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RESUMO

CARVALHO, L. P. Fault detection filter and fault accommodation controller
design for uncertain systems. 2021. Tese (Doutorado) – Escola Politécnica. Universi-
dade de São Paulo, São Paulo, 2021.

Nessa tese as abordagens de detecção de falhas baseadas em modelos matemático (FD)
e de acomodação de falhas (FA) foram aplicadas em uma variedade de casos. Propomos
várias técnicas para levar em conta a presença de incertezas durante a fase de projeto
de controle. Primeiro, nos concentramos no projeto do Filtro de Detecção de Falhas
(FDF) e do Controlador de Acomodação de Falhas (FAC) para Sistemas Lineares com
Salto Markoviano1 (MJLS). Tratar o problema no contexto MJLS nos permite incluir o
comportamento da rede (perda de pacotes) durante o projeto do FDF e do FAC. Em
segundo lugar, propomos um projeto FDF e FAC para o MJLS, partindo do pressuposto que
o modo da cadeia de Markov não é diretamente acesśıvel. Como estamos usando a estrutura
MJLS para modelar o comportamento da rede, a suposição de que o estado da rede não
é instantaneamente acesśıvel é útil porque, do ponto de vista prático, essa suposição
é verdadeira. Terceiro, a partir dos resultados apresentados para a estrutura MJLS,
fornecemos resultados de acompanhamento usando o Sistema com Saltos Markovianos
tipo Lur’e2. Isso é convincente, pois em algumas ocasiões o comportamento não linear
não pode ser ignorado. Portanto, a descrição do problema como Lur’e MJS nos permite
considerar as mesmas suposições do MJLS, mas agora adicionando as não linearidades.
Quarto, propomos o projeto Ganho-Escalonado3 FDF e FAC para sistemas com parametros
linearmente variaveis4, partindo do pressuposto que o parâmetro de escalonamento não é
adquirido diretamente. Assumimos que o parâmetro de escalonamento está sujeito a rúıdo
aditivo. Esta imprecisão é inclúıda durante o projeto, usando a mudança de variáveis
e técnicas multi-simplex. Finalmente, ao longo da tese, fornecemos alguns exemplos
numéricos para ilustrar a viabilidade das abordagens propostas.

Palavras-Chave – Detecção de Falha, Controle Tolerante a Falta, Sistemas Sujeitos a
Saltos Markovianos, Parametro Linearmente Variaveis, Desigualdade Matricial Linear.

1do inglês: Markovian Jump Linear System
2do inglês: Lur’e Markov Jump System.
3do inglês: Gain-Scheduled
4do inglês: Linear Parameter Varying (LPV)



ABSTRACT

CARVALHO, L. P. Fault detection filter and fault accommodation controller
design for uncertain systems. 2021. Tese (Doutorado) – Escola Politécnica. Universi-
dade de São Paulo, São Paulo, 2021.

Model-based Fault Detection (FD) and Fault Accommodation (FA) approaches have
been applied in a variety of cases. We propose several techniques to include uncertainties
in the design process. First, we focus on the design of the Fault Detection Filter (FDF)
and Fault Accommodation Controller (FAC) for Markovian Jump Linear Systems (MJLS).
The MJLS framework allows us to include the network behavior (packet loss) during the
design of the FDF and FAC. Second, we propose an FDF and FAC design for the MJLS,
under the assumption that the Markov chain mode is not directly accessible. Since we
are using the MJLS framework to model the network behavior, the assumption that the
network state is not instantly accessible is useful because from a practical standpoint this
is a truthful assumption. Third, from the results presented for the MJLS framework, we
provided follow-up results using Lur’e Markov Jump System. This is compelling since
on some occasions the nonlinear behavior cannot be ignored. Therefore, applying the
Lur’e MJS framework allows us to consider the same assumptions from MJLS, but now
adds the nonlinearities. Fourth, we propose the design Gain-Scheduled FDF and FAC
for Linear Parameter Varying (LPV) systems, under the assumption that the schedule
parameter is not directly acquired. We assume that the schedule parameter is subject to
additive noise. This imprecision is included during the design, using change of variables
and multi-simplex techniques. Finally, throughout the thesis, we provide some numerical
examples to illustrate the viability of the proposed approaches.

Keywords – Fault-Detection, Fault-Tolerant Control, Markovian Jump Linear System,
Linear Parameter Varying, Linear Matrix Inequality.
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1 INTRODUCTION

The presence of undesired behaviors is inherent in a multitude of systems in engineering

(PATTON; CHEN, 1994). The source of these unwanted behaviors can vary for a plethora

of reasons. Among these reasons are, for example, physical issues in the plant (PATTON;

CHEN, 1997), communication problems (SRINIVASAN et al., 2006), imprecision on the

identification procedure (JR; ADELI, 2012), missing dynamical behavior in the model,

etc. All the listed reasons are aggravated as systems become more complex as technology

advances. Since the occurrence of these undesired behaviors is innate to all types of

systems, it is of utmost interest that a procedure to detect, isolate, or mitigate these

behaviors be developed.

Before any remedial actions can be planned to deal with those behaviors, it is crucial

to understand and classify them. As in the reference (ISERMANN; SCHWARZ; STOLZL,

2002), we use the following definitions of unwanted behaviors:

� Fault. A fault is an unwanted abnormal behavior of at least one characteristic of

the nominal system. A fault can be characterized as follows i) a fault may cause

a reduction of the nominal performance; ii) some sources of the fault are design

fault; manufacturing fault, assembling fault, fault caused by wear, wrong operation

(human error), hardware fault, software fault, and communication fault; iii) a fault

may occur and the system may remain functional; iv) a fault is the first step to

greater problems (malfunctions and failures); v) a fault can be abrupt, intermittent,

oscillatory, or gradual.

� Malfunction A malfunction is a temporary interruption of the system capability

to fulfill its nominal functions. A malfunction can be characterized as follows i) a

malfunction is a temporary interruption that may or may not be intermittent; ii) a

malfunction is commonly a result of wear or lack of maintenance; iii) a malfunction

is the result of one or multiple faults; iv) a malfunction is an event;

� Failure A failure is the permanent interruption of the capability to fulfill its nominal
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tasks. A failure can be characterized as follows i) a failure is the permanent loss

of the system’s ability to perform its functions; ii) a failure is a result of one or

multiples faults; iii) a failure is classified by the number of failures, or predictability

(random, deterministic, systematic); iv) a failure is an event;

In order to illustrate the above notions we provide the following example. Let us say the

reader is driving a manual car with a regular clutch. Assuming the driver knows how

to change gear, the clutch system will perform a smooth change of gears without any

noise, which is the nominal behavior. A fault in this scenario would be the change in the

clutch pedal ”sensation”, where the driver would need to change the force applied to the

pedal to change gear, but the change of gear would still be smooth without any noise.

A malfunction in this scenario would be the next step where sometimes the driver will

not be able to change gears, the clutch would ”slip”, but after a few attempts, the driver

would be able to change gear. Finally, a failure happens when the clutch system would

stop working permanently.

To provide a visual representation, the following image in Fig.1 is a representation

Figure 1: Backlash, a normal behavior,
image extracted from (NIIJJAAWAN;
NIIJJAAWAN, 2010).

Figure 2: Fatigue crack, a gear fail-
ure, image extracted from (RICHARD;
SANDER, 2016).

of the backlash, which is a typical physical phenomenon but can be gradually increased

due to wear. Fig.2 exemplifies a failure caused by overload or other improper use of the

equipment or caused by wear associated with the lack of maintenance.

Now that we understand the problem it is necessary to define what are the goals

for a procedure that is responsible to detect, isolate, or mitigate a fault. The purpose

of this procedure is to maintain three characteristics: reliability, availability, and safety.
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Reliability can be defined as the ability to fulfill a task in a given time. Availability is the

amount of time a system is able to fulfill its task properly. Safety is the ability to keep the

people involved in the system’s operation safe.

In industrial process control systems, fault detection and fault mitigation solutions are

used simultaneously. This issue is dealt with using a supervisory loop. A supervisory loop

is defined as a technical process that provides all the information regarding the system, to

point out any unwanted behavior, and also helps with the decision-making process to solve

these problems. The placement of each procedure in a supervisory loop is represented

in Fig.3. As can be seen in Fig.3, Fault Detection (FD), Fault Isolation (FI), and Fault

Control
System

Fault
Detection

Fault
Isolation

Fault
Evaluation

Decision

Stop
Operation

Reconfigu-
ration

Repair

Mainte-
nance

Monitoring

Fault Management

Fault

Figure 3: Graphic representation of Supervisory Loop, and all the sub-processes that
compose it. The standard controller is embedded in the ”Control System” block. The
Supervisory Loop is divided into two main processes the monitoring and management.
The monitory part is responsible to acquire the information, and the management part
deals with the decision-making and actions to keep the system working properly.

Evaluation (FE) are classified as monitoring procedures. The processes of reconfiguration,

operational change, maintenance, and repairs are considered to be fault management

procedures. The procedures of reconfiguration and change operation can be automated.

As seen in Fig.3 the monitoring process is divided into three main parts, the FD

is the process that signalizes the presence of a fault, the FI points out where the fault

is occurring, and the FE estimates the magnitude of the fault. Concerning the fault

management procedures, the reconfiguration process refers to all procedures that keep the

system working and manage to change some characteristics to mitigate the fault and the

change in the operation block represents the action altering the entire process to keep the

plant working (this is a more severe action compared to the reconfiguration). Repair is

the action to send a team of workers to fix a piece of equipment that already failed and
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maintenance is scheduled to send a team of workers to do preventive fixes in an equipment

to prevent a failure caused by wear.

From the standpoint of the system itself, the faults can occur in every part of the

process. From the diagram in Fig.4 we can observe that the faults can occur on an actuator,

Plant

Fault

Sensor Net

Fault

ControllerNetActuator

FaultFaultFault

Fault

Figure 4: The placement of possible occurrence of fault in a generic system.

sensors, a structural problem, and/or during the signals transmissions. Therefore, to deal

with the maximum amount of faults simultaneously, it is necessary to consider the different

sources of the faults during the design procedure of fault detection systems.

1.1 Fault Detection and Fault Tolerant state-of-the-

art

1.1.0.1 Fault Detection

The literature on the fault detection problem is extensive. Among all the literature, it

is possible to classify the solutions related to the fault occurrence with two main branches,

namely, the model-based solutions (ISERMANN; SCHWARZ; STOLZL, 2002; PATTON;

FRANK; CLARK, 2013; ZHONG; XUE; DING, 2018; MARZAT et al., 2012) and the

data-driven solutions (DING, 2014; SCHWABACHER, 2005; ALAUDDIN et al., 2018).

Both classes have their pros and cons, as described in (ZHANG, March, 2014; DING et al.,

2011; TIDRIRI et al., 2016; VENKATASUBRAMANIAN; RENGASWAMY; KAVURI,

2003). The main advantages of model-based approaches are:

� Guarantee on the performance when the model is precise and reliable,(ISERMANN;

SCHWARZ; STOLZL, 2002; VENKATASUBRAMANIAN et al., 2003b).

� Easy to implement, and design. Since it is a well-established branch of research in

control engineering, there are plenty of suitable results for many situations (ZHONG;

XUE; DING, 2018).
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One major disadvantage of this approach is its reliance on the veracity of the model

being used. Thus the mathematical description or the identification process must be

precise.

On the other hand, the main advantages of data-driven approaches are:

� They can directly be implemented using previously available data without needing

an analytical model (DING et al., 2011).

� They do not demand a high level of computational effort, which enables their

implementation in real time (TIDRIRI et al., 2016).

The main difficulty of the data-driven are the data preprocessing, and the dependency on

data reliability, quality, and quantity (CHIANG; RUSSELL; BRAATZ, 2000).

Among the model-based branch of solutions, it is possible to categorize them into four

main approaches: Observer-based, Parity space, Parameter estimation, and Bond Graph.

All these approaches make some sort of comparison between the expected/predicted

behavior and the real behavior, the discrepancy between behaviors indicates the occurrence

of a fault. This comparison is made in two steps. The first one is the residue signal

generation, which is generated using the aforementioned approaches. The second step is

the evaluation process which uses the residue signal to distinguish if a fault occurred or

not in the monitored processes.

Observer-based: This approach relies on the observability assumption where systems

behavior can be obtained from the output. As it is true for all model-based approaches, the

observer approach depends on a precise and reliable mathematical model of the system. Yet,

a perfect mathematical model is not achievable in practice (PATTON; FRANK; CLARK,

2013). This inherent imprecision in the mathematical model is caused by simplifications

(i.e. linearization process), or overlooking a particular behavior that at first glance seems

irrelevant to the overall behavior. Bypassing those behaviors may ease the task describing

the system mathematically. But for an FD procedure, this may cause bias or imprecision

that leads to false alarms. Besides the model imprecision, another important aspect is that

all systems are subjected to disturbances or noises, which can be interpreted as an unknown

and uncontrollable input. A possible way to deal with this is proposed in (PATTON; CHEN,

1997), where an approach to decouple the control input from the fault signal is presented.

Other approaches propose the decoupling of the unknown input (noise/disturbance) from

the fault signal using the for example the Unknown Input Observer (UIO), as in (CHEN;

SAIF, 2006; ALHELOU; GOLSHAN; ASKARI-MARNANI, 2018) or the Unknown Input
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Filter (UIF) (PATTON; CHEN, 1997). Besides the aforementioned approaches, we can

also point out the results based on observers that are derived in the following frameworks

as the Markov Jump Linear Systems (ZHONG et al., 2005), Fuzzy logic (HAN et al.,

2017; CHIBANI et al., 2016), H− index and H∞ norm (CHADLI; ABDO; DING, 2013;

AOUAOUDA et al., 2015; RAMBEAUX; HAMELIN; SAUTER, 1999), and Kalman filter

in (LUO; FANG, 2013; ZAREI; SHOKRI, 2014).

Parity space: The Parity space approach was first presented in (POTTER; SUMAN,

1977). Roughly, speaking a Parity space FD uses the transformation of the state-space

model of the system to gather the parity relations by observing the system on a finite

horizon, (GERTLER, 1991). The idea behind this approach is to generate the parity

relation to acquire equations that only depends on known or measured parameters (inputs

and outputs). The major main disadvantage of parity space based approaches is that they

do not consider the uncertainties on the system. Consequently, they are mostly applied

only on Linear Time-Invariant Systems. A few examples of FD approaches based on parity

space are (DING; GUO; JEINSCH, 1999; GERTLER, 1997; ODENDAAL; JONES, 2014;

PATTON; CHEN, 1994).

Parameter Estimation: The procedures based on parameter estimation are based

on the premise that the state variables can be estimated given the access to the inputs

and outputs of the system. A way to describe the FD based on the parameter estimation

is that the fault is detected via a comparison between the estimated parameters of the

nominal process and the online parameter estimation over a pre-set time horizon. In this

procedure, we consider that a fault occurred when a discrepancy between these estimations

appears (ISERMANN; SCHWARZ; STOLZL, 2002; VENKATASUBRAMANIAN et al.,

2003a).

Bond Graph: A bond graph is another way to represent a system dynamic, its main

advantage is the direct representation of the bidirectional energy exchange in the system.

This characteristic allows to generate a residual signal based on the energy exchange.

Some examples of the bond graph being applied to the FD problem are (SAMANTARAY

et al., 2006; DJEZIRI et al., 2007; BENMOUSSA; BOUAMAMA; MERZOUKI, 2013;

CAUFFRIEZ et al., 2016). An extension of the FD approach based in bond graphs is

the signed bond graph, which uses the bond graph qualitative and quantitative structural

properties to generate multiples behavior predictions, as cited in (TIDRIRI et al., 2016),

and presented in (CHATTI et al., 2014).

We can classify the FD approaches based on data-driven with two main classes, namely,
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the supervised and unsupervised approaches. A supervised approach can be sub-classified

as Bayesian Networks, or Artificial Neural Networks. For the unsupervised ones, we can

classify them as Control Charts, Principal Component Analysis or Partial Least Squares.

The supervised approach bases its function on the historical data to design a learning

model that will be used as an FD to evaluate the new data.

Bayesian Networks: Bayesian networks are a type of acyclic graphs where a node

represents a variable, which can be a discrete or a continuous variable (VERRON; LI;

TIPLICA, 2010). Another similar approach is the Dynamic Bayesian Network, which

besides the stochastic modeling also includes temporal information (YU; RASHID, 2013).

Artificial Neural Networks: An Artificial Neural Networks are models that imitate

the learning process of a biological system. An artificial Neural Network is composed

of a series of interconnected processes called nodes, those nodes are organized in layers,

which form a complex network (PAYA; ESAT; BADI, 1997; SAMANTA; AL-BALUSHI;

AL-ARAIMI, 2003).

The unsupervised approaches as opposed to the supervised approaches do not use any

previously acquired knowledge of the system. Some examples of methods that can be

classified as unsupervised are control charts, principal component analysis or partial least

squares.

Control Charts: Among all the data-driven approach presented here, the Control

Charts is the oldest, and is firstly presented in (SHEWHART, 1931). As described in

(MONTGOMERY, 2007), the Control Chart approach is a statistical hypothesis testing,

the design of a Control Chart is separated into two parts. The first one is the retrospective

analysis, and the second one is the monitoring process.

Principal Component Analysis: The authors in (WOLD; ESBENSEN; GELADI,

1987) state, that a Principal Component Analysis is a multivariate data analysis method

that is capable of simplifying the data to keep the important information and reduce the

data set size.

Partial Least Squares: The Partial Least Squares method can be described as

a projection of a data set with a high number of dimensions in a data set with lower

dimension, this new data set is defined using latent variables. The purpose of those latent

variables is to define the most important information on the original data set that should

be retained (KOURTI; NOMIKOS; MACGREGOR, 1995).

It is important to mention that there are more types of FD approaches. The above
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mentioned examples and classification are just a glimpse of how rich the FD literature is.

Another critical piece of information that worth mentioning is that there are approaches

that are based on both main branches of FD approaches, the model-based and the data-

driven approaches, these types of approaches are called hybrid. The authors can refer to

these works (FRANK et al., ; TIDRIRI et al., 2016) that are based on this premise.

A graphical representation of the aforementioned classification of the FD problem is

given by Fig.5.

Fault Detection

Model-Based Data-Driven

Observer-based

Parity Space

Parameter Estimation

Bond Graphs

Bayesian Network

Artificial Neural Network

Control Charts

Principal Component
Analysis

Partial Least Square

Figure 5: Classification of the FD approaches.

1.1.0.2 Fault Tolerant Control

For the Fault Tolerant Control (FTC) problem we may classify it into two distinct

manners. The first one, similarly to the FD problem, the model-based (PATTON, 1997)

and data-driven approaches (DING, 2014). The latter one is the classification based on

whether the approach is active or passive. A Reconfigurable Control approach correspond

to the solutions where the controller only acts (reconfigure) in the presence of a fault

(ZHANG; PARISINI; POLYCARPOU, 2004). For the passive approach, the potential

fault is taken into account during the controller design, which provides a Robust Control

solution (LI et al., 2018).

Referring to the FTC problem based on the data-driven we may cite some procedures

for the robust and reconfigurable approaches.

Markov parameter sequence: The Markov parameter sequence is a stochastic tool

utilized to identify a system from its input and output as presented in (KIM, 2016; HAN;
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FENG, 2019).

Subspace Predictive Control (SPC): the SPC uses subspace identification pre-

dictors associated with predictive control applied to an affine LPV system (KULCSÁR;

DONG; VERHAEGEN, 2009).

Fault Tolerant Architecture: The FTA is an online fault tolerant control based on

residue generation designed using Youla parametrization, (WANG; YANG, 2016).

Regarding the model-based FTC problem, we can point out a few approaches for the

robust or reconfigurable approaches.

Gain Scheduled Control: A gain scheduled control is the type of control that

depends on a parameter. This parameter vary in time, and the variation is dictated by

the system (ROTONDO, 2017).

Adaptive Control: The basic idea of adaptive control is similar to the one presented

for the gain scheduled control. There are plenty of approaches that fall into this category,

as for example, Model Reference Adaptive Controller (MRAC) (CHAMSEDDINE et al.,

2011), Model Identification Adaptive controller (MIAC) (ÖREG; SHIN; TSOURDOS,

2019). Some other examples can be seen in (ZHANG; PARISINI; POLYCARPOU, 2004;

TOHIDI; SEDIGH; BUZORGNIA, 2016).

Fault Accommodation: The fault accommodation procedure is a method that

changes the controller parameters or structure to mitigate the consequences of a fault. The

input and output between plant and controller remain unchanged but the performance

may decrease (BLANKE; STAROSWIECKI; WU, 2001).

Robust Fault tolerant Control: The robust approach can be implemented using

any appropriate framework, such as, the Linear Parameter Varying (LPV), Markov Jump

Linear System (MJLS), or any other framework. We consider that a controller is robust

when during the design process the presence of a fault is considered, but the controller

acquired is static (meaning that the controller is not gain-scheduled or mode-dependent)

(CHADLI; ABDO; DING, 2013). Usually, these controllers are suboptimal since they are

designed to work in multiple operational points.

As was mentioned for the FD, the same statement can be made here, where all the

classes and parameters presented above are just an example of the rich literature of the

Fault tolerant control.
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Figure 6: Classification of the FTC approaches.

1.2 Outline and Main contributions

From the discussion and explanation presented in the previous section now we are

prepared to describe the main contributions presented in this thesis, and also positioning

of the results in the literature. As the title of the thesis says, we deal with the fault

detection and fault accommodation problem.

From the classifications discussed in the first part of the introduction, all the results

presented herein are model-based. Regarding the Fault Detection results, classifying them

as shown in Fig.5, they are all based on residue generated using observers. For the FAC

problems, we proposed a FAC under some frameworks and also a Gain-Scheduled FAC, as

classified in Fig. 6.

Each chapter in this thesis is organized as follows. In the first two sections a preliminary

discussion is introduced, presenting the theoretical background necessary to understand

and implement the results in the respective chapter. They are followed by the proposed

design, theoretical works, and illustrative examples for the respective frameworks. The

chapter is concluded with simulations to exemplify the usability of the approaches.

The content for every chapter is as follows.

� Chapter 2: In Chapter 2 we propose the Fault Detection Filter (FDF) and FAC

design under the Markov Jump Linear Systems framework. We derive the results un-

der this framework intending to model the network communication loss. The results

presented in Chapter 2 have been published in (CARVALHO; OLIVEIRA; COSTA,
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2018b; CARVALHO; OLIVEIRA; COSTA, 2018a; CARVALHO; OLIVEIRA; COSTA,

2018; CARVALHO et al., May 2021; CARVALHO et al., 2020b).

� Chapter 3: In Chapter 3 we follow the same idea of the previous chapter, but

including the assumption that the Markov chain is not directly accessible, instead,

the FDF and FAC depends on an estimation of the Markov chain parameter. Chapter

3 contains the results from the following publications (CARVALHO; OLIVEIRA;

COSTA, 2018c; CARVALHO; OLIVEIRA; COSTA, 2020; CARVALHO; OLIVEIRA;

COSTA, 2020; CARVALHO et al., 2020a).

� Chapter 4: For Chapter 4, we follow the idea from Chapter 2, but instead of the

MJLS framework, we implement the Markov Jump Lur’e Systems, in order to add

the non-linear behavior during the FDF or FAC design. The results in Chapter 4

are presented in (CARVALHO; JAYAWARDHANA; COSTA, 2021).

� Chapter 5: In Chapter 5 we introduce the Gain-Scheduled FDF and FAC design

for Linear Parameter Varying systems. Besides, we also use some techniques to

include during the design process, the assumption that the schedule parameter is

imprecise. The results in Chapter 5 are published in (CARVALHO et al., 2021a).

Chapter 2 Chapter 5

Chapter 3 Chapter 4

Figure 7: Interaction between chapters.

Finally, we wrap up the thesis with a conclusion chapter. For the sake of helping the

reader, we present Appendix A. Appendix A, provides the modeling of the network using

Markov chains, the modeling procedure of the illustrative models used throughout the

thesis, and some useful lemmas.
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2 FDF AND FAC FOR MARKOV JUMP

LINEAR SYSTEMS

In this chapter we present the results for the Fault Detection Filter (FDF) and

Fault Accommodation Controllers (FAC) under the Markov Jump Linear System (MJLS)

framework. Herein, the MJLS is implemented as a tool to model the communication loss

among system components, which allows us to draw results for the design of the FDF

and FAC assuming that the communication is subjected to packet loss. This assumption

is important since packet loss is inherent to any communication channel. The usual

workaround to the communication loss is the retransmission of the information, however,

this type of method burdens the network infrastructure. Hence, design an FDF or an FAC

under the communication loss provides robust solutions against this type of problem and

at the same time does not increase the load imposed on the network infrastructure.

The results presented in this chapter were published in the following conferences and

journals

� Subsection 2.3.3.1 presented the H∞ Fault Detection Filter for Markovian Jump

Linear Systems, which was presented in the European Control Conference 2018

(CARVALHO; OLIVEIRA; COSTA, 2018b).

� Subsection 2.3.3.2 presented the H2 Fault Detection Filter for Markovian Jump

Linear Systems, which was presented in the Congresso Brasileiro de Automática

2018 (CARVALHO; OLIVEIRA; COSTA, 2018a).

� Subsection 2.3.3.3 presented the Mixed H2/H∞ Fault Detection Filter for Markovian

Jump Linear Systems, which was published in Mathematical Problems in Engineering

(CARVALHO; OLIVEIRA; COSTA, 2018).

� Subsection 2.3.3.4 presented the Mixed H−/H∞ Fault Detection Filter for Marko-

vian Jump Linear Systems, which was published in European Journal of Control

(CARVALHO et al., May 2021).
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� Subsection 2.4.2.1 presented the H∞ Fault Accommodation Control for Markovian

Jump Linear Systems, which was presented in the IFAC 2020, Berlin (CARVALHO

et al., 2020b).

2.1 Notation

The real Euclidian space is presented by Rn where n denotes its dimension, and n×m
represents the real matrices dimension, for example A(Rn,Rm). The symbol (·)′ denotes

the transpose of a matrix, I indicate the identity matrix. The operator Her(·) represents

the symmetric sum (X) = X+X ′. A diagonal matrix is represented by the operator diag(·).
The symbol • represents a symmetric block in a partitioned symmetric matrix. On a

probability space (Ω,F ,P) with filtration {Fk}, the expected value operator is represented

by E(·), the conditional expected operator, by E(· | ·), and the space of all discrete-time

sequences of dimension r, Fk-adapted processes, such that ‖z‖2
2 ,

∑∞
k=0 E(‖z(k)‖2) <∞,

by Lr22 . We set Wi , {w ∈ Lr2 : ‖w̃‖2i > 0}, and the operator Ei(X) =
∑N

j=1 ρijXj.

2.2 Preliminary for the Markovian Jump Linear Sys-

tem

We consider the following general discrete-time Markovian Jump Linear System (MJLS)

G :

x(k + 1) = Aθ(k)x(k) + Jθ(k)w(k),

z(k) = Cθ(k)x(k) +Dθ(k)w(k),
(2.1)

where x(k) ∈ Rnx is the state, y(k) ∈ Rny is the measured output, z(k) ∈ Rnz is the

estimated output, w(k) ∈ Rnw is the exogenous input. We also consider that w(k) ∈ Lr22 .

The index θ(k) is a random variable such that {θ(k) : k ∈ N}, denotes a Markov chain.

With θk ∈ K = {1, . . . , N}, whereN represents the number of modes in which (2.1) may

operate. The transition matrix is represented by P = [ρij ] where ρij = Prob[θk+1 = j|θk = i]

and
∑N

j=1 ρij = 1 for all i ∈ K.

2.2.1 Stability for Markovian Jump Linear Systems

Definition 1. Consider system (2.1), with null exogenous input w(k) = 0 ∀k ∈ N, and

initial conditions x(0) = x0 ∈ Rn, θ0 ∈ K. The system is
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� Mean Square Stable (MSS) ∀ (x0, θ0) if

lim
k→∞

E{x(k)′x(k)|x0, θ0} = 0. (2.2)

� Stochastically stable (SS) ∀ (x0, θ0) if

E
{ ∞∑
k=0

x(k)′x(k)
∣∣x0, θ0

}
<∞. (2.3)

As in (COSTA; FRAGOSO, 1993), the definition (2.2) and definition (2.3) are equiva-

lent, and are known as Second Moment Stability (SMS).

2.2.2 H∞ norm for MJLS

Assuming that (2.1) is MSS with x0 = 0, theH∞ norm of G is given by (see (FRAGOSO;

COSTA, 2005; SEILER; SENGUPTA, 2003))

‖G‖∞ = sup
06=w∈L2,θ0∈K

‖z‖2

‖w‖2

. (2.4)

Notice that the case K = {1} corresponds to the deterministic case, that is, the case

without jumps.

It is possible to calculate the H∞ norm using the so-called Bounded Real Lemma for

Markovian Jump Linear Systems, first presented in (SEILER; SENGUPTA, 2003), and

stated below.

Lemma 1. System (2.1) is MSS and satisfies the norm constraint ‖G‖2
∞ < γ if and only

if there exist matrices Pi = P ′i > 0 such that[
Ai Ji
Ci Di

]′ [ Ei(P ) 0
0 I

] [
Ai Ji
Ci Di

]
−
[
Pi 0
0 γI

]
< 0,∀i ∈ K. (2.5)

Proof: See (SEILER; SENGUPTA, 2003).

Applying the Schur complement to (2.5) we get that[
Pi • • •
0 γI • •

Ei(P )Ai Ei(P )Ji Ei(P ) •
Ci Di 0 I

]
> 0, (2.6)

and the LMI constraint (2.6) can also be described by the inequality below[
Pi • • •
0 γI • •
Ai Ji Ei(P )−1 •
Ci Di 0 I

]
> 0. (2.7)
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2.2.3 H2 norm for MJLS

Assuming that (2.1) is MSS with x0 = 0, the H2 norm is given by

‖G‖2
2 =

nw∑
s=1

N∑
i=1

µi‖zi,s‖2
2, (2.8)

where z represents the output z(0), z(1), . . . obtained when

� the input is given by w(k) = esδ(k), where es ∈ Rnm is the s-th column of the m×m
identity matrix and δ(k) is the unitary impulse, see (COSTA; VAL; GEROMEL,

1997).

� θ0 = i ∈ K with probability µi = P (θ0 = i)

In (COSTA; FRAGOSO; MARQUES, 2006) it is shown that, if the Markov chain is

ergodic, and taking µi = ρi, where ρi = limk→∞ P (θ(k) = i) , the norm defined in (2.8)

can also be written as

‖G‖2
2 = lim

k→∞
E[z(k)′z(k)], (2.9)

where z(k) is the controlled output and w(k) represents a wide-sense white-noise with

covariance given by the identity matrix that is independent of the initial condition x0, and

the Markov chain {θk}. From the above, we have the following lemma.

Lemma 2. System (2.1) is MSS and satisfies the norm constraint ‖G‖2
2 < λ if and only

if there exist matrices Pi = P ′i > 0 and Si = S ′i > 0 such that

N∑
i=1

µiTr(Si) < λ, (2.10)[
Si • •

Ei(P )Ji Ei(P ) •
Di 0 I

]
> 0, (2.11)[

Pi • •
Ei(P )Ai Ei(P ) •
Ci 0 I

]
> 0, ∀i ∈ K. (2.12)

Proof: See (FIORAVANTI; GONÇALVES; GEROMEL, 2008) or (COSTA; VAL; GEROMEL,

1997).

Pre- and post- multiplying (2.11) and (2.12) by diag(I,Ei(P )−1, I) we obtain that if

the inequalities [
Si • •
Ji Ei(P )−1 •
Di 0 I

]
> 0, (2.13)
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[
Pi • •
Ai Ei(P )−1 •
Ci 0 I

]
> 0, (2.14)

are satisfied then ‖G‖2
2 < λ.

2.2.4 H− index for MJLS

Assuming that (2.1) is MSS and x0 = 0, the H− sensitivity index is defined as

‖G‖2
− = inf

06=w∈L2,θ0∈K

‖z‖2

‖w‖2

. (2.15)

Lemma 3. : Assuming that (2.1) is MSS we have that ‖G‖− > ξ for ξ > 0 if there exist

matrices Pi > 0, i ∈ K such that[
Ai Ji
Ci 0

]′ [ Ei(P) 0
0 −I

] [
Ai Ji
Ci 0

]
−
[

Pi C′iDi
D′iCi D

′
iDi−ξI

]
< 0,∀ i ∈ K, (2.16)

is satisfied.

Moreover for Pi > 0 we have that (2.16) is satisfied if and only if[
Pi+C

′
iCi • •

D′iCi D′iDi−ξI •
Ai Ji Ei(P)−1

]
> 0,∀ i ∈ K, (2.17)

holds.

Proof: Let us show first that if there exist matrices Pi > 0 such that (2.16) is satisfied

then ‖G‖− > ξ. Pre and post multiplying (2.16) by [x(k)′ w(k)′] and its transpose we get

that [
x(k)

w(k)

]′ [ A′
θ(k)Eθ(k)(P)Aθ(k)−Pθ(k)−C

′
θ(k)Cθ(k) A′

θ(k)Eθ(k)(P)Jθ(k)−C
′
θ(k)Dθ(k)

J′
θ(k)Eθ(k)(P)Aθ(k)−D

′
θ(k)Cθ(k) J′

θ(k)Eθ(k)(P)Jθ(k)−D
′
θ(k)Dθ(k)+ξI

] [
x(k)

w(k)

]
< 0. (2.18)

From (2.18) and (2.1) we get that

x(k + 1)′Eθ(k)(P)x(k + 1)− x(k)Pθ(k)x(k)− z(k)′z(k) + ξw(k)′w(k) < 0. (2.19)

Denoting by Fk the σ-field generated by the variables {x(l), w(l), θ(l); l = 0, . . . , k} we

get that x(k + 1)′Eθ(k)(P)x(k + 1) = E(x(k + 1)′Pθ(k+1)x(k + 1)|Fk), and thus E(x(k +

1)′Eθ(k)(P)x(k+ 1)) = E(x(k+ 1)′Pθ(k+1)x(k+ 1)). Recalling that x0 = 0 we get from (2.19)

after taking the sum over k from 0 to T that

T∑
k=0

E
[
x(k + 1)′Pθ(k+1)x(k + 1)− x(k)Pθ(k)x(k)− ‖z(k)‖2 + ξ‖w(k)‖2

]
=
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E(x(T + 1)′Pθ(T+1)x(T + 1))−
T∑
k=0

E(‖z(k)‖2) + ξ
T∑
k=0

E(‖w(k)‖2) < 0. (2.20)

Taking the limit as T → ∞ in (2.20) and recalling that (2.1) is MSS, we obtain that

limT→∞ E(x(T + 1)′Pθ(T+1)x(T + 1)) = 0, and we conclude that

‖z‖2
2 − ξ‖w‖2

2 > 0,

showing the first part of the proof. Let us show now the equivalence between (2.16) and

(2.17). Suppose that there exists Pi > 0 satisfying the constraints in (2.16). For any α > 0

we may rewrite (2.16) as[
Pi •

D′
iCi D

′
iDi−ξI

]
− [ Ai JiCi 0 ]

′
{ [

Ei(P) 0
0 αI

]
− [ 0 0

0 (1+α)I ]
}

[ Ai JiCi 0 ] > 0. (2.21)

Reorganizing (2.21) we get that[
Pi+(1+α)C′iCi C′iDi

D′iCi D′iDi−ξI

]
︸ ︷︷ ︸

>0

−
[
Ai Ji
Ci 0

]′ [ Ei(P) 0
0 αI

] [
Ai Ji
Ci 0

]︸ ︷︷ ︸
>0

> 0. (2.22)

From Schur’s complement we obtain that (2.22) is equivalent to[
Pi+(1+α)C′iCi • • •

D′iCi D′iDi−ξI • •
Ai Ji Ei(P)−1 •
Ci 0 0 α−1I

]
> 0, (2.23)

and from the Schur’s complement again we get that (2.23) is equivalent to[
Pi+(1+α)C′iCi • •

D′iCi D′iDi−ξI •
Ai Ji Ei(P)−1

]
− α

[
C′i
0
0

]
[ Ci 0 0 ] > 0,

showing (2.17). On the other hand, suppose that (2.17) holds. By taking the reverse steps

as before we get that (2.16) is satisfied, completing the proof. �

Remark 1. Notice that, unlike Lemma 1, we cannot guarantee from (2.16) that (2.1) is

MSS.

2.3 Fault Detection Filter Formulation

Let us consider the FD scheme in Fig. 8. As shown in Fig.8, the main points for

a model-based FD to perform properly are the i) accurate model for the plant; ii) a

reliable network communication; iii) a well-designed residue generator filter; and iv) a

proper residue evaluation. In this work, we concentrate our endeavors on providing residue

generator filter designs that contemplate some common issues as imprecise modeling,
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Figure 8: Block diagram detailing the Fault Detection scheme, presenting the residue
generation and residue evaluation steps.

unreliable network connections, and unknown network behavior.

It is important to state that the design of a residue evaluation procedure is not in

the scope of this work. However, a proper residue evaluation is required to guarantee the

FD procedure overall performance. The block diagram representing the FD topology is

presented in Fig.9. We assume that the MJLS subject to faults is defined as

System
Gθ(k)

Filter Fθ(k)

Weighting
filter Wθ(k)

Control u(k)

Fault f(k)

Noise d(k) y(k) r(k)

f̂(k)

re(k)

Figure 9: Block diagram representing the topology used to design the Fault Detection
Filter.

G :


x(k + 1) = Aθ(k)x(k) +Bθ(k)u(k) + Jθ(k)w(k) + Fθ(k)f(k),

y(k) = Cθ(k)x(k) +Dθ(k)w(k) + Eθ(k)f(k),

x(0) = x0, θ(0) = θ0,

(2.24)

where x(k) ∈ Rnx , y(k) ∈ Rny , u(k) ∈ Rnu , w(k) ∈ Rnw , f(k) ∈ Rnf , represent the state,

measurements, control, exogenous, and fault signals respectively.
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2.3.1 Residue Generator using Fault Detection Filter

The goal here is to design a FDF, which is responsible to generate the residue signal

r(k). The FDF is defined as

F :


η(k + 1) = Aηθ(k)η(k) +Mηθ(k)u(k) + Bηθ(k)y(k),

r(k) = Cηθ(k)η(k) +Dηθ(k)y(k),

η(0) = η0,

(2.25)

where η(k) ∈ Rnx , r(k) ∈ Rnr representing filter state, and residue signals, respectively.

A possible way to improve the FDF performance is to consider a weight system during

the design process, as used in (CHEN; PATTON, 2000; ZHONG et al., 2005; ZHONG et

al., 2003). As described in (CHEN; PATTON, 2000), the weight system improves the FDF

performance for a specific frequency range. Herein, the weight system W is denoted by

W :


xf (k + 1) = AWxf (k) +BWf(k),

f̂(k) = CWxf (k) +DWf(k),

xf (0) = 0,

(2.26)

where xf(k) ∈ Rnr is the weight matrix state, f(k) is the same signal as in (2.24), and

f̂(k) ∈ Rnr is the weighted fault signal.

Remark 2. In (CHEN; PATTON, 2000), a non-minimal phase FDI system is presented,

using the H∞ criterion. It is important to state that the weighting system (2.26) is given,

and its sole purpose is to be used as a tuning tool during the design process. In (CHEN;

PATTON, 2000; NIEMANN; STOUSTRUP, 2001), this technique is implemented for the

continuous-time domain, and in (ZHONG et al., 2005) the same approach is used for the

discrete-time domain. As described in (NIEMANN; STOUSTRUP, 2001), the presence of

(2.26) allows us to choose between a fault detection or a fault isolation problem, depending

solely on the structure of (2.26). If the designer decides to solve a fault estimation problem

with the same framework, the only action would be to set the values of (2.26) as BW = 0,

CW = 0, and DW = I. It is important to make it clear that the filter W is not present in

the implementation, it is just a part of the design procedure.

The difference between the fault detection and fault isolation approaches is that fault

detection needs only a single residue signal, and for the fault isolation case it is necessary

to generate a set of residue signals, called structured residual set, as described in (CHEN;

PATTON, 2012). In our case, for the fault detection approach, we can set AW , BW , CW ,
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and DW as fixed matrices to generate a single residue signal r(k). On the other hand,

for the fault isolation approach, the matrices AWf
, BW , CW , and DW would need to be

designed differently in a way to generate an appropriate number of residue signals to reach

the fault isolability. The size of the residue set should be similar to the number of known

recurring faults so that to isolate these specific faults. It is important to mention that a

complete fault isolability is not always achievable since complete knowledge of all possible

faults may be unreasonable for some practical situations.

The major goal in here is to design the matrices Aηi, Bηi, Cηi, Dηi, Mηi so that the

Fault Detection Filter (2.25) is mean square stable when x(0) = 0, u(0) = 0, d(0) = 0 and

f(0) = 0 and minimizes the value of γ in for the H∞ norm cases as in

sup
w 6=0, w∈L2, θ0∈N

‖re‖2

‖w‖2

< γ, (2.27)

where re(k) = r(k)− f̂(k). For the H2 norm the goal in the problem formulations is

m∑
s=1

N∑
i=1

µi‖re‖2
2 < λ. (2.28)

From the above, the equivalent system can be written in the augmented form as

Gaug :

x̄(k + 1) = Ãθ(k)x̄(k) + B̃θ(k)w̄(k),

re(k) = C̃θ(k)x̄(k) + D̃θ(k)w̄(k),
(2.29)

where the augmented state and the input signal are x̄(k) = [x(k)′ η(k)′ xf(k)′]′ and

w̄ = [u(k)′ w(k)′ f(k)′]′ with

[
Ãi B̃i

C̃i D̃i

]
=


Ai 0 0 Bi Ji Fi

BηiCi Aηi 0 Mηi BηiDi BηiEi
0 0 AW 0 0 BW

DηiCi Cηi −CW 0 DηiDi DηiEi −DW

. (2.30)

2.3.2 Evaluation Function

In the evaluation stage, it is necessary to set an evaluation function EVAL(k) and also

a threshold TH, both as defined in (ZHONG et al., 2005). We consider L as the evaluation

time, and with that, we can separate the evaluation process into two distinct cases, the

first one is defined by k − L > 0 and the second one, k − L < 0. Thus, we define the
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auxiliary vectors for each case asfor k − L > 0, r̄(k) = [r(k) r(k − 1) . . . r(k − L)]′

for k − L < 0, r̄(k) = [r(k) r(k − 1) . . . r(0)]′
(2.31)

and, given the discrepancy between the intervals, the evaluation functions for each case

are set as 
for k − L > 0, EVAL(k) =

{
σ=k−L∑
σ=k

r̄′(σ)r̄(σ)

} 1
2

,

for k − L < 0, EVAL(k) =

{
σ=0∑
σ=k

r̄′(σ)r̄(σ)

} 1
2

.

(2.32)

Remark 3. It is important to highlight that the choice of a suitable L is deeply linked

with the Fault Detection Identification (FDI) performance, since if L is not large enough,

the faults may not be detected since the evaluation signal will not have enough time to

reach the threshold. On the other hand, if L is too large, the number of false alarms will

drastically increase.

Another part of the evaluation process is the definition of a threshold, denoted by TH.

We refer to (CHEN; PATTON, 2012) or (FRANK; DING, 1997) for an in-depth discussion

on how to choose one among the different types of thresholds. In our case, we implement

a fixed threshold, which is obtained after performing a Monte Carlo simulation when there

is no fault. After this simulation being performed, we obtain a curve that represents the

mean and standard deviation of the evaluation function (2.32) for the evaluation window L.

We assume that TH is the peak value of the curve that represents the mean summed with

the standard deviation of EVAL(k) in the period (0, L). For a more detailed description

of this subject, see (CHEN; PATTON, 2012),(FRANK; DING, 1997).

Considering the aforementioned discussion, the decision for the fault detection is as

follows:

EVAL(k) > TH =⇒ fault occurrence =⇒ alarm,

EVAL(k) 6 TH =⇒ absence of fault.

Remark 4. For simplicity suppose in (2.24) and (2.25) that u(k) = v is a constant input

set-point and that w(k) is a white noise sequence with null mean and constant covariance

matrix. It is also important to mention that the system is not subjected to fault at this

moment, meaning that f = 0. By combining equations (2.24) and (2.25) we obtain, for
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appropriate matrices Ãi, B̃i, C̃i, (see (2.52)) the system

Gnh =

{
x̃(k + 1) = Ãθ(k)x̃(k) + B̃θ(k)w̃(k),

r(k) = C̃θ(k)x̃(k),
(2.33)

where

x̃(k) =

[
x(k)

η(k)

]
, w̃(k) =

[
v

w(k)

]
.

Suppose that system (2.33) is MSS and that the Markov chain {θ(k)} is ergodic. Then it

was shown in Theorem 3.33 and Proposition 3.36 of (COSTA; FRAGOSO; MARQUES,

2006) that E(x̃(k)1{θ(k)=j})→ µj and that Uj(k) = E(x̃(k)x̃(k)′1{θ(k)=j})→ Uj as k →∞
for some vectors µj and positive semi-definite matrices Uj, j = 1, . . . , N . By noticing from

(2.33) that r(k) =
∑N

i=1 C̃ix̃(k)1{θ(k)=i} it follows that E(r(k)r(k)′) =
∑N

i=1 C̃iUi(k)C̃ ′i.

From this one can see that E(r(k)r(k)′)→ R as k →∞ where R =
∑N

i=1 C̃iUiC̃
′
i. Since

E(EVAL(k)2) =
k∑

i=k−L

Tr(E(r(i)r(i)′)),

it follows that E(EVAL(r, k)2)→ (L+1)Tr(R) as k →∞ and also, from Jensen’s inequality,

that 0 6 lim supk→∞ E(J(r, k)) 6 ((L+ 1)Tr(R))1/2. In the numerical simulation we can

observe this kind of limit behavior for the evaluation function.

2.3.3 Theoretical Results

In this subsection we present the design of the FDF under the MJLS framework using

the following performance indexes H∞, H2 norms, and H− sensibility index, also the

design for the mixed H2/H∞ and H−/H∞.

2.3.3.1 H∞ Fault Detection Filter Design for MJLS

Theorem 1. There exists a mode-dependent FD Filter as in (2.25) satisfying ‖Gaug‖2
∞ < γ

if there exist symmetric matrices Zi, Xi, Wi, and matrices Oi, ∇i, Γi, Cηi, Dηi with

compatible dimensions that satisfy the following LMI constraint

Zi • • • • • • • • •
Zi Xi • • • • • • • •
0 0 Wi • • • • • • •
0 0 0 γI • • • • • •
0 0 0 0 γI • • • • •
0 0 0 0 0 γI • • • •

Ei(Z)Ai Ei(Z)Ai 0 Ei(Z)Bi Ei(Z)Bdi Ei(Z)Fi Ei(Z) • • •
Π8,1 Π8,2 0 Π8,4 Π8,5 Π8,6 Ei(Z) Ei(X) • •

0 0 Ei(W )AW 0 0 Ei(W )BW 0 0 Ei(W ) •
DηiCi −CW 0 DηiDi 0 0 0 I

 > 0, (2.34)
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where

Π8,1 = Ei(X)Ai +∇iCi +Oi, Π8,2 = Ei(X)Ai +∇iCi, Π8,4 = Ei(X)Bi + Γi,

Π8,5 = Ei(X)Ji +∇iDi, Π8,6 = Ei(X)Fi +∇iEi, Π10,1 = DηiCi + Cηi,

Π10,6 = DηiEi −DW ,

for all i ∈ K. If a feasible solution for (2.34) is obtained, then a suitable FD Filter is given

by Aηi = (Ei(Z)− Ei(X))−1Oi, Bηi = (Ei(Z)− Ei(X))−1∇i, Mηi = (Ei(Z)− Ei(X))−1Γi,

Cηi, Dηi, for all i ∈ K.

Proof: The first step to derive the result is to impose the following structure, similar

to the structure in (GONÇALVES; FIORAVANTI; GEROMEL, 2011), for the matrices

Pi and P−1
i :

Pi =

[
Xi Ui 0

U ′i X̂i 0
0 0 Wi

]
, P−1

i =

[
Yi Vi 0

V ′i Ŷi 0
0 0 Hi

]
, (2.35)

and also consider the following structure for the matrices Ei(P ) and Ei(P )−1:

Ei(P ) =

[
Ei(X) Ei(U) 0
Ei(U)′ Ei(X) 0

0 0 Ei(W )

]
, Ei(P )−1 =

[
R1i R2i 0
R′2i R3i 0

0 0 Ei(W )−1

]
. (2.36)

We define the matrices π and ζ by

π =

[
I I 0

V ′i Y
−1
i 0 0

0 0 I

]
, ζ =

[
R−1

1i Ei(X) 0

0 E(U)′ 0

0 0 Ei(G)

]
. (2.37)

Since Ui = Zi −Xi in (2.35), we get from (2.35), and (2.37) that Yi = V ′i and Yi = Z−1
i .

Also considering Ui = −X̂i we get R−1
1i = Ei(X + U) = Ei(Z). Moreover, and so we have

that

π′Piπ =

[
Y −1
i Y −1

i 0

Y −1
i Xi 0
0 0 Wi

]
, ζ ′Ãiπ =

[
R−1

1i Ai R−1
1i Ai 0

Π̃2,1 Ei(X)Ai+Ei(U)BηiCi 0

0 0 Ei(W )AW

]
,

Π̃2,1 = Ei(X)Ai + Ei(U)BηiCi + Ei(U)AηiV ′i Y −1
i ,

ζ ′B̃i =

[
R−1

1i Bi R−1
1i Ji R−1

1i Fi
Π̄2,1 Ei(X)Ji+Ei(U)BηiDi Ei(X)Fi+Ei(U)BηiEi

0 0 Ei(W )BW

]
,

Π̄2,1 = Ei(X)Bi + Ei(U)Mηi,

ζ ′Ei(P )−1ζ =

[
R−1

1i Ei(Z) 0

Ei(Z) Ei(X) 0
0 0 Ei(W )

]
, C̃iπ = [ DηiCi+CηiV ′i Zi DηiCi −CW ] ,

D̃i = [ 0 DηiDi DηiDi−DW ] .

Applying the change of variables Ei(U)AηiV ′i Zi = Oi, Ei(U)Bηi = ∇i, Ei(U)Mηi = Γi,

CηiV ′i Zi = Cηi, Dηi and also substituting E(Z) = R−1
1i in (2.34), we get the following
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inequality [
π′Piπ • • •

0 δI • •
ζ′Ãiπ ζ′B̃i ζ′Ei(P )−1ζ •
C̃iπ D̃i 0 I

]
> 0, (2.38)

and it is easy to see that inequality (2.38) is equivalent to the inequality (2.34). Multiplying

to the right by diag[π−1, I, ζ−1, I] and to the left by its transpose, we get the inequality

(2.7) and with that we can guarantee that ‖G‖2
∞ < γ. �

2.3.3.2 H2 Fault Detection Filter Design for MJLS

Theorem 2. There exists a mode-dependent FD Filter in the form of (2.25) satisfying

the ‖Gaug‖2
2 < λ if there exist symmetric matrices Zi, Xi, Si, Ti and matrices Oi, ∇i, Γi,

Cηi, Dηi, with compatible dimensions that satisfy the following LMI constraints

N∑
i=1

µiTr(Si) < λ, (2.39)
• • • •[

Si
]

• • • •
• • • •

Ei(Z)Bi Ei(Z)Ji Ei(Z)Fi Ei(Z) • • •
Ei(X)Bi+Γi Ei(X)Ji+∇iDi Ei(X)Fi+∇iEi Ei(Z) Ei(X) • •

0 0 Ei(T )BW 0 0 Ei(T ) •
0 DηiDi DηiEi−DW 0 0 0 I

 > 0, (2.40)


Zi • • • • • •
Zi Xi • • • • •
0 0 Ti • • • •

Ei(Z)Ai Ei(Z)Ai 0 Ei(Z) • • •
Ei(X)Ai+∇iCi+Oi Ei(X)Ai+∇iCi 0 Ei(Z) Ei(X) • •

0 0 Ei(T )AW 0 0 Ei(T ) •
DηiCi+Cηi DηiCi −CW 0 0 0 I

 > 0, (2.41)

for all i ∈ K. If a feasible solution for (2.39), (2.40), (2.41) is obtained, then a suitable

FD Filter is given by Aηi = (Ei(Z) − Ei(X))−1Oi, Bηi = (Ei(Z) − Ei(X))−1∇i, Mηi =

(Ei(Z)− Ei(X))−1Γi, Cηi, Dηi, for all i ∈ K.

Proof: In the same way as presented for the H∞ case, the structures for the matrices

Ti and T−1
i are as shown in the equation (2.35) for, respectively, Pi and P−1

i . For the

matrices Ei(T ) and Ei(T )−1 the structure are equal to the one in equation (2.36) for,

respectively, Ei(P ) and Ei(P )−1 . Furthermore, the matrices π and ζ are as shown in

equation (2.37). Applying the change of variables Ei(U)AηiV ′i Zi = Oi, Ei(U)Bηi = ∇i,

Ei(U)Mηi = Γi, CηiV ′i Zi = Cηi, Dηi = Dηi and also substituting Ei(Z) = R−1
1l in (2.40),

(2.41), we get the following inequalities

N∑
i=1

µiTr(Si) < λ, (2.42)
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[
Si • •
ζ′B̃i ζ′Ei(P )−1ζ •
D̃i 0 I

]
> 0, (2.43)[

π′Piπ • •
ζ′Ãiπ ζ′Ei(P )−1ζ •
C̃iπ 0 I

]
> 0. (2.44)

Multiplying (2.43) to the right by diag[I, ζ−1, I] (respectively (2.44) by diag[π−1, ζ−1, I])

and to the left by its transpose we get the inequalities (2.13), (2.14) which, combined with

(2.42), yields that ‖Gaug‖2
2 < λ. �

2.3.3.3 Mixed H2/H∞ Fault Detection Filter Design for MJLS

Note that the structure of the FDF for the H2 and H∞, allows us to reformulate the

problem mixing H2/H∞ norms, in order to attain a better performance in some cases.

Therefore, it is necessary to rewrite the problem as mixed problem by setting the objective

function as

inf{g(λ, γ), such that ‖Gaug‖2
2 < λ and ‖Gaug‖2

∞ < γ}, (2.45)

which considers the restrictions as defined in (2.27) and (2.28). By inspection it is possible

to note that there are three possible ways to define the objective function in (2.45), as

described below.

First Case: Find a minimum guaranteed cost λ for the H2 norm of system (2.29),

subject to a given upper bound γ > 0 on the H∞ norm. In this case, we have

g(γ, λ) = γ. (2.46)

Second Case: Find a minimum guaranteed cost γ for the H∞ norm of system (2.29),

subject to a given upper bound λ > 0 on the H2. In this case, we have

g(γ, λ) = λ. (2.47)

Third Case: Find a minimum for a weighted combination of the guaranteed cost for

both H2 and H∞ norms of system (2.29). Thus, for given scalars β(∞) > 0 and β(2) > 0,

we set

g(γ, λ) = γβ(∞) + λβ(2), (2.48)

where β(.) represents the weight for each upper bound. A similar approach is presented in

(OLIVEIRA; COSTA, 2018).
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In this subsection we consider the mixed H2/H∞ case. The set of variables is defined

as

ψ = {Zi > 0, Xi > 0, Wi > 0, Ti > 0, Si > 0, Oi, ∇i, Γi, Cηi, Dηi} ∪ ζ (2.49)

where ζ represents a set that contains λ, γ or both, depending if these parameters λ, γ

are assumed to be given or a variable of the problem. Hence, we also define

Ψ = {ψ as in (2.49) such that the LMIs (2.34),(2.39),(2.40),(2.41) (2.50)

are simultaneously feasible}.

The next theorem provides a sufficient condition for the FD Filter design for the mixed

H2/H∞ case.

Theorem 3. There exists a mode-dependent FD Filter as in (2.25) such that ‖Gaug‖2
2 < λ

and ‖Gaug‖2
∞ < γ if there exists ψ ∈ Ψ, where ψ is defined as in (2.50). If a feasible

solution is obtained then a suitable FD Filter is given by Aηi = (Ei(Z) − Ei(X))−1Oi,

Bηi = (Ei(Z)− Ei(X))−1∇i, Mηi = (Ei(Z)− Ei(X))−1Γi, Cηi, Dηi, for all i ∈ K.

Proof: The proof follows directly from the proofs for Theorems 1 and 2. �

2.3.3.4 Mixed H−/H∞ Fault Detection Filter Design for MJLS

For the mixed H−/H∞ FDF design we rewrite (2.24) in a particular manner where

(2.24) is rewritten into two forms: one for the H∞ norm design and another for the H−
sensibility index. In the H∞ norm design we rewrite the system as

G∞ :


x(k + 1) = Aθ(k)x(k) +Bθ(k)u(k) + Jθ(k)w(k),

y(k) = Cθ(k)x(k) +Dθ(k)w(k),

x(0) = x0, θ(0) = θ0,

(2.51)

One can observe that comparing (2.24) with (2.51) it is noticeable that the fault signal

f(k) is ignored. We choose this particular structure for the mixed H−/H∞ FDF approach

due to two major factors. The first one is that we need to guarantee the stability of the

filter, and the latter one is that we want to minimize the effects of the exogenous and

control input in the FDF residue signal. The idea supporting this choice is that two factors

will reduce the presence of false alarms in the FDI scheme. Since there is no fault signal

f(k) we also ignore (2.26).
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The augmented system under these considerations is

G∞aug :

x̃(k + 1) = Ãθ(k)x̄(k) + B̃θ(k)w̄(k),

r(k) = C̃θ(k)x̄(k) + D̃θ(k)w̄(k),
(2.52)

where the augmented state is x̄(k) = [x(k)′ η(k)′]′ and w̄(k) = [u(k)′ w(k)′]′ and

Ãi =
[

Ai 0
BηiCi Aηi

]
, B̃i =

[
Bi Ji
Mηi BηiDi

]
, C̃i = [ 0 Cηi ] , D̃i = [ 0 0 ] .

The fault detection problem for the H∞ case may be represented by the optimization

problem to derive the matrices that compose the FDF (2.25) in such a way that system

(2.52) is MSS and minimizes the value γ in

sup
‖w‖2 6=0,w∈L2

‖r‖2

‖w‖2

< γ, (2.53)

where γ > 0.

Using the augmented system (2.52), and the Bounded Real Lemma (BRL) constraints

(2.7), the following theorem is proposed:

Lemma 4. There exists a mode-dependent FDF in the form of (2.25) satisfying the

constraint (2.53) for some γ > 0 if there exist symmetric matrices Zi, Xi, and matrices

Oi, ∇i, Γi, Cηi with compatible dimensions that satisfy the following LMI constraint
Zi • • • • • •
Zi Xi • • • • •
0 0 γI • • • •
0 0 0 γI • • •

Ei(Z)Ai Ei(Z)Ai Ei(Z)Bi Ei(Z)Ji Ei(Z) • •
Π6,1
i Π6,2

i Ei(X)Bi+Hi Π6,4
i Ei(Z) Ei(X) •

Cηi 0 0 0 0 0 I

 > 0, (2.54)

where Π6,1
i = Ei(X)Ai +∇iCi +Oi, Π6,2

i = Ei(X)Ai +∇iCi, and Π6,4
i = Ei(X)Ji +∇iDi.

If a feasible solution for (2.54) is obtained, then a suitable FDF is given by Aηi =

(Ei(Z)− Ei(X))−1Oi, Bηi = (Ei(Z)− Ei(X))−1∇i, Mηi = (Ei(Z)− Ei(X))−1Γi, Cηi, for

all i ∈ K.

Proof : The proof of Lemma 4 is similar to the proof presented in (GONÇALVES;

FIORAVANTI; GEROMEL, 2011) and for this reason it will be omitted. �

Now to design the H− side we rewrite (2.24) as follows

G :


x(k + 1) = Aθ(k)x(k) + Fθ(k)f(k),

y(k) = Cθ(k)x(k) + Eθ(k)f(k),

x(0) = x0, θ(0) = θ0,

(2.55)
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where x(k) ∈ Rnx , y(k) ∈ Rny , f(k) ∈ Rnf , that represents the state, measurements, and

fault signals, respectively. Therefore, the augmented system for the H− case is

G−aug :

x̄(k + 1) = Āθ(k)x̄(k) + B̄θ(k)w̄(k)

re(k) = C̄θ(k)x̄(k) + D̄θ(k)w̄(k)
, (2.56)

where the augmented state is x̄(k) = [x(k)′ η(k)′ xf(k)′]′, w̄(k) = f(k)′, and considering

the equation re(k) = r(k)− f̂(k)

Āi =

[
Ai 0 0
BηiCi Aηi 0

0 0 AW

]
, B̄i =

[
Fi
BηiEi
BW

]
, C̄i = [ 0 Bηi −CW ] , D̄i = −DW .

For the H− case, the purpose of this sensibility index in the fault detection problem is

to maximize the FDF (2.25) sensitivity against the fault signal, recalling that f̂(k) ∈ L2.

Therefore, the definition is somewhat inverse of the usual H∞ norm since the H− is defined

as

inf
f̂∈L2

‖re‖2

‖f̂‖2

> ξ, (2.57)

ξ > 0, with the intention of increasing the sensibility of the output re(k) against the

weighted fault signal f̂(k).

Considering the augmented system (2.56) and Lemma 2 and the constraint in (2.17),

we can propose the following theorem.

Theorem 4. If there exist symmetric matrices Zi, Xi, Wi and matrices Oi, ∇̄i, C̄ηi, with

compatible dimensions that satisfy the following Bilinear Matrix Inequality (BMI) con-

straints 
Zi+C̄′ηiC̄ηi • • • • • •

Zi Xi • • • • •
−C′W C̄ηi 0 C′WCW+Wi • • • •
−D′W C̄ηi 0 D′WCW D′WDW−ξI • • •
Ei(Z)Ai Ei(Z)Ai 0 Ei(Z)Fi Ei(Z) • •

Ξ6,1
i Ξ6,2

i 0 Ξ6,4
i Ei(Z) Ei(X) •

0 0 Ei(Wi)AW Ei(Wi)BW 0 0 Ei(W)

 > 0, (2.58)

where Ξ6,1
i = Ei(X)Ai + ∇̄iCi + Oi, Ξ6,2

i = Ei(X)Ai + ∇̄iCi, and Ξ6,4
i = Ei(X)Fi + ∇̂iEi, and

the following LMI constraints [
Zi •
Zi Xi

]
> 0, (2.59)

then there exists Pi > 0 for all i ∈ K such that (2.17), replacing Ai, Ji, Ci, Di by

respectively Āi, B̄i, C̄i, D̄i as in (2.56), and taking

Aηi = (Ei(Z)− Ei(X))−1Oi, Bηi = (Ei(Z)− Ei(X))−1∇̄i, Cηi, (2.60)
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will hold.

Remark 5. Notice that, as pointed out in Remark 1, we cannot guarantee from (2.17)

that system (2.56) will be MSS.Therefore we cannot guarantee that a suitable FDF will be

derived. However, since the goal is to combine the H− index with the H∞ filter, we will

obtain MSS from the conditions for the H∞ filter (see Remark 1).

Proof: Consider that (2.58) and (2.59) hold and set the matrices Aηi, Bηi, C̄ηi as in

(2.60), and the matrices Āi, B̄i, C̄i, D̄i as in (2.56). Notice that from (2.59) we have that

Xi − Zi > 0, which implies that Ei(X)− Ei(Z) > 0. Partitionate Pi, P
−1
i , Ei(P), Ei(P)−1 as

Pi =

[
Xi Ui 0
U′i X̂i 0
0 0 Wi

]
, P−1

i =

[
Yi Vi 0
V′i Ŷi 0

0 0 W−1
i

]
,

Ei(P) =

[
Ei(X) Ei(U) 0

Ei(U′) Ei(X̂) 0
0 0 Ei(W)

]
, Ei(P)−1 =

[
R1i R2i 0
R′2i R3i 0

0 0 Ei(W)−1

]
,

where Yi = Z−1
i , −X̂i = Ui = Zi − Xi, Vi = Z−1

i , ∀i ∈ K, which yields to R−1
1i = Ei(Z).

Defining the matrices %i and ςi as

%i =
[
I I 0
I 0 0
0 0 I

]
, ςi =

[
Ei(Z) Ei(X) 0

0 Ei(Z)−Ei(X) 0
0 0 Ei(W)

]
,

and noticing that

%′iPi%i =
[
Zi Zi 0
Zi Xi 0
0 0 Wi

]
, %′iC̄

′
iC̄i%i =

[
C̄′ηiC̄ηi 0 −C̄′ηiCW

0 0 0
−C′W C̄ηi 0 C′WCW

]
,

D̄′iC̄i%i = [ −D′W C̄ηi 0 D′WCW ] , ς ′iĀi%i =

[
Ei(Z)Ai Ei(Z)Ai 0

Ei(X)Ai+Oi+∇̄iCi Ei(X)Ai+∇̄iCi, 0
0 0 Ei(W)AW

]
,

C̄i%i = [ Cηi 0 −CW ] , D̄′iD̄i = D′WDW ,

ς ′iB̄i =

[
Ei(Z)Bi

Ei(X)Fi+∇̄iEi
Ei(W)BW

]
, %′iEi(P)−1%i =

[
Ei(Z) Ei(Z) 0
Ei(Z) Ei(X) 0

0 0 Ei(W)

]
,

we conclude that the inequality in (2.58) can be re-written as[
%′iPi%i+%

′
iC̄
′
iC̄i%i • •

D̄′iC̄i%i D̄′iD̄i−ξI •
ς′Āi%i ς′iB̄i ς′iEi(P)−1ςi

]
> 0. (2.61)

Pre and post multiplying (2.61) by diag(%−1
i , I, ς−1

i ), we obtain that (2.17) holds, showing

the result. �

Coordinate Descent Algorithm

Note that the constraint (2.58) is a BMI since the term C̄ ′ηiC̄ηi is quadratic. Hence,

it is necessary to use an appropriate method to solve this type of problem. A possible

procedure to solve this BMI is to implement a Coordinate Descent Algorithm, as in
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(CARVALHO et al., 2020a; CARVALHO; OLIVEIRA; COSTA, 2020). For this define

ψ̄ =
{
Zi, Xi, ∇̄i, Oi, C̄ηi, i ∈ K

}
, T = {Ti, i ∈ K}, and Si(ψ̄, ξ, T) the inequality in (2.58)

with the variables ψ̄, ξ and replacing the block (1,1) in (2.58) by Zi + Ti (that is replacing

F′iFi by Ti in the block (1,1)). For Tk =
{
Tki , i ∈ K

}
, with Tki > 0 fixed, solve the following

LMI optimization problem, denoted by Pr(Tk): max ξ subject to the following LMIs:

Si(ψ̄, ξ, Tk) > 0, (2.58) and [
Tki •
C̄ηi I

]
> 0. (2.62)

Suppose that there is a solution ψ̄k, ξk for this problem. Set now Tk+1
i = C̄k′ηi C̄kηi

and solve the problem Pr(Tk+1). Consider that the solution for this problem is ψ̄k+1,

ξk+1. From (2.62) we have that Tki > C̄k
′
ηi C̄kηi = Tk+1

i > C̄k+1′

ηi C̄k+1
ηi , and Si(ψ̄k+1, ξk+1, Tk) >

Si(ψ̄k+1, ξk+1, Tk+1) > 0, that is, ψ̄k+1, ξk+1 is feasible for problem Pr(Tk), so that ξk+1 6 ξk.

Based on that, we propose the following algorithm.

Algorithm 1: Coordinate Descent Algorithm

Input: T0, tmax, ε

Output: Aηi, Aηi , C̄ηi as in Theorem 3.

1 At iteration k use Tk to solve the LMI optimization problem Pr(Tk) posed above.

Obtain a solution ψ̄k, ξk.

2 If ξk−1−ξk
ξk−1 > ε and k 6 tmax, go back to step 1 using Tk+1

i = C̄k′ηi C̄kηi. Otherwise stop

the algorithm.

Since the sequence ξk > 0 is decreasing, it will converge and the algorithm will stop at

some iteration.

Remark 6. Observe that in Algorithm 1, the initial condition has impact on the feasibility

or convergence speed of the algorithm. Note that, the first iteration finds a feasible solution

the CDA convergence is guaranteed, meaning that the final results will be equal or better

than the initial condition. A possible way to define the T0
i = C̄0′

ηiC̄0
ηi, where C̄0

ηi is obtained

using Lemma 4.

It is important to point out that the FDFs obtained using Lemma 4 and Theorem 3 have

a similar structure, thus, this key aspect allows us to solve both problems simultaneously.

Based on this property, we present an approach to solve the mixed H∞/H− problem, in a

similar way as presented in (OLIVEIRA; COSTA, 2018). We need to impose the following

constraints

ψ =
{
γ, ξ, Zi = Zi, Xi = Xi, ∇i = ∇̄i, Oi = Oi, Cηi = C̄ηi

}
. (2.63)
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Set

Ψ = {ψ as in (2.63) such that the LMIs (2.54), and the BMIs (2.58),

are simultaneously feasible}. (2.64)

Theorem 5. There exists a mode-dependent FDF as in (2.24) such that ‖Gaug‖2
∞ < γ

and ‖Gaug‖2
− > ξ if there exists ψ ∈ Ψ, where Ψ is defined as in (2.64). If a feasible

solution is obtained then a suitable FDF is given by Aηi = (Ei(Z) − Ei(X))−1Oi, Bηi =

(Ei(Z)− Ei(X))−1∇i, Cηi, Mηi = (Ei(Z)− Ei(X))−1Γi, ∀i ∈ K.

Proof: The proof follows directly from the proofs of Theorems 4 and 3. �

Remark 7. Observe that is not necessary to mention the LMI constraint (2.59) in (2.64),

since (2.58) already has this constraints within.

We define the mixed objective function

g(γ, ξ) = σγ − (1− σ)ξ, (2.65)

where ‖G‖2
∞ < γ, ‖G‖2

− > ξ, and σ > 0 is a weighting scalar.

The goal is to minimize (2.65) subject to ψ ∈ Ψ. If one of the bounds is fixed the

problem will be to minimize the objective function under the constraint ‖G‖2
∞ < γ or

‖G‖2
− > ξ.

2.3.4 Simulations Results

As an illustrative example we use a coupled-tank, the modeling is described in the

Appendix A. The matrices that compose the state-space system are

A1,2 =
[ −0.0239 −0.0127

0.0127 −0.0285

]
, B1,2 = [ 0.7100 0

0 0.7100 ] ,

J 1,2 = [ 0.0071 0
0 0.0071 ] , F 1,2 = 0.1 [ 0.7100

0 ] , D 1,2 = [ 0.0100 0
0 0.0100 ] ,

E 1,2 = [ 0
0 ] , AW = 0.25, BW = 0.5, CW = 0.75, DW = 0.5,

As seen above, the matrix that represents the fault in the actuator (F ) is a 10% ratio

of the input matrices B. This choice of value represents the eventual fault in the actuator.

Another aspect is that (F ) should not be switched since the fault has no direct relationship

with the network behavior. Regarding the sensor fault matrix (E) we consider it to be

null since we are only considering an actuator fault and not a sensor fault. To model the
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communication loss between the FDF and plant sensors, the matrices Ci are defined as

C1 = [ 1 0
0 1 ] , C2 = [ 0 0

0 0 ] .

The transition matrix is defined as P = [ 0.80 0.2
0.575 0.425 ], which represents a network with a

packet loss rate of 25%.

Remark 8. It is important to clarify the distinction between the concept of communication

loss and sensor fault. The first one represents the information lost during the transmission,

which is a network problem. The latter represents an equipment (sensor) problem where

data gathering is compromised.

Remark 9. It is possible to implement more complex network models by changing the

number of modes, and imposing different structures in the transition matrix P. However,

this is not the main goal of this work. Some works that tackle this subject are (BOLCH et

al., 2006).

Using Theorem 1 and the aforementioned systems we get,

Aη1 =
[

0.0021 −0.0020
0.0021 −0.0020

]
, Aη2 =

[
0.0058 −0.0375
0.0478 −0.0669

]
, Mη1 = [ 0.1342 0.0698

−0.5776 0.7818 ] ,

Mη2 = [ 1.1986 0.0922
0.3684 0.9221 ] , Bη1 =

[ −0.0259 −0.0107
0.0106 −0.0265

]
, Bη2 = [ 0 0

0 0 ] ,

Cη1 = [ −0.0489 0.0469 ] , Cη2 = [ 0 0 ] , Dη1 = [ 0.0523 −0.1963 ] , Dη2 = [ 0 0 ] , (2.66)

and the upper bound obtained was γ = 1.4142. Now considering Theorem 2 we obtained

Aη1 =
[ −0.2535 0.2444

0.2540 −0.2621

]
, Aη2 =

[ −0.0132 −0.0070
0.0070 −0.0157

]
, Mη1 =

[
0.6814 −0.2061
−0.2060 0.6814

]
,

Mη2 = [ 0.7100 0.0000
0.0000 0.7100 ] , Bη1 =

[
0.4334 −0.4475
−0.4419 0.4521

]
, Bη2 = [ 0 0

0 0 ] ,

Cη1 = [ −0.1239 −0.1239 ] , Cη2 = [ 0 0 ] , Dη1 = [ −0.3259 −0.3259 ] , Dη2 = [ 0 0 ] , (2.67)

and the upper bound obtained was λ = 5.6378. For the Theorem 3 the FDF obtained was

Aη1 =
[ −0.2534 0.2617

0.2605 −0.2383

]
, Aη2 =

[ −0.01298 −0.0077
0.0069 −0.01668

]
, Mη1 =

[
0.7399 −0.1475
−0.1475 0.7399

]
,

Mη2 = [ 0.7572 0.04728
0.0472 0.7573 ] , Bη1 =

[
0.4330 −0.4802
−0.4544 0.4071

]
, Bη2 = [ 0 0

0 0 ] ,

Cη1 = [ −0.0379 −0.1094 ] , Cη2 = [ −0.0061 −0.0370 ] ,

Dη1 = [ 0.0036 0.0096 ] , Dη2 = [ 0 0 ] , (2.68)

the upper bound γ = 5 and λ = 5.8224. At last, the FDF obtained using Theorem 5,

Aη1 =
[ −0.2979 −0.0109
−0.0008 −0.3017

]
, Aη2 =

[ −0.0239 −0.0127
0.0127 −0.0285

]
, Mη1 =

[
0.7100 −0.0000
−0.0000 0.7100

]
,

Mη2 =
[

0.7101 −0.0000
−0.0000 0.7101

]
, Bη1 = [ 0.2740 −0.0018

0.0135 0.2732 ] , Bη2 = [ 0 0
0 0 ] ,



48

Cη1 = [ 0.4896 0.1075 ] , Cη2 = [ 3.1892 −2.0479 ] , (2.69)

with the upper and lower bounds γ = 1.2270 and ξ = 1.01.

2.3.4.1 Monte Carlo Simulation

As previously discussed, the system is a coupled tank, the fault signal implemented in

this simulation is an abnormal input on the first tank at k = 125. The intensity of this

input is equal to 10% of the regular input. Also considering the threshold TH = 0.3. Under

this specific situation, we present five graphical results from the simulation. The first four

results are shown in Figs. 10a, 10b, 10c, 10d where the mean and standard deviation of

the residue signal for each theorem are given, and the fifth result is the evaluation signal

EVAL(k) obtained for all three cases and shown in Fig. 12
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Figure 10: Mean and standard deviation for the residue signal obtained using FDF designed
using the Theorems 1, 2, 3, 5. There are two graphics for each theorem, representing when
the system is subjected to a fault and another graphic without fault.

Examining Figs. 10a, 10b, 10c, 10d it is possible to observe that the lower value of

standard deviation is obtained using Theorem 5, and the results obtained using Theorem 1

provided the higher value. Note that, the higher standard deviation is directly connected

with the number of false alarms. Therefore, the results obtained via Theorem 5 will present

a lower chance of false alarms. Another important piece of information is that all the
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residue signals obtained with the presence of fault were close to zero, which is the expected

behavior.
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function obtained using Theorem 3
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function obtained using Theorem 5

Figure 11: Mean and standard deviation for the evaluation function obtained using
FDF designed using the Theorems 1, 2, 3, 5. There are two graphics for each theorem,
representing when the system is subjected to a fault and another graphic without fault.

Inspecting Figs. 11a, 11b, 11c, 11d we may state that all four approaches properly

detected the fault. However, there is a performance discrepancy between the approaches,

the fastest detection was obtained using Theorem 1, detecting the fault in the interval of

k = [143 155] (12 range). However, the result obtained using Theorem 5 presented the

most reliable results since the detection interval was k = [153 160] (7 range).

In Fig. 12 a comparison with all the four approaches is presented, where solely the

mean value of the evaluation function is provided. It is clear that the results for Theorem

1 is faster, but the difference to the result obtained using Theorem 5 is equal to 6, and

also there is an overlap in those intervals. Therefore, we may conclude that all four results

are viable solution Fault Detection and Isolation problem for the MJLS framework.

2.4 Fault Accommodation Formulation

I
n this section, we present the Fault Accommodation problem formulation and propose

some theoretical approaches to solve such a problem. The formulation we present here



50

50 100 150 200 250 300

Instant k

0

1

2

3

4

E
V

A
L

(k
)

EVAL(k) for Theorem 2.1
EVAL(k) for Theorem 2.2
EVAL(k) for Theorem 2.3
EVAL(k) for Theorem 2.5
Threshold

Figure 12: Average value of the evaluation function signal for four distinct cases, where
the blue curve represent the result using Theorem 1, the red curve represent the result
obtained via Theorem 2, the magenta curve represent the results through Theorem 3, the
black curve denote the result for Theorem 5, and the cyan line denotes the threshold TH.

is a particular case of a model-based Active Fault Accommodation Control (FAC) problem,

where an auxiliary controller is designed with the only purpose of mitigating the fault

effect on the system performance.

The MJLS for the fault-compensation problem is described as

G :


x(k + 1) = Aθ(k)x(k) +Bθ(k)u(k) +Bθ(k)h(k) + Jθ(k)w(k) + Fθ(k)f(k),

y(k) = Cθ(k)x(k) +Dθ(k)w(k),

x(0) = x0, θ(0) = θ0,

(2.70)

where the system states are denoted by x(k) ∈ Rnx , the control input is represented by

u(k) ∈ Rnu , the exogenous input is w(k) ∈ Rnd , the fault signal is denoted by f(k) ∈ Rnf

and the measured output is represented by y(k) ∈ Rny .

2.4.1 Fault Accommodation Controller

The Fault Compensation Controller scheme is presented in Fig. 13. We see from this

scheme that our main goal is to provide an FAC (Kci) that generates the control signal h(k)

with the sole purpose of compensating the fault signal f(k). The control signal h(k) should

be close to zero when the system is working properly.
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System
Gθ(k)

Controller
Kθ(k)

FAC Kcθ(k)

Fault f(k)

uTotal(k)

u(k)Noise w(k) x(k)

h(k)y(k)

Figure 13: Fault accommodation control scheme diagram used to design the controller.

The FAC can be described as

Kc :


η(k + 1) = Aθ(k)η(k) + Mθ(k)u(k) + Bθ(k)y(k),

h(k) = Cθ(k)η(k),

η(0) = η0, θ(0) = θ0,

(2.71)

where η ∈ Kq represents the FAC, u(k) and y(k), are respectively, the control signal from

the regular controller and the measured signal from the system.

The mode-dependent state-feedback controller is

u(k) = −Kθ(k)x(k), (2.72)

where x(k) ∈ Rn represents the states in (2.70). From that, we define uTotal(k) as

uTotal(k) = u(k) + h(k). (2.73)

Considering system (2.70), the state feedback control law (2.72), and the FAC (2.71),

as presented in Fig.13, the augmented system is given by

Gaug :


x̄(k + 1) = Āθ(k)x̄(k) + B̄θ(k)w̄(k),

z̄(k) = C̄θ(k)x̄(k) + D̄θ(k)w̄(k),

x̄(0) = η0,

where x̄(k) = [x(k)′ η(k)′]′ and w̄(k) = [w(k)′ f(k)′]′, with the following augmented
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matrices are
Āi =

[
Ai−BiKi BiCi

BiCi−MiKi Ai

]
, B̄i =

[
Ji Fi

BiDi 0

]
,

C̄i = [ 0 −BiCi ] , D̄i = [ 0 Fi ] .
(2.74)

The main goal of this paper is to design a FAC as presented in (2.71) where the difference

o(k) = Fif(k)−Bih(k) is close to zero. Therefore, the optimization problem is described

as

sup
w 6=0, w∈L2, θ0∈N

‖o‖2

‖w‖2

< γ. (2.75)

2.4.2 Theoretical Results

2.4.2.1 H∞ Fault Accomodation Control Design for MJLS

Theorem 6. There exists a mode-dependent FAC as described in (2.71) satisfying the

constraint (2.75) for some γ > 0 if there exist symmetric matrices Zi, Xi, and the matrices

∆i, ∇i, Ωi, and Θi with compatible dimensions such that
Zi • • • • • •
Zi Xi • • • • •
0 0 γI • • • •
0 0 0 γI • • •

Π5,1
i Π5,2

i Ei(X)Ji Ei(X)Fi Π5,5
i • •

Π6,1
i Π6,2

i Ei(X)Ji+ΘiDi Ei(X)Fi Ei(X) Ei(X) •
−∆i 0 0 Ei(X) 0 0 Her(Ei(X))−I

 > 0, (2.76)

with
Π5,1
i = Ei(X)Ai − Ei(X)BiKi + ∆i,

Π6,1
i = Ei(X)Ai − Ei(X)BiKi + ΘiCi +∇iKi + ∆i + Ωi,

Π6,2
i = Ei(X)Ai − Ei(X)BiKi + ΘiCi +∇iKi,

Π5,2
i = Ei(X)Ai − Ei(X)BiKi, Π5,5

i = Her(Ei(X))− Ei(Z),

holds for all i ∈ K. If a feasible solution is obtained, a suitable fault-compensation

controller is given by Ai = (Ei(Z) − Ei(X))−1Ωi, Mi = (Ei(Z) − Ei(X))−1∇i, Bi =

(Ei(Z)− Ei(X))−1Θi, and Ci = (Ei(Z)− Ei(X))−1B−1
i Ωi.

Proof: The goal of the proof is to show that if the inequality (2.76) holds, then (2.5)

is also satisfied. First, consider the following structures for the matrices

Pi =
[
Xi Ui
U ′i X̂i

]
, P−1

i =
[
Yi Vi
V ′i Ŷi

]
,

Ei(P ) =
[

Ei(X) Ei(U)

Ei(U)′ Ei(X̂)

]
,Ei(P )−1 =

[
R1i R2i

R′2i R3i

]
,

(2.77)
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and define the matrices Qi and Ti as

Ti =
[

I I
V ′i Y

−1
i 0

]
, Qi =

[
Ei(X) Ei(X)

0 Ei(U)′

]
.

As demonstrated in (GONÇALVES; FIORAVANTI; GEROMEL, 2010), by imposing

that Ui = Zi −Xi, it follows from (2.77) that Yi = V ′i , Vi = Z−1
i . Setting the following

matrices

T ′iPiTi =
[
Y −1
i Y −1

i

Y −1
i Xi

]
, Q′iĀiTi =

[
ν11i Ei(X)Ai−Ei(X)BiKi
ν21i ν22i

]
,

ν11
i = Ei(X)Ai − Ei(X)BiKi + Ei(X)BiCi,

ν21
i = Ei(X)Ai − Ei(X)BiKi + Ei(U)BiCi − Ei(U)MiKi − Ei(X)BiCi,

ν22
i = Ei(X)Ai − Ei(X)BiKi + Ei(U)BiCi − Ei(U)MiKi

Q′iB̄i =
[

Ei(X)Ji Ei(X)Fi
Ei(X)Ji+Ei(U)BiDi Ei(X)Fi

]
,

C̄iTi = [ −BiCi 0 ] , D̄i = [ 0 Fi ] .

as presented in (OLIVEIRA; BERNUSSOU; GEROMEL, 1999), it is possible to write

Her(Ei(X))− Ei(Z) 6 Ei(X)′Ei(Z)−1Ei(X).

This step allow us to write

Q′iEi(P )−1Qi =
[

Her(Ei(X))−Ei(Z) Ei(X)
Ei(X) Ei(X)

]
.

Therefore the inequality given in (2.76) can be written as[
T ′iPiTi • • •

0 γI • •
Q′iĀiTi Q′iB̄i Q′iEi(P )−1Qi •

Ei(X)C̄iTi Ei(X)D̄i 0 Her(Ei(X))−I

]
> 0.

Applying the congruence transform

diag(T−1
i , I, Q−1

i ,Ei(X)−1),

in this last inequality, the following constraint is obtained[
Pi • • •
0 γI • •
Āi B̄i Ei(P )−1 •
C̄i D̄i 0 I

]
> 0,

which, by applying a Schur complement, can be recognized as the BRL (2.5), concluding

the proof. �

Remark 10. Note that, from (2.76), matrix Bi in (2.70) should be invertible. However,

by requiring it only to be square, we can obtain the matrix Ci using a Penrose inverse.
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2.4.3 Simulations Results

To disclose the usability of the proposed approach we use the same coupled tank model

example used in the previous section. A proper discussion of the modeling process is

presented in Appendix A. The matrices that compose the coupled-tank system are:

A1,2 =
[ −0.024 −0.013

0.013 −0.029

]
, B1,2 = [ 0.71 0

0 0.71 ] , J1,2 = 0.1B1,2, F1,2 = diag(I1, 01),

C1 = I2, C2 = 02, D1,2 = 0.1I2.

Additionally, consider that the transition matrix is given by

P = [ 0.8 0.2
0.8 0.2 ] , (2.78)

The nominal controller obtained using the results in (GONÇALVES; FIORAVANTI;

GEROMEL, 2012) is

K1 =
[ −1.3456 0.0154
−0.0154 −1.3398

]
, K2 =

[ −0.0315 0.0167
−0.0167 −0.0375

]
,

and the H∞ norm value is γ = 0.1276. The fault-compensation controller obtained

designed using Theorem 6 is

Ac1 =
[

0.2233 −0.0080
−0.0059 0.2731

]
, Ac2 =

[
0.0488 −0.003
−0.0013 0.0651

]
,

Bc1 =
[ −0.1745 0.0041

0.0045 −0.2079

]
, Bc2 =

[ −0.1745 0.0041
0.0045 −0.2079

]
,

Mc1 =
[ −0.1701 0.0063

0.0016 −0.2018

]
, Mc2 =

[ −0.1701 0.0063
0.0016 −0.2018

]
,

Cc1 =
[ −0.4597 0.0239
−0.0006 −0.5075

]
, Cc2 =

[ −0.4596 0.0239
−0.0006 −0.5075

]
.

and the H∞ norm value is γ = 1.9002.

2.4.3.1 Monte Carlo Simulation

The fault signal implemented is a sinusoidal wave as 0.025sin(k). The noise signal is

a white noise with zero mean and deviation equal to 0.01. The results presented herein

were obtained via Monte Carlo simulations with 300 rounds. In all the simulations we

made a comparison between the proposed approach (Theorem 6), and a regular solution

using only the controller designed using (GONÇALVES; FIORAVANTI; GEROMEL,

2012). The simulation results are organized in two sets of six subfigures, where the first

set contains the results when there is a fault and the second set shows the results for

the case without fault. Each set is organized as follows: the first graphic represents the

mean and standard deviation for both tank levels h1 and h2 obtained using Theorem 6,
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the second graphic represents the mean and standard deviation for both tank levels h1

and h2 obtained using solely the nominal controller, and the third graphic compares the

mean of both previous graphics. The fourth graphic is the mean and standard deviation

of the control signal obtained using Theorem 6, the fifth graphic is the mean and standard

deviation of the control signal obtained using the nominal controller and the sixth graphic

is the comparison of the fourth and fifth graphics. In Fig. 14c it is possible to observe

that the fault is compensated for both levels, which can be seen by comparing the mean

value of the system states using the accommodation and the nominal controller. In both

graphics the compensation is noticeable, the sinusoidal behavior is mitigated in both levels.

Fig. 14a, and 14b show that the standard deviation for both the plant states are slightly

higher, approximately 0.05 meter. Additionally, note that the control signals for both

actuators, which are shown in Fig. 14f, minimize the fault behavior while keeping the

level near the linearization points, that is, 0.25m and 0.1m for the first and second tanks,

respectively.

The analyzes of the simulation without fault is important since it shows that the

proposed approach in Theorem 6 will not drastically change the nominal behavior of

the plant. In Fig. 15c, we can observe that there is not a significant change when

comparing it with the nominal results, which is desirable. The step response for the

compensated approach is closer to the step signal. As seen in Fig. 15d, Fig. 15e also shows

a distinct difference between the graphics, however, this difference is around 0.001, which

is acceptable. For the control signal presented in Fig. 15f, there is a difference between

the control signals for both actuators. Based on the aforementioned results, we see that

the FAC approach proposed in this section indeed mitigates the fault signal as intended.

However, there is a slight difference between the FAC and the nominal controller, which

was not desired. This phenomenon can be explained due to the step input, as the FAC

detects this abrupt change as a fault.

2.5 Concluding remarks

In this chapter, we presented the theoretical results obtained for the design of a FDF

and FAC under the MJLS framework, additionally we also presented examples to illustrate

the viability of the proposed methods. Analyzing the simulation results allows us to state

that all approaches fulfilled the intended purpose. The next chapter presents the design of

FDF and FAC with the additional assumption that the Markov mode is not accessible.
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Figure 14: Mean and standard deviation for the states and control signal for the FAC
designed with Theorem 6 when the system is subjected to the fault.



57

0 50 100 150 200 250 300
0

0.1

0.2

h
1
 (

m
)

Standard Deviation
h

1
 for Theorem 2.6

Reference

0 50 100 150 200 250 300

Instant k

0

0.05

0.1

h
2
 (

m
)

Standard Deviation
h

2
 for Theorem 2.6

Reference

(a) Mean and standard deviation for states sig-
nal obtained using Theorem 6.

0 50 100 150 200 250 300
0

0.1

0.2

h
1
 (

m
)

Standard Deviation
h

1
  for the Nominal Ctrl

Reference

0 50 100 150 200 250 300

Instant k

0

0.05

0.1

h
2
 (

m
)

Standard Deviation
h

2
  for the Nominal Ctrl

Reference

(b) Mean and standard deviation for states sig-
nal obtained with the nominal controller.

0 50 100 150 200 250 300
0

0.1

0.2

h
1
 (

m
)

h
1
 for Theorem 2.6

h
1
  for the Nominal Ctrl

Reference

0 50 100 150 200 250 300

Instant k

0

0.05

0.1

h
2
 (

m
)

h
1
 for Theorem 2.6

h
2
  for the Nominal Ctrl

Reference

(c) Mean for state signal obtained using Theo-
rem 6 and the nominal controller.

0 50 100 150 200 250 300
-0.2

-0.1

0

u
1

Standard Deviation

u
1
 for Theorem 2.6

0 50 100 150 200 250 300

Instant k

-0.06

-0.04

-0.02

0

u
2

Standard Deviation

u
2
 for Theorem 2.6

(d) Mean and standard deviation for control
signal obtained using Theorem 6.

0 50 100 150 200 250 300
-0.2

-0.1

0

u
1

Standard Deviation

u
1
  for the Nominal Ctrl

0 50 100 150 200 250 300

Instant k

-0.06

-0.04

-0.02

0

u
2

Standard Deviation

u
2
  for the Nominal Ctrl

(e) Mean and standard deviation for control
signal obtained with the nominal controller.

0 50 100 150 200 250 300
-0.2

-0.1

0

u
1

u
1
 for Theorem 2.6

u
1
  for the Nominal Ctrl

0 50 100 150 200 250 300

Instant k

-0.06

-0.04

-0.02

0

u
2

u
2
 for Theorem 6

u
2
  for the Nominal Ctrl

(f) Mean for control signal obtained using The-
orem 6 and the nominal controller.

Figure 15: Mean and standard deviation for the states and control signal for the FAC
designed with Theorem 6 when the system is in its nominal state (faultless).
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3 FDF AND FAC FOR MARKOVIAN JUMP

LINEAR SYSTEMS WITH PARAMETER

ESTIMATION

In this chapter we present the theoretical background necessary to understand the

results obtained for the FDF and FAC design herein. The major novelty in this chapter is

the assumption that the Markov chain mode is not directly accessible. For that reason

the FDF and FAC designed under this assumption do not depend on the Markov chain

parameter θ(k), but instead, the FDF and FAC depend only on an estimation of the Markov

chain mode denoted by θ̂(k). From the practical point of view, the assumption of the

Markov mode in our case is interesting, since we are using the Markov chain to model the

network behavior, and the hypothesis that the network state is instantaneously acquired

might be unrealistic. Therefore, the design methods presented here can circumvent this

issue and guarantee the performance simultaneously.

The results presented in this chapter were published in the following journals and

conferences:

� Subsection 3.2.1 presented the H∞ Fault Detection Filter for Markovian Jump

Linear Systems with Estimation Parameter, which was presented in the 9th IFAC

Symposium on Robust Control Design (ROCOND’18) (CARVALHO; OLIVEIRA;

COSTA, 2018c).

� Subsection 3.2.2 presented the H2 Fault Detection Filter for Markovian Jump Linear

Systems with Estimation Parameter, which was presented in the Congresso Brasileiro

de Automatica 2020 (CARVALHO; OLIVEIRA; COSTA, 2020).

� Section 3.3 presented the Simultaneous Fault Detection and Control for Markovian

Jump Linear Systems with Estimation Parameter, which was published in IEEE

ACCESS (CARVALHO; OLIVEIRA; COSTA, 2020).

� Section 3.4 presented the Fault Accommodation controller under Markovian jump

linear systems with asynchronous modes, which was published in International
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Journal of Robust Nonlinear Control (CARVALHO et al., 2020a).

3.1 Preliminary for Markovian Jump Linear Systems

with Parameter Estimation

Consider the following hidden discrete-time MJLS in the stochastic space (Ω,F ,P)

with filtration Fk

G :

x(k + 1) = Aθ(k)θ̂(k)x(k) + Jθ(k)θ̂(k)w(k),

z(k) = Cθ(k)θ̂(k)x(k) +Dθ(k)θ̂(k)w(k),
(3.1)

where x(k) ∈ Rnx is the state, y(k) ∈ Rny is the measured output, z(k) ∈ Rnz is the

estimated output, w(k) ∈ Rnw is the exogenous input. We also consider that w(k) ∈ L2.

Observe that (3.1) depends on two distinct stochastic processes θ(k) and θ̂(k). The

first one represents a homogeneous Markov chain, with values are in the set N. Considering

that Fk is a σ-field generated by

x(0), w(0), θ(0), θ̂(0), . . . , x(k), w(k), θ(k), θ̂(k), (3.2)

we assume that

Prob(θ(k + 1) = j|Fk) = Prob(θ(k + 1) = j|i) = ρij, i ∈ N. (3.3)

It is assumed that θ(k) is unaccessible and that θ̂(k) is observable and takes values in

the set M. From the above, we consider the sigma field F̂0, generated via x(0), w(0), θ(0),

and F̂k, by x(0), w(0), θ(0), θ̂(0), . . . , x(k), w(k), θ(k), θ̂(k), k > 0, and assume that

Prob(θ̂(k + 1) = j|Fk) = Prob(θ̂(k + 1) = `|i) = φi`, ` ∈M. (3.4)

We have that φi` > 0,∀i ∈ N is such that
∑

`∈M φi` = 1, where the set Mi, i ∈ M is

defined as in

Mi , {` ∈M : φij > 0} ,∪i∈NMi = M. (3.5)

The detection probability matrix is denoted by Υ = [φi`], i ∈ N, ` ∈Mi. This process is

known as a Hidden Markov Model, as in (ROSS, 2014).

We define the transition probability matrix by Ψ = [ρij ] where ρij = Pr[θk+1 = j|θk = i]
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and
∑N

j=1 ρij = 1 for all i ∈ K. Observe that system (3.1) depends on the index θ(k), but

also depends on the index θ̂(k), which represents an estimation for the index θ(k).

3.1.1 Stability for Hidden Markovian Jump Linear Systems

Consider the hidden MJLS (3.1) with w(k) = 0 defined on the probability space

(Ω,F,Prob) with filtration {Fk}. As presented in (COSTA; FRAGOSO; TODOROV,

2014), the definition of stochastic stability is described as below.

Definition 2. Considering (3.1) with w(k) = 0, system (3.1) is said to be stochastically

stable if for any initial condition θ(0 = θ0), and for all second moment x0,

‖x‖2
2 =

∞∑
k=0

E(‖x(k)‖2) <∞. (3.6)

For V = (V1, . . . , Vn) ∈ Hn consider the following linear operators Ei, Li, Ti ∈ Hnx ,

which allow us to draw the stability conditions for (3.1) as

Ei(V ) ,
∑
j∈N

ρijVj, (3.7)

Li(V ) ,
∑
`∈Mi

φi`A
′
i`Ei(V )Ai`, (3.8)

Tj(V ) ,
∑
i∈N

∑
`∈Mi

ρijφijAi`ViA
′
i`, ∀i, j,∈ N. (3.9)

3.1.2 H∞ norm for Hidden MJLS

Definition 3. Assuming that (3.1) is MSS, the H∞ norm is given by

‖G‖∞ , sup
06=w∈L2,θ0∈K

‖z‖2

‖w‖2

.

The next lemma is known as Bounded Real Lemma for the detector approach, which

was first introduced in (TODOROV; FRAGOSO; COSTA, 2018).

Lemma 5. If there exists Pi > 0, Mi` > 0, Si` > 0, and Ni` such that (3.10), (3.11), hold[
Pi 0
0 γ2I

]
>
∑
l∈Mi

φil
[
Mi` •
Ni` Si`

]
, (3.10)

[
Mi` •
Ni` Si`

]
>
[
Ai` Ji`
Ci` Di`

]′ [ Ei(P ) 0
0 I

] [
Ai` Ji`
Ci` Di`

]
, (3.11)

for all i ∈ N and ` ∈Mi then ‖G‖∞ < γ.
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Proof: See (TODOROV; FRAGOSO; COSTA, 2018). �

Applying the Schur complement in (3.11) we obtain the following inequality,[
Mi` • • •
Ni` Si` • •
Ai` Ji` Ei(P )−1 •
Ci` Di` 0 I

]
> 0. (3.12)

3.1.3 H2 norm for MJLS for Parameter Estimation

Assuming that (3.1) is MSS, the H2 norm is given by

‖G‖2 =

√√√√ nw∑
s=1

N∑
i=1

µi‖zi,s‖2
2 (3.13)

where the initial Markov chain state distribution is given by Prob(θ(0) = i) = µi > 0 for

all i ∈ N. Considering the strict inequalities,

Qi >
∑
`∈Mi

φi`(A
′
i`Ei(Q)Ai` + C ′i`Ci`), i ∈ N, ` ∈Mi, (3.14)

for Qi > 0, we have that

(‖G‖2)2 <
N∑
i=1

∑
l∈Mi

φi`µiTr(J
′
i`Ei(Q)Ji`), (3.15)

Lemma 6. If there exists Wi` > 0, Ri` > 0, and Qi > 0, such that (3.16), (3.17), (3.18),

(3.19), hold

N∑
i=1

∑
`∈Mi

µiφi`Tr(Wi`) < λ2, (3.16)[
Wi` • •
Ji` Ei(Q)−1 •
Di` 0 I

]
> 0, (3.17)

Qi` >
∑
`∈Mi

φi`Ri`, (3.18)[
Ri` • •
Ai` Ei(Q)−1 •
Ci` 0 I

]
> 0. (3.19)

for all i ∈ N and ` ∈Mi then ‖G‖2 < λ.

Proof: See (COSTA; FRAGOSO; TODOROV, 2014) or (OLIVEIRA; COSTA, 2017a).
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3.2 Fault Detection Filter Formulation for MJLS with

Parameter Estimation

In this section, we provide FDF design under the assumption that the Markov Chain

mode is not accessible. From the discussion made at the beginning of this chapter, we may

provide a block diagram of the system as in Fig.16 We assume that the MJLS subject to

System
Gθ(k)

Filter Fθ̂(k)

Weighting
filter Wθ(k)

Control u(k)

Fault f(k)

Noise d(k) y(k) r(k)

f̂(k)

re(k)

Figure 16: Fault detection and isolation scheme diagram assuming that the network mode
is not accessible.

faults is defined as

G :


x(k + 1) = Aθ(k)x(k) +Bθ(k)u(k) + Jθ(k)w(k) + Fθ(k)f(k),

y(k) = Cθ(k)x(k) +Dθ(k)w(k) + Eθ(k)f(k),

x(0) = x0, θ(0) = θ0,

(3.20)

where x(k) ∈ Rnx , y(k) ∈ Rny , u(k) ∈ Rnu , w(k) ∈ Rnw , f(k) ∈ Rnf , represent the state,

measurements, control, exogenous, and fault signals respectively.

Using the same idea of the FDF in the previous chapter, we also implement a system

W given by (3.21), which is described as

W :


xf (k + 1) = AWxf (k) +BWf(k),

f̂(k) = CWxf (k) +DWf(k),

xf (0) = 0,

(3.21)

where xf(k) ∈ Rnr is the weight matrix state, f(k) is the same signal as in (2.24), and

f̂(k) ∈ Rnr is the weighted fault signal.
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We assume that the FDF depends only on the detected variable θ̂(k) as in

F :


η(k + 1) = Aηθ̂(k)η(k) +Mηθ̂(k)u(k) + Bηθ̂(k)y(k),

r(k) = Cηθ̂(k)η(k) +Dηθ̂(k)y(k),

η(0) = η0,

(3.22)

whereby η(k) ∈ Rn
x represents the filter states, and r(k) ∈ Rn

n is the filter residual. We

point out that this filter structure depends exclusively on the detector mode θ̂(k).

With the intention of designing an FDF in the form of (3.22) to be mean square stable

when x(0) = 0, u(0) = 0, d(0) = 0 and f(0) = 0 and minimizes the value of γ considering

the H∞ norm case, we define criterion to be minimized in the optimization problem as

sup
w 6=0, w∈L2, θ0∈N

‖re‖2

‖w‖2

< γ, (3.23)

where re(k) = r(k)− f̂(k). The definition of the criterion to be minimized in optimization

problem for the H2 norm case is

m∑
s=1

N∑
i=1

µi‖re‖2
2 < λ. (3.24)

Considering system (3.20), weighting system (3.21) the two different criteria (3.23),

(3.24), allow us to describe augmented state and the input signal as x̄(k) = [x(k)′ η(k)′ xf (k)′]′

and w̄ = [u(k)′ w(k)′ f̂(k)′]′,

Gaug :

x̄(k + 1) = Ãθ(k)θ̂(k)x̄(k) + B̃θ(k)θ̂(k)w̄(k),

re(k) = C̃θ(k)θ̂(k)x̄(k) + D̃θ(k)θ̂(k)w̄(k),
(3.25)

where each matrix is described as

[
Ãi` B̃i`

C̃i` D̃i`

]
=


Ai 0 0 Bi Ji Fi

Bη`Ci Aη` 0 Mη` Bη`Di Bη`Ei
0 0 AW 0 0 BW

Dη`Ci Cη` −CW 0 Dη`Di Dη`Ei −DW

 . (3.26)

3.2.1 H∞ Fault Detection Filter Design for MJLS with Parame-
ter Estimation

Theorem 7. There exists a filter in the form of (3.22) such that ‖Gaug‖2
∞ < γ if there

exist symmetric matrices Zi, Xi, Hi`, Nil, Sil, Wi, and matrices R`, O`, ∇`, Γ`, Cη`, Dη`,
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with compatible dimensions that satisfy the following LMI constraints[
Zi • • •
Zi Xi • •
0 0 Wi •
0 0 0 γ2I

]
>
∑
`∈Mi

φi`
[Hi` •
Ni` Si`

]
, (3.27)

[
Hi`

]
• • • •[

Ni`
] [

Si`
]

Π3,4 • • • •

Ei(Z)Ai Ei(Z)Ai 0 Ei(Z)Ji Ei(Z)Fi Ei(Z) • • •
Π4,1 Π4,2 0 Π4,3 Π4,5 Π4,6 0 Π4,7 • •

0 0 Ei(W)Aw 0 0 Ei(W)Bw 0 0 Ei(W) •
Dη`Ci+Cη` Dη`Ci −Cw 0 Dη`Di Π6,6 0 0 0 I

 > 0, (3.28)

where

Π3,4 = Ei(Z)Bi, Π4,1 = R`Ai +∇`Ci +O`, Π4,2 = R`Ai +∇`Ci,

Π4,3 = R`Bi + Γ`, Π4,5 = R`Ji +∇`Di, Π4,6 = R`Fi +∇`Ei,

Π4,7 = Her(R`) + Ei(Z)− Ei(X ), Π6,6 = Dη`Ei −Dw.

If a feasible solution is found a suitable FDF is given by Aη` = −R−1
l Ol, Bη` = −R−1

l ∇l,

Mη` = −R−1
l Γl, Cη`, Dη`.

Proof: Consider the structure for the matrices

P̃i =

[
Xi • •
U ′i X̂i •
0 0 P 33

i

]
, P̃−1

i =

[
Yi • •
V ′i Ŷi •
0 0 P 33 −1

i

]
, Ei(P̃ )−1 =

[
T̂1i • •
T̂ ′2i T̂3i •
0 0 Ei(P 33

i )−1

]
(3.29)

and the linearization matrices

τi =

[
I I 0

V ′i Y
−1
i 0 0

0 0 I

]
, ι =

[
T̂−1
1i Ei(X) 0

0 Ei(U)′ 0

0 0 Ei(P 33
i )

]
, (3.30)

that leads to

τ ′i P̃iτi =

[
Y −1
i Y −1

i 0

Y −1
i Xi 0

0 0 P 33
i

]
, ι′iEi(P̃ )−1ιi =

[
Ei(Z) • •
Ei(Z) Ei(X) •

0 0 Ei(P 33
i )

]
. (3.31)

Considering the constraint (3.28), and Ui = Zi−Xi, X̂i = −Ui, V ′i Y −1
i and from (3.27) we

can say that Ei(X)− Ei(Z) is invertible since Xi > Zi. This observation also allows us to

write R`(Ei(X)−Ei(Z))−1R′` > R`+R
′
`+Ei(Z)−Ei(X), (see (OLIVEIRA; BERNUSSOU;

GEROMEL, 1999)), in such a way that the term Her(R`) +Ei(Z)−Ei(X) can be changed

by R`(Ei(X)− Ei(Z))−1R′` in the constraint (3.28). Define the matrix Qi` as,

Qi` =

[
In In 0

0 (R−1
` )′(Ei(X)−Ei(Z)) 0

0 0 I

]
. (3.32)

Applying the congruence transformation diag(I,Qi`, I, I) in (3.28), and from that we

acquire the term R`(Ei(X)−Ei(Z))−1R′`. By consequence we can make the variable trans-
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formation O` = R`Aη`, ∇` = R`Bη`, Γ` = R`Mη`, Cη`, Dη`. As presented in (OLIVEIRA;

COSTA, 2017b) and the references therein, T̂−1
1i = Ei(X)− Ei(U)Ei(X̂)−1Ei(U), and we

also have that Ei(U) = −Ei(X̂). Therefore, T̂−1
1i = Ei(Z) = Ei(X) + Ei(U), and so the

constraint (3.27) and (3.28) can be also described as[
τ ′i P̃ τi 0

0 γ2I

]
>
∑
`∈Mi

[
τ ′iH̃i`τi •
Ñi`τi S̃i`

]
, (3.33) τ ′iH̃i`τi • • •

Ñi`τi S̃i` • •
ι′iÃi`τi ι

′
iJ̃i` ι

′
iEi(P̃ )−1ιi •

C̃i`τi D̃i` 0 I

 > 0. (3.34)

Using the congruence transformations diag(τ−1
i , I) in (3.33) and diag(τ−1

i , I, ι−1
i , I) in

(3.34) we get the constraints in Lemma 5, concluding the proof. �

3.2.2 H2 Fault Detection Filter Design for MJLS with Parame-
ter Estimation

Theorem 8. There exists a filter in the form of (3.22) such that ‖Gaug‖2
2 < λ if there exist

symmetric matrices Zi, Xi, Vi`, Gi, and matrices R`, O`, ∇`, Γ`, Cη`, Dη`, with compatible

dimensions that satisfy the following LMI constraints

N∑
i=1

∑
l∈Mi

µiφi`Tr(Wi`) < λ, (3.35)[
Zi • •
Zi Xi •
0 0 Gi

]
>
∑
`∈Mi

φi` [ Vi` ] , (3.36)
[
Wi`

]
• • • •

Ei(Z)Bi Ei(Z)Ji Ei(Z)Fi Ei(Z) • • •
R`Bi+Γ` R`Ji+∇`Di R`Fi+∇`Ei0 Her(R`)+Ei(Z)−Ei(X) • •

0 0 Ei(G)Bw 0 0 Ei(E) •
0 Dη`Di Dη`Ei−Dw 0 0 0 I

 > 0, (3.37)


[
Vi`

]
• • • •

Ei(Z)Ai Ei(Z)Ai 0 Ei(Z) • • •
Π̃3,1 R`Ai+∇`Ci 0 0 Her(R`)+Ei(Z)−Ei(X) • •

0 0 Ei(G)Aw 0 0 Ei(G) •
Dη`Ci+Cη` Dη`Ci −Cw 0 0 0 I

 > 0, (3.38)

where Π̃3,1 = R`Ai +∇`Ci +O`. If a feasible solution is obtained the matrices that compose

the filter are Aη` = −R−1
` O`, Bη` = −R−1

` ∇`, Mη` = −R−1
` Γ`, Cη`, Dη`.

Proof: Fixing the following structure for the matrices

P̃i =

[
Xi • •
UTi X̂i •
0 0 P 33

i

]
, P̃−1

i =

[
Yi • •
V Ti Ŷi •
0 0 P 33 −1

i

]
, Ei(P̃ )−1 =

[
T̂1i • •
T̂T2i T̂3i •
0 0 T̂4i

]
, (3.39)
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and the linearization matrices

τi =

[
I I 0

V Ti Y
−1
i 0 0

0 0 I

]
, ιi =

[
T̂−1
1i Ei(X) 0

0 Ei(U)T 0

0 0 Ei(P 33)

]
, (3.40)

we get that

τTi P̃iτi =

[
Y −1
i Y −1

i 0

Y −1
i Xi 0

0 0 P 33
i

]
, ιTi Ei(P̃ )−1ιi =

[
T̂−1
1i • •
T̂−1
1i Ei(X) •
0 0 Ei(P 33)

]
. (3.41)

The matrix Ei(P̃ )−1, as explained in (GONÇALVES; FIORAVANTI; GEROMEL, 2010),

depends nonlinearly on Ei(P̃ ). Assuming that Ui = −X̂i, additionally from the structure

of P̃i and P̃−1
i provides Ui = −X̂i = Y −1

i − Xi = Zi − Xi, which enable us to rewrite

ιTi Ei(P̃ )−1ιi as

ιTi Ei(P̃ )−1ιi =

[
Ei(Z) • •
Ei(Z) Ei(X) •

0 0 Ei(P 33)

]
. (3.42)

Considering the constraints (3.37), (3.36) and (3.38), and Ui = Zi−Xi, X̂i = −Ui, V T
i Y

−1
i

and from (3.36) we are able to say that Ei(X)− Ei(Z) is invertible due to Xi > Zi. This

observation also allows us to write R`(Ei(X)− Ei(Z))−1RT
` > Her(R`) + Ei(Z)− Ei(X),

(see (OLIVEIRA; BERNUSSOU; GEROMEL, 1999)), such that
[
Wi`

]
• • • •

Ei(Z)Bi Ei(Z)Ji Ei(Z)Fi Ei(Z) • • •
R`Bi+Γ` R`Ji+∇`Di R`Fi+∆`Ei 0 Π3,5 • •

0 0 Ei(E)Bw 0 0 Ei(G) •
0 Dη`Di Dη`Ei−Dw 0 0 0 I

 > 0, (3.43)


[
Vi`

]
• • • •

Ei(Z)Ai Ei(Z)Ai 0 Ei(Z) • • •
R`Ai+∇`Ci+O` R`Ai+∇`Ci 0 0 Π3,5 • •

0 0 Ei(G)Aw 0 0 Ei(G) •
Dη`Ci+Cη` Dη`Ci −Cw 0 0 0 I

 > 0, (3.44)

where Π3,5 = R`(Ei(Z) − Ei(X))−1R′`. Recall that O` = −R`Aη`, ∇` = −R`Bη`, Γ` =

−R`Mη`, Cη`, Dη`. As in (OLIVEIRA; COSTA, 2017b), T̂−1
1i = Ei(X)−Ei(U)Ei(X̂)−1Ei(U)T ,

and since Ei(U) = −Ei(X̂) we get that T̂−1
1i = Ei(Z) = Ei(X) + Ei(U). Define the matrix

Qi` as,

Qi` =

[
I I 0
0 (R−1

` )T (Ei(X)−Ei(Z)) 0
0 0 I

]
. (3.45)

Applying congruence transformations diag(I,Qi`, I) and diag(I, I, I, Qi`, I), respectively, in

(3.43) and (3.44) we obtain the constraints below (similarly as presented in (GONÇALVES;
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FIORAVANTI; GEROMEL, 2010))
[
Wi`

]
• • • •

Ei(Z)Bi Ei(Z)Ji Ei(Z)Fi Ei(Z) • • •
Ei(U)Bi+Ei(U)Mη` Ei(U)Ji+Ei(U)Bη`Di Ei(U)Fi+Ei(U)Bη`Ei Ei(Z) Ei(X) • •

0 0 Ei(G)Bw 0 0 Ei(G) •
0 Dη`Di Dη`Ei−Dw 0 0 0 I

 > 0, (3.46)


[
Vi`

]
• • • •

Ei(Z)Ai Ei(Z)Ai 0 Ei(Z) • • •
Ei(U)Ai+Ei(U)Bη`Ci Ei(U)Ai+Ei(U)Bη`Ci+Ei(U)Aη` 0 Ei(Z) Ei(X) • •

0 0 Ei(G)Aw 0 0 Ei(G) •
Dη`Ci+Cη` Dη`Ci −Cw 0 0 0 I

 > 0. (3.47)

The constraints (3.36), (3.46) and (3.47) can also be described as

τTi P̃iτi >
∑
`∈Mi

φilτ
T
i R̃i`τi, (3.48)[

Wi` • •
ιTi B̃i`τi ι

T
i Ei(P̃ )−1ιi •

D̃i` 0 I

]
> 0, (3.49)[

τTi R̃i`τi • •
ιTi Ãi`τi ι

T
i Ei(P̃ )−1ιi •

C̃i` 0 I

]
> 0. (3.50)

Applying the congruence transformations τ−1
i , diag(I, ι−1

i ) and diag(τ−1
i , ι−1

i , I) in (3.48),

we end up with the equivalent LMI constraints as in (OLIVEIRA; COSTA, 2017a),

concluding the proof. �

3.2.3 Mixed H2/H∞ Fault Detection Filter Design for MJLS
with Parameter Estimation

Similarly to the mixed problem in Chapter 2 the mixed H2/H∞ optimization problem

may be defined as

inf{g(λ, γ), such that ‖Gaug‖2
2 < λ and ‖Gaug‖2

∞ < γ}, (3.51)

so that (3.51) considers both (3.23) and (3.24) simultaneously. Observing (3.51), there

are several different ways to solve it. We here choose to solve (3.51) finding a weighted

combination of the guaranteed cost for both H2 and H∞ norms. Therefore, the objective

function can be defined as in (2.46), or (2.47), or (2.48).

In order to solve the LMIs in Theorem (7) and (8), it is necessary to define

ψ = {R`, O`,∇`, Cη`,Dη`}. (3.52)
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We set

Ψ = {ψ as in (3.52), such that the LMIs (3.27), (3.28),

(3.35), (3.37), (3.38) are simultaneously feasible}, (3.53)

and,

inf
ψ∈Ψ
{g(λ, γ)}. (3.54)

Theorem 9. There exists a mode-dependent FDF as in (3.22) such that ‖Gaug‖2
∞ < γ and

‖Gaug‖2
2 < λ if there exists ψ ∈ Ψ, where Ψ is defined as in (3.53). If a feasible solution is

obtained then a suitable FDF is given by Aη` = −R−1
` O`, Bη` = −R−1

` ∇`, Mη` = −R−1
` Γ`,

Cη`, Dη`.

Proof: The proof follows directly from the proofs for Theorems 7 and 8. �

3.2.4 Simulations Results

For the illustrative example we used the same model as presented in Appendix A,

which is a coupled tank where the fault is an abnormal input on the first tank. However,

it is necessary to add the detector matrix information as in

Γ = [ 0.65 0.35
0.75 0.25 ] . (3.55)

Using this information and solving Theorem 7 we obtain the FDF in the form of (3.22) as

Aη1 =
[

0.0021 −0.0020
0.0021 −0.0020

]
, Aη2 =

[
0.0058 −0.0375
0.0478 −0.0669

]
, Mη1 = [ 0.1342 0.0698

−0.5776 0.7818 ] ,

Mη2 = [ 1.1986 0.0922
0.3684 0.9221 ] , Bη1 =

[ −0.0259 −0.0107
0.0106 −0.0265

]
, Bη2 = [ 0 0

0 0 ] ,

Cη1 = [ −0.0489 0.0469 ] , Cη2 = [ −2.1824 1.7279 ] , Dη1 = [ 0.0523 −0.1963 ] ,

Dη2 = [ 0 0 ] , (3.56)

and the upper bound obtained was γ = 1.4142. Now considering Theorem 8 we obtained

Aη1 =
[ −0.2535 0.2444

0.2540 −0.2621

]
, Aη2 =

[ −0.0132 −0.0070
0.0070 −0.0157

]
, Mη1 =

[
0.6814 −0.2061
−0.2060 0.6814

]
,

Mη2 = [ 0.7100 0.0000
0.0000 0.7100 ] , Bη1 =

[
0.4334 −0.4475
−0.4419 0.4521

]
, Bη2 = [ 0 0

0 0 ] ,

Cη1 = [ −0.1239 −0.1239 ] , Cη2 = [ 0 0 ] , Dη1 = [ −0.3259 −0.3259 ] , Dη2 = [ 0 0 ] , (3.57)



69

and the upper bound obtained was λ = 5.6378. For the Mixed problem presented in

Theorem 9 the results are

Aη1 =
[ −0.0034 0.0107

0.0018 −0.0222

]
, Aη2 =

[ −0.0037 0.0110
0.0021 −0.0242

]
, Mη1 =

[
1.5849 −0.3285
−0.0001 0.7664

]
,

Mη2 =
[

1.1125 −0.1271
−0.0000 0.7110

]
, Bη1 =

[ −0.0215 −0.0227
0.0110 −0.0064

]
, Bη2 = [ 0 0

0 0 ] ,

Cη1 = [ −1.3640 −1.2157 ] , Cη2 = [ 0 0 ] , Dη1 = [ 0.1416 0.1841 ] , Dη2 = [ 0 0 ] , (3.58)

and the upper bounds obtained are λ = 5.8733 and γ = 1.8795.

3.2.4.1 Monte Carlo Simulation

The simulations were made using the same setup from the previous section. Remember-

ing that the system used in this simulation is a coupled tank and the fault signal represents

an abnormal input on the first tank at the time of t = 125s. We consider that the threshold

is TH = 1. Performing the simulation under these particular circumstances the results

obtained are the residue signal r(k) using Theorems 7, 8, and 9. The second result is

shown in Fig.19 with the evaluation function for all cases in this section. Examining
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Figure 17: Mean and standard deviation for residue signal obtained using FDF designed
via Theorems 7, 8, and 9.

Figs. 17a, 17b, 17c it is possible to observe that the residue signal for all three approaches

behaved as intended, where they reacted to the fault properly when it occurs. There were
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no changes on the residue signal when there was no fault. Figs. 18a, 18b, 18c show the
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Figure 18: Mean and standard deviation for evaluation function obtained using FDF
designed via Theorems 7, 8, and 9.
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Figure 19: The mean value of the evaluation function signal for three distinct approaches,
where the blue curve represents the results using Theorem 7, the red curve represents the
results obtained via 8, the magenta curve represents the results through Theorem 9, and
the cyan line denotes the threshold TH.

evaluation function obtained using all three theorems in this section. It is noteworthy that

the fastest detection was provided by Theorem 7 with the detection range of [176 186]s,

the detection range obtained using Theorem 8 was [223 236]s, and for Theorem 9 was

[242 253]s. All approaches detected the fault properly, therefore, all can be considered a

suitable solution for the FDI problem.
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3.3 Simultaneous Fault Detection and Control formu-

lation for MJLS with Parameter Estimation

In this section, we present the design of simultaneous fault detection and control for

MJLS with parameter estimation. In this particular problem, we design an FDF and a

state feedback controller at the same time. The major advantage provided by this topology

is that a single element in the system is capable of detect a fault, and perform the regular

controller task. The formulation presented here considers that the Hidden Markov mode

as in Section 3.2. However, it is necessary to redefine the BRLs for the H∞ and H2 cases,

and also rewrite the system for this specific design. Consider the following MJLS in the

stochastic space (Ω,F ,P) with filtration {Fk},

G :


x(k + 1) = Aθ(k)x(k) +Bθ(k)u(k) + Jθ(k)w(k) + Ffθ(k)f(k)

y(k) = Lθ(k)x(k) +Hwθ(k)w(k) +Hfθ(k)f(k)

z(k) = Cθ(k)x(k) +Dθ(k)u(k),

(3.59)

where x(k) ∈ Rnx is the state, u(k) ∈ Rnu is the control input, w(k) ∈ Rnr is the

disturbance, f(k) ∈ Rnf is the signature of the failure, y(k) ∈ Rny is the measured output,

and z(k) ∈ Rnz is the controlled output. As we described in Section 3.2, the index θ(k)

represents a homogeneous Markov chain.

We would like to design a type of stabilizing controller that simultaneously can act as

a residual filter as well as a controller. The controller/filter structure is given by

C :


xc(k + 1) = Acθ̂(k)xc(k) + Bcθ̂(k)y(k)

u(k) = Ccθ̂(k)xc(k)

f̂(k) = Cfθ̂(k)xc(k) +Dfθ̂(k)y(k),

(3.60)

where xc ∈ Rnx is the controller state and f̂(k) ∈ Rnf is an estimate of the signature signal

f(k).

The goal is to stabilize (3.59) through (3.60) whilst at the same time the controller

acts also as supervisory filter providing estimates of f̂(k) through the residual signal

r(k) , f(k)− f̂(k).

By connecting (3.59) and (3.60) and defining x̃(k)′ ,
[
x(k)′ xc(k)′

]′
and, w̃(k)′ ,
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[
w(k)′ f(k)′

]′
, we get the closed-loop dynamics

Gc :


x̃(k + 1) = Ãθ(k)θ̂(k)x̃(k) + J̃θ(k)θ̂(k)w̃(k)

z(k) = C̃cθ(k)θ̂(k)x̃(k),

r(k) = C̃fθ(k)θ̂(k)x̃(k) + Ẽfθ(k)θ̂(k)w̃(k),

(3.61)

where

Ãi` ,
[

Ai BiCc`
Bc`Li Ac`

]
, J̃i` ,

[
Ji Fi

Bc`Hwi Bc`Hfi

]
,

C̃ci` , [ Ci DiCc` ] , C̃fi` , [ −Df`Li −Cf` ] ,

Ẽfi` , [ −Df`Hwi If−Df`Hfi ] .

Let us introduce some basic concepts required for properly describing the main goal.

The concept of internal stochastic stability and stabilizability are stated next, where

A , (A1, . . . , An) ∈ B(Rnx), B , (B1, . . . , Bn) ∈ B(Rnx ,Rnu), and K , (K1, . . . , Kn) ∈
B(Rnu ,Rnu), and for Q ∈ Hn, Ei(Q) ,

∑
j∈N pijQj. Considering the augmented system

(3.61) is stochastic stable, as defined in 3.1.1, the class of the class of admissible controllers

is given by C , {C}.

Next we redefine the concept of H∞ norm of (3.61) concerning outputs z(k) and r(k)

adapted from (TODOROV; FRAGOSO; COSTA, 2018). This process is necessary since

we aim to provide a solution that is an FDF and a state-feedback controller simultaneously.

To fulfill this purpose, it is necessary to redefine the optimization processes and their

respective LMIs constraints twice, where the optimization considering the output z(k)

refers to the control part of the problem, and the other considering r(k) to take up the

FDF side of the problem.

For that, we set Wi , {w̃ ∈ lr+f2 : ‖w̃‖2i > 0}, where for any signal g = {g(k), k =

0, 1, 2, . . .}, ‖g‖2
2i , E(‖g(k)‖2 | θ0 = i). Now we redefine the H∞ and H2 norms, which

will be used to present later on the mixed formulation. We start with the H∞ norm

definition.

Definition 4 (H∞ norms). Given that C ∈ C, the H∞ norm of (3.61) with respect to z is

given by

‖Gc‖(w̃ 7→z)
∞ , sup

i∈N
sup
w̃∈Wi

‖z‖2i

‖w̃‖2i

,
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and the H∞ norm of (3.61) with respect to r by,

‖Gc‖(w̃ 7→r)
∞ , sup

i∈N
sup
w̃∈Wi

‖r‖2i

‖w̃‖2i

.

Consider the following inequalities for given γc > 0 and γr > 0,[
Pi 0
0 γ2c I

]
>
∑
`∈Mi

φi`
[
Mi` •
Ni` Si`

]
, (3.62)

[
Mi` •
Ni` Si`

]
>
[
Ãi` J̃i`
C̃ci` 0

]′ [ Ei(P ) 0
0 I

] [
Ãi` J̃i`
C̃ci` 0

]
, (3.63)

and [
Pi 0
0 γ2r I

]
>
∑
l∈Mi

φi`
[
Mi` •
Ni` Si`

]
, (3.64)

[
Mi` •
Ni` Si`

]
>
[
Ãi` J̃i`
C̃fi` Ẽfi`

]′ [ Ei(P) 0
0 I

] [ Ãi` J̃i`
C̃fi` Ẽfi`

]
, (3.65)

for all i ∈ N. The following bounded-real lemma is adapted from (TODOROV; FRAGOSO;

COSTA, 2018).

Lemma 7 (Bounded-real Lemma). If there exists P ∈ H2n+, P > 0, P ∈ H2n+, P >

0, such that (3.62), (3.63), (3.64), and (3.65) hold, then C ∈ C, ‖Gc‖(w̃ 7→z)
∞ < γc and

‖Gc‖(w̃ 7→r)
∞ < γr.

Therefore the goal is to design C ∈ C so that ‖Gc‖(w̃ 7→z)
∞ < γc and ‖Gc‖(w̃ 7→r)

∞ < γr for

w̃ ∈ Wi, i ∈ N. Specifically in this work we focus our efforts in finding

inf
C∈C,P,γr,γc

{γcβc + γrβr}: s. t. (3.62), (3.63), (3.64) and (3.65) (3.66)

hold for a given βc > 0, βr > 0. This particular formulation will be useful later on in this

paper. We present next the H2 norm definition.

Definition 5 (H2 norms). Assume that C ∈ C. For x̃(0) = 0, define zs,i and rs,i, the

outputs of (3.61) for the initial condition θ(0) = i and the input w̃(k) = 0 for k > 1 and

w̃(0) = es, where es is the s−th vector of the standard basis of Rs. The H2 norms of

(3.61) with respect to the ouputs z and r are given by

‖Gc‖(w̃ 7→z)
2 =

√√√√ r∑
s=1

N∑
i=1

µi‖zs,i‖2
2 (3.67)
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and

‖Gc‖(w̃ 7→r)
2 =

√√√√ r∑
s=1

N∑
i=1

µi‖rs,i‖2
2, (3.68)

where the initial Markov chain state distribution is given by P(θ(0) = i) = µi > 0 for all

i ∈ N.

Considering the strict inequalities,

Q̃i >
∑
`∈Mi

φi`(Ã
′
i`Ei(Q̃)Ãi` + C̃ ′ci`C̃ci`), i ∈ N, ` ∈Mi, (3.69)

and

Q̃i >
∑
l∈Mi

φi`(Ã
′
i`Ei(Q̃)Ãi` + C̃ ′fi`C̃fi`), i ∈ N, l ∈Mi, (3.70)

for Q̃i > 0 and Qi > 0, we have that

(
‖Gc‖(w̃ 7→z)

2

)2

<
N∑
i=1

∑
l∈Mi

φi`µiTr(J̃
′
i`Ei(Q̃)J̃i`) (3.71)

and (
‖Gc‖(w̃ 7→r)

2

)2

<
N∑
i=1

∑
`∈Mi

φi`µiTr(J̃
′
i`Ei(Q̃)J̃i` + Ẽ ′fi`Ẽfi`). (3.72)

Following the discussion presented in (COSTA; FRAGOSO; TODOROV, 2015) and

(OLIVEIRA; COSTA, 2017a), we get that if the following inequalities for the filter part

N∑
i=1

∑
`∈Mi

µiφi`Tr(Wi`) < λ2
r, (3.73)[

Wi` • •
J̃i` Ei(Q̃)−1 •
Ẽfi` 0 I

]
> 0, (3.74)

Q̃i` >
∑
l∈Mi

φi`R̃i`, (3.75)

[
R̃i` • •
Ãi` Ei(Q̃)−1 •
C̃fi` 0 I

]
> 0. (3.76)

and for the controller side

N∑
i=1

∑
`∈Mi

µiφi`Tr(Wi`) < λ2
c , (3.77)[

Wi` •
J̃i` Ei(Q̃)−1

]
> 0, (3.78)
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Q̃i` >
∑
`∈Mi

φi`R̃i`, (3.79)[
R̃i` • •
Ãi` Ei(Q̃)−1 •
C̃ci` 0 I

]
> 0. (3.80)

hold, then C ∈ C, ‖Gc‖(w̃ 7→z)
2 < λc and ‖Gc‖(w̃ 7→r)

2 < λr. Similarly to the H∞ case, the main

goal is to design C ∈ C so that ‖Gc‖(w̃ 7→z)
2 < λc and ‖Gc‖(w̃ 7→r)

2 < λr for w̃ ∈ Wi, i ∈ N.

Specifically in this work we focus our efforts in finding

ψ = {Wi`, Qi, Ri`,Wi`,Qi,Ri`, i ∈ N, ` ∈Mi} (3.81)

∆ = {ψ such that (3.73)-(3.80) hold }

inf
C∈C,P,λr,λc

{λcζc + λrζr} : s. t. ψ ∈ ∆, (3.82)

for a given ζc, ζr > 0. Similarly to the H∞ case, we choose this particular formulation in

order to derive some results later on.

3.3.1 H∞ Simultaneous Fault Detection and Control Design for
MJLS with parameter estimation

The next result presents BMI constraints regarding the controller design (3.83), (3.84),

and for the filter design (3.85) and (3.86).

Theorem 10. There exists an SFDC described as in (3.60) such that C ∈ C, ‖Gc‖(w̃ 7→z)
∞

< γc, and ‖Gc‖(w̃ 7→r)
∞ < γr for fixed γc > 0 and γr > 0 if there exist symmetric matrices Zi,

Xi, M
11
i` , M22

i` , S11
i` , S22

i` , Zi, Xi, M
11
i` , M22

i` , S11
i` , S22

i` , and the matrices M21
i` , S21

i` , M21
i` ,

S21
i` , N11

i` , N12
i` , N21

i` , N22
i` , N11

i` , N12
i` , N21

i` , N22
i` , G`, Γ`, χ`, Θ`, Φ`, and K` with compatible

dimensions such that inequalities (3.83), (3.84), (3.85), and (3.86) hold ∀i ∈ N, ` ∈M. If

a feasible solution is obtained, a suitable SFDC is given by Ac` = −G−1
` Γ`, Bc` = −G−1

` χ`,

Cc` = K`, Cf` = −Θ`, Df` = −Φ`.

Proof: The proof follows similar reasoning as presented in (OLIVEIRA; COSTA, 2020)

and (GONÇALVES; FIORAVANTI; GEROMEL, 2010). We set the structure of matrices

Pi and P−1
i of (3.62)-(3.63) as

Pi =
[
Xi •
Ui X̂i

]
, P−1

i =
[
Z−1
i •
Vi Ŷi

]
, (3.87)

and similarly for matrices Pi and P−1
i of (3.64)-(3.65), we set

Pi =
[
Xi •
Ui X̂i

]
, P−1

i =
[
Z−1
i •
Vi Ŷi

]
. (3.88)
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[
Zi • • •
Zi Xi • •
0 0 γ2c ∞I •
0 0 0 γ2c ∞I

]
>
∑
l∈Mi

φi`

M11
i` • • •

M21
i` M22

i` • •
N11
i` N12

i` S11
i` •

N21
i` N22

i` S21
i` S22

i`

 , (3.83)


M11
i` • • • • • •

M21
i` M22

i` • • • • •
N11
i` N12

i` S11
i` • • • •

N21
i` N22

i` S21
i` S22

i` • • •
Π5,1 Ei(Z)Ai Ei(Z)Ji Ei(Z)Fi Ei(Z) • •
Π6,1 G`Ai+χ`Li G`Ji+χ`Hwi G`Fi+χ`Hfi 0 Π6,6 •

Ci+DiK` Ci 0 0 0 0 I

 > 0, (3.84)

Π5,1 = Ei(Z)(Ai +BiK`), Π6,1 = G`(Ai +BiK`) + Γ` + χ`Li,

Π6,6 = Her(G`) + Ei(Z −X),[
Zi • • •
Zi Xi • •
0 0 γ2r ∞I •
0 0 0 γ2r ∞I

]
>
∑
l∈Mi

φi`

M11
i` • • •

M21
i` M22

i` • •
N11
i` N12

i` S11
i` •

N21
i` N22

i` S21
i` S22

i`

 , (3.85)


M11
i` • • • • • •

M21
i` M22

i` • • • • •
N11
i` N12

i` S11
i` • • • •

N21
i` N22

i` S21
i` S22

i` • • •
Π̌5,1 Ei(Z)Ai Ei(Z)Ji Ei(Z)Fi Ei(Z) • •
Π̌6,1 G`Ai+χ`Li G`Ji+χlHwi G`Fi+χ`Hfi 0 Π̌6,6 •
Π̌7,1 Φ`Li Φ`Hwi I+Φ`Hfi 0 0 I

 > 0. (3.86)

Π̌5,1 = Ei(Z)(Ai +BiK`), Π̌6,1 = G`(Ai +BiK`) + Γ` + χ`Li,

Π̌7,1 = Θ` + Φ`Li, Π̌6,6 = Her(G`) + Ei(Z− X).

We also define the matrices τi and υi as

τi =
[

I I
ViZi 0

]
, υi =

[
I Ei(X)
0 Ei(U)

]
, (3.89)

along with

ti =
[

I I
ViZi 0

]
, ui =

[
I Ei(X)
0 Ei(U)

]
. (3.90)

By verifying the diagonal blocks of (3.83) and also (3.84), we note that Her(G`) >

Ei(X − Z) > 0 so that G` is non-singular. Considering the fact that PiP
−1
i = I and

PiP
−1
i = I, we rewrite the matrices Pi and P−1

i by setting Ui = −X̂i, and matrices Pi

and P−1
i by setting Ui = −X̂i, as follows

Pi =
[

Xi •
Zi−Xi Xi−Zi

]
, (3.91)

P−1
i =

[
Z−1
i •

Z−1
i Z−1

i +(Xi−Zi)−1

]
, (3.92)
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and

Pi =
[

Xi •
Zi−Xi Xi−Zi

]
, (3.93)

P−1
i =

[
Z−1
i •

Z−1
i Z−1

i +(Xi−Zi)−1

]
. (3.94)

Besides, (3.146) and (3.90) become

τi =

[
I I

I 0

]
, υi =

[
I Ei(X)

0 Ei(Z −X)

]
, (3.95)

and

ti =

[
I I

I 0

]
, ui =

[
I Ei(X)

0 Ei(Z− X)

]
. (3.96)

Since G` is non-singular, we set Γ` = −G`Ac`, χ` = −G`Bc`, K` = Cc`, Θ` = −Cf`, and Φ` =

−Df`. As presented in (OLIVEIRA; BERNUSSOU; GEROMEL, 1999; GONÇALVES;

FIORAVANTI; GEROMEL, 2010), we get that G`Ei(X−Z)−1GT
` > Her(G`) +Ei(Z−X)

and G`Ei(X − Z)−1GT
` > Her(G`) + Ei(Z − X) so that (3.84) and (3.86) still hold if the

diagonal blocks in which Her(G`) + Ei(Z − X) and Her(G`) + Ei(Z − X) appear are

substituted by G`Ei(X − Z)−1GT
` and G`Ei(X− Z)−1GT

` , respectively, resulting in


M11
i` • • • • • •

M21
i` M22

i` • • • • •
N11
i` N12

i` S11
i` • • • •

N21
i` N22

i` S21
i` S22

i` • • •
Ξ51 Ei(Z)Ai Ei(Z)Ji Ei(Z)Fi Ei(Z) • •
Ξ61 Ξ62 Ξ63 Ξ64 0 Ξ66 •

Ci+DiCc` Ci 0 0 0 0 I

 > 0, (3.97)

and 
M11
i` • • • • • •

M21
i` M22

i` • • • • •
N11
i` N12

i` S11
i` • • • •

N21
i` N22

i` S21
i` S22

i` • • •
Ξ̃51 Ei(Z)Ai Ei(Z)Jwi Ei(Z)Fi Ei(Z) • •
Ξ61 Ξ62 Ξ63 Ξ64 0 Ξ̃66 •

−Cf`−Df`Li −Df`Li −Df`Hwi I−Df`Hfi 0 0 I

 > 0, (3.98)

where

Ξ51 = Ei(Z)(Ai +BiCc`), Ξ61 = G`(Ai +BiCc`)−G`Ac` −G`Bc`Li,

Ξ62 = G`Ai −G`Bc`Li, Ξ63 = G`Ji −G`Bc`Hwi, Ξ64 = G`Fi −G`Bc`Hfi,

Ξ66 = G`Ei(X − Z)−1G′`, Ξ̃51 = Ei(Z)(Ai +BiCc`), Ξ̃66 = G`Ei(X− Z)−1G′`.
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By defining the following matrices

Πi` =
[
Ei(Z)−1 I

0 G−T` Ei(X−Z)

]
, (3.99)

and

π̃i` =
[
Ei(Z)−1 I

0 G−T` Ei(X−Z)

]
, (3.100)

and applying the congruence transformations diag(I, I,Πi`, I) and diag(I, I, π̃i`, I) to

(3.150) and (3.98), respectively, we get that[ τ ′iMi`τi • • •
Ni`τi Si` • •
υ′iÃi`τi υ

′
iJ̃i` υ

′
iEi(P )−1υi •

C̃ci`τi 0 0 I

]
> 0, (3.101)

and  t′iMi`ti • • •
Ni`ti Si` • •
u′iÃi`ti u′iJ̃i` u′iEi(P)−1ui •
C̃fi`ti Ẽfi` 0 I

 > 0, (3.102)

hold, for τi, υi, ti, and ui given as in (3.149) and (3.96). By applying the congruence trans-

formations diag(τ−1
i , I, υ−1, I) and diag(t−1

i , I, u−1
i , I) to (3.152) and (3.102), respectively,

and the Schur complement to the resulting inequalities, we get that (3.63) and (3.65) hold.

Finally, by noting that (3.83) and (3.85) can be equivalently rewritten as follows[
τ ′iPiτ •

0 γ2c I

]
>
∑
l∈Mi

φi`

[
τ ′iMi`τi •
Ni`τi Si`

]
, (3.103)

and [
t′iPiti •

0 γ2r I

]
>
∑
l∈Mi

φi`

[
t′iMi`ti •
Ni`ti Si`

]
, (3.104)

we get, after applying the congruence transformations diag(τ−1
i , I) and diag(t−1

i , I) to

(3.153) and (3.104), respectively, that (3.62) and (3.64) hold. Thus, since (3.62)-(3.63)

and (3.64)-(3.65) hold for the closed-loop system as in (3.61), we get from Lemma 7 that

C ∈ C, ‖Gc‖w̃ 7→z < γc, and ‖Gc‖w̃ 7→r < γr, and the claim follows. �

3.3.2 H2 Simultaneous Fault Detection and Control Design for
MJLS with parameter estimation

The next result presents BMI constraints related to the control and filter design of the

SFDC system (3.60).

Theorem 11. There exists an SFDC described as in (3.60) such that C ∈ C, ‖Gc‖(w̃ 7→z)
2
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∑
i∈N

∑
l∈Mi

µiφi`Tr(Wi`) < λ2
c , (3.105)

[
Ti •
Ti Oi

]
>
∑
`∈Mi

[
V 11
i` •
V 21
i` V 22

i`

]
, (3.106) W 11

i` • • •
W 21
i` W 22

i` • •
Ei(T )Ji Ei(T )Fi Ei(T ) •

G`Ji+χ`Hwi G`Fi+χ`Hfi 0 Her(G`)+Ei(T−O)

 > 0, (3.107)

 V 11
i` • • • •
V 21
i` V 22

il • • •
Ei(T )(Ai+BiK`) Ei(T )Ai Ei(T ) • •

G`(Ai+BiK`)+Γ`+χ`Li G`Ai+χ`Li 0 Her(G`)+Ei(T−O) •
Ci+DiK` Ci 0 0 I

 > 0, (3.108)

∑
i∈N

∑
`∈Mi

µiφi`Tr(Wi`) < λ2
r, (3.109)

[
Ti •
Ti Oi

]
>
∑
`∈Mi

[
V11
i` •

V21
i` V22

i`

]
, (3.110)

W11
i` • • • •

W21
i` W22

i` • • •
Ei(T)Ji Ei(T)Fi Ei(T) • •

G`Ji+χ`Hwi G`Fi+χ`Hfi 0 Her(G`)+Ei(T−O) •
Φ`Hwi I+Φ`Hfi 0 0 I

 > 0, (3.111)

 V11
i` • • • •

V21
i` V22

i` • • •
Ei(T)(Ai+BiK`) Ei(T)Ai Ei(T) • •

G`(Ai+BiK`)+Γ`+χ`Li G`Ai+χ`Li 0 Her(G`)+Ei(T−O) •
Θ`+Φ`Li Φ`Li 0 0 I

 > 0. (3.112)

< λc, and ‖Gc‖(w̃ 7→r)
2 < λr for fixed λc > 0 and λr > 0 if there exist symmetric matrices

W 11
i` , W 22

i` , Ti, Oi, V
11
i` , V 22

i` , W11
i` , , V22

i` Ti, Oi, V
11
i` , V22

i` and the matrices W 21
i` , V 21

i` , W21
i` ,

V21
i` G`, Γ`, χ`, Θ`, Φ`, and K` with compatible dimensions such that inequalities (3.105),

(3.106), (3.107), (3.108), (3.109), (3.110), (3.111), and (3.112) hold ∀i ∈ N, ` ∈ M. If a

feasible solution is obtained, a suitable SFDC is given by Ac` = −G−1
` Γ`, Bc` = −G−1

` χ`,

Cc` = K`, Cf` = −Θ`, Cf` = −Θ`, Df` = −Φ`.

Proof: The proof follows the similar reasoning as the one employed in the proof of

Theorem 10. Similarly as presented in (GONÇALVES; FIORAVANTI; GEROMEL, 2010),

(OLIVEIRA; COSTA, 2020), the structure of matrices Q̃i and Q̃−1
i of (3.73)-(3.76), and

Q̃i and Q̃−1
i of (3.77)-(3.80), are

Q̃i =
[
Oi •
Ūi Ôi

]
, Q̃−1

i =
[
T−1
i •
V̄i T̂i

]
, (3.113)

and

Q̃i =
[
Oi •
Ūi Ôi

]
, Q̃−1

i =
[
T−1
i •
V̄i T̂i

]
. (3.114)
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We also define the matrices ηi and σi

ηi =
[

I I
V̄iTi 0

]
, σi =

[
I Ei(T )

0 Ei(Ū)

]
, (3.115)

along with ni and si,

ni =

[
I I

V̄iTi 0

]
, si =

[
I Ei(T)

0 Ei(Ū)

]
. (3.116)

We get from (3.107)-(3.108) as well as (3.111)-(3.112) that G` is non-singular. By

setting Ūi = −Ôi and Ūi = −Ôi in (3.158) and (3.114) and using the fact that Q̃iQ̃
−1
i = I

and Q̃iQ̃
−1
i = I, we get that (3.158)-(3.116) can be rewritten as

Q̃i =
[

Oi •
Ti−Oi Oi−Ti

]
, Q̃−1

i =
[
T−1
i •
T−1
i Υ1i

]
, (3.117)

where Υ1i = T−1
i − (Oi − Ti)−1, and

Q̃i =
[

Oi •
Ti−Oi Oi−Ti

]
, Q̃−1

i =
[
T−1
i •

T−1
i Υ2i

]
, (3.118)

where Υ2i = T−1
i − (Oi − Ti)

−1, along with

ηi = [ I II 0 ] , σi =
[
I Ei(T )
0 Ei(T−O)

]
(3.119)

and

ni =

[
I I

I 0

]
, si =

[
I Ei(T)
0 Ei(T−O)

]
. (3.120)

Recalling the previous reasoning applied in the proof of Theorem 10, we get that G`Ei(O−
T )−1G′` > Her(G`) + Ei(T − O) and G`Ei(O − T)−1G′` > Her(G`) + Ei(T − O). By

performing the change of variables Γ` = −G`Ac`, χ` = −G`Bc`, K` = Cc`, Θ` = −Cf`, and

Φ` = −Df`, we can rewrite (3.107)-(3.108) and (3.111)-(3.112) as follows W 11
i` • • •

W 21
i` W 22

i` • •
Ei(T )Ji Ei(T )Fi Ei(T ) •

G`[Ji−Bc`Hwi] G`[Fi−Bc`Hfi] 0 G`Ei(O−T )−1G′`

 > 0, (3.121)

and  V 11
i` • • • •
V 21
i` V 22

i` • • •
Ei(T )Ai(Cc`) Ei(T )Ai Ei(T ) • •
G`Υ3i` G`[Ai−Bc`Li] 0 G`Ei(O−T )−1G′` •
Ci+DiCc` Ci 0 0 I

 > 0, (3.122)
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where Ai(Cc) = Ai +BiCc` and Υ3i` = [Ai(Cc`)−Ac` − Bc`Li]. Along with
W11
i` • • • •

W21
i` W22

i` • • •
Ei(T)Ji Ei(T)Fi Ei(T) • •

G`[Ji−Bc`Hwi] G`[Fi−Bc`Hfi] 0 G`Ei(O−T)−1G′` •
−Df`Hwi I−Df`Hfi 0 0 I

 > 0, (3.123)

and 
V11
i` • • • •

V21
i` V22

i` • • •
Ei(T)Ai(Cc`) Ei(T)Ai Ei(T) • •
G`Υ3i` G`[Ai−Bc`Li] 0 G`Ei(O−T)−1G′` •

−Cf`−Df`Li −Df`Li 0 0 I

 > 0. (3.124)

By defining the matrices

Π̄i` =
[
Ei(T )−1 I

0 G−T` Ei(O−T )

]
,

and

π̄i` =
[
Ei(T)−1 I

0 G−T` Ei(O−T)

]
,

and applying the congruence transformations diag(Ir+f , Π̄i`) and diag(I2n, Π̄i`, Iq) to (3.162)

and (3.163) as well as diag(Ir+f , π̄i`, If ) and diag(I2n, π̄i`, If ) to (3.123)-(3.124), we get[
Wi` •
σ′iJ̃i` σ

′
iEi(Q̃)−1σi

]
> 0, (3.125)[

η′iR̃i`ηi • •
σ′iÃi`ηi σ

′
iEi(Q̃)−1σi •

C̃ci`ηi 0 I

]
> 0, (3.126)

and [
Wi` • •
s′iJ̃i` s′iEi(Q̃)−1si •
Ẽf` 0 I

]
> 0, (3.127)[

n′iR̃i`ni • •
s′iÃi`ni s′iEi(Q̃)−1si •
C̃fi`ni 0 I

]
> 0. (3.128)

By applying the congruence transformations diag(I, σ−1
i ), diag(η−1

i , σ−1
i , I), diag(I, s−1

i , I),

diag(n−1
i , s−1

i , I) to (3.164)-(3.128), we get that (3.74), (3.76), (3.78), and (3.80) hold with

the closed-loop matrices of system (3.61). Finally, by noting that (3.106) and (3.110) can

be rewritten as follows

η′iQ̃iηi >
∑
`∈Mi

φi`η
′
iR̃i`ηi, (3.129)
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and

n′iQ̃ini >
∑
`∈Mi

φi`n
′
iR̃i`ni, (3.130)

and thus, by noting that (3.105) and (3.109) are equivalent to (3.73) and (3.77), and by

applying the congruence transformations η−1
i and n−1

i to (3.166)-(3.130), respectively, we

get that (3.75)-(3.79) are also satisfied. Therefore, considering the discussion presented in

Section 3.2, see, for instance, (COSTA; FRAGOSO; TODOROV, 2015) and (OLIVEIRA;

COSTA, 2017a), we get that C ∈ C, ‖Gc‖(w̃ 7→z)
2 < λc, and ‖Gc‖(w̃ 7→r)

2 < λr, and the claim

follows. �

3.3.3 Mixed H2/H∞ Simultaneous Fault Detection and Control
Design for MJLS with parameter estimation

We present now the design of mixed H2/H∞ SFDC for MJLS with partial information

on the jump parameter.

Observing the constraints in Theorems 10 and 11 it is possible to notice that the

structure to obtain SFDC is the same, therefore a mixed solution can be formulated.

To increase the overall performance the H2 norm will be considered in the controller

side of the design due to its equivalence to the LQR controllers, which provide good

performance in practical solutions. For the fault detection side, we consider the H∞ norm,

which provides an FDI with a lower occurrence of false alarms, (ZHONG et al., 2005;

PATTON; FRANK; CLARK, 2013).

From the aforementioned discussion, we consider the mixed solution with the control

side of the SFDC designed using the BMI conditions for Theorem 11 and the fault detection

side obtained using the BMI from Theorem 10. Hence, the new rewritten optimization

problem is

φ = {Zi,Xi,Mi`,Ni`,Si`,Wi`, Vi`, Ti, OiG`,Γ`, χ`, K`,Θ`,Φ`} (3.131)

κ = {φ such that (3.85)-(3.86) and (3.105)-(3.108) hold

inf
C∈C,P,γr,λc

{λcζc + γrβr} : s. t. φ ∈ κ. (3.132)

for a given ζc > 0, βr > 0.

Theorem 12. There exists an SFDC described as in (3.60) such that C ∈ C, ‖Gc‖(w̃ 7→r)
∞
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< γr, and ‖Gc‖(w̃ 7→z)
2 < λc for fixed, γr > 0, and λc > 0 if there exist symmetric matrices

Zi, Xi, M11
i` , M22

i` , S11
i` , S22

i` , W 11
i` , W 22

i` , V 11
i` , V 22

i` , Ti, Oi and the matrices M21
i` , S21

i` ,

N11
i` , N12

i` , N21
i` , N22

i` , W 21
i` , V 21

i` ,G`, Γ`, χ`, Θ`, Φ`, and K` with compatible dimensions

such that inequalities, (3.85), (3.86), (3.105), (3.106), (3.107), and (3.108), hold ∀i ∈ N,

` ∈Mi. If a feasible solution is obtained, a suitable fault-compensation controller is given

by Ac` = −G−1
` Γ`, Bc` = −G−1

` χ`, Cc` = K`, Cf` = −Θ`, and Df` = −Φ`.

Proof: The proof for Theorem 12 is a direct consequence of Theorems 10 and 11. �

Coordinate Descent Algorithm

As explained at the start of this section the constraints in Theorem 10 and 11 are

in the form of Bilinear Matrices Inequalities. Therefore it is necessary to implement an

appropriate procedure to solve such a problem. It can be found in the literature several

numerical ways of dealing with BMI as, for instance, a combination of line search and a

sequence of LMI as presented in (YAN et al., Nov 2019). Although of great interest, an

analysis of the techniques to solve the BMI in Theorems 10 and 11 would fall outside the

scope of this thesis. Due to that, we will focus on a procedure that is extensively used

in the literature known as the Coordinate Descent Algorithm (CDA), as implemented

in (SIMON et al., 2011), or (WANG; ZEMOUCHE; RAJAMANI, 2018). The specific

approach implemented in the present paper was first introduced in (OLIVEIRA; COSTA,

2020).

By inspection, it is possible to observe that all the non-linearities are ”caused” by the

state-feedback controller K. A usual workaround for those non-linearities is to fix the

state-feedback controller and solve the resulting LMI. Assume that there exists a state-

feedback controller K, and apply this controller in the constraints (3.83), (3.84),(3.85),

and (3.86) for the H∞ case, or (3.105), (3.106), (3.107), (3.108), (3.109), (3.110), (3.111),

and (3.112) for the H2 case. If a feasible solution is found it may or may not be the

optimized solution, due to the choice of the state-feedback controller. The CDA algorithm

is described as in Algorithm 2.

Remark 11. Note that the initial condition for Kl can be obtained from the results in

(TODOROV; FRAGOSO; COSTA, 2018), which is a state-feedback controller with similar

MJLS assumptions. If the first iteration finds a feasible solution then the CDA will

eventually converge to a better solution, and the amount of iteration is set using the stop

criterion ε.
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Algorithm 2: Coordinate Descent Algorithm

Input: Kl,γ
−1,tmax,ε

Output: Ac,Bc,Cc,Cf ,Df
1 Design stabilizing state-feedback controller(e.g. (TODOROV; FRAGOSO;

COSTA, 2018)).
2 Fix K in the LMI constraints for the H∞ case or for the H2 case, and solve it to

obtain the matrices Zi, Zi, and G` for the H∞ case, or Ti, Ti, and G` for the H2

case, or Zi, Ti, and G` for the mixed case.
3 Fix Zi, Zi, G` for H∞ case, or Ti, Ti, and G` for the H2 case, or Zi, Ti, and G` for

the mixed case, and solve the same LMI constraint and now obtain Ac`, Bc`, Cc`,
Cf`, Df`, and the upper bound values γc, γr for the H∞ case and λc, λr for the
H2 case.

4 If γt−1
c −γtc
γt−1
c

6 ε or t 6 tmax, go back to step 2.

3.3.4 Simulations Results

In the same manner as in the other examples in this chapter we use the coupled tank.

The discrete-time domain space-state model is

A1,2 =
[ −0.0239 −0.0127

0.0127 −0.0285

]
, B1,2 = [ 0.71 0

0 0.71 ] ,

Jw 1,2 = 0.01B1,2, Jf 1,2 = I2×2,

L1 = I2×2, L2 = 02×2, Hw 1,2 = 0.1I2×2, Hf 1,2 = 02×2,

C1 = I2×2, C2 = 02×2, D1 = I2×2, D2 = 02×2.

The transition matrix, initial distribution, and φk` are

P = [ 0.8 0.2
0.6 0.4 ] , µ′ = [ 0.7

0.3 ] , Ψ = [ 0.7 0.3
0.6 0.4 ] . (3.133)

The SFDC obtained using Theorem 10 is

Ac1 = [ 0.5053 0.1653
−0.2767 0.4161 ] , Ac2 = [ 0.2048 0.0686

−0.1065 0.1725 ] ,

Bc1 =
[ −0.8252 −0.2487

0.5756 −0.8252

]
, Bc2 =

[ −0.7180 −0.2263
0.5173 −0.7661

]
,

Cc1 = 10−4
[ −0.1854 −0.0811

0.0043 −0.1406

]
, Cc2 = 10−4 [ 0.4957 0.3046

−0.0602 0.3867 ] ,

Cf1 = 10−6
[ −0.1244 −0.0451

0.0547 −0.1130

]
, Cf2 = 10−6

[ −0.5927 −0.2846
0.2542 −0.6101

]
,

Df1 = 10−5
[ −0.2573 −0.0176
−0.0419 −0.1089

]
, Df2 = 10−5 [ 0.6632 0.0647

0.0588 0.3256 ] .
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The SFDC obtained using Theorem 11 is

Ac1 = [ 0.5929 0.0388
0.0201 −0.1255 ] , Ac2 =

[ −0.5929 −0.0388
−0.0201 0.1255

]
,

Bc1 = 10−6
[ −0.2409 −0.0079

0.0093 −0.3303

]
, Bc2 = 10−6 [ 0.3691 0.0010

0.0044 0.0364 ] ,

Cc1 = [ 0.8648 0.0728
0.0108 −0.1349 ] , Cc2 =

[ −0.8053 −0.0366
−0.0460 0.2186

]
,

Cf1 = 10−13
[

0.0748 −0.0001
0.0000 −0.1463

]
, Cf2 = 10−13

[ −0.0835 0.0001
−0.0000 0.1375

]
,

Df1 =
[

43.2163 −0.0000
−0.0000 7.5839

]
, Df2 = [ −33.2163 0.0000

0.0000 2.4161 ] .

For the last, the SFDC obtained using Theorem 12 is

Ac1 = [ 0.5929 0.0388
0.0201 −0.1255 ] , Ac2 =

[ −0.5929 −0.0388
−0.0201 0.1255

]
,

Bc1 = 10−6
[ −0.2409 −0.0079

0.0093 −0.3303

]
, Bc2 = 10−6 [ 0.3691 0.0010

0.0044 0.0364 ] ,

Cc1 = [ 0.8648 0.0728
0.0108 −0.1349 ] , Cc2 =

[ −0.8053 −0.0366
−0.0460 0.2186

]
,

Cf1 = 10−13
[

0.0748 −0.0001
0.0000 −0.1463

]
, Cf2 = 10−13

[ −0.0835 0.0001
−0.0000 0.1375

]
,

Df1 =
[

43.2163 −0.0000
−0.0000 7.5839

]
, Df2 = [ −33.2163 0.0000

0.0000 2.4161 ] .

3.3.4.1 Monte Carlo Simulation

The same setup from the other examples was also implemented in this simulation. The

Monte Carlo simulation with 300 iterations was performed, and the results obtained are

shown in the following manner, first we present the output signal obtained using Theorem

10, 11 and, 12, in Figs. 20a, 20b, the average and standard deviation of the control signal

obtained using Theorems 10, 11, 12 is presented in Fig. 22a, 22b, and 22c show the residue

signals acquired for each case, and the evaluation function in Fig, 23.

50 100 150 200 250 300

Instant k

0.16

0.18

0.2

0.22

0.24

0.26

0.28

(a) Mean for first output signal obtained using
Theorems 10, 11, and 12 .

50 100 150 200 250 300

Instant k

0.071

0.0715

0.072

0.0725

0.073

0.0735

0.074

Theorem 3.4

Theorem 3.5

Theorem 3.6

Without fault

(b) Mean for second output signal obtained us-
ing Theorems 10, 11, and 12.

Figure 20: The Mean of the output signals obtained for SFDC designed via Theorem
10(blue curve), 11(red curve), and 12(magenta curve). All three curves were obtained
when there is a fault, except for the green curve which represents the states without fault.

Observe that all controllers manage to stabilize the system, even in the presence of



86

the fault, however, some presented a higher level of steady-state error after the fault,

which is expected, since this controller was not designed to mitigate nor accommodate the

fault. The important aspect that is observed in Figs. 20a, 20b that all controllers designed

simultaneously worked properly.

Now we present Figs. 21a, 21b, 21c which represents the mean and standard deviation

for the control signal using Theorems 10, 11, and 12 respectively. Observe that all control

0 50 100 150 200 250 300

Instant k
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0

5
10
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(a) Mean and standard deviation for control
signal obtained using Theorem 10.

0 50 100 150 200 250 300
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-0.05
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-0.03

-0.02

-0.01

0

(b) Mean and standard deviation for control
signal obtained using Theorem 11

0 50 100 150 200 250 300

Instant k

-6

-5

-4

-3

-2

-1

0
10

-5

(c) Mean and standard deviation for control
signal obtained using Theorem 12

Figure 21: Mean and standard deviation for all control signals acquired using the SFDC
designed via Theorems 10(blue curve), 11(red curve), and 12(magenta curve).

signals presented a proper behavior and standard deviation. Therefore, the controller side

of the SFDC works properly.

The residue behavior obtained via Theorems 10, 11, and 12 are presented in Figs. 22a,

22b, and 22c. Regarding the residue signal obtained with Theorems 10, 11, and 12

presented a similar behavior, however, the result obtained using 10 in 22a show a slightly

better performance. Observe that the standard deviation for all three approaches is low.

Leading to a low chance of false alarms.

The last result obtained via Monte Carlo simulation is the behavior of the evaluation

function for each case. This result is presented in Fig. 23 Fig.23 allows us to state that the

results obtained using Theorem 10 presented a better performance, but all the proposed
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(a) Mean and standard deviation for residue
signal obtained using Theorem 10.
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(b) Mean and standard deviation for residue
signal obtained using Theorem 11
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(c) Mean and standard deviation for residue
signal obtained using Theorem 12

Figure 22: Mean and standard deviation for all residue signals acquired using the SFDC
designed via Theorems 10(blue curve), 11(red curve), and 12(magenta curve).
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Figure 23: The mean value of the evaluation function signal for three distinct cases, where
the blue curve represent the results using Theorem 10, the red curve represent the results
obtained via 11, the black curve represents the results through Theorem 12, the green
curve portrays the evaluation function signal when there is no fault signal, and the indigo
line denotes the threshold TH.

approaches successfully detected the fault, hence, all approaches are viable solution for

the FDI problem.
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3.4 Fault Accommodation Formulation for MJLS with

Parameter Estimation

The Fault Accommodation Control problem is a particular class of FTC, which uses a

different approach when compared to the usual FTC in the literature. The majority of

FTC approaches consider the occurrence of faults during the design process of a static

controller. In the case of FAC, two controllers are working alongside each other where the

first one is designed for the nominal conditions while the other one will be active when a

fault occurs.

For the FAC problem, we consider the following MJLS formulation

G :


x(k + 1) = Aθ(k)x(k) +Bθ(k)uTotal(k) + Jθ(k)w(k) + Fθ(k)f(k),

y(k) = Cθ(k)x(k) +Dθ(k)w(k),

x(0) = x0,

(3.134)

where the vectors x(k) ∈ Rnx , y(k) ∈ Rnp , w(k) ∈ Rnd , f(k) ∈ Rnf , uTotal(k) ∈ Rnu are

respectively, the system state, output, exogenous input, fault signal, the control input, and

θ(k) denotes the mode of a Markov chain which is initialized at θ0. The nominal control is

provided by a state-feedback controller

u(k) = −Kθ̂(k)x(k), (3.135)

where x(k) ∈ Rnx represents the states of system (3.134).

Fig.24 depicts the overall block diagram of the MJLS along with the FAC controllers

K` for the nominal one and Kc` for the faulty ones.

System
Gθ(k)

Controller
Kθ̂(k)

FAC Kcθ̂(k)

Fault f(k)

uTotal(k)

u(k)Noise w(k) x(k)

h(k)y(k)

Figure 24: Fault accommodation control scheme diagram under the assumption that the
network model is not accessible.

As shown in Fig.24, the signal utotal(k) is the sum of the nominal control signal u(k)
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and the fault compensation control signal h(k), as in

uTotal(k) = u(k) + h(k). (3.136)

Consequently, in nominal conditions the signal h(k) is close to zero. In other words,

the fault compensation control signal only acts in the presence of a fault as expected.

The FAC controller Kc is assumed to have the following structure

Kc :


η(k + 1) = Aθ̂(k)η(k) + Mθ̂(k)u(k) + Bθ̂(k)y(k),

h(k) = Cθ̂(k)η(k),

η(0) = η0,

(3.137)

where η ∈ Knη represents the FAC state vector, u(k) and y(k), are respectively, the control

signal from the nominal controller and the measured signal from the system. It is of

utmost importance to note that the FAC does not depend on the index θ(k). Instead, it

depends solely on the index θ̂(k), which is one of the novelties of the present work.

As presented in Figure 24 the closed-loop for system (3.134), the state feedback control

law (3.135), and the proposed FAC (3.137) can be compactly written as

Gaug :


x̄(k + 1) = Āθ(k)θ̂(k)x̄(k) + J̄θ(k)θ̂(k)w̄(k),

z̄(k) = C̄θ(k)θ̂(k)x̄(k) + D̄θ(k)θ̂(k)w̄(k),

x̄(0) = η0,

(3.138)

where x̄(k) = [x(k) η(k)] and w̄(k) = [w(k) f(k)], with the augmented matrices given by

Āi` =

[
Ai −BiK` BiC`

B`Ci −M`K` Ai

]
, J̄i` =

[
Ji Fi

B`Di 0

]
. (3.139)

As previously stated, the main purpose of this work is to provide a FAC design, as in

(3.137), where the supplementary control signal will accommodate the fault signal. This

accommodation for the H∞ case is described by the difference o(k) = Fθ(k)f(k)−Bθ(k)h(k),

which we desire to be close to zero. From the above, the optimization problem regarding

the H∞ case can be described as

‖Gaug‖∞ = sup
‖w̄‖2 6=0,w̄∈L2

‖o‖2

‖w̄‖2

< γ, γ > 0, (3.140)
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where the augmented matrices C̄i` and D̄i` are given by

C̄i` = [ 0 −BiC` ] , D̄i` = [ 0 Fi ] . (3.141)

The use of the H2 norm as a performance criteria is due to the similarities to the LQR

controllers, which are known in the literature for its good performance and reliability.

Therefore, the optimization problem for the H2 case can be described as

‖Gaug‖2
2 =

m∑
s=1

N∑
i=1

µi‖o‖2
2 < δ, (3.142)

where the augmented matrices are

C̄i` = [ 0 −BiC` ] , D̄i` = [ 0 Fi ] .

It is important to point out that the controller K` is obtained beforehand, for instance

the controller in (TODOROV; FRAGOSO; COSTA, 2018), but any other controller that

guarantees stability in the same condition can be implemented.

3.4.1 H∞ Fault Accommodation Control Design for MJLS with
Parameter Estimation

Our first main result on the procedures to design the FAC for the H∞ norm case is

presented in Theorem 13 below.

Theorem 13. There exist a mode-dependent FAC as described in (3.137) satisfying the

constraint (3.140) for some γ > 0 if there exist symmetric matrices Zi, Xi, M
11
i` , M22

i` , S11
i` ,

S22
i` and matrices M21

i` , N11
i` , N12

i` , N21
i` , N22

i` , S21
i` , R`, A`, B`, M`, and C` with compatible

dimensions such that inequalities[
Zi • • •
Zi Xi • •
0 0 γ2I •
0 0 0 γ2I

]
>
∑
`∈Mi

φi`

M11
i` • •

M21
i` M22

i` •
N11
i` N12

i` S11
i` •

N21
i` N22

i` S21
i` S22

i`

 , (3.143)


M11
i` • • • • • •

M21
i` M22

i` • • • • •
N11
i` N12

i` S11
i` • • • •

N21
i` N22

i` S21
i` S22

i` • • •
Π5,1
i` Π5,2

i` Ei(Z)Ji Ei(Z)Fi Ei(Z) • •
Π6,1
i` Π6,2

i` R`Ji+R`B`Di R`Fi 0 Π6,6
i` •

−BiC` 0 0 Fi 0 0 I

 < 0, (3.144)
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with

Π5,1
i` = Ei(Z)Ai − Ei(Z)BiK` + Ei(Z)BiC`, Π5,2

i` = Ei(Z)Ai − Ei(Z)BiK`,

Π6,1
i` = R`(Ai −BiK` +BiC` + A` + B`Ci −M`K`),

Π6,2
i` = R`(Ai −BiK` + B`Ci −M`K`), Π6,6

i` = Her(R`)− Ei(X) + Ei(Z),

hold for all i ∈ K and for all ` ∈Mi .

Proof: The proof is based on the results presented in (OLIVEIRA; COSTA, 2020) and

(GONÇALVES; FIORAVANTI; GEROMEL, 2010). We impose as before, the structure of

the matrices Pi and P−1
i of (3.10)-(3.11) as

Pi =
[
Xi •
Ui X̂i

]
, P−1

i =
[
Z−1
i •
Vi Ŷi

]
. (3.145)

Also define the matrices τi and υi as

τi =
[

I I
ViZi 0

]
, υi =

[
I Ei(X)
0 Ei(U)

]
. (3.146)

Observing that (3.144) is diagonal block, we can also write that Her(R`) > Ei(X −Z) > 0,

and as a by-product R` is non-singular. Setting Ui = −X̂i, allow us to rewrite the matrices

Pi and P−1
i as

Pi =
[

Xi •
Zi−Xi Xi−Zi

]
, (3.147)

P−1
i =

[
Z−1
i •

Z−1
i Z−1

i +(Xi−Zi)−1

]
. (3.148)

Hence, (3.146) are now

τi = [ I II 0 ] , υi =
[
I Ei(X)
0 Ei(Z−X)

]
. (3.149)

Following the same idea from the proofs provided for the FDF case in Section 3.2. As R` is

non-singular, and using the results presented in (OLIVEIRA; BERNUSSOU; GEROMEL,

1999; GONÇALVES; FIORAVANTI; GEROMEL, 2010), we get that R`Ei(X −Z)−1R′` >

Her(R`) + Ei(Z − X), so that the constraint (3.144) still hold if the diagonal term

Her(R`) + Ei(Z −X) is substituted by R`Ei(X − Z)−1R′`, resulting in
M11
i` • • • • • •

M21
i` M22

i` • • • • •
N11
i` N12

i` S11
i` • • • •

N21
i` N22

i` S21
i` S22

i` • • •
Ξ5,1
i` Ξ5,2

i` Ei(Z)Ji Ei(Z)Fi Ei(Z) • •
Ξ6,1
i` Ξ6,2

i` Ξ6,3
i` Ξ6,4

i` 0 Ξ6,6
i` •

−BiC` 0 0 Fi 0 0 I

 > 0, (3.150)
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where

Ξ5,1
i` =Ei(Z)Ai − Ei(Z)BiK` − Ei(Z)BiC`, Ξ5,2

i` = Ei(Z)Ai − Ei(Z)BiK`,

Ξ6,1
i` =R`(Ai −BiK` +BiC` + A` + B`Ci −M`K`),

Ξ6,2
i` =R`(Ai −BiKi + B`Ci −M`K`),

Ξ6,3
i` =R`Ji +R`B`Di, Ξ6,4

i` = R`Fi, Ξ6,6
i` = R`Ei(X − Z)−1R′`.

Now defining the matrix Πi` as

Πi` =
[
Ei(Z)−1 I

0 R−T` Ei(X−Z)

]
, (3.151)

and pre and post multiplying (3.150) by diag(I, I,Πi`, I), and its transpose, respectively,

we get that [
τ ′iMi`τi • • •
Ni`τi Si` • •
υ′iĀi`τi υ

′
iJ̄i` υ

′
iEi(P )−1υi •

C̄i`τi D̄i` 0 I

]
> 0. (3.152)

By pre and post multiplying (3.152) by diag(τ−1
i , I, υ−1

i , I), and after that using the Schur

complement to the resulting constraint, we obtain that (3.11) holds. At last, observing

that (3.143) can be rewritten as[
τ ′iPiτ •

0 γ2I

]
>
∑
`∈Mi

φi`

[
τ ′iMi`τi •
Ni`τi Si`

]
, (3.153)

we get, after pre and post multiplying (3.153) by diag(τ−1
i , I), that constraint (3.10) holds.

Since (3.10)-(3.11) hold for the closed-loop system as in (3.138), we get from Lemma 7

that ‖Gaug‖∞ < γ, and the claim follows. �

Remark 12. Notice that the matrices for the FAC controller in (3.137) and satisfying

(3.140) are directly obtained from the solution of the inequalities (3.143), (3.144).

Remark 13. It is necessary to explain that the state feedback controller K` is given, and

designed beforehand using for example the Theorems presented in (TODOROV; FRAGOSO;

COSTA, 2018). The nominal controller is not designed using Theorem 13.

3.4.2 H2 Fault Accommodation Control Design for MJLS with
Parameter Estimation

We present now the design of an FAC for the H2 norm case.

Theorem 14. There exists a mode-dependent FAC Kc as in (3.137) satisfying the con-

straint (3.142) for some δ > 0 if there exist symmetric matrices Ti, Oi, W
11
i` , W 22

i` , V 11
i` ,
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V 22
i` and matrices W 21

i` , V 21
i` , R`, A`, B`, M`, and C` with compatible dimensions such that

the inequalities

N∑
i=1

∑
`∈Mi

µiφi`Tr(
[
W 11
i` •

W 21
i` W 22

i`

]
) < δ2, (3.154)

[
Ti •
Ti Oi

]
>
∑
`∈Mi

φi`

[
V 11
i` •
V 21
i` V 22

i`

]
, (3.155)

W 11
i` • • • •

W 21
i` W 22

i` • • •
Ei(T )Ji Ei(T )Fi Ei(T ) • •

R`Ji+R`B`Di R`Fi 0 Θ4,4
i` •

0 Fi 0 0 I

 > 0, (3.156)


V 11
i` • • • •
V 21
i` V 22

i` • • •
Θ̌3,1
i` Θ̌3,2

i` Ei(T ) • •
Θ̌4,1
i` Θ̌4,2

i` 0 Θ̌4,4
i` •

−BiC` 0 0 0 I

 > 0, (3.157)

with

Θ4,4
i` = Her(R`) + Ei(O)− Ei(T ), Θ̌3,1

i` = Ei(T )(Ai −BiK` +BiC`),

Θ̌3,2
i` = Ei(T )(Ai −BiK`), Θ̌4,1

i` = R`(Ai −BiK` +BiC` + A` + B`Ci −M`K`),

Θ̌4,2
i` = R`(Ai −BiK` + B`Ci −M`K`), Θ̌4,4

i` = Her(R`) + Ei(O)− Ei(T ),

hold for all i ∈ K and for all ` ∈Mi.

Proof: The proof uses a similar scheme as the one of Theorem 13. Consider Q̄i in

(3.16)-(3.19) with the following form

Q̄i =
[
Oi •
Ūi Ôi

]
, Q̄−1

i =
[
T−1
i •
V̄i T̂i

]
, (3.158)

and define the matrices ηi and σi by

ηi =
[

I I
V̄iTi 0

]
, σi =

[
I Ei(T )

0 Ei(Ū)

]
. (3.159)

It follows from (3.156)-(3.157) that R` is non-singular. By imposing Ūi = −Ôi and recalling

that Q̄iQ̄
−1
i = I, we can rewrite (3.158) as

Q̄i =
[

Oi •
Ti−Oi Oi−Ti

]
, Q̄−1

i =
[
T−1
i •
T−1
i Υ1i

]
, (3.160)

where Υ1i = T−1
i − (Oi − Ti)−1, and we can also rewrite (3.159) as

νi = [ I II 0 ] , σi =
[
I Ei(T )
0 Ei(T−O)

]
. (3.161)

Using the same idea applied as in the proof of Theorem 13 we get that R`Ei(O−T )−1R′` >
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Her(R`) + Ei(T −O). Let us rewrite (3.156)-(3.157) as follows W 11
il • • • •

W 21
il W 22

il • • •
Ei(T )Ji Ei(T )Fi Ei(T ) • •

R`Ji−R`B`Di R`Fi 0 T33 •
0 Fi 0 0 I

 > 0, (3.162)

T33 = Her(R`) + Ei(O)− Ei(T ),

and 
V 11
i` • • • •
V 21
i` V 22

il • • •
Ψ3,1
i` Ψ3,2

i` Ei(T ) • •
Ψ4,1
i` Ψ4,2

i` 0 R`Ei(O−T )−1R′` •
−BiC` 0 0 0 I

 > 0, (3.163)

Ψ3,1
i` = Ei(T )(Ai −BiK` +BiC`), Ψ3,2

i` = Ei(T )(Ai −BiK`),

Ψ4,1
i` = R`(Ai −BiK` +BiC` + A` + B`Ci −M`K`),

Ψ4,2
i` = R`(Ai −BiK` +Bi + B`Ci −M`K`).

By defining

Π̄i` =
[
Ei(T )−1 I

0 R−T` Ei(O−T )

]
,

pre and post multiplying (3.162) by diag(I, I, Π̄i`), and (3.163) by diag(I, I, Π̄i`, I) we get[
Wi` • •
σ′iJ̄i` σ

′
iEi(Q̄)−1σi •

D̄i` 0 I

]
> 0, (3.164)[

ν′iR̄i`νi • •
σ′iĀi`νi σ

′
iEi(Q̄)−1σi •

C̄i`νi 0 I

]
> 0. (3.165)

By pre and post multiplying (3.164) by diag(I, σ−1
i , I), and (3.165) by diag(ν−1

i , σ−1
i , I) we

get that (3.17), (3.19), hold with the closed-loop matrices of system (3.138). Consequently

we can rewrite (3.154) as

ν ′iQ̄iνi >
∑
`∈Mi

φi`ν
′
iR̄i`νi. (3.166)

Therefore, it is noticeable that (3.154) and (3.16) are equivalent, we can see that (3.18)

is also satisfied by pre and pos multiplying (3.166) by ν−1
i . From Lemma 6, ‖Gaug‖2 < δ,

and the claim follows. �

Remark: As for the H∞ case, the matrices for the FAC controller in (3.137) and

satisfying (3.142) are directly obtained from the solution of the inequalities (3.154)-(3.157).
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3.4.3 Mixed H2/H∞ Fault Accommodation Control Design for
MJLS with Parameter Estimation

Now we provide the design of mixed H2 / H∞ FAC for MJLS with partial information

on the jump parameter.

By inspecting the BMI constraints provided in Theorems 13 and Theorem 14 we can

observe that the structure to solve the FAC problem is similar. This similarity allows us

to also obtain a mixed solution.

The main motivation to provide the mixed solution is that the FAC will consider both

H∞ and H2 norms during the design process. On the one hand, a guaranteed H∞ norm

implies that the closed-loop system is robust against external noise signals. On the other

hand, the energy of the control signal is minimized in the H2 design approach which is

desirable as there is no parallel actuators in the systems.

Bearing in mind this information, we provide the mixed design of a FAC using the

BMI conditions for Theorem 13 and 14. Hence, we rewrite the constraints as

φ = {Zi, Xi,M
11
i` ,M

22
i` , S

11
i` , S

22
i` ,M

21
i` , N

11
i` , N

12
i` , N

21
i` , N

22
i` , S

21
i` , Ti, Oi,W

11
i` ,

W 21
i` ,W

22
i` , V

11
i` , V

21
i` , V

22
i` R`,A`,B`,M`,C`, i ∈ N, ` ∈Mi} (3.167)

κ = {Zi, Xi,M
11
i` ,M

22
i` , S

11
i` , S

22
i` ,M

21
i` , N

11
i` , N

12
i` , N

21
i` , N

22
i` , S

21
i` , Ti, Oi,W

11
i` ,

W 21
i` ,W

22
i` , V

11
i` , V

21
i` , V

22
i` R`,A`,B`,M`,C`}i` ∈ φ|

(3.143)-(3.144) and (3.154)-(3.157) hold for some γ and δ} (3.168)

in which case, the mixed H∞ and H2 optimization problem is given by

inf
φ∈κ
{γ2ζ + δ2β}, (3.169)

for given weighting scalars ζ > 0, β > 0.

Theorem 15. There exists a mode-dependent FAC Kc as in (3.137) such that ‖Gaug‖∞ < γ

and ‖Gaug‖2 < δ for given γ > 0 and δ > 0 if there exist symmetric matrices Zi, Xi, M
11
i` ,

M22
i` , S11

i` , S22
i` , Ti, Oi, W

11
i` , W 22

i` , V 11
i` , V 22

i` and the matrices M21
i` , N11

i` , N12
i` , N21

i` , N22
i` ,

S21
i` , W 21

i` , V 21
i` , R`, A`, B`, M`, and C` with compatible dimensions such that inequalities,

(3.143), (3.144), (3.154), (3.155), (3.156) and (3.157) hold for all i ∈ N and for all ` ∈Mi.

Proof: The proof for Theorem 15 is a direct consequence of Theorems 13 and 14. �

Remark 14. It is important to mention that the level of conservatism in Theorem 15 is

higher in comparison to that of Theorem 13 and Theorem 14, since Theorem 15 considers
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the BMI constraints (3.143)-(3.144) from Theorem 13 and (3.154)-(3.157) from Theorem

14 simultaneously. Note that the number of variables for each theorem is

Theorem 13→ 10× imax × `max + 2× imax + 5× `max + 1

Theorem 14→ 6× imax × `max + 2× imax + 5× `max + 1

Theorem 15→ 16× imax × `max + 4× imax + 5× `max + 2

It is noteworthy that the number of variables in Theorem 15 is not the direct sum of the

variables in Theorem 13 and 14, because matrices R`, A`, B`, M`, and C`, which are the

matrices that compose the FAC (3.137), are present in the BMIs constraints of Theorem

13 and 14. Regarding the number of BMI constraints Theorem 13 has 2× imax× `max BMIs,

Theorem 14 have 4 × imax × `max BMIs, and the number of BMIs in Theorem 15 is the

sum of BMIs in Theorems 13 and 14, therefore, the number of BMI is 6 × imax × `max.

Hence, the region of feasible solutions in Theorem 15 is smaller in comparison to the ones

for Theorem 13 and Theorem 14, and by consequence increasing the computational effort

necessary to solve Theorem 15.

Coordinate Descent Algorithm

As stated previously, the constraints in Theorem 13 and 14 are Bilinear Matrices

Inequalities (BMI). For solving these optimization problems with BMI constraints, there

are a number of approaches presented in literature, to name a few, (SIMON et al., 2011)

or (WANG; ZEMOUCHE; RAJAMANI, 2018). In this paper, we use the Coordinate

Descent Algorithm (CDA) for solving the problems which is also used and presented in

(OLIVEIRA; COSTA, 2020). The CDA is presented below.

Algorithm 3: Coordinate Descent Algorithm.

1 Input: K`, γ, tmax, φ.
2 Output: A`, B`, M`, C`.
3 Initialization:

4 While: γt−1−γt
γt−1 6 η or t 6 tmax do:

5 Step 1: Solve the constraint in Theorem 13 or 14 considering C` as a
constant, which can be obtained using (TODOROV; FRAGOSO; COSTA, 2018) .
Obtain the values of R`, and Zi for the Theorem 13 or R` Ti for the Theorem 14.

6 Step 2: Solve the constraint in Theorem 13 or 14 this time using the values
of R`, and Zi or R`, and Ti obtained in Step 1 and C` as a variable. Obtain the
value of γ.

In the above algorithm, the input φ is the stop criteria and tmax is the maximum

number of iterations allowed.
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Remark 15. The controller used in the CDA can be obtained using any design approach,

but it is recommended to use a controller that is also under the MJLS framework. If

the first iteration is feasible, the algorithm will at least keep the same result obtained, or

improve the results.

3.4.4 Simulations Results

For the illustrative example we used the exact same matrices that represent the

coupled tank presented in Appendix A. The only necessary addition is the detector matrix

information as in

Γ = [ 0.65 0.35
0.75 0.25 ] . (3.170)

The fault-compensation controller obtained designed using Theorem 13 is

A1 =
[

0.0535 −0.1895
−0.1481 0.4341

]
, A2 = [ 0.0458 0.0214

−0.0254 0.0574 ] ,

B1 =
[ −0.0238 0.0539

0.0542 −0.1331

]
, B2 =

[ −0.0239 0.0540
0.0542 −0.1332

]
,

M1 =
[

0.7693 −0.4043
−0.2708 1.5212

]
,M2 = [ 0.0492 0.0630

−0.0040 −0.0587 ] ,

C1 =
[

0.0149 −0.0409
−0.0307 0.1017

]
, C2 =

[
0.0570 −0.1254
−0.1222 0.3138

]
.

and the upper bound of the H∞ norm value is γ = 2.2.

The fault-compensation controller obtained designed using Theorem 14 is

A1 =
[ −0.0857 0.0121
−0.0129 −0.0769

]
, A2 =

[ −0.0995 0.0141
−0.0149 −0.0893

]
,

B1 =
[ −0.0293 0.0036
−0.0044 −0.0230

]
, B2 =

[ −0.0340 0.0042
−0.0051 −0.0267

]
,

M1 = [ 0.1734 −0.0256
0.0259 0.1620 ] , M2 =

[ −0.0118 0.0091
−0.0083 −0.0133

]
,

C1 = [ 0.0130 −0.0007
0.0006 0.0047 ] , C2 =

[ −0.0130 0.0007
−0.0006 −0.0047

]
.

and the upper bound of the H2 norm value is γ = 1.49.

3.4.4.1 Monte Carlo Simulation

The simulation setup is the same as in Section 2.4, where the fault is a sinusoidal signal

0.025sin(k), and the system is subjected to a white noise with zero mean and deviation

equal to 0.01. The Monte Carlo simulation with 300 rounds was performed.

In this simulation it is presented a comparison between the proposed approaches in

Theorem 13, 14 and a nominal solution using solely the state-feedback controller, which
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is designed using (TODOROV; FRAGOSO; COSTA, 2018). The results obtained are

presented in two distinct sets of graphics, the first set presents the situation when the

system is subjected to fault, and the second set is the situation where there is no fault. The

sets are organized in the following manner: in Fig. 25a we present the mean and standard

deviation for both tank levels h1 and h2 obtained using Theorem 13, in Fig. 25b we present

the mean and standard deviation for both tank levels h1 and h2 obtained using Theorem

14, the third graphic represents the mean and standard deviation for both tank levels

h1 and h2 obtained using solely the nominal controller, the fourth graphic compares the

mean of both previous graphics. The fifth graphic is the mean and standard deviation of

the control signal obtained using Theorem 13, the sixth graphic is the mean and standard

deviation of the control signal obtained using Theorem 14, the fifth graphic is the mean

and standard deviation of the control signal obtained using the nominal controller, and

the sixth graphic is the comparison of the fourth and fifth graphics.

In Fig. 25d it is possible to observe that the proposed approaches mitigated the effect

of the fault when compared to the nominal approach. Another important aspect is that

the standard deviation obtained in all simulation are all similar, which is important since

it shows the second-moment stability. As shown in Fig. 25d, the mitigation is noticeable

for the approach in Theorems 13, and 14, which was the aim of the approaches. Regarding

the control signal, as shown in Fig.25h the control signal presented a discrepancy between

the control signal obtained using the Theorems 13, 14 and the nominal controller, however,

this difference is not relevant.

Now for the analysis of the simulation without fault, it is important to observe that

the effect of the accommodation controller in the nominal situation was neglectable, which

is desirable, since the FAC should not alter the nominal performance. From Fig. 26d we

may state that there is no noticeable difference between all three curves, the same can be

said regarding the standard deviation. Therefore, the results in Theorems 13, and 14 are

suitable solutions for the FAC problem.

3.5 Concluding remarks

In this chapter we provided the theoretical results to design an FDF and FAC under

the MJLS with parameter estimation, furthermore, we also illustrated the viability of the

methods presented using some examples. From the results obtained via simulation, we can

say that the proposed approach worked as expected. For the next chapter, we introduce

the design of the FDF and FAC under the Markov Jump Lur’e Systems.
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Figure 25: Mean and standard deviation for the states and control signal obtained using
the FAC designed via Theorems 13, 14, 15, and the nominal control. These results were
obtained via simulation where the system is subjected to an oscillatory fault.
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Figure 26: Mean and standard deviation for the states and control signal obtained using
the FAC designed via Theorems 13, 14, 15, and the nominal control. These results were
obtained via simulation where the system is subjected to an abrupt fault.
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4 FDF FOR MARKOVIAN JUMP LUR’E

SYSTEMS

As already discussed in the previous chapters all systems are inherently subjected to

faults, including communication loss. However, another intrinsic aspect that is present

in the majority of the systems is the non-linear behavior. The earlier results presented

herein, are based on the premise that it is possible to linearize the system and get a

proper model. Yet, in some cases, linearizing the system removes a crucial behavior of

the system (JAYAWARDHANA; LOGEMANN; RYAN, 2011). Therefore the use of a

proper framework that considers the nonlinear behavior is of utmost importance. For that

reason, here we are using the Markovian Jump Lur’e System, which allows us to model

the network as in the previous chapter and add the nonlinear behavior at the same time.

The results presented in this chapter were published in the following:

� Subsection 4.2 presented the Fault detection filter for discrete-time Markov jump

Lur’e systems, was published and presented in the European Control Conference

2021 (CARVALHO; JAYAWARDHANA; COSTA, 2021).

4.1 Preliminary for Markovian Jump Lur’e Systems

Consider the discrete-time Markov jump Lur’e system as

G :


x(k + 1) = Aθ(k)x(k) +Gθ(k)ϕθ(k)(p(k)) + Jθ(k)w(k),

p(k) = Cθ(k)x(k),

z(k) = Czθ(k)x(k) +Hθ(k)ϕθ(k)(p(k)) +Dθ(k)w(k),

(4.1)

where vectors x(k) ∈ Rnx , p(k) ∈ Rnp , z(k) ∈ Rnz , and w(k) ∈ Rnw , represent the system

states, the output related to the nonlinearity, the system output, and the exogenous input,

respectively. We consider that w(k) ∈ L2. The term ϕ(.) is considered to be a memoryless

non-linearity. Observe that all the terms in (4.1) are dependent on the index θ(k), which
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represents as before the Markov chain jump parameter (ROSS, 2014).

The N non-linearities ϕi(·) are restricted by the following assumptions:

� Assumption I: ϕi(0) = 0

� Assumption II: for each non-linearity there exist positive define matrices Ωi ∈ Rnp×np

for all p ∈ Rnp , ` = 1, · · · , np, such that

ϕi(`)(p)[ϕi(p)− Ωip](`) 6 0. (4.2)

As described in (KHALIL, 2002), the non-linearities ϕi(.) satisfy their respective cone

bounded sector conditions and are assumed to be decentralized, which allow us to write

SC(ϕi(.), p,Λi) = ϕi(p)
′Λi[ϕi(p)− Ωip] 6 0, (4.3)

where Λi ∈ diag(λq,i)q=1,··· ,np ∈ Rnp×np are diagonal positive semidefinite matrices, consid-

ering (4.2) we can say that (4.3) holds for all i ∈ K, for all p ∈ Rnp . As a by product of

(4.2) the inequality (4.3) holds for

[Ωip]`[ϕi(p)− Ωip]` 6 0, (4.4)

which implies that

0 6 ϕi(p)
′Λiϕi(p) 6 ϕi(p)

′ΛiΩip 6 p′Ω′iΛiΩip, ∀p ∈ Rnp , (4.5)

when Λi is a diagonal positive semi definite matrix. Now we present the Mean Square

Stable (MSS) definition used throughout this work.

Definition 6. System (4.1) with w(k) = 0 is MSS if, for any initial condition x(0) =

x0 ∈ Rnx, and initial distribution θ(0) = θ0 ∈ K,

lim
k→∞

E{x(k)′x(k)|x0, θ0} = 0. (4.6)

For a detailed discussion, see (COSTA; FRAGOSO, 1993; FRAGOSO; COSTA, 2005).

4.1.1 Candidate Lyapunov function

We define the candidate Lyapunov function as

V :

K× Rnx → R,

(i, x)→ x′Pix+ 2(ϕ′i(Cix))∆iΩiCix,
(4.7)
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where matrix Pi ∈ Rnx×nx , ∀i ∈ K is symmetric positive definite, and the diagonal matrix

∆i ∈ Rnp×np is positive definite.

Observe that inequality (4.5) allows us to define a lower bound, as in vi(x) = x′Pix,

and an upper bound, v̄i(x) = x′(Pi + 2C ′iΩ
′
i∆iΩiCi)x, for the candidate Lyapunov function.

By consequence,

vi(x) 6 V (i, x) 6 v̄i(x),∀i ∈ K (4.8)

From the above, we can state that the candidate Lyapunov function possess these properties:

� V (i, x) > 0,∀x ∈ Rnx , i ∈ K, which is guaranteed by the left hand of the inequality

(4.8).

� V (i, x) = 0 if and only if x = 0,∀i ∈ K. This property is guaranteed by imposing

that Pi > 0 in the inequality (4.8).

� V (i, x) is radially unbounded, ∀i ∈ K.

The main reason to use this particular Lyapunov function is to allow us to draw results

solely under Assumptions I and II. As consequence, it is no longer required any further

assumptions regarding the slope of the non-linearity, which is the classical approach

for the discrete-time domain Lur’e system, (GONZAGA; JUNGERS; DAAFOUZ, 2012;

GONZAGA; COSTA, 2013; GONZAGA; COSTA, 2014).

4.1.2 H∞ norm for Markovian Jump Lur’e Systems

Assume that the system (4.1) is MSS and x0 = 0. Its H∞ norm (COSTA; MARQUES,

1998) is then given by

‖G‖∞ = sup
06=w∈L2,θ0∈K

‖z‖2

‖w‖2

. (4.9)

An upper bound γ > 0 for the H∞ norm can be acquired by using the following lemma

which is based on the stochastic stability constraints presented in (GONZAGA; COSTA,

2013, Theorem 5).

Lemma 8. Consider that the Assumptions I and II are satisfied. System (4.1) is stochastic

stable and the norm constraint ‖G‖∞ 6 γ holds if there exist symmetric Pi > 0 and diagonal
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positive semidefinite matrices Ti, Wi, ∆i such that the following LMI
Pi • • • • •

(Wi−∆i)ΩiCi 2Ti • • • •
(Ei(W )−Ei(∆))ΩiCiAi Π̌ 2Ei(W ) • • •

0 0 Π γ2I • •
Czi Hi 0 Di I •

Ei(P )Ai Ei(P )Gi 0 Ei(P )Ji 0 Ei(P )

 > 0, (4.10)

is satisfied for all i ∈ K, where Π̌ = (Ei(W )−Ei(∆))ΩiCiGi, Π = J ′iC
′
iΩi(Ei(W )−Ei(∆)).

Proof: Let us show that if there are matrices Pi > 0 such that (4.10) is satisfied then

‖G‖∞ 6 γ. Pre- and post-multiplying (4.10) by diag(I, I, I, I, I,Ei(P )−1) and applying

Schur complement in (4.10), we get that A′iEi(P )Ai−Pi+C′ziCzi • • •
Π̃ G′iEi(P )Gi+H

′
iHi−2Ti • •

(Ei(∆)−Ei(W ))ΩiCiAi (Ei(∆)−Ei(W ))ΩiCiGi −2Ei(W ) •
J ′iEi(P )Ai−D′iCzi J ′iEi(P )Gi+D

′
iHi Π Π̌

 6 0, (4.11)

where Π̃ = G′iEi(P )Ai + ∆iΩiCi − TiΩiCi + H ′iCzi, Π = J ′iC
′
iΩi(Ei(∆) − Ei(W )), Π̌ =

J ′iEi(P )Ji+D
′
iDi−γ2. Pre- and post-multiplying (4.11) by [x(k)′ ϕi(p(k)) ϕi(p(k+1)) w(k)],

and following a routine computation, we obtain

x(k + 1)′Eθ(k)(P )x(k + 1) + 2ϕθ(k+1)(p(k + 1))′Eθ(k)(∆)Ωθ(k+1)Cθ(k+1)x(k + 1) · · ·

+ x(k)′Pθ(k)x(k) + 2ϕθ(k)(p(k))′∆θ(k)Ωθ(k)Cθ(k)x(k) · · ·

− 2SC(ϕθ(k+1)(k + 1), p(k + 1),Eθ(k)(W )) · · ·

− 2SC(ϕθ(k)(k), p(k), Tθ(k)) + z(k)′z(k)− γ2w(k)′w(k) 6 0. (4.12)

Considering that the σ-field Fk is generated by the variables {x(l), w(l), θ(l); l = 0, · · · , k}
we get that x(k + 1)′Eθ(k)(P )x(k + 1) = E(x(k + 1)′Pθ(k+1)x(k + 1)|Fk). Hence E(x(k +

1)′Eθ(k)(P )x(k+1)) = E(x(k+1)′Pθ(k+1)x(k+1)). In what follows, we recall that SC(.) 6 0

as in (4.3). From (4.12), and summing over k from 0 to T, we get

T∑
k=0

E
[
x(k + 1)′Pθ(k+1)x(k + 1) · · ·

+ 2ϕθ(k+1)(p(k + 1))′∆θ(k+1)Ωθ(k+1)Cθ(k+1)x(k + 1) · · ·

− x(k)′Pθ(k)x(k)− 2ϕθ(k)(p(k))′∆θ(k)θ(k)Ωθ(k)Cθ(k)x(k) · · ·

− 2SC(ϕθ(k+1)(k + 1), p(k + 1),Wθ(k+1))︸ ︷︷ ︸
60

− 2SC(ϕi(k), p(k), Tθ(k))︸ ︷︷ ︸
60

· · ·

+ z(k)′z(k)− γ2w(k)′w(k)

]
6 0.

It follows then that

E(V (T + 1))− E(V (T)) +

T∑
k=0

E(‖z(k)‖2)− γ
T∑
k=0

E(‖w(k)‖2) 6 0. (4.13)
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Considering w(k) = 0 and recalling that C ′ziCzi > dI we obtain from (4.13) that∑T

k=0 E(‖x(k)‖2 6 1
α
E(V (0)) and taking the limit as T→∞ yields the stochastic stability

property. When x0 = 0, it follows from (4.13) that
∑T

k=0 E(‖x(k)‖2)−γ
∑T

k−0 E(‖w(k)‖2) 6

0. By taking the limit T→∞, we obtain the desired result. �

4.2 Fault Detection Filter for Markov Jump Lur’e

Systems

The scheme that describes the Fault Detection Filter is presented in Fig. 27. Observing

System
Gθ(k)

ϕθ(k)(.) Filter Gθ(k)

ϕθ(k)

u(k)

Noise w(k) z(k)

re(k)

y(k)

ϕθ(k) r(k)Fault f(k)

Figure 27: Fault Detection Scheme for Lur’e systems.

the topology in Fig.27 we need to describe the system, control law, and the Fault Detection

Filter (FDF), to provide the design of the FDF.

The Markov Jump Lur’e System subject to faults is described as

G :


x(k + 1) = Aθ(k)x(k) +Bθ(k)u(k) +Gθ(k)ϕθ(k)(y(k)) + Jθ(k)w(k) + Fθ(k)f(k),

y(k) = Cθ(k)x(k),

z(k) = Czθ(k)x(k) +Hθ(k)ϕθ(k)(y(k)) +Dθ(k)w(k) + Eθ(k)f(k),

(4.14)

where x(k) ∈ Rnx represents the system states, u(k) ∈ Rnu represents the control input,

w(k) ∈ Rnw denotes the exogenous input, z(k) ∈ Rnz represents the output signal, and

f(k) ∈ Rnf denotes the fault signal. We assume that w(k), f(k), ∈ L2. Recall that, ϕi(·)
is under the assumptions I and II in (4.2). The index θ(k) represents the Markov chain,

as described in (4.1).
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The control signal is obtained using the state feedback controller

K :
{
u(k) = Kθ(k)x(k) +Rθ(k)ϕθ(k)(y(k)). (4.15)

The main objective in this paper is to design a Fault Detection Filter to generate a

residue signal r(k), the FDF is defined as

F :


η(k + 1) = Aηθ(k)η(k) +Mηθ(k)u(k) + Bηθ(k)z(k) + Lηθ(k)ϕθ(k)(y(k)),

r(k) = Cηθ(k)η(k) +Dηθ(k)z(k),

η(0) = η0,

(4.16)

where η(k) ∈ Rnx represents the filter states, u(k) ∈ Rnu represents the control input,

r(k) ∈ Rnr denotes the residue signal, and f(k) ∈ Rnf denotes the fault signal.

Considering that re(k) = r(k)− f(k), we get the augmented system

Gaug :


x(k + 1) = Ãθ(k)x̃(k) + G̃θ(k)ϕ̃θ(k)(y(k)) + J̃θ(k)w̃(k),

y(k) = C̃θ(k)x̃(k),

z(k) = C̃zθ(k)x̃(k) + H̃θ(k)ϕ̃θ(k)(y(k)) + D̃θ(k)w̃(k),

(4.17)

where x̃(k) = [x(k) η(k)], ϕ̃θ(k)(y(k)) = ϕθ(k)(y(k)), w̃(k) = [w(k) f(k)], hence, the

augmented matrices that compose system (4.17) are

Ãi =

[
Ai +BiKi 0

MηiKi + BηiCzi Aηi

]
, G̃i =

[
BiRi +Gi

MηiRi + Lηi

]
,

J̃i =

[
Ji Fi

BηiDi BηiEi

]
, C̃zi =

[
DηiCzi Cηi

]
,

D̃i =
[
DηiDi DηiEi − I

]
, H̃i = DηiHi, C̃i =

[
Ci 0

]
. (4.18)

Define the performance criterion for the H∞ norm case as:

‖Gaug‖∞ = sup
‖w̌‖2 6=0,w̃∈L2

‖re‖2

‖w̃‖2

< γ, (4.19)

where the main purpose is to design the FDF as in (4.16) minimizing the H∞ gain γ > 0

for the augmented system (4.17).
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Zi • • • • • • • •
Zi Xi • • • • • • •

(Ei(W )−Ei(∆))ΩiCi (Ei(W )−Ei(∆))ΩiCi 2Ti • • • • • •
Π̃ Π̃ Π4,3 2Ei(W ) • • • • •
0 0 0 Π5,4 γ2I • • • •
0 0 0 Π6,4 0 γ2I • • •

DηiCzi+Cηi DηiCzi DηiHi 0 DηiDi DηiEi−I I • •
Ei(Z)(Ai+BiKi) Ei(Z)(Ai+BiKi) Π10,3 0 Ei(Z)Ji Ei(Z)Fi 0 Ei(Z) •

Π11,1 Π11,2 Π11,3 0 Π11,8 Π11,9 0 Ei(Z) Ei(X)

 > 0, (4.20)

4.2.1 H∞ Fault Detection Design for MJS Lur’e Systems

Theorem 16. Consider that both Assumptions I and II are satisfied. There exists a filter

as in (4.16) such that (4.17) is stochastic stable and ‖Gaug‖∞ 6 γ if there exist symmetric

positive matrices Zi, Xi, matrices with appropriate size Oηi, ∇i, Γi, Υi, and diagonal

positive semidefinite matrices Ti, Wi, ∆i ∈ Rny×ny such that the LMI constraints (4.20)

are satisfied for all i ∈ K where

Π̃ = (Ei(W )− Ei(∆)ΩiCi(Ai +BiKi), Π4,3 = (Ei(W )− Ei(∆))ΩiCi(BiRi +Gi),

Π5,4 = J ′iC
′
iΩi(Ei(W )− Ei(∆)), Π6,4 = F ′iC

′
iΩi(Ei(W )− Ei(∆)),

Π10,3 = Ei(Z)(BiRi +Gi), Π11,1 = Ei(X)(Ai +BiKi) + ΓiKi +∇iCzi +Oηi,

Π11,2 = Ei(X)(Ai +BiKi) + ΓiKi +∇iCzi, Π11,3 = Ei(X)(BiRi +Gi) + ΓiRi + Υi,

Π11,8 = Ei(X)Ji +∇iDi, Π11,9 = Ei(X)Fi +∇iEi.

If a feasible solution is obtained, then a suitable FDF is given by Aηi = Ei(Z −X)−1Oηi,
Bηi = Ei(Z −X)−1∇i, Mηi = Ei(Z −X)−1Γi, Lηi = Ei(Z −X)−1Υi, Cηi, and Dηi.

Proof: Firstly, we introduce the variable substitutions Oηi = Ei(Z − X)Aηi, ∇i =

Ei(Z − X)Bηi, Γi = Ei(Z − X)Mηi, and Υi = Ei(Z − X)Lηi in (4.20). Now consider

the structure, extracted from (GONÇALVES; FIORAVANTI; GEROMEL, 2011), for Pi,

Ei(P ), as

Pi =
[
Xi Ui
U ′i X̂i

]
, P−1

i =
[
Yi Vi
V ′i Ŷi

]
, (4.21)

Ei(P ) =
[

Ei(X) Ei(U)

Ei(U)′ Ei(Û)

]
, Ei(P )−1 =

[
R1i R2i

R′2i R3i

]
. (4.22)

We define the matrices αi and σi as

αi =
[

I I
V ′i Y

−1
i 0

]
, σi =

[
R−1

1i Ei(X)

0 Ei(U)′

]
. (4.23)

From (4.21) we get that Ui = Zi −Xi, Vi = V ′i , Vi = Z−1
i , as well as R−1

1i = Ei(Z), as in

(GONÇALVES; FIORAVANTI; GEROMEL, 2010). Therefore, we can write the following
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matrices

α′iPiαi =
[
Zi Zi
Zi Xi

]
, σ′iEi(P )σi =

[
Ei(Z) Ei(Z)
Ei(Z) Ei(Z)

]
,

(Ei(W )− Ei(∆))ΩiC̃iαi = [ (Ei(W )−Ei(∆))ΩiCi (Ei(W )−Ei(∆))ΩiCi ] ,

(Ei(W )− Ei(∆))ΩiC̃iÃiαi = [ (Ei(W )−Ei(∆))ΩiCi(Ai+BiKi) (Ei(W )−Ei(∆))ΩiCi(Ai+BiKi) ] ,

C̃ziαi = [DηiCzi+Cηi DηiCzi ] , σ′iÃiαi =
[
Ei(Z)(Ai+BiKi) Ei(Z)(Ai+BiKi)

Π2,1 Π2,2

]
,

Π2,1 = Ei(X)(Ai +BiKi) + Ei(U)MηiKi + Ei(U)BηiCzi + Ei(U)Aηi,

Π2,2 = Ei(X)(Ai +BiKi) + Ei(U)MηiKi + Ei(U)BηiCzi,

(Ei(W )− Ei(∆))ΩiC̃iG̃i = [ (Ei(W )−Ei(∆))ΩiC̃i(BiRi+Gi) ] , H̃i = DηiHi,

σ′iG̃i =
[

Ei(Z)BiRi+Ei(Z)Gi
Ei(X)(BiRi+Gi)+Ei(U)(MηiRi+Lηi)

]
, D̃i = [DηiDi DηiEi−I ] ,

σ′iJ̃i =
[

Ei(Z)Ji Ei(Z)Fi
Ei(X)Ji+Ei(U)BηiDi Ei(X)Fi+Ei(U)BηiEi

]
.

From the above LMI, (4.20) can be rewritten as
α′iPiαi • • • • •

(Wi−∆i)ΩiC̃iαi 2Ti • • • •
(Ei(W )−Ei(∆))ΩiC̃iÃiαi Π̂i 2Ei(W ) • • •

0 0 Πi γ2I • •
C̃ziαi H̃i 0 D̃i I •
σ′iÃiαi σ′iG̃i 0 σ′iJi 0 Π̌

 > 0, (4.24)

where

Π̂i = (Ei(W )− Ei(∆))ΩiCiGi, Πi = J̃ ′iC̃
′
iΩi(Ei(W )− Ei(∆)),

Π̌ = σ′iEi(P )−1σi.

Pre- and post-multiplying (4.24), respectively, by diag(α−1
i , I, I, I, I, I, σ−1

i ), and after that

pre- and post-multiplying it by diag(I, I, I, I, , I, I,Ei(P )), we get that the LMI constraint

(4.20) implies the LMI constraint (4.10). It follows subsequently that (4.17) is stochastic

stable and that ‖G‖∞ 6 γ. �

4.2.2 Simulations Results

For the illustrative simulation for the Lur’e system, we used the classic example of a

mass-spring from (KHALIL, 2002). A deeper discussion about the model is presented in

Appendix A. The matrices that compose the discretized model of the mass-spring system

are

A1,2 =
[ −0.0101 0.9588
−0.0160 −0.0181

]
, B1,2 = [ 62.0699

−0.0513 ] , G1,2 = [ 0
0.15 ] , J1,2 = 0.01×B1,2,

F1,2 = B1,2, C1 = I2, C2 = 02×2, Cz1 = I2, Cz2 = 02×2,
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H1,2 = 02×1, D1,2 = 10−3I2×1, E1,2 = 02×1, Ω1 = 0.75, Ω2 = 0.50,

P = [ 0.8 0.2
0.8 0.2 ] . (4.25)

The matrices that compose the control law in (4.15) are

K1 = [ −0.0002 −0.0158 ] , K2 = [ −0.0368 −0.2877 ] ,

R1 = [ 5.5373×10−03 ] , R2 = [ 2.1034e×10−03 ] ,

The non-linearity is φ(y) = Ωi(y)3, i ∈ [1, 2]. The noise signal is a white noise in the broad

sense, with null mean and standard deviation of 0.1.

The FDF designed using Theorem 16 is

Aη1 = [ −0.0097 −0.1416
0.0001 0.0012 ] , Aη2 = 10−7 [ −0.0257 −0.2720

0.0007 0.0374 ] ,

Bη1 = [ 1.0522 105.2372
−0.0165 −0.0713 ] , Bη2 =

[ −2.0240 2.0240
0.0172 −0.0172

]
,

Mη1 = [ 6.6740
−0.0034 ] , Mη2 = 10−6 [ −106.1402

9.7246 ] ,

Lη1 =
[ −19.3626
−0.0282

]
, Lη2 = 103 [ −1.4337

0.1238 ] ,

Cη1 = 10−5 [ 0.0781 −0.1328 ] , Cη2 = 10−5 [ 0.0170 −0.1342 ] ,

Dη1 = 10−5 [ −0.1711 −0.1893 ] , Dη2 = 10−5 [ 0.1335 −0.1333 ] ,

and the upper bound is γ = 0.92.

4.2.2.1 Monte Carlo Simulation

Observing the matrices of system (4.25), we consider that the fault in this example

represents problems with the actuator. The specific fault signals represent that the actuator

performance drops by 10% starting at t = 125s. A Monte Carlo simulation with 300

iterations was performed, and the results are presented in Fig.28, Fig.29, which represent,

respectively, the residue signal, and the evaluation function.

In Fig. 28, it can be observed that the FDF designed using Theorem 16 properly

reacted to the fault signal as designed. Regarding the residue signal without fault in Fig.

28, when there is no fault signal the residue is close to zero for the entire simulation. It

is not completely zero due to the presence of the noise signal w(k) and to the switching

behavior from the Markov Jump Systems.

Fig. 29 presents the evaluation function that is represented by the mean and standard

deviation. It can be seen from this figure that the designed FDF is able to detect the

fault in all cases within the range of [127 132]s. It shows that the designed FDF provides
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(a) Residue signal obtained using
the FDF designed via Theorem 16.
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the FDF designed via Theorem 16
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Figure 28: The mean and standard deviation of the residue signal obtained using the FDF
designed via Theorem 16.
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using the FDF designed via Theo-
rem 16.
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(b) The mean of the evaluation
function for the simulation with-
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Figure 29: The mean and standard deviation of the evaluation function obtained using
the FDF designed via Theorem 16.

a satisfactory level of reliability. The above simulation results show that the proposed

method can provide a feasible solution for the fault detection problem.

4.3 Concluding remarks

In this chapter, we presented Lemma 8 and the design of an FDF under the assumption

that the nonlinear system is subjected to network communication loss, which was model

by using Markov Jump Lur’e Systems. In the next Chapter, we will tackle the FDF and

FAC problem from another point of view, based on the linear parameter varying systems

instead of the Markov Jump Systems.
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5 FDF AND FAC FOR LPV SYSTEMS WITH

UNCERTAIN PARAMETERS

This chapter introduces the results regarding the Fault Detection and Fault Accom-

modation using the Linear Parameter varying as a base. An important premise in this

chapter is that the LPV parameter is not directly accessible. To circumvent this issue

usually, we implement an estimation process to gather the LPV parameter, when these

procedures are implemented normally we assume that the estimation is precise, however,

this is not completely true, and in some occasions there will be a discrepancy between

the parameter and the estimation. To deal with this imprecision and guarantee the FDF

and FAC performance we added this imprecision during the design process using the

multi-simplex approach to model an additive noise on the parameter.

The results presented in this chapter were published in the following:

� Subsection 5.2 presented the H∞ and H2 Gain Scheduled Fault Detection Filter,

which was published in IEEE ACCESS October 2021, (CARVALHO et al., 2021b).

� Subsection 5.3 presented the H∞ and H2 Gain Scheduled Fault Accommodation,

which was published and presented in the 4th IFAC Workshop on Linear Parameter

Varying systems 2021, (CARVALHO et al., 2021a).

Definition 7. The unit-simplex ΛN of dimension N ∈ N, with N > 2 is defined as

ΛN = {ζ ∈ RN :
N∑
i=1

ζi = 1, ζi > 0, i = 1, . . . , N}. (5.1)

Definition 8. The multi-simplex Λm,N is defined as the Cartesian product of m simplexes

(as in (5.1)) with dimension of N , that is, Λm,N = ΛN × · · · × λN with the Cartesian

product containing m terms. Thus any θ ∈ Λm,N can be decomposed as θ = (θ1, θ2, . . . , θm),

with θi = (θi1, θi2, . . . , θiN) ∈ ΛN , i ∈ {1, . . . ,m}.

Definition 9. Homogeneous polynomial: For a unit-simplex ΛN of dimension N ∈ N, a

polynomial g(θ), θ ∈ ΛN is named a homogeneous polynomial of degree l ∈ N if all its
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monomials have the same total degree l. As an example, assuming θ = [θ1, θ2] ∈ Λ2, and

g(θ) = θ3
1 + θ2

1θ2 + θ1θ
2
2 + θ3

2, g(θ) is said to be homogeneous polynomial with a degree of

l = 3. Define K(l)
N as the set of N-tuples obtained from all possible combinations of N

nonnegative integers kj, j = 1, ..., N , with sum k1 + k2 + . . . + kN = l. A homogeneous

polynomials with o degree is defined as

A(θ) =
∑
k∈K(l)

N

θkAk, (5.2)

where θk = θk11 .θ
k2
2 . · · · .θ

kN
N = ΠN

j=1θ
kj
j .

5.1 Preliminary for LPV Systems

Consider the following discrete-time LPV system

G :=

x(k + 1) = Aθ(k)x(k) + Jθ(k)w(k),

z(k) = Cθ(k)x(k) +Dθ(k)w(k),
, (5.3)

where x(k) ∈ Rnx represents the state vector, w(k) ∈ Rnw represents the exogenous input,

and the z(k) ∈ Rnz denotes output signal. We assume that the matrices Aθ(k), Jθ(k), Cθ(k),

Dθ(k) in (5.3) depend on the parameter θ(k) in the affine form as

Aθ(k) = A0 +
m∑
i=1

θi(k)Ai, (5.4)

where A0, . . . , Am are given matrices and θ(k) = (θ1(k), . . . , θm(k)) are bounded time-

varying parameters satisfying |θi(k)| 6 ti, ti ∈ R+, i = 1, . . . ,m, ∀ k > 0. Similarly for

Jθ(k), Cθ(k), Dθ(k). Observe that the affine form is a particular case of the parameterized

form in (5.2) with a degree of 1. Note that if we describe the matrices in (5.3) as

polynomials with a degree equal to 0, system (5.3) becomes parameter-independent.

5.1.1 H∞ Guaranteed Cost Analysis

In this subsection, we introduce a few concepts that will be important later on regarding

the H∞ norm. The H∞ norm is a classical performance criterion that can be computed

using the Bounded Real Lemma (BRL), as proposed in (CAIGNY et al., 2012) for LPV

systems. For the system as in (5.3), its H∞ norm is defined by

‖G‖∞ = sup
‖w(k)‖2 6=0

‖z(k)‖2

‖w(k)‖2

, w(k) ∈ L2. (5.5)
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In the following lemma, based on the conditions from (CAIGNY et al., 2010), we present

the Bounded Real Lemma (BRL) for LPV systems where an upper bound for the H∞ norm

is computed via parameter-dependent LMIs. For the sake of simplicity we set θ = θ(k),

and ψ = θ(k + 1).

Lemma 9. If there exists a symmetric positive definite matrix Pθ, such that[
Pψ • • •
PθA

′
θ Pθ • •

J ′θ 0 γI •
0 CθPθ Dθ γI

]
> 0, (5.6)

holds for all θ(k), k > 0, then γ is an upper bound for the H∞ norm of system (5.3), that

is, ‖G‖∞ < γ.

The proof for Lemma 9 can be found in (SOUZA; BARBOSA; NETO, 2006, Lemma

3).

5.1.2 H2 Guaranteed Cost Analysis

The H2 norm is a performance criterion that is associated with the energy of the

impulse response of the system, or in other words,

‖G‖2 = lim sup
T→∞

E

{
1

T

T∑
k=0

z(k)′z(k)

}
, (5.7)

where T is a positive integer that represents the time horizon and w(k) is a standard white

noise (Gaussian zero-mean in which the covariance matrix is equal to the identity matrix)

as defined in (BARBOSA; SOUZA; TROFINO, 2002).

Considering an asymptotically stable system in the form (5.3), an upper bound for its

H2 norm can be obtained by a set of parameter-dependent LMI constraints, as introduced

in (CAIGNY et al., 2010) and shown in the following lemma.

Lemma 10. If there exist symmetric positive definite matrices Pθ, and Wθ, such that[
Pψ−AθPθA′θ •

J ′θ I

]
> 0, (5.8)[

Wθ−DθD′θ •
PθC

′
θ Pθ

]
> 0, (5.9)

and

Tr (Wθ) < λ2, (5.10)

hold for all θ(k), k > 0, then λ is an upper bound for the H2 norm of system (5.3), that

is, ‖G‖2 < λ.
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Lemma 10 and its proof are presented in (CAIGNY et al., 2010, Theorem 2).

5.2 Gain Scheduled Fault Detection Formulation

Consider the following LPV discrete-time system

Gf :=

x(k + 1) = Aθ(k)x(k) +Bθ(k)u(k) + Jθ(k)w(k) + Fθ(k)f(k),

y(k) = Cθ(k)x(k) +Dθ(k)w(k) +Dfθ(k)f(k),
(5.11)

where x(k) ∈ Rnx represents the state vector, u(k) ∈ Rnu denotes the control input,

w(k) ∈ Rnw is the exogenous input and f(k) ∈ Rnf is the fault signal. We also consider

that the signals w, f ∈ L2 and recall that the time-varying parameter θ(k) is bounded as

|θi(k)| 6 ti, ti ∈ R+, i = 1, . . . ,m, ∀ k > 0.

The major component in a Fault Detection and Isolation process is the Fault Detection

Filter (FDF), which we can describe as follows

F :=

η(k + 1) = Aηθ̂(k)η(k) + Mηθ̂(k)u(k) + Bηθ̂(k)y(k),

r(k) = Cηθ̂(k)η(k) + Dηθ̂(k)y(k),
(5.12)

where η(k) ∈ Rnη denote the filter state and r(k) ∈ Rnr is the residue signal. Note that

the FDF (5.12) depends only on the estimated parameter θ̂. We assume that the FDF in

(5.12) can be written in the affine form similarly to (5.4), so that the matrices in (5.12)

are defined as

Aηθ̂(k) = Aη0 +
m∑
i=1

θ̂i(k)Aηi, (5.13)

Hence, the main focus of this chapter is to design all the matrices in Aηi, Mηi, Bηi, Cηi,

Dηi, i ∈ {1, . . . ,m}.

5.2.0.1 Parameter under additive uncertainty

One of the major premises of the present chapter is that the time-varying parameters

θ(k) are not directly accessible. Instead, we implement estimation procedures to gather

an estimation θ̂(k) of the time-varying parameter θ(k), which are not completely precise,

meaning that we must assume that θ̂(k) is an inexact measurement of θ(k). The design

under the assumption of inexact measurements is dealt with a general model described in

(LACERDA et al., 2016),(PALMA; MORAIS; OLIVEIRA, 2018), in which we assume that

the estimated parameters θ̂(k) is a sum of the actual parameter θ(k) with an orthogonal
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additive uncertainty σ(k), that is

θ̂i(k) = θi(k) + σi(k), i = 1, . . . ,m (5.14)

where |σi(k)| 6 di, di ∈ R+, i = 1, . . . ,m. Thus, the domain of (θ(k), σ(k)) is as displayed

in Fig.30.

−ti

−di

di

ti0

0

θi(k)

σi(k)

Figure 30: Feasible region for each pair (θi(k), σi(k)), borrowed from (PALMA; MORAIS;
OLIVEIRA, 2018).

From the aforementioned discussion, we may define the augmented system which

depends on both time-varying parameter θ(k), θ̂(k), by taking e(k) = r(k)− f(k), as

Gaug :=

x̌(k + 1) = Ǎθ̂(k)θ(k)x̌(k) + J̌θ̂(k)θ(k)w̌(k),

e(k) = Čθ̂(k)θ(k)x̌(k) + Ďθ̂(k)θ(k)w̌(k),
, (5.15)

where we consider the augmented vectors x̌ = [x′(k) η′(k)]′, w̌ = [u′(k) d′(k) f ′(k)]′. In

order to simplify the visualization of the resulting LMIs, we consider hereafter θ = θ(k),

and θ̂ = θ̂(k). The following augmented matrices can be obtained:

Ǎθ̂θ =
[

Aθ 0
Bηθ̂Cθ Aηθ̂

]
, J̌θ̂θ =

[
Bθ Jθ Fθ
Mηθ̂ Bηθ̂Dθ Bηθ̂Dfθ

]
,

Čθ̂θ = [ Dηθ̂Cθ Cηθ̂ ] , Ďθ̂θ = [ 0 Dηθ̂Dθ Dηθ̂Dfθ−I ] .

Based on the augmented system as above, we can define the H∞ Fault Detection

problem as follows.

H∞ Fault Detection problem: Given a desired H∞-gain γ > 0, design the FDF as in

(5.12) such that the H∞ norm of the augmented system (5.15) satisfies

‖Gaug‖∞ = sup
‖w̌‖2 6=0,w̌∈L2

‖e‖2

‖w‖2

< γ. (5.16)

Similarly, we can define the H2 Fault Detection problem as follows.
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H2 Fault Detection problem: Given a desired H2-gain λ > 0, design the FDF as in

(5.12) such that the H2 norm of the augmented system (5.15) satisfies

‖Gaug‖2 = lim sup
T→∞

E

{
1

T

T∑
k=0

e(k)′e(k)

}
< λ. (5.17)

5.2.0.2 Change of variables

From the discussion presented in the previous sub-sections, a major assumption in this

chapter is that the parameter used by the filter is an estimation of the real one affecting the

system. To deal with this assumption it is necessary to employ some procedures to design

the fault detection filter (5.12). Using, for instance, the procedures given in (LACERDA et

al., 2016; BRIAT, 2015), we can perform a variable transformation to deal with this type

of parameter subjected to additive uncertainty. These variable transformations, applied to

our context can be seen as

αi1(k) =
θi(k) + ti

2ti
, α̂i1(k) =

σi(k) + di
2di

,

and the original parameters are retrieved as

θi(k) = 2tiαi1(k)− ti, σi(k) = 2diα̂i1(k)− di,

i = 1, · · · ,m.

Thus we have that αi(k) = (αi1(k), αi2(k)) and α̂i(k) = (α̂i1(k), α̂i2(k)) belong to

the unit-simplex as in (5.1) with N = 2, so that α(k) = (α1(k), . . . , αm(k)) and α̂(k) =

(α̂1(k), . . . , α̂m(k)) belong to the multi-simplex Λm,2 = Λ2× · · ·×Λ2 with m terms. We set

α̃(k) = (α(k), α̂(k)) ∈ Λm,2 × Λm,2, where α(k) is related to θ(k), and α̂(k) to σ(k) (the

additive noise time-varying parameter). Notice that the matrices in system (5.3) and in the

FDF in (5.12) can be rewritten using the new multi-simplex α̃(k), following the procedure

explained in (LACERDA et al., 2016), which uses the polynomial homogenisation process

presented in (OLIVEIRA; BLIMAN; PERES, 2008).

Another assumption made for the numerical procedure is that the parameters are

arbitrarily fast in time so that, by consequence, θ(k + 1) is independent from θ(k).

When using the parser ROLMIP (AGULHARI et al., 2019), associated with YALMIP

(LOFBERG, 2004), this procedure is as simple as setting the degrees of the multi-simplex

polynomials and the parameter boundaries. Thus for the numerical procedure, this change

of variable will be applied to derive the FDF in (5.12).
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Π1,1 • • • • • • •
Π2,1 −W ′22θ+ξ(Her(∇θ̂)) • • • • • •
Π3,1 ∇θ̂+ξK′

2θ̂
W ′11β−Her(K1θ̂) • • • • •

Π4,1 ∇θ̂+ξK̄′
θ̂

W ′12β−K̄
′
θ̂
−K2θ̂ W ′22β−Her(K̄θ̂) • • • •

Π5,1 ξ(K2θ̂Bθ+Γθ̂)′ B′θK
′
1θ̂

+Γ′
θ̂

B′θK
′
2θ̂

+Γ′
θ̂
−γ2I • • •

Π6,1 ξ(K2θ̂Jθ+Ωθ̂Ddθ)′ J ′θK
′
1θ̂

+D′dθΩ′
θ̂

J ′θK
′
2θ̂

+D′dθΩ′
θ̂

0 −γ2I • •
Π7,1 ξ(K2θ̂Fθ+Ωθ̂Dfθ)′ F ′θK

′
1θ̂

+D′fθΩ′
θ̂
F ′θK

′
2θ̂

+D′fθΩ′
θ̂

0 0 −γ2I •
Π8,1 Cηθ̂ 0 0 0 Dηθ̂Ddθ Dηθ̂Dfθ−I −I


< 0, (5.18)

5.2.1 Theoretical Results

In this section, we describe the main contributions of this chapter on the design of

the fault detection filters for solving the previously defined H2, and H∞ fault detection

problems. It is important to stress that the results will be presented in terms of the

original parameters θ(k) and θ̂(k) to highlight that the derived filter only depends on the

measurable parameter θ̂(k). For the numerical procedure, the change of variable presented

in Section 5.2.0.2 should be applied so that we end up with multi-simplex polynomials with

the new multi-simplex parameter α̃ ∈ Λm,2 × Λm,2. As before, for the sake of simplicity in

what follows we set θ = θ(k), θ̂ = θ̂(k) and β = θ(k + 1), and by feasible θ, β, θ̂ we mean

that the constraints imposed in Section 5.2 are satisfied.

5.2.1.1 H∞ Fault Detection Filter Design for LPV with uncertain parameter

In the following theorem, we present the design of LPV FDF via LMI to obtain a

guaranteed H∞ upper bound of the augmented system in (5.15).

Theorem 17. For a desired H∞ upper bound γ > 0, if there exist symmetric positive

definite matrices W11θ, and W22θ and matrices W12θ, K1θ̂, K2θ̂, K̄θ̂, Ωθ̂, ∇θ̂, Γθ̂, Cηθ̂, Dηθ̂

with compatible dimensions and a given scalar parameter ξ ∈ ]−1 1[ such that (5.18) with

Π1,1 = −W11θ + ξ(Her(K1θ̂Aθ + Ωθ̂Cθ)),

Π2,1 = −W ′
12θ + ξ(∇′

θ̂
+K2θ̂Aθ + C ′θΩ

′
θ̂
), Π3,1 = K1θ̂Aθ + Ω′

θ̂
Cθ + ξK ′

1θ̂
,

Π4,1 = K2θ̂Aθ + Ω′
θ̂
Cθ + ξK̄ ′

θ̂
, Π5,1 = ξ(K1θ̂Bθ + Γθ̂)

′,

Π6,1 = ξ(K1θ̂Jθ + Ωθ̂Ddθ)
′, Π7,1 = ξ(K1θ̂Fθ + Ωθ̂Dfθ)

′, Π8,1 = Dηθ̂Cθ,

holds for all feasible θ, β, θ̂ then the LPV FDF (5.12) with Aηθ̂ = K̄−1

θ̂
∇θ̂, Bηθ̂ = K̄−1

θ̂
Ωθ̂,

Mηθ̂ = K̄−1

θ̂
Γθ̂, Cηθ̂ = Cηθ̂, and Dηθ̂ = Dηθ̂ solves the H∞ fault detection problem (5.16).

Proof: We apply the variable substitutions ∇θ̂ = K̄θ̂Aηθ̂, Ωθ̂ = K̄θ̂Bηθ̂, Γθ̂ = K̄θ̂Mηθ̂,
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Cηθ̂ = Cηθ̂, and Dηθ̂ = Dηθ̂ in (5.18). Assuming the structure of Wθ, Kθ̂, as

Wθ =
[
W11θ W12θ

W ′12θ W22θ

]
, Kθ̂ =

[
K1θ̂ K̄θ̂
K2θ̂ K̄θ̂

]
, (5.19)

as well as the augmented matrices in (5.15), the inequality (5.18) can be rewritten as −Wθ+ξ(Her(Kθ̂Ǎθθ̂)) Ǎ′
θθ̂
K′
θ̂
−ξKθ̂ ξKθ̂J̌θθ̂ Č

′
θθ̂

Kθ̂Ǎθθ̂−ξK
′
θ̂

−Wβ−Kθ̂−K
′
θ̂
Kθ̂J̌θθ̂ 0

ξJ̌ ′
θθ̂
K′
θ̂

J̌ ′
θθ̂
K′
θ̂

−γ2I Ď′
θθ̂

Čθθ̂ 0 Ďθθ̂ −I

 < 0. (5.20)

Moreover (5.43) can be written as

Qθθ̂β + U ′
θθ̂
K′
θ̂
V + V ′Kθ̂Uθθ̂ < 0, (5.21)

where

Qθθ̂β =

 −Wθ 0 0 Č′
θθ̂

0 −Wβ 0 0

0 0 −γ2I Ď′
θθ̂

Čθθ̂ 0 Ďθθ̂ −I

 ,
U ′
θθ̂

=

[
Ǎ′
θθ̂
−I
J̌ ′
θθ̂
0

]
, V ′ =

[
ξI
I
0
0

]
. (5.22)

Now, we pre- and post-multiply the inequality (5.50) by[
I Ǎ′

θθ̂
0 0

0 J̌ ′
θθ̂

I 0

0 0 0 I

]
, (5.23)

and its transpose, respectively, and after that applying the Schur complement and using

arguments similar to those explained at the end of the proof for Theorem 18 we end

up obtaining constraints that are equivalent to those for the bounded real lemma (5.6),

concluding the proof. �

5.2.1.2 H2 Fault Detection Filter Design for LPV with uncertain parameter

The next theorem presents the LPV FDF design using an upper bound for the

guaranteed cost for the H2 norm of the system (5.15).

Theorem 18. For a desired H2 upper bound λ > 0, if there exist symmetric positive

definite matrices Y11θ, Y22θ, Mθ, and matrices Y12θ, X1θ̂, X2θ̂, X̄θ̂, Ωθ̂, ∇θ̂, Γθ̂, Cηθ̂, Dηθ̂

with compatible dimensions, and a given scalar parameter ξ ∈ ]−1 1[ such that the following

inequalities hold for all feasible θ, β, θ̂, then the LPV FDF (5.12) with Aηθ̂ = X̄−1

θ̂
∇θ̂,

Bηθ̂ = X̄−1

θ̂
Ωθ̂, Mηθ̂ = X̄−1

θ̂
Γθ̂, Cηθ̂ = Cηθ̂, and Dηθ̂ = Dηθ̂ solves the H2 fault detection

problem (5.17).
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Tr(Mθ) < λ2, (5.24)
−Y11θ+ξ(Her(X1θ̂Aθ+Ωθ̂Cθ)) • • • • • •
−Y12θ+ξ(X2θ̂Aθ+Ωθ̂Cθ+∇′

θ̂
) −Y22θ+ξHer(∇θ̂) • • • • •

X1θ̂Aθ+Ωθ̂Cθ+ξX1θ̂ ∇θ̂+ξX′
2θ̂

Y11β−X′1θ̂−X1θ̂ • • • •
X2θ̂Aθ+Ωθ̂Cθ+ξX̄θ̂ ∇θ̂+ξX̄′

θ̂
Y ′12β−X2θ̂−X̄

′
θ̂
Y22β−Her(X̄θ̂) • • •

ξ(B′θX
′
1θ̂

+Γ′
θ̂
) ξ(B′θX

′
2θ̂

+Γ′
θ̂
) B′θX

′
1θ̂

+Γ′
θ̂

B′θX2θ̂+Γ′
θ̂
−I • •

ξ(J ′θX
′
1θ̂

+D′dθΩ′
θ̂
) ξ(J ′θX

′
2θ̂

+D′dθΩ′
θ̂
) J ′θX

′
1θ̂

+D′dθΩ′
θ̂
J ′θX

′
2θ̂

+D′dθΩ′
θ̂

0 −I •
ξ(F ′θX

′
1θ̂

+D′fθΩ′
θ̂
) ξ(F ′θX

′
2θ̂

+D′fθΩ′
θ̂
) F ′θX

′
1θ̂

+D′fθΩ′
θ̂
F ′θX

′
2θ̂

+D′fθΩ′
θ̂

0 0 −I

 < 0, (5.25)


Mθ • • • • •

C′θD
′
ηθ̂

Y11θ • • • •
C′
ηθ̂

Y ′12θ Y22θ • • •
0 0 0 I • •

D′dθD
′
ηθ̂

0 0 0 I •
D′fθD

′
ηθ̂
−I 0 0 0 0 I

 > 0, (5.26)

Proof: First, apply the variable substitution ∇θ̂ = X̄θ̂Aηθ̂, Ωθ̂ = X̄θ̂Bηθ̂, Γθ̂ = X̄θ̂Mηθ̂,

Cηθ̂ = Cηθ̂, and Dηθ̂ = Dηθ̂ in (5.25). Considering the augmented matrices given in (5.15),

and the following structures for Xθ̂, Yθ, Yβ,

Xθ̂ =
[
X1θ̂ X̄θ̂
X2θ̂ X̄θ̂

]
, Yθ =

[
Y11θ •
Y21θ Y22θ

]
, Yβ =

[
Y11β •
Y21β Y22β

]
, (5.27)

we can rewrite the constraint (5.25) as[ −Yθ+ξ(Her(Xθ̂Ǎθθ̂)) Ǎ′
θθ̂
X′
θ̂
−ξXθ̂ ξXθ̂J̌θθ̂

• Yβ−Her(Xθ̂) Xθ̂J̌θθ̂
• • −I

]
< 0. (5.28)

Rewriting (5.28) we get

Qθβ + U ′
θθ̂
X ′
θ̂
V + V ′Xθ̂Uθθ̂ < 0 (5.29)

where

Qθβ =

[
−Yθ 0 0
• Yβ 0
• • −I

]
, Uθθ̂ = [ Ǎθθ̂ −I J̌θθ̂ ] , V = [ ξI I 0 ] .

Let the null space for Uθθ̂ and V be given by

NU =

[
I 0
Ǎθθ̂ J̌θθ̂

0 I

]
, and NV =

[ −I 0
ξI 0
0 I

]
. (5.30)

Now, if we pre- and post-multiply (5.28) by N ′U and NU , respectively, and apply twice

the Schur complement to the result of this procedure we recover the conditions presented

in (5.8) with Pθ = Y −1
θ and Pψ = Y −1

β . Regarding the constraints (5.26) we consider the

same variable substitutions as at the start of the proof. After that, applying twice the

Schur complement we obtain the constraint (5.9) with Wθ = Mθ. �
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5.2.1.3 Mixed H2 / H∞ Fault Detection Filter Design for LPV with uncertain
parameter

In this section, we provide a mixed procedure aiming to improve the FDI performance

combining the results for H2 and H∞ norms introduced earlier in this section. A simple

approach to obtain a mixed solution when dealing with LMI constraints to solve both

optimization problems simultaneously, for instance, we can consider the following two

optimization statements

(i) Assume a weighting scalar ν, we solve the constraints assuming an objective function

of the form

g(λ, γ) = inf{νλ+ (1− ν)γ}, (5.31)

where ‖Gaug‖2
2 < λ and ‖Gaug‖2

∞ < γ.

(ii) Given one of the upper bounds of the H2 or H∞ norms, λ > 0 or γ > 0, respectively,

we solve the constraints in order to minimize the other upper bound.

Before we introduce the main result of this section, consider the following set of

variables

ψ = {W11θ > 0, W12θ, W22θ > 0, X1θ̂, X2θ̂, Y11θ, K1θ̂, Y12θ, Y22θ, K2θ̂,

Mθ > 0, X̄θ̂ = K̄θ̂ > 0,∇θ̂, Ωθ̂, Γθ̂, Cηθ̂, Dηθ̂

}
, (5.32)

ψ1 = {W11θ > 0, W12θ, W22θ > 0, X1θ̂, X2θ̂, Y11θ, K1θ̂, Y12θ, Y22θ, K2θ̂,

Mθ > 0, X̄θ̂ = K̄θ̂ > 0,∇θ̂, Ωθ̂, Γθ̂, Cηθ̂, Dηθ̂

}
∪ ζ1 (5.33)

where ζ1 denotes the set containing λ and γ.

The next theorem provides a sufficient condition for the FDF design for the mixed

H2/H∞ problem.

Theorem 19. If for a given upper bounds λ > 0 and γ > 0 there exist ψ as in (5.32) such

that the inequalities (5.18), and (5.24)-(5.26) hold for all feasible θ, β, θ̂, then a suitable

LPV FDF as in (5.12) which solves simultaneously the H∞ and H2 fault detection problems

(5.17) and (5.16) is given by Aηθ̂ = X̄−1

θ̂
∇θ̂, Bηθ̂ = X̄−1

θ̂
Ωθ̂, Mηθ̂ = X̄−1

θ̂
Γθ̂, Cηθ̂ = Cηθ̂, and

Dηθ̂ = Dηθ̂. Alternatively, one can consider both or one of the upper bounds λ and γ, as

variables, and solve the optimization problems in ψ1 (5.33) according to the stages (i) or

(ii).

Proof: The proof follows directly from the proofs for Theorems 17 and 18. �
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Remark 16. Notice that Theorems 18, 17 and 19 are LMI conditions that provide the

system performance regarding the H∞, H2, and H2/H∞, respectively. Observe that the

LMI conditions in (5.24), (5.25), (5.26), and (5.18) , are defined as infinite dimensional

optimization problem that must be solved. By using the change of variables presented in

sub-section 5.2.0.2 and explained at the beginning of this section, we can re-write the LMI

optimization problems in terms of the new multi-simplex parameter α̃ ∈ Λm,2 × Λm,2. This

sort of optimization problems is hard to deal with but, however, they can be handled by

using the modern LMI Parsers as ROLMIP (AGULHARI et al., 2019) and YALMIP

(LOFBERG, 2004), which allow us to set polynomial degrees for the optimization variables.

This type of polynomial relaxation permits the problem to be rewritten as an analysis of the

positivity of homogeneous polynomial matrices (see Definition 9), which is the procedure

made by the ROLMIP, and after that the next step is to use a semidefinite programming

solver to acquire the solution.

Remark 17. Note that in Theorems 18, 17, and 19 the variables that define if the FDF

is in the Robust form or in the Affine form, are ∇θ̂, Ωθ̂, Γθ̂, Cηθ̂, Dηθ̂, and X̄θ̂. If the

degree of those homogeneous polynomial matrices are set to be 0, the FDF designed will be

Robust, meaning that the FDF obtained will be parameter-independent. For a homogeneous

polynomial matrices degree equal to 1, the FDF obtained will be in the affine form. Observe

that a higher degree of the homogeneous polynomial can be set, leading to the design of

FDF with a higher degree. It is important to discuss that it is also allowed to change the

degree of the other variables in Theorems 18, 17, and 19, such as Y11θ, Y12θ, Y22θ, Mθ,

W11θ, W12θ, and W22θ , with this choice mainly affecting the level of conservatism and the

computational effort.

Remark 18. Notice that in Theorems 17 and 18 there are a parameter ξ, the purpose of

this particular parameter is to improve the optimization problem results. The simplest way

to obtain ξ is to perform a scalar search where ξ ∈ [−1 1], and use the ξ value of where

the upper bound obtained is the lowest.

5.2.2 Simulations Results

As in the previous sections, we are using the coupled-tank model with a fault signal

representing an abnormal input on the first tank. The LPV parameter in the tank couple

models a flux variation in the connection between tanks. The matrices that compose the

system on the LPV formulation is given by

A1 =
[ −0.0239 −0.0127

0.0127 −0.0285

]
, A2 = [ 0 1

1 0 ] , B = [ 0.71 0
0 0.71 ] , J = [ 0.0071 0

0 0.0071 ] ,
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F = [ 0.71
0 ] , C = I2×2, D = [ 0.01 0

0 0.01 ] , E = [ 0
0 ] , |θ(k)|6ti=0.03 ,

where F has the same structure of the control input matrix B, representing an abnormal

input in the first tank, and the matrix E is null since we do not consider that there is a

sensor fault during the simulation. Observe that the only matrix that is subjected to LPV

is matrix A, representing a variation in the valve that connects both tanks. Regarding the

estimation parameter, we need to set a specific value for the range of σ(k) beforehand. We

can find in the literature some possible ways to obtain this range, see for instance (PALMA;

MORAIS; OLIVEIRA, 2018), where a Monte Carlo simulation is performed to obtain

this information which is a reliable method to find this range when implementing the

FDI. However, since finding the range of σ(k) is not the focus of the present chapter, we

arbitrarily set the range of σ(k) as |σ(k)| 6 di = 0.01. To obtain the estimated parameter

θ̂ we implemented the Recursive Least Square (RLS) algorithm (PAULO, 2013; SAYED,

2011). We note that any other adaptive filter algorithms can also be implemented to

obtain θ̂, such as H∞ adaptive filter algorithm or Least Mean Square-based algorithm.

Remark: Note that the level of reliability in the estimation process is directly connected

with the value of σ(k), as the less reliable the process the higher the value of σ(k) must be.

The parameter θ(k) behavior is presented in Fig. 31 which we assume to be the

0 150 300

Instant k
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-0.01

0

0.01
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0.04
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Figure 31: Behavior for the Linear-Parameter variable θ(k) and σ(k).

representation of an imprecision in the valve that interconnects the first tank with the

second one.

In the sequence, we present the simulation results given in two distinct parts, the

upper bound behavior analysis, and temporal analysis. First, we analyze the obtained

values for the upper bounds λ and γ when performing a search in the scalar ξ in the range

]−1 1[ with 100 steps with the same length. These values for the upper bounds are shown

in Fig. 32.
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Figure 32: Upper bounds γ and λ behavior for Theorem 17 and 18 when scalar ξ varies.
Rob denotes the results using the Robust structure, and Aff represents the results using
Affine structure.

Examining the curves in Fig. 32, for the first behavior we can observe is that the

values of γ and λ considering the robust form are higher than the affine structure. This is

an expected result, mainly due to the less amount of variable in the LMIs that leads to a

higher level of conservatism imposed in the optimization problem.

Following a similar procedure, we consider the mixed H2/H∞ guaranteed costs ap-

proach. For that, we assume a fixed upper bound γ = 0.01 related to the upper bound for

H∞ and we search for the minimum value of λ, as it was introduced in statement (ii) in

Subsection 5.2.1.3. In Fig. 33 we present the obtained values for the upper bound λ given

the aforementioned information when the scalar ξ varies in the same interval as previously

used.
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Figure 33: Behavior of the upper bound λ for Theorem 19 when ξ varies and γ = 0.01.
Rob denotes the results using the Robust structure, and Af represents the results using
Affine structure.

Looking at the curves shown in Fig. 33 a few statements can be made. Regarding

the robust form of the FDF, we see that the first feasible solution for Theorem 18 is

provided at ξ = 0.5. As expected, the upper bound values are higher considering the
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robust structure for the FDF when compared to the affine structure.

Similarly to what we observe in Figs.32 and 33, the higher values obtained for the

upper bounds are the ones assuming the Robust form for the FDF in all the studied

approaches.

The robust filter obtained using Theorem 17 to provide the upper bounds for the H∞
norm is given by

Aηrob
= [ −1.07 −87.06

0.01 1.08 ] , Bηrob
= [ −1.057 −82.75

0.0007 1.058 ] , Mηrob
=
[ −0.47
−0.00

]
,

Cηrob
= [ 0.49 38.31 ] , Dηrob

= [ 0.49 38.35 ] .

The affine structure obtained from Theorem 17 to provide upper bounds for the H∞ norm

is given by

Aηaff1
= [ −0.89 −70.49

0.01 0.87 ] , Aηaff2
= [ 0.12 4.89

−0.00 −0.06 ] ,

Bηaff1
=
[ −0.93 −70.16
−0.00 0.89

]
, Bηaff2

= [ 0.09 71.08
−0.00 −0.91 ] ,

Mηaff1
= [ −0.75

0.00 ] , Mηaff2
= [ −0.71

0.00 ] ,

Cηaff1
= [ 0.49 38.96 ] , Cηaff2

= [ 0.00 0.04 ] ,

Dηaff1
= [ 0.49 38.96 ] , Dηaff2

= [ −0.49 −38.91 ] .

Regarding the results obtained for the H2 norm using Theorem 18, the robust filter is

given by

Aηrob
= [ −1.02 −10.09

0.01 0.12 ] , Bηrob
= [ −1.00 −10.07

0.00 0.15 ] , Mηrob
=
[ −0.70
−0.00

]
,

Cηrob
= [ 0.49 4.91 ] , Dηrob

= [ 0.49 4.90 ] .

The affine filter obtained with Theorem 18 is given by

Aηaff1
= [ −1.02 −3.75

0.01 0.05 ] , Aηaff2
=
[ −0.00 −0.03

0.00 −0.01

]
,

Bηaff1
=
[ −0.99 −3.99
−0.00 0.08

]
, Bηaff2

= [ 0.00 3.97
−0.00 −0.10 ] ,

Mηaff1
=
[ −0.71
−0.00

]
, Mηaff2

=
[ −0.70
−0.00

]
,

Cηaff1
= [ 0.49 1.82 ] , Cηaff2

= [ 0.00 0.04 ] ,

Dηaff1
= [ 0.50 1.95 ] , Dηaff2

= [ −0.49 −1.90 ] .

Regarding the mixed H2 / H∞ results, the robust filter obtained using Theorem 19 is
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given by

Aηrob
= [ −1.02 −12.16

0.01 0.11 ] , Bηrob
= [ −1.00 −12.14

0.00 0.14 ] , Mηrob
= [ −0.71

0.00 ] ,

Cηrob
= [ 0.49 36.28 ] , Dηrob

= [ 0.49 36.24 ] .

The matrices for the affine structured using Theorem 19 are given by

Aηaff1
=
[ −1.02 −4.23

0.01 −0.00

]
, Aηaff1

=
[ −0.00 1.13

0.00 −0.01

]
,

Bηaff1
= [ −1.00 −3.81

0.00 0.01 ] , Bηaff2
=
[ −0.00 5.04

0.00 −0.02

]
,

Mηaff1
= [ −0.71

0.00 ] , Mηaff2
=
[ −0.70
−0.00

]
,

Cηaff1
= [ 0.49 32.34 ] , Cηaff2

= [ 0.00 −16.76 ] ,

Dηaff1
= [ 0.49 32.25 ] , Dηaff2

= [ −0.50 −49.21 ] .

5.2.2.1 Monte Carlo Simulation

Using the similar setup as defined in the previous section, the major difference is that

the network dropout is not accounted for in this simulation, since the designs proposed in

this Section do not deal with this particular problem. For instance, matrix C is static.

The Monte Carlo simulation with 300 iterations was performed and the results are divided

into two classes the Robust, and Affine results. For each class, we provide the following

results, the mean and standard deviation of the residue signal obtained using Theorems

17, 18, and 19, and after that the evaluation function for the respective residues.

In Figs. 34a, 34b, 34c , we present some temporal simulations using all the FDF

designed using Theorem 17, 18, 19 in the Robust forms. Firstly, we present the residue

signal obtained. Observing Figs. 34a, 34b, and 34c, allow us to conclude that all three

cases presented a low standard deviation and similar residue signal. The result obtained

using Theorem 19 presented a small advantage when compared with the results obtained

with Theorems 17 and 18, since it provided the higher values. This information can be

verified after the evaluation process, which will be displayed next. In Figs. 35a, 35b and

35c we can see that the interval where the fault was detected was respectively k = [121 132]

for Theorem 17, k = [134 146] for Theorem 18, and k = [119 126] for Theorem 19. We

can see that the evaluation function for Theorem 19 has a stepper curve and a shorter

detection range (7) showing that the FDF designed has a higher performance. As expected

the evaluation function when there is no fault is almost null in all cases. Now in Fig. 36 the

evaluation function for all the robust cases are presented. We assume that the threshold
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Figure 34: Mean and standard deviation for the residue signal (with and without fault)
obtained using the FDI in the robust form designed via Theorem 17 (blue curve), 18 (red
curve), and 19 (magenta curve).

is equal to TH = 10. Analyzing Fig.36 we can confirm that the better performance is

provided by Theorem 19. But observing all curves we can confirm that all the FDF in

the robust form designed using Theorem 17, 18, and 19 are viable solutions for the FDI

problem. Another important aspect is that the evaluation function when there is no fault

is almost null during the entire simulation, which is different from FDF counterparts in

Chapters 2, 3 that consider Markov Jumps.

In Figs. 37a, 37b, 37c , we present some temporal simulations using all the FDF

designed using Theorem 17, 18, 19 in the Affine forms. We present now the residue signal

gathered during the simulation. Note that in Fig.37a the higher value and the smaller

standard deviation, which provide a fast and at the same time reliable detection process.

On the other hand, results presented in Fig. 37b the level of reliability is lower since the

standard deviation is higher, which may lead to false alarms. This particularity observed

in the results in 37b, is expected due to the fact this design is based solely on H2 norm,

which does not mitigate the exogenous disturbance. Figs. 38a, 38b, and 38c the detection

interval are respectively, k = [120 126], k = [137 156], and k = [122 125]. Once again, the

FDF designed using Theorem 19 provided a better performance, regarding the steepness

of the curve and the standard deviation. Besides these performance differences, all three
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Figure 35: Mean and standard deviation for the evaluation function (with and without
fault) obtained using the FDI in the robust form designed via Theorem 17 (blue curve),
18 (red curve), and 19(magenta curve).
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Figure 36: The mean value of the evaluation function signal for three distinct cases, where
the blue curve represent the results using Theorem 17, the red curve represent the results
obtained via 18, the magenta curve represents the results through Theorem 19, and the
cyan line denotes the threshold TH.

approaches behave as intended.

The evaluation function obtained using the Affine form are presented in Fig.39 As

expected the results obtained using Theorem 17 presented the better performance, but

closely followed by the results using Theorem 19. All the solutions are seen as viable

solutions for the FDI problem, however, the results for Theorem 18 are more prone to
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Figure 37: Mean and standard deviation for the residue signal (with and without fault)
obtained using the FDI in the affine form designed via Theorem 17 (blue curve), 18 (red
curve), and 19(magenta curve).

false alarms.

5.3 Gain Scheduled Fault Accommodation Formula-

tion

Consider the following discrete-time linear system, that depends on time-varying

parameters

G :

x(k + 1) = Aθ(k)x(k) +Bθ(k)u(k) +Bθ(k)h(k) + Jθ(k)w(k) + Fθ(k)f(k),

y(k) = Cθ(k)x(k) +Dθ(k)w(k) +Dfθ(k)f(k),
(5.34)

where x(k) ∈ Rnx , u(k) ∈ Rnu , w(k) ∈ Rnw , and y(k) ∈ Rny , are the system states,

control input, exogenous input, and the measurement signal, respectively. The fault signal

is represented by f(k) ∈ Rnf . The fault accommodation control signal is denoted by

h(k) ∈ Rnu . It is assumed that the signals w(k), f(k) ∈ L2. As defined for the FDF in

the previous section, the index θ(k) represents the same bounded time-varying parameter.

Another particularity presented in the previous section that also remains true here, is

that the matrices that compose the system (5.34), are all in the affine form, as described
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Figure 38: Mean and standard deviation for the evaluation function (with and without
fault) obtained using the FDI in the affine form designed via Theorem 17 (blue curve), 18
(red curve), and 19(magenta curve).
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Figure 39: The mean value of the evaluation function signal for three distinct cases, where
the blue curve represent the results using Theorem 17, the red curve represent the results
obtained via 18, the magenta curve represents the results through Theorem 19, and the
indigo line denotes the threshold TH.

in (5.4).

The change of variable presented in Section 5.2.0.2 is also implemented here, since the

premise of the time-varying parameter θ(k) is not precisely known, and the assumption of

θ(k) is contaminated by an additive disturbance σ(k), where σ is also a bounded parameter.

Assuming the nominal situation (without fault signal), system (5.34) is controlled by
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a state-feedback controller, as in (CAIGNY et al., 2010). Therefore, the nominal control

law is described as

u(k) =

(
K0 +

m∑
i=1

θ̂(k)iKi

)
︸ ︷︷ ︸

=:Kθ̂(k)

x(k). (5.35)

Since the problem we tackle in this chapter regards the occurrence of faults, the access of

the system states x(k) is unrealistic. Therefore, we assume that the states are estimated

using some type of adequate procedure. However, for the sake of simplicity, we are omitting

the notation to avoid overcrowding the equations.

The present chapter aims to provide a fault accommodation controller with the main

purpose of producing an auxiliary control signal whenever a fault occurs, or no input

otherwise. The fault compensation controller can be described by

Kc :


η(k + 1) = Aθ̂(k)η(k) + Mθ̂(k)u(k) + Bθ̂(k)y(k),

h(k) = Cθ̂(k)η(k),

η(0) = η0, θ̂(0) = θ̂0,

(5.36)

where η(k) ∈ Rnη represents the FAC signal, u(k) and y(k) are, respectively, the control

signal from the regular controller and the measured signal from the system. Note that the

nominal controller (5.35), and the Fault Accommodation controller (5.36) depend both

only on the estimated LPV parameter θ̂(k). Therefore, the matrices that compose the FAC

(5.36) can be written using the affine form, as in (5.4), where the matrices affinely depend

on θ̂(k). Thus, the system (5.34) depends on the parameter θ(k), while the state-feedback

controller (5.35) and FAC controller (5.36) depend on the parameter θ̂(k).

The augmented system with the state feedback control law (5.35) and with the

FAC (5.36) is given by

Gaug :


x̄(k + 1) = Āθ(k)θ̂(k)x̄(k) + B̄θ(k)θ̂(k)w̄(k),

o(k) = C̄θ(k)θ̂(k)x̄(k) + D̄θ(k)θ̂(k)w̄(k),

x̄0 = η0,

(5.37)

where x̄(k) = [x′(k) η′(k)]′ and w̄(k) = [w′(k) f ′(k)]′. To simplify the visualization of

the resulting LMIs, we omit the time-dependency in the time-varying parameters by
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considering hereafter θ = θ(k), and θ̂ = θ̂(k). The augmented matrices are as follows:

Āθθ̂ =
[

Aθ−BθKθ̂ BθCθ̂
Bθ̂Cθ−Mθ̂Kθ̂ Aθ̂

]
, B̄θθ̂ =

[
Jθ Fθ

Bθ̂Dθ Bθ̂Dfθ

]
,

C̄θ = [ 0 −BθCθ̂ ] , D̄θ = [ 0 Fθ ] .
(5.38)

The main goal of this chapter is to design a FAC as presented in (5.36) where the difference

o(k) = Fθ(k)f(k)−Bθ̂(k)h(k) is close to zero, meaning that the fault accommodation control

signal will suppress the fault signal. Therefore, the optimization problem for the H∞ norm

is described as

‖Gaug‖∞ = sup
‖w̄‖2 6=0,w̄∈L2

‖o‖2

‖w̄‖2

< γ, (5.39)

where γ > 0, as similarly described in (CAIGNY et al., 2010). For the H2 norm case, the

optimization problem is given by

‖Gaug‖2 = lim sup
T→∞

E

{
1

T

T∑
k=0

o(k)′o(k)

}
< λ, (5.40)

where λ > 0, T is a positive integer that represents the time horizon, w̄(k) in (5.37) is a

standard white noise (Gaussian zero-mean in which the covariance matrix is equal to the

identity matrix), and E represents the expected value operator, see (CAIGNY et al., 2010)

for more details.

5.3.1 Theoretical Results

In this section, we present our main results on obtaining a gain-scheduled fault

accommodation controllers for LPV systems, having as performance indexes the H∞ and

H2 norms.

It is essential to explain that the results will be presented in terms of the original

parameters θ(k) and θ̂(k) to feature that the FAC designed depends solely on the measured

parameter θ̂(k). Afterwards, in order to solve the theorems presented in this section, it

is imperative the use of the change of variables in sub-section 5.2.0.2 and rewriting all

matrices in terms of the multi-simplex parameter α̃ ∈ Λm,2. As previously stated, to easy

the notation, we set θ = θ(k), θ̂ = θ̂(k), and β = θ(k + 1).
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5.3.1.1 H∞ Fault Accommodation Control Design

Firstly, we present a theorem for obtaining a gain-scheduled FAC using the H∞ norm.

Theorem 20. If there exist symmetric positive definite matrices W11θ, W22θ matrices W12θ,

Y1θ̂, Y2θ̂, Y̌θ̂, Ωθ̂, ∇θ̂, Γθ̂, Cηθ̂ with compatible dimensions, and a given scalar parameter

ξ ∈ [−1 1] such that the following inequality


Π1,1 Π1,2 Π1,3 Π1,4 ξ(Y1θ̂Jθ+Ωθ̂Dθ) ξ(Y̌θ̂Fθ+Ωθ̂Dfθ) 0

• Π2,2 Π2,3 Π2,4 ξ(Y2θ̂Jθ+Ωθ̂Dθ) ξ(Y̌θ̂Fθ+Ωθ̂Dfθ) BθCηθ̂
• • Π3,3 Π3,4 Y1θ̂Jθ+Ωθ̂Dθ Y̌θ̂Fθ+Ωθ̂Dfθ 0

• • • Π4,4 Y2θ̂Jθ+Ωθ̂Dθ Y̌θ̂Fθ+Ωθ̂Dfθ 0

• • • • −γ2I 0 0
• • • • • −γ2I 0
• • • • • • −I

 < 0, (5.41)

with

Π1,1 = −W11θ + ξHer(Y1θ̂Aθ − Y1θ̂BθKθ̂ + Ωθ̂Cθ − Γθ̂Kθ̂),

Π1,2 = −W12θ + ξ(Y1θ̂BθCηθ̂ +∇θ̂ + (A′θ −K ′θ̂B
′
θ)Y̌

′
θ̂

+ C ′θΩ
′
θ̂
−K ′

θ̂
Γ′α̃),

Π1,3 = (A′θ −K ′θ̂B
′
θ)Y

′
1θ̂

+ C ′θΩ
′
θ̂
−K ′

θ̂
Γ′
θ̂
− ξY1θ̂,

Π1,4 = (A′θ −K ′θ̂B
′
θ)Y

′
2θ̂

+ C ′θΩ
′
θ̂
−K ′

θ̂
Γ′
θ̂
− ξY̌θ̂,

Π2,2 = −W22θ̂ + ξHer(Y1θ̂BθCηθ̂ +∇θ̂),

Π2,3 = C′
ηθ̂
B′θY

′
1θ̂

+∇′
θ̂
− ξY2θ̂, Π2,4 = C′

ηθ̂
B′θY

′
1θ̂

+ Γ′
θ̂
− ξY̌θ̂,

Π3,3 = −W11β −Her(Y1θ̂), Π3,4 = −W12β − Y̌θ̂ − Y
′

2θ̂
, Π4,4 = −W22β −Her(Y̌θ̂),

holds for all θ, θ̂, β, under the boundaries |σi(k)| 6 di, |θi(k)| 6 ti, then a suitable

linear parameter-varying FAC, as in (5.36), is given by Aηθ̂ = Y̌ −1

θ̂
∇θ̂, Bηθ̂ = Y̌ −1

θ̂
Ωθ̂,

Mηθ̂ = Y̌ −1

θ̂
Γθ̂, and Cηθ̂, and (5.39) is satisfied.

Proof: Consider the augmented matrices in (5.37), and the following structure for Wθ,

Wβ, Yθ̂

Wθ =
[
W11θ W12θ

W ′12θ W22θ

]
, Wβ =

[
W11β W12β

W ′12β W22β

]
, Yθ̂ =

[
Y1θ̂ Y̌θ̂
Y2θ̂ Y̌θ̂

]
. (5.42)

From the above, the constraints (5.41) can be rewritten as

Q+ U ′
θθ̂
Y′
θ̂
V + V ′Yθ̂Uθθ̂ < 0, (5.43)

where

Q =

 −Wθ 0 0 C̄′
θθ̂

0 −Wβ 0 0

0 0 −γ2I D̄′
θθ̂

C̄θθ̂ 0 D̄θθ̂ −I

 , Uθθ̂ = [ Āθθ̂ −I B̄θθ̂ 0 ] , V ′ = [ ξI I 0 0 ] . (5.44)
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Pre- and post-multiplying (5.43) by

Bθθ̂ =

[
I Ā′

θθ̂
0 0

0 B̄′
θθ̂

I 0

0 0 0 I

]
, (5.45)

and then applying the Schur complement we have that (5.41) implies the constraint in

(SOUZA; BARBOSA; NETO, 2006, Lemma 3), which yields (5.39), completing the proof.

�

5.3.1.2 H2 Fault Accommodation Control Design

We present as follows a theorem that proposes a FAC having the H2 norm as a

performance index.

Theorem 21. If there exist symmetric positive definite matrices W11θ, W22θ, Mθ and

matrices W12θ, X̌θ̂, X1θ̂, X2θ̂, Ωθ̂, ∇θ̂, Γθ̂, Cηθ̂ with compatible dimensions, and a given

scalar parameter ξ such that the following inequality


Ψ1,1 Ψ1,2 Ψ1,3 Ψ1,4 ξ(X1θ̂Jθ+Ωθ̂Dθ) ξ(X̌θ̂Fθ+Ωθ̂Dfθ)

• Ψ2,2 Ψ2,3 Ψ2,4 ξ(X2θ̂Jθ+Ωθ̂Dθ) ξ(X̌θ̂Fθ+Ωθ̂Dfθ)

• • Ψ3,3 Ψ3,4 X1θ̂Jθ+Ωθ̂Dθ X̌θ̂Fθ+Ωθ̂Dfθ

• • • W22θ−Her(X̌θ̂) X2θ̂Jθ+Ωθ̂Dθ X̌θ̂Fθ+Ωθ̂Dfθ
• • • • −I 0
• • • • • −I

 < 0, (5.46)

with

Ψ1,1 = −W11θ + ξHer(X1θ̂Aθ −X1θ̂BθKθ̂ + Ωθ̂Cθ − Γθ̂Kθ̂),

Ψ1,2 = −W12θ + ξ(X1θ̂BθCηθ̂ +∇θ̂ + (A′θ −K ′θ̂B
′
θ̂
)X̌ ′

θ̂
+ C ′θΩ

′
θ̂
−K ′

θ̂
Γ′
θ̂
),

Ψ1,3 = (A′θ −K ′θ̂B
′
θ)X

′
1θ̂

+ C ′θΩ
′
θ̂
−K ′

θ̂
Γ′
θ̂
− ξX1θ̂,

Ψ1,4 = (A′θ −K ′θ̂B
′
θ)X

′
2θ̂

+ C ′θΩ
′
θ̂
−K ′

θ̂
Γ′
θ̂
− ξX̌θ̂,

Ψ2,2 = −W22θ + ξHer(X1θ̂BθCηθ̂ +∇θ̂), Ψ2,3 = C′
ηθ̂
B′θX

′
1θ̂

+∇′
θ̂
− ξX2θ̂,

Ψ2,4 = C′
ηθ̂
B′θX

′
1θ̂

+ Γ′
θ̂
− ξX̌θ̂, Ψ3,3 = −W11β − Her(X1θ̂),

Ψ3,4 = −W12β − X̌θ̂ −X
′
2θ̂
,

Mθ 0 Bθθ̂Cηθ̂ 0 Fθ
• W11θ W12θ 0 0
• • W22θ 0 0
• • • I 0
• • • • I

 > 0, (5.47)

Tr(Mθ) > λ2, (5.48)

holds for all θ, β, θ̂ under the boundaries |σi(k)| 6 di, |θi(k)| 6 ti, then a suitable



134

linear parameter-varying FAC as in (5.36), is given by Aηθ̂ = X̌−1

θ̂
∇θ̂, Bηθ̂ = X̌−1

θ̂
Ωθ̂,

Mηθ̂ = X̌−1

θ̂
Γθ̂, and Cηθ̂ which satisfies (5.40).

Proof: Consider the augmented matrices in (5.37), and the following structure for Wθ,

Wβ, Xθ̂

Wθ =
[
W11θ W12θ

W ′12θ W22θ

]
, Wβ =

[
W11β W12β

W ′12β W22β

]
,

Xθ̂ =
[
X1θ̂ X̌θ̂
X2θ̂ X̌θ̂

]
. (5.49)

The inequality (5.46) can be rewritten as

Q + U ′
θθ̂
X′
θ̂
V + V ′Xθ̂Uθθ̂ < 0, (5.50)

where

Q =

[
−Wθ 0 0

0 −Wβ 0
0 0 −I

]
, U ′

θθ̂
=

[
Ā′
θθ̂
−I
B̄′
θθ̂

]
, V =

[
ξI
I
0

]
. (5.51)

Assume the null bases for U and V as

N ′U =
[
I Ā′

θθ̂
0

0 B̄′
θθ̂

0

]
, N ′V =

[ −I ξI 0
0 0 I

]
. (5.52)

By pre- and post-multiplying (5.50) by NU , and, using the Schur complement twice we

obtain the same constraints as presented in (CAIGNY et al., 2010, Theorem 2). The results

within (CAIGNY et al., 2010) show that (CAIGNY et al., 2010, Theorem 2) is equivalent

to (5.40). Concerning the constraint (5.48), we use the same variable substitution as

described at the start of the proof and applying the Schur complement twice we get that

the constraint (5.48) is equivalent to the second constraint in (CAIGNY et al., 2010,

Theorem 2). This concludes the proof. �.

Coordinate Descent Algorithm

Note that the constraints in Theorem 20 and 21 are BMIs, due to the term Cηθ̂

multiplying other variables in the problems. To solve an optimization problem in the

context of BMI forms, we can use, for instance, the Coordinate Descent Algorithm (CDA),

as it was applied in (CARVALHO; OLIVEIRA; COSTA, 2020). The algorithm implemented
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to solve the constraints in this chapter is given as follows.

Algorithm 4: Coordinate Descent Algorithm.

1 Input: K0
θ̂
, γ0 or λ0, tmax, φ.

2 Output: Aηθ̂, Bηθ̂, Mηθ̂, Cηθ̂.

3 Initialization:

4 While: γt−1−γt
γt−1 6 φ or t 6 tmax do:

5 Step 1: Solve the constraint in Theorem 20 or 21 considering Cθ̂ as a

constant, to initialize the algorithm the first value of Cηθ̂ can be set as K which

can be obtained using the results in (MONTAGNER et al., 2005). Obtain the

values of Y1θ̂, for the Theorem 20 or X1θ̂ for the Theorem 21.

6 Step 2: Solve the constraint in Theorem 20 or 21 this time using the values

of Y1θ̂ or X1θ̂ obtained in Step 1 and Cηθ̂ as a variable. Obtain the value of γt+1

for Theorem 20 or λt+1 Theorem 21.

Notice that the inputs K0
θ̂

represent the starting value of Cηθ̂, γ
0 or λ0 are the input

to calculate the stop criteria at the first iteration, φ is the stop criteria, and tmax is the

maximum number of iterations.

5.3.2 Simulations Results

To illustrate the viability of the proposed approaches, we apply our method to a simple

quarter vehicle model system, (NGUYEN; SENAME; DUGARD, 2015). The states vector

for the linearized model is x(k) is obtained from the discretization of x(t) = [zs żs zus żus],

which represents the displacement for the sprung mass, its variation, the displacement for

the mass unsprung, and its variation. The matrices that compose the discrete-time system

are

A1 =

[
0.99 0.01 0.00 0.00
−0.23 0.97 0.05 0.02
0.01 0.00 0.98 0.00
1.75 0.17 −14.42 0.81

]
, A2 =

[
0.99 0.00 0.00 0.00
−0.19 0.98 0.04 0.01
0.00 0.00 0.98 0.00
1.75 0.17 −14.42 0.81

]
,

B1 =

[ −0.00
−0.017
0.0006
0.13

]
, B2 =

[ −0.00
−0.018

0.00
0.14

]
, J =

[
0.00
−0.02
0.00
0.014

]
, F =

[ −0.00
−0.018

0.00
0.14

]
,

C = [ 1 0 0 0
0 0 1 0 ] , D =

[−0.01
0.10

]
, Df = [ 0

0 ] ,
|θ(k)|6ti=0.05,
|σ(k)|6di=0.005

from where we can see that the time-varying parameter θ(k) affects the dynamical behavior

of the system in A and B, forming a polytope with 2 vertices. In this way, matrices A1, B1,

and A2, B2 represent the vertices of such polytope. The other matrices are not affected

by the time-varying parameter, therefore, their degree of dependence on the parameter

θ(k) is 0. Note that, matrix F has the same structure of the control input matrix B,

for the purpose of representing an abnormal input. Since in this example we are not
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considering the presence of any sensor fault, we have that, Df is null. We assume that the

nominal gain-scheduled state-feedback controllers are obtained using the method described

in (MONTAGNER et al., 2005, Lemma 2), where the authors search for such controllers

in the context of LPV systems without faults. The resulted controller for the system of

this example is

Kaff1
= [ −0.1201 −0.2372 6.3420 0.4433 ]× 104,

Kaff2
= [ 0.3094 0.0391 −1.5798 0.0369 ]× 104.

The range of the disturbance σ(k) is defined a priori, and we arbitrarily set its range in

|σ(k)| 6 di = 0.005. The value of θ̂(k) is obtained in a practical situation by implementing

a variate of the filter, such as Recursive Least Square (RLS) algorithm (PAULO, 2013;

SAYED, 2011).

In the first part of this example, we apply separately Theorems 20 and 21 searching,

respectively, for the upper bounds of the H∞ and H2 norms (γ and λ). For doing so, we

perform a search in the scalar ξ in the range ]−0.9 0.9[ with 10 steps with the same length.

A discussion about the ξ range is made in (ROSA; MORAIS; OLIVEIRA, 2018).

Additionally, we consider the affine and robust structures for the FDF, that is, one

structure that depends on the estimated parameter with degree 1 and another with degree

0. The upper bounds γ and λ obtained with the aforementioned considerations are shown

in Fig. 40. From this figure, note that the scalar search was more effective for the Robust
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Figure 40: Upper bound behavior for Theorems 20 (H∞ norm) and 21 (H2 norm) when
scalar ξ vary for the Robust, and Affine form.

form than the results obtained using the Affine form. This discrepancy was expected since

the Robust form is a more restrict optimization problem, hence, performing the scalar

search provides a higher impact on the results for the Robust form. Summing up, the

results presented in Fig. 40, shows that the using Affine form in this example provides

better results since the upper bound values obtained for both H∞ and H2 norms are in



137

general, lower than the values obtained for the Robust form. Therefore, for the temporal

simulations, we analyze the results obtained using solely the affine form, which we highlight

as follows.

5.3.2.1 Monte Carlo Simulation

Here we implement a Monte Carlos Simulation since the parameter θ̂(k) has some

imprecision, meaning it is not completely deterministic.

The FAC in the affine form obtained applying Theorem 20 with ξ = −0.6 is given by

A∞ηaff0

=

[
0.97 0.31 0.10 0.02
−1.09 −0.03 1.71 −0.21
0.09 0.31 0.53 0.06
1.59 1.04 −24.05 0.19

]
, B∞ηaff0

=

[
0.31 0.03
−0.95 −0.07
0.31 0.03
0.73 0.49

]
A∞ηaff1

=

[ −0.13 3.84 7.10 0.14
−24.64 29.02 153.36 −2.17

3.21 −5.35 −19.71 0.13
−92.32 453.01 596.26 26.82

]
, B∞ηaff1

=

[
3.65 0.36
31.79 3.17
−6.04 −0.60
463.43 46.33

]
,

M∞ηaff0

=

[
0.00
0.02
−0.00
0.11

]
, M∞ηaff1

=

[
0.00
0.02
0.00
−0.21

]
,

C∞ηaff0

= [−2.09 −0.08 8.54 −0.65 ] 104,

C∞ηaff1

= [−0.87−0.105.59−0.19 ] 104.

The affine filter obtained with Theorem 21 with ξ = −0.6 is given by

A2
ηaff0

=

[ 0.99 0.00 −0.00 0.00
−0.47 2.11 −0.77 0.15
0.02 0.27 0.81 0.03
3.04 −24.91 −30.92 −2.16

]
, B2

ηaff0

=

[ −0.01 0.01
1.16 0.01
0.26 −0.01
−25.21 −0.07

]
,

A2
ηaff1

=

[ 1.04 0.41 −0.13 0.05
9.78 107.58 −32.81 13.87
−0.27 −3.46 1.79 −0.45
−79.73 −846.70 225.81 −109.05

]
,

B2
ηaff1

=

[ 0.41 −0.05
104.11 −11.68
−3.77 0.39
−807.37 91.51

]
, M2

ηaff0

=

[−0.00
−0.03
0.01
0.19

]
,

M2
ηaff1

=

[
0.00
−0.01
−0.00
0.02

]
, C2

ηaff0

= [−0.40 −0.04 1.27 −1.02 ] 103,

C2
ηaff1

= [−2.72 −2.44 7.52 −2.95 ] 103.

For this example, we consider that the fault signal f(k) represents an oil leak, which

reduces the damping capability of the system. Consider that the leak started at t = 2.5s,

which reduces the damping capability by 20%, and then it gradually lowers until it reaches

a reduction of 50%.

We show in Figs. 41 and 42, the respectively results regarding the output and control

signals. From Fig.41, it can be seen that the control design based on the Affine form

provides a smoother behavior for all three situations of faults. This particular behavior

happens mainly due to the lower level of conservatism of the Affine form, and also due
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to the parameter variation throughout all the simulation time. Additionally, both FAC

approaches provide an accommodation behavior as intended. However, when we compare

the FAC approaches with that of the nominal controller, the FAC approaches yield a

more aggressive control signal, which is an expected behavior. In summary, the proposed

fault accommodation control approaches provided a suitable solution to mitigate the fault

signal, and at the same time do not interfere with the controller when there is no fault.
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Figure 41: Mean of the states signal obtained using FAC designed in the affine via
Theorems 20 (black curve) and 21 (green curve), where the system is subjected to a fault.
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Figure 42: Mean of the control signal obtained using FAC designed in the affine via
Theorems 20 (black curve) and 21 (green curve), where the system is subjected to a fault.

5.4 Concluding remarks

In this chapter, we presented the theoretical results obtained for the FDF and FAC using

the LPV systems assuming that the parameter is not accessible. Hence, the assumption of

the imprecision is incorporated during the FDF and FAC process. We also provided an

illustrative example, and the results obtained allow us to state that the proposed methods

are viable.
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6 CONCLUSIONS

We summarize in a list the main contributions of this thesis and we point out possible

topics that can be tackled in the near future based on the results herein.

6.1 Contribution

The main focus of this thesis was the development of procedures to design Fault

Detection Filters to be implemented in an FDI scheme, and Fault Accommodation

Controller to mitigate the effect of faults on ongoing processes.

� In Chapter 2 we addressed the FDF and FAC design under the assumption that

the network that is responsible to transmit the information packet is semi-reliable.

To model such behavior, we proposed that the FDF and FAC design was made

under the Markovian Jump Linear Systems framework, which allow us to use

Markov chains to model the network behavior and its particularities. The main

contributions in Chapter 2 were the design of FDF using H∞-norm, H2-norm,

H− index, Mixed H2/H∞, and Mixed H−/H∞ under the MJLS framework (CAR-

VALHO; OLIVEIRA; COSTA, 2018b; CARVALHO; OLIVEIRA; COSTA, 2018a;

CARVALHO; OLIVEIRA; COSTA, 2018; CARVALHO et al., May 2021). For the

contributions regarding the FAC problem, we proposed the H∞ FAC design for

MJLS (CARVALHO et al., 2020b).

� In Chapter 3, we kept tackling the FDF and FAC problem from the MJLS point of

view but adding the assumption that the network mode is not instantly accessible.

This new assumption is important because the idea of the instantaneous access to

the network is not realistic from a practical standpoint. To deal with this issue

we proposed the use of the MJLS approach which uses Hidden Markov modes to

model this inaccessibility. The contributions in Chapter 3, were divided into three

sections on FDF, SFDC, and FAC. The results referring to the FDF section were the
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design using H∞-norm, H2-norm, and the Mixed H2/H∞ (CARVALHO; OLIVEIRA;

COSTA, 2018c; CARVALHO; OLIVEIRA; COSTA, 2020). The novelty regarding

SFDC part is the SFDC design using H∞-norm, H2-norm, and Mixed H2/H∞
(CARVALHO; OLIVEIRA; COSTA, 2020). The results for the FAC section were

the FAC design using H∞-norm, H2-norm, and Mixed H2/H∞ (CARVALHO et al.,

2020a).

� In Chapter 4 we focus our effort on providing an FDF and FAC design where the

network behavior was considered and adding the possibility to consider a Lur’e type

non-linearity that occurs in the system. This proposition is of utmost importance

since all systems are non-linear on some extent, and on some occasion, the use

of linearization processes may not provide an adequate solution. Therefore, it

is important to put into account those non-linear behaviors to provide a more

trustworthy solution for the FDF and FAC designs. The contribution of Chapter 4 was

the design of FDF for Lur’e MJS using H∞-norm (CARVALHO; JAYAWARDHANA;

COSTA, 2021).

� In Chapter 5 we changed the pace and tackled the FDF and FAC design problem

from another point of view, which was achieved using the Linear Parameter Varying

framework. Following a parallel idea from Chapter 3, we assumed that the LPV

parameter was not directly accessible. Hence, the parameter was estimated, but we

assume that the estimated parameter was not precise, meaning that the parameter

was contaminated by additive noise. To add the imprecision in the parameter and

still guarantee the performance, we proposed the use of the Multi-simplex technique

to model an additive noise in the parameter. From the practical point of view, this

idea is interesting, since it allows us to implement less sophisticated identification

processes to gather the LPV parameter in real-time. The contribution in Chapter 5

were the design of Gain-Scheduled FDF and FAC for LPV systems using the H∞-

norm, H2-norm, and Mixed H2/H∞. The FDF was submitted at IEEE ACCESS

and the results regarding the FAC are presented in (CARVALHO et al., 2021a).

6.2 Further Research

There are many routes that we could take after the results proposed in this thesis.

Some are closer to the results presented, and others are more exciting and challenging.

� A more direct way to follow the results herein would be to design an FDF and
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FAC, under the assumption that network mode is not directly accessible, and also

considers that the system presents a non-linear behavior. This would be a direct

association of Chapters 3, 4.

� One increment that may be possible is to derive the H− index LMI constraint for

the MJLS under the assumption that the parameter is not directly accessible. And

them design the FDF or FAC under these circumstances.

� Another possible follow-up would be the assumption that the Markov chain is

not homogeneous and redraw the results presented in Chapter 2. Removing the

assumption that the Markov chain is homogeneous imposes some new challenges.

A possible way to deal with these new issues would be to use the framework from

Chapter 2, and use the techniques from Chapter 5 to model the transition matrix

with time-varying parameters. This approach is allowed under the assumptions made

presented in (ABERKANE, 2012).

� Another possible path would be the transition from the model-based approach to

the data-driven strategy. That would be interesting due to the fact that in some

circumstances the data-driven design may be more advantageous when compared

with the model-based. Those discrepancies were discussed in the first chapter

of this dissertation. This could be achieved by using the approach presented in

(NORTMANN; MYLVAGANAM, 2020). (NORTMANN; MYLVAGANAM, 2020)

provided an approach to design LPV controller using a data-driven strategy, which

can be extended to FDF and FAC design.
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APPENDIX A – NUMERICAL

EXAMPLES MODELING

AND BASIC RESULTS

Here, we briefly explain and provide the necessary references of the models employed

in the simulations throughout this thesis.

A.1 Coupled tank model

The model using in the majority of the examples in the thesis was the coupled

tank model, since it is a good benchmark model to test the viability of the approaches,

(Feedback Instruments Ltd., 2013). We borrowed the numerical values from the specific

educational system. A diagram that represents the structure of the system is presented

below, We can describe the dynamic of this system by writing an equation that denotes

u1(k) u2(k)

H1

H2

Tank 1 Tank 2

Figure 43: Coupled tank model.

the sum of inputs and output flows on each tank. The height of each tank is determined

by the sum of flows which rules the volume on each tank.

p∑
i=1

Qini(t)−
l∑

j=1

Qoutj(t) = Acs
∂H(t)

∂t
(A.1)
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where Acs represents the area of tanks cross section. The flow output can be written as

Qoutj(t) = α
√

2gH(t) (A.2)

where α represent the cross section of the output pipe or the interconnection pipe. Hence,

the non-linear system that models the dynamics is

∂H(t)

∂t
=

1

Acs

p∑
i=1

Qini(t)−
1

Acs

( l∑
j=1

α
)√

2gH(t) (A.3)

Obtaining the LTI model using Taylor series, considering that the non-linear system is at

an equilibrium point. Assuming a specific value of H0 and Qin0 allow us to write

∂Ĥ(t)

∂t
= χĤ(t) + ΞQ̂in(t) (A.4)︷ ︸︸ ︷

H(t)−H0

Ĥ(t)

∂t
=

−αq
Acs
√

2gH0︸ ︷︷ ︸
χ

(H(t)−H0)︸ ︷︷ ︸
Ĥ(t)

+
1

Acs︸︷︷︸
Ξ

(Qin(t) −Qin0)︸ ︷︷ ︸
Q̂in(t)

(A.5)

Now considering both tanks, one can write the dynamic equations as

∂Ĥ1(t)

∂t
=
Q1
in1

(t)

Acs
−
α
√√

2gH1(t)

Acs
−
α
√√

2g(H1(t)−H2(t))

Acs
(A.6)

∂Ĥ2(t)

∂t
=
Q1
in2

(t)

Acs
−
α
√√

2gH2(t)

Acs
+
α
√√

2g(H1(t)−H2(t))

Acs
(A.7)

(A.8)

Considering the state vector as H̄(t) = [H1(t) H2(t)]′. The LTI dynamic matrix A is

acquired as

A =
1

Acs

[ αg√
2gH1

0

− αg√
2gH1

0−H
2
0

− αg√
2gH1

0−H
2
0

αg√
2gH1

0−H
2
0

αg√
2gH2

0

− αg√
2gH1

0−H
2
0

]
. (A.9)

Now, the parameter values from the educational kit (Feedback Instruments Ltd., 2013)

are presented in Table 1.

For the last step, we used a zero order holder with sampling time of 0.05s. The discrete

time domain state space model obtained is

A =
[ −0.0239 −0.0127

0.0127 −0.0285

]
(A.10)
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g m/s2 Gravitational acceleration 9.8
Acs m2 Tank cross section area 0.40
α m2 Interconnection pipe cross section area 0.01
H1

0 m2 height initial condition for the first tank 0.16
H2

0 m2 height initial condition for the second tank 0.22

Table 1: Numerical parameter of the coupled tank model.

A.2 Mass-Spring System

For the approaches that consider Markov Jump Lur’e systems a more appropriate

example is the mass-spring system from (KHALIL, 2002). A representation of this model

is given by Fig. 44 We can write the equation that represents the dynamic of the system

m
u(t)

f (t)c

knl

x(t)

Figure 44: Mass-Spring model, (KHALIL, 2002).

as

ẍ(t) +
c

m
ẋ(t) +

k

m
x(t) +

ka2

m
x3(t) =

u(t)

m
w(t). (A.11)

The parameter descriptions and values are presented in table 2.

m kg Block Mass 12
c Ns/m Dumper viscous friction coefficient 0.1
k N/m Spring elasticity coefficient 0.2
ka2 Spring non-linear elasticity coefficient 0.9

Table 2: Numerical parameter of the Spring-Mass model.

We can rewrite the equation in the space-state form as,

A =
[

0 1
− k
m
− c
m

]
, G =

[
0
ka2

m

]
(A.12)

Using the zero-order holder with a sampling time equal to 5ms, the matrices that
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compose the state space system in the discrete time domain are given by,

A =
[ −0.0101 0.9588
−0.0160 −0.0181

]
, B = [ 62.0699

−0.0513 ] , G = [ 0
0.15 ] , (A.13)

This particular model was used only in the examples in Chapter 4.

A.3 Quarter vehicle

We here use as a numerical example a simple quarter vehicle extracted from (NGUYEN;

SENAME; DUGARD, 2015) , which is represents a quarter vehicle body using a sprung

mass(ms), the wheel and tire are denoted by the unsprung mass (mus). Those components

are connected by a spring with a stiffness coefficient ks, and a semi-active damper. The

coefficient k1 represents the tire stiffness. The states vector for the linearized model is

mus

ms(α)

k1

Semi-
Active
Damper

ks

Figure 45: Quarter vehicle model.

x(k) = [zs żs zus żus], which represent the displacement for the sprung mass, its variation,

the displacement for the mass unsprung, and its variation. Therefore, the space-state

matrices are,

Ac =


0 1 0 0

− ks
ms(αk)

c0
ms(αk)

ks
ms(αk)

c0
ms(αk)

0 0 0 1
ks
mus

c0
mus

−ks+k1mus
− c0
mus

 , J =


0

0

0
ks
mus

 ,

Bc =


0

− 1
ms(αk)

0
ks
mus

 , F =


0

− 1
ms(αk)

0
ks
mus

 , C =


1 0

0 0

0 1

0 0


′

,

Dd = 0.012×1, Ez = 0.012×1, Df = 0, α(k) = [−0.050.05].

where mus = 37.5 denotes the unsprung mass, ks = 29500 represents the stiffness of

the semi-damper, k1 = 210000 denotes the stiffness of the tires, and c0 = 2850 damping
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coefficient for the semi-damper. The Linear parameter varying in this model will be ms

the sprung mass, which vary linearly between ms = [315 285]. This variation represents a

fast decrease in the sprung mass of the vehicle. The discretization time is T = 0.025s.

A.4 Network Packet Loss Modeling

As explained throughout the thesis, one of the main advantages provided by the MJLS

framework is the capability of modeling the network packet loss in the network. This

procedure is made by setting the transition probability matrix with appropriate structure

and values that represent the network behavior. The first step in the network packet loss

modeling is the definition of the transition matrix. Firstly, we need to define the amount

modes of the system, to simplify the explanation here, we will consider only two modes a

nominal mode, and the packet loss mode, by consequence, the transition matrix will be a

2× 2 matrix. Another aspect during the definition of the transition matrix is the type of

Markov chain that will be implemented. There are plenty of Markov chains that can be

used to model a network, each one has its advantages and disadvantages, a few examples

Bernoulli model (ROSS, 2014), Gilbert-Elliot model (GILBERT, 1960). A Bernoulli MC

is the simplest case of an MC, using this type of MC to model a network will ignore some

key behaviors in a network since it only describes a series of Bernoulli trials. To describe

some additional behaviors, as the burst communication loss, we can use the Gilbert-Eliot

model (GILBERT, 1960). The other part of this procedure is to describe where the packet

Network ”OK” Network ”Droped”ρ

1− ρ

β

1− β

Figure 46: Diagram of the Markov chain for the Gilbert-Eliot model, for the Bernoulli
model the variables ρ and β are equal.

loss occurs on the control loop, that is, in the communication between controller and

actuator, or between the controller and sensor, or even both cases. What determines the

packet loss placement in the control loop is the matrices that switches according to the

Markov chain. To model the packet loss between controller and sensor, the matrices that
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Plant SensorActuator

Network 1 Network 2Control

Figure 47: Control loop example.

should switch are Ci, Di. For the packet loss in the communication between actuator and

controller, the matrix is Bi. Regarding the case where we consider all the packet losses,

all matrices Ci, Di, and Bi should switch according to the Markov chain. For the case

where all packet losses are considered the transition probability matrix implemented is a

Kronecker product of the transition probability matrix from the other two cases, leading

to an increased number of modes in the resulting Markov chain.

A.5 Schur Complement

Lemma 11. The LMI, with the symmetric matrices X e Z

[X Y ′
Y Z ] > 0 (A.14)

holds if and only if the following statements are true

� {Z > 0, X > Y ′Z−1Y }

� {X > 0, Z > Y X−1Y ′}

Proof: For the rough sketch of the proof for the necessity, we assume that the statements

above are true, hence

Q =
[
X−Y ′Z−1Y 0

0 Z

]
> 0 (A.15)

defining the non-singular matrix T as

T =
[
I Y ′Z−1

0 I

]
(A.16)

by consequence we get that TQT ′ > 0, since Q > 0. This implies that

TQT ′ = [X Y ′
Y Z ] > 0 (A.17)



158

A detailed discussion about the proof and applications can be obtained in (BOYD;

VANDENBERGHE, 2004).

A.6 Bounded Real Lemma

Suppose system

G :

x(k + 1) = Ax(k) +Bw(k),

y(k) = Cx(k) +Dw(k),
(A.18)

where w(k) ∈ Rm represents the exogenous input, and y(k) ∈ Rp is the measured output.

We can get the H∞ norm, considering the Lyapunov function v(k) = x(k)′Px(k), and

imposing

x(k + 1)′Px(k + 1)− x(k)Px(k) + y(k)′y(k)− γ2w(k)w(k) < 0 (A.19)

[
x(k)
w(k)

]′ [
A′PA−P+C′C A′PB+C′D
B′PA+D′C B′PB+D′D−γ2I

] [
x(k)
w(k)

]
< 0 (A.20)

Matrix A is asymptotically stable and ‖G‖∞ < γ if and only if there exists a symmetric

matrix P > 0 such that [
A′PA−P+C′C A′PB+C′D
B′PA+D′C B′PB+D′D−γ2I

]
< 0. (A.21)

A.7 Finsler Lemma

Considering w ∈ Rn, L ∈ Rn×n and B ∈ Rm×n with the rank (B) < n and B⊥ is a

base for a null space, that it BB⊥ = 0. Therefore, the following statements are equivalent:

� w′Lw < 0, ∀w 6= 0 : Bw = 0

� B′⊥LB⊥ < 0

� ∃µ ∈ R : L − µB′B < 0

� ∃X ∈ Rn×m : L+ XB + B′X ′ < 0

The proof can be seen in (BOYD et al., 1994; OLIVEIRA; SKELTON, 2001).


