dynamics refers to the geometrical locus of initial x0-points such that flow
trajectory ϕ(τ, x0)-curve is indistinguishable from observation output (h ◦ ϕ)(τ0, x0, t)-
map and equal to 0. Author Isidori provides an instructive bibliographic review of its
historical evolution and influence on controller synthesis strategies in [46]-textbook: It
relates to the observability concept of dynamical systems, available on [47]-work. Related
to system observability, the zero dynamics of nonlinear dynamical systems are equivalent
to transmission zeros on multivariable linear systems. For this concept, an interested
reader may refer to

(
[48], [49]

)
-textbooks.

Lemma 2.6 ([36]). An affine dynamical Σ-system exhibits zero dynamics if its total
relative δ-degree is lesser than the

(
nq + np

)
-dimension of product

(
Q × Tϑ

)
-manifold.

Map ψ on diffeomorphic map (2.32) represents a such complementary map. The
first-order Dψ-derivative on the (2.33)-expression represents the system zero-dynamics
respective to ψ-map. Since it does not exhibit any particular structure, its stability
analysis depends on the system under study.

ψ∗ ẋ = Lf ψ + (Lgi ψ)u
i (2.33)

Observation and tracking maps as outputs

We consider a further extension for affine dynamical Σ-system by an observation ho-
map. The additional requirement is to design a tracking control û-map, with hat notation
long description explained shortly, of trajectory curve y defined by h-map through its
ho-observations along time. The above-obtained control map requires available states
to evaluate the control map. Hence, it is sufficient for the observation ho-map to be
observable on interest regions according to A.5-criterium in appendix such that it allows
control û := u(x̂, v(x̂))-map to converge to desired input u(x, v)-map.

Since the under-study system requires observability according to map ho, an observer
development solves the state reconstruction issue. In the linear case, we dispose of the
linear Luenberg observer based placement and Kalman filter based on noise mitigation for
the observable case. Several nonlinear observers’ propositions are on [50]-work. For the
current work, our interest is the state estimation for affine systems. The current author
may cite constructive research

(
[51], [52], [53]

)
-sources.

The dynamic extension for non-regular systems

The dynamic extension algorithm stems from the partial linearization procedure in
the rank-deficient decoupling ∆-distribution case. In such a case, its rank is 0 for every(
x ∈ X

)
-state. We find the solution for the issue in textbook [41]. It consists of an

extension by r integrators, input u-vector redefinition for some new w-input, followed
by the usual well-known output derivation procedure until the input w appears again.
It iterates until the decoupling matrix exhibits full rank for some non-empty open set.
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The current author summarizes the algorithm from [41]-textbook to the computational
1-algorithm in C-appendix.

A natural question about the abovementioned procedure concerns its stop criterium.
From intuition, the extended total relative degree must be lesser than (nx + nu)-cardinal.
Sastry on his [41]-textbook provides a stop criterium by regularity assumption: at each
iteration step, if the decoupling ∆k-matrix exhibits constant rank on some non-empty
neighborhood

(
Wk ⊆X

)
-set, then the algorithm will terminate in at most nx iterations.

Hence, the extended system has a well-defined vector relative κ-degree, and the com-
pensator exhibits an affine dynamic system structure as on (2.34)-equalities. A detailed
version about regularity i.e. system invertibility is in

(
[54], [37]

)
-references.

ż = a+ biw
i

u = α + βj w
j

(2.34)

The linearization control strategy of affine dynamical systems extends to approximate
control maps for a particular family of affine systems: in such case, we consider topological
obstructions on the Σ-structure e.g. regions of non-regular coupling distribution or disjoint
submanifolds. We remain on extended non-regular systems, but an interested reader may
refer to illustrations in the respective linearization chapters in the [41]-textbook.



37

3 SOURCE SEEKING EXPLORATORY
REFERENCE CURVES

“There are no wrong turnings. Only paths we
had not known we were meant to walk.”

-- Guy Gavriel Kay, Tigana

Source seeking requires a dynamic agent to acquire signal data and estimate the
source position locus. Hence, we require a reference tracking curve to reach its estimation
point. The current chapter brings design ideas regarding continuous curve synthesis.
Necessary conditions for trajectory synthesis correspond to boundary conditions on start
and end points6. Since reference γ⋆(t)-curve is free to choose, it disposes of creative design
opportunities.

Physical systems may exhibit particular topological behavior respective to their kine-
matics. Among others, our interest constrains the movement. Slippage might appear and
is critical but not relevant to the current work. Nevertheless, the driftlessness hypothesis
requires constrained reference trajectories on X-manifold. The following sections develop
some possible strategies for trajectory design. Manfredo Perdigão’s [55]-textbook is a
proper textbook for here-presented concepts.

As smooth continuous

Reference trajectory planning consists of curve synthesis which may not violate kine-
matic constraints and obeys established configuration points. Among possible algebraic
linear basis for trajectory time-series, we choose canonical basis as (3.1)-sets, for some
natural

(
n, k ∈ N>1

)
-constants, as observed on [56]-work. The current author provides

several numerical and graphical examples in 6-chapter.


{1, t, · · · , tn}
{1, et, · · · , en t}
{1, tk cos(2πm t), tk sin(2πm t)}

(3.1)

A common-used interpolation curve constitutes on the Bézier’s curve. It coincides
with given end-points on its extrema and control points in-between “pull” the curve to-
wards them. It is a natural choice for mobile robots’ path planning since it fulfills the
coincidental extrema and orientation conditions and is suitable for the constrained case as
shown in [57]-work. Bi(α)-Monomial on (3.2)-expression aids P (t)-curve definition within
time [t0, t1]-interval, given by (Bi Pi)-summation in Einstein’s sum convention. Bézier

6We call "start" and "end" points in computer science as head and tail points.
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monomial Bi depends on simplex linear α(t)-map, given by t−t0
t1−t0

-ratio, both available on
3.2-expression below.

(
n
i

)
αn−i (1− α)i (3.2)
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Figure 2: Bézier’s curve examples for (non-)concurrency regarding orientation on B-point
to A-point. The blue crosses correspond to points added after and before the extremal
points.

Figure 3: Bézier’s curve and its first deriva-
tive. The (⋆, ■)-markers designate respec-
tively the curve start and endpoints.

For plausibility, it may not be possi-
ble to either design or perform trajectories
from initial to final poses. For instance, we
consider the following examples: formerly,
the extended line over each point orienta-
tion does not contain one another, and in
the latter, it does contain.

We solve the above issue under Bézier’s
curve design. A useful Bézier’s curve prop-
erty follows on 3.1-definition. It suggests
further addition of after and before points
to start and end

(
P0, Pn

)
-points on ε-

weighted orientation directions.

Definition 3.1 (Bézier’s curve interpo-
lation property). Given boundary points
{Pk}k∈N[1,np]

-set, Bézier’s curve velocity
Ṗ (t)-vector is tangent to the connecting
lines between points

[(
P0, P1

)
,
(
Pn−1, Pn

)]
-

tuples.

Bézier’s P (t)-curve contains a recursive version, the Casteljeau’s Algorithm, on (3.3)-
expression, to consult on [58]-work. Since trajectory tracking requires a finite set of
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curve derivatives, its computation in summation form is computationally intensive. The
recursive P i

j (t)-form brings ease to both curve and derivative computations.
(
i, j
)
-Indexes

belongs respectively to ordered index
(
In, In−i

)
-families.

(1− t)P i
j−1 + t P i+1

j−1 (3.3)

The equation above allows us to compute arbitrary explicit derivatives for Bézier’s
curve. Hence, its k-derivative emerges from the following claim.

Claim 3.1. The recursive k-derivative (P i
j )

(k)(t)-curve of recursively defined Bézier’s
(3.3)-curve corresponds to formation (3.4)-rule.

{
(1− t) (P i

j−1)
(k) + t (P i+1

j−1)
(k) + k

(
(P i+1

j+1)
(k−1) − P i,(k−1)

j−1

)
, on

(
k < j

)
-condition,

k (P
i+1,(k−1)
j−1 − P i,(k−1)

j−1 ) , on
(
k = j

)
-condition

(3.4)

Proof. We utilize the finite induction concept for proof construction. The first and second
derivatives are below. We here-denote i-row and j-column. The term related to condi-
tion

(
j = k

)
-equality also comes by finite induction: since

[
(P i

1)
(1) = P i+1

0 − P i
0

]
-identity

as well as
[
(P i

2)
(2) = 2 (P i+1

1 )(1) − (P i
1)

(1)
]
-identity, than we conclude the k-derivative is

k (P i+1
j−1)

(k−1) − (P i
j−1)

(k−1)

(P i
j )

(1) = (1− t) (P i
j−1)

(1) + t (P i+1
j−1)

(1) + P i+1
j−1 − P i

j−1

(P i
j )

(2) = (1− t) (P i
j−1)

(2) + t (P i+1
j−1)

(2) + 2
(
(P i+1

j−1)
(1) − (P i

j−1)
(1)
)

... =
...

(P i
j )

(k) = (1− t) (P i
j−1)

(k) + t (P i+1
j−1)

(k) + k
(
(P i+1

j−1)
(k−1) − (P i

j−1)
(k−1)

) (3.5)

■

We present in 3-Fig both batch and recursive curve derivatives. Although naively
given by the close-related formulas, they are not coincidental. The current author encour-
ages future readers to comprehend this algebraic difference.

As piecewise continuous

There are cumbersome choices of discontinued trajectories i.e., reference discrete com-
mands to physical systems to achieve specific points. Despite the familiar concept of
continuous control maps, piecewise continuous trajectory curves are less recurrent in lit-
erature. We begin with a velocity-driven system and extend it to acceleration.

For simplicity, consider a constrained system by the following approach: Given initial
and final pose configurations of a differential robot, also known as Dubin’s car, we look
for a curve synthesis procedure in finite time on points (A → B)-relation. Sastry on his
[41]-textbook suggests two possible trajectory families: piecewise constant and optimal
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trajectories. For practical issues under the jurisdiction, an optimal curve is not necessary,
although possible. Hence, a naïve choice of a piecewise constant path satisfies given
boundary constraints.
Proposition 3.1. Let us compose a γ(t)-curve by two time intervals: a former rotation
with constant angular ω0-speed and a latter translation with linear v0-speed. From previous
kinematic parameters, we set the steering (∆t1, ∆t2)-intervals according to

(
θ1−θ0
ω0

, d
v0

)
-

tuple7.

A time-variant choice for angular and linear speed
(
ω, v

)
(t)-curves smooth transitions

out. The smoothed transitions between lower and upper step values avoid abrupt, also
known as non-Lipschitz, control map measures. Among the possible smoothstep time
series, we consider a normalized Sn(α)-polynomial, for an arbitrary natural n-degree on
its definition (3.6)-expression.


0 if α ≤ 0
n∑

k=0

(
n+ k
k

)(
2n+ 1
n− k

)
(−α)k+n+1 if 0 ≤ α ≤ 1

1 if 1 ≤ α

(3.6)

Figure 4: Smoothstep polynomial map for maximal
[
1 2 3 4

]
-degrees.

As mentioned above, trajectory derivatives are necessary curves for the control map
computation. For the ns-derivative D(ns) Sn(x)-curve, we follow (3.7)-formula. Since the
polynomial ring family belongs to C∞-class, we may differentiate (3.7)-map respective to
α-variable a

(
n+ 1

)
-cardinal times and beyond.


0 if α ≤ 0 ∨ α ≥ 1
n−ns∑
k=0

(−1)k
(
n+ k

k

)(
2n+ 1

n− k

) (
n+ k + 1

ns

)
αn+k−ns+1 if 0 ≤ α ≤ 1

(3.7)

7For the Euclidean Rn-space, θ1-angle is equal to arg (P1 − P0)-formula and d-distance is equal to
∥P1 − P0∥-norm.
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A question remains about curve scale: since the above map presents unitary ampli-
tude, the scale σ-map on

(
[−1, 1] × R2 → a+b

2
+ b−a

2
x
)
-relation translates and scales,

for
(
a, b
)
-parameters as lower and upper step bounds. Also, we require inverse σ−1

x -
map respective to x-entry i.e. σ−1

x (a, b, y)-map on
(
[a, b] → [−1, 1]

)
-relation, given by(

− a+b
b−a

+ 2
b−a

y
)
-formula. Therefore, for instant [t0, t1]-interval and given lower and upper(

m−,m+

)
-bounds, we obtain the scaled smoothstep S(t)-map by cascade composition

σ(m−, m+, x)|x=(Sn ◦σ−1
x )(t0, t1, t)-map.

Alternatively, we compose a piecewise smooth continuous curve of straight lines and
circular arcs. The circular arc loci are not coincidental but appear for finite constant
angular and linear speeds. Among theme-concerned researchers, authors Dubins, Reeds
& Shepp develop extensively minimal curves in Euclidean R2-space in

(
[59], [60]

)
-articles.

The pairwise point-to-point trajectory planning (P2P for short) consists of develop-
ing a piecewise line-circle-based curve. Among possible configurations, we describe the
trajectory synthesis below.

A

B

O

C

D

E

a. Line-arc-line trajectory

C1 C2

D1 D2

O1

O2

E

A

B

b. Arc-line-arc trajectory

Figure 5: Piecewise circle-line-based continuous curve

Proposition 3.2 (5a.-Figure). Given
(
A,B

)
-points and respective

(
r̂0, r̂1

)
-orientations,

we depict on 5a.-Figure a piecewise smooth γ(t)-curve between these two points by below
formulation.


A+ v0 t r̂0 t ∈ [0, t0]

ρ

[
c(ω (t− t1) + ϕ)

s(ω (t− t1) + ϕ)

]
−O t ∈ (t0, t1]

E + v2 (t− t2) r1 t ∈ (t1, t2]

, for


t0 = α d(A,D)

v0

t1 = t0 +
CÔE
ω

t2 = t1 +
d(E,B)

v2

-instants. (3.8)

Proof. γ(t)-Curve exhibits notable
(
C,D,E,O

)
-points on 5b.-figure. Given orientation
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column
(
r̂0, r̂1

)
-vectors respective to

(
A,B

)
-points, then C-point comes from the conju-

gate point
(
D := A+ µ r̂0 = B + λ r̂1

)
-equality, for real-valued

(
µ, λ ∈ R

)
-constants. We

build a solution up on (3.9)-equality.

[
µ
λ

]
= A−1

µλ bµλ, for parameters

{
Aµλ =

[
r̂0 −r̂1

]
,

bµλ = B − A
(3.9)


D = A+ µ r̂0, µ ∈ R
C = A+ d(A,C) r̂0, such that d(A,C) = α d(A,D)

E = D + d(C,D) r̂1, such that d(C,D) = (1− α) d(A,D)

(3.10)

Since we require existing solution(s) for (3.9)-equality, determinant det (Aµλ)-map
must not be null: it is necessary and sufficient for orientation r̂i-vectors to be non-parallel.
Furthermore, conjugate D-point must exist. In the same manner, as for conjugate D-
point, O-point corresponds to a conjugate point of straight lines (i.e. geodesic curves)
given by the point-vector

[
(D, s0), (E, s1)

]
-tuples, for every si-vector such that

(
⟨r̂i, si⟩ =

0
)
-equality holds. Hence, it corresponds to a solution on

(
O := D + υ s0 = E + τ s1

)
-

equality, for real-valued
(
υ, τ

)
-constants.

[
υ
τ

]
= A−1

υτ bυτ , for parameters

{
Aυτ =

[
s0 −s1

]
bυτ = E −D

(3.11)


ρ = d(O, D) = ∥O −D∥2
ω = v1

ρ

ϕ = tan −1(arg (C +O))

(3.12)

Additionally, the argument between
(
CD,CE

)
-segments i.e. CD̂E-argument, sup-

plemental in flat space to argument CÔE given by computation arg (−r0, r1). Therefore,
CD̂E-argument is equal to π − arg (−r0, r1). The corner case is once more the paral-
lel orientation, which leads to null CÔE-argument. Finally, we describe the γ(t)-curve
with initial and end

(
A,B

)
-points by γ3(t)-parametrization equal to E + (v2 r̂1) t, for

t ∈
[
0, d(E,B)

v2

]
-instant. The local parametrization by t-instant starts from the absolute

instant on A-point, here as null 0-constant.


A+ v0 r0 t t ∈ [0, t0]

ρ

[
c(ω (t− t1) + ϕ)

s(ω (t− t1) + ϕ)

]
−O, t ∈ (t0, t1]

E + v2 r1 (t− t2) t ∈ (t1, t2]

, for


t0 = α d(A,D)

v0

t1 = t0 +
CÔE
ω

t2 = t1 +
d(E,B)

v2

(3.13)

■

The above proposition provides a systematic procedure to obtain the trajectory curve
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from
(
A,B

)
-points with given

(
r̂0, r̂1

)
-orientations. However, in a counter-example pur-

suit, the 3.2-proposition algorithm fails to design a trajectory if given orientations are
(quasi-)parallel: the arc sector decreases monotonically to zero, infeasible for the case of
finite angular speed.

We present a trajectory curve candidate without the drawback mentioned above in
5b.-figure. Differently from the former, it constitutes an arc-line-arc partition. Its main
kinematic properties to obtain ri-radii, ϕi-argument and Oi-point, for

(
i ∈ {0, 1}

)
-index,

follows below. Their main properties were firstly given by Dubins on [59]-work.

Lemma 3.1 ([59]). Given non-tangent
(
O0, O1

)
-circles, we obtain the inner tangent lines

through finite logical steps of geometric and analytic relations on manifolds.

C1

C2

D1

D2

O0

O1
E

ℓ0
ℓ1

ρ0

ρ1
d0 d1β

β

β

β

Figure 6: Inner tangent lines to non-tangent circles 0 and 1

Proof. We start this proof statement with d(O0, O1)-distance between circle center
(
O0, O1

)
-

points equal to d01, given by
(
d0 + d1

)
-sum. The conjugate E-point of

(
C1D1, C2D2

)
-

segments divides O0O1-segment into two
(
O0E,O1E

)
-segments with respective

(
ℓ0, ℓ1

)
-

lengths. From triangle likeness in a flat space8, we conclude that d0-distance corre-
sponds to r0

r1
d1-expression. Thus, it leads to equivalence

(
d01 =

(
1 + r0

r1

)
d1 ⇐⇒ d1 =(

r1
r0+r1

)
d01

)
-relation, which we recognize the simplex r1

r0+r1
-term. The resulting distances

d0 and d1 turns into
(
(1− α) d01, αd01

)
-computations.

From Pythagorean relation in flat space, the (ℓ0, ℓ1)-lengths between tangency and
interception points corresponds to (

√
d20 − r20,

√
d21 − r21)-tuple. Finally, we calculate in-

terception E-point equal to weighted
(
(1− α)O0 + αO1

)
-sum. O0ÊC1-Argument, equal

to O1ÊD1 in flat space and here-denoted by greek β-symbol, is useful to obtain tangency
points, on (3.14)-equalities.


C1 = E +R(β) Ô0E ℓ0

C2 = E +R(−β) Ô0E ℓ0

D1 = E +R(β) Ô1E ℓ1

D2 = E +R(−β) Ô1E ℓ1

, with β equal to arctan 2

(
ρ0
d0
,
ℓ0
d0

)
(3.14)

8For triangulation in a curved space, we require the famous Gauss-Bonnet theorem. It relates to a
two-dimensional manifold with its K-curvature, geodesic kg-curvature, and its Euler χ(M)-characteristics
on polyedric enclosed geodesics.
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■

a. Clockwise-anticlockwise trajectory b. Anticlockwise-clockwise trajectory

Figure 7: Feasible curves from origin point oriented on 0 rad to [1, 1]⊺-point on π
4

rad.

Proposition 3.3 (7-Figure). Given continuous γ(t)-curve on 3.1-lemma and circles on
6-figure, the piecewise

(
γ1(t), γ2(t), γ3(t)

)
-curves on curly-braced (3.15)-map connects both

given
(
A,B

)
-points by boundary

(
r0, r1

)
-orientations.



r0

[
c(ω0 t+ ϕ0)

s(ω0 t+ ϕ0)

]
+O0 t ∈ [0, t1]

C + v01 (t− t1) ĈD t ∈ (t1, t2]

r1

[
c(ω1 (t− t2) + ϕ1)

s(ω1 (t− t2) + ϕ1)

]
+O1 t ∈ (t2, t3]

(3.15)

for instant (t1, t2, t3)-tuple given by relations below:

(
AÔ1C

ω0

, t1 +
d(C,D)

v01
, t2 +

BÔ2D

ω1

)

Proof. The available data on the issue corresponds to the start and end
(
A,B

)
-points, and

their respective
(
r0, r1

)
-orientations. Thus, it is free and reasonable to choose each circle

radius by the distance ratio between
(
A,B

)
-points, such that the sum of both does not ex-

trapolate the actual d(A, B)-distance. Formally, we obtain necessary
(
ρ0+ρ1

!

≤ d(A,B)
)
-

condition, or also given by simplex-proportional
(
α0 d(A,B), α1 d(A,B)

)
-scalars such that(

α0 + α1 ≤ 1
)
-condition holds. Similarly, center

(
O0, O1

)
-points belong to lines extended

by perpendicular
(
0, 1
)
-orientations, respectively. Therefore, from the perpendicularity

condition, we obtain ri-orientation and perpendicular si-vector, for
(
i ∈ {0, 1}

)
-index,

there are four possible center points, here-denoted by superscript ±-notation.
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O±
0 = A± ρ0 s0

O±
1 = B ± ρ1 s1

(3.16)

We look for the sufficiency of point
(
C,D

)
-tuple: it emerges from curve smooth-

ness and continuity criteria. For curve γi(t)-parametrization on (3.17)-expression and
at ti-instant, curve γi(ti)-point coincides respectively to

(
C,D

)
-pointsin. As such, the

orientation compatibility
(
γ̇i(ti) = γ̇i+1(ti+1)

)
-equalities must hold.

ρi

[
cos (ωi t+ ϕi)
sin (ωi t+ ϕi)

]
+Oi, for

(
i ∈ {0, 1}

)
-index (3.17)

Since we obtain two argument ϕi-solutions, we require a disambiguation condition:
at both

(
t1, t2

)
-instant, the orientation of normalized velocity ̂̇γ-vector must coincide due(〈

ĈD, ̂̇γ(tj)〉 = 1

)
, for

(
j ∈ {1, 2}

)
-index. Hence, we may choose the shortest length

γ(t)-curve.

Finally, we compute the time interval tuples and respective (t1, t2, t3)-timestamps.
Firstly, we assign Qi-notation to element on ordered point {C,D}-set and Q̄-point to
its complement, as well as

(
P, P̄

)
-points belongs to ordered point {A, B}-set. It means,̂̄QQ-argument corresponds to either D̂C-argument or ĈD. Therefore, the time inter-

vals for each curve piece correspond to
(

φi

ωi
, d(C,D)

v01
, φi

ωi

)
-tuple, for φi-argument equal to

arg (Q−Oi, P −Oi) and
(
i ∈ {0, 1}

)
-index. ■

a. Clockwise-anticlockwise orientation

Figure 8: Trajectory s(t)-curves from 7-figure and its derivative
(
ṡ, s̈,

...
s
)
(t)-curves



46

b. Anticlockwise-anticlockwise orientation

In mobile robotic applications, it is common for agents to navigate on flat obstacle-free
surfaces. However, these are unrealistic conditions since, in most compelling commercial
and industrial applications, robots navigate among obstacles and humans on a topologi-
cally curved surface. This requirement suggests developing obstacle avoidance strategies
for free-collision steering around navigation space.
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4 OBSTACLE AVOIDANCE IN SOURCE
SEEKING

“You measure the size of the accomplishment by
the obstacles you must overcome to reach your

goals.”

-- Booker T. Washington

From a navigation perspective, a common obstacle representation relies on a surface
definition with low curvature near target points and high curvature nearby obstacles.
Although this approach is possible, it creates moral-equivalent local minima by a combi-
nation of positive and negative curvatures: the competing attraction and repulsion forces.
Paternain et al. on [61]-work deal with this duality by exponents and map root evalua-
tions. Such arguments are unreasonable for practical matters: they smooth zero–gradient
points out and flatten space enough to turn applications numerically ineffective.

Common strategies in control theory set velocity equal to map gradient. Likewise,
Newton sets accelerations similar to forces, and Koditschek sets robot torques equal to
gradients. Geometry innovates on the issue with pertinent concepts: by space endowment
with a Riemannian metric, such that each point has a continuous obstruction measure,
which relates to its curvature.

The above procedure embeds a 2D surface in 3D space: the two plane coordinates
plus obstruction degree. The Riemannian metric components for the defined surface
is a routine calculation procedure, dependent on closed-form derivative computation —
explicit formulas are to consult in

(
[55], [62]

)
-textbook. Curves nearby inaccessible points

are long and the shortest curve between two points avoids obstacles.

The equivalent concept to straight lines in Riemannian geometry is geodesics. Un-
less accelerated, robots move on geodesics: it reinforces the argument of second-order
movement by an acceleration set instead of velocity as the input signal. In flat geometry,
the velocity derivative along straight lines is zero. Additionally, following geodesics with
constant speed means zero covariant derivatives of velocity γ̇-vector respective to itself.
The curvature related to space metric g-tensor corresponds intuitively to a virtual force:
it pushes trajectories away from inaccessible points. Navigation now consists in moving
towards the goal over short distances.

In summary, the approaches under consideration in this introduction are:

1. Paternain et al. approach sets torque proportional to map gradient vector field:
descent direction may climb walls up and geometry-related “fictitious forces” slow
movement down. It leads the robot to resort to moral-equivalent local minima;
Workaround : add exploration terms in varying directions. As avoiding-obstacles
movement are easier than otherwise, the exploration efforts move the robot away
from the configuration stuck points.
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2. Geodesic curve frequent computation from the current point to the desired destina-
tion: it is hard to compute and may not be unique.

Workaround : perform offline at–the–large computations, leaving fine-tuning local
calculations for explicit formula. A close approach investigation requires further
differential geometry research.

3. Recursive optimization of error plus distance: it also requires further research de-
velopment;

Obstruction geometry

As mentioned in this chapter introduction, the obstruction surface requires high cur-
vature values near obstacles respective to its base surface. A manner to represent obstacles
on manifolds is by compact submanifolds, with or without borders. Geometrically, a pos-
sible construction procedure for obstacles constitutes “glued" submanifolds by application
of the lemma for smooth manifold construction from [63]-textbook.

From an engineering perspective, we require algebraic explicit expressions for surface
construction and further computation of local and global geometrical properties on the
state Q-manifold. Dombrowski develops in [64]-work the required geometrical equalities
for geodesic calculation on implicit-defined submanifolds. The main constructive results
follow below.

Definition 4.1 (Submanifolds defined by implicit equalities). Let us define a n-dimensional
C∞-class Riemannian X-manifold endowed with inner ⟨·, ·⟩X-product i.e. metric g-tensor.
Additionally, let us define implicit real-valued maps {φm}-set on a base X-manifold, such
that vector gradX

p φi-fields are linearly independent. Thus, we define the F-submanifold
given by set-defined (4.1)-region.

{p ∈X |φµ(p) = 0, for index µ from 1 to m} (4.1)

Theorem 4.1 ([64]). Let c-curve on
(
[α, β] → X

)
-relation represent C∞-class curve

in manifold X such that velocity vector
(
ċα ∈ Tc(α)F

)
-field. The below statements are

equivalent:

1. c is a geodesic curve on Riemmanian F-submanifold9

2. c satisfies the differential (4.2)-equality below:

X

∇D ċ = −
m∑

λµ=1

(Φλµ ◦ c) hessXφλ(ċ, ċ) c
∗ gradX φµ (4.2)

Remark 6. In Einstein’s sum convention, the geodesic curve differential (4.2)-equality
exhibits format as on (4.3)-equality. Gramian Φλµ-matrix is a symmetric-defined regular
matrix.

9A geodesic c-curve in X-manifold exhibits null covariant derivative
( F

∇D ċ = 0
)
-equality.
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X

∇D ċν = −Υν
µΦ

µ
λ η

λ (4.3)

The required column/row-defined
(
Υµ, η

λ
)
-matrices follow below.

Υµ = c∗ gradX φµ

ηλ = hessX φλ(ẋ, ẋ)
(4.4)

Example 4.1 ([64]). The canonical Euclidean Rn-manifold with canonical Euclidean(
⟨a, b⟩ :=

∑
i

ai bi

)
-metric, for (a, b ∈ T Rn)-vector given on positive-oriented canonical

vector ei-basis10 of a C∞-class oriented Riemannian Rn-manifold.

Let
(
Di :=

∂
∂xi ∈ ε(TRn)

)
-operator represent the right-invariant vector field derivative

operator of n-Euclidean Rn-manifold. For every (φ ∈ C∞(Rn))-map, the i-column entry
of pushforward φ∗-covector, corresponds to the i-partial derivative (Diφ)-operation on its
Dφ-domain.

For every (p ∈ Rn)-point and (v ∈ TpRn)-vector, we define the
(
viDi|p

)
-operator.

In case of f -map is a C∞-class map from N-manifold in Rn and a vector operator
(Z ∈ ε(f ∗ T N))-field, thus the Z-map on (Df → Rn)-relation is a real-valued Cn-class
n-tuple vector field on (Z1, · · · , Zn)-basis with Z-domain DZ given by equalities below.

Z =
∑
i

Zi(f
∗Di), i.e. Zp =

∑
i

Zi(p)Di|f(p) for every (p ∈ DZ)-point (4.5)

For the covariant derivative operator on Rn-space, it follows from (4.5)-equality:

(∇XZ)i = X Zi, for every vector (X ∈ ε(TN))-field (4.6)

Also, in case of (N ≡ Rm)-condition holds:

(∇XZ)i = (Ziµ)X
µ for every vector X ∈ ε(TRm)-field (4.7)

Therefore, let C∞-class c-curve on ([α, β]→ Rn)-relation curve and first-derivative
D-operator, thus the velocity ċ-vector field identities below holds:

(ċ)i = D ci and (∇D ċ)
i = DDci (4.8)

Finally, we describe in A-appendix the gradient vector field and 2-form Hesse tensor
of each (φ ∈ C∞(Rn))-map respective to the canonical Riemannian metric on canonical
n-Euclidean Rn-manifold.

Theorem 4.2 ([64]). Given X an C∞-class open submanifold of Euclidean Rn-space,
thus according to 4.2-equality, the geodesic (4.9)-equality holds:

10The column (ei ∈ Rn)-vector exhibits real 1 at i-index and 0 otherwise. We also represent it by
j-row δji -element.
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c̈h = −
n∑

i, j=1

(
m∑

λ, µ=1

(Φλµ (DiDjφ
λ)Dhφ

µ) ◦ c

)
︸ ︷︷ ︸

Γh
ij

ċi ċj (4.9)

From terms verification, the second-kind Christoffel Γh
ij-map corresponds to the in-

ner sum on (4.9)-equality. The term benefits from Hadamard product due its identity
(x∗ (A ◦B) y = tr(diag (x)∗A diag (y)B⊺))-property. For entries of column vectors x and
y equal to 1’s, the respective property becomes tr (AB⊺)-expression. Hence, the Christof-
fel Γh

ij-map corresponds to concise tr (Φφ;h φ
⊺
; ij)-term.

Likewise, the (4.9)-equality benefits as well from this property. Finally, the Christof-
felian column (Γ(c, ċ) ∈ TqQ)-vector results from local geometrical description and ex-
hibits h-row tr(Γh ċ ċ⊺)-element. Finally, the geodesic curve differential equality for every
(t ∈ R≥0)-instant follows:

c̈+ Γ(c, ċ) = 0 (4.10)

Lemma 4.1 ([63]). There is a countable covering coordinate (Uα, ηα)-chart of Riemma-
nian X-manifold around a vicinity X̃-region to ((p := ηα(u)) ∈X)-point, in such geodesic
curve 4.10-equality and composition φ ◦ ηα-map hold.

Lemma 4.2. There is a countable covering coordinate (Uα, ηα)-chart of Riemmanian X-
manifold around vicinity ηα(U)-region of (p ∈X)-point such that geodesic (c(t) ∈ ηα(Uα))-
curve on (t ∈ [0, 1])-interval, maps to (ω(t) ∈ Uα)-curve given by η−1

α (c(t))-map and pull-
back vector η∗αċ-field equal to ((η−1

α )∗ ◦ η−1
α ◦ c) ċ-expression.

Remark 7. The evaluation of geodesic (c(t) ∈X)-curve by inverse η−1-map, for given
coordinate (U, η)-chart, confirms the common-sense of curved lines on the respective
chart.

Algebraic-based surfaces are convenient from an engineering perspective due to numer-
ical computation. On Dombrowski’s [64]-work, there are real and complex-valued surface
examples. The forthcoming examples illustrate well-known algebraic-defined surfaces:
quadrics offer standard surfaces set in 3-Euclidean R3-manifold. Among its benefits, its
tensorial compact expression has explicit derivatives and geodesic curve formulas. Thus,
it models common real surfaces like planes, paraboloids, and spheres.

Example 4.2. Let us define a quadric surface as a submersion of EuclideanR3-space given
by (x⊺Ax+ p⊺ x+ r = 0)-equality, for (A ∈M3(R))-matrix and column (p ∈ R3)-vector.
This topological locus exhibits both expanded

(∑
kl akl x

k xl +
∑

q pq x
q + r

)
-expression

and alternative parametrization ((x− x0)⊺A (x− x0)− 1)-versions11.

The required gradient vector and Hesse bilinear form for geodesic computation are
below to consult:

{
Dxφ = (A+ A⊺)x+ p

DxD
⊺
xφ = A+ A⊺

(4.11)

11In alternative parametrization, the origin point depends on (p, r)-variables, respectively given by(
H x0, x

0 Ax0 − 1
)
-expressions.
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(H := A+ A⊺)-Matrix12 emerges naturally from the quadric map first-derivative op-
erator. The Christoffel second-kind Γh

ij-map requires (Dhφ := φ;h, DiDjφ := φ; ij)-maps

as well as Gramian Φ-matrix, in this case, respectively given by
(
H⊺hx+ ph, Hij

1
∥Px+p∥22

)
-

expressions. Therefore, we obtain its expression (4.12) below.

H⊺hx+ ph
∥H x+ p∥22

Hij (4.12)

The above calculation holds for every (x ∈ R3)-point not equal to
(
H+ p+H⊥w

)
-

point, for every (w ∈ TxR3)-vector. By algebraic manipulation, the following Christoffe-
lian Γ(x, ẋ)-contribution emerges:

H x+ p

∥H x+ p∥22
tr (H ċ ċ⊺) (4.13)

Remark 8. Euclidean tangential vector TR3-bundle of submerged (S ⊂ R3)-surface de-
fined by (φ(x) = 0)-equality spans from perpendicularity

(
⟨gradRn

x φ, v⟩R3
:= φ⊺;x v = 0

)
-

condition of its gradient vector
(
gradR

n

x φ := φ;x

)
-field, for every (x ∈ Dφ)-point. By its

turn, the row vector kernel ker(u⊺)-space13 corresponds to linearly independent columns
of (W := IdRn − û û⊺)-matrix, for û-versor corresponding to normalized u

∥u∥2 -vector. We
left-multiply kernel space basis matrix by row echelon unitary W -matrix and obtain the
following implication chain that leads to W -matrices and tangent space basis T -matrix.

W (IdRn −û û⊺) =
[
Tn×n−1 0

]
W (IdRn −û û⊺)

[
IdRn−1 0

0 IdR

]
= ⋆

w�


W (IdRn − û û⊺)

F︷ ︸︸ ︷[
IdRn−1

0

]
= T

W (IdRn −û û⊺)

en︷ ︸︸ ︷[
0

IdR

]
︸ ︷︷ ︸

v

= 0

w�
v = en − û ûn
W = IdRn −v̂ v̂⊺
U = IdRn −û û⊺
T = W U F

12Square (A+A⊺)-matrix appears and receives H-notation due correspondence to Hessian matrix for
the Euclidean case.
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Example 4.3. We represent an ellipsoid with center x0-point on o-origin and A-matrix
equal to (Λ := diag (λ1, λ2, λ3))-matrix, for positive real-valued λk-scalar. The k-row re-
presents each 3D canonical Euclidean axis and its total length is equal to 2√

λk
-computation.

Γh(x, ẋ) =
1

2

∑
k

λk(ẋk)2∑
l

(λl xl)2
λh xh (4.14)

Example 4.4. Given eigen time 1√
λk

-constant repective to each eigen axis as mentioned
on 4.3-example, the ellipsoid parametrization emerges naturally from ellipsoidal coor-
dinate (1 × [0, 2π] × [−π, π], η)-chart given by map on 4.15-equality on its vectorial
(4.15)-version.

u3 Λ
− 1

2

cos (u1) sin (u2)
sin (u1) sin (u2)

cos (u2)


︸ ︷︷ ︸

σ(u)

(4.15)

Ellipsoidal chart transformation (4.15)-map turns into an Euclidean R2-space given
by (u3 − 1 = 0)-equality. Since the η-map brings every u-point of linear (Dη ⊆ U)-space
into (x ∈X)-points, it also induces a smooth section ε(η∗T U). Furthermore, it induces a
pullback g̃ab-metric, available in A.1-appendix, from the Euclidean δ-metric in R3-space.

tr (η;a η
⊺
;b δ) = η1; a η

1
; b + η2; a η

2
; b + η3; a η

3
; b (4.16)

Finally, we calculate the submersion first-kind Christoffel Γk
ij-maps with aid of metric

g̃-tensor and formula on appendix A.10-definition.

Elementwise, we may represent an B-object in coordinate P -chart given by polar
coordinates ((d, v) ∈ R>0 × ToX)-parametrization respective to origin (o ∈X)-point: it
depends only on origin (o ∈X)-point and hyperparameter (p ∈ P)-set with finite cardi-
nality. Below, the example exhibits a familiar representation.

Example 4.5. In canonical Euclidean R2-manifold, there are familiar object locus radi-
ally defined by ρ(θ)-map, for (θ ∈ S1)-argument: a circumference has constant R-radius;
and a cardioid exhibits radius R (1 − cos (θ))-parametrization. Both loci have center
(o ∈ R2)-point and rotation φ-argument respective to perpendicular z-axis.

ρ(θ)

[
cos (θ + φ)
sin (θ + φ)

]
+ o (4.17)

The above polar objects’ description inspires further development. Its Cartesian rep-
resentation comes from (4.18)-relation, first published by Lamé in 1818.

13In case of a row (A ∈ Cm×n)-matrix such that (n ≥ m)-condition holds, its kernel spams from
linearly independent columns of (I −A+A)-matrix, originally available on famous [65]-work, and equal
to A∗(AA∗)−1-matrix.
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∣∣∣x
a

∣∣∣r + ∣∣∣y
b

∣∣∣r = 1⇐⇒

{
x(s) = a |cos (s)|

2
n

y(s) = b |sin (s)|
2
n

, for s ∈ S1 (4.18)

The above curve locus does not exhibit a polar-dependent ρ(θ)-radius as on (4.17)-
expression, although it exhibits a parametric version. Gielis suggests a closed-form in
extension to the expressive curve. In his [66]-work, he considers the (n1, n2, n3 ∈ R>0)-
exponents as well as additional term m

4
, for coefficient m ∈ N>0, we call superformula

(4.19) and denote by script letter ℘.

For completeness, we define parameter P-space by product (N3
>0 ×R3

>0)-space. Ad-
ditionally, we redefine radius ℘(θ)-map for ℘(v)-map, given tangent (v ∈ ToM)-vector,
oftentimes referred in literature as exponential map, to consult on [55]-textbook. We call
position vector, since its inner product square-root

√
⟨v, v⟩X-computation induces the

distance map d from point o to respective nearby point γ(1) along the geodesic γ(t)-curve
that satisfies position and velocity equality (γ(t) = o, γ̇(t) = v)-conditions.

a. Parameter m b. Parameter n1

c. Parameter n2 d. Parameter n3

Figure 9: Hyperparameters investigation on superformula parametrization

Figure 9-cluster explores these hyperparameters: the m-parameter denotes the lobes
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cardinality on the resulting curve; the (n2, n3)-exponents represent moral-equivalent to a
symmetrical curve curvature, respective to (x, y)-axes; the n1-exponent either reduces or
expands the inner curve area towards a rectangular-shaped curve.

Our main interest in (4.19)-superformula is its polar description, which suits obstacle
synthesis. In original (4.19)-work, vectorial v-entry refers to polar (i.e. spherical) chart
with 1

4
mθ-argument. It suggests, on a Riemannian M-manifold, the parametrization by

(v ∈ TpM)-vector on (p ∈M)-point in a spherical coordinate Sn-patch.

Figure 10: Quadrilateral surface with center
12×1-point and parameter

[
12×1 4 13×1

]⊺-
vector

The useful (4.19)-superformula de-
scribes obstacles for two arguments: it
exhibits interior and exterior spaces and
flexible tuning by parameter space low-
cardinality. However, the obstruction
Hk-surface still requires a ß-measure for
each (p ∈ extX Ok)-point, respective to Ok-
object’s exterior space contribution. A
convenient manner for this statement fol-
lows:

(∣∣∣v1
a

∣∣∣n2

+
∣∣∣v2
b

∣∣∣n3
)− 1

n1 (4.19)

Proposition 4.1. Let an O-object given
by superformula and its parameter p̃-set on
parameter

(
P̃ ≡ R2

≥ 0 ×P
)
-space, equal

to (c0, d0, p)-tuple and center o-point.
The obstruction map at radial (ρ(v) + d)-
distance respective to center (o ∈X)-point,
for parameters p̃-set with scaled14 {a, b}-
parameters given by (r a, r b)-tuple, corresponds to (ß(v) v)-map respective to center o-
point.

Among possible definitions for radial ß(v)-map, we provide the following descrip-
tion: at obstacle ∂Ok-boundary, its ß (∂Ok)-measure exhibits some finite high c0-value; at
certain d0-distance on ∂Ok-boundary, its value is equal to 0, i.e., tuning (c0, d0 ∈ R>0)-
parameters. Two obstruction map examples corresponds to the polynomial

(
c0

(
1− d

d0

)m)
-

map and Gaussian-kernel c0
e−1

(
e

ρ(v)+d0−d
d0 − 1

)
-map, within the distance (0 ≤ d ≤ d0)-

interval to Ok-object. The resulting obstruction H-surface corresponds to the
∑
k

Hk-sum

respective to each Ok-object.

So far, we define modeling procedures for optimization applied methods, physical
dynamical systems, and trajectory curve synthesis. The next chapter presents a manner
to connect these three elementary tools. The utilized representation is a flow diagram, a
common way to represent block-defined processes with intermediary flow conditions.

14The scale r(d, θ)-map on (R>0 × Sn → R≥1)-relation corresponds to the
(
1 + d

ρ(v)

)
-map.
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5 SOURCE SEEKING ALGORITHM

“A goal is not always meant to be reached; it
often serves simply as something to aim at.”

-- Bruce Lee

The barycenter-based flow diagram

Autonomous behavior and exploration description are great challenges in the robotics
context. The previous chapters propose optimization and control synthesis strategies.
However, they are standalone and appropriate for their purpose. Hence, we require a
heuristic to amend both together.

In the current work, the robot must find a maximum point for the signal source and
steer the agent to its location. We organize the search procedure into two complementary
phases, an exploration and pursue: The former acquires the source signal on sample
points to comprehend the signal topology; the latter develops a curve toward the source
estimation configuration.

We start at some non-negative τ0-instant, commonly adopted as 0. The initial source
estimation ŷ0-point may be the initial ys(τ0)-point added by a stochastic noise z-variable,
in the absence of a better guess. We update the interval source estimation ȳi,j-point
along discrete curiosity [τi, τi+1]-intervals: we adopt likewise the equivalent initial point
in source y0-point. Both curiosity and sample iteration (τi, τs)-instants are initially τ0.
Thus, a (possible) initialization

(
p0 :=

(
ŷ0 ȳ0 0 τi τs

))
-tuple corresponds to parameter((

ys(x0) + z ys(x0) τ0 τ0
))

-vector.

The above-mentioned stochastic innovative term z provides the exploration property
to the barycenter method: its addition to commands allows vicinity exploration. Other
possible curious contributions correspond to control as (u+ zu)-vector, along the trajec-
tory as (γ̂ + zγ) and/or to destiny point as (ȳi j + zŷ)-vector. We also may add interme-
diate points randomly in the vicinity to the nominal trajectory τz-instants, for τz-instant
within [τi, τi+1]-interval.

In the flow diagram in 11-figure, each block describes an application-suitable algo-
rithm. The orange block initializes variable (i, j, τs, ŷ

i, ȳi j)-tuple as described on pre-
vious paragraphs. The red blocks embed decision-making commands regarding instant
control verifications. The cyan block computes the trajectory γ̂(τ)-curve between current
and extremum point estimations given ∆τe-interval. The green block represents the com-
putation and application of the control u-measure based on the current x(τ)-state and
reference trajectory γ̂(τ)-curve. Finally, the yellow blocks update its extremum estima-
tion ȳij-point by scalar signal sample on x(τ)-poin, the sample and update (τs, τi)-points,
and (i, j)-indexes.

Each block of 11-diagram may embed an application-suitable algorithm. The current
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issue constraints follow the systematic below.

1. Initialize : the (i, j)-indices to 0 as well as time-related (τ0, τs, τi)-variables and
source estimation (ȳ0, 0(τ0))-points to source initial state (y0s + z)-point;

2. Compute trajectory γ̂(τ, ŷij(τ))-curve and control u(x, γ̂)-value: given source
estimation ŷij-point at τi-instant, with possible a posteriori addition of a bounded
disturbance on both signal maps;

3. Apply control u-rule : as input map of dynamical Σ-system;

4. Verify : if current τ -instant lays within the [τi, τi+1]-interval. In positive case, it
verifies the (τ ∈ [τs, τs +∆τs])-condition. In both positive cases, repeat from step 3;
in negative former, follow step 5; or, in positive former and negative latter, it goes
to step 6;

5. Update : the estimation ŷi, 0-point to its previous estimation ŷi−1, j-point and i-
increment by 1. Repeat step 2;

Initialize:
• ŷ0 to y0s + z;
• ȳ0, 0 to y0s ;
• i, j to 0;
• τs and τi to τ .

Compute γ̂(τ, ŷi, j(τ))
and u(x, γ̂)

Apply control u-vector τ ∈ [τi, τi+1]?

1. Sample ϕ-map on x-point;

2. Update ȳi j-point by
(2.2)-rule;

3. Update τs-instant to τ ;

4. Increment j-index by 1;

τ ∈ [τs, τs +∆τs]?

1. Update estimation ŷi-point
by Gaussian noise z-vector
addition to ȳi−1, ns-point;

2. Increment i-index by 1;

3. Update j-index to 0.

Update

Sample and update
Decide

no

yes
yes

no

Figure 11: Barycenter-based source seeking flow diagram.
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6. Sample and Update : the signal ϕ-map on x(τs)-points, update the source estima-
tion ŷi,j-point by (2.2)-equality, the τs-instant to the τ -variable, increment j-index
by 1 and go to step 2.

Theorem 5.1. Let ∆τn be the simulation time interval, ∆τs the source signal sampling
interval, ∆τe the curious exploration time interval and finally ∆τt the trajectory planning
time interval, such that the condition (∆τn ≤ ∆τs ≤ ∆τe ≤ ∆τt)-chain hold.

Proof. By construction, the right-hand ∆τt-term is a natural choice since we look for
a greater interval than the simulation’s and exploration’s intervals. Subsequently, there
must lay the curious exploration ∆τc-interval. The source signal sampling ∆τs-interval
must be lower than ∆τe-interval since we must acquire at least a signal instance within
the time [τi, τi+1]-interval. Finally, the lower left term corresponds to ∆τn-interval, which
provides the precision to the simulation scheme and majorates computational simulation
complexity. ■

We must not violate the intervals magnitude ordering to allow simulation feasibility
and the flow 11-diagram implementation. It brings a reasonable rationale to light.

Remark 9. For simulation reasons, the convenient choice for time-constant scale factors
exploits the case of numerical simulation. We require a time ∆τn-interval for numeri-
cal integration algorithms e.g. Runge-Kutta methods, scaled steps for (ns∆τn, ne∆τn)-
instants given by

(
∆τs
∆τn

, ∆τe
∆τn

)
-ratios, such that (1 ≤ ns ≤ ne)-condition holds, for natural

(ns, ne ∈ R> 1)-constant.

5.1-Remark provides a hierarchy-like condition for the choice of heuristic time con-
stants. However, its definition depends on the study case. Available prior information
about the source signal characteristics may help. It is plausible, for example, to choose the
trajectory planning ∆τt-interval significantly longer than the curiosity ∆τc-interval, i.e.,
which satisfies the (∆τt ≫ ∆τc)-condition, to allow the agent to explore its neighborhood
in the early search stages.

Finally, the current approach relies on a time ∆τt-interval to generate an exploration
trajectory and recursive barycenter version. Hence, it is straightforward to retrieve pe-
riodically a barycenter point candidate and recalculate the exploration trajectory in the
hand of the barycenter {ȳij}ns-set within [τi, τi+1]-interval.

Exploration strategies

The flow diagram depicted on 11-diagram provides intuition about source seeking. A
pure deterministic and asymptotic control map towards the source estimation is prone
to get stuck on the calculated estimation point. To avoid particularities, we resort to
curiosity addition on either the actuation map or during the curiosity time interval to
explore the environment. In the former case, it is reasonable to consider a zero-mean
support distribution map as a Gaussian stochastic variable. Compact distribution support
maps like triangular or bell-shaped ones may also apply due to the stochastic central limit
theorem. A candidate to support mean vector z̄n corresponds to the weighted barycentric
mean vector given on (2.6, 2.5)-equalities.
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A stochastic z-innovation provides the exploration property for the barycenter method
and hence vicinity exploration by its addition to dynamical system commands. As cited
in the previous section, other possible noise additions correspond to: on the control map
as (u+ zu)-vector; along the trajectory curve as (γ̂ + zγ)-vector; and/or on estimation
point as (ŷi j + zŷ)-vector. Also, an exploration choice is the addition of the intermediate
points in the vicinity to the nominal trajectory at τz-instants within [τi, τi+1]-interval.
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6 MODEL DEVELOPMENT AND RESULTS

“Experience without theory is blind, but theory
without experience is mere intellectual play.”

-- Immanuel Kant

Barycenter method simulations

Hyperparameters under investigation

A prior investigation concerns the hyperparameters’ influence on source seeking given
a smooth unknown-to-source-seeker-agent source signal ϕ-map. The simulation results in
18-figure illustrates optimization instances of a two-dimensional parable map for forgetting
(0, 0.5)-factors. A preliminary qualitative analysis comprehends a crescent broadness, i.e.,
the moral-equivalent standard deviation, by decrescent forgetting λ-factors.

a. (0.1, 1.0, 1.0) b. (0.1, 10.0, 1.0) c. (0.1, 20.0, 1.0)

d. (1.0, 1.0, 1.0) e. (1.0, 10.0, 1.0) f. (1.0, 20.0, 1.0)

Figure 12: Discrete barycenter method on ϕ-map as the paraboloid (x2 + y2)-map for
forgetting λ-factor equal to 1 and distinct values for hyperparameter (σ, ν, λ)-tuple.
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a. (0.1, 1.0, 0.5) b. (0.1, 10.0, 0.5) c. (0.1, 20.0, 0.5)

d. (1.0, 1.0, 0.5)

e. (1.0, 10.0, 0.5)

f. (1.0, 20.0, 0.5)

Figure 13: Discrete barycenter method on ϕ-map as the paraboloid (x2 + y2)-map for
forgetting λ-factor equal to 0.5 and distinct values for hyperparameter (σ, ν)-tuple.

Convergence enhancement under investigation

This brief section contains the simulation results for the decrescent forgetting λz-
factor. The corner case corresponds to null ξ-hyperparameter and represents a curiosity
mean vector equal to null element. 15-Figure denotes the average result of 1000 simulation
instances with 25 iterations each. According to qualitative analysis for results on 15-figure,
there is no significant remarkable improvement for given C2-class oracle ϕ-map given by
parable (x2 + y2)-map.

14c.-Figure corresponds respectively to the barycenter method iterations on Euclidean
R2-plane and their position as well as map evaluation along the algorithm steps. The
green curve constitutes the sample average of 1000 experiment instances, each given by
100 iterations. The initial condition for both accumulative m0-term and ŷ0-point depends
on statement elements, but typically m0-accumulator value is equal to 0.
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a. Barycenter {x̂n}-point behavior b. Oracle map {f(x̂n)}-evaluations

c. Discrete barycenter method average sequence for parable as oracle map. The forgetting
λ-factor is equal to 1.
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a. Asymptotic sequence of barycenter {x̂n}-
points in source X-space
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b. Mean vector z̄-sequence

Figure 15: Barycenter {x̂n}-points and mean {z̄n}-vector sequences for hyperparameter
ξ-values on legend
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a. Zero mean z̄-vector
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Figure 16: Non-augmented barycenter sequence
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a. Mean vector z̄
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Figure 17: Augmented barycenter sequence as suggests [2]-work
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Figure 18: Augmented barycenter sequence as suggests (2.5)-equality

a. Mean z̄-vector
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Source seeking construction

Source seeker models

This section explores the dynamical modeling of two well-known robotic agents: the
unicycle and omnirobot. In the next two subsections, we present the physical descrip-
tion of these dynamical systems. The method systematically extends to curved spaces,
motivated the following remark.

Remark 10. Although the results follow for navigation space equal to Euclidean R2-
plane, its substitution by smooth S-surface as well as cartesian (x, y)-tuple by some
2-dimensional p(t)-point on S-surface. It means, the system modeling operates on the
contact state CS-space.

Simplified unicycle

A unicycle mobile robot, also known as Dubin’s car, exhibits constraints on its trans-
lation in the Euclidean R2-plane related to wheels’ non-slipping equality condition. The
unicycle agent of current work constitutes the wheels assembly on a chassis.

Kinematics

The left-hand-side Pfaffian constraint term of a simplified unicycle corresponds to
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(ẋ sin θ − ẏ cos θ)-expression. In a tensorial form, the equation turns into (6.1)-equality.
The velocity q̇-vector constitutes the right-annihilator column B-span by quasi-velocity
p-vector, also with usual u-notation by authors Kane & Levinson.

[
sin θ − cos θ 0

]︸ ︷︷ ︸
a

ẋẏ
θ̇


︸︷︷︸

q̇

= 0
aB=0
=⇒

ẋẏ
θ̇

 =

cos θ 0
sin θ 0
0 1


︸ ︷︷ ︸

B

[
v
ω

]
︸︷︷︸

p

(6.1)

Dynamics

The dynamical description of a discrete connected mechanism requires its kinetic and
potential maps, for the case, given respectively by

(
I3
2
θ̇2 + m

2
(ẋ2 + ẏ2)

)
-maps and zero15.

The external inputs i.e. actuator efforts come from the τi-torque applied on each wheel
and equal to fiRi-product, for i-index equal either to left or right notation on {l, r}-set.

Although possible, the input (fx, fy, τ)-tuple does not represent feasible robot inputs
from an engineering perspective. Hence, the map between [(fx, fy, τ), (τr, τl)]-tuples is
useful. The distance between the wheel and symmetric longitudinal xm-axis is the capital
Li-letter. The distance relation satisfies (Lr + Ll = 2L)-equality.

[
m IdTR2 0

0 I3

]ẋẏ
θ̇

 =

 sin θ
− cos θ

0

 λ+

fxfy
τ


=

 sin θ
− cos θ

0

 λ+

 cos θ
Rr

cos θ
Rl

sin θ
Rr

sin θ
Rl

Lr

Rr
−Ll

Rl

[τr
τl

]
⊏⊐
=⇒

[
m 0
0 I3

] [
v̇
ω̇

]
=

[ 1
Rr

1
Rl

Lr

Rr
−Ll

Rl

] [
τr
τl

]
(6.2)

The⊏⊐-implication stands here for the left-multiplication of left-annihilator codistribu-
tion B⊺ and acceleration q̈ substitution by differential span Bṗ+ Ḃp. The right-hand-side
(6.2)-equality left-multiplication by B⊺-matrix and assembly to constrained velocity (6.1)-
vector leads to the dynamical (6.3)-equality. Finally, we express the resulting velocity and
acceleration (q̇, ṗ)-vectors in state space notation on (6.3)-equality. The states variables
corresponds to

[
x y θ v ω

]⊺-vector.


v cos θ
v sin θ
ω
0
0

+


0 0
0 0
0 0
1

mRr

1
mRl

Lr

I3 Rr
− Ll

I3 Rl


[
τr
τl

]
(6.3)

15We may consider, on a curved navigation topology, the geometry-related potential ρ-map.
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Omnidirectional robot

The omnidirectional robot wheels are built on its perimeter. The wheels constructive
disposal of 2

3
π rad allows the quasi-movement on tangential Tp S-space. Due to the rota-

tion and translation superposition movements, the wheel-ground contact point has a zero
velocity vector. This condition for each wheel provides robot movement constraints. The
respective Pfaffian constraints and resulting velocity q̇-vector follow on (6.4)-equation.

Kinematics

Figure 19: Omnidirectional robot top view

φ1, τ1

φ2, τ2

φ3, τ3

y

x

θ

The seeking agent on 19-figure corre-
sponds to an omnidirectional mobile robot.
Despite extensive and comprehensible dis-
cussion on [68]-work about this dynam-
ical class, this section explores the ap-
proach described in the next paragraph.
For the robot at hand, it is sufficient to de-
fine (q ∈ S × S3)-states and quasi-velocity
(p ∈ T S ⊗ T S3)-vector, both given re-
spectively by vectors below.

q =
[
x y θ ϕ1 ϕ2 ϕ3

]⊺
p =

[
vx vy ω

]⊺
The kinematic constraints require the Pfaffian

(
Ak q̇

k = 0
)
-equality. The necessary

constraint relations emerge from the non-slipping wheels’ hypothesis, given by each wheel
velocity vector projection along the longitudinal wheel axis. The ⟨0vi, 0ei2⟩S-projection is
equal to ϕ̇iR-speed along its longitudinal axis and equal to the respective translational
ϕ̇iR-speed, for given wheel R-radius. The θi-argument corresponds respectively to values
0, 2π

3
and 4π

3
rad, for i-index within {1, 2, 3}-set. The L-length corresponds to the distance

between the geometric robot center point and the respective wheel.

The 0ei2-versor and velocity 0vi-vector correspond respectively to rot (θ + θi,
0e03)

0e02-
versor and

([
ẋ ẏ 0

]⊺
+ [0e03]×

0 ei1 θ̇ L
)
-vector. These constraints’ concatenation leads

to the required Pfaffian and kinematic equality definition. Matrix Ei-rows results from
row-vector 0ei2

⊺
[
0e01

0e02 [0e03]×
0ei1 L

]
-multiplication.16 17

[
E − IdTS3 R

]︸ ︷︷ ︸
A⊺

q̇ = 0 =⇒ q̇ =

[
IdTR2×TS

1
R

E

]
︸ ︷︷ ︸

B

p (6.4)

16The [·]×-notation stands for the skew-symmetric matricial form for a given vectorial entry, which
allows the cross product between two vectors.

[v]× =

 0 −vz vy
vz 0 −vx
−vy vx 0
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Dynamics

The acceleration ṗ-vector defines the quasi-velocity vector derivative on constrained
(ϑ ⊆ Q)-submanifold. For simplicity, it corresponds to Euclidean R2-plane, also known
as (x× y)-plane. The constrained wheels’ surface contact constrains the generalized state
velocity tangential T Q-space by (6.4)-relation. Its expression follows on Lagrangian rep-
resentation (2.17)-equality.

Both inertial (M,Θ)-tensors are diagonal and are available on [(6.5), (6.6)]-terms. We
also provide the input coupling 1

2
B⊺ q∗-tensor and non-constrained Christoffelian Γ(q, q̇)-

vector both related to objects and their geometrically-distributed physical properties.


m11 = m22 = mR + 3mr

m33 = I33R + 3 (I33r +mr L
2) + (I22r − I33R ) (sin2 (ϕ1) + sin2 (ϕ2) + sin2 (ϕ3))

m44 = I11r IdT S3

(6.5)


θ11 = θ22 = mR + 3mr +

3
2

I11r
R2

θ33 = I33R + 3
(
I11r

(
L
R

)2
+ I33r +mr L

2
)
+

(I22r − I33r )
(
sin2 (ϕ3) + sin2 (ϕ2) + +sin2 (ϕ1)

) (6.6)

B⊺ q∗ =
1

R

 − sin (θ) cos (θ) L
− cos

(
θ + π

6

)
− cos

(
θ − π

3

)
L

sin
(
θ + π

3

)
− cos

(
θ + π

3

)
L

 (6.7)

Γ(q, q̇) =


02×1

θ̇ (Iyr − Izr )
(
ϕ̇1 sin (2ϕ1) + ϕ̇2 sin (2ϕ2) + ϕ̇3 sin (2ϕ3)

)
− Iyr−Izr

2
θ̇2 sin (2ϕ1)

− Iyr−Izr
2

θ̇2 sin (2ϕ2)

− Iyr−Izr
2

θ̇2 sin (2ϕ3)

 (6.8)

Source seeker control synthesis

Simplified unicyle

This mobile robot exhibits similar kinematics to a rolling wheel. For its control syn-
thesis, we require the distance convergence between desired tracking states and reference
curves towards zero according to desired closed-loop behavior. On the current plant,
the dynamic extension 1-algorithm, in the C-Appendix, results on the relative degree[
2 2

]⊺-vector for tracking output
[
x y

]⊺-vector. For Cartesian x×y representation, the

17Lee on [63]-textbook remarks the cross product ×-operator on canonical Euclidean R3-space corre-
sponds to a Lie bracket operator.
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new output states on (6.9)-equalities follow steps presented in 4-appendix for controller
synthesis. We omit the state’s dependency to provide a light notation.



y1 = x1 = h1

ẏ1 = x4 cos (x3) = Lf h
1

ÿ1 = v1 cos (x3)− x4 x5 sin (x3) = L2
f h

1 + Lg1 Lf h
1 v1 + Lg2 Lf h

1 v2

y2 = x2 = h2

ẏ2 = x4 sin (x3) = Lf h
2

ÿ2 = v1 sin (x3) + x4 x5 cos (x3) = L2
f h

2 + Lg1 Lf h
2 v1 + Lg2 Lf h

2 v2

(6.9)

Since the decoupling
(
∆ :=

[
Lg1 Lf h Lg2 Lf h

])
-distribution on (6.10)-matrix is rank-

deficient for every (x ∈X)-point, thus the system requires the dynamic extension proce-
dure. For this study case, the addition of 1 integrator variable suffices.

[
cos (x3) 0
sin (x3) 0

]
(6.10)

The inverse map theorem brings us information about diffeomorphism regularity: it
assures local invertibility for every (q ∈ Q)-point in which the differential dz is regular.
With computer algebra system aid, we obtain the z-map differential determinant det (d z)-
map on (6.11)-equation. dz-One-form, also denoted by transposed pushforward z⊺∗ -vector,
loses rank for the case under study on x ∈ X-points such that (x4 ̸= 0)-condition holds.
The x4-state corresponds to linear v-speed. We conjecture the following physical inter-
pretation: the change in linear v-speed direction loses information about past traversed
curves.

z(x) =


h1

Lf h
1

h2

Lf h
2

ω

 =


x1

x4 cos (x3)
x2

x4 sin (x3)
x5

⇐⇒ x(z) =


z1

z3

arctan ( z
2

z4
)

±
√

(z2)2 + (z4)2

z5



z∗(x) =


1 0 0 0 0
0 0 −x4 sin (x3) cos (x3) 0
0 1 0 0 0
0 0 x4 cos (x3) sin (x3) 0
0 0 0 0 1

 (6.11)

Sastry suggests on [41]-textbook to isolate the full-rank columns of ∆-distribution on
the left side of the matrix by right matrix-multiplication i.e. redefinition of input v-vector
by linear V ṽ-map, and definition of input derivative as a further state, which names the
algorithm as dynamic extension.

For this study case, the V -matrix is the identity IdR2-matrix. Hence, we add the disk
rolling acceleration as an additional state.
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v =

V︷ ︸︸ ︷[
1 0
0 1

] [
z1

w2

]
ż1 = w1

(6.12)

The equivalent system on coordinate (6.13)-map takes the linear form defined by
controllable (2.26)-matrices on curly brackets.

z(x) =


x
ẋ
ẍ
y
ẏ
ÿ

 =


x1

x4 cos (x3)
x6 cos(x3)− x4 x5 sin(x3)

x2

x4 sin (x3)
x6 sin(x3) + x4 x5 cos(x3)

⇐⇒ x(z) =



z1

z3

arctan ( z
2

z4
)√

(z2)2 + (z4)2
z2 z6−z3 z4

(z2)2+(z4)2

z2 z3+z4 z6√
(z2)2+(z4)2


(6.13)

The new steering control w-map from its original position to the planned trajectory
curve also follows. The augmented relative degree κ-vector for the omnirobot is given by[
3 3

]⊺-vector.

[
1 0
0 1

]
︸ ︷︷ ︸

Bκ

w =

[ ...
x̃...
ỹ

]
︸︷︷︸
yκ

+ A2

[
¨̃x
¨̃y

]
+ A1

[
˙̃x
˙̃y

]
+ A0

[
x̃
ỹ

]
︸ ︷︷ ︸[
a00 a01 a02 ⃝
⃝ a10 a11 a12

]
︸ ︷︷ ︸

Aκ

z̃

=⇒ w = ∆̃−1 (yκ∗ − Lκ
f h− Aκ z̃ +Bκw

)
(6.14)

The above deviation equality governs the system’s behavior. The system does not
exhibit zero dynamics. The polynomial aij-coefficients are equal to elements on diagonal
entries of the square Ai-matrix. For simplicity, we choose all linearization eigenvalues to
equal 0, as on 6.15-equality. The auxiliary Aκ-matrix results in null 02×6-matrix. Author
Eduardo Sontag refers on his [36]-book to this matrix with null eigenvalues and control
matrix with canonical vectors as controllable canonical or Brunóvsky form.

˙̃z =

[
A0 0
0 A0

]
︸ ︷︷ ︸

A

z̃ +

[
e3 0
0 e3

]
︸ ︷︷ ︸

B

w, for matrix A0 equal to

0 1 0
0 0 1
0 0 0

 (6.15)

The coupling ∆̃-distribution, deviation, and its derivatives follow on (6.17)-equation.
The resulting control (u, v, w)-maps on curly brackets (6.16)-equalities follow as we expect
on control (2.34)-structure.
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ż1 = w1

u = R
2

[
m 1

L
I3

m − 1
L
I3

]
v

v = IdR2

[
z1

w2

]
ai =

[
−λi1 λi2 λi3 λi1 λ

i
2 + λi1 λ

i
3 + λi2 λ

i
3 −λi1 − λi2 − λi3

]
K = a1 ⊕ a2

w = ∆̃−1 (yκ⋆ − Lκ
f h−K z̃)

(6.16)



∆̃ =

[
cos(x3) −x4 sin(x3)
sin(x3) x4 cos(x3)

]
Lκ
fh =

[
−x4 cos (x3) x5

2 − 2x6 sin (x3) x5
2x5 x6 cos (x3)− x4 x52 sin (x3)

]
ỹ =

[
x1 − x⋆1
x2 − x⋆2

]
˙̃y =

[
x4 cos(x3)− ẋ⋆1
x4 sin(x3)− ẋ⋆2

]
¨̃y =

[
x6 cos(x3)− x4 x5 sin(x3)− ẍ⋆1
x6 sin(x3) + x4 x5 cos(x3)− ẍ⋆2

]
(6.17)
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Figure 20: Derivative
(
x(3), y(3)

)
(t)-curves and torque (τϕ, τθ)(t)-time-series along

(t ∈ [0, 2 π])-time.
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Figure 21: Unicycle states (x, y, θ)(t)-time-series along (t ∈ [0, 2π])-time.

Omnidirectional robot

The omnirobot control with tracking (x, y, θ)-states does not require additional inte-
grators. However, the procedure to obtain the control map and steer the system follows
the dynamic extension 1-algorithm in the appendix. The states and diffeomorphic φ-map
correspond to the relations on curly (6.19)-brackets.
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Figure 22: Trajectory tracking of a circular
curve on Euclidean R2-plane

The control u-map for given robot
corresponds to

[
∆−1

(
yκ⋆ (t)− Ã z̃ − Lκ

fh
)]

-

map, with Hurwitz
(
Ã := Aκ +BκK

)
-

matrix.



ai =
[
λi1i λ

i
2 −λi1 − λi2

]
, λ ∈ C−

Aκ = a1 ⊕ a2 ⊕ a3, Bκ = IdTS3

∆ = Θ−1B⊺ q∗

Lκ
f h = (B⊺ q∗)

−1 (I(q, p) + gradϑ ϱ
)

ki = −ai +
[
µi
1 µ

i
2 −µi

1 − µi
2

]
, µ ∈ C−

v = K z̃
(6.18)

Remark 11. (λ1i, λ1i, µ1i, µ1i)-Eigenvalues
must be, if they are complex, then conju-
gate due real-valued control map.

The necessary control map elements
follow on curly (6.18)-brackets. Its synthesis corresponds to the linearization algo-
rithm in C-Appendix. In this case, the controller K-matrix corresponds to tensorial
(k1 ⊕ k2 ⊕ k3)-sum. Finally, the diffeomorphic map respective to coordinate Z-chart
and its inverse are available on curly (6.19)-brackets. The Pij-matrix is also known as a
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permutation matrix due to its rows/columns swap property by right/left multiplication,
on A.1-lemma.



x =
[
q⊺ p⊺

]⊺
=
[
x y θ ϕ1 ϕ2 ϕ3 vx vy ω

]⊺
z = φ(x) =

[
x vx y vy θ ω ϕ1 ϕ2 ϕ3

]⊺
=
[
x1 x7 x2 x8 x3 x9 x4 x5 x6

]⊺
= P27 P48 P59 P74 P58 P69︸ ︷︷ ︸

P

x

x = φ−1(z) = P−1 z = P ⊺ z

= P ⊺69 P
⊺
58 P

⊺
74 P

⊺
59 P

⊺
48 P

⊺
27 z

(6.19)
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Figure 23: States along (t ∈ [0, 2π])-time for initial null 06×1-point and reference[
cos(t) sin(t) t

]⊺-curve.
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Figure 24: Speeds states (vx, vy, ωθ)(t)-time-series
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Figure 25: Motor shaft torques τi(t)-time-series

Simulation results

This section presents simulation results respective to the flow diagram in Fig. 11.
The integration step is the most relevant issue among numerical requirements for source-
seeking strategy implementation. Hence, the simulation instances utilize numerical inte-
gration methods with adequate relation steps per simulation time. Typical Taylor-based
integration methods like Euler and Runge-Kutta are prone to virtual total energy dis-
sipation. Physical systems are energy-invariant except there are dissipative interactions
related to, e.g., Coulomb or viscous friction. Among references on this numerical topic,
one may cite [69]-work.

Noise addition to destination, trajectory curve or control map

This subsection exhibits source-seeking simulation results by adding Gaussian noise to
the following map signals: control input, tracking trajectory, trajectory destination, and
barycenter coordinates at the end of curiosity time intervals. These strategies affect the
deterministic control signal only such that the input u(t, x)-map becomes noise-dependent
ũ(t, x, z)-map.

According to driven simulations, the Gaussian stochastic contribution sole to the input
control signal is not standalone sufficient to deviate the dynamical system in the direction
of some source signal minimum on the neighborhood. It occurs due to noise suppression
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related to dynamical system eigen damping properties.

Description Symbol Unit Value
Simulation interval ∆τn ms 1
Curiosity interval ∆τs ms 100
Estimation interval ∆τe ms 500
Planning interval ∆τt ms 500
Simulation duration tf s 20
Control map poles λ - -10

Table 1: Simulation and control time parameters

Description Symbol Unit Value
Speed enhancer ν - 5
Standard deviation σ m 0.5
Mean speed enhancer ξ - 0

Table 2: Barycenter method parameters

Description Symbol Unit Value
Trajectory σd m 0.1
Interval goal point σt m 0.1
Control input σu Nm 0.5

Table 3: Zero-mean gaussian noise standard de-
viation

In conclusion to the previous para-
graph discussion, since sole noise con-
tribution to the control map may not
be sufficient in general for the source-
seeking strategy, an additional source
estimation, independent of dynami-
cal system properties, plays a relevant
role in the task. Among options, the
environment exploration strategies as
investigation points along the neigh-
borhood of to-source-candidate trajec-
tory and descriptive points of the dy-
namical system at specific instants are
encouraging. The latter strategy is
present in simulation instances in 26-
figure.

The simulation instances require,
additionally to plant model parame-
ters, a set of algorithmic seeking pa-
rameters referred on (1, 2, 3)-tables.
They relate respectively to time, con-
troller synthesis hyperparameters, and
barycenter coordinates.

3 (1− x)2 e−x2−(y+1)2 − 10
(x
5
− x3 − y5

)
e−x2−y2 − 1

3
e−(x+1)2−y2 (6.20)
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d. On control u(t)-time-series for every
time (t ∈ R≥τ0)-instant

Figure 26: Barycenter-based source seeking on Cartesian R2-plane for source signal map
as expression given by (6.20)-expression. Isochromatic level curves represent the geometric
loci with identical map values. The (⋆, ■)-markers denote respectively the curve start and
endpoints. The blue and black lines denote the robot trajectory curve and the barycenter
points along time.
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a. On interval destiny point

b. On interval trajectory

c. On control map

d. On goal coordinate at curiosity interval instants

Figure 27: Mobile agent velocity vector p(t)-time-series under zero-mean Gaussian
stochastic noise.
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a. On goal coordinate at curiosity interval instants

b. On interval destiny point

c. On interval trajectory

d. On control map

Figure 28: Control u(t)-time-series under zero-mean Gaussian stochastic noise.
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Simulation instances averaging

The stochastic curiosity contribution to the source-seeking algorithm provides a ran-
dom walk around the base X-space. The simulation scenarios presented in the previous
section suggest the necessity of time-series expected value due to additional stochastic
behavior.

For simplicity, we assign the first interval ȳi,0-element as estimation ŷi-point of curios-
ity interval {ȳi,j}-sequence, equal to immediately best ȳi−1,ns-estimation to some stochas-
tic noise zi-vector. Given fixed i-index, the {ȳi,j}-sequence within [τi, τi+1]-interval has
ns-cardinality. For brevity, maps dependency on (ŷi, ȳ

i,j)-elements receive respectively
the i-subscript and (i, j)-superscript. The source estimation formation rule within the
curiosity [τi, τi+1]-interval is below to consult.

{
ȳi+1,0 = ŷi+1 = ȳi,ni + zi

ȳi,j+1 = (1− Fi,j) ȳ
i,j + Fi,j y

s
i,j

(6.21)

We assign for the all-first (ŷ0, ȳ0, 0)-points at τ0-instant to (y0s + z0, y
0
s)-points. By finite

induction, the source estimation point recursion (6.21)-rule at (τ0 + i∆τe + j∆τs)-instant
follows on (6.22)-expression.

ȳi,j = ŷi +

j∑
k=1

fi,j,k (y
s
i,k − ŷi) (6.22)

The scalar fi,j,k-maps correspond to the product
(
Fi,k

j∏
l=k+1

(1− Fi,l)

)
-terms. The

corner case for equality (j = k)-condition i.e. fi,j,j-term corresponds to the scalar Fi,j.
The limit case corresponds to j-index equal to ns-cardinal. In its turn, we substitute
ȳi,ns-vector by difference (ŷi+1 − zi+1)-computation on (6.21)-equation. By algebraic ma-
nipulation, the following recursion emerges.

ŷi+1 = ŷi +
ns∑
k=1

fi,ni,k (y
s
i,k − ŷi) + zi+1

= φi ŷi + Y i
k f

k + zi+1

(6.23)

For briefness, row fk-elements corresponds to row fi,ni,k-elements, the Xi-matrix com-

poses column-wise by ysi,k-vectors. Scalar φi-maps corresponds to the
(
1−

ni∑
k=1

fi,ni,k

)
-

element. We nominate the sum Y i
k f

k-term by input wi-vector: the right-hand side of the
recursive (φi ŷ

i + wi + zi+1)-equation takes the form of a linear discrete dynamical system,
familiar to control theorists. On iteration n-step, the iterative formula application gives
the source estimation ŷn-point.
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ŷ1 = φ0 ŷ0 + w0 + z1

ŷ2 = φ1 ŷ1 + w1 + z2

= φ1 φ0 ŷ1 + φ1w
0 + w1 + φ1 z

1 + z2

ŷ3 = φ2 ŷ2 + w2 + z3

= φ2 φ1 φ0ŷ2 + φ2 φ1w
0 + φ2w

1 + w2 + φ2 φ1 z
1 + φ2 z

2 + z3

...
ŷn = Φn y

0
s + ψn + ωn

(6.24)

The anew map (Φn, ψn, ωn)-tuple is respectively given by (6.25)-tuple. The indexed

φ̄k-map corresponds to product
(

n−1∏
l=k+1

φl

)
-map. Einstein’s summation convention is in

force.

(
φ̄−1, φ̄k w

k, φ̄k z
k
)

(6.25)

The recursive (6.24)-computation requires current (indexed) barycentric
(
ysi,j := ys(x(t))

)
-

points, for the barycentric seeking algorithm. For the case under subject, they are, by
hypothesis, the cartesian position vector

([
x y

]⊺
(t)
)
-time-series. By its turn, for every

curiosity time [i, i+1]∆τe-interval, it converges asymptotically towards source estimation
position ŷi-point by error dynamic rule as follows: the tracking output y-points given by
y⋆(t) + eA (t−ti) ỹi-curve, for Hurwitz-stable A-matrix, ỹ-point equal to the deviation be-
tween output and reference curve. The reference y⋆-curve represents the time development
for design-chosen trajectory γ(t, ŷi)-curve and its necessary derivatives.

a. Parable map with center
[
0 0

]⊺-point b. Peaks map

Figure 29: Cartesian representation of final points and source estimation with source signal
map as a parable and peaks expressions for 10 simulation instances, spatial discretization
(δx0 , δy0)-intervals equal to 0.25 m and final simulation time equal to 20 s. Each simulation
instance τ̄s-duration is (9.05± 0.53) s.

The duration of each source-seeking simulation is a relevant analysis metric for real-
time simulation feasibility. We employ the Simulink environment of software Matlab
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2017a for results reproduction with parameters as specified in table 1. The required real-
time simulation τf -duration depends on spatial deviation δ-vector between 2-dimensional
positional initial points, spatial hull diameter ∆-vector, simulation instances p-cardinality
for each initial positional x0-point and average actual simulation instance τ̄s-time. Thus,
the computational time complexity is proportional to the simulation instances cardinality,
defined by Big-O O(mnp)-complexity.

(⌊
∆x

δx0

⌋
+ 1

)
︸ ︷︷ ︸

m

(⌊
∆y

δy0

⌋
+ 1

)
︸ ︷︷ ︸

n

p τ̄s (6.26)
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7 DISCUSSIONS

“All truths are easy to understand once they are
discovered; the point is to discover them.”

-- Galileo Galilei

This section discusses the thesis results: it summarizes the main heuristics charac-
teristics based on the Euclidean barycenter method. The former discussion concerns the
tuning parameters and their influence on the convergence towards a source signal mini-
mum. Then, we refer to the properties of constrained systems and asymptotic convergence
towards a reference trajectory. Subsequently, the trajectory synthesis flavors are the cen-
tral topic. Finally, the strategy on flow 11-diagram concerning the coupling heuristics of
control, trajectory generation, and source estimation strategies is under investigation.

The main tuning parameters on the barycenter method refer to the enhancement
ν-term, covariance Σ-tensor, speed enhancement ζ-term, and forgetting λ-factor. The
former is responsible for system convergence towards the gradient direction. The standard
deviation Σ-tensor corresponds to an exploration term around the surface gradient. The
ξ-term intensifies the gradient direction given by the previous barycenter ∆x̂n−1-step.
Finally, as the name recalls, the forgetting λ-factor relies on recent barycenter steps by
mitigation of past ones. Its application for values lower than 1 resembles a geometric
series with a λ-ratio.

According to each 18-figure’s grid first row, the greater the ν-hyperparameter, the
longer the gradient trace blue line. Likewise, the greater the standard deviation, the
broader the distribution on a neighborhood from the respective line, coherent with the
standard deviation behavior. Although the speed ξ-enhancer impresses significant influ-
ence on probability support map mean z̄-vector, the estimation x̂-point does not exhibit
great improvement by this parameter variation. For the least, λ-ratio lower than 1 turns
the points distribution “less behaved", erratic, respective to a known gradient vector field.

Aside from dynamical system characteristics, by the hypothesis of barycentric con-
vergence towards a local minimum, it is reasonable to consider the decrease of oracle map
evaluation at barycenter points since it follows on average the gradient direction. By ex-
ploitation of the Lyapunov discrete stability criterium, we obtain a further argument for
its decreasing behavior. A null mean vector choice and application of Jensen’s inequality
translates the intuition into a quantitative criterium regarding its convergence. A more
rigorous investigation may follow up in the future, but for the current work, it suffices.

On the interpolation trajectories between barycenter (A,B)-points, the barycenter
point related to a curve corresponds to the resulting point from the barycenter batch
evaluation on (2.1)-equality. The barycenter point for a given curve or continuous region
refers to the continuous version of the barycenter method, available on [70]-work. For
simplicity and engineering perspective, we utilize its discrete version. A remark raises of
curves, given as an intrinsic method property: Non-rectilinear curves within the source
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signal field result in points inside its convex hull. Mainly, geodesic curves contain their
barycenter on their path.

Regarding the trajectories, they are free to choose insofar as it considers the infor-
mation available at the moment. For the current work, the robot disposes of its current
position and the estimated source position as the reference point. Therefore, a natural
path choice considers both beginning and endpoints as boundary conditions. A suitable
choice considers, as already mentioned, polynomial and exponential-based paths. A fa-
mous polynomial path is the Bézier’s curve. Due to its tangency property to the curve of
either two first and last points, it is problem-suitable since we keep the system orientation
on the curve tail. Alternative curves are possible, as the curve-line-based from section 6.

Finally, the current author discusses the proposed investigation of source seeking
depicted on the flow 11-diagram. The heuristic relies on time interval relations, controller
time constants, and barycenter tuning parameters. The influence of barycenter parameters
on the convergence and the relation between algorithm time intervals are in 5-section. A
further argumentation regards the control time constants and the curiosity time interval.
2.5-Lemma exposes the relation between time and precision on asymptotic stabilization.
Therefore, the eigenvalues choice for the tracking controller synthesis comes out by the
precision criterium of mentioned lemma.
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8 CONCLUSIONS AND IMPROVEMENTS

“Has this world been so kind to you that you
should leave with regret? There are better things

ahead than any we leave behind.”

-- Clive Staples Lewis

The current work describes an application for the barycenter method to seek the posi-
tion of a scalar signal source. Although the primary objective concerns the source search,
the mechatronic search agent may exhibit constraints on its own dynamical description.
Due to its kinematic properties, the problem requires awareness regarding its movement
in its current configuration.

The proposed approach defines a trajectory curve to move the robot toward the source
estimation point and steer it somewhat to explore and acquire new source sample data.
The trajectory synthesis is research-relevant due to the already-mentioned constraints. A
possible requirement intends an optimal time or minimal energy, although it is not even a
necessary requirement. Therefore, the current author employs reference trajectory curves
with a low computational cost to allow implementation.

We employ the algorithmic procedure of the partial linearization method to develop
a control map and drive the system toward the developed reference curve. Its choice is
not compulsory but relies on the author’s choice of a comprehensive synthesis tool for the
current application.

Barycentric source-seeking research disposes of improvement aspects. Among others,
it figures the multiple sensors and/or source-seeking agents extension due to method
parallelization property, as presented on [2]-reference.

Finally, we present below several research suggestions for future endeavors on appli-
cation possibilities.

A possible control synthesis strategy consists of the sliding mode control, first inves-
tigated by the author Utkin in [71]-work and further developed for particular dynamic
classes by Anthony Bloch and Roger Brockett. Among works of mentioned methods,
the current author cites his mentor’s [72]-work about hybrid control and nonholonomic
systems and author Utkin’s kinematic and dynamic-oriented ([71] [73])-works.

Parametric uncertainties on the nominal plant parameter partition generate a system
flow trajectory deviation. A common deviation mitigation/suppression strategy employs
the sliding mode control by Lyapunov stability and boundedness properties. However, due
to the partial linearization method as control synthesis, we rely on the diffeomorphic map
between nonlinear and linear system versions, which also experience parametric deviation.
Formally, the statement refers to the robustness property of composition x ◦ z-map i.e.
z ◦ x, which is akin to identity map IdX i.e. IdZ except for some to-define bounded
deviation δx-map i.e. δz. Since this robust approach deserves further development, the
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current author motivates his readers to further investigate this approach as a forthcoming
research topic.

Discretized control strategies are also available to control maps by a plant’s discrete
dynamical description. For instance, the dynamical Σ-system on 6-subsection allows
obtaining its time-invariant discrete representation: the reader might refer to the integral
solution form of velocity ẋ-vector equal to evaluation f(x, uk)-map, for constant control
uk-vector within discretization [τk, τk +∆τd]-interval. Alternatively, we also evaluate the
region of convergence (ROC for short) for the discrete control uk-map as the continuous
control u-map applied at a sufficiently small discretization ∆τd-interval.
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APPENDIX A – GEOMETRIC CONTROL
TOPICS

The main concepts presented in this chapter comprehend several topics of the vast
branches differential geometry and Lie Algebra. The current author attempts to hold on
to essentials for brevity and continence despite the extensive definition amount.

Topics on Analysis

Definition A.1 (Class K, KR maps [41]). A α-map on (R+ 7→ R+)-relation belongs
to K-class if it is continuous, strictly increasing and the (α(t0) = 0)-equality holds. The
same previous α-map belongs to KR-class if it is K-class and (p→∞)-condition implies
on (α(p)→∞)-condition.

Definition A.2 (Locally positive definite maps [41]). A v-map on (Rn×R+ 7→ R+)-
relation is locally positive definite (l.p.d. for short) if, for some (h ∈ R> 0)-constant and
K-class α-map, we hold (v(0, t) = 0, v(x, t) ≥ α(|x|))-conditions, for every (x ∈ Bh)-point
and (t > t0)-instant.

Definition A.3 (Positive definite maps [41]). A v-map on (Rn ×R+ 7→ R+)-relation
is positive definite (p.d.f. for short) if, for some KR-class α-map, we hold v(0, t) = 0 and
v(x, t) ≥ α(|x|), for every (x ∈ Rn)-point and (t > t0)-instant.

Definition A.4 (Decrescent maps [41]). A continuous v-map on (Rn × R+ 7→ R+)-
relation is decrescent if there is a K-class β-map, such that (v(x, t) ≤ β(|x|))-condition
holds for every (x ∈ Bh)-point and (t > t0)-instant.

Definition A.5 (Isomorphism [63]). An φ-isomorphism is a structure-preserving mor-
phism from object X to Y with an inverse morphism:

1. φ−1 ◦ φ = IdX ;

2. φ ◦ φ−1 = IdY .

Theorem A.1 (Global Existence and Uniqueness Theorem ([41], page 88)). Con-
sider the dynamical system given by velocity ẋ(t)-vector as vectorial f(t, x)-map, piecewise
continuous respective to initial (t ≥ t0)-instant and initial x0-point such that, for each time
(T ∈ R>0)-constant, there are finite (kT , hT )-constants for every (t ∈ [0, T ])-instant and
(x, y ∈ Rn)-point. Therefore, the below conditions hold.
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1. |f(x, t+ δ)− f(y, t+ δ)| ≤ kT |x− y|;

2. |f(x0, t)| ≤ hT .

We call 1-hypothesis on A.1-theorem as Lipschitz continuity condition.

Definition A.6 (Lipschitz continuity condition [41]). A f -map is locally Lipschitz
continuous in x-point if there is a finite (l ≥ 0)-constant for some scalar (h > 0)-constant
such that the (|f(t, x1)− f(t, x2)| ≤ l |x1 − x2|)-condition hold, for every (x1, x2 ∈ Bh)-
point and (t ≥ t0)-instant.

Theorem A.2 (Flow vector field continuous dependency on initial point x0
([41], page 88)). We consider a dynamical Σ-system whose velocity ẋ-vector corresponds to
smooth vector field f(x, u)-map. Additionally, let f -map satisfy A.1-theorem hypotheses.
Let x and y be system solutions starting respectively from points x0 and y0. Then, for given
(ε > 0)-constant, there is scalar δ(ε, T )-map such that implication condition |x0 − y0| ≤
δ =⇒ |x− y| ≤ ε hold.

We extend globally the concept by substitution of open Bh-set for Rn-set and (t ≥ 0)-
instant. The semi-global extension holds for some scalar l(h)-map. By assumption, the
Lipschitz property is uniform over t-instant, we call time-invariant systems (T.I.S. for
short).

Useful abstract algebra operations and elements concern matricial actions: to per-
mute, concatenate, and inverse, among others. Despite the C2×2-family matrices calcula-
tion does not exhibit an intricate toolset, its explicit formula also follows.

Lemma A.1 ([30]). The permutation (Pij ∈ Rn×n)-matrix maps the interchange of (i, j)-
index rows/columns by left/right multiplication of resulting expression IdRn +Eij + Eji −
Eii − Ejj.18

Lemma A.2. The inverse A−1-matrix of a 2-dimensional (A ∈ C2×2)-matrix is given on
(A.1)-expression, for determinant det(A)-map equal to expression a11 a22 − a12 a21.

1

det(A)

[
a22 −a12
−a21 a11

]
(A.1)

Topics on Differential Geometry

Geometry is a prolific topic. The early masters in Ancient Greece are famous world-
wide for their statements. However, geometric developments arise in many other civi-
lizations over time. The modern approach utilizes the formal concepts of points, curves,
surfaces, and their further generalizations to operate geometric objects. The list of con-
cerned authors and textbooks is extensive. The current author utilizes the work from
authors do Carmo, Lee, Burke, Spivak and Dombrowski.

18Eab-Matrix corresponds to a dimension-compatible matrix with 0-entries except at index (a, b)-tuple,
which entry is real 1.
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Author Dombrowski promotes on [64]-work a comprehensive explanation of curvature-
related measures defined on Riemannian submanifolds. In a variational calculus notation,
a M-manifold corresponds to a surface with homeomorphic Euclidean Rn-space attached
to every (p ∈M)-point.

We present the main concepts necessary in this work for a Riemannian manifold
construction. They are not sufficient conditions for a novice reader since it requires prior
knowledge of basic topology concepts. Interested readers may refer to Lee’s [76]-textbook
to familiarize themselves and cover necessary ideas. We utilize in this work the Levi-
Civita ∇-connection. Its main properties refer to symmetry19 and compatibility20 with
Riemannian ⟨·, ·⟩-metric. We begin with definition statements in a manner to cover the
algebraic-defined surfaces.

Definition A.7 (Coordinate chart [63]). Let us define a C∞-class coordinate chart (U, η)-
tuple by linear vector U -space and an C∞(U)-class cover η-map such that it assigns a
(u ∈ Imη)-point for every (p ∈ Dη)-point.

Definition A.8 (Riemmanian M-manifold [55]). We define a differentiable M-manifold
endowed with Riemannian g-metric by countable cover chart {Uα}-family and respective
cover ηα-maps, such that, for each Uα-chart, we have (i, j)-entries of 2-form metric gij-
tensor given by inner ⟨∂i, ∂j⟩-product.

Definition A.9. The covariant derivative (∇ ∈ Hom (T M ⊗ T M))-operator of j-entry
of vector field ∂j-operator respective to vector field ∂i-operator, for every (p ∈ Du)-point
satisfies, for Einstein’s summation convention, the equality below.

∇∂i∂j = −Γk
ij ∂k

Definition A.10 (Christoffel’s Γk
ij-maps of a Levi-Civitta ∇-connection). Let us define

the so-called Christoffel ’s Γk
ij-maps as the coefficients of unique Levi-Civitta ∇-connection

within defined C∞-chart (U, η)-tuple by covariant derivative A.9-definition.

1

2
gkl (gjl;i + gli;j − gij;l) (A.2)

Several Riemannian metric examples arise as submanifolds, products, and quotients of
Riemannian manifolds. Lee on [74]-textbook begins with Riemannian manifold definition
(M̃, g̃)-tuple, and manifold f -map on (M → N)-relation. Since the push-forward f∗-
operator constrains the tangent vectors on manifold M, the induced pullback metric on
tangent TM-bundle defines a Riemannian g-metric on M-manifold. For instance, the
standard metric on the (Sn ⊂ Rn+1)-sphere employs this calculation.

Corollary A.1 (The induced pullback metric [74] [55]). Let (M, g)-tuple be a Riemannian
embedding i.e. submanifold on Riemannian N-manifold. The induced g̃-metric on M-
manifold is the 2-form tensor by pullback f ∗g-map on smooth ε(f ∗Hom (TM, TM))-
section, whose expression is on (A.3)-equality.

19An affine ∇-connection on M-manifold is symmetric if (∇XY −∇Y X = [X, Y ])-equality hold, for
every vector (X, Y ∈ V(M))-fields

20A connection is symmetric only if X⟨Y,Z⟩-map is equal to inner product (⟨∇X Y,Z⟩+ ⟨Y,∇X Z⟩)-
sum, for vector (X, Y, Z ∈ V(M))-fields
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g̃ab = tr (f; a f
⊺
; b g) (A.3)

Proof. The induced g̃-metric by pullback operation on differentiable f -map and injective
differential df -operator on (TpN → Tf(p)M)-relation for every (p ∈ M)-point by inner
⟨∂i, ∂j⟩p-product equal to ⟨f∗(∂i), f∗(∂j)⟩p-product, for (i, j)-indexes on N∗

≤n-family. ■

The following operators on C∞(M)-class φ-maps and vector (Z ∈ ε(TM))-fields are
well-known to undergraduates but require further treatment on manifolds. Among others,
we present the divergence div∇-operator of the Z-vector field respective to ∇-connection.

Definition A.11 (The divergent div∇-operator of a Z-vector field). For every p-point of
open DZ-set on M-manifold, the ∇v Z-map, is, for every vector v ∈ TpM, according to
covariant derivative properties on [64]-work, an endomorphism (∇Z)p := ∇Zp of vector
TpM-space, and ∇Z-map on (p → (∇Z)p)-relation is a C∞-class ε(Hom(TM, TM))-
section. Therefore, the divergence div∇ Z-map on (p → tr (∇Zp))-relation operates on
∇-connection for every (p ∈ DZ)-point.

Remark 12. Riemannian manifolds defined by map equalities require recurrently partial
derivative expressions ∂i ∂jφ := φ;ij. We denote the (i, j)-entry of Ξ-tensor by uppercase
greek indexed notation Ξi

j := φ;ij −
∑

k Γ
k
ij φ,k. The respective tensorial representation in

Einstein’s sum convention is expression ∂∂⊺φ− Γh φ;h.

Based on the above definition and remark, we expose curvature-related forms men-
tioned in this section introduction. We omit the point dependency of a base manifold M

to mitigate over-notation.

Definition A.12 (Gradient and Hesse’s bilinear forms [64]). Let us define a C∞(M)-class
φ-map for every point p ∈ Dφ and vector (v, w ∈ TpM)-pair, respectively given by local
coordinate [(vi ∂i)p, (w

i∂i)p]-vectors. Then:

1. The gradient vector grad-field on ε(TM)-section respective to Riemannian ⟨·, ·⟩-
metric: the gradp φ-vector on tangent TpM-bundle satisfies the (⟨gradM

p φ, v⟩ =
φ∗(v))-equality. In local coordinates, it exhibits the conventional vectorial g−1φu-
notation. In Einstein’s notation, the i-entry corresponds to gij φ; i ∂j-expression.

2. The Hesse Hess-tensor on ε(Hom(TM, TM))-section respective to C∞-class Rie-
mannian ⟨·, ·⟩-metric: It corresponds to the ∇p(grad

M
p φ)-endomorphism i.e. the

covariant ∇-derivative of gradM φ-vector. In local coordinates and conventional
vectorial notation, it exhibits the g−1Ξ v-format. On Einstein’s notation, it is equal
to the gij Ξi

j v
j ∂j-expression.

3. The Laplacian ∆-operator on (C∞(M) → C∞(M))-relation: it corresponds to the
trace of Hesse tensor HessMp φ i.e. the divergence div∇-operation on gradient vector
field gradM condition at point p ∈ Dφ. In conventional vectorial form, it exhibits
either format tr (g−1Ξ) or g−1 : Ξ.

4. The Hesse 2-form
(
hessM φ ∈ ε(T ∗M ⊗ T ∗M)

)
-tensor respective to C∞-class Rie-

mannian ⟨·, ·⟩-metric: It assigns the ⟨(HessMp φ)(v), w⟩-form, also given by inner
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⟨
M

∇v grad
M
p φ,w⟩-product. In conventional vectorial form, it exhibits the v⊺ g−1Ξw-

format. Alternative formats correspond to either tr (g−1Ξw v⊺)-computation or∑
ij

gij Ξji v
iwj-summation.

Definition A.13 (Relation between gradient vector gradφ-field and differential
covector dφ-field). Let dφ be the differential covector field of a C∞-class φ-map a 1-
form and gradient vector gradM φ-field. We define the gradient vector (grad φ)-map as
the musical vector field (g♯ ◦ dφ)-composition. The g♯-map on (T ∗M → TM)-relation
is the musical vector bundle sharp-isomorphism induced by g-metric. Since, we have in
local coordinates the differential dφ-covector given in Einstein’s φ; i ∂

i-notation, then we
obtain the gradient gij φ; i ∂j-description.

For the case of M-manifold equivalent to canonical Rn-Euclidean manifold and its
inner (⟨a, b⟩ := ai b

i)-product, i.e., the
(
gij = gij = δij

)
-equalities hold (g is the identity

tensor as well as g♯), and (ei = ∂i)-vector is the standard basis, Then the gradient grad φ-
vector on V(M)-class corresponds to φ; i ei-expression.

Definition A.14 (Lie derivative LX-operator of a C∞-class φ-map defined on
M-manifold [41]). Given a vector X-field on (M 7→ TM)-relation and a smooth φ-map
on (M 7→ R)-relation the Lie derivative LX-operator of φ-map respective to the vector
X-field is a new vector LXφ-map on (M 7→ R)-relation for every p-point. We denote
by either X(φ)(p) or φ∗(Xp)-notation. In local coordinates and Einstein’s notation in
force, for vector field (X := X i ∂i)-representation, we have the Lie derivative X i φ; i-
representation.

Informally, the Lie LX-derivative of a C∞-class h-map concerning a vector X-field is
the h-map directional derivative operation in X-direction. Due to M-manifold differen-
tiability, we state the following lemma.

Lemma A.3 ([77]). Vector (f, g ∈ V(M))-fields on (p ∈M)-point are equal only if (Lf =
Lg)-equality holds.

The Lie Lf -derivative is a first-order operator, while the (Lf ◦ Lg)-composition i.e.
Lf Lg φ := g⊺Hφ f + φ∗ g∗ f is a second-order operator on a C≥2-class φ-map. Since
the Hφ-tensor, given by ∂∂⊺φ-tensor, is symmetric for C>2(M)-class maps, the difference
Lf Lg−Lg Lf reduces to the Lie derivative Lg∗ f−f∗ g. It suggests the Lie bracket definition
as follows.

Definition A.15 (Lie [·, ·]-bracket of vector fields on M-manifold [36]). The Lie
[f, g]-bracket defined on V(M)-class by vector (f, g ∈ V(M))-fields on (p ∈ M)-point is
equal to vector (g∗ f − f∗ g)-field.

Alternatively, we denote [f, g]-operator as adfg-notation and call it adjoint adf -
operator on (V(M) → V(M))-relation. This is an first order operator concerning the
Lie bracket, which holds the following identity:

adf [g, h] = [adfg, h] + [g, adfh]



96

Definition A.16 (Lie L-algebra of vector V(M)-fields on M-manifold). The Lie
algebra on (p ∈ M)-point is a linear (S ∈ V(M))-subspace such that it is closed under
Lie bracket operation, i.e., given vector (f, g)-fields in S-space, then [f, g] ∈ T S.

Corollary A.2 ([39]). The Lie WL-algebra generated by vector fields W -set on M-
manifold is the smallest linear subspace of all Lie algebras21 of vector fields that contain
W .

Lemma A.4. Let us define a finite (W ∈ V(M))-set of vector fields and assign W0-set
as W . Hence, the Lie WL-algebra corresponds to linear span (W∞)-space, defined by the(⋃

k≥0

Wk

)
-union. The recursive formation Wk+1-rule corresponds to the set below:

{adf g | f ∈ Wk, g ∈ W} (A.4)

Remark 13. In this work, we write the iterated adjoint operator of ℓ-length by linear adIℓ
g -

operator, such that Iℓ corresponds to an ordered set of the permutation index Iℓ(A)-family
with (ℓ ≤ |A|)-cardinality.

Additional concepts relate to the spanned linear space by vector fields on (p ∈ M)-
point: a vector space of vector fields, namely a vector field space, is a distribution, and
its dual, i.e. row-wise, space of covector fields is a co-distribution. In linear algebra, it
refers to the vector space duality, given by transposed vector spaces, as we may refer to on
[31]-textbook. A ω-covector, and consequently a covector Ωx-field, constitutes a row-wise
spanned space and plays an important role in geometric control theory.

Definition A.17 (Distribution [41]). Given a smooth vector field {Xn∆
}-set, we define

a ∆x-distribution on open (D ⊆ X)-set to be its spanned vector subspace on (x ∈ D)-
point.

Hence, a (X ∈ V(D))-(vector field) on (p ∈ D)-point is pointwise in distribution ∆p-
space. We denote it as the pointwise (X ∈p ∆)-relation. Moreover, the familiar invariance
concept to linear control theorists also holds for distributions.

Definition A.18 (Distribution invariance). An invariant distribution is pointwise closed
under Lie brackets, for every vector (X ∈p ∆)-field.

X, Y ∈p ∆ =⇒ [X, Y ] ∈p ∆

We define naturally rank(∆p)-cardinal to every (p ∈ D∆)-point generated by vector
field {Xn∆

}-set.

Definition A.19. A ∆-distribution has (dim (∆p) := r ≤ n∆)-rank on every p-point on
its domain (D∆ ⊆M)-set.

Definition A.20 (Codistribution [41]). Given a smooth covector field {ωnΩ
}-set, we

define a Ωx-distribution on open DΩ-set to be the spanned dual vector subspace for every
(p ∈ DΩ)-point.

21This algebra set is non-empty since it includes vector field V(M)-class
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Definition A.21 (Annihilator [41]). A Ω-codistribution is said to annihilate a ∆-
distribution if the following identity holds for every (ω ∈ Ωx)-covector and (ς ∈ ∆x)-
vector.

ωk ς
k = 0

Remark 14. Let us define x0-point as a regular point of a smooth ∆x-distribution. Then,
x0-point is also a regular point of also smooth Ω-annihilator AnnX (∆).

Geometric analysis on smooth affine velocity vector fields

The control strategy applied in this work, the partial linearization method, requires
fundamental concepts related to smooth affine dynamical systems. We present in this
section a compilation of required definitions and statements.

Definition A.22 (Smooth affine dynamical system [36]). Let us define an affine real-
valued continuous dynamical Σ-system given by (R+, X, U, ϕ, Y, h)-tuple as a velocity
vector (ẋ ∈ Tx X)-field at (x ∈ X)-point equal to affine (f + Gu)-map, for vector field
(f, gi ∈ V(X))-maps. We aim to design a measurable control (u ∈ U)-map to track an
(y ∈ Y)-output defined by a tracking h-map on (X → Y)-relation, for every (x ∈ Dẋ)-
point.

We define the lowest natural δi-constant for affine dynamical Σ-systems by output
hi-map of the affine dynamical Σ-system. In set-theoretical terms, we define this set as
below:

Definition A.23 (Input-output relative δi-degrees of the affine dynamical Σ-system). We
define the relative degree as natural δi-constant respective to the output hi-map of affine
dynamical Σ-system by the set below.

{
δi ∈ N>0 |LGL

δi−1
f hi ̸= 0

}
The above statement suggests the definition of relative degree κ-vector with {δny}-

elements and a total δ-sum of relative degrees for the Σ-system. From a computational
perspective, the accumulated relative ζi-degree emerges on partial linearization formula-
tion. Its definition follows below.

Definition A.24. We define the accumulated relative ζi-degree, for (i ∈ N∗
≤p)-index, by

recursion formation (ζi−1 + δi)-rule.

The partial linearization method requires the (co-)distribution concept as on definition
A.20. Then, its definition follows.

Definition A.25. The relative degree (∆ ⊆ TX)-distribution of the affine dynamical
Σ-system from definition A.22 follows below.

span

({
Lg1L

δ1−1
f h, · · · , LgpL

δp−1
f h

})
(A.5)
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We interest also in necessary and sufficient conditions to design a control u-map on
some state-space V-set. For linear systems, if a dynamical system given by matrix (A, B)-
tuple is controllable, we steer the system trajectories in finite time T -constant from a state
x0-point to some other x1-point only if the system is controllable by means of B-vector field
and invariant Ak B-spaces, for (k ∈ N[1, n−1])-indexes. An equivalent condition degenerates
into the linear case for nonlinear affine dynamical systems under the assumption of linear
time-invariant (co-)vector fields. We present the necessary aspects for readers to inform
themselves about the subject.

A Lie WL-algebra of vector fields is the accessibility Lie Algebra associated with Σ-
system. From its meaning, we define the accessibility rank condition below.

Definition A.26. The accessibility rank condition at some (x ∈ X)-point holds if
the (dim(WL) = n)-equality also hold for some open (V ⊆X)-set.

Lemma A.5 ([36]). It is sufficient for control-affine systems to generate the Lie WL-
algebra from vector field {f, g1, · · · , gm}-set.

Lemma A.5 characterizes the accessibility rank condition as the existence of n vector
X-fields by means of iterated brackets formed by vector field {f, g1, · · · , gm}-set which
is linearly independent when evaluated at some (x ∈X)-point.

The above definition allows further investigation on the system mobility degree, which
we call nonholonomy degree. The authors Campion et al. classify affine smooth systems
into five types according to their nonholonomy degree. It motivates the development and
presentation of controllability concepts for nonlinear smooth systems.

Definition A.27 (Reachable R-set [36]). For each (V ⊆X)-subset, initial (x0 ∈ V)-state
and (t > t0)-instant, we define the Rt

V(x0)-set of reachable states from x0-point, in exact
time t-instant, without leaving V-set.

{z0 | ∃ω ∈ C∞
[t0, t]

(U) s.t. ϕ(s, t0, x0, ω) ∈ V, ∀ s ∈ [t0, t] and ϕ(t, t0, x0, ω) = z0}1

For each time (T ≥ 0)-constant, we consider the R
≤T
V (x0)-set of reachable states

at time at most T -instant and given by the disjoint
( ⋃

t∈ [0, T ]

Rt
V(x0)

)
-union. In case

we adopt the equivalence (V ≡ X)-condition, then we drop the subscript. The total

reachable R(x0)-set from initial x0-point is the disjoint
( ⋃

t≥ 0

Rt(x0)

)
-union.

Likewise, for each open V-set, z0-point and (t > t0)-instant, we consider the states
set controllable to z0 in exact t-time without leaving V-set, namely given by set-definition
below. The notation is similar to the reachable set by substitution of R-notation by C.

{x0 | ∃ω ∈ C∞
[t0, t]

(U) s.t. ϕ(s, t0, x0, ω) ∈ V, ∀ s ∈ [t0, t] and ϕ(t, t0, x0, ω) = z0}

1The abbreviation s.t. stands for implicative conjunction “such that”.
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Hence, we define the following result about the relation between the accessibility rank
condition and the above-defined sets.

Theorem A.3. Given (x0 ∈ X)-point such that the accessibility rank condition holds.

Then, the
(
R

≤T
V (x0),C

≤T
V (x0)

)
-sets have non-empty interiors, for each neighborhood V-

set of x0-point, and each time (T > 0)-constant. Finally, the (R(x0), C(x0))-sets also
have non-empty interiors.

int
(
R

≤T
V (x0)

)
̸= ∅

int
(
C

≤T
V (x0)

)
̸= ∅

(A.6)

Sontag states that the accessibility rank condition is not sufficient for controllability
implication. Thus, we require a further concept to accomplish controllability in terms of
concepts defined so far.

Definition A.28 (Reversibility [36]). A system is weakly reversible if the implicative
(x0 ⇝ z0 ⇐⇒ z0 ⇝ x0)

22-relation hold, and strongly reversible if, for each x0-point
and each admissible control

(
ω ∈ C∞

[0, T ](U)
)
-measure for admissible x0-point, there is

some admissible input (ν ∈ C∞
[0, T ](U))-map such that z0-point given by ϕ(T, 0, x0, ω)-

evaluation as well as the reverse (ϕ(t, 0, x0, ω) = ϕ(T − t, 0, z0, ν))-equality hold, for
every (t ∈ [0, T ])-instant.

The above ideas allow reachable/controllable set definition by means reversibility hy-
pothesis. That is, weakly reversible means that (z0 ∈ R(x0), x0 ∈ R(z0))-conditions hold
together, and strongly reversible means that the same curve from point x0 to z0 also
travels backward.

Proposition A.1 ([36]). Let x0 be a point on X-manifold such that the accessibility rank
condition holds. If the Σ-system is weakly reversible, then the int (R(x0) ∩ C(x0))-set is
not empty, for some (x0 ∈X)-point. Moreover, if it is strongly reversible, then for every
neighborhood V-set of x0-point and time (T > 0)-constant, the int

(
R

≤T
V (x0) ∩ C

≤T
V (x0)

)
-

set is also non-empty.

Corollary A.3 ([36]). For a weakly reversible system, if the accessibility rank condition
holds at every state (x ∈ X̃ ⊆ X)-point and X̃-space is connected, then the system is
completely controllable within X̄-space.

We develop the observability concept and reconstruction of system states. It will prove
itself dual to the above-presented topic. The concept regards the physical application of
sensor readings to acquire information about the system states either for monitoring or
subsequent control. Intuitively, there must be enough information to reconstruct the
system description.

The duality between reachability and controllability regards the action of covector
fields spanned by output derivatives. It means, we utilize analogous concepts of spanned
codistribution and distinguishability-observability sets as we construct for reachability-
controllability. Likewise, we obtain an equivalent rank condition statement for observ-
ability, as presented in [78]-textbook.

22The squiggle arrow ⇝-symbol denotes reachability among former to latter points.
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Definition A.29. ([78]) States (x1, x2 ∈ M)-points are indistinguishable for every ad-
missible u-input, we call x1Ix2, if, the output ((h ◦ ϕ)(t, t0, x1, u) = (h ◦ ϕ)(t, t0, x2, u))-
equality hold, for initial state (x1, x2)-points. We call the system observable if x1Ix2-
condition implies the (x1 = x2)-equality.

In other words, a system is locally observable if, for every state (x ∈ X)-point, it is
distinguishable from its neighbors by nearby close trajectories to x-point.

Before we explain the observability property of affine dynamical systems, the com-
binatorics definition of the below family is helpful in further statements. The notation
allows the construction of Lie derivative chains.

Definition A.30. Given a permutation Pk-family of an J-element-set belonging to index
set In-family, we define a (Ik ∈ Pk(J))-set-element as every ordered permutation of J-set
with k-cardinality.

For affine dynamical systems under analysis, on definition A.22, the observable O-
space associated to the Σ-system from Lie algebra-equivalent covector differential fields
of output {hj}ny -maps.

Theorem A.4 (Observable O-space [78]). The observable O-space associated to the
Σ-system is co-vector space spanned by the set of all Lie derivative chain maps on (A.7)-
equality over possible index permutations of (k > 0)-cardinality from N≤m-set and (j ∈
N∗

≤p)-index.

Lgi1
· · · Lgik

hj := LIk
{gi} h

j (A.7)

Proof. We prove, for a sufficiently close neighborhood V-set of (x1 ∈ X)-point that, if
state (x1, x2 ∈ V)-points are indistinguishable i.e. x1 IV x2, then they are equal. Thus,
consider a piecewise constant control uk on the ([tk−1, tk] + t1 + · · ·+ tk−2)-interval. For
small enough instants i.e. limit values, control uk is admissible for both x1 and x2. By
indistinguishability, the resulting output at instant t is equal to (t1 + · · ·+ tk)-sum. It
follows that the output ti-derivatives are also equal for state (x1, x2)-points and every
such piecewise constant control ui. Let us denote the j-entry of output h-map, for initial
state x-point, by notation hj(t1, · · · , tk, u1, · · · , uk, x). Firstly, we construct an instant
time set {ti}k. By induction, the following time chain derivative holds:

∂{tk} h
j(t1, · · · , tk, u1, · · · , uk, x)

∣∣
t1=t2=···=0

= (LX1 · · · LXk
hj)(x)

= (LIk
{Xl} h

j)(x)
(A.8)

Vector Xl-fields correspond to instant vector fields f + gi u
i
l. By the above expression

awareness as linear respective to input uil-entries and inverse function theorem application,
a further d-differentiation with respect to these control value coordinates shows that
(x1, x2)-points coincide on the definition domain only if there is n-rank around (A.7)-
generators. ■

In the analytic case, separability, the opposite of indistinguishability, by O-set is
necessary as well sufficient because we express the output hj-map by input uk-sequence
as a power series in terms of the (A.7)-generators.
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Definition A.31 ([78]). We exchange vector Xi-fields on A.4-theorem, (A.7)-equality, to
belong to the accessibility Lie algebra {f, g1, · · · , gm}L.

Finally, we call (A.5)-theorem the observability rank condition. The system satisfies
the observability rank condition if (A.5)-condition holds for any (x ∈M)-point.

Theorem A.5 (Observability rank condition [78]). Consider the affine system on A.22-
definition with dim(X)-dimension as natural nx-constant. We define the smallest obser-
vation codistribution denoted by dO23 below:

{
dLIk

{gi}h
j | ∀Ik ∈ Pk(N≤m) ∧ k > 0 ∧ j ∈ N∗

≤m

}
(A.9)

Thus, the system is locally distinguishable on a neighborhood-set to (x0 ∈ I ⊆ X)-
point if (rank (dO(x0)) = n)-equality holds.

A.5-Theorem suggests that, even if an affine system is locally observable, the dO-
codistribution may have singular (q ∈ DO)-points with (nO := rank(dO(q)) < n)-
dimension. On the other hand, Isidori shows that in a locally accessible and analytic
system, the dO-codistribution local constant dimension is due to Taylor’s polynomial
series representation.

Proposition A.2 ([78]). Let affine dynamical Σ-system be a locally accessible and ana-
lytic system and M-manifold connected such that the dO-codistribution is dimensionally
constant. Then, an affine system is locally observable if it satisfies the observability rank
condition on (A.5)-definition.

Finally, we build a Venn diagram to summarize the relation between R/I/C/O-sets
on a neighborhood-set to (x0 ∈ X)-point. In a smooth general case, there may exist
an intersection between (R, I)-sets. (C, O)-Sets require a further implication condition,
which constrains each (I, R)-subsets. Likewise, they may exhibit an intersection set. Its
pictorial representation follows in 30-figure.

X

x0
O IR C

Figure 30: Relation between R-reachable, C-controllable, I-indistinguishable and O-
observable sets from initial x0-point.

23For convenience, we here-refer to vector f -field as g0-notation.
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Lyapunov stability analysis

Lyapunov brings a geometric perspective to the dynamical systems stability theory.
His criterium comprehends the effort to analyze dynamical systems, oftentimes described
in (T, X, U, ϕ)-tuple form on geometrical objects. Authors Pait & Colón present the
theory in terms of a C∞-class Riemannian manifold and provide useful comprehensive
insights for further construction of a Lyapunov scalar v-map defined from some state X-
manifold to R≥0-space. These map properties follow below. The current author enlights
the notation by x-dependency omission.

Definition A.32 (Resting xe-point [80]). Let X define a manifold and the velocity
vector (ẋ ∈ Tx X)-field given by velocity vector a(x)-field , a xe-point within X-manifold
is a resting point if it satisfies (a(xe) = 0)-equality. The disjoint union of resting (xe ∈Xe)-
points, is a subset of X-manifold, we call it resting (Xe ⊆X)-set.

Definition A.33 (Lyapunov map [80]). Let us choose a C∞-class positive v-map and
a C∞-class dynamical system whose velocity (ẋ ∈ TxM)-vector is given by vector field
a(x)-map for every (x ∈ Da)-point. Then, v-map calls a Lyapunov map to stability
analysis around a resting (xe ∈ Xe)-point if it satisfies the properties below within an
open neighborhood Bxe-set, for every (x ∈ Bxe)-point.

1. v ≥ 0;

2. ∇D v ≤ 0.

Definition A.34 (Lyapunov stability [79]). Let ℓ be a positive definite map with
level (ℓ = 0)-sets only at resting (xe ∈ Xe)-points. We assume that the Lyapunov
partial differential (A.10)-equality (L.P.D.E. for short) has a v-map solution such that
(v(xe) = 0)-equality hold. Then, the equilibrium point xe of the dynamical Σ-system is
asymptotically stable only if v-map is positive definite.

Lav + ℓ = 0 (A.10)

Henceforth, a linear system, as Pait & Colón define on [79]-work, satisfies stability
(A.10)-condition only if there is a so-defined linear Lyapunov Pij x

i xj-map, for K-class
tensor P and position (X := xi ∂i)-vector respective to original o-point such that linear
dynamical linear system trajectories are given by (Killing) velocity linear vector AkX

k-
field satisfies (A.10)-condition for some K-class Q-tensor. We represent (A.11)-equality
in the compact (Λ + A⊺ P + P A = −Q)-format, for the (i, j)-entry Λ-element equal to(
LAk xk Pij

)
-map.

(
LAk xkPij

)
xi xj + Pij A

i
k x

k xj + Pij A
j
k x

i xk := −Qij x
i xj (A.11)
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APPENDIX B – INSTRUCTIONS FOR
RESULTS
REPRODUCTION

These work results require the below software tools. They allow library setup pro-
ceeding.

• A git-based source management software (https://git-scm.com/) e.g. Tortoise-
Git, Github Desktop, or Git for Windows;

• Matlab version 2017a or above;

In sequence with the above installation, the below instructions allow the installation
and usage of the required libraries:

1. Run the command chain below to clone the necessary repositories.

» mkdir /̃github

» cd /̃github

» export ASMOVE_REPO="https://github.com/asmove"

» for repo in "$ASMOVE_REPO/"{quindim,matils,baryopt,sseek}; do

git clone $repo;

done

2. Open MatLab;

3. The command to reproduce the source-seeking results follows below

» cd /̃github/sseek

» loadlibs

» cd /̃github/sseek/code

» main
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APPENDIX C – PARTIAL INPUT-OUTPUT
LINEARIZATION
ALGORITHM

Algorithm 1 The dynamic extension pseudocode algorithm(
x̃, f̃ , G̃, h̃

)
← (x, f, G, h)

ñ, m̃← dim(G̃)
p← dim(h̃)
S ← IdRm

5: i← 0

do
i← i+ 1(
yδ, ∆, δ, Lδ

f̃
h
)
← ∅

for each j ← 1 to ny do
10: k ← 1

{ Calculates relative degree κ-vector }
do
Lk
fh

j = ∂
∂x
hj · Lk−1

f hj

LG̃L
k−1
f hj = ∂

∂x
Lk−1
f hj · G̃

∆←

[
∆

LG̃L
k−1

f̃
h̃j

]

15: yδ ←

[
yδ

Lk
f̃
h̃j

]

Lδ
f̃
h̃←

[
Lδ
f̃
h̃

Lk
f̃
h̃j

]
k ← k + 1

while LG̃L
k
f h̃

i ̸= 0,∀x ∈X

end for
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Algorithm 1 The dynamic extension pseudocode algorithm
20: if rank (∆x) < ny, ∀x ∈X then

δj ← k

Si-distribution such that
(
∆Si =

[
∆1i 0

])
-equality and (u := Siwi)-map hold

S ← S Si

x̃←
[
x̃
w1i

]
25: f̃ ←

[
f̃ + G̃ S1i

0

]
G̃←

[
0 G̃ S2i

IdTW1i
0

]
h̃← h continue

end if

while rank (∆x̃) ̸= ny, for some
(
x̃ ∈ X̃

)
-space

30: v = {yδa⋆ −
δa−1∑
b=0

kba (y
(b) − y(b)⋆ )}a∈N∗

≤p
for the

(
{kba}a∈N∗

≤ny

)
-monomials of character-

istic polynomial with {λδi}-roots on the left complex C−-plane
w = ∆−1 (−Lκ

f h + v
)

u = Si

[
z1i
w2i

]
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APPENDIX D – SEEKING ALGORITHM

Algorithm 2 Flow diagram pseudocode implementation from 11-figure
Require:

Initial τ0-instant;
Trajectory reference γ̂-curve;
Input u-map;
Signal sampling and estimation (∆τs,∆τe)-intervals;

5: Assign index map (i, j)(s)-tuple respectively to map
(⌊

s−τ0
∆τe

⌋
,
⌊
s−τ0
∆τs
− i(s) ∆ τe

∆τs

⌋)
-

tuple;
Update:

Indexes (i, j)-tuple to natural (i, j)(τ0)-tuple;
Source signal sample instant τs-variable to τ0-instant;
Extremum estimation point ŷi j(τ0)-variable to (ys(τ0) + z)-point;

10: while τ ∈ R≥τ0 do
Get current τ -instant
Update indexes (i, j)-tuple to natural (i, j)(τ)-tuple;
Update (at least 1 option):

Trajectory curve γ̂ij-endpoint to (ŷi js + zγ)-vector;
15: Control u-map to (u(x(τ), γ̂) + zu)-vector;

Apply input u-map to dynamical Σ-system;
if τ ∈ [τi, τi+1] then

if τ ∈ τs + [0, ∆τs] then
Continue;

20: else
Update:

Point ŷi j(τ0)-variable to (ŷi j−1 + Fj(y(τ))(ys(τ)− ŷi j−1
s ) + zŷ)-point;

Instant τs-variable to τ -instant;
Index j-variable value by increment 1;

25: end if
else

Update:
Index i-variable value by increment 1;
Estimation point ŷi 0-variable to ŷi−1 j-point;

30: end if
end while


