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RESUMO

CARVALHO, L. P. Fault detection filter and fault accommodation controller
design for uncertain systems. 2021. Tese (Doutorado) — Escola Politécnica. Universi-
dade de Sao Paulo, Sao Paulo, 2021.

Nessa tese as abordagens de detecgao de falhas baseadas em modelos matemético (FD)
e de acomodacao de falhas (FA) foram aplicadas em uma variedade de casos. Propomos
varias técnicas para levar em conta a presenca de incertezas durante a fase de projeto
de controle. Primeiro, nos concentramos no projeto do Filtro de Deteccao de Falhas
(FDF) e do Controlador de Acomodacao de Falhas (FAC) para Sistemas Lineares com
Salto Markoviano! (MJLS). Tratar o problema no contexto MJLS nos permite incluir o
comportamento da rede (perda de pacotes) durante o projeto do FDF e do FAC. Em
segundo lugar, propomos um projeto FDF e FAC para o MJLS, partindo do pressuposto que
o modo da cadeia de Markov nao é diretamente acessivel. Como estamos usando a estrutura
MJLS para modelar o comportamento da rede, a suposicao de que o estado da rede nao
¢ instantaneamente acessivel é 1til porque, do ponto de vista pratico, essa suposicao
é verdadeira. Terceiro, a partir dos resultados apresentados para a estrutura MJLS,
fornecemos resultados de acompanhamento usando o Sistema com Saltos Markovianos
tipo Lur’e?. Isso ¢ convincente, pois em algumas ocasidoes o comportamento nao linear
nao pode ser ignorado. Portanto, a descricao do problema como Lur’e MJS nos permite
considerar as mesmas suposi¢oes do MJLS, mas agora adicionando as nao linearidades.
Quarto, propomos o projeto Ganho-Escalonado® FDF e FAC para sistemas com parametros
linearmente variaveis*, partindo do pressuposto que o parametro de escalonamento nao é
adquirido diretamente. Assumimos que o parametro de escalonamento esta sujeito a ruido
aditivo. Esta imprecisao ¢é incluida durante o projeto, usando a mudanca de variaveis
e técnicas multi-simplex. Finalmente, ao longo da tese, fornecemos alguns exemplos
numéricos para ilustrar a viabilidade das abordagens propostas.

Palavras-Chave — Detecgao de Falha, Controle Tolerante a Falta, Sistemas Sujeitos a
Saltos Markovianos, Parametro Linearmente Variaveis, Desigualdade Matricial Linear.

!do inglés: Markovian Jump Linear System
2do inglés: Lur’e Markov Jump System.

3do inglés: Gain-Scheduled

“4do inglés: Linear Parameter Varying (LPV)



ABSTRACT

CARVALHO, L. P. Fault detection filter and fault accommodation controller
design for uncertain systems. 2021. Tese (Doutorado) — Escola Politécnica. Universi-
dade de Sao Paulo, Sao Paulo, 2021.

Model-based Fault Detection (FD) and Fault Accommodation (FA) approaches have
been applied in a variety of cases. We propose several techniques to include uncertainties
in the design process. First, we focus on the design of the Fault Detection Filter (FDF)
and Fault Accommodation Controller (FAC) for Markovian Jump Linear Systems (MJLS).
The MJLS framework allows us to include the network behavior (packet loss) during the
design of the FDF and FAC. Second, we propose an FDF and FAC design for the MJLS,
under the assumption that the Markov chain mode is not directly accessible. Since we
are using the MJLS framework to model the network behavior, the assumption that the
network state is not instantly accessible is useful because from a practical standpoint this
is a truthful assumption. Third, from the results presented for the MJLS framework, we
provided follow-up results using Lur’e Markov Jump System. This is compelling since
on some occasions the nonlinear behavior cannot be ignored. Therefore, applying the
Lur’e MJS framework allows us to consider the same assumptions from MJLS, but now
adds the nonlinearities. Fourth, we propose the design Gain-Scheduled FDF and FAC
for Linear Parameter Varying (LPV) systems, under the assumption that the schedule
parameter is not directly acquired. We assume that the schedule parameter is subject to
additive noise. This imprecision is included during the design, using change of variables
and multi-simplex techniques. Finally, throughout the thesis, we provide some numerical
examples to illustrate the viability of the proposed approaches.

Keywords — Fault-Detection, Fault-Tolerant Control, Markovian Jump Linear System,
Linear Parameter Varying, Linear Matrix Inequality.
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1 INTRODUCTION

The presence of undesired behaviors is inherent in a multitude of systems in engineering
(PATTON; CHEN;, 1994). The source of these unwanted behaviors can vary for a plethora
of reasons. Among these reasons are, for example, physical issues in the plant (PATTON;
CHEN, 1997), communication problems (SRINIVASAN et al., 2006), imprecision on the
identification procedure (JR; ADELI, 2012), missing dynamical behavior in the model,
etc. All the listed reasons are aggravated as systems become more complex as technology
advances. Since the occurrence of these undesired behaviors is innate to all types of
systems, it is of utmost interest that a procedure to detect, isolate, or mitigate these

behaviors be developed.

Before any remedial actions can be planned to deal with those behaviors, it is crucial
to understand and classify them. As in the reference (ISERMANN; SCHWARZ; STOLZL,

2002), we use the following definitions of unwanted behaviors:

e Fault. A fault is an unwanted abnormal behavior of at least one characteristic of
the nominal system. A fault can be characterized as follows i) a fault may cause
a reduction of the nominal performance; i) some sources of the fault are design
fault; manufacturing fault, assembling fault, fault caused by wear, wrong operation
(human error), hardware fault, software fault, and communication fault; iii) a fault
may occur and the system may remain functional; iv) a fault is the first step to
greater problems (malfunctions and failures); v) a fault can be abrupt, intermittent,

oscillatory, or gradual.

e Malfunction A malfunction is a temporary interruption of the system capability
to fulfill its nominal functions. A malfunction can be characterized as follows i) a
malfunction is a temporary interruption that may or may not be intermittent; i) a
malfunction is commonly a result of wear or lack of maintenance; iii) a malfunction

is the result of one or multiple faults; iv) a malfunction is an event;

e Failure A failure is the permanent interruption of the capability to fulfill its nominal
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tasks. A failure can be characterized as follows i) a failure is the permanent loss
of the system’s ability to perform its functions; i7) a failure is a result of one or
multiples faults; i) a failure is classified by the number of failures, or predictability

(random, deterministic, systematic); iv) a failure is an event;

In order to illustrate the above notions we provide the following example. Let us say the
reader is driving a manual car with a regular clutch. Assuming the driver knows how
to change gear, the clutch system will perform a smooth change of gears without any
noise, which is the nominal behavior. A fault in this scenario would be the change in the
clutch pedal ”sensation”, where the driver would need to change the force applied to the
pedal to change gear, but the change of gear would still be smooth without any noise.
A malfunction in this scenario would be the next step where sometimes the driver will
not be able to change gears, the clutch would "slip”, but after a few attempts, the driver
would be able to change gear. Finally, a failure happens when the clutch system would

stop working permanently.

To provide a visual representation, the following image in Fig.1 is a representation

Crack path

Operating pitch circles

AEies

Backlash Maxirum _

(transverse operation) stress concentration
Figure 1: Backlash, a normal behavior, = Figure 2: Fatigue crack, a gear fail-
image extracted from (NILJJAAWAN; ure, image extracted from (RICHARD;
NITJJAAWAN, 2010). SANDER, 2016).

of the backlash, which is a typical physical phenomenon but can be gradually increased
due to wear. Fig.2 exemplifies a failure caused by overload or other improper use of the

equipment or caused by wear associated with the lack of maintenance.

Now that we understand the problem it is necessary to define what are the goals
for a procedure that is responsible to detect, isolate, or mitigate a fault. The purpose

of this procedure is to maintain three characteristics: reliability, availability, and safety.
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Reliability can be defined as the ability to fulfill a task in a given time. Availability is the
amount of time a system is able to fulfill its task properly. Safety is the ability to keep the

people involved in the system’s operation safe.

In industrial process control systems, fault detection and fault mitigation solutions are
used simultaneously. This issue is dealt with using a supervisory loop. A supervisory loop
is defined as a technical process that provides all the information regarding the system, to
point out any unwanted behavior, and also helps with the decision-making process to solve
these problems. The placement of each procedure in a supervisory loop is represented

in Fig.3. As can be seen in Fig.3, Fault Detection (FD), Fault Isolation (FI), and Fault

Control Fault Fault Fault .
— S . . . Decision
Fault ystem Detection Isolation Evaluation

A

Fault Management__
Stop
Operation
o/ Reconfigu- : MY
A ration

Repair

nance
—

Figure 3: Graphic representation of Supervisory Loop, and all the sub-processes that
compose it. The standard controller is embedded in the ”Control System” block. The
Supervisory Loop is divided into two main processes the monitoring and management.
The monitory part is responsible to acquire the information, and the management part
deals with the decision-making and actions to keep the system working properly.

Evaluation (FE) are classified as monitoring procedures. The processes of reconfiguration,
operational change, maintenance, and repairs are considered to be fault management

procedures. The procedures of reconfiguration and change operation can be automated.

As seen in Fig.3 the monitoring process is divided into three main parts, the FD
is the process that signalizes the presence of a fault, the FI points out where the fault
is occurring, and the FE estimates the magnitude of the fault. Concerning the fault
management procedures, the reconfiguration process refers to all procedures that keep the
system working and manage to change some characteristics to mitigate the fault and the
change in the operation block represents the action altering the entire process to keep the
plant working (this is a more severe action compared to the reconfiguration). Repair is

the action to send a team of workers to fix a piece of equipment that already failed and
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maintenance is scheduled to send a team of workers to do preventive fixes in an equipment

to prevent a failure caused by wear.

From the standpoint of the system itself, the faults can occur in every part of the
process. From the diagram in Fig.4 we can observe that the faults can occur on an actuator,

Fault Fault

—? Plant } Sensor -»
Fault
Actuator Controller

A A

Fault Fault Fault

Figure 4: The placement of possible occurrence of fault in a generic system.

sensors, a structural problem, and/or during the signals transmissions. Therefore, to deal
with the maximum amount of faults simultaneously, it is necessary to consider the different

sources of the faults during the design procedure of fault detection systems.

1.1 Fault Detection and Fault Tolerant state-of-the-
art

1.1.0.1 Fault Detection

The literature on the fault detection problem is extensive. Among all the literature, it
is possible to classify the solutions related to the fault occurrence with two main branches,
namely, the model-based solutions (ISERMANN; SCHWARZ; STOLZL, 2002; PATTON;
FRANK; CLARK, 2013; ZHONG; XUE; DING, 2018; MARZAT et al., 2012) and the
data-driven solutions (DING, 2014; SCHWABACHER, 2005; ALAUDDIN et al., 2018).
Both classes have their pros and cons, as described in (ZHANG, March, 2014; DING et al.,
2011; TIDRIRI et al., 2016; VENKATASUBRAMANIAN; RENGASWAMY; KAVURI,

2003). The main advantages of model-based approaches are:

e Guarantee on the performance when the model is precise and reliable,(ISERMANN;
SCHWARZ; STOLZL, 2002; VENKATASUBRAMANIAN et al., 2003b).

e Easy to implement, and design. Since it is a well-established branch of research in
control engineering, there are plenty of suitable results for many situations (ZHONG;

XUE; DING, 2018).
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One major disadvantage of this approach is its reliance on the veracity of the model
being used. Thus the mathematical description or the identification process must be

precise.

On the other hand, the main advantages of data-driven approaches are:

e They can directly be implemented using previously available data without needing
an analytical model (DING et al., 2011).

e They do not demand a high level of computational effort, which enables their

implementation in real time (TIDRIRI et al., 2016).

The main difficulty of the data-driven are the data preprocessing, and the dependency on
data reliability, quality, and quantity (CHIANG; RUSSELL; BRAATZ, 2000).

Among the model-based branch of solutions, it is possible to categorize them into four
main approaches: Observer-based, Parity space, Parameter estimation, and Bond Graph.
All these approaches make some sort of comparison between the expected/predicted
behavior and the real behavior, the discrepancy between behaviors indicates the occurrence
of a fault. This comparison is made in two steps. The first one is the residue signal
generation, which is generated using the aforementioned approaches. The second step is
the evaluation process which uses the residue signal to distinguish if a fault occurred or

not in the monitored processes.

Observer-based: This approach relies on the observability assumption where systems
behavior can be obtained from the output. As it is true for all model-based approaches, the
observer approach depends on a precise and reliable mathematical model of the system. Yet,
a perfect mathematical model is not achievable in practice (PATTON; FRANK; CLARK,
2013). This inherent imprecision in the mathematical model is caused by simplifications
(i.e. linearization process), or overlooking a particular behavior that at first glance seems
irrelevant to the overall behavior. Bypassing those behaviors may ease the task describing
the system mathematically. But for an FD procedure, this may cause bias or imprecision
that leads to false alarms. Besides the model imprecision, another important aspect is that
all systems are subjected to disturbances or noises, which can be interpreted as an unknown
and uncontrollable input. A possible way to deal with this is proposed in (PATTON; CHEN,
1997), where an approach to decouple the control input from the fault signal is presented.
Other approaches propose the decoupling of the unknown input (noise/disturbance) from
the fault signal using the for example the Unknown Input Observer (UIO), as in (CHEN;
SATF, 2006; ALHELOU; GOLSHAN; ASKARI-MARNANTI, 2018) or the Unknown Input
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Filter (UIF) (PATTON; CHEN, 1997). Besides the aforementioned approaches, we can
also point out the results based on observers that are derived in the following frameworks
as the Markov Jump Linear Systems (ZHONG et al., 2005), Fuzzy logic (HAN et al.,
2017; CHIBANI et al., 2016), H_ index and H., norm (CHADLI; ABDO; DING, 2013;
AOUAOUDA et al., 2015; RAMBEAUX; HAMELIN; SAUTER, 1999), and Kalman filter
in (LUO; FANG, 2013; ZAREI; SHOKRI, 2014).

Parity space: The Parity space approach was first presented in (POTTER; SUMAN,
1977). Roughly, speaking a Parity space FD uses the transformation of the state-space
model of the system to gather the parity relations by observing the system on a finite
horizon, (GERTLER, 1991). The idea behind this approach is to generate the parity
relation to acquire equations that only depends on known or measured parameters (inputs
and outputs). The major main disadvantage of parity space based approaches is that they
do not consider the uncertainties on the system. Consequently, they are mostly applied
only on Linear Time-Invariant Systems. A few examples of FD approaches based on parity
space are (DING; GUO; JEINSCH, 1999; GERTLER, 1997; ODENDAAL; JONES, 2014;
PATTON; CHEN, 1994).

Parameter Estimation: The procedures based on parameter estimation are based
on the premise that the state variables can be estimated given the access to the inputs
and outputs of the system. A way to describe the FD based on the parameter estimation
is that the fault is detected via a comparison between the estimated parameters of the
nominal process and the online parameter estimation over a pre-set time horizon. In this
procedure, we consider that a fault occurred when a discrepancy between these estimations
appears (ISERMANN; SCHWARZ; STOLZL, 2002; VENKATASUBRAMANIAN et al.,
2003a).

Bond Graph: A bond graph is another way to represent a system dynamic, its main
advantage is the direct representation of the bidirectional energy exchange in the system.
This characteristic allows to generate a residual signal based on the energy exchange.
Some examples of the bond graph being applied to the FD problem are (SAMANTARAY
et al., 2006; DJEZIRI et al., 2007; BENMOUSSA; BOUAMAMA; MERZOUKI, 2013;
CAUFFRIEZ et al., 2016). An extension of the FD approach based in bond graphs is
the signed bond graph, which uses the bond graph qualitative and quantitative structural
properties to generate multiples behavior predictions, as cited in (TIDRIRI et al., 2016),
and presented in (CHATTI et al., 2014).

We can classify the FD approaches based on data-driven with two main classes, namely,
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the supervised and unsupervised approaches. A supervised approach can be sub-classified
as Bayesian Networks, or Artificial Neural Networks. For the unsupervised ones, we can

classify them as Control Charts, Principal Component Analysis or Partial Least Squares.

The supervised approach bases its function on the historical data to design a learning

model that will be used as an FD to evaluate the new data.

Bayesian Networks: Bayesian networks are a type of acyclic graphs where a node
represents a variable, which can be a discrete or a continuous variable (VERRON; LI;
TIPLICA, 2010). Another similar approach is the Dynamic Bayesian Network, which
besides the stochastic modeling also includes temporal information (YU; RASHID, 2013).

Artificial Neural Networks: An Artificial Neural Networks are models that imitate
the learning process of a biological system. An artificial Neural Network is composed
of a series of interconnected processes called nodes, those nodes are organized in layers,
which form a complex network (PAYA; ESAT; BADI, 1997; SAMANTA; AL-BALUSHI,
AL-ARAIMI, 2003).

The unsupervised approaches as opposed to the supervised approaches do not use any
previously acquired knowledge of the system. Some examples of methods that can be
classified as unsupervised are control charts, principal component analysis or partial least

squares.

Control Charts: Among all the data-driven approach presented here, the Control
Charts is the oldest, and is firstly presented in (SHEWHART, 1931). As described in
(MONTGOMERY, 2007), the Control Chart approach is a statistical hypothesis testing,
the design of a Control Chart is separated into two parts. The first one is the retrospective

analysis, and the second one is the monitoring process.

Principal Component Analysis: The authors in (WOLD; ESBENSEN; GELADI,
1987) state, that a Principal Component Analysis is a multivariate data analysis method
that is capable of simplifying the data to keep the important information and reduce the

data set size.

Partial Least Squares: The Partial Least Squares method can be described as
a projection of a data set with a high number of dimensions in a data set with lower
dimension, this new data set is defined using latent variables. The purpose of those latent

variables is to define the most important information on the original data set that should
be retained (KOURTI; NOMIKOS; MACGREGOR, 1995).

It is important to mention that there are more types of FD approaches. The above
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mentioned examples and classification are just a glimpse of how rich the FD literature is.
Another critical piece of information that worth mentioning is that there are approaches
that are based on both main branches of FD approaches, the model-based and the data-
driven approaches, these types of approaches are called hybrid. The authors can refer to
these works (FRANK et al., ; TIDRIRI et al., 2016) that are based on this premise.

A graphical representation of the aforementioned classification of the FD problem is

given by Fig.5.

Fault Detection

Model-Based Data-Driven
Observer-based Bayesian Network
Parity Space Artificial Neural Network
Parameter Estimation Control Charts
Bond Graphs Principal Component
Analysis
Partial Least Square

Figure 5: Classification of the FD approaches.

1.1.0.2 Fault Tolerant Control

For the Fault Tolerant Control (FTC) problem we may classify it into two distinct
manners. The first one, similarly to the FD problem, the model-based (PATTON, 1997)
and data-driven approaches (DING, 2014). The latter one is the classification based on
whether the approach is active or passive. A Reconfigurable Control approach correspond
to the solutions where the controller only acts (reconfigure) in the presence of a fault
(ZHANG; PARISINI; POLYCARPOU, 2004). For the passive approach, the potential
fault is taken into account during the controller design, which provides a Robust Control

solution (LI et al., 2018).

Referring to the FTC problem based on the data-driven we may cite some procedures

for the robust and reconfigurable approaches.

Markov parameter sequence: The Markov parameter sequence is a stochastic tool

utilized to identify a system from its input and output as presented in (KIM, 2016; HAN;
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FENG, 2019).

Subspace Predictive Control (SPC): the SPC uses subspace identification pre-
dictors associated with predictive control applied to an affine LPV system (KULCSAR;
DONG; VERHAEGEN, 2009).

Fault Tolerant Architecture: The FTA is an online fault tolerant control based on

residue generation designed using Youla parametrization, (WANG; YANG, 2016).

Regarding the model-based FTC problem, we can point out a few approaches for the

robust or reconfigurable approaches.

Gain Scheduled Control: A gain scheduled control is the type of control that
depends on a parameter. This parameter vary in time, and the variation is dictated by
the system (ROTONDO, 2017).

Adaptive Control: The basic idea of adaptive control is similar to the one presented
for the gain scheduled control. There are plenty of approaches that fall into this category,
as for example, Model Reference Adaptive Controller (MRAC) (CHAMSEDDINE et al.,
2011), Model Identification Adaptive controller (MIAC) (OREG; SHIN; TSOURDOS,
2019). Some other examples can be seen in (ZHANG; PARISINI; POLYCARPOU, 2004;
TOHIDI; SEDIGH; BUZORGNIA, 2016).

Fault Accommodation: The fault accommodation procedure is a method that
changes the controller parameters or structure to mitigate the consequences of a fault. The

input and output between plant and controller remain unchanged but the performance
may decrease (BLANKE; STAROSWIECKI; WU, 2001).

Robust Fault tolerant Control: The robust approach can be implemented using
any appropriate framework, such as, the Linear Parameter Varying (LPV), Markov Jump
Linear System (MJLS), or any other framework. We consider that a controller is robust
when during the design process the presence of a fault is considered, but the controller
acquired is static (meaning that the controller is not gain-scheduled or mode-dependent)
(CHADLI; ABDO; DING, 2013). Usually, these controllers are suboptimal since they are

designed to work in multiple operational points.

As was mentioned for the FD, the same statement can be made here, where all the
classes and parameters presented above are just an example of the rich literature of the

Fault tolerant control.
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Figure 6: Classification of the FTC approaches.

1.2 Outline and Main contributions

From the discussion and explanation presented in the previous section now we are
prepared to describe the main contributions presented in this thesis, and also positioning
of the results in the literature. As the title of the thesis says, we deal with the fault

detection and fault accommodation problem.

From the classifications discussed in the first part of the introduction, all the results
presented herein are model-based. Regarding the Fault Detection results, classifying them
as shown in Fig.5, they are all based on residue generated using observers. For the FAC
problems, we proposed a FAC under some frameworks and also a Gain-Scheduled FAC, as

classified in Fig. 6.

Each chapter in this thesis is organized as follows. In the first two sections a preliminary
discussion is introduced, presenting the theoretical background necessary to understand
and implement the results in the respective chapter. They are followed by the proposed
design, theoretical works, and illustrative examples for the respective frameworks. The

chapter is concluded with simulations to exemplify the usability of the approaches.

The content for every chapter is as follows.

e Chapter 2: In Chapter 2 we propose the Fault Detection Filter (FDF) and FAC
design under the Markov Jump Linear Systems framework. We derive the results un-
der this framework intending to model the network communication loss. The results

presented in Chapter 2 have been published in (CARVALHO; OLIVEIRA; COSTA,
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2018b; CARVALHO; OLIVEIRA; COSTA, 2018a; CARVALHO; OLIVEIRA; COSTA,
2018; CARVALHO et al., May 2021; CARVALHO et al., 2020b).

e Chapter 3: In Chapter 3 we follow the same idea of the previous chapter, but
including the assumption that the Markov chain is not directly accessible, instead,
the FDF and FAC depends on an estimation of the Markov chain parameter. Chapter
3 contains the results from the following publications (CARVALHO; OLIVEIRA;
COSTA, 2018c; CARVALHO; OLIVEIRA; COSTA, 2020; CARVALHO; OLIVEIRA;
COSTA, 2020; CARVALHO et al., 2020a).

e Chapter 4: For Chapter 4, we follow the idea from Chapter 2, but instead of the
MJLS framework, we implement the Markov Jump Lur’e Systems, in order to add
the non-linear behavior during the FDF or FAC design. The results in Chapter 4
are presented in (CARVALHO; JAYAWARDHANA; COSTA, 2021).

e Chapter 5: In Chapter 5 we introduce the Gain-Scheduled FDF and FAC design
for Linear Parameter Varying systems. Besides, we also use some techniques to

include during the design process, the assumption that the schedule parameter is

imprecise. The results in Chapter 5 are published in (CARVALHO et al., 2021a).

Chapter 2 Chapter 5

/ \

Chapter 3 Chapter 4

Figure 7: Interaction between chapters.

Finally, we wrap up the thesis with a conclusion chapter. For the sake of helping the
reader, we present Appendix A. Appendix A, provides the modeling of the network using
Markov chains, the modeling procedure of the illustrative models used throughout the

thesis, and some useful lemmas.



27

2 FDF AND FAC FOR MARKOV JUMP
LINEAR SYSTEMS

In this chapter we present the results for the Fault Detection Filter (FDF) and
Fault Accommodation Controllers (FAC) under the Markov Jump Linear System (MJLS)
framework. Herein, the MJLS is implemented as a tool to model the communication loss
among system components, which allows us to draw results for the design of the FDF
and FAC assuming that the communication is subjected to packet loss. This assumption
is important since packet loss is inherent to any communication channel. The usual
workaround to the communication loss is the retransmission of the information, however,
this type of method burdens the network infrastructure. Hence, design an FDF or an FAC
under the communication loss provides robust solutions against this type of problem and

at the same time does not increase the load imposed on the network infrastructure.

The results presented in this chapter were published in the following conferences and

journals

e Subsection 2.3.3.1 presented the H., Fault Detection Filter for Markovian Jump
Linear Systems, which was presented in the European Control Conference 2018
(CARVALHO; OLIVEIRA; COSTA, 2018b).

e Subsection 2.3.3.2 presented the Hy Fault Detection Filter for Markovian Jump
Linear Systems, which was presented in the Congresso Brasileiro de Automatica
2018 (CARVALHO; OLIVEIRA; COSTA, 2018a).

e Subsection 2.3.3.3 presented the Mixed Hsy/Ho, Fault Detection Filter for Markovian
Jump Linear Systems, which was published in Mathematical Problems in Engineering
(CARVALHO; OLIVEIRA; COSTA, 2018).

e Subsection 2.3.3.4 presented the Mixed H_/H, Fault Detection Filter for Marko-
vian Jump Linear Systems, which was published in European Journal of Control
(CARVALHO et al., May 2021).
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e Subsection 2.4.2.1 presented the H., Fault Accommodation Control for Markovian
Jump Linear Systems, which was presented in the IFAC 2020, Berlin (CARVALHO
et al., 2020Db).

2.1 Notation

The real Euclidian space is presented by R™ where n denotes its dimension, and n x m
represents the real matrices dimension, for example A(R™ R™). The symbol ()" denotes
the transpose of a matrix, I indicate the identity matrix. The operator Her(-) represents
the symmetric sum (X) = X4+ X’. A diagonal matrix is represented by the operator diag(-).
The symbol e represents a symmetric block in a partitioned symmetric matrix. On a
probability space (€2, F,P) with filtration {F}}, the expected value operator is represented
by E(-), the conditional expected operator, by E(- | -), and the space of all discrete-time
sequences of dimension r, Fy-adapted processes, such that [|z[|3 £ S5 E(]|2(k)[|?) < oo,

by L£5?. We set 20; = {w € L} : |||z > 0}, and the operator E;(X) = Zjvzl pii X

2.2 Preliminary for the Markovian Jump Linear Sys-
tem

We consider the following general discrete-time Markovian Jump Linear System (MJLS)

I(/{Z + 1) = A@(k)l‘(k) + Jg(k)w(ki),
z2(k) = Cowyz (k) + Doyw (k),

(2.1)

where z(k) € R™ is the state, y(k) € R™ is the measured output, z(k) € R"* is the
estimated output, w(k) € R™ is the exogenous input. We also consider that w(k) € L32.
The index (k) is a random variable such that {0(k) : k € N}, denotes a Markov chain.

With 6, € K= {1,..., N}, where N represents the number of modes in which (2.1) may
operate. The transition matrix is represented by P = [p;;] where p;; = Prob[fy1 = j|0) = 1]
and Zjvzl pi; =1 for all i € K.

2.2.1 Stability for Markovian Jump Linear Systems

Definition 1. Consider system (2.1), with null exogenous input w(k) =0 Vk € N, and
initial conditions x(0) = zo € R", 6y € K. The system is
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e Mean Square Stable (MSS) N (xo,6o) if

lim E{x(k) z(k)|xo, 00} = 0. (2.2)

k—o0

e Stochastically stable (SS) Y (xq,00) if

o

E{Zx(k)'x(mxo,eo} < 0. (2.3)

k=0

As in (COSTA; FRAGOSO, 1993), the definition (2.2) and definition (2.3) are equiva-
lent, and are known as Second Moment Stability (SMS).

2.2.2 H, norm for MJLS

Assuming that (2.1) is MSS with 2y = 0, the Ho, norm of G is given by (see (FRAGOSO;
COSTA, 2005; SEILER; SENGUPTA, 2003))

HgHoo — sup ||ZH2

- 2.4
s Tl (2.4)

Notice that the case K = {1} corresponds to the deterministic case, that is, the case

without jumps.

It is possible to calculate the H,, norm using the so-called Bounded Real Lemma for
Markovian Jump Linear Systems, first presented in (SEILER; SENGUPTA, 2003), and

stated below.

Lemma 1. System (2.1) is MSS and satisfies the norm constraint ||G||2, < v if and only
if there exist matrices P; = P/ > 0 such that

(G A (B [& 5] -5 y] <oViek (2.5)

3

Proof: See (SEILER; SENGUPTA, 2003).

Applying the Schur complement to (2.5) we get that

P; ° e o
0 1 o o

[E‘(P)Ai Ei(’YP)Ji E;(P) '] >0, (2'6)
C; D; 0o I

and the LMI constraint (2.6) can also be described by the inequality below

P e

0 ~I °
A; J; By(P)~1
C; D; 0

(3

S

iy
N

] > 0. (2.7)

~ e oo

N
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2.2.3 Hs norm for MJLS

Assuming that (2.1) is MSS with o = 0, the Hs norm is given by

Ny N
IGI5 =D > will=""[13, (2.8)
s=1 i=1
where z represents the output z(0), z(1), ... obtained when

e the input is given by w(k) = e;d(k), where e; € R™ is the s-th column of the m x m
identity matrix and §(k) is the unitary impulse, see (COSTA; VAL; GEROMEL,
1997).

e 0y =i € K with probability u; = P(6y = 1)
In (COSTA; FRAGOSO; MARQUES, 2006) it is shown that, if the Markov chain is

ergodic, and taking p; = p;, where p; = limy_,o, P(6(k) = i) , the norm defined in (2.8)

can also be written as
||G||§ = klim Elz(k) z(k)], (2.9)
— 00

where z(k) is the controlled output and w(k) represents a wide-sense white-noise with
covariance given by the identity matrix that is independent of the initial condition xy, and

the Markov chain {6;}. From the above, we have the following lemma.

Lemma 2. System (2.1) is MSS and satisfies the norm constraint ||G||3 < X if and only
if there exist matrices P; = P, > 0 and S; = S; > 0 such that

N
=1
Si e o
|:Ei(P)Ji E;(P) '} > 0, (2.11)
D; 0 I
P; e o
|:]Ei(P)Ai E;(P) '} >0, ViekK. (2.12)
C; 0o I

Proof: See (FIORAVANTI; GONCALVES: GEROMEL, 2008) or (COSTA; VAL; GEROMEL,
1997).

Pre- and post- multiplying (2.11) and (2.12) by diag(I,E;(P)~*, ) we obtain that if

the inequalities

> 0, (2.13)

Si ° °
Ji ]Ei(P)71 o
D; 0 1
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> 0, (2.14)

are satisfied then [|G[]2 < .

2.2.4 H_ index for MJLS

Assuming that (2.1) is MSS and zy = 0, the H_ sensitivity index is defined as

2]l
0#weLs oK [Jw]|o”

IG]1% = (2.15)

Lemma 3. : Assuming that (2.1) is MSS we have that |G||- > & for & > 0 if there exist
matrices P; > 0, 1 € K such that

(&

oX~

VP 108 6) - | te piba] <0 € K, (216)

18 satisfied.

Moreover for P; > 0 we have that (2.16) is satisfied if and only if

P+CLC; . .
DjC; DiD;—¢I e }>0,Vi € K, (2.17)
A; Ji ]EZ‘(P)71

holds.

Proof: Let us show first that if there exist matrices P; > 0 such that (2.16) is satisfied
then ||G||- > &. Pre and post multiplying (2.16) by [z(k) w(k)'] and its transpose we get
that

[m(k) }/ Af () Ea k) P)Ag (k) —Po(k) ~CoyCak)  AbryEa(k) ) Jak) —Coiy Pok) [Z(k)} <0 (2 18)
w(k) T Bo(k) ®) Aoy ~Doy Cocky  To(mBotk) (P)To(k) — Dk Do) TE1 w(k) : :

From (2.18) and (2.1) we get that
z(k + 1) Eou)(P)z(k + 1) — z(k)Pouy (k) — 2(k) 2(k) + Ew(k) w(k) < 0. (2.19)

Denoting by §x the o-field generated by the variables {z(l),w(l),0(1);l = 0,...,k} we
get that x(k + 1) Eguy(P)z(k + 1) = E(z(k + 1)'Pousnyz(k + 1)|3k), and thus E(z(k +
1)Egu (P)x(k+1)) = E(z(k+ 1) Pour1yz(k +1)). Recalling that xo = 0 we get from (2.19)
after taking the sum over k from O to T that

T

S B[k + 1) Pyl + 1) — 2()Pogyz(k) — |20 + €l ()] =

k=0
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E(a(T + 1) Pocrna(T +1)) = D E(l=(k)P) +€ Y E(llw(®)]*) < 0. (2.20)

T T
k=

0 k=0

Taking the limit as T — oo in (2.20) and recalling that (2.1) is MSS, we obtain that
limy oo E(z(T 4+ 1) Poerinyz(T' 4+ 1)) = 0, and we conclude that

1215 = €llwll3 > 0,

showing the first part of the proof. Let us show now the equivalence between (2.16) and
(2.17). Suppose that there exists P; > 0 satisfying the constraints in (2.16). For any o > 0

we may rewrite (2.16) as
[D?Zy D,;D:—fl} - [éf {f]/{ [Eiép) ,101] - [8 (1+0a)f] } [éf {f] > 0. (2.21)

Reorganizing (2.21) we get that

e ol - BT P S [ ] >0 (2:22)

From Schur’s complement we obtain that (2.22) is equivalent to

Pi+(14+a)CICy . . .
D,ILCZ D:DZ—EI [ ] °

[ " 5 et . ]>0, (2.23)
C; 0 0 o lI

and from the Schur’s complement again we get that (2.23) is equivalent to
Pi+(1+a)CiC; . . c!
[ DC; DID;—¢I e 1 —« [ 01] [cioo] >0,
A; Ji Ei(P)_l 0

showing (2.17). On the other hand, suppose that (2.17) holds. By taking the reverse steps
as before we get that (2.16) is satisfied, completing the proof. B

Remark 1. Notice that, unlike Lemma 1, we cannot guarantee from (2.16) that (2.1) is
MSS.

2.3 Fault Detection Filter Formulation

Let us consider the FD scheme in Fig. 8. As shown in Fig.8, the main points for
a model-based FD to perform properly are the i) accurate model for the plant; ii) a
reliable network communication; iii) a well-designed residue generator filter; and iv) a
proper residue evaluation. In this work, we concentrate our endeavors on providing residue

generator filter designs that contemplate some common issues as imprecise modeling,
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Evaluation
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Fault function > 4
Threshold
t E ReSidHe Evaluation
Control # £ » = function
/ Evaluation Nominal
Noise function < —‘
Threshold

Figure 8: Block diagram detailing the Fault Detection scheme, presenting the residue
generation and residue evaluation steps.

unreliable network connections, and unknown network behavior.

It is important to state that the design of a residue evaluation procedure is not in
the scope of this work. However, a proper residue evaluation is required to guarantee the
FD procedure overall performance. The block diagram representing the FD topology is

presented in Fig.9. We assume that the MJLS subject to faults is defined as

Control u(k)

!

!

Noise d(k) e y(k) r(k) _re(k)
—| G |t Foo - @
Fault f(k) .
f(k)
Weighting
filter Wa(k)

Figure 9: Block diagram representing the topology used to design the Fault Detection
Filter.

Ag(k)x(k‘) + Bg(k)u(k‘) + Jg(k)w(k) + Fg(k)f(k‘),
(2.24)
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where z(k) € R™, y(k) € R™, u(k) € R™, w(k) € R™, f(k) € R™, represent the state,

measurements, control, exogenous, and fault signals respectively.
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2.3.1 Residue Generator using Fault Detection Filter

The goal here is to design a FDF, which is responsible to generate the residue signal
r(k). The FDF is defined as

n(k +1) = Apayn(k) + Magayu(k) + Buogy(k),
S r(k) = Cooryn(k) + Dyocyy(k), (2.25)
n(0) = o,
where n(k) € R", r(k) € R"™ representing filter state, and residue signals, respectively.

A possible way to improve the FDF performance is to consider a weight system during
the design process, as used in (CHEN; PATTON, 2000; ZHONG et al., 2005; ZHONG et
al., 2003). As described in (CHEN; PATTON, 2000), the weight system improves the FDF

performance for a specific frequency range. Herein, the weight system W is denoted by

vp(k+1) = Awryp(k) + Bwf(k),
W f(k) = Cwa (k) + Dy f(k), (2.26)
zy(0) =0,

where x;(k) € R™ is the weight matrix state, f(k) is the same signal as in (2.24), and
f(k) € R™ is the weighted fault signal.

Remark 2. In (CHEN; PATTON, 2000), a non-minimal phase FDI system is presented,
using the Hy, criterion. It is important to state that the weighting system (2.26) is given,
and its sole purpose is to be used as a tuning tool during the design process. In (CHEN;
PATTON, 2000; NIEMANN,; STOUSTRUP, 2001), this technique is implemented for the
continuous-time domain, and in (ZHONG et al., 2005) the same approach is used for the
discrete-time domain. As described in (NIEMANN; STOUSTRUP, 2001), the presence of
(2.26) allows us to choose between a fault detection or a fault isolation problem, depending
solely on the structure of (2.26). If the designer decides to solve a fault estimation problem
with the same framework, the only action would be to set the values of (2.26) as By =0,
Cyw =0, and Dy, = 1. It is important to make it clear that the filter VW is not present in

the implementation, it is just a part of the design procedure.

The difference between the fault detection and fault isolation approaches is that fault
detection needs only a single residue signal, and for the fault isolation case it is necessary
to generate a set of residue signals, called structured residual set, as described in (CHEN;

PATTON, 2012). In our case, for the fault detection approach, we can set Ay, By, Cyw,
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and D)y as fixed matrices to generate a single residue signal r(k). On the other hand,
for the fault isolation approach, the matrices Ayy,, By, Cw, and Dy, would need to be
designed differently in a way to generate an appropriate number of residue signals to reach
the fault isolability. The size of the residue set should be similar to the number of known
recurring faults so that to isolate these specific faults. It is important to mention that a
complete fault isolability is not always achievable since complete knowledge of all possible

faults may be unreasonable for some practical situations.

The major goal in here is to design the matrices A,;, By, Cpi, Dpi, M, so that the
Fault Detection Filter (2.25) is mean square stable when z(0) = 0, u(0) = 0, d(0) = 0 and

f(0) = 0 and minimizes the value of v in for the H,, norm cases as in

sup lIrellz <7, (2.27)
w#0, wEL2, pEN ||w||2

where r.(k) = r(k) — f(k). For the #, norm the goal in the problem formulations is

m N
S5 sulrl3 < (2.28)

s=1 i=1

From the above, the equivalent system can be written in the augmented form as

2(k + 1) = Agyz (k) + Bogryw(k),

gaug : ~
re(k) = CouryT(k) + Doryw(k),

(2.29)

where the augmented state and the input signal are z(k) = [z(k) n(k) z¢(k)']" and
w = [u(k) w(k) f(k)] with

A4 0 o | B U Fo]
i | D; 0 0 Aw 0 0 By
D,C; Cpi —Cw| 0 DyD; DyE; — Dy

2.3.2 Evaluation Function

In the evaluation stage, it is necessary to set an evaluation function EVAL(k) and also
a threshold TH, both as defined in (ZHONG et al., 2005). We consider L as the evaluation
time, and with that, we can separate the evaluation process into two distinct cases, the

first one is defined by k — L > 0 and the second one, k — L < 0. Thus, we define the
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auxiliary vectors for each case as

for k—L >0, #(k) = [r(k) r(k—1) ... r(k— L)'

(2.31)
for k— L <0, #(k)=[r(k) r(k—1) ... r(0))

and, given the discrepancy between the intervals, the evaluation functions for each case
are set as
.

o=k—L 2
for k — L > 0, EVAL(k) = { r'(a>r(a)} ,

o=k

(2.32)

for k — L <0, EVAL(k) = {UO F’(U)f(a)}Q .

\ o=

Remark 3. It is important to highlight that the choice of a suitable L is deeply linked
with the Fault Detection Identification (FDI) performance, since if L is not large enough,
the faults may not be detected since the evaluation signal will not have enough time to
reach the threshold. On the other hand, if L is too large, the number of false alarms will

drastically increase.

Another part of the evaluation process is the definition of a threshold, denoted by TH.
We refer to (CHEN; PATTON, 2012) or (FRANK; DING, 1997) for an in-depth discussion
on how to choose one among the different types of thresholds. In our case, we implement
a fixed threshold, which is obtained after performing a Monte Carlo simulation when there
is no fault. After this simulation being performed, we obtain a curve that represents the
mean and standard deviation of the evaluation function (2.32) for the evaluation window L.
We assume that TH is the peak value of the curve that represents the mean summed with
the standard deviation of EVAL(k) in the period (0, L). For a more detailed description
of this subject, see (CHEN; PATTON, 2012),(FRANK; DING, 1997).

Considering the aforementioned discussion, the decision for the fault detection is as

follows:

EVAL(kK) > TH = fault occurrence = alarm,

EVAL(kK) < TH = absence of fault.

Remark 4. For simplicity suppose in (2.24) and (2.25) that u(k) = v is a constant input
set-point and that w(k) is a white noise sequence with null mean and constant covariance
matriz. It is also tmportant to mention that the system is not subjected to fault at this

moment, meaning that f = 0. By combining equations (2.24) and (2.25) we obtain, for
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appropriate matrices A;, B, C;, (see (2.52)) the system

G { F(k +1) = A (k) + Boy @ (k), (239

r(k) = CouwZ(k),

B z(k) _ v
x(k) = , w(k)= .
" [n(k‘)] “ [w(k‘)]

Suppose that system (2.33) is MSS and that the Markov chain {0(k)} is ergodic. Then it
was shown in Theorem 3.33 and Proposition 3.36 of (COSTA; FRAGOSO; MARQUES,
2006) that E(x(k)1ggw)=j1) — 1; and that U;(k) = E(z(k)z (k) 1o =) = U; as k — oo
for some vectors p; and positive semi-definite matrices U;, j = 1,..., N. By noticing from
(2.33) that (k) = SN, CiE(k)1gw=y it follows that E(r(k)r(k)) = SN, CUi(k)CY.
From this one can see that B(r(k)r(k)) — R as k — oo where R = Y | CiUC!. Since

where

it follows that E(EVAL(r, k)*) — (L+1)Tr(R) as k — oo and also, from Jensen’s inequality,
that 0 < limsupy,_,.  E(J(r, k)) < (L 4+ 1)Tr(R))Y2. In the numerical simulation we can

observe this kind of limit behavior for the evaluation function.

2.3.3 Theoretical Results

In this subsection we present the design of the FDF under the MJLS framework using
the following performance indexes H,, Ho norms, and H_ sensibility index, also the
design for the mixed Ho/Ho and H_ /Hoo.

2.3.3.1 H,, Fault Detection Filter Design for MJLS

Theorem 1. There exists a mode-dependent FD Filter as in (2.25) satisfying ||Gaug||% < 7
if there exist symmetric matrices Z;, X;, Wi, and matrices O;, V;, Iy, Cyi, Dy with
compatible dimensions that satisfy the following LMI constraint

Z; ° ° ° ° ° . ° ° °

Z; X; . . . . . . . .

0 0 W; . . . . ° . °

0 0 0 74 . . . ° o o

0 0 0 0 ~I . . . o o

0 0 0 0 0 I e o e o] >0, (2.34)
Hs,1 g2 0 s 4 g 5 Hge Ei(Z) Ei(X) e o

0 0 E;,(W)Aw 0 0 E,(W)By 0 0 E;(W)e

L ’D,,”'Ci —Cw 0 DniDi 0 0 0 I ]
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where

H8,1 - ]EZ(X)AZ + VZCZ + Oi7 H&Q - El(X)Al "— VZCZ, H874 - El(X)BZ + Fi,
Hgs = Ei(X)Ji + ViDy, Tge = Ei(X)F; + ViE;, Ty = DyiCi + Cy,
ILyo6 = D,y — Dy,

for alli € K. If a feasible solution for (2.34) is obtained, then a suitable FD Filter is given
by Ay = (Bi(Z) — Ei(X)) 7104, By = (Bi(Z) — Ei(X))™'Vi, My = (Ei(Z) — Ei(X)) T,
Cpi, Dy, for all i € K.

%

Proof: The first step to derive the result is to impose the following structure, similar
to the structure in (GONCALVES; FIORAVANTI; GEROMEL, 2011), for the matrices
P; and P

Xi Uz' 0 1 Y; i 0
P=|uXo|, PP'=|v/vol, (2.35)
0o 0 WwW; 0 0 H;

and also consider the following structure for the matrices E;(P) and E;(P)~!:

E;(X) E;(U) 0 R1; Ra; 0
(P) - | ]

E;(U) Ei(X) O } , Ei(P)—l = [R’m Rz 0

(2.36)
0 0 E;W)!

0 0 E;(W)
We define the matrices 7w and ( by
I 10 R Ei(X) ©
T=|vytoo|l, (=10 EUY O |. (2.37)
0 oI 0 0 Ei(G)

Since U; = Z; — X; in (2.35), we get from (2.35), and (2.37) that Y; = V/ and V; = Z; "
Also considering U; = —X; we get Ry;! = Ei(X + U) = E;(Z). Moreover, and so we have
that

v, byt o ~ R A R A 0
TPr= |y 3 CAm =1 n
U= Y7 Xy 0|, i = a1 Ey(X)Ai+E;(U)B,iCi 0 )
0o 0 W 0 0 E;(W)Aw

My, = Bi(X)A; + Ey(U)B,:C;s + E(U) A VY,

L~ R'B; R R'F;
('Bi = | Moy Ei(X)Ji+Ei(U)By:Di Ei(X)F+E;(U)ByiEi |
0 0 E;(W)Byy

[y, = Ey(X)B; + E;(U)M,,
L R Ei(Z) 0O -
(E{(P)"'¢ = [IEZ-(Z) E(X) 0 } . Gyt = [DyiCitCyiViZs DyiCi —Cy |,
0 0 E;(W)

D; = [0 DyiDi DyiDi=Dwy | .

Applying the change of variables E;(U)A,,V/Z; = O;, E;(U)B,; = V;, E;,(U)M,;, =T,
CyiViZ; = Cyi, Dy; and also substituting EZ) = Rﬂl in (2.34), we get the following
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inequality
7' P e ° .
0 74 . .
[C/Aiﬂ' Cléz C'Ey(P)1C o] > 07 (238)
Cim Dy 0 I

and it is easy to see that inequality (2.38) is equivalent to the inequality (2.34). Multiplying
to the right by diag[z—!, I,(~1, I] and to the left by its transpose, we get the inequality
(2.7) and with that we can guarantee that ||G||% <~. B

2.3.3.2 H, Fault Detection Filter Design for MJLS

Theorem 2. There exists a mode-dependent FD Filter in the form of (2.25) satisfying
the ||Gauglls < A if there exist symmetric matrices Z;, X;, Si, T; and matrices Oy, V;, T,
Cri; Dy, with compatible dimensions that satisfy the following LMI constraints

N
> wTr(S) < A, (2.39)
=1
5 S
E;(Z)B; Ei(Z)J; E;(Z)F;  Ei(Z) e o o >0, (2.40)
EZ(X)Bl-‘y-FZ EZ(X)JZ-i-Vle ]El()()Fz-i-sz]Z ]Ez(Z) ]EZ(X) ° °
0 0 E;(T) By 0 0 E(T)e
L 0 Dy Dy DyiE;—Dyy 0 0 0 I
r Z; ° ° ° . e o
Z; X . . ° o o
0 0 T; . . o o
E/(2)A; B (2)A; 0 m@) e e o] >0, (2.41)
Ei(X)Ai4+V;Ci+0; Ei(X)A+V;C; 0 Ei(Z) Ei(X) o o
0 0 E;(T)Ay O 0 EiT)e
L Dm-Ci+Cm- D,,Z-Ci —Cyy 0 0 0 I

for all i € K. If a feasible solution for (2.39), (2.40), (2.41) is obtained, then a suitable
FD Filter is given by A,; = (Ei(Z) — E(X)) 'Oy, B, = (Ei(Z) — E(X)) 'V, M, =
(EZ(Z) — EZ(X))_IF“ Cm;, D,m', fOT’ all i € K.

Proof: In the same way as presented for the H, case, the structures for the matrices
T; and T; ! are as shown in the equation (2.35) for, respectively, P, and P, . For the
matrices E;(T) and E;(T)~! the structure are equal to the one in equation (2.36) for,
respectively, E;(P) and E;(P)~! . Furthermore, the matrices m and ( are as shown in
equation (2.37). Applying the change of variables E;(U)A,,V/'Z; = O;, E;(U)B,; = V,,
E;(U)M,; =Ty, CiV!Z; = Cyi, Dyi = D,y and also substituting E;(Z) = R};' in (2.40),
(2.41), we get the following inequalities

N
> wTr(S:) < A, (2.42)
=1
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S; ° .
[C’f”i CE(P)TICe | >0, (2.43)

D; 0 I

' Py ° .
[c’fim CEi(P)71¢ -} > 0. (2.44)

Cm 0 I

Multiplying (2.43) to the right by diag[l, (™!, I] (respectively (2.44) by diag[z~!, (71, I])
and to the left by its transpose we get the inequalities (2.13), (2.14) which, combined with
(2.42), yields that [|Gaugllz < X. W

2.3.3.3 Mixed Hs/H, Fault Detection Filter Design for MJLS

Note that the structure of the FDF for the H, and H.., allows us to reformulate the
problem mixing Hy/H., norms, in order to attain a better performance in some cases.
Therefore, it is necessary to rewrite the problem as mixed problem by setting the objective

function as
inf{g().7). such that [[Guusll3 < A and [[Gauell% < ). (2.45)

which considers the restrictions as defined in (2.27) and (2.28). By inspection it is possible
to note that there are three possible ways to define the objective function in (2.45), as

described below.

First Case: Find a minimum guaranteed cost A for the Hy norm of system (2.29),

subject to a given upper bound v > 0 on the H,, norm. In this case, we have
97, A) = 1. (2.46)

Second Case: Find a minimum guaranteed cost 7 for the H,, norm of system (2.29),

subject to a given upper bound A > 0 on the Hs. In this case, we have

g7, A) = A (2.47)

Third Case: Find a minimum for a weighted combination of the guaranteed cost for
both Hy and H., norms of system (2.29). Thus, for given scalars 4> > 0 and 52 > 0,

we set

g(7, ) = B8 + A3, (2.48)

where B0) represents the weight for each upper bound. A similar approach is presented in
(OLIVEIRA; COSTA, 2018).
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In this subsection we consider the mixed Hs/Ho case. The set of variables is defined

as
P = {Zz >0, X;>0 W;>0,T; >0, 5; >0, O;, Vg, T}, Cm, Dm} U(c (249)

where ( represents a set that contains A, v or both, depending if these parameters A,

are assumed to be given or a variable of the problem. Hence, we also define

U = {9 as in (2.49) such that the LMIs (2.34),(2.39),(2.40),(2.41) (2.50)

are simultaneously feasible}.

The next theorem provides a sufficient condition for the FD Filter design for the mixed
Ha/Hoo case.

Theorem 3. There exists a mode-dependent FD Filter as in (2.25) such that |G aull3 < A
and |G all2, < v if there exists € W, where ¢ is defined as in (2.50). If a feasible
solution is obtained then a suitable FD Filter is given by A, = (E;(Z) — E;(X))™'0;,
B, = (Ei(Z) — Ei(X))'V;, My = (Ei(Z) — Ei(X))'Ty, Cpi, Dy, for alli € K.

Proof: The proof follows directly from the proofs for Theorems 1 and 2. l

2.3.3.4 Mixed H_/H Fault Detection Filter Design for MJJLS

For the mixed H_/Ho, FDF design we rewrite (2.24) in a particular manner where
(2.24) is rewritten into two forms: one for the Ho, norm design and another for the #H_

sensibility index. In the H., norm design we rewrite the system as

2(k +1) = Aggoyx(k) + Bogyu(k) + Jowyw(k),
Oo : y(k) = Cg(k):B(k‘) + Dg(k)’w(k,‘), (2.51)
I(O) = Xy, 6(0) = 00,

One can observe that comparing (2.24) with (2.51) it is noticeable that the fault signal
f(k) is ignored. We choose this particular structure for the mixed H_/H., FDF approach
due to two major factors. The first one is that we need to guarantee the stability of the
filter, and the latter one is that we want to minimize the effects of the exogenous and
control input in the FDF residue signal. The idea supporting this choice is that two factors
will reduce the presence of false alarms in the FDI scheme. Since there is no fault signal

f(k) we also ignore (2.26).
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The augmented system under these considerations is

F(k+1) = AgZ(k) + Bogoiw(k),
G, ( ) et (k) o) (k) (252
T(k) = Cg(k)f(/{?) -+ Dg(k)w(/{}),

where the augmented state is z(k) = [z(k) n(k)']" and w(k) = [u(k) w(k)’]" and
Ai: [B::ICZAOm]v Bi: [ﬁ;an{ZDz]7 éi:[oc"'i]ﬂ Ei:[oo]'

The fault detection problem for the H,, case may be represented by the optimization
problem to derive the matrices that compose the FDF (2.25) in such a way that system
(2.52) is MSS and minimizes the value v in

sup m <7, (2.53)

lwll20.wesy [w]]2

where v > 0.

Using the augmented system (2.52), and the Bounded Real Lemma (BRL) constraints
(2.7), the following theorem is proposed:

Lemma 4. There exists a mode-dependent FDF in the form of (2.25) satisfying the
constraint (2.53) for some v > 0 if there exist symmetric matrices Z;, X;, and matrices

Oi, Vi, I'y, Cpi with compatible dimensions that satisfy the following LMI constraint

Z; . . . . o o

Z; X; . . . o o

0 0 274 . . o o

0 0 0 74 . o o
Ei(Z)A; Bi(Z2)A;  Ei(Z)B;  Ei(Z)J; Ei(Z) o o >0, (2.54)

n®t 0% E(X)Bi+H: 10 Ei(Z) Ei(X) e

Ci 0 0 0 0o 0 I

where T = By(X)A; + ViCi + Oy, T2 = By(X)A; + ViCi, and TI)* = Ey(X)J; + VD
If a feasible solution for (2.54) is obtained, then a suitable FDF is given by A, =
(Ei(Z) — Ei(X))'0i, By = (Ei(Z) — Ei(X)) "' Vi, My = (Bi(Z) — Ei(X)) 'y, Cyi, for
all v € K.

Proof: The proof of Lemma 4 is similar to the proof presented in (GONCALVES;
FIORAVANTI; GEROMEL, 2011) and for this reason it will be omitted. W
Now to design the H_ side we rewrite (2.24) as follows
z(k+1) = Agyz(k) + Fyw) f (),

g: y(k) = Coayx(k) + Eg f(K), (2.55)
$(0) = Xy, 9(0) = 90,
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where x(k) € R", y(k) € R™, f(k) € R" | that represents the state, measurements, and
fault signals, respectively. Therefore, the augmented system for the H_ case is
T(k +1) = AgnyZ(k) + Bopyw(k)

aug * _ _ ’

T’e(k‘) = Og(k){i(k) + Dg(k)w(/{)

(2.56)

where the augmented state is Z(k) = [z(k) n(k)" z;(k)']", w(k) = f(k)’, and considering
the equation 7. (k) = r(k) — f(k)

_ A; 0 0 _ F; _ _
A;j = | BuCi Ayi 0 | | By = |BuEi |, C;= [0 By CW] ., D;=—Dy
0 0 Aw By

For the H_ case, the purpose of this sensibility index in the fault detection problem is
to maximize the FDF (2.25) sensitivity against the fault signal, recalling that f(k) € Ls.
Therefore, the definition is somewhat inverse of the usual H,, norm since the H_ is defined

as

g Urellz . ¢ (257)
jecs 11l

¢ > 0, with the intention of increasing the sensibility of the output r.(k) against the
weighted fault signal f(k).

Considering the augmented system (2.56) and Lemma 2 and the constraint in (2.17),

we can propose the following theorem.

Theorem 4. If there exist symmetric matrices Z;, X;, W; and matrices 0;, V;, Cpi, with

compatible dimensions that satisfy the following Bilinear Matriz Inequality (BMI) con-

straints
Zi—&—(f;ﬂ(fm . ° . ° . .
Z; X; ° ° ° ° °
—C{,Vc_m- 0 C{/\;CW"sz‘ . ° ° .
—DiCpi 0 DiyCw DijyDw—¢l o o e | >0, (2.58)
E;(2)A; Ei(Z)A; 0 Ei(z)F; Ei(z) e o
g2t g2 0 =01 E;(2) Ei(X) o
0 0 E; (WZ)AW E; (WZ)BW 0 0 E; (W)

where 20" = B;(X)A4; + V,C; + 0;, B0 = E;(X)A4; 4+ V,C;, and E%* = By(X)F, + V,E;, and
the following LMI constraints

(7 e]>0, (2.59)

then there exists P; > 0 for all i € K such that (2.17), replacing A;, J;, C;, D; by
respectively A;, B;, Ci, D; as in (2.56), and taking

Ay = (Ei(Z) = Ei(X)) 7105, By = (Bi(2) — Ei(X))"'Vi,  Cyi, (2.60)
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will hold.

Remark 5. Notice that, as pointed out in Remark 1, we cannot guarantee from (2.17)
that system (2.56) will be MSS. Therefore we cannot guarantee that a suitable FDF will be
derived. However, since the goal is to combine the H_ index with the H, filter, we will

obtain MSS from the conditions for the Ho filter (see Remark 1).

Proof: Consider that (2.58) and (2.59) hold and set the matrices A,;, Byi, C;; as in
(2.60), and the matrices A;, B;, C;, D; as in (2.56). Notice that from (2.59) we have that
X; — Z; > 0, which implies that E;(X) — E;(Z) > 0. Partitionate P;, P; ', E;(P), E;(P)~! as

0w,
E;(X) E;(U) 0 3 Ri; Rys O
Ei (P) — Ei(U/) E1()A() 0 5 EZ (P) - R‘/2i R3i 0 9
0 0 E;wW) 0 0 E;w)™!

where Y; = 27, —X; = U; = 2; — X;, V; = Z; ', Vi € K, which yields to R, = Ei(2).

Defining the matrices g; and ¢; as

170 EZ(Z) EZ(X) 0
0; = [1 0 o} , G = 0 Ei(z)-Ei(x) 0 |,
001 0 0 (W)

and noticing that

Z; Z; 0 - 2! Cni 0 —CL.Cyy
/ vyt ali ni ni
o;Pioi = [Zi X; 0} ;o 0,CiCi0 = { 0o 0 0 )
TYwEm

0 0w c! i 0 C{/\;CW
7 A _ ;o E;(2)A; E;(2)A; 0
Di 10 — [fD{,ani 0 D{/\;CW] , glA’LQ’L = | E;(X)A;4+0;+V,;C; E;(X)A;+V,;C;, 0 s
0 0 E; (W) A

Cigi = [Cni 0 =Cw],  DiD; = D'y, Dyy,
EZ(Z)BZ EZ(Z) EZ(Z) 0

gi/Bi = {Ei(x)Fi+ViEi1 , Q;Ei(P)_lgi = |:Ei(z) Ei(X) 0 } ,
E; (W) Byy 0 0 E;(W)

we conclude that the inequality in (2.58) can be re-written as

oiPioi+0;CiCioi o o
DjCioi DDi—¢1 . > 0. (2.61)
§'Aj0; sIB;  SIEi(P)"lg

Pre and post multiplying (2.61) by diag(o; ', I,s; '), we obtain that (2.17) holds, showing
the result. W

Coordinate Descent Algorithm

Note that the constraint (2.58) is a BMI since the term C},C,; is quadratic. Hence,
it is necessary to use an appropriate method to solve this type of problem. A possible

procedure to solve this BMI is to implement a Coordinate Descent Algorithm, as in
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(CARVALHO et al., 2020a; CARVALHO; OLIVEIRA; COSTA, 2020). For this define
O =12 X, Vi, 0;, Cpy,i € K}, T = {T;,i € K}, and S;(¢,&,T) the inequality in (2.58)
with the variables v, & and replacing the block (1,1) in (2.58) by Z; + T; (that is replacing
FiF; by T; in the block (1,1)). For TF = {T¥ i € K}, with T¥ > 0 fixed, solve the following
LMI optimization problem, denoted by Pr(T*): max ¢ subject to the following LMIs:
Si(¢¥, &, TF) > 0, (2.58) and

[Ti“ ] > 0. (2.62)

Copi 1

Suppose that there is a solution ¢*, € for this problem. Set now T/*!' = CkCE,
and solve the problem Pr(TF*!). Consider that the solution for this problem is 1"+,
¢M1. From (2.62) we have that T > CKCE = T/ > (?,’]“;rllc_f;;ﬂ, and S;(prFL, gL TR) >
Si(PFHL L TRHL) > 0, that is, F L, €FFL is feasible for problem Pr(T*), so that ¢+ < ¢k

Based on that, we propose the following algorithm.

Algorithm 1: Coordinate Descent Algorithm

Input: T tax, €
Output: A,;, A,; , C,; as in Theorem 3.
1 At iteration k use T* to solve the LMI optimization problem Pr(T*) posed above.
Obtain a solution ¥, £F.
2 If 5k =& > ¢ and k < tae, 20 back to step 1 using TH! = Cr.CE.. Otherwise stop

the algorlthm.

Since the sequence &¥ > 0 is decreasing, it will converge and the algorithm will stop at

some iteration.

Remark 6. Observe that in Algorithm 1, the initial condition has impact on the feasibility
or convergence speed of the algorithm. Note that, the first iteration finds a feasible solution
the CDA convergence is guaranteed, meaning that the final results will be equal or better

than the initial condition. A possible way to define the TV = CO Co.

_O . .
ni» Where Cp, is obtained

using Lemma 4.

It is important to point out that the FDF's obtained using Lemma 4 and Theorem 3 have
a similar structure, thus, this key aspect allows us to solve both problems simultaneously.
Based on this property, we present an approach to solve the mixed H.,/H_ problem, in a

similar way as presented in (OLIVEIRA; COSTA, 2018). We need to impose the following

constraints

Y= {% § Zi=12;, X, =%, V;=V,;, 0;,=0;, Cy = C_m‘} . (2.63)
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Set

U = {4 as in (2.63) such that the LMIs (2.54), and the BMIs (2.58),

are simultaneously feasible}. (2.64)

Theorem 5. There exists a mode-dependent FDF as in (2.24) such that ||Gaugll% < 7
and ||Gaugll2 > € if there exists p € U, where V is defined as in (2.64). If a feasible
solution is obtained then a suitable FDF is given by A,; = (E;(Z) — Ei(X))O;, B, =
(Ei(Z) — Ey(X))'Vi, Cots My = (By(Z) — Ei(X)) T, Vi € K.

Proof: The proof follows directly from the proofs of Theorems 4 and 3. H

Remark 7. Observe that is not necessary to mention the LMI constraint (2.59) in (2.64),

since (2.58) already has this constraints within.

We define the mixed objective function

9(1,§) = oy = (1 = 0)¢, (2.65)
where ||G]|2, <, [|G]]2 > &, and o > 0 is a weighting scalar.

The goal is to minimize (2.65) subject to ¢ € W. If one of the bounds is fixed the

problem will be to minimize the objective function under the constraint ||G||%, < ~ or

IG[2 > €.

2.3.4 Simulations Results

As an illustrative example we use a coupled-tank, the modeling is described in the

Appendix A. The matrices that compose the state-space system are

Ap =[S O], Bua= 90w,
iz = [ odnl. Fra=01[°%®], Dia= 9" dul,
Eis = [8], Aw=025 By=05 Cy=075 Dy =05

As seen above, the matrix that represents the fault in the actuator (F) is a 10% ratio
of the input matrices B. This choice of value represents the eventual fault in the actuator.
Another aspect is that (F') should not be switched since the fault has no direct relationship
with the network behavior. Regarding the sensor fault matrix (E) we consider it to be

null since we are only considering an actuator fault and not a sensor fault. To model the
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communication loss between the FDF and plant sensors, the matrices C; are defined as
Cr=1[5%], G2 =10

The transition matrix is defined as P = [ 3% %35], which represents a network with a

packet loss rate of 25%.

Remark 8. It is important to clarify the distinction between the concept of communication
loss and sensor fault. The first one represents the information lost during the transmission,
which is a network problem. The latter represents an equipment (sensor) problem where

data gathering is compromised.

Remark 9. It is possible to implement more complex network models by changing the
number of modes, and imposing different structures in the transition matriz P. However,
this is not the main goal of this work. Some works that tackle this subject are (BOLCH et
al., 2006).

Using Theorem 1 and the aforementioned systems we get,

__ [0.0021 —0.0020 __ [ 0.0058 —0.0375 — [ 0.1342 0.0698
Aﬁl - [0.0021 70.0020] ) Aﬁ2 - [0.0478 70.0669] ) Mﬁl - [—0.5776 0.7818] )

Mo = [§588885], Bo = [ o106 —ooees|» Bz =1[88],
]

Cp1 = [ 0048900469 ], Cpo =[00], D,y =[00523-01963], Do =[00], (2.66)

and the upper bound obtained was v = 1.4142. Now considering Theorem 2 we obtained

Ao = (550 53], A= (O] M= [ S50 00,
Mo = [85060 8900),  Bon = [ 4o Wasot’ |+ Bz =1[88],
Cpp = [-01239 —01239], Cpo =[00], D, =[-03829-0329], Do =17]00], (2.67)

and the upper bound obtained was A = 5.6378. For the Theorem 3 the FDF obtained was

0.2605 —0.2383 0.0069 —0.01668 —0.1475 0.7399
__ [0.7572 0.04728 __ [ 0.4330 —0.4802 —_J00
M?ﬂ - [0.0472 0.7573 ] ) Bnl - [70.4544 0.4071 ] ) Bn2 - [0 0] ’

Cpp = [-0.0379 —0.1094 |, C,p = [ —0.0061 —0.0370 ] ,

Anl — [—0.2534 0.2617 ] 7 ‘AHQ — [—0.01298 —0.0077} ’ Mnl — [ 0.7399 —0.1475} ,

D,y = [0.0036 0.0096 |, Dpo =[00], (2.68)

the upper bound v =5 and A = 5.8224. At last, the FDF obtained using Theorem 5,

__ [ —0.2979 —0.0109 __ [ —0.0239 —0.0127 __ [ 0.7100 —0.0000
A771 - [—0.0008 —0.3017} ) "4772 - [ 0.0127 —0.0285] ’ Mﬁl - [—0.0000 0.7100 } )

__ [ 0.7101 —0.0000 — [0.2740 —0.0018 —J00
MUZ - [—0.0000 0.7101 } ) 8771 - [0.0135 0.2732 ]7 8772 - [O 0] )
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Cop = [0.4896 0.1075 ], Cyg = [3.1892 —2.0479] , (2.69)

with the upper and lower bounds v = 1.2270 and £ = 1.01.

2.3.4.1 Monte Carlo Simulation

As previously discussed, the system is a coupled tank, the fault signal implemented in
this simulation is an abnormal input on the first tank at £ = 125. The intensity of this
input is equal to 10% of the regular input. Also considering the threshold TH = 0.3. Under
this specific situation, we present five graphical results from the simulation. The first four
results are shown in Figs. 10a, 10b, 10c, 10d where the mean and standard deviation of
the residue signal for each theorem are given, and the fifth result is the evaluation signal

EVAL(k) obtained for all three cases and shown in Fig. 12
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Figure 10: Mean and standard deviation for the residue signal obtained using FDF designed
using the Theorems 1, 2, 3, 5. There are two graphics for each theorem, representing when
the system is subjected to a fault and another graphic without fault.

Examining Figs. 10a, 10b, 10c, 10d it is possible to observe that the lower value of
standard deviation is obtained using Theorem 5, and the results obtained using Theorem 1
provided the higher value. Note that, the higher standard deviation is directly connected
with the number of false alarms. Therefore, the results obtained via Theorem 5 will present

a lower chance of false alarms. Another important piece of information is that all the



49

residue signals obtained with the presence of fault were close to zero, which is the expected

behavior.
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Figure 11: Mean and standard deviation for the evaluation function obtained using
FDF designed using the Theorems 1, 2, 3, 5. There are two graphics for each theorem,
representing when the system is subjected to a fault and another graphic without fault.

Inspecting Figs. 11a, 11b, 11c¢, 11d we may state that all four approaches properly
detected the fault. However, there is a performance discrepancy between the approaches,
the fastest detection was obtained using Theorem 1, detecting the fault in the interval of
k = [143 155] (12 range). However, the result obtained using Theorem 5 presented the

most reliable results since the detection interval was k = [153 160] (7 range).

In Fig. 12 a comparison with all the four approaches is presented, where solely the
mean value of the evaluation function is provided. It is clear that the results for Theorem
1 is faster, but the difference to the result obtained using Theorem 5 is equal to 6, and
also there is an overlap in those intervals. Therefore, we may conclude that all four results

are viable solution Fault Detection and Isolation problem for the MJLS framework.

2.4 Fault Accommodation Formulation

N this section, we present the Fault Accommodation problem formulation and propose

I some theoretical approaches to solve such a problem. The formulation we present here
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Figure 12: Average value of the evaluation function signal for four distinct cases, where
the blue curve represent the result using Theorem 1, the red curve represent the result
obtained via Theorem 2, the magenta curve represent the results through Theorem 3, the
black curve denote the result for Theorem 5, and the cyan line denotes the threshold TH.

is a particular case of a model-based Active Fault Accommodation Control (FAC) problem,
where an auxiliary controller is designed with the only purpose of mitigating the fault

effect on the system performance.

The MJLS for the fault-compensation problem is described as

z(k +1) = Agwyx(k) + Bogyuck) + Bogyhik) + Jogyw(k) + Foy f (K),
g y(k) = Copyz(k) + Dyryw(k), (2.70)
.ﬁE(O) = Xy, 9(0) = (90,
where the system states are denoted by z(k) € R the control input is represented by

u(k) € R™ the exogenous input is w(k) € R™, the fault signal is denoted by f(k) € R™f
and the measured output is represented by y(k) € R"v.

2.4.1 Fault Accommodation Controller

The Fault Compensation Controller scheme is presented in Fig. 13. We see from this
scheme that our main goal is to provide an FAC (/C,,) that generates the control signal h(k)
with the sole purpose of compensating the fault signal f(k). The control signal h(k) should

be close to zero when the system is working properly.
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Fault f(k)

'

Noise w(k] System (K] Controller | wu(k)

Go(k) > Ko I I
y(k) (k)
l 1 FAC Keory |
UTotal ()

Figure 13: Fault accommodation control scheme diagram used to design the controller.

The FAC can be described as

n(k +1) = Agwyn(k) + Moayu(k) + Bowyy(k),
Ke: q h(k) = Eouyn(k), (2.71)

1n(0) = 1o, 0(0) = 6o,

where 7 € K represents the FAC, u(k) and y(k), are respectively, the control signal from

the regular controller and the measured signal from the system.

The mode-dependent state-feedback controller is
U(k) = —Kg(k)l‘<k), (272)
where x(k) € R™ represents the states in (2.70). From that, we define up,1(k) as

UTotal(K) = u(k) + h(k). (2.73)

Considering system (2.70), the state feedback control law (2.72), and the FAC (2.71),

as presented in Fig.13, the augmented system is given by

K

gaug : E(k') = ég(k)f(k) + D@(k)u_)(k)u

where z(k) = [z(k) n(k)'] and w(k) = [w(k)" f(k)']', with the following augmented
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matrices are
A= LB 8T, Bo= [ 51,
[_%ZCZ MK A } ] [%J)z 0} (2'74)
C; = [0 —Bz@i] , D; = [0 Fi] .
The main goal of this paper is to design a FAC as presented in (2.71) where the difference
o(k) = F;f(k) — B;h(k) is close to zero. Therefore, the optimization problem is described

as

sup lolla <. (2.75)

w#0, wEL2, OpEN Hng

2.4.2 Theoretical Results

2.4.2.1 H, Fault Accomodation Control Design for MJLS

Theorem 6. There exists a mode-dependent FAC as described in (2.71) satisfying the
constraint (2.75) for some vy > 0 if there exist symmetric matrices Z;, X;, and the matrices

A;, Vi, Q;, and ©; with compatible dimensions such that

Z; . . . . . °
Zi  X; . . . . .
0 0 ~vI . . . .
0 0 0 ~yI . . .
>0 2.76
o>t Pt E(X)J; E(X)F; I1° e . ) ( )
né!' 18?2 E;(X)J;4+0;D; Ei(X)F; Ei(X) Ei(X) .
—A; 0 0 Ei(X) 0 0  Her(E;(X))—1

with

7! = Ey(X)A; — Ey(X)BK; + A,

17! = Ef(X)A; — Ef(X)BiK; + 0:;C; + ViK; + A + Qi
9% = E,(X)A; — Ei(X)BK; + 0,C; + V, K,

I17? = By(X)A; — Bi(X)B.K;, 11I7° = Her(Ey(X)) — Ei(2),

holds for all © € K. If a feasible solution is obtained, a suitable fault-compensation
controller is given by A; = (Ei(Z) — E(X))™'Q;, M; = (Ey(Z) — Ey(X))7'V;, B; =
(Ei(Z2) — Ey(X))71O;, and & = (E(Z) — Ey(X)) 1 B; 14,

Proof: The goal of the proof is to show that if the inequality (2.76) holds, then (2.5)

is also satisfied. First, consider the following structures for the matrices

Xi Ui -1 _ |V
- [5]. - [3]

_ [Ex) Ei(U) -1 _ | By Ra
Ei(P) = |:Ei(U)l Ei(f()} Ei(P) = [R; R;] ’

(2.77)
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and define the matrices ); and T; as
I I E;(X) E;i(X
T; = [Vi'yflﬂ}’ Qi = [ E) )IE,L-((U))’}'

As demonstrated in (GONCALVES; FIORAVANTI; GEROMEL, 2010), by imposing
that U; = Z; — X;, it follows from (2.77) that Y; = V/, V; = Z;!. Setting the following

matrices

y [y tyt Ei(X)A;—E;(X)B; K;
TiPiTi—[YZlXZ}, QAT—[Z g ]
= E;(X)A; — Ei(X)B; K; + Ei(X)B;¢;,
v =Ei(X)A; — Ei(X)

BiK; + E;(U)B,C; — Ey(U)I K, — Ey(X) B¢,
v =Ey(X)A; — EBy(X)BK; + Ei(U)B,C; — By (U)K

R _ E; (X)J; E; (X)F;
QB = E;(X)J;+E; (U)B;D; Ei(X)Fi] )

C.T, = [-Bieio], D;=[oR].
as presented in (OLIVEIRA; BERNUSSOU; GEROMEL, 1999), it is possible to write
Her(E;(X)) — Ei(Z) < E(X)'Ei(2)'Ei(X).
This step allow us to write

— Her(E;(X))—E;(Z) E;(X
QE(P) Qs = [0 B ]

Therefore the inequality given in (2.76) can be written as

T!P;T, . . .

0 74 . .

[ QLAT; QiBi  QE:i(P)~'Q; . ] > 0.
Ei(X)CiT; Ei(X)D; 0 Her(E;(X))—1

Applying the congruence transform
diag(T;7', 1, Q7 E(X) ™),

in this last inequality, the following constraint is obtained

which, by applying a Schur complement, can be recognized as the BRL (2.5), concluding
the proof. B

Remark 10. Note that, from (2.76), matriz B; in (2.70) should be invertible. However,

by requiring it only to be square, we can obtain the matrix €; using a Penrose inverse.
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2.4.3 Simulations Results

To disclose the usability of the proposed approach we use the same coupled tank model
example used in the previous section. A proper discussion of the modeling process is

presented in Appendix A. The matrices that compose the coupled-tank system are:

A= [0l 2008 ], Bz =[%" %], Ji2=01Bys, Fip=diag(l;,01),

Cl == [2, Cg = 02, DLQ = 01]2
Additionally, consider that the transition matrix is given by
P =[0503], (2.78)

The nominal controller obtained using the results in (GONCALVES; FIORAVANTI,
GEROMEL, 2012) is

__ [ —1.3456 0.0154 __ [ —0.0315 0.0167
Kl [—0.0154 —1.3398} ) K2 - [—0.0167 —0.0375} ’

and the H,, norm value is v = 0.1276. The fault-compensation controller obtained

designed using Theorem 6 is

__ [ 0.2233 —0.0080 __ [ 0.0488 —0.003
2101 - [—0.0059 0.2731 ] ’ mCQ - [—0.0013 0.0651} ’

__ [ —0.1745 0.0041 __ [ —0.1745 0.0041
%01 - [ 0.0045 70.2079} ’ %02 - [ 0.0045 70.2079} )

__ [ —=0.1701 0.0063 __ [ —0.1701 0.0063
md - [ 0.0016 70.2018:| ’ m62 - [ 0.0016 70.2018} )

¢, = [—0.4597 0.0239 } ¢, = [—0.4596 0.0239 ]
cl — | —0.0006 —0.5075 | » €2 — | —0.0006 —0.5075 | *

and the H,, norm value is v = 1.9002.

2.4.3.1 Monte Carlo Simulation

The fault signal implemented is a sinusoidal wave as 0.025sin(k). The noise signal is
a white noise with zero mean and deviation equal to 0.01. The results presented herein
were obtained via Monte Carlo simulations with 300 rounds. In all the simulations we
made a comparison between the proposed approach (Theorem 6), and a regular solution
using only the controller designed using (GONCALVES; FIORAVANTI; GEROMEL,
2012). The simulation results are organized in two sets of six subfigures, where the first
set contains the results when there is a fault and the second set shows the results for
the case without fault. Each set is organized as follows: the first graphic represents the

mean and standard deviation for both tank levels h; and hy obtained using Theorem 6,
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the second graphic represents the mean and standard deviation for both tank levels hy
and hg obtained using solely the nominal controller, and the third graphic compares the
mean of both previous graphics. The fourth graphic is the mean and standard deviation
of the control signal obtained using Theorem 6, the fifth graphic is the mean and standard
deviation of the control signal obtained using the nominal controller and the sixth graphic
is the comparison of the fourth and fifth graphics. In Fig. 14c it is possible to observe
that the fault is compensated for both levels, which can be seen by comparing the mean
value of the system states using the accommodation and the nominal controller. In both
graphics the compensation is noticeable, the sinusoidal behavior is mitigated in both levels.
Fig. 14a, and 14b show that the standard deviation for both the plant states are slightly
higher, approximately 0.05 meter. Additionally, note that the control signals for both
actuators, which are shown in Fig. 14f, minimize the fault behavior while keeping the
level near the linearization points, that is, 0.25m and 0.1m for the first and second tanks,

respectively.

The analyzes of the simulation without fault is important since it shows that the
proposed approach in Theorem 6 will not drastically change the nominal behavior of
the plant. In Fig. 15c, we can observe that there is not a significant change when
comparing it with the nominal results, which is desirable. The step response for the
compensated approach is closer to the step signal. As seen in Fig. 15d, Fig. 15e also shows
a distinct difference between the graphics, however, this difference is around 0.001, which
is acceptable. For the control signal presented in Fig. 15f, there is a difference between
the control signals for both actuators. Based on the aforementioned results, we see that
the FAC approach proposed in this section indeed mitigates the fault signal as intended.
However, there is a slight difference between the FAC and the nominal controller, which
was not desired. This phenomenon can be explained due to the step input, as the FAC

detects this abrupt change as a fault.

2.5 Concluding remarks

In this chapter, we presented the theoretical results obtained for the design of a FDF
and FAC under the MJLS framework, additionally we also presented examples to illustrate
the viability of the proposed methods. Analyzing the simulation results allows us to state
that all approaches fulfilled the intended purpose. The next chapter presents the design of
FDF and FAC with the additional assumption that the Markov mode is not accessible.
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Figure 14: Mean and standard deviation for the states and control signal for the FAC
designed with Theorem 6 when the system is subjected to the fault.
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designed with Theorem 6 when the system is in its nominal state (faultless).
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3 FDF AND FAC FOR MARKOVIAN JUMP
LINEAR SYSTEMS WITH PARAMETER
ESTIMATION

In this chapter we present the theoretical background necessary to understand the
results obtained for the FDF and FAC design herein. The major novelty in this chapter is
the assumption that the Markov chain mode is not directly accessible. For that reason
the FDF and FAC designed under this assumption do not depend on the Markov chain
parameter 0(k), but instead, the FDF and FAC depend only on an estimation of the Markov
chain mode denoted by é(k) From the practical point of view, the assumption of the
Markov mode in our case is interesting, since we are using the Markov chain to model the
network behavior, and the hypothesis that the network state is instantaneously acquired
might be unrealistic. Therefore, the design methods presented here can circumvent this

issue and guarantee the performance simultaneously.

The results presented in this chapter were published in the following journals and

conferences:

e Subsection 3.2.1 presented the H., Fault Detection Filter for Markovian Jump
Linear Systems with Estimation Parameter, which was presented in the 9th IFAC
Symposium on Robust Control Design (ROCOND’18) (CARVALHO; OLIVEIRA;
COSTA, 2018c).

e Subsection 3.2.2 presented the Ho Fault Detection Filter for Markovian Jump Linear
Systems with Estimation Parameter, which was presented in the Congresso Brasileiro
de Automatica 2020 (CARVALHO; OLIVEIRA; COSTA, 2020).

e Section 3.3 presented the Simultaneous Fault Detection and Control for Markovian
Jump Linear Systems with Estimation Parameter, which was published in IEEE
ACCESS (CARVALHO; OLIVEIRA; COSTA, 2020).

e Section 3.4 presented the Fault Accommodation controller under Markovian jump

linear systems with asynchronous modes, which was published in International
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Journal of Robust Nonlinear Control (CARVALHO et al., 2020a).

3.1 Preliminary for Markovian Jump Linear Systems
with Parameter Estimation

Consider the following hidden discrete-time MJLS in the stochastic space (2, F,P)
with filtration Fy

z(k+1) = Ae(k)é(k)m(k) + JG(k)é(k)w(k)’
2(k) = Coaum (k) + Dy w(k),

where z(k) € R™ is the state, y(k) € R™ is the measured output, z(k) € R"* is the

(3.1)

estimated output, w(k) € R™ is the exogenous input. We also consider that w(k) € Ls.

Observe that (3.1) depends on two distinct stochastic processes 6(k) and 6(k). The
first one represents a homogeneous Markov chain, with values are in the set N. Considering

that F is a o-field generated by
2(0),w(0),0(0),0(0), ..., z(k),w(k),0(k),0(k), (3.2)
we assume that
Prob(6(k + 1) = j|F)) = Prob(0(k + 1) = j|i) = p;;, i€ N. (3.3)

It is assumed that (k) is unaccessible and that 6(k) is observable and takes values in

the set M. From the above, we consider the sigma field Fy, generated via z(0), w(0),6(0),

and Fy, by z(0), w(0),0(0),0(0), ..., z(k), w(k),0(k),0(k), k > 0, and assume that

Prob(0(k + 1) = j|Fi) = Prob(0(k + 1) = (]i) = ¢y, € M. (3.4)

We have that ¢;; > 0,Vi € N is such that ), ., ¢ = 1, where the set M;,i € M is

defined as in
M, =S {E e M: qbz-j > 0} , UiENMi = M. (35)

The detection probability matrix is denoted by T = [¢y], ¢ € N, ¢ € M. This process is
known as a Hidden Markov Model, as in (ROSS, 2014).

We define the transition probability matrix by ¥ = [p;;] where p;; = Pr[0;+1 = j|0k = 1]
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and Zj\le pi; = 1 for all i € K. Observe that system (3.1) depends on the index 6(k), but

also depends on the index é(l{;), which represents an estimation for the index 6(k).

3.1.1 Stability for Hidden Markovian Jump Linear Systems

Consider the hidden MJLS (3.1) with w(k) = 0 defined on the probability space
(Q,§, Prob) with filtration {Fx}. As presented in (COSTA; FRAGOSO; TODOROV,
2014), the definition of stochastic stability is described as below.

Definition 2. Considering (3.1) with w(k) = 0, system (3.1) is said to be stochastically

stable if for any initial condition 6(0 = 6y), and for all second moment x,
Izl =D E(lz(k)|?) < oc. (3.6)
k=0

For V.= (W4,...,V,) € H" consider the following linear operators &;, £;, T; € H",

which allow us to draw the stability conditions for (3.1) as

E(V)EDY Vi, (3.7)
JjEN
Ly(V) = Z GiALEi(V) Ai, (3.8)
LeM;
TV) 2NN piydyAuViAl, Vi, j,€N. (3.9)

€N LeM;

3.1.2 H, norm for Hidden MJLS

Definition 3. Assuming that (3.1) is MSS, the Hoo norm is given by

912 sup Ll
0we Lz ek || W][2

The next lemma is known as Bounded Real Lemma for the detector approach, which
was first introduced in (TODOROV; FRAGOSO; COSTA, 2018).

Lemma 5. [f there exists P; > 0, My > 0, Sy > 0, and Ny such that (3.10), (3.11), hold

KA Al (3.10)
leM;
AR AN AR (3.11)

for alli € N and ¢ € Mj; then ||G||o < 7.
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Proof: See (TODOROV; FRAGOSO; COSTA, 2018). B

Applying the Schur complement in (3.11) we obtain the following inequality,

Mg ® ° °
Ni Sz L] [ ]

[Aij Jie E,(P)~! .] > 0. (3.12)
Cie Dy 0 1

3.1.3 Hs norm for MJLS for Parameter Estimation

Assuming that (3.1) is MSS, the Hs norm is given by

s=1 i=1

Nw N
1G]]z = \l D> willzol3 (3.13)

where the initial Markov chain state distribution is given by Prob(6(0) = i) = u; > 0 for

all 2+ € N. Considering the strict inequalities,
Qi > > du(AYE(Q)Ai + C}Ci), €N, (€M, (3.14)
LeM;

for Q; > 0, we have that

U612 < 3°5° GaenTr (JEAQ) ), (3.15)

1=1 leMj

Lemma 6. If there exists Wi > 0, Ry > 0, and @Q; > 0, such that (3.16), (3.17), (3.18),
(3.19), hold

N
SN it Tr(Wy) < X, (3.16)
i=1 LeMj;
Wie ° .
{Jiz E(Q) e | >0, (3.17)
Dy 0 I
Qir > Z Gie R, (3.18)
LeM;
Ri[ [ ] L]
|:AM Ei(Q)~* '} > 0. (3.19)
Cie 0 I

for alli € N and ¢ € M; then ||Gl2 < A.

Proof: See (COSTA; FRAGOSO; TODOROV, 2014) or (OLIVEIRA; COSTA, 2017a).
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3.2 Fault Detection Filter Formulation for MJLS with
Parameter Estimation

In this section, we provide FDF design under the assumption that the Markov Chain
mode is not accessible. From the discussion made at the beginning of this chapter, we may

provide a block diagram of the system as in Fig.16 We assume that the MJLS subject to

1

Noise d(k k k o (K
ise d(k) System _L Filter ., r(k) .7"( )

Control u(k)

Gok)

Fault f(k) ’ .

Weighting
filter W@(k)

Figure 16: Fault detection and isolation scheme diagram assuming that the network mode
is not accessible.

faults is defined as

2
=
+

=
I

Agyx(k) + Bogyu(k) + Jogyw(k) + Fo f (k),
g y(k) = Couyz (k) + Dogyw (k) + Eor) f (k) (3.20)

where z(k) € R™, y(k) € R™, u(k) € R™, w(k) € R™, f(k) € R"™, represent the state,

measurements, control, exogenous, and fault signals respectively.

Using the same idea of the FDF in the previous chapter, we also implement a system
W given by (3.21), which is described as

wp(k+1) = Away (k) + Bw f(k),
W f(k) = Cya (k) + Dy f (k), (3.21)
z¢(0) =0,

where xy(k) € R™ is the weight matrix state, f(k) is the same signal as in (2.24), and

f(k) € R™ is the weighted fault signal.



63

We assume that the FDF depends only on the detected variable é(k) as in

n(k+1) = A s0n(k) + M, 500u(k) + B,y (k),
Fiq k) =Coapn(k) + Dygyu(k), (3.22)

né
77(0) = To,
whereby n(k) € R? represents the filter states, and r(k) € R is the filter residual. We

point out that this filter structure depends exclusively on the detector mode é(k’)

With the intention of designing an FDF in the form of (3.22) to be mean square stable
when z(0) = 0, u(0) =0, d(0) =0 and f(0) = 0 and minimizes the value of v considering

the H,, norm case, we define criterion to be minimized in the optimization problem as

el
sup
w#0, wEL2, OoEN ||w||2

o (3.23)

where 7.(k) = (k) — f(k). The definition of the criterion to be minimized in optimization

problem for the Hs norm case is

m N
S w3 < A (3:24)

s=1 i=1

Considering system (3.20), weighting system (3.21) the two different criteria (3.23),
(3.24), allow us to describe augmented state and the input signal as Z(k) = [z(k) n(k)" z (k)]
and w = [u(k)’ w(k)' f(k)],

. T(k+1)= Aa(k)é(k)j(k) + Bo(k)é(k)w<k)v (3.25)
re(k) = Couyam Z(k) + Dy @(k),
where each matrix is described as
4 0o o | B U o]
z‘:lw f:?w _ BCi Ay 0 | My ByD; B, E; ‘ (3.26)
Cie | Die 0 0 Aw | O 0 By
| DuCi Cy —Cw| 0 DyDi DyE— Dy

3.2.1 H., Fault Detection Filter Design for MJLS with Parame-
ter Estimation

Theorem 7. There exists a filter in the form of (3.22) such that ||Guull%, < 7 if there
exist symmetric matrices Z;, X;, Hie, Nu, Su, Wi, and matrices Re, Op, Vi, Ty, Cpe, Dy,
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with compatible dimensions that satisfy the following LMI constraints

Z, e e e
Zi X, o @ Hip ®
00W e |~ E bie [N s, ] (3.27)
[0 0 0 4% LeM;
|:H’L€:| [ L] L] L]
3,4
N S we e e >0 (3.28)
E;(2)4; Ei(2)4; 0 E;(2)J; Ei(2)F; Ei(Z2) e o o ) ’
H4,1 H4’2 0 H4’3 H4’5 H4,6 0 H4’7 ° °
0 0 EWA, 0 0 EOWBw 0 0 E(W)e
| D,yeCi+Che PpeCs —Cu 0 D,D; 156 0 0 0 I

where

I =E,(2)B;, 0" =RA +V.C;+ Oy Y =R,A; + V.G,
% =RyB; + Iy, 0" =RyJ;+V,D;, 1I'° =R.F;+ V,E;,
H4’7 = HGT(Rg) + Ez(Z) - EZ(X)a I%° = ,DﬂeEi — Dy,

If a feasible solution is found a suitable FDF is given by A, = —R; 'Oy, By = —R; 'V,
My = —R;'Ty, Cop, Do

Proof: Consider the structure for the matrices

~ X7« r ° ~ le A. ° ~ TM‘ o [ ]
Pi = [U{ Xi o :| ,Pl-_l = |:Vll Y; . :| , EZ(P)_I = [Tél Ty; o :| (329)
0 0 p¥® 0 0 p¥ ! 0 0 E,(P33)1

and the linearization matrices

I 10 ' Ed(X) 0
7= |vy loo|, t=1] 0 E@W o , (3.30)
0 oI 0 0 Ei(P)

3

that leads to

N vy o . Ei(Z) o .
TPTi= Y7 X o0 |, LgEi(P)_lbi = [Ei(z) Ei(X) o ] . (3.31)
0 o Pp3 0 0 Ei(P??)

Considering the constraint (3.28), and U; = Z; — X, X, =—U, V'Y, ! and from (3.27) we
can say that E;(X) — E;(Z) is invertible since X; > Z;. This observation also allows us to
write Ry(E;(X)—E;(Z))" 'R, > Ry+ R, +E;(Z) —E;(X), (see (OLIVEIRA; BERNUSSOU;
GEROMEL, 1999)), in such a way that the term Her(R;) +E;(Z) — E;(X) can be changed

by Ry(E;(X) —E;(Z))"' R} in the constraint (3.28). Define the matrix Q; as,

In I, 0
Qie = | 0 (R (EA(X)~Ei(2)) 0 | . (3.32)
0 0 I

Applying the congruence transformation diag(l, Qs I,I) in (3.28), and from that we

acquire the term R,(E;(X) —E;(Z)) ' R}. By consequence we can make the variable trans-
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formation Oy = Ry Ay, Ve = RiBBye, I'e = RyM,y, Cyo, Dy As presented in (OLIVEIRA;
COSTA, 2017b) and the references therein, Tj;! = E;(X) — E;(U)E;(X)'E;(U), and we
also have that E;(U) = —E;(X). Therefore, 777! = E;(Z) = E;(X) + E;(U), and so the
constraint (3.27) and (3.28) can be also described as

Ti’lsn 0 T,L-’flign °
[ 0 721} > Z [ NiZTi 514] ’ (333)
£eM;

T{Hi[ri L] [ ]
Nieri Si
U A Ve UE(

Cieti Dy

> 0. (3.34)

)711/1' °
I

o e e

Using the congruence transformations diag(7; ', 1) in (3.33) and diag(; *, I, %, 1) in

(3.34) we get the constraints in Lemma 5, concluding the proof. B

3.2.2 H, Fault Detection Filter Design for MJLS with Parame-
ter Estimation

Theorem 8. There exists a filter in the form of (3.22) such that ||Gaugl|3 < X if there exist
symmetric matrices Z;, X;, Vig, G, and matrices Ry, Oy, Vi, I'y, Cyo, Dy, with compatible

dimensions that satisfy the following LMI constraints

YD miduTr(Wie) < A, (3.35)

=1 leM;
Z’i L] °
| %, G} > 3" il vael (3.36)
LeM;
[ |:WM} . ° o o
E,(Z)B; Ei(2)J; E,(Z)F; Ei(Z) e o o
R¢Bi+Ty R¢J;+VD; RyF;+VE;0 Her(Ry)+E;(Z)—E;(X) @ @ > O’ (337)
0 0 E;(G)Buw 0 0E;(E) e
L 0 DneD; Dy E;—Duy 0 0o 0 I
[ [‘/; } . . .
1 Ry A4V, C; 0 0 Her(Rp)+E;(Z2)—E;(X) . > 0’ (338)
0 0 Ei(G)Aw O 0 Ei(G)
_Dngci-f—cng DMC’i —Cuw 0 0 0 I

where T3 = RyA; +V,C; +Oy. If a feasible solution is obtained the matrices that compose
the filter are Ay = —R; 'Oy, By = —R; 'V, My = —R;'Ty, Cyi, Dos.

Proof: Fixing the following structure for the matrices

- X,L r L] - Y; 3 L4 ~ Tli [ ] [ ]
kS O TS S R E e PCEY
0 0 P33 0 o0 p¥ ! 0 0 Ty
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and the linearization matrices
I 10 T Ei(X) 0
= VY7 'ool, =1 0 E@WT o ; (3-40)
0 071 0 0 Ei(P33)
we get that

(3.41)

~ Yi_l Yi_l 0 ~ 72'1711 . .
T _ 1 T -1, |
T Pr = Y Xy 0 y EZ(P) i = | T, Ei(X) U
0o o0 P33 0 0 E;(P3%)

The matrix E;(P)~!, as explained in (GONCALVES; FIORAVANTI; GEROMEL, 2010),
depends nonlinearly on IEZ(P) Assuming that U; = —X;, additionally from the structure
of ﬁl and 15[1 provides U; = —XZ- = Y;’l — X, = Z; — X;, which enable us to rewrite

LZTEi(P)_lbi as
~ E;(Z
WTE(P) = [Ei(Z) Ei(X) o 1 : (3.42)

Considering the constraints (3.37), (3.36) and (3.38), and U; = Z; — X;, X; = —U;, VY,
and from (3.36) we are able to say that E;(X) — E;(Z) is invertible due to X; > Z;. This
observation also allows us to write Ry(E;(X) — E;(Z)) 'R}l > Her(Ry) + E;(Z) — Ei(X),
(see (OLIVEIRA; BERNUSSOU; GEROMEL, 1999)), such that

|:WZ ] ° ° o o
E,(Z)B; E(2)J; E,(Z)F; Ei(Z) e o o
RyB;+Ty Ry J;+V¢D; RyF;4+AE; 0 TI35 o o > 0’ <343)
0 0 E;(E)Buw 0 0 Ei(G) e
0 DyeD; DypeEi—Day 0 0 0 I ]
{‘/; :| ° ° e o
RpA;+VCi4+0p Ry A;+V,C; 0 0 I35 e o > 07 (344)
0 0 E,(G)Aw O 0 Ei(G) e
'D,]gci+c.,,g /Dngci —Cuw 0 0 0 I ]

where II*° = Ry(E;(Z) — E;(X)) 'R). Recall that Oy = —Ry A, Vo = —RiByy, Ty =
—RyMyy, Copy, Dye. As in (OLIVEIRA; COSTA, 2017b), T5;% = Ey(X)—E,(U)E(X) 'Ey(U)7,
and since E;(U) = —E;(X) we get that T7;' = E;(Z) = E;(X) + E;(U). Define the matrix
Qi@ as,

I I
Qi = | 0 (R7HT (E:(X)-Ei(2)) (3.45)
0 0

~ O O

Applying congruence transformations diag(/, Qy, I) and diag(7, I, I, Qi I), respectively, in
(3.43) and (3.44) we obtain the constraints below (similarly as presented in (GONCALVES;
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FIORAVANTI; GEROMEL, 2010))

Ei(Z)B IE[I?;i)J Ei(Z)F E :Z) Do
Eo(U) B Ba(U) Moye Ba(U)Ji-HEs (U) B Dy Es(U)Fy B (U)Bye B Ey(2) Ba(X) o o | = O (3.46)
0 Dy D Dy Ei—Da o 0o 0 I]
Ei(Z)A E[(‘g)l E :Z) ..
i i i i 0 4 . e o
Ei(U)Ai+Ei(U)BneCi By (U)AiAE; (U)BeCitEi(U)Aye 0 Ei(Z) Ei(X) o o > 0. (3.47)
0 0 E(G)Aw 0 0 Ei(G)e
anci"‘cnﬁ Dnﬁci —Cw 0 0 0 I i
The constraints (3.36), (3.46) and (3.47) can also be described as
TiTpiTi > Z QﬁilTZ-TRMTZ', (348)
eM;
Wi . .
{L? Burs (TEi(P) 1 ] >0, (3.49)
Die 0 I
T;TR«L[TZ‘ [ ] °
L’iTAMTi LiTEl‘(}S)_ILi o| > 0. (350)
Cie 0 I

Applying the congruence transformations 7; ', diag(I,¢; ') and diag(7; ', ", I) in (3.48),

we end up with the equivalent LMI constraints as in (OLIVEIRA; COSTA, 2017a),
concluding the proof. l

3.2.3 Mixed Hs/H, Fault Detection Filter Design for MJLS
with Parameter Estimation

Similarly to the mixed problem in Chapter 2 the mixed Hs/H optimization problem
may be defined as

inf{g(\,7), such that ||Gaull53 < X and ||Gaull2 < 7}, (3.51)

so that (3.51) considers both (3.23) and (3.24) simultaneously. Observing (3.51), there
are several different ways to solve it. We here choose to solve (3.51) finding a weighted
combination of the guaranteed cost for both Hs and H., norms. Therefore, the objective
function can be defined as in (2.46), or (2.47), or (2.48).

In order to solve the LMIs in Theorem (7) and (8), it is necessary to define

¢ = {Re, 0, Vi, Co, Dye}. (3.52)
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We set
U = {9 as in (3.52), such that the LMIs (3.27), (3.28),
(3.35), (3.37), (3.38) are simultaneously feasible}, (3.53)
and,
inf : 54
inf {g(\,7)} (3.54)

Theorem 9. There exists a mode-dependent FDF as in (3.22) such that ||Gaygl|% < v and
|Gaugllz < X if there exists ¢ € U, where ¥ is defined as in (3.53). If a feasible solution is
obtained then a suitable FDF is given by Ay = —R; 'Oy, By = —R;'Vy, My = —R;'Ty,
Cyes Dy

Proof: The proof follows directly from the proofs for Theorems 7 and 8. B

3.2.4 Simulations Results

For the illustrative example we used the same model as presented in Appendix A,
which is a coupled tank where the fault is an abnormal input on the first tank. However,

it is necessary to add the detector matrix information as in

=[5 6231 (3.55)
Using this information and solving Theorem 7 we obtain the FDF in the form of (3.22) as

__ [0.0021 —0.0020 __ [ 0.0058 —0.0375 _ [ 0.1342 0.0698
"4”71 - [0.0021 —0.0020} ) "4”72 - [0.0478 —0.0669} ) Mﬁl - [—0.5776 0.7818] ’

Mo = [6385 885381, B = [Qolos —oo025) » Br2 =88],
Cpt = [-00489 00469 ], Cpp = [-21824 1.7279] , D,y = [0.0523 —0.1963 ] ,
Dy, =[o00], (3.56)

and the upper bound obtained was v = 1.4142. Now considering Theorem 8 we obtained

__ [ —0.2535 0.2444 __ [ —0.0132 —0.0070 __ [ 0.6814 —0.2061
Anl - [ 0.2540 —0.2621} ’ AUQ - [ 0.0070 —0.0157} ’ Mnl - [—0.2060 0.6814 ] )
— [0.7100 0.0000 __ [ 0.4334 —0.4475 _ 700
M’Vﬂ - [0.0000 0.7100] ) B’Vil - [—0.4419 0.4521 ] ’ 87]2 - [0 0] )

Cpp = [-01239 —01239], Cpo =[00], D, =[-03829-0329], Do =17]00], (3.57)



69

and the upper bound obtained was A = 5.6378. For the Mixed problem presented in

Theorem 9 the results are

__ [ —0.0034 0.0107 __ [ —0.0037 0.0110 __ [ 1.5849 —0.3285
Anl - [ 0.0018 70.0222} ’ ‘AﬁQ - [ 0.0021 70.0242] ) Mﬁl — [ —0.0001 0.7664 } ’

Mo = [ Z5odo0 omio ] By = [oorio “ooosa) » Br2 =[88],

Cpi = [-13640 —1.2157] , Cpp =[00], Dy =[01a1601841], Do =[00], (3.58)

and the upper bounds obtained are A = 5.8733 and v = 1.8795.

3.2.4.1 Monte Carlo Simulation

The simulations were made using the same setup from the previous section. Remember-
ing that the system used in this simulation is a coupled tank and the fault signal represents
an abnormal input on the first tank at the time of ¢ = 125s. We consider that the threshold
is TH = 1. Performing the simulation under these particular circumstances the results
obtained are the residue signal r(k) using Theorems 7, 8, and 9. The second result is

shown in Fig.19 with the evaluation function for all cases in this section. Examining
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Figure 17: Mean and standard deviation for residue signal obtained using FDF designed
via Theorems 7, 8, and 9.

Figs. 17a, 17b, 17c it is possible to observe that the residue signal for all three approaches

behaved as intended, where they reacted to the fault properly when it occurs. There were
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no changes on the residue signal when there was no fault. Figs. 18a, 18b, 18c show the
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Figure 18: Mean and standard deviation for evaluation function obtained using FDF
designed via Theorems 7, 8, and 9.
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Figure 19: The mean value of the evaluation function signal for three distinct approaches,
where the blue curve represents the results using Theorem 7, the red curve represents the
results obtained via 8, the magenta curve represents the results through Theorem 9, and
the cyan line denotes the threshold TH.

evaluation function obtained using all three theorems in this section. It is noteworthy that
the fastest detection was provided by Theorem 7 with the detection range of [176 186]s,
the detection range obtained using Theorem 8 was [223 236]s, and for Theorem 9 was
[242 253]s. All approaches detected the fault properly, therefore, all can be considered a
suitable solution for the FDI problem.
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3.3 Simultaneous Fault Detection and Control formu-
lation for MJLS with Parameter Estimation

In this section, we present the design of simultaneous fault detection and control for
MJLS with parameter estimation. In this particular problem, we design an FDF and a
state feedback controller at the same time. The major advantage provided by this topology
is that a single element in the system is capable of detect a fault, and perform the regular
controller task. The formulation presented here considers that the Hidden Markov mode
as in Section 3.2. However, it is necessary to redefine the BRLs for the H,, and H, cases,
and also rewrite the system for this specific design. Consider the following MJLS in the
stochastic space (92, .%#,P) with filtration {.%},

x(k+1) = Apma(k) + Bogyu(k) + Jogyw(k) + Frog) f (k)
g: y(k) = Loz (k) + Hyomyw(k) + Hrow) f (k) (3.59)
2(k) = Coyw(k) + Doqyu(k),
where (k) € R" is the state, u(k) € R™ is the control input, w(k) € R" is the
disturbance, f(k) € R/ is the signature of the failure, y(k) € R™ is the measured output,
and z(k) € R™ is the controlled output. As we described in Section 3.2, the index (k)

represents a homogeneous Markov chain.

We would like to design a type of stabilizing controller that simultaneously can act as

a residual filter as well as a controller. The controller/filter structure is given by

To(k+1) = Age(k) + Bguyy(k)
C: u(k) = ( ) (3.60)
flk)y = CfG(k: (k) + Doy (k).

where z. € R"* is the controller state and f (k) € R™ is an estimate of the signature signal
f (k).

The goal is to stabilize (3.59) through (3.60) whilst at the same time the controller

acts also as supervisory filter providing estimates of f (k) through the residual signal
r(k) £ f(k) = f(k).

By connecting (3.59) and (3.60) and defining (k) = |z(k) z.(k)'| and, @(k) =
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!/
[w(k)’ f(k;)/} , we get the closed-loop dynamics

o(k+1) = Ae(kw(k)f(k) + ja(k)é(k)ﬁf(k')
Cromie T (k) + E oo @ (F),

<
—~
Ny
N~—
Il
—~

where

)
B S
[I>

iy [ A; Biccfj| j A Ji F;
BeeLi Ace ’ il = | BegHui BcZHfi ’
A A A

Cur = [Ci Diccl] , Cfig = [_DfZLi —sz] ,

IR
Efig = [*szHm If*DfEHfi] .

Let us introduce some basic concepts required for properly describing the main goal.
The concept of internal stochastic stability and stabilizability are stated next, where
A2 (A,... A) €BR™), B2 (By,...,B,) € B(R™,R™), and K £ (K,,...,K,) €
B(R™,R™), and for Q € H", E;(Q) = ZJEN pijQ;. Considering the augmented system
(3.61) is stochastic stable, as defined in 3.1.1, the class of the class of admissible controllers

is given by € £ {C}.

Next we redefine the concept of H., norm of (3.61) concerning outputs z(k) and r(k)
adapted from (TODOROV; FRAGOSO; COSTA, 2018). This process is necessary since
we aim to provide a solution that is an FDF and a state-feedback controller simultaneously.
To fulfill this purpose, it is necessary to redefine the optimization processes and their
respective LMIs constraints twice, where the optimization considering the output z(k)
refers to the control part of the problem, and the other considering r(k) to take up the
FDF side of the problem.

For that, we set W, 2 {w € I . |lw||o > 0}, where for any signal g = {g(k), k =
0,1,2,...} llgliz = E(|lg(k)||? | 6 = i). Now we redefine the H,, and H, norms, which
will be used to present later on the mixed formulation. We start with the H,, norm

definition.

Definition 4 (H., norms). Given that € € C, the Ho, norm of (3.61) with respect to z is
given by

chnggn—m) A sup sup “'ﬁ”Qz7
ieN weW; ||w||2z
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and the Hoo norm of (3.61) with respect to r by,

HgCH(ﬂ;Hr) L sup sup ||r||22

i€EN weW; ||w||21

Consider the following inequalities for given v, > 0 and ~, > 0,

[0 «,31] Z e [ ,f 5:,_, : (3.62)

LeM;
(3 g ] > [ ] (0] [ e ] (3.63)
and
KRR (3.64)
leM;
e >[4 ] e (4 ] (3.65

for all i € N. The following bounded-real lemma is adapted from (TODOROV; FRAGOSO;
COSTA, 2018).

Lemma 7 (Bounded-real Lemma). If there erists P € H***, P > 0, g € H>"", P >
0, such that (3.62), (3.63), (3.64), and (3.65) hold, then € € C, ||G.|I%¥7* < ~. and
Gellse™ < -

Therefore the goal is to design € € C so that ||Ge|'27* < . and ||G.||*™") < ~, for
w € W;, 1 € N. Specifically in this work we focus our efforts in finding
inf  {7.8. + 7B, }: s. t. (3.62),(3.63), (3.64) and (3.65) (3.66)

€eC,Pyr,ve

hold for a given . > 0, 8, > 0. This particular formulation will be useful later on in this

paper. We present next the Hs norm definition.

Definition 5 (H, norms). Assume that € € C. For #(0) = 0, define 2" and r*", the
outputs of (3.61) for the initial condition 0(0) =i and the input w(k) =0 for k > 1 and
w(0) = es, where ey is the s—th vector of the standard basis of R*. The Ha norms of
(3.61) with respect to the ouputs z and r are given by

r N
1GNS™7 = (D ill =113 (3.67)

s=1 i=1



and

r N
1GlS™ = S0 illr=113
s=1 1

=1 4=

where the initial Markov chain state distribution is given by P(6(0) = i)
1 € N.

Considering the strict inequalities,

Qz > Z ¢z€ E + Cczzcczé) 1€ N 14 S Mz7
LeM;
and
Qi > ) Gu(AEi(Q)Aig + CyyCrir),i € N1 € M,
1eM;

for Q; > 0 and Q; > 0, we have that

(I1g| W) ZZWW TLE(Q) i)
i=1 leM;
and

(chH(er )2 Z Z Giopr Tr(J B (Q) T + EMEJ%)

i=1 £eM;
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(3.68)

= p; = 0 for all

(3.69)

(3.70)

(3.71)

(3.72)

Following the discussion presented in (COSTA; FRAGOSO; TODOROV, 2015) and
(OLIVEIRA; COSTA, 2017a), we get that if the following inequalities for the filter part

N
DN pubuTr(Wig) < A2,

i=1 LeM
WZ[ o °
E;(Q)~!
0

Ef.bg 1

> 0,

Qi > Y duult,
leM;
ng . °
[ E(Q)~" -} > 0.
Cfl[ 0 I

and for the controller side

Z Z :U’z(szTr < /\2

=1 LeM;

07, .
|: Jz; E; (Q) ] > 07

(3.73)

(3.74)

(3.75)

(3.76)

(3.77)

(3.78)



75

Qi > Z bieRir, (3.79)
feM;
5‘% ° .
{AM E(Q)~'e| > 0. (3.80)
écii 0 I

hold, then € € C, [|Ge/|S" 7% < A. and ||G||5"~" < A,. Similarly to the H., case, the main
goal is to design € € C so that [|G.[|S""7 < A, and [|G)|S""" < A, for & € W, i € N.

Specifically in this work we focus our efforts in finding

Y = {Wie, Qi, Rie, Wie, Qi, R, i €N, £ € M} (3.81)
A = {1 such that (3.73)-(3.80) hold }
@ec,l}%,f\r,,\c {ACe+ MG es b e A, (3.82)

for a given (., ¢, > 0. Similarly to the H., case, we choose this particular formulation in

order to derive some results later on.

3.3.1 H, Simultaneous Fault Detection and Control Design for
MJLS with parameter estimation

The next result presents BMI constraints regarding the controller design (3.83), (3.84),
and for the filter design (3.85) and (3.86).

Theorem 10. There exists an SEDC described as in (3.60) such that € € C, HQCH&DHZ)
< e, and HQCHSEHT) <, for fired v. > 0 and v, > 0 if there exist symmetric matrices Z;,
Xi, MM, MZE S SZ2 3, X, My}, M2, &), &%, and the matrices M2, S, 9M?},
&2}, N N2, N2 NZE L, vz, 2 22 Gy, Ty, e, O, @0, and K, with compatible
dimensions such that inequalities (3.83), (3.84), (3.85), and (3.86) hold Vi € N, ¢ € M. If
a feasible solution is obtained, a suitable SFDC' is given by Ay = —G,'Ty, By = —G; "X,

Coo =Ky, Cpp=—06y, Dy = — 9.

Proof: The proof follows similar reasoning as presented in (OLIVEIRA; COSTA, 2020)
and (GONCALVES; FIORAVANTI; GEROMEL, 2010). We set the structure of matrices
P; and P! of (3.62)-(3.63) as

P,L' — |:Xz L] i| , P-_l — |:Z:1 .] , (387)

Ui Xi é v, Y

and similarly for matrices 9; and ;" of (3.64)-(3.65), we set

po=ui] v =[] (3.:59)

T D,
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Z; e ° ° M%,lz1 ° . .
Zi X; ° ° M'Zil M.QZQ . .
0 0 2. o > E qbiﬁ N_llei N.Zlf SL e ) (383)
2 . 7 7
0 0 0 i T leM; N2 N22 521 522
Milll . . . . o o
M?Zl Mzez ] . . o o
K2 k2
Nilz1 Nilf Silzl . ° o o
NiQZI Ni2£2 Sfél 31'222 ° e o > O, (384)
1161 GpAi+xeL; Godi+xeHuwi GgFi—‘ngHfi 0 1156 e
Ci+D; Ky C; 0 0 0 0o I

P! = Ei(2)(Ai + BiKy), 1% = Go(Ai + BiKo) + Lo + xeLi,
156 = Her(Gg) + Ei(Z - X)a

TRIRRIE Eo
i Xi L . M, M7 °
0 0 ~2 I 2. > ¢i€ ;ni[l ‘ﬁ% Sl . > (385)
R T R

Emzlzl ° . . . o o

Em?zl Sm?; ° [ . o o

R P

?tie miz Gie Gie i o o > 0. (386)

50 Ei(3)A; E;(3)Ji Ei(3)F; Ei(3) o e

% GpAi+xeLi Gedi+XxiHwi GeFi+xeHyp; 0 TI5C o

7! L Dy Hoy I+®,Hy; 0 0 I

P = Bi(3)(Ai + BiKy), T%' = Go(Ai + BiKy) + Ty + xeli,
I =0+ &Ly, 1% = Her(Gy) +Ei(3 - X).

We also define the matrices 7; and v; as

[ I Ei(X
Ti = [VZIZz é} v Y= o lEi((U))] ’ (3.89)
along with
[T E;(x
t=[u30], W= o Ei((u” ' (3.90)

By verifying the diagonal blocks of (3.83) and also (3.84), we note that Her(G,) >
E;(X — Z) > 0 so that Gy is non-singular. Considering the fact that P,P;' = I and
BB, ! = I, we rewrite the matrices P; and P, ' by setting U; = —X;, and matrices B,
and B; ! by setting Ll; = —X;, as follows

Pi= 72 %221 (3.91)
-1 _ Z;l °
Fo= [Z{l Z;1+(Xz-—zi>*1} ’ (3.92)
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and

-1 _ 31_1 .
P = [3:1 3;1+<xi—3i>—1] ' (3.94)

Besides, (3.146) and (3.90) become

e B ) »
I 0 0 Ei(Z-X)
and

o I 1 | E;(X)

t;, = [I ol =, E(3- %) ) (3.96)

Since G is non-singular, we set I'y = —Gp A, xe = =GB, Ky = Coy, ©p = —Cyy, and @, =
—Dyy. As presented in (OLIVEIRA; BERNUSSOU; GEROMEL, 1999; GONCALVES;
FIORAVANTI; GEROMEL, 2010), we get that GE;(X — Z2)~'GT > Her(Gy) + Ei(Z — X)
and G(E;(X — 3)7'G? > Her(Gy) + &€(3 — X) so that (3.84) and (3.86) still hold if the
diagonal blocks in which Her(Gy) + E;(Z — X) and Her(G,) + E;(3 — X) appear are
substituted by G/E;(X — Z)"'G] and G/E;(X — 3)"'G], respectively, resulting in

ML ° . °

ot . o o
Mz?[l Mi222 . . . o o
N1l N12 S1i1 . . o o
il 174 174
N2 NZ22 521 522 . e o | & 0, (397)
=51 Ey(2)A; Ei(2)J; Ei(Z)F; Ei(Z) e e
561 562 563 564 0 566 °
Ci+D;Ceqp C; 0 0 0 0 I
and
Dﬁ}g . . . ° o o
sz?} Sm?; . ° . o o
‘ﬁh} mllf Gllzl ° . o o
n2} n2 e 622 e o o >0, (3.98)
g51 E;(3)A: Ei(3)Jwi Ei(3)F; Ei3) o e
561 562 563 364 0 EGG °
7Cfg*ngLi 7ngLi 7Df[Hwi I*ngHfi 0 0o I
where

= = Ei(Z)(Ai + BiCu), = = Ge(A; + BiCu) — GeAo — GiBeyLi,
2% = GyA; — GyByLi, E% =GyJ; — GyByHyi, E™ =G.F,— GByHy,
=56 = GE(X — 2)7'@), = =Ei(3)(A; + BiCy), Z% = GE{(X - 3)'G).
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By defining the following matrices

Hie:[Ei(Z)_l o } (3.99)

0 G E(X-2)

and

- [E3)? I

Tl I (3.100)
and applying the congruence transformations diag(/, I, 11, I) and diag(l, I, Ty, I) to

(3.150) and (3.98), respectively, we get that

TiMigT; o o °
NMTL S1£ o .
[U A'LZTZ U, J'Lé v; 'E; (P) 11)7; ° > 07 (3101)
CeieTi 0 0 I
and
LMty @ . °
mzftz 67,[ (] °
ul Algt u’ Jlg wE; (P)~ 1y, o > O) (3102)
Crieti Epi 0 I

hold, for 7;, v;, t;, and u; given as in (3.149) and (3.96). By applying the congruence trans-
formations diag(r; ', I,v™!, I) and diag(t; ', I,u; ', I) to (3.152) and (3.102), respectively,
and the Schur complement to the resulting inequalities, we get that (3.63) and (3.65) hold.
Finally, by noting that (3.83) and (3.85) can be equivalently rewritten as follows

[TPT . ] Z(M [T]éweﬁn :l]’ (3.103)

and

50 > e [Se]. (510

leM;

we get, after applying the congruence transformations diag(7; ', I) and diag(t; !, I) to
(3.153) and (3.104), respectively, that (3.62) and (3.64) hold. Thus, since (3.62)-(3.63)
and (3.64)-(3.65) hold for the closed-loop system as in (3.61), we get from Lemma 7 that
C e C, |Gz < Ve, and ||Ge||isr < 7w, and the claim follows. W

3.3.2 H, Simultaneous Fault Detection and Control Design for
MJLS with parameter estimation

The next result presents BMI constraints related to the control and filter design of the

SFDC system (3.60).

Theorem 11. There exists an SFDC described as in (3.60) such that € € C, ||G.||3 (02)
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DD miduTr(Wie) < XL, (3.105)

1€N [eM];
T, e Vll °
ERAED MK Ak (3.106)
LeM;
Wilel . . .
who wp . .
E,(T)J; E,(T)F; E,(T) . > 0’ (3107)
GoJi+xeHuwi GEFi"FXZHfi 0 Her(G)+E(T-0)
Vél ° . . .
v v . .
E;(T)(A;+Bi Ky) E(T)A; Ei(T) . o| >0, (3.108)
GZ(A +B; Kg)+Fg+XgL G@A +XZL 0 Her(G4)+E (T O) °
Ci+D; Ky C; 0 0
2
D D midir(Wie) < A7, (3.109)
i€N LeM;
i .
]>> [mf} mgg] : (3.110)
LeM;
Qﬁ%él ° ° ° °
wio Wy . .
E;(%)J; Ei(T)F;  Ei(%) . | >0, (3.111)
GoJi+xeHuwi GéFi"FXEHfi 0 Her(Gp)+E;(T—9) o
By Hoy; I+®,Hp 0 0 I
W%} ° . . .
m‘;’,} ‘172242 ° ° °
Ei(T)(Ai+Bi Ky) Ei(D)A;  Ei(T) . | >0. (3.112)
Go(Ai+BiKp)+Ty+x¢Li GeAi+xeLi 0  Her(Go)+E;(T-9O) o
Op+P,L; ®pL; 0 0 I

< A, and ||Qc|| (227 < N, for fized Ao > 0 and A, > 0 if there exist symmetric matrices
Wi, W2 T, O;, V', V22, 01}, 022 T, O,, B}, B and the matrices Wi, V2 52}
U2 Gy, Ty, X0, O, ®o, and K, with compatible dimensions such that inequalities (3.105),
(3.106), (3.107), (3.108), (3.109), (3.110), (3.111), and (3.112) hold ¥i € N, € M. If a
feasible solution is obtained, a suitable SEDC' is given by A. = —G;ng, B = —G[lxg,
Coo =Ky, Cpp=—0y, Cpy = =0y, Dyp = —Dy.

Proof: The proof follows the similar reasoning as the one employed in the proof of
Theorem 10. Similarly as presented in (GONCALVES; FIORAVANTI; GEROMEL, 2010),
(OLIVEIRA; COSTA, 2020), the structure of matrices Q; and Q;* of (3.73)-(3.76), and
Q; and Q; ! of (3.77)-(3.80), are

Qi [2 O] . Q= [T; T] , (3.113)
and
S S B R A (3.114)
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We also define the matrices 7; and o;

I E(T
m=lentl, oi=[oEd], (3.115)
along with n; and s;,
I I I Ei(%)
“Tlas ool T [o m(ﬂ)} ' (3.116)

We get from (3.107)-(3.108) as well as (3.111)-(3.112) that G, is non-singular. By
setting U; = —O; and $f; = —9; in (3.158) and (3.114) and using the fact that Q;Q; ' =TI
and 9,97 = I, we get that (3.158)-(3.116) can be rewritten as

i . N— Ti_l °
Qi = I:Tz?zol OifTi] ) Qz ! = |:Ti_1 Tli:| 3 (3117)
where Yy; =T, ' — (O; — T;) 7}, and
~ ~ —1 °
Q=% 0°%), '= [; T} : (3.118)

where To; = T; ' — (O; — F;) 7!, along with

and
I 1 IR
n; = y 8= [ (T } 3.120
[[ 0] 0 E;(T—9) ( )

Recalling the previous reasoning applied in the proof of Theorem 10, we get that G/E;(O —
T)'G, > Her(Gy) + Ei(T — O) and G/E;(O — T)7'G), > Her(Gy) + E{(T — O). By
performing the change of variables I'y = =G Acr, x¢ = —GeBer, Ko = Cep, ©p = —Cyp, and
O, = —Dyy, we can rewrite (3.107)-(3.108) and (3.111)-(3.112) as follows

W_ll ° . N
ngel W22 . N

Gg[Ji—Bchwi] Gg[Fi—Bchfi] 0 GeEi(O—T)71G2

and
V&l . ° . .
Vit vii? . . .
Ei(T)A;(Coe)  Ei(T)A;  Ei(T) . | >0, (3.122)

G Y30 Ge[Ai—BerLi]
Ci+D;Cey C;
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where A;(C.) = A; + BiCep and Y3y = [Ai(Cer) — A — BerLi]. Along with

Qﬁ%zl . . ° °
Qﬂf} Qﬂfg ° ° .
E;(T)J; E;(D)F;  Ei(%) . | >0, (3.123)
GylJi—BeeHuyi) Gg[Fi—Bchfi} 0 G@]Ei(D—T)_lG’Z .
—D o Hupi I-DgHyi 0 0 I
and
mllél . . ° .
‘171241 ‘32222 ° ° °
Ei(D)Ai(Cer)  Ei(DA Ey(T) . | >0. (3.124)
GiY3ie  GelAi—BeeLi] 0 GE(D-F)71G) o
—Cqo—DsoLi  —DyeLs 0 0 I

By defining the matrices

and

_ [E® I
mf—[ 0 G;T]Ei(D—‘I)}’

and applying the congruence transformations diag (1, r, [1;¢) and diag(Is,, I, I,) to (3.162)
and (3.163) as well as diag(/,, T, Ir) and diag(lay,, T, I7) to (3.123)-(3.124), we get

|:O.I?/}f[ UgEi(é)ilai] > O, (3125)
néRizm L4 L4
U;AZ[?’“ O’;]Ei(Q)ilo'i o > 0, (3126)
Ceiemi 0 I
and
‘ng ’ [ ]
{s;;m SE(8) s, ] >0, (3.127)
Eyy 0 1
n;i)?iigni [ ] [
s/ Ayn; $Ei(Q)1si 0 | > 0. (3.128)
C'fmni 0 I

By applying the congruence transformations diag(I, o; '), diag(n; ', 0; ", I), diag(l,s; ', I),
diag(n;*, 5%, I) to (3.164)-(3.128), we get that (3.74), (3.76), (3.78), and (3.80) hold with

the closed-loop matrices of system (3.61). Finally, by noting that (3.106) and (3.110) can

be rewritten as follows

Qi > Y bien Rigmi, (3.129)

LeM;
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and

nQm; > > gunRin, (3.130)
2eM;

and thus, by noting that (3.105) and (3.109) are equivalent to (3.73) and (3.77), and by
applying the congruence transformations 7; * and n; ! to (3.166)-(3.130), respectively, we
get that (3.75)-(3.79) are also satisfied. Therefore, considering the discussion presented in
Section 3.2, see, for instance, (COSTA; FRAGOSO; TODOROV, 2015) and (OLIVEIRA;
COSTA, 2017a), we get that C € €, [|Ge||5"7 < A, and [|G.[|S""" < A,, and the claim
follows. W

3.3.3 Mixed Hs/H Simultaneous Fault Detection and Control
Design for MJLS with parameter estimation

We present now the design of mixed Hy/Hoo SFDC for MJLS with partial information

on the jump parameter.

Observing the constraints in Theorems 10 and 11 it is possible to notice that the

structure to obtain SFDC is the same, therefore a mixed solution can be formulated.

To increase the overall performance the H, norm will be considered in the controller
side of the design due to its equivalence to the LQR controllers, which provide good
performance in practical solutions. For the fault detection side, we consider the H,, norm,
which provides an FDI with a lower occurrence of false alarms, (ZHONG et al., 2005;
PATTON; FRANK; CLARK, 2013).

From the aforementioned discussion, we consider the mixed solution with the control
side of the SFDC designed using the BMI conditions for Theorem 11 and the fault detection
side obtained using the BMI from Theorem 10. Hence, the new rewritten optimization

problem is

¢ - {317 xia miﬂa mib 6%’ VVib ‘/;Zy Eu Oina Pfa X¢, Kb 657 (Pﬁ} (3131)
k= {¢ such that (3.85)-(3.86) and (3.105)-(3.108) hold
QEC}EET’AC{)\CQ +%06:} st ¢ €k (3.132)

for a given (. > 0, 5, > 0.

Theorem 12. There exists an SFDC described as in (3.60) such that € € C, ||gc||£:?Hr>
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(W+—2)

<, and ||Ge|5 < A for fixed, v, > 0, and A\. > 0 if there exist symmetric matrices
3, X, MY, 2, &1, 6%, Wi, w22 Vil V22 T, O; and the matrices M2}, &%,
nlp, iz, oz w2 WA ViL.Gy, Ty, xe, ©0, ®o, and K, with compatible dimensions
such that inequalities, (3.85), (3.86), (3.105), (3.106), (3.107), and (3.108), hold Vi € N,
¢ e M;. If a feasible solution is obtained, a suitable fault-compensation controller is given

by At = =G Ty, Boy = =G 'xe, Co = Ky, Cpp = =0y, and Dy = — ;.

Proof: The proof for Theorem 12 is a direct consequence of Theorems 10 and 11. W
Coordinate Descent Algorithm

As explained at the start of this section the constraints in Theorem 10 and 11 are
in the form of Bilinear Matrices Inequalities. Therefore it is necessary to implement an
appropriate procedure to solve such a problem. It can be found in the literature several
numerical ways of dealing with BMI as, for instance, a combination of line search and a
sequence of LMI as presented in (YAN et al., Nov 2019). Although of great interest, an
analysis of the techniques to solve the BMI in Theorems 10 and 11 would fall outside the
scope of this thesis. Due to that, we will focus on a procedure that is extensively used
in the literature known as the Coordinate Descent Algorithm (CDA), as implemented
in (SIMON et al., 2011), or (WANG; ZEMOUCHE; RAJAMANI, 2018). The specific
approach implemented in the present paper was first introduced in (OLIVEIRA; COSTA,
2020).

By inspection, it is possible to observe that all the non-linearities are ”caused” by the
state-feedback controller K. A usual workaround for those non-linearities is to fix the
state-feedback controller and solve the resulting LMI. Assume that there exists a state-
feedback controller K, and apply this controller in the constraints (3.83), (3.84),(3.85),
and (3.86) for the H, case, or (3.105), (3.106), (3.107), (3.108), (3.109), (3.110), (3.111),
and (3.112) for the #H, case. If a feasible solution is found it may or may not be the
optimized solution, due to the choice of the state-feedback controller. The CDA algorithm
is described as in Algorithm 2.

Remark 11. Note that the initial condition for K; can be obtained from the results in
(TODOROV; FRAGOSO; COSTA, 2018), which is a state-feedback controller with similar
MJLS assumptions. If the first iteration finds a feasible solution then the CDA will
eventually converge to a better solution, and the amount of iteration is set using the stop

criterion €.
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Algorithm 2: Coordinate Descent Algorithm
Input: K, v ' ta.€
Output: A.,B.C..C;,Dy

1 Design stabilizing state-feedback controller(e.g. (TODOROV; FRAGOSO;
COSTA, 2018)).

2 Fix K in the LMI constraints for the H., case or for the H, case, and solve it to
obtain the matrices Z;, 3;, and G, for the H., case, or T;, T;, and G, for the H,
case, or 3;, T;, and G, for the mixed case.

3 Fix Z;, 3;, Gy for H, case, or T;, T;, and G, for the H, case, or Z;, T;, and G, for
the mixed case, and solve the same LMI constraint and now obtain A, B, Cer,

Cse, Dy, and the upper bound values 7., v, for the H, case and A., A, for the
Ho case.

t—1
a If %szﬂé <eort < by, go back to step 2.

3.3.4 Simulations Results

In the same manner as in the other examples in this chapter we use the coupled tank.

The discrete-time domain space-state model is

A = [ ooty “o0ss )+ B2 =" ol
Juw12="001B1y, J;i19=1"?
L, = I2x27 Ly = 02><2’ H, 12 = 0.1]2><2’ Hf Lo = 02x27
Cl — ]2><27 Cz — 02><27 D1 — 12><27 D2 — 02><2.

The transition matrix, initial distribution, and ¢, are

P=[6802], w =003, Y=I[5503] (3.133)

The SFDC obtained using Theorem 10 is

— [ 0.5053 0.1653 — [ 0.2048 0.0686
ACl - [—0.2767 0.4161] ) Ac2 [—0.1065 0.1725] )

__ [ —0.8252 —0.2487 __ [ —0.7180 —0.2263
BCl - [ 0.5756 70.8252] ) BCQ - [ 0.5173 70.7661] ’

104 [ —0.1854 —0.0811 10 —47 0.4957 0.3046
Ca =107 [ s —0%506]»  Ceo = 107" [ %5602 03265 ] ,

Cr1 =107 [ % 00150 ]  Cra = 107" [525" 0]
],

0.2542 —0.6101
Dfl — 1075 [—0.2573 —0.0176

— —5710.6632 0.0647
—0.0419 —0.1089 Df2 =10 [0.0588 0.3256] :
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The SFDC obtained using Theorem 11 is

_70.5929 0.0388 __ [ —0.5929 —0.0388
Aa = [00201 ~0.1255] s A2 = [70.0201 0.1255 ] )

_ 106 [ —0.2409 —0.0079 — 106 [0.3691 0.0010
B, =10 [ 0.0093 _0,3303] ;B =107 08021 00364 -

__70.8648 0.0728 __ [ —0.8053 —0.0366
Ca = [00%08 ~04340], Ce2 = [—0.0460 0.2186 } )

_ 1013 [0.0748 —0.0001 _ 10—13 [ —0.0835 0.0001
Cfl =10 [0‘0000 70‘1463} ) Cf2 =10 [70.0000 0.1375] )

__ [ 43.2163 —0.0000 __ [ —33.2163 0.0000
Dfl - [—0.0000 7.5839 } ) Df2 - [ 0.0000 2.4161]'

For the last, the SFDC obtained using Theorem 12 is

— [0.5929 0.0388 __ [ —0.5929 —0.0388
ACl - [0.0201 70.1255] ) ACQ - [—0.0201 0.1255 ] ’

__ 106 [ —0.2409 —0.0079 — 106 [0.3691 0.0010
B, =10 [ 0.0093 _0,3303] , B =107" 53001 0:0364] »

__70.8648 0.0728 __ [ —0.8053 —0.0366
Ca = [00%08 ~04340], Ce2 = [—0.0460 0.2186 } )

_ 10—13 [0.0748 —0.0001 _ 10—13 [ —0.0835 0.0001
Cr=10"" [ 00000 Z0090s] s Cra=10"" [ 280000 09995 ]

__ [ 43.2163 —0.0000 __ [ —33.2163 0.0000
Dfl - [—0.0000 7.5839 } ) Df2 - [ 0.0000 2.4161]'

3.3.4.1 Monte Carlo Simulation

The same setup from the other examples was also implemented in this simulation. The
Monte Carlo simulation with 300 iterations was performed, and the results obtained are
shown in the following manner, first we present the output signal obtained using Theorem
10, 11 and, 12, in Figs. 20a, 20b, the average and standard deviation of the control signal
obtained using Theorems 10, 11, 12 is presented in Fig. 22a, 22b, and 22c¢ show the residue
signals acquired for each case, and the evaluation function in Fig, 23.

State hy State ho

0.074

T
=-==Theorem 3.4
---------------------- -| ||= = -Theorem 3.5 ' i

0.0735F ... Theorom 3.6 Bers e n~ronimananasin, v mtavngsau S
Without fault

0.073 -

S022F R £0.0725

0.2 1 0.072 -

0.18 - 1 0.0715 paan

1 1 1 1 1 0.071 C 1 1 1
50 100 150 200 250 300 50 100 150 200 250 300

Instant k Instant k

0.16

(a) Mean for first output signal obtained using (b) Mean for second output signal obtained us-
Theorems 10, 11, and 12 . ing Theorems 10, 11, and 12.

Figure 20: The Mean of the output signals obtained for SFDC designed via Theorem
10(blue curve), 11(red curve), and 12(magenta curve). All three curves were obtained
when there is a fault, except for the green curve which represents the states without fault.

Observe that all controllers manage to stabilize the system, even in the presence of
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the fault, however, some presented a higher level of steady-state error after the fault,
which is expected, since this controller was not designed to mitigate nor accommodate the
fault. The important aspect that is observed in Figs. 20a, 20b that all controllers designed

simultaneously worked properly.

Now we present Figs. 21a, 21b, 21c which represents the mean and standard deviation

for the control signal using Theorems 10, 11, and 12 respectively. Observe that all control

WW M -0.01f
1
isa

IR Aot by =

x10*

b m s b one s )

[—JStandard Deviation
—-—-u(k) Theorem 3.4
T

[—]Standard Deviation
= = -u(k) Theorem 3.5
T

. . . . , . . . .
50 100 150 200 250 300 0 50 100 150 200 250 300
Instant k Instant k

(a) Mean and standard deviation for control (b) Mean and standard deviation for control

signal obtained using Theorem 10. signal obtained using Theorem 11
o %108 ‘ ‘ ‘ ‘
M|
ol |
e Py
b ]
5 WP, appr AN AN A

. . . .
0 50 100 150 200 250 300
Instant k

(¢) Mean and standard deviation for control
signal obtained using Theorem 12

Figure 21: Mean and standard deviation for all control signals acquired using the SFDC
designed via Theorems 10(blue curve), 11(red curve), and 12(magenta curve).

signals presented a proper behavior and standard deviation. Therefore, the controller side

of the SFDC works properly.

The residue behavior obtained via Theorems 10, 11, and 12 are presented in Figs. 22a,
22b, and 22c. Regarding the residue signal obtained with Theorems 10, 11, and 12
presented a similar behavior, however, the result obtained using 10 in 22a show a slightly
better performance. Observe that the standard deviation for all three approaches is low.

Leading to a low chance of false alarms.

The last result obtained via Monte Carlo simulation is the behavior of the evaluation
function for each case. This result is presented in Fig. 23 Fig.23 allows us to state that the

results obtained using Theorem 10 presented a better performance, but all the proposed
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(a) Mean and standard deviation for residue (b) Mean and standard deviation for residue
signal obtained using Theorem 10.

0 T T

signal obtained using Theorem 11
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Figure 22: Mean and standard deviation for all residue signals acquired using the SFDC
designed via Theorems 10(blue curve), 11(red curve), and 12(magenta curve).

EVAL(k)

70 T ”
—-==EVAL(k) Theorem 3.4 e
60 F|- - ‘EVAL(k) Theorem 3.5 _‘_—"- i
——EVAL(k) Theorem 3.6 P
50 L{——EVAL(k) without fault _,/" _
TH Threshold
40+
30+
20
10+
O 1 1 1
50 100 150 200 250
Instant k

300

Figure 23: The mean value of the evaluation function signal for three distinct cases, where
the blue curve represent the results using Theorem 10, the red curve represent the results
obtained via 11, the black curve represents the results through Theorem 12, the green

curve portrays the evaluation function signal when there is no fault signal, and the indigo
line denotes the threshold TH.

approaches successfully detected the fault, hence, all approaches are viable solution for

the FDI problem.
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3.4 Fault Accommodation Formulation for MJLS with
Parameter Estimation

The Fault Accommodation Control problem is a particular class of FTC, which uses a
different approach when compared to the usual FTC in the literature. The majority of
FTC approaches consider the occurrence of faults during the design process of a static
controller. In the case of FAC, two controllers are working alongside each other where the
first one is designed for the nominal conditions while the other one will be active when a

fault occurs.

For the FAC problem, we consider the following MJLS formulation

2(k + 1) = Ay (k) + Bogyuoal(k) + Jogyw (k) + Fou f(k),
G: 3 (k) = Cor(k) + Daw(k), (3.134)
z(0) = z,
where the vectors x(k) € R", y(k) € R™, w(k) € R, f(k) € R, upyi,1(k) € R™ are
respectively, the system state, output, exogenous input, fault signal, the control input, and
0(k) denotes the mode of a Markov chain which is initialized at 6. The nominal control is

provided by a state-feedback controller
u(k) = —Ké(k)x(k), (3.135)

where z(k) € R" represents the states of system (3.134).

Fig.24 depicts the overall block diagram of the MJLS along with the FAC controllers

K, for the nominal one and IC., for the faulty ones.

?

Fault f(k)

Noise w(k System (k] Controller u(k)
0(k) 0 (k)
y(k) p(K)
l | FAC Koy -
UTotal ()

Figure 24: Fault accommodation control scheme diagram under the assumption that the
network model is not accessible.

As shown in Fig.24, the signal uoa (k) is the sum of the nominal control signal u(k)
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and the fault compensation control signal h(k), as in

uotal (k) = u(k) + (k). (3.136)

Consequently, in nominal conditions the signal h(k) is close to zero. In other words,

the fault compensation control signal only acts in the presence of a fault as expected.
The FAC controller I, is assumed to have the following structure
n(k + 1) = Agn(k) + M uk) + By y(k),
Ke:q h(k) = Q:é(k;)n<k)7 (3.137)
1(0) = no,

where 77 € K" represents the FAC state vector, u(k) and y(k), are respectively, the control
signal from the nominal controller and the measured signal from the system. It is of
utmost importance to note that the FAC does not depend on the index (k). Instead, it

depends solely on the index 8(k), which is one of the novelties of the present work.
As presented in Figure 24 the closed-loop for system (3.134), the state feedback control
law (3.135), and the proposed FAC (3.137) can be compactly written as
2k +1) = Ay (k) + o 0 (k).
Gang = 4 2(k) = C_'o(k)é(k)i"(k) + De(k)é(k)w(k>7 (3.138)
z(0) = 1o,
where z(k) = [z(k) n(k)] and w(k) = [w(k) f(k)], with the augmented matrices given by

A; — B;K, B;¢,
BC; — MK, 2

Ay = (3.139)

y Jil =

B,D; 0

As previously stated, the main purpose of this work is to provide a FAC design, as in
(3.137), where the supplementary control signal will accommodate the fault signal. This
accommodation for the H case is described by the difference o(k) = Fy) f(k) — Boyh(k),
which we desire to be close to zero. From the above, the optimization problem regarding

the H, case can be described as

0
|Gauglloo = sup lofl. v >0, (3.140)

20,0, ||0]]2
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where the augmented matrices C;y and D;, are given by

Cy=[0-Bie], Dy =[oF]. (3.141)
The use of the Hs norm as a performance criteria is due to the similarities to the LQR
controllers, which are known in the literature for its good performance and reliability.

Therefore, the optimization problem for the Hs case can be described as

m N
Gl = S5 sulloll3 < 6. (3.142)

s=1 i=1
where the augmented matrices are

Ciy = [U*Bz'@e], D, = [0 Fz]

It is important to point out that the controller K, is obtained beforehand, for instance
the controller in (TODOROV; FRAGOSO; COSTA, 2018), but any other controller that

guarantees stability in the same condition can be implemented.

3.4.1 H.,, Fault Accommodation Control Design for MJLS with
Parameter Estimation

Our first main result on the procedures to design the FAC for the H., norm case is

presented in Theorem 13 below.

Theorem 13. There exist a mode-dependent FAC as described in (3.137) satisfying the

constraint (3.140) for some v > 0 if there exist symmetric matrices Z;, X;, M}, M2?, S}},
S22 and matrices M2, Nt NJ?, N2t N2, S21 Ry, g, By, My, and &, with compatible

dimensions such that inequalities

Z; ® e e Milgl b L

Z; X; o e M2} M2? e

00721 o |~ Gie Nlel Nzlf su e | (3.143)
0 0 0 ~2I £eM; NZI N2 §21 §22

Milzl . ° . . e o

Mi2181 Mff ° . . o o

Nilé1 Nz.lf Silel . . o o

NP ONZ 8% s7 e e | <0, (3.144)
0%t W5 S(2)0 E(Z)F E(Z) e e

n%' 1% ReJi+Re®D; ReF; 0 1% e

-Bi¢ 0 0 F; 0 0o I



91

with
I} = Ei(2)A; — B Z)BK, + Bi(2)Bi€, 1 = Ei(2)A; — Ei(Z) By,
%' = Ro(A; — BK; + B,€o + Ay + B,C; — MKy),
157 = Ry(A; — BiK, + B,C; — M K,), 10,0 = Her(Ry) — Bi(X) + Ey(2),

hold for all i € K and for all ¢ € M .

Proof: The proof is based on the results presented in (OLIVEIRA; COSTA, 2020) and
(GONCALVES; FIORAVANTI; GEROMEL, 2010). We impose as before, the structure of
the matrices P; and P! of (3.10)-(3.11) as

p = [X . } pl— [Zil ] (3.145)

Ui Xi i V. Y

Also define the matrices 7; and v; as

I E;(X
7i=[viz 0], vi= [OEEU}] (3.146)

Observing that (3.144) is diagonal block, we can also write that Her(R,) > E;(X — Z) > 0,
and as a by-product Ry is non-singular. Setting U; = —X;, allow us to rewrite the matrices
P; and P! as

P=[; x 2] (3.147)
-1 Zi_l °
b= [Z{l Z;1+(Xi—zi>—1} ' (3.148)

Hence, (3.146) are now

I E;(X

Following the same idea from the proofs provided for the FDF case in Section 3.2. As Ry is
non-singular, and using the results presented in (OLIVEIRA; BERNUSSOU; GEROMEL,
1999; GONCALVES; FIORAVANTI; GEROMEL, 2010), we get that RyE;(X — Z) 'R}, >
Her(R,) + E;(Z — X), so that the constraint (3.144) still hold if the diagonal term
Her(R,) + E;(Z — X) is substituted by R/E;(X — Z)~ 'R}, resulting in

ML ° . .

il [ ] [ [ ]
M?el M.Qf . . ° o o
5 P 11
Ni2£1 Ni2l2 Sgﬁ .22 : °
Niel Nuzz S5 S o o o| >0, (3150)
=% =22 Ei(2)J Ei(Z)F; Ei(Z) e e
=6,1 =62 —6,3 —6,4 0 =66 e
=i S Sl =ig =g
-B;¢, 0 0 F; 0 0 I
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where

=)' =E(2)A; — E{(2)BK, — E(2)Bi€,, Ei} = Ei(Z)A, — Ei(Z)BiK,,
=5 =Ry(A; — Bil + Bi€ + Ay + B,C; — ML),

=52 —Ry(A; — BiK; + B,C; — M Ky),

”?f’ —RyJi + RB,D;, E8' = R,F,, =59 = RE(X — Z)'R).

Now defining the matrix II;, as

_ [E(@) I
T N (3.151)

{4

and pre and post multiplying (3.150) by diag(Z, I, I1;, I), and its transpose, respectively,

we get that
TIMyT; ® . .
Ni[ri Sig [ ] [ )
[’U;AMTZ' ’U;jig v;Ei(P)_lui 0] > O (3152)
Curi Dy 0 I

By pre and post multiplying (3.152) by diag(r; ™, I,v; ', I), and after that using the Schur
complement to the resulting constraint, we obtain that (3.11) holds. At last, observing

that (3.143) can be rewritten as

[TPT . } ZW [TAJ]WZﬁr -A, (3.153)

LeM;

we get, after pre and post multiplying (3.153) by diag(; ', I), that constraint (3.10) holds.
Since (3.10)-(3.11) hold for the closed-loop system as in (3.138), we get from Lemma 7
that ||Gaugllco < 7, and the claim follows. [

Remark 12. Notice that the matrices for the FAC controller in (3.137) and satisfying
(3.140) are directly obtained from the solution of the inequalities (3.143), (3.144).

Remark 13. [t is necessary to explain that the state feedback controller K, is given, and
designed beforehand using for example the Theorems presented in (TODOROV; FRAGOSO;
COSTA, 2018). The nominal controller is not designed using Theorem 13.

3.4.2 H, Fault Accommodation Control Design for MJLS with
Parameter Estimation

We present now the design of an FAC for the s norm case.

Theorem 14. There exists a mode-dependent FAC K. as in (3.137) satisfying the con-
straint (3.142) for some & > 0 if there exist symmetric matrices T;, O;, Wi, W22 VI

(3 (2
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V.22 and matrices W2t, V21 Ry, Ao, By, My, and €, with compatible dimensions such that

the inequalities

N
Will ° 9
> mcbieTr([Wél Wz{z]) < (3.154)
. 2
i=1 £eM;
T’L o V;;l L]
[Ti Oi] > E Cbié |:V51 V22| (3155)
LeM;
Wilél . ° o o]
erl WZ%Q . o o
E(T)Ji  Ei(T)F; E(T) o o | >0, (3.156)
ReJi+ReB,D; ReF; 0 O} e
0 F; 0 0 I
Viil ° ° o o]
oy e &) o o >0, (3.157)
41 54,2 <44
O 9y 0 ©; e
-Bi¢& O 0 0 I

with
05" = Her(Ry) + Ei(0) —Ei(T), ©3%' =E,(T)(A; — BiK, + B,&),
,1

0% = By(T)(A; — BiKy), O3 = Ri(A; — BiKy + Bi€p + Ay + B,C; — MK,),

@féQ = Re(Az — B, K, +8B,C; — mgKg), @jé‘l = HST(Re) + EZ(O) — EZ(T),

hold for all i € K and for all { € M.

Proof: The proof uses a similar scheme as the one of Theorem 13. Consider Q; in

(3.16)-(3.19) with the following form
~ O; e ~— T ! o
Qiz[@@i], Qilz[’vj T] (3.158)
and define the matrices n; and o; by
I E(T

It follows from (3.156)-(3.157) that Ry is non-singular. By imposing U; = —O; and recalling
that Q;Q; ' = I, we can rewrite (3.158) as

. ~N— T;l .
Qi=[1%,022], @'= [Tfl Tu} ; (3.160)
where T1; = T, ' — (O; — T;)™!, and we can also rewrite (3.159) as
0 Ei(T—0)

vi=[14], o= [I ) ] (3.161)

Using the same idea applied as in the proof of Theorem 13 we get that R/E;(O —T) 'R}, >
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Her(R,) + E;(T — O). Let us rewrite (3.156)-(3.157) as follows

il [ ] [ ] [ ]

Wfll WZ?ZQ ° o o
E(T)J;, Ey(T)F; E«T) o o| >0, (3.162)

RyJ;i—R¢ByD; RyF; 0 T3 e

0 F, 0 I

T3 = Her(Ry) + E;(O) — Ei(T),

and
Vit e e . .
Vit ViR e . .
vt WP E(T) . .| >0, (3.163)
vhl wh? 0 RE(O-T)"'R) e
—Bi¢, 0 0 0 I
U = E(T)(A; — BiK, + Bi€,), W = E(T)(A; — BiKy),
‘Ij;lél = RZ(AZ - BZKZ + Bz€£ + Q(g + %gCZ - 9)@Kg>,
\ijf = RK(AZ - BZKZ + Bl + %gcz — DﬁgKg).
By defining

= [E(D)! I
Hi@*[ 0 R;Tuzi(o—T)]’

pre and post multiplying (3.162) by diag(1, I, Il;), and (3.163) by diag(I, I, Il I) we get

Wie . o
{Uéjw olEi(Q) i °:| > 0, (3.164)
Dy 0 I
VZ{RigVi ° .
|:0‘,/L-Aig1/2‘ J;Ei(Q)_lai .1 > O (3165)
Ciev; 0 I

By pre and post multiplying (3.164) by diag(1,c; ", I), and (3.165) by diag(v; ', 0; ", I) we
get that (3.17), (3.19), hold with the closed-loop matrices of system (3.138). Consequently
we can rewrite (3.154) as

viQiv; > Z Giev; Rigvi. (3.166)

LeM;

Therefore, it is noticeable that (3.154) and (3.16) are equivalent, we can see that (3.18)
is also satisfied by pre and pos multiplying (3.166) by v; *. From Lemma 6, |Gavgll2 < 9,

and the claim follows. [ |

Remark: As for the H,, case, the matrices for the FAC controller in (3.137) and
satisfying (3.142) are directly obtained from the solution of the inequalities (3.154)-(3.157).
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3.4.3 Mixed Hy/H~ Fault Accommodation Control Design for
MJLS with Parameter Estimation

Now we provide the design of mixed Hs / Hoo FAC for MJLS with partial information

on the jump parameter.

By inspecting the BMI constraints provided in Theorems 13 and Theorem 14 we can
observe that the structure to solve the FAC problem is similar. This similarity allows us

to also obtain a mixed solution.

The main motivation to provide the mixed solution is that the FAC will consider both
Ho and Hso norms during the design process. On the one hand, a guaranteed H., norm
implies that the closed-loop system is robust against external noise signals. On the other
hand, the energy of the control signal is minimized in the H, design approach which is

desirable as there is no parallel actuators in the systems.

Bearing in mind this information, we provide the mixed design of a FAC using the

BMI conditions for Theorem 13 and 14. Hence, we rewrite the constraints as

={Z:, Xi, My, Mig, Sy}, Sig', Mig', Nig', Ni*, Nigt Nig?, S5 T, O Wi
W2L W2 VI V2 V2R, Ay B, My, €, i €N, €€ M) (3.167)
k= 1{Zi, Xi, My, M7’ S, Sit s Mg, Ny, Nif?, Nig', Nig?, 37, T, O3, Wiy
Wi W Vi Vi Vi Ry, A, B, My, €t € @

(2

(3.143)-(3.144) and (3.154)-(3.157) hold for some v and J} (3.168)
in which case, the mixed H., and H, optimization problem is given by
(ibnf{'VQC + %8}, (3.169)
€K

for given weighting scalars ¢ > 0,5 > 0.

Theorem 15. There exists a mode-dependent FAC IC. as in (3.137) such that ||Gaugl|co < ¥
and ||Gauglla < 0 for given v > 0 and 6 > 0 if there exist symmetric matrices Z;, X;, M},
MZ, S SZ T, O, Wi, W22, Vit V22 and the matrices M2, N, N2, N2, N2%

S2L W2 VEL Ry, Ay, By, My, and € with compatible dimensions such that inequalities,
(3.143), (3.144), (3.154), (3.155), (3.156) and (3.157) hold for alli € N and for all £ € M.

Proof: The proof for Theorem 15 is a direct consequence of Theorems 13 and 14. Il

Remark 14. [t is important to mention that the level of conservatism in Theorem 15 is

higher in comparison to that of Theorem 13 and Theorem 1/, since Theorem 15 considers
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the BMI constraints (3.143)-(3.144) from Theorem 13 and (3.154)-(3.157) from Theorem

14 simultaneously. Note that the number of variables for each theorem is

Theorem 13 — 10 X imaz X limaz + 2 X tmaz + D X Longze + 1
Theorem 14 — 6 X tmaz X gz + 2 X tmae + 5 X linaz + 1
Theorem 15 — 16 X tpmaz X Caz + 4 X Gmaz + D X Lppae + 2

It 1s noteworthy that the number of variables in Theorem 15 is not the direct sum of the
variables in Theorem 13 and 14, because matrices Ry, Uy, By, My, and &, which are the
matrices that compose the FAC (3.137), are present in the BMIs constraints of Theorem
18 and 14. Regarding the number of BMI constraints Theorem 13 has 2 X tmaz X €mae BMISs,
Theorem 14 have 4 X tpmaz X Umae BMIs, and the number of BMIs in Theorem 15 is the
sum of BMIs in Theorems 13 and 14, therefore, the number of BMI is 6 X imaz X Cmaz-
Hence, the region of feasible solutions in Theorem 15 is smaller in comparison to the ones
for Theorem 13 and Theorem 14, and by consequence increasing the computational effort

necessary to solve Theorem 15.

Coordinate Descent Algorithm

As stated previously, the constraints in Theorem 13 and 14 are Bilinear Matrices
Inequalities (BMI). For solving these optimization problems with BMI constraints, there
are a number of approaches presented in literature, to name a few, (SIMON et al., 2011)
or (WANG; ZEMOUCHE; RAJAMANI, 2018). In this paper, we use the Coordinate
Descent Algorithm (CDA) for solving the problems which is also used and presented in
(OLIVEIRA; COSTA, 2020). The CDA is presented below.

Algorithm 3: Coordinate Descent Algorithm.

1 Input: Ke, Y, tmaxa ¢

2 Output: A, B, Ny, &

3 Initialization:

4 While: V:tl_f’t < nort < tyax do:

5 Step 1: Solve the constraint in Theorem 13 or 14 considering &, as a
constant, which can be obtained using (TODOROV; FRAGOSO; COSTA, 2018) .
Obtain the values of Ry, and Z; for the Theorem 13 or R, T} for the Theorem 14.

6 Step 2: Solve the constraint in Theorem 13 or 14 this time using the values
of Ry, and Z; or Ry, and T; obtained in Step 1 and &, as a variable. Obtain the
value of 7.

In the above algorithm, the input ¢ is the stop criteria and t,,,x is the maximum

number of iterations allowed.
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Remark 15. The controller used in the CDA can be obtained using any design approach,
but it is recommended to use a controller that is also under the MJLS framework. If
the first iteration is feasible, the algorithm will at least keep the same result obtained, or

improve the results.

3.4.4 Simulations Results

For the illustrative example we used the exact same matrices that represent the
coupled tank presented in Appendix A. The only necessary addition is the detector matrix

information as in

(3.170)

So
ot
oo
arot
o

The fault-compensation controller obtained designed using Theorem 13 is

__ [ 0.0535 —0.1895 __ [ 0.0458 0.0214
22(1 - [—0.1481 0.4341 } ) 9(2 - [—0.0254 0.0574] )

0.0542 —0.1331 0.0542 —0.1332

%1 _ [70.0238 0.0539 } ’ %2 — [70.0239 0.0540 ] ’
]

ml — [ 0.7693 —0.4043} ,Dﬁg — [ 0.0492  0.0630

—0.2708 1.5212 —0.0040 —0.0587

9

¢, = [ 0.0149 —0.0409} ¢, = [ 0.0570 —0.1254}
1 —0.0307 0.1017 |» ~2 — [ —0.1222 0.3138

and the upper bound of the H,, norm value is v = 2.2.

The fault-compensation controller obtained designed using Theorem 14 is

__ [ —0.0857 0.0121 __ [ —0.0995 0.0141
Q[l [—0.0129 —0.0769} ’ Ql? [—0.0149 —0.0893} )

_ [ —0.0293 0.0036 __ [ —0.0340 0.0042
%1 - |:—0.0044 —0.0230} ’ %2 - [—0.0051 —0.0267} ’

_ [0.1734 —0.0256 __ [ —0.0118 0.0091
g*nl - [0.0259 0.1620 ] ) m2 - [70.0083 70.0133} ’

o, = [0.0130 —0.0007] ¢, = [70.0130 0.0007 ]
1 = 10.0006 0.0047 1> 2 — | —0.0006 —0.0047 | -

and the upper bound of the Hy norm value is v = 1.49.

3.4.4.1 Monte Carlo Simulation

The simulation setup is the same as in Section 2.4, where the fault is a sinusoidal signal
0.025sin(k), and the system is subjected to a white noise with zero mean and deviation

equal to 0.01. The Monte Carlo simulation with 300 rounds was performed.

In this simulation it is presented a comparison between the proposed approaches in

Theorem 13, 14 and a nominal solution using solely the state-feedback controller, which
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is designed using (TODOROV; FRAGOSO; COSTA, 2018). The results obtained are
presented in two distinct sets of graphics, the first set presents the situation when the
system is subjected to fault, and the second set is the situation where there is no fault. The
sets are organized in the following manner: in Fig. 25a we present the mean and standard
deviation for both tank levels h; and hy obtained using Theorem 13, in Fig. 25b we present
the mean and standard deviation for both tank levels h; and hy obtained using Theorem
14, the third graphic represents the mean and standard deviation for both tank levels
hy and hy obtained using solely the nominal controller, the fourth graphic compares the
mean of both previous graphics. The fifth graphic is the mean and standard deviation of
the control signal obtained using Theorem 13, the sixth graphic is the mean and standard
deviation of the control signal obtained using Theorem 14, the fifth graphic is the mean
and standard deviation of the control signal obtained using the nominal controller, and

the sixth graphic is the comparison of the fourth and fifth graphics.

In Fig. 25d it is possible to observe that the proposed approaches mitigated the effect
of the fault when compared to the nominal approach. Another important aspect is that
the standard deviation obtained in all simulation are all similar, which is important since
it shows the second-moment stability. As shown in Fig. 25d, the mitigation is noticeable
for the approach in Theorems 13, and 14, which was the aim of the approaches. Regarding
the control signal, as shown in Fig.25h the control signal presented a discrepancy between
the control signal obtained using the Theorems 13, 14 and the nominal controller, however,

this difference is not relevant.

Now for the analysis of the simulation without fault, it is important to observe that
the effect of the accommodation controller in the nominal situation was neglectable, which
is desirable, since the FAC should not alter the nominal performance. From Fig. 26d we
may state that there is no noticeable difference between all three curves, the same can be
said regarding the standard deviation. Therefore, the results in Theorems 13, and 14 are

suitable solutions for the FAC problem.

3.5 Concluding remarks

In this chapter we provided the theoretical results to design an FDF and FAC under
the MJLS with parameter estimation, furthermore, we also illustrated the viability of the
methods presented using some examples. From the results obtained via simulation, we can
say that the proposed approach worked as expected. For the next chapter, we introduce

the design of the FDF and FAC under the Markov Jump Lur’e Systems.
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Figure 25: Mean and standard deviation for the states and control signal obtained using
the FAC designed via Theorems 13, 14, 15, and the nominal control. These results were
obtained via simulation where the system is subjected to an oscillatory fault.
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Figure 26: Mean and standard deviation for the states and control signal obtained using
the FAC designed via Theorems 13, 14, 15, and the nominal control. These results were
obtained via simulation where the system is subjected to an abrupt fault.
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4 FDF FOR MARKOVIAN JUMP LUR’E
SYSTEMS

As already discussed in the previous chapters all systems are inherently subjected to
faults, including communication loss. However, another intrinsic aspect that is present
in the majority of the systems is the non-linear behavior. The earlier results presented
herein, are based on the premise that it is possible to linearize the system and get a
proper model. Yet, in some cases, linearizing the system removes a crucial behavior of
the system (JAYAWARDHANA; LOGEMANN; RYAN, 2011). Therefore the use of a
proper framework that considers the nonlinear behavior is of utmost importance. For that
reason, here we are using the Markovian Jump Lur’e System, which allows us to model

the network as in the previous chapter and add the nonlinear behavior at the same time.

The results presented in this chapter were published in the following:

e Subsection 4.2 presented the Fault detection filter for discrete-time Markov jump

Lur’e systems, was published and presented in the European Control Conference

2021 (CARVALHO; JAYAWARDHANA; COSTA, 2021).

4.1 Preliminary for Markovian Jump Lur’e Systems

Consider the discrete-time Markov jump Lur’e system as
r(k+1) = Agyz(k) + Gogypow) (p(k)) + Jogyw(k),
G : 4 p(k) = Coy(k), (4.1)

z(k) = Coou(k) + Houy o) (p(k)) + Dogyw(k),

where vectors z(k) € R™, p(k) € R™, z(k) € R", and w(k) € R™, represent the system
states, the output related to the nonlinearity, the system output, and the exogenous input,
respectively. We consider that w(k) € Lo. The term ¢(.) is considered to be a memoryless

non-linearity. Observe that all the terms in (4.1) are dependent on the index 6(k), which



102

represents as before the Markov chain jump parameter (ROSS, 2014).

The N non-linearities ¢;(-) are restricted by the following assumptions:

e Assumption I: ¢;(0) =0

e Assumption II: for each non-linearity there exist positive define matrices 2; € R"™*"»

forallp e R™, £ =1,---,np, such that
@ie)(p)pi(p) — Qpley < 0. (4.2)

As described in (KHALIL, 2002), the non-linearities ;(.) satisfy their respective cone

bounded sector conditions and are assumed to be decentralized, which allow us to write

SC(ei(.),p, Ai) = SDi(p)/Ai[%‘(P) - Qip] <0, (4.3)

where A; € diag(Ag;i)g=1,-. n, € R™*™ are diagonal positive semidefinite matrices, consid-
ering (4.2) we can say that (4.3) holds for all i € K| for all p € R". As a by product of
(4.2) the inequality (4.3) holds for

[S2plelpi(p) — Quple <0, (4.4)
which implies that
0 < ¢i(p) Nii(p) < @i(p)' Allip < P'UAQip,  Vp € R™, (4.5)

when A; is a diagonal positive semi definite matrix. Now we present the Mean Square

Stable (MSS) definition used throughout this work.

Definition 6. System (4.1) with w(k) = 0 is MSS if, for any initial condition x(0) =
xo € R™, and initial distribution 6(0) = 6, € K,

lim E{x(k) z(k)|xo, 00} = 0. (4.6)

k—o0

For a detailed discussion, see (COSTA; FRAGOSO, 1993; FRAGOSO; COSTA, 2005).

4.1.1 Candidate Lyapunov function

We define the candidate Lyapunov function as

K x R™ — R,
(1,2) — o' Pix + 2(¢i(Cix)) A Q,;Cix,
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where matrix P; € R™*" Vi € K is symmetric positive definite, and the diagonal matrix

A; € R™*™ ig positive definite.

Observe that inequality (4.5) allows us to define a lower bound, as in v,(z) = 2/ Pz,
and an upper bound, v;(x) = &' (P; + 2CIUA;Q,C;)x, for the candidate Lyapunov function.

By consequence,

v,(z) < V(i,z) < vi(x),Vi € K (4.8)

From the above, we can state that the candidate Lyapunov function possess these properties:
o V(i,z) > 0,Vx € R"™ i € K, which is guaranteed by the left hand of the inequality
(4.8).

e V(i,z) =0 if and only if x = 0,Vi € K. This property is guaranteed by imposing
that P, > 0 in the inequality (4.8).

e V(i,z) is radially unbounded, Vi € K.

The main reason to use this particular Lyapunov function is to allow us to draw results
solely under Assumptions I and II. As consequence, it is no longer required any further
assumptions regarding the slope of the non-linearity, which is the classical approach
for the discrete-time domain Lur’e system, (GONZAGA; JUNGERS; DAAFOUZ, 2012;
GONZAGA; COSTA, 2013; GONZAGA; COSTA, 2014).

4.1.2 H,, norm for Markovian Jump Lur’e Systems

Assume that the system (4.1) is MSS and xy = 0. Its H,, norm (COSTA; MARQUES,
1998) is then given by

HgHoo — sup HZHQ

. 4.9
ot Tl (4.9)

An upper bound v > 0 for the H,, norm can be acquired by using the following lemma
which is based on the stochastic stability constraints presented in (GONZAGA; COSTA,
2013, Theorem 5).

Lemma 8. Consider that the Assumptions I and II are satisfied. System (4.1) is stochastic

stable and the norm constraint ||G || < 7y holds if there exist symmetric P; > 0 and diagonal
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positive semidefinite matrices T;, W;, A; such that the following LMI

P; . ° . e o
(Wi—A:),Cy 2T; ° ° o o
(E;(W)—E;(A)QCA; I 2E;(W) e o o
0 0 II VI e e Z 0’ (410)
Czi Hz 0 D.L 1 ]
E;(P)A; E;(P)G; 0 E;(P)J; 0 E;(P)

is satisfied for all i € K, where I = (E;(W) — Ey(A)QCiGy, TT = JICIL(Ey(W) —Ey(A)).

Proof: Let us show that if there are matrices P; > 0 such that (4.10) is satisfied then
1G]loe < . Pre- and post-multiplying (4.10) by diag(I,I,I,1,I,E;(P)!) and applying
Schur complement in (4.10), we get that

A;Ei(P)A2'7PZ‘+C;iCZ¢ . ° °
11 G!E;(P)G;+H/H;—2T; . .
JIE;(P)A;—D!C.; JIE;(P)G;+D!H; II 11

where IT = G/E;(P)A; + AQC; — TiuC; + HIC,;, 1T = JIC!U(Ei(A) — (W), TT =
JIE;(P)J;+D!D;—~2. Pre- and post-multiplying (4.11) by [x(k)" ¢:(p(k)) @i(p(k+1)) w(k)],

and following a routine computation, we obtain

2 (k + 1)Egy (P)x(k + 1) + 20g(11) (p(k + 1)) Eg(ry (D)0t 11) Coeynyz(k + 1) - -
z(k) Pyeyz (k) + 2000 (2(k)) Doy Qo) Coryz (k) - - -

= 28C(pg(rg1y(k + 1), p(k + 1), Egry(W)) - - -

— 25C( gk (k), P(K), Tory) + 2(k)'2(k) — v*w(k) w(k) < 0. (4.12)

Considering that the o-field §y is generated by the variables {z(l), w(l),0(l);l =0,--- , k}
we get that z(k + 1) Egu)(P)x(k + 1) = E(x(k + 1) Ppgepvyz(k + 1)|Tx). Hence E(x(k +
1)'Eguy (P)x(k+1)) = E(x(k+1) Pygy1yr(k+1)). In what follows, we recall that SC(.) <0

as in (4.3). From (4.12), and summing over k from 0 to T, we get

T
ZE[ (k+ 1) Pppynyz(k+1) -
k=

0
+ 20g(e+1) (P(k + 1)) Doe41)Q00k41) Coesnyz(k +1) - -
— (k) Pyyz (k) — 200y (2(k))' Doy 0 (k) 1) Cogiyz (k) - - -
— 28C(pg(kt1y(k + 1), p(k + 1), Wyap1y) — 25C(i(k), p(k), Tory) - - -

<0 <0

+ z2(k) 2(k) — ’wa(k)/w(k)] < 0.

It follows then that

T T
E(V(T +1)) = E(V(T)) + Y E(l=(k)II?) =7 > E(llw(k)|?) (4.13)

k=0 k=0
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Considering w(k) = 0 and recalling that C.,C,; > dI we obtain from (4.13) that
S o E(llz (k)] < 1E(V(0)) and taking the limit as T — oo yields the stochastic stability

property. When z = 0, it follows from (4.13) that 3°,_ E(||z(k)||2)—7 3p_o E(lw(k)]?) <
0. By taking the limit T — oo, we obtain the desired result. B

4.2 Fault Detection Filter for Markov Jump Lur’e
Systems

The scheme that describes the Fault Detection Filter is presented in Fig. 27. Observing

Noise w(k) z(k)

ITU<

Fault f(k System |
— *
| I Po(k) I

Figure 27: Fault Detection Scheme for Lur’e systems.

the topology in Fig.27 we need to describe the system, control law, and the Fault Detection
Filter (FDF), to provide the design of the FDF.

The Markov Jump Lur’e System subject to faults is described as

z(k+1) = Agwyz(k) + Boyu(k) + Gouy oy (W(k)) + Jogmw(k) + Fou f (),
G qylk) = Copy(k),
2(k) = Caomy (k) + Howypow) (y(k)) + Doyw(k) + Egwy f(k),
(4.14)

where z(k) € R"™ represents the system states, u(k) € R™ represents the control input,
w(k) € R™ denotes the exogenous input, z(k) € R™ represents the output signal, and
f(k) € R™ denotes the fault signal. We assume that w(k), f(k), € L% Recall that, ¢;(-)
is under the assumptions I and II in (4.2). The index 6(k) represents the Markov chain,
as described in (4.1).
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The control signal is obtained using the state feedback controller
1€ {ulh) = Koo (k) + Rogepoc (u(k). (1.15)

The main objective in this paper is to design a Fault Detection Filter to generate a

residue signal r(k), the FDF is defined as

n(k+1) = Apoyn(k) + Mupgayu(k) + Buog 2(k) 4+ Lugwy o (y(k)),
F (k) = Choyn(k) + Dyoy 2(k), (4.16)
77(0) = To,

where n(k) € R" represents the filter states, u(k) € R™ represents the control input,
r(k) € R™ denotes the residue signal, and f(k) € R™ denotes the fault signal.

Considering that r.(k) = r(k) — f(k), we get the augmented system

v(k+1) = Ae(k)f(k?) + ée(k)%(k) (y(k)) + Jogwyw (k),
gaug : y(k) = ég(k)j?(l{), (417)
z(k) = éze(k)f(k) + ﬁe(k)@e(k) (y(k)) + De(k)@(k),

where #(k) = [2(k) n(k)), G (k) = po(y(k), @(k) = [w(k) f(k)], hence, the

augmented matrices that compose system (4.17) are

B,R; + G, |
MR + L,y

i

A; + B K; 0 & —
MK + BiCli Ay , '

- J; F; ~ T
T ) CZZ = [Dmsz Cni )
B,iD; ByiE; ’
Di= DD, Dy —1|, Hi=DyuH, C=|c, 0. (4.18)

Define the performance criterion for the H., norm case as:

[Gusglloo = sup ez ) (4.19)
lols#0.mecs ||@]|2

where the main purpose is to design the FDF as in (4.16) minimizing the H, gain 7 > 0
for the augmented system (4.17).
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B Z; ° . . . ° e o .
Z; X; . ° . ° e o °
(B (W)—E;(A)%uC;i (Ei(W)—E;(A)QuC; 2T . . o o o .
II il 43 2E;(W) ° . o o .

0 0 0 >4 427 . o o . >0, (4_20)
0 0 0 764 0 2] o o .
DniCziJrCm- DmﬂCu» Danl 0 'D»,ﬂ‘DZ 'DnlEifl I e .
Ei(Z)(Ai+B;K;) E;(Z)(Ai+B;K;) 11103 0 Ei(2)J; Ei(2)F; 0Ei(Z) o

L Hll,l H11’2 H11’3 0 H11,8 H11,9 0 E£(z) ]EZ(X) i

4.2.1 H, Fault Detection Design for MJS Lur’e Systems

Theorem 16. Consider that both Assumptions I and II are satisfied. There exists a filter
as in (4.16) such that (4.17) is stochastic stable and ||Gauglloo < v if there exist symmetric
positive matrices Z;, X;, matrices with appropriate size O,;, V;, I';, T;, and diagonal
positive semidefinite matrices T;, W;, A; € R™*™ such that the LMI constraints (4.20)
are satisfied for all © € K where

I = (E;(W) — E;(A)%Ci(A; + BiK;), T = (E;(W) — Ei(A))QCi(B;R; + Gy),
I = JICIG(E(W) — Ei(4)), I = FCI(E(W) — Ey(A)),

' = Ey(Z)(B;R; + G;), N =E{(X)(A; + BiK;) + IiK; + ViC.i + O,
2 = Ey(X)(A; + BK;) + T, K; + ViCoy, T =Ey(X)(BR; + Gy) + TiR; + Yy,
'S = Ey(X)J; + ViD;, T =E(X)F, + V,E;.

If a feasible solution is obtained, then a suitable FDF is given by A,; = Ei(Z — X)) 'O,
Bm‘ = ]EZ(Z — X)_lvi, Mm‘ = ]EZ(Z — X)_lfi, Lm‘ = EZ(Z — X)_lTZ', Cm', and D"]i‘

Proof: Firstly, we introduce the variable substitutions O,; = E;(Z — X)A,,;, V; =
E/(Z - X)By, I'i = E{(Z — X)M,;, and YT; = E;(Z — X)L,; in (4.20). Now consider
the structure, extracted from (GONCALVES; FIORAVANTI; GEROMEL, 2011), for P;,
E;(P), as

Xi Ui — Y Vi
pi:[Ui,Xi], Pil:[vi,ﬁl’ (4.21)
Ei(X) Ei(U - Rii Ry

We define the matrices o; and o; as
I I R Ei(X
@ = [Vi,yi_l 0} o= [ g Ei((U;,} . (4.23)

From (4.21) we get that U; = Z; — X;, V; = V!, Vi = Z; ', as well as R};' = E;(Z), as in
(GONCALVES; FIORAVANTI; GEROMEL, 2010). Therefore, we can write the following
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matrices

— [Z:i Z: _ | Ei(2) Ei(2)
&Py = [Zi Xi] ) U{Ei(P)Ji = {]Ei(Z) ]Ei(z):| )

(E;(W) — E;(A)Q;Cia; = [ (B:(W)—Ei (A)Q:Ci (Bs(W)—E;i (A)Q:C; |

(E;(W) — Ei(A)Cs Ajo; = [ (Ba(W)—Ei(8)Q:Ci(Ai+ BiKs) (Es(W)—E;(A)Q:Ci (Ai+BiKo) |,
C’ziai = [D’niczi"l‘cni ’D'r]iczi} , O’é/L‘CVi = {EI(Z)(QQTBLKL) EL(Z)(SQLJgBIKI) )

H2

1 =E(X)(A; + BiK;) + Ei(U)M; K; + E(U)B,iCi + Ei(U) Ay,
1*? = E;(X)(A; + B, K;) + E;(U)My, K; + E;(U)B,iC.i,
(E;(W) — lEl(A))QZCEGZ = [(Es(W)—Ei(A)QCi(BiRi+Gi) |, Hz’ = Dy H;,

1AL E;(Z)B;Ri+E;(Z)G; o D. Do
0,G; = [Ei(X)(BiRi+Gi)+Ei(U)(MmRi+LM) , Dj =[DniDi DyiBi—1I],

/j_ _ ]Ei(Z)Ji ]EL(Z)F1
03t = | By(X)Ji4+E; (U)By:i D; Es(X)Fi+E;(U)Bo: Bs |

From the above LMI, (4.20) can be rewritten as

o, Poy . . o0

(WifAi)QiC'iozi 2T; ° e oo
0 0 II; ~2%1 e e > O’ (424)

éziai Hl 0 Dz I e

U,/L.AiOti U;Gi 0 U;Ji 0 f[

where

ﬁ = O';Ei(P)ilUi.

Pre- and post-multiplying (4.24), respectively, by diag(c; ', I, 1,1,1,1,0;"), and after that
pre- and post-multiplying it by diag(Z,I,I,1,,I,1,E;(P)), we get that the LMI constraint
(4.20) implies the LMI constraint (4.10). It follows subsequently that (4.17) is stochastic
stable and that ||Gl|. < 7. [

4.2.2 Simulations Results

For the illustrative simulation for the Lur’e system, we used the classic example of a
mass-spring from (KHALIL, 2002). A deeper discussion about the model is presented in
Appendix A. The matrices that compose the discretized model of the mass-spring system

are

)

F1,2 = Bl,2: Cl = 127 CY2 = 02X27 Czl = 27 Cz2 = 02X27

__ [ —0.0101 0.9588 — [ 62.0699 — 170 —
Al 2 = [—0‘0160 —00181] ) BLQ - [—0.0513] ) G1,2 - [015] ’ ‘]1,2 = 0.01 x BLZ?
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Hi, =0 Dio=1071"" E;,=0"" Q=075 Q =050,
2], (4.25)

The matrices that compose the control law in (4.15) are

Ky = [-00002 —0.0158], Ky = [-0.0368 —0.2877 |,

Ry = [55373x107%3 ], Ry = [2.1034ex10703 | |

The non-linearity is ¢(y) = Q;(y)?, i € [1,2]. The noise signal is a white noise in the broad

sense, with null mean and standard deviation of 0.1.
The FDF designed using Theorem 16 is

— [—0.0097 —0.1416 _ —71-0.0257 —0.2720
A771 - [ 0.0001 0.0012 ]7 "4772 =10 [ 0.0007 0.0374 ] ’

B, = [ 1.0522 105.2372] B, = [—2.0240 2.0240 }
nl — [ —0.0165 —0.0713 | » n2 — | 0.0172 —0.0172 | »

Mo = [ 5508 ], Mo =107 [~ P50,
L= [0 |, Lpp=10°[4357],
Cop = 107° [0.0781 ~0.1328] ,  Cpp = 107° [0.0170 ~0.1342] ,

D,y = 107° [ 01711 —0.1893], Do = 107" [0.1335 ~0.1333] ,

and the upper bound is v = 0.92.

4.2.2.1 Monte Carlo Simulation

Observing the matrices of system (4.25), we consider that the fault in this example
represents problems with the actuator. The specific fault signals represent that the actuator
performance drops by 10% starting at ¢ = 125s. A Monte Carlo simulation with 300
iterations was performed, and the results are presented in Fig.28, Fig.29, which represent,

respectively, the residue signal, and the evaluation function.

In Fig. 28, it can be observed that the FDF designed using Theorem 16 properly
reacted to the fault signal as designed. Regarding the residue signal without fault in Fig.
28, when there is no fault signal the residue is close to zero for the entire simulation. It
is not completely zero due to the presence of the noise signal w(k) and to the switching

behavior from the Markov Jump Systems.

Fig. 29 presents the evaluation function that is represented by the mean and standard
deviation. It can be seen from this figure that the designed FDF is able to detect the
fault in all cases within the range of [127 132]s. It shows that the designed FDF provides
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[Istandard Deviation
- - r(k) Theorem 4.1

[Istandard Deviation

(k) without fault

50 100 150 200 250 300 50 100 150 200 250 300
Instant k Instant k

(a) Residue signal obtained using (b) Residue signal obtained using
the FDF designed via Theorem 16. the FDF designed via Theorem 16
without fault signal.

Figure 28: The mean and standard deviation of the residue signal obtained using the FDF
designed via Theorem 16.

15
[Istandard Deviation [Istandard Deviation
- - Eval(k) Theorem 4.1 == Eval(k) without fault|
TH ==

50 100 150 200 250 300 50 100 150 200 250 300
Instant k Instant k

(a) Evaluation function obtained (b) The mean of the evaluation
using the FDF designed via Theo- function for the simulation with-
rem 16. out fault.

Figure 29: The mean and standard deviation of the evaluation function obtained using
the FDF designed via Theorem 16.

a satisfactory level of reliability. The above simulation results show that the proposed

method can provide a feasible solution for the fault detection problem.

4.3 Concluding remarks

In this chapter, we presented Lemma 8 and the design of an FDF under the assumption
that the nonlinear system is subjected to network communication loss, which was model
by using Markov Jump Lur’e Systems. In the next Chapter, we will tackle the FDF and

FAC problem from another point of view, based on the linear parameter varying systems

instead of the Markov Jump Systems.
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5 FDF AND FAC FOR LPV SYSTEMS WITH
UNCERTAIN PARAMETERS

This chapter introduces the results regarding the Fault Detection and Fault Accom-
modation using the Linear Parameter varying as a base. An important premise in this
chapter is that the LPV parameter is not directly accessible. To circumvent this issue
usually, we implement an estimation process to gather the LPV parameter, when these
procedures are implemented normally we assume that the estimation is precise, however,
this is not completely true, and in some occasions there will be a discrepancy between
the parameter and the estimation. To deal with this imprecision and guarantee the FDF
and FAC performance we added this imprecision during the design process using the

multi-simplex approach to model an additive noise on the parameter.

The results presented in this chapter were published in the following:

e Subsection 5.2 presented the H., and Hs Gain Scheduled Fault Detection Filter,
which was published in IEEE ACCESS October 2021, (CARVALHO et al., 2021b).

e Subsection 5.3 presented the H., and H, Gain Scheduled Fault Accommodation,
which was published and presented in the 4th IFAC Workshop on Linear Parameter
Varying systems 2021, (CARVALHO et al., 2021a).

Definition 7. The unit-simplex Ay of dimension N € N, with N > 2 is defined as

N
Ay={CeRY:> (=1,G>0i=1,... N} (5.1)
=1

Definition 8. The multi-simplex A, n is defined as the Cartesian product of m simplezes
(as in (5.1)) with dimension of N, that is, A,y = An X -+ X Ay with the Cartesian
product containing m terms. Thus any 8 € Ay, n can be decomposed as 6 = (61, 6a, ..., 0,,),
with 0; = (01,00, ...,0:in) € Ay, i € {1,...,m}.

Definition 9. Homogeneous polynomial: For a unit-simplex An of dimension N € N, a

polynomial g(0), 0 € Ay is named a homogeneous polynomial of degree | € N if all its



112

monomials have the same total degree . As an example, assuming 6 = [0y, 605] € As, and
g(0) = 603 + 0205 + 0102 + 03, g(0) is said to be homogeneous polynomial with a degree of
[l = 3. Define KS@ as the set of N-tuples obtained from all possible combinations of N
nonnegative integers k;, j = 1,..., N, with sum ky + ko + ... + ky = 1. A homogeneous

polynomials with o degree is defined as

AB) = > 0" A,, (5.2)

kng\l,)

k;
where 0% = 031052+ O =TI, 07

5.1 Preliminary for LPV Systems

Consider the following discrete-time LPV system

ZE(]C + 1) = Ag(k)l‘(k?) + J@(k)w(k),
G:= ) (5.3)
z(k) = Coyx(k) + Dogyw(k),
where x(k) € R"™ represents the state vector, w(k) € R™ represents the exogenous input,

and the z(k) € R™ denotes output signal. We assume that the matrices Aoy, Joky, Cog)s
Dgy in (5.3) depend on the parameter 6(k) in the affine form as

Agy = Ao+ > 0i(k) A, (5.4)
=1

where Ag, ..., A, are given matrices and 6(k) = (61(k),...,0,(k)) are bounded time-
varying parameters satisfying |0;(k)| < t;, t; € RT, i =1,...,m, V k > 0. Similarly for
Jok)s Coky> Dogry- Observe that the affine form is a particular case of the parameterized
form in (5.2) with a degree of 1. Note that if we describe the matrices in (5.3) as

polynomials with a degree equal to 0, system (5.3) becomes parameter-independent.

5.1.1 H, Guaranteed Cost Analysis

In this subsection, we introduce a few concepts that will be important later on regarding
the Ho, norm. The H,, norm is a classical performance criterion that can be computed
using the Bounded Real Lemma (BRL), as proposed in (CAIGNY et al., 2012) for LPV
systems. For the system as in (5.3), its H., norm is defined by

o ||w<sk1>1||2¢o [[w(k)][2 wik) € Ls (5:5)
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In the following lemma, based on the conditions from (CAIGNY et al., 2010), we present
the Bounded Real Lemma (BRL) for LPV systems where an upper bound for the H., norm
is computed via parameter-dependent LMIs. For the sake of simplicity we set § = 0(k),
and ¢ = 0(k +1).

Lemma 9. If there exists a symmetric positive definite matrix Py, such that

Py . o o

Al o o

[Pgée F ] >0, (5.6)
0 CyPy Dy AT

holds for all O(k), k > 0, then «y is an upper bound for the Ho, norm of system (5.3), that

The proof for Lemma 9 can be found in (SOUZA; BARBOSA; NETO, 2006, Lemma
3).

5.1.2 H, Guaranteed Cost Analysis

The Hs norm is a performance criterion that is associated with the energy of the

impulse response of the system, or in other words,

1G]l2 = 1i;n_§£pE {% Zz(k:)'z(k)} , (5.7)

k=0

where T is a positive integer that represents the time horizon and w(k) is a standard white

noise (Gaussian zero-mean in which the covariance matrix is equal to the identity matrix)

as defined in (BARBOSA; SOUZA; TROFINO, 2002).

Considering an asymptotically stable system in the form (5.3), an upper bound for its
Hs norm can be obtained by a set of parameter-dependent LMI constraints, as introduced
in (CAIGNY et al., 2010) and shown in the following lemma.

Lemma 10. If there exist symmetric positive definite matrices Py, and Wy, such that

Py —AgPyAl) e
[¢ J2991}>0, (5.8)
Wo—DgD!, e
[ 9P902 0 P9i| > 0, (5.9)
and
Tr (Wy) < A2, (5.10)

hold for all O(k), k > 0, then A is an upper bound for the Hy norm of system (5.3), that
is, [|Glla < A.
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Lemma 10 and its proof are presented in (CAIGNY et al., 2010, Theorem 2).

5.2 Gain Scheduled Fault Detection Formulation

Consider the following LPV discrete-time system

G, — z(k+1) = Agwyx(k) + Boyu(k) + Joayw(k) + Foe f (), (5.11)
y(k) = Commyx (k) + Dogryw (k) + Do f(K),
where z(k) € R™ represents the state vector, u(k) € R™ denotes the control input,
w(k) € R™ is the exogenous input and f(k) € R™ is the fault signal. We also consider
that the signals w, f € L, and recall that the time-varying parameter (k) is bounded as
0:(k)| <ti, t €RY, i=1,....,m, ¥k > 0.

The major component in a Fault Detection and Isolation process is the Fault Detection

Filter (FDF'), which we can describe as follows

0k +1) = Apgyn(k) + Mg uk) + Bg00y(k), (5.12)
¢

n

where n(k) € R™ denote the filter state and r(k) € R is the residue signal. Note that
the FDF (5.12) depends only on the estimated parameter 0. We assume that the FDF in
(5.12) can be written in the affine form similarly to (5.4), so that the matrices in (5.12)

are defined as -
Aoy = 2Ano + Z 0 (k)2,, (5.13)
i=1

Hence, the main focus of this chapter is to design all the matrices in 2,,;, M,;, B,;, .,
@m, 1€ {1, Ce ,m}.

5.2.0.1 Parameter under additive uncertainty

One of the major premises of the present chapter is that the time-varying parameters
0(k) are not directly accessible. Instead, we implement estimation procedures to gather
an estimation é(k) of the time-varying parameter 6(k), which are not completely precise,
meaning that we must assume that (k) is an inexact measurement of (k). The design
under the assumption of inexact measurements is dealt with a general model described in
(LACERDA et al., 2016),(PALMA; MORAIS; OLIVEIRA, 2018), in which we assume that

the estimated parameters A(k) is a sum of the actual parameter 6(k) with an orthogonal



115

additive uncertainty o(k), that is
0;(k) = 0:(k) +oi(k), i=1,...,m (5.14)

where |o;(k)| < d;, d; € RT, i =1,...,m. Thus, the domain of (#(k), o (k)) is as displayed
in Fig.30.

dif -
os()0
~d; - |
e R
0: (k)

Figure 30: Feasible region for each pair (0;(k), o;(k)), borrowed from (PALMA; MORAIS;
OLIVEIRA, 2018).

From the aforementioned discussion, we may define the augmented system which

depends on both time-varying parameter 6(k), 0(k), by taking e(k) = r(k) — f(k), as

2k +1) = Aggyam @) + Jiuem k),
e(k) = éé(k)e(k)f(k) + Dé(k)a(k)w(k>7

where we consider the augmented vectors & = [2/(k) n'(k)]', w = [«/(k) d'(k) f'(k)]. In

gaug = (515)

order to simplify the visualization of the resulting LMIs, we consider hereafter § = 6(k),
and 0 = é(k:) The following augmented matrices can be obtained:

X Ag 0 - Be J F

Aé@ = [%U;CQ ané:| I Jéa = |:m:é %W;Dg %néngg )

C’ée = [@néce Q:”Ié] , Dé@ = [0 DnéDG @néng—]:I .

Based on the augmented system as above, we can define the H., Fault Detection
problem as follows.
H, Fault Detection problem: Given a desired H.-gain v > 0, design the FDF as in
(5.12) such that the H,, norm of the augmented system (5.15) satisfies

1Ganglloe = sup el (5.16)

olla20,meLs || W]|2

Similarly, we can define the Hy Fault Detection problem as follows.
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‘H, Fault Detection problem: Given a desired Hsy-gain A > 0, design the FDF as in
(5.12) such that the Hy norm of the augmented system (5.15) satisfies
1 T
|Gangll2 = limsup E ¢ — Z e(k)e(k) p <\ (5.17)
T—o00 T k=

0
5.2.0.2 Change of variables

From the discussion presented in the previous sub-sections, a major assumption in this
chapter is that the parameter used by the filter is an estimation of the real one affecting the
system. To deal with this assumption it is necessary to employ some procedures to design
the fault detection filter (5.12). Using, for instance, the procedures given in (LACERDA et
al., 2016; BRIAT, 2015), we can perform a variable transformation to deal with this type
of parameter subjected to additive uncertainty. These variable transformations, applied to

our context can be seen as

Olll(k') = %, all(k) =

2d;

and the original parameters are retrieved as

i=1, m.

Thus we have that «;(k) = (;1(k), aia(k)) and &;(k) = (G41(k), dyz(k)) belong to
the unit-simplex as in (5.1) with N = 2, so that a(k) = (ay(k),...,an(k)) and &(k) =
(&1 (k), ..., am(k)) belong to the multi-simplex A, 5 = Ay x - - - x Ay with m terms. We set
a(k) = (a(k),a(k)) € A2 X A2, where a(k) is related to 6(k), and &(k) to o(k) (the
additive noise time-varying parameter). Notice that the matrices in system (5.3) and in the
FDF in (5.12) can be rewritten using the new multi-simplex &(k), following the procedure
explained in (LACERDA et al., 2016), which uses the polynomial homogenisation process
presented in (OLIVEIRA; BLIMAN; PERES, 2008).

Another assumption made for the numerical procedure is that the parameters are

arbitrarily fast in time so that, by consequence, §(k + 1) is independent from 6(k).

When using the parser ROLMIP (AGULHARI et al., 2019), associated with YALMIP
(LOFBERG, 2004), this procedure is as simple as setting the degrees of the multi-simplex
polynomials and the parameter boundaries. Thus for the numerical procedure, this change
of variable will be applied to derive the FDF in (5.12).
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st ° . °

[ ] L] [ ] L]

21 —Wh,p+&(Her(Vy)) . . . . . .

3t Vé—i-{K;é Wi, 5—Her(K4) . . . . .

T4:1 Vé—‘,—{Ké W1/2B_K(/§_K2é WézB—Her(Ké) . . . . 0 £ 18
51 €(K,5Bp+T;) ByK! .+ ByK! 4T =721 e . o | <V, (5.18)
61 €(K,5Jo4+QDag)  JyK! 4D JiKL +D4,Q0 0 =21 . .

7, A A _

7Y €(KyyFo+QyDse)  FK! 4D}, Q FiK, +DpyQ 0 0 I e

8, 3 A Drg—I —
Rl €6 0 0 0 9,4Dap D, 5Dp0—1 —1 |

5.2.1 Theoretical Results

In this section, we describe the main contributions of this chapter on the design of
the fault detection filters for solving the previously defined Hs, and H, fault detection
problems. It is important to stress that the results will be presented in terms of the
original parameters (k) and é(k) to highlight that the derived filter only depends on the
measurable parameter é(k:) For the numerical procedure, the change of variable presented
in Section 5.2.0.2 should be applied so that we end up with multi-simplex polynomials with
the new multi-simplex parameter & € A,;, 2 X A;;, 2. As before, for the sake of simplicity in
what follows we set 6 = 0(k), 0 = 0(k) and 8 = 0(k + 1), and by feasible 6, 3, § we mean

that the constraints imposed in Section 5.2 are satisfied.

5.2.1.1 H, Fault Detection Filter Design for LPV with uncertain parameter

In the following theorem, we present the design of LPV FDF via LMI to obtain a
guaranteed H., upper bound of the augmented system in (5.15).

Theorem 17. For a desired Ho, upper bound v > 0, if there exist symmetric positive
definite matrices Wiig, and Wasg and matrices Wiag, K5, Ko, K, Q5, Vi, Ty, € @né

with compatible dimensions and a given scalar parameter & € |—1 1] such that (5.18) with

b

Hl’l = —an + é(H@T’(KléA.g + QéC@)),

H2’1 — _W1/29 -+ f(Vé —+ K2éA9 -+ CéQ;A), H3,1 — KléAe —+ Q;ACQ -+ fKié,
I8 = KyyAg + QCo + EKj,  TIPN = £(K 3By + 1),

I = (K 5Jp + QDag), T = E(K 3Fp + Q3Dgo)', T =D 5C,

holds for all feasible 6, f3, 6 then the LPV FDF (5.12) with 9177@ = f(é—lvé, %779 = _f(é_lQé,

M, ;= I_(é_lfé, €5=C4 and D, ; =D, ; solves the Ho fault detection problem (5.16).

Proof: We apply the variable substitutions V; = I_(éQ[né, Q; = K@%né’ L'y = [_(éi)ﬁné,
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€i=¢4; and D ;=9 5in (5.18). Assuming the structure of W, Ky, as

wo=[wnin]. k=[] o1

Ky Ky

as well as the augmented matrices in (5.15), the inequality (5.18) can be rewritten as

~Wot+E(Her(KsAgs)) AL KL —EKy EKgTgs CLs
KyAgs—EK ~Ws—Ky=Kj Kslyy 0 9
5, A (5:20)
Cyo 0 Dy -1
Moreover (5.43) can be written as
where
T Wy 0 0 C*éé
0 -Ws 0 0
Qeéﬁ = 0 0 —*1 D |
| C,s 0 D, —I
N I R
Up=15"1, V' = [5} (5.22)
66 0
L 0
Now, we pre- and post-multiply the inequality (5.50) by
I /{;é 00
0. 10|, (5.23)
00 0I

and its transpose, respectively, and after that applying the Schur complement and using
arguments similar to those explained at the end of the proof for Theorem 18 we end
up obtaining constraints that are equivalent to those for the bounded real lemma (5.6),

concluding the proof. l

5.2.1.2 H, Fault Detection Filter Design for LPV with uncertain parameter

The next theorem presents the LPV FDF design using an upper bound for the
guaranteed cost for the Hy norm of the system (5.15).

Theorem 18. For a desired Ho upper bound A > 0, if there exist symmetric positive
definite matrices Y119, Y0, My, and matrices Yisg, X 5, Xop, )_(é, Qy, Vi, Ty Qne, @

with compatible dimensions, and a given scalar parameter & € |—1 1] such that the followmg
inequalities hold for all feasible 6, j3, é then the LPV FDF (5.12) with o = X 1v9,
%né = Xé IQé, smné = X@ lFé, ¢ =¢ and @né = @né solves the Ho fault detection

problem (5.17).

6’
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Tr(My) < N2, (5.24)
_—Y119+§(Her(X1éAg+Qé09)) (] . . e o o
—Ylgg-i-f(XQéAg-‘rQéCg-i-vg) —Y229+§Her(vé) . . e o o
X19A0+Qé09+§){19 Vé—i-f)(;;é Yllﬁ—Xié—){lé . ) e o o
X,5A0+025Co+EX, VgteX) Vg Xp—X) Yops—Her(Xy) o o o | <0, (5.25)
f(/Bél)(ié-i_/ré)/ g(lBé/Xéé-i_/Fé)/ /Bé/X{é—’—/F/é/ /B;)/XZGA—’—/F:@ ’ e
£(J<9,X}é+D(,10Q?) £(J€X%é+D€wQ?) JOIX}é+waQ§ J€X%é+waQ? 0 —1 e
£(F9X1§+Dfeﬂg) §(F9X2§+Df999‘) F9X1é+DfGQé F9X2é+ngQé 0 0 —TI ]
My . o oo
Cé@;é Yiig © eee
Q:/ A Y/ Y229 o 00
nb 126
00 0 Tee >0, (5.26)
Ddﬂgné 0 0 O0le
Y
Df9©né_l 0 0 001

Proof: First, apply the variable substitution V; = Xg%lné, Qy = Xé%né’ I'y= Xéi)ﬁné,
¢;=¢C4and D, ;=9 ;in (5.25). Considering the augmented matrices given in (5.15),
and the following structures for X, Yy, Y3,

XlA X; _ ITY1h ° R °
Xé - |:XQZ XZ:| , Yo = [sz Y220} , Yo = [Y;g Y223:| ) (527)
we can rewrite the constraint (5.25) as
—Yo+&(Her(XgA,5)) Al XL —EX, €X5y,
[ ] YB—HGI‘(Xé) XéjQé < (528)
° ° -1
Rewriting (5.28) we get
Qop + Upg X3V + V' XyUp; <0 (5.29)
where
~Y5 0 0 ) )
Qos =1 Yﬂf)l , Ueé:[AeéfIJeé], V =|err10].
Let the null space for U,y and V be given by
I 0 -10
Nu = |4 Jos |, and Ny = [51 0} . (5.30)
0 I 01

Now, if we pre- and post-multiply (5.28) by M, and Ny, respectively, and apply twice
the Schur complement to the result of this procedure we recover the conditions presented
in (5.8) with Py =Y, ' and P, = Yﬁ_l. Regarding the constraints (5.26) we consider the
same variable substitutions as at the start of the proof. After that, applying twice the
Schur complement we obtain the constraint (5.9) with Wy = M,. B
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5.2.1.3 Mixed H; / Ho Fault Detection Filter Design for LPV with uncertain
parameter

In this section, we provide a mixed procedure aiming to improve the FDI performance
combining the results for Hs and H., norms introduced earlier in this section. A simple
approach to obtain a mixed solution when dealing with LMI constraints to solve both
optimization problems simultaneously, for instance, we can consider the following two

optimization statements

(i) Assume a weighting scalar v, we solve the constraints assuming an objective function

of the form
g(A,7) = inf{vA+ (1 —v)v}, (5.31)
where ||Gaugll3 < A and ||Gangll% < 7-

(ii) Given one of the upper bounds of the Hy or H., norms, A > 0 or 7y > 0, respectively,

we solve the constraints in order to minimize the other upper bound.

Before we introduce the main result of this section, consider the following set of

variables

Y = {Wiip >0, Wizg, Wag >0, X5, Xop, Y10, Kip, Yi2e, Yoo, Koy,
My > 0, X@ = Ké > O,Vé, Qé, Fé, Q:né’ @ﬁé}’ (5.32)

Y1 = {Whiig >0, Wigg, Wagg >0, X5, Xos, Yiig, K15, Yiog, Yose, Kyp,
My > 0, X@ = Ké > 0, Vé, Qé, Pé, Q:né’ @né} Uy (5.33)

where (; denotes the set containing A and ~.

The next theorem provides a sufficient condition for the FDF design for the mixed
Ha/Hoo problem.

Theorem 19. If for a given upper bounds A > 0 and ~y > 0 there exist ¢ as in (5.32) such
that the inequalities (5.18), and (5.24)-(5.26) hold for all feasible 6, 3, 6, then a suitable
LPV FDF as in (5.12) which solves simultaneously the Ho, and Hs fault detection problems
(5.17) and (5.16) is given by A, ; = Xé—lvé, B, 4= Xé_lﬁé, M, ;= )_(é_lfé, € 5=0¢, and
@né = @né. Alternatively, one can consider both or one of the upper bounds X\ and v, as

variables, and solve the optimization problems in 1y (5.33) according to the stages (i) or

(ii).

Proof: The proof follows directly from the proofs for Theorems 17 and 18.



121

Remark 16. Notice that Theorems 18, 17 and 19 are LMI conditions that provide the
system performance regarding the Hoo, Ha, and Hs/Heo, respectively. Observe that the
LMTI conditions in (5.24), (5.25), (5.26), and (5.18) , are defined as infinite dimensional
optimization problem that must be solved. By using the change of variables presented in
sub-section 5.2.0.2 and explained at the beginning of this section, we can re-write the LMI
optimization problems in terms of the new multi-simplex parameter & € Ay, 0 X Ay, 2. This
sort of optimization problems is hard to deal with but, however, they can be handled by
using the modern LMI Parsers as ROLMIP (AGULHARI et al., 2019) and YALMIP
(LOFBERG, 2004), which allow us to set polynomial degrees for the optimization variables.
This type of polynomial relaxation permits the problem to be rewritten as an analysis of the
positivity of homogeneous polynomial matrices (see Definition 9), which is the procedure
made by the ROLMIP, and after that the next step is to use a semidefinite programming

solver to acquire the solution.

Remark 17. Note that in Theorems 18, 17, and 19 the variables that define if the FDF
is in the Robust form or in the Affine form, are V;, Qz, Ty, € 5, D 5, and )_(é. If the

degree of those homogeneous polynomial matrices are set to be 0, the FDF designed will be

o7 ~nb
Robust, meaning that the FDF obtained will be parameter-independent. For a homogeneous
polynomial matrices degree equal to 1, the FDF obtained will be in the affine form. Observe
that a higher degree of the homogeneous polynomial can be set, leading to the design of
FDF with a higher degree. It is important to discuss that it is also allowed to change the
degree of the other variables in Theorems 18, 17, and 19, such as Y119, Y120, Yoos, Mo,
Wiie, Whog, and Wasg , with this choice mainly affecting the level of conservatism and the

computational effort.

Remark 18. Notice that in Theorems 17 and 18 there are a parameter &, the purpose of
this particular parameter is to improve the optimization problem results. The simplest way
to obtain £ is to perform a scalar search where £ € [—1 1], and use the £ value of where

the upper bound obtained is the lowest.

5.2.2 Simulations Results

As in the previous sections, we are using the coupled-tank model with a fault signal
representing an abnormal input on the first tank. The LPV parameter in the tank couple
models a flux variation in the connection between tanks. The matrices that compose the

system on the LPV formulation is given by

Av= o7 Tooams ). A2=1[94], B=[" o], J=["F"oodm],
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F = [O.gl]7 C:[2X2, D = [0.[())1 O.%1]> E = [8]7 |9(k)\<ti:0.037

where F' has the same structure of the control input matrix B, representing an abnormal
input in the first tank, and the matrix £ is null since we do not consider that there is a
sensor fault during the simulation. Observe that the only matrix that is subjected to LPV
is matrix A, representing a variation in the valve that connects both tanks. Regarding the
estimation parameter, we need to set a specific value for the range of o(k) beforehand. We
can find in the literature some possible ways to obtain this range, see for instance (PALMA;
MORALIS; OLIVEIRA, 2018), where a Monte Carlo simulation is performed to obtain
this information which is a reliable method to find this range when implementing the
FDI. However, since finding the range of o(k) is not the focus of the present chapter, we
arbitrarily set the range of o(k) as |0(k)| < d; = 0.01. To obtain the estimated parameter
0 we implemented the Recursive Least Square (RLS) algorithm (PAULO, 2013; SAYED,
2011). We note that any other adaptive filter algorithms can also be implemented to

obtain é, such as H., adaptive filter algorithm or Least Mean Square-based algorithm.

Remark: Note that the level of reliability in the estimation process is directly connected

with the value of o(k), as the less reliable the process the higher the value of (k) must be.

The parameter 6(k) behavior is presented in Fig. 31 which we assume to be the

L
0 150 300
Instant k

Figure 31: Behavior for the Linear-Parameter variable (k) and o (k).

representation of an imprecision in the valve that interconnects the first tank with the

second one.

In the sequence, we present the simulation results given in two distinct parts, the
upper bound behavior analysis, and temporal analysis. First, we analyze the obtained
values for the upper bounds A and v when performing a search in the scalar £ in the range
]—1 1] with 100 steps with the same length. These values for the upper bounds are shown
in Fig. 32.
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Figure 32: Upper bounds v and A behavior for Theorem 17 and 18 when scalar £ varies.
Rob denotes the results using the Robust structure, and Aff represents the results using
Affine structure.

Examining the curves in Fig. 32, for the first behavior we can observe is that the
values of v and A considering the robust form are higher than the affine structure. This is
an expected result, mainly due to the less amount of variable in the LMIs that leads to a

higher level of conservatism imposed in the optimization problem.

Following a similar procedure, we consider the mixed Hs/H,, guaranteed costs ap-
proach. For that, we assume a fixed upper bound v = 0.01 related to the upper bound for
Ho and we search for the minimum value of A, as it was introduced in statement (ii) in
Subsection 5.2.1.3. In Fig. 33 we present the obtained values for the upper bound A given

the aforementioned information when the scalar £ varies in the same interval as previously

used.
0.8
——Rob

= 0.6/ Theorem 5.3
S
I0.4F
-
~

0 2 [ \

0 L I T
-1 -0.5 0 0.5 1
3

Figure 33: Behavior of the upper bound A for Theorem 19 when ¢ varies and v = 0.01.
Rob denotes the results using the Robust structure, and Af represents the results using
Affine structure.

Looking at the curves shown in Fig. 33 a few statements can be made. Regarding
the robust form of the FDF, we see that the first feasible solution for Theorem 18 is
provided at & = 0.5. As expected, the upper bound values are higher considering the
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robust structure for the FDF when compared to the affine structure.

Similarly to what we observe in Figs.32 and 33, the higher values obtained for the
upper bounds are the ones assuming the Robust form for the FDF in all the studied

approaches.

The robust filter obtained using Theorem 17 to provide the upper bounds for the H

norm is given by

Ay =[G 50), By = (W7 20), M, = [08],
C"rob = [0.49 38.31] , D”rob = [0.4938.35] .

The affine structure obtained from Theorem 17 to provide upper bounds for the H., norm

is given by
A = (080 T00, Ay = [ 253,
By o = [0 ], B, = 9% Th).
My g =000 ], Ma o =176
C"affl = [0.49 38.96 | , C”affz = [0.00 0.04]
D"affl = [0.49 38.96 | , D”affz = [-0.49 —38.91].

Regarding the results obtained for the Hs norm using Theorem 18, the robust filter is

given by
Ay = (o200, B, = [T, M,
C"rob = [0.49 4.01], D”rob = [0.49 4.90] .
The affine filter obtained with Theorem 18 is given by
A, = [HE T, Ay = [0 208
B”affl = [ 000 08 ] » B”affz = [ 5% 'l
M"afﬁ = [:85(1)] ) M"aﬂz = [:888} g
C"affl = [049 1.82] C"affz = [0.00 0.04],
D"affl = [0.50 1.95] D”aﬂ“g = [-0.49 —1.90] .

Regarding the mixed Hy / Hoo results, the robust filter obtained using Theorem 19 is

L = [2%].
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given by
Angpy = (008 1 By, = o 53], Moy, =[50,
C"rob = [0.49 36.28 ] , D”rob = [0.49 36.24] .

The matrices for the affine structured using Theorem 19 are given by

A _ [-1.02 -4.23 A _ [-0.00 113
aff, [ 0.01 70.00} ’ N [ 0.00 70.01} ;

By o = [0 3. B, . = [0 5%].
My o = [0, My, o = [938].,
C"affl = [0.49 32.34] , C”affz = [0.00 ~16.76] ,
D"afﬁ = [0.49 32.25 ], D"affz = [-0.50 —49.21]

5.2.2.1 Monte Carlo Simulation

Using the similar setup as defined in the previous section, the major difference is that
the network dropout is not accounted for in this simulation, since the designs proposed in
this Section do not deal with this particular problem. For instance, matrix C' is static.
The Monte Carlo simulation with 300 iterations was performed and the results are divided
into two classes the Robust, and Affine results. For each class, we provide the following
results, the mean and standard deviation of the residue signal obtained using Theorems

17, 18, and 19, and after that the evaluation function for the respective residues.

In Figs. 34a, 34b, 34c , we present some temporal simulations using all the FDF
designed using Theorem 17, 18, 19 in the Robust forms. Firstly, we present the residue
signal obtained. Observing Figs. 34a, 34b, and 34c, allow us to conclude that all three
cases presented a low standard deviation and similar residue signal. The result obtained
using Theorem 19 presented a small advantage when compared with the results obtained
with Theorems 17 and 18, since it provided the higher values. This information can be
verified after the evaluation process, which will be displayed next. In Figs. 35a, 35b and
35¢ we can see that the interval where the fault was detected was respectively k& = [121 132]
for Theorem 17, k = [134 146] for Theorem 18, and k£ = [119 126] for Theorem 19. We
can see that the evaluation function for Theorem 19 has a stepper curve and a shorter
detection range (7) showing that the FDF designed has a higher performance. As expected
the evaluation function when there is no fault is almost null in all cases. Now in Fig. 36 the

evaluation function for all the robust cases are presented. We assume that the threshold
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Figure 34: Mean and standard deviation for the residue signal (with and without fault)
obtained using the FDI in the robust form designed via Theorem 17 (blue curve), 18 (red
curve), and 19 (magenta curve).

is equal to TH = 10. Analyzing Fig.36 we can confirm that the better performance is
provided by Theorem 19. But observing all curves we can confirm that all the FDF in
the robust form designed using Theorem 17, 18, and 19 are viable solutions for the FDI
problem. Another important aspect is that the evaluation function when there is no fault
is almost null during the entire simulation, which is different from FDF counterparts in

Chapters 2, 3 that consider Markov Jumps.

In Figs. 37a, 37b, 37c , we present some temporal simulations using all the FDF
designed using Theorem 17, 18, 19 in the Affine forms. We present now the residue signal
gathered during the simulation. Note that in Fig.37a the higher value and the smaller
standard deviation, which provide a fast and at the same time reliable detection process.
On the other hand, results presented in Fig. 37b the level of reliability is lower since the
standard deviation is higher, which may lead to false alarms. This particularity observed
in the results in 37b, is expected due to the fact this design is based solely on H; norm,
which does not mitigate the exogenous disturbance. Figs. 38a, 38b, and 38c the detection
interval are respectively, k = [120 126], k = [137 156], and k = [122 125]. Once again, the
FDF designed using Theorem 19 provided a better performance, regarding the steepness

of the curve and the standard deviation. Besides these performance differences, all three
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Figure 36: The mean value of the evaluation function signal for three distinct cases, where
the blue curve represent the results using Theorem 17, the red curve represent the results
obtained via 18, the magenta curve represents the results through Theorem 19, and the

cyan line denotes the threshold TH.

approaches behave as inten

ded.

The evaluation function obtained using the Affine form are presented in Fig.39 As

expected the results obtained using Theorem 17 presented the better performance, but

closely followed by the results using Theorem 19. All the solutions are seen as viable

solutions for the FDI problem, however, the results for Theorem 18 are more prone to
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Figure 37: Mean and standard deviation for the residue signal (with and without fault)

obtained using the FDI in the affine form designed via Theorem 17 (blue curve), 18 (red
curve), and 19(magenta curve).

false alarms.

5.3 Gain Scheduled Fault Accommodation Formula-
tion

Consider the following discrete-time linear system, that depends on time-varying

parameters

(k4 1) = Agyx (k) + Bogyu(k) + Bogyh(k) + Jouyw (k) + Fo f(k),

(5.34)
y(k) = Copuyx(k) + Dogyw (k) + Doy [ (k),

where z(k) € R"™ u(k) € R™, w(k) € R™, and y(k) € R"™, are the system states,
control input, exogenous input, and the measurement signal, respectively. The fault signal
is represented by f(k) € R™. The fault accommodation control signal is denoted by
h(k) € R™. It is assumed that the signals w(k), f(k) € L2. As defined for the FDF in

the previous section, the index (k) represents the same bounded time-varying parameter.

Another particularity presented in the previous section that also remains true here, is

that the matrices that compose the system (5.34), are all in the affine form, as described
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indigo line denotes the threshold TH.

in (5.4).

The change of variable presented in Section 5.2.0.2 is also implemented here, since the

premise of the time-varying parameter 6(k) is not precisely known, and the assumption of

0(k) is contaminated by an additive disturbance o(k), where o is also a bounded parameter.

Assuming the nominal situation (without fault signal), system (5.34) is controlled by
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a state-feedback controller, as in (CAIGNY et al., 2010). Therefore, the nominal control

law is described as

u(k) = (Ko + i é(k)%) (k). (5.35)

J/

=Kow)

Since the problem we tackle in this chapter regards the occurrence of faults, the access of
the system states z(k) is unrealistic. Therefore, we assume that the states are estimated
using some type of adequate procedure. However, for the sake of simplicity, we are omitting

the notation to avoid overcrowding the equations.

The present chapter aims to provide a fault accommodation controller with the main
purpose of producing an auxiliary control signal whenever a fault occurs, or no input

otherwise. The fault compensation controller can be described by

n(k +1) = Agyn(k) + M uk) + By (k),
et 3 h(k) = €n(h) (5.36)

7](0) = To, é(O) = é()’

where 7(k) € R™ represents the FAC signal, u(k) and y(k) are, respectively, the control
signal from the regular controller and the measured signal from the system. Note that the
nominal controller (5.35), and the Fault Accommodation controller (5.36) depend both
only on the estimated LPV parameter é(k:) Therefore, the matrices that compose the FAC
(5.36) can be written using the affine form, as in (5.4), where the matrices affinely depend
on A(k). Thus, the system (5.34) depends on the parameter 6(k), while the state-feedback
controller (5.35) and FAC controller (5.36) depend on the parameter (k).

The augmented system with the state feedback control law (5.35) and with the
FAC (5.36) is given by

Z(k+1) = Ay T(k) + By @ (k)
Gang * § 0(k) = Cyiyam (k) + Dy @(k), (5.37)
1_:0 = To,

where z(k) = [2/(k) (k)] and w(k) = [w'(k) f'(k)]. To simplify the visualization of

the resulting LMIs, we omit the time-dependency in the time-varying parameters by
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considering hereafter 6 = 0(k), and 6 = A(k). The augmented matrices are as follows:

A L Ag—BeKé Bg@é B R JG F0
00 — EB@CQ*EUI@K@ Q‘é ? 00 — %éDQ %éDfG )
(5.38)
C@Z[U—Be%], D@Z[OFB].

The main goal of this chapter is to design a FAC as presented in (5.36) where the difference
o(k) = Fow) f (k) — By, h(k) is close to zero, meaning that the fault accommodation control
signal will suppress the fault signal. Therefore, the optimization problem for the H., norm

is described as

0]
1Gunello = sup A2z (5.30)

lalla£0,mess |02

where v > 0, as similarly described in (CAIGNY et al., 2010). For the H, norm case, the

optimization problem is given by

T
. 1 ,
| Gangll2 = hgl_)solipg {? ,;0 o(k) o(k;)} <A, (5.40)

where A > 0, T' is a positive integer that represents the time horizon, w(k) in (5.37) is a
standard white noise (Gaussian zero-mean in which the covariance matrix is equal to the
identity matrix), and & represents the expected value operator, see (CAIGNY et al., 2010)

for more details.

5.3.1 Theoretical Results

In this section, we present our main results on obtaining a gain-scheduled fault
accommodation controllers for LPV systems, having as performance indexes the H., and

H, norms.

It is essential to explain that the results will be presented in terms of the original
parameters 0(k) and 0(k) to feature that the FAC designed depends solely on the measured
parameter é(k) Afterwards, in order to solve the theorems presented in this section, it
is imperative the use of the change of variables in sub-section 5.2.0.2 and rewriting all
matrices in terms of the multi-simplex parameter & € A,, 2. As previously stated, to easy
the notation, we set § = 0(k), § = A(k), and 8 = 0(k + 1).
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5.3.1.1 H, Fault Accommodation Control Design

Firstly, we present a theorem for obtaining a gain-scheduled FAC using the H., norm.

Theorem 20. If there exist symmetric positive definite matrices Wi19, Wagg matrices Wigg,
Y., Y.,

160 Yoi Yé, Qy, Vi, Ty, Qﬁné with compatible dimensions, and a given scalar parameter

¢ € [—1 1] such that the following inequality

bt mh2 b3 N4 (Y, 5 Jo+Q3 Do) E(YgFo+925Dg9) 0
22 1123 T24 €(Y,;J9+925 Do) (Y3 Fo+Q5 Do) Bo

) 0
° o II3:3 34 Y1§J9+QéD9 YéFg-‘rQéng 0

° ° [ H4’4 Y2éJ9+QéD9 YéFg-‘rQéng 0 < 07 (541)
° . . . —~2I 0 0

° . . . . —2I 0

° . . . . . -1

with
M = —Whig + EHer(Y ;49 — Y,y Bo Ky + Q3Co — T3 K),
112 — Wi+ €0,V + (4~ KRV + Ctty— K,
I3 = (A — K} Bp)Y/; + CpQ — KT — €Yy,
I = (A = KGB3)Y;, + Co — KTy = €,
%% = —Woy5 + EHer(Y 5BoC, 5 + VA)

c/ §BoY1; + Vi — &Yy, c’ aBoY; + 1% — €Yy,
%% = —Wig — Her(Yyg), TP = —Wigp —Y; =Y, T = =Wy — Her(Yp),

holds for all 6.0, 53, under the boundaries |o;(k)| < d;, |0;(k)| < t;, then a suitable
linear parameter-varying FAC, as in (5.36), is given by 2[77 = Y 1V9, ’,B IQB,
M ;= Yé_lfé, and € 5, and (5.39) is satisfied.

Proof: Consider the augmented matrices in (5.37), and the following structure for Wy,

Wg, Yé

Wi1e W1 Wiig Wiz Y. Y;
Wo = [Wll?Z W;Z} ’ WB - |:W{2B W22B} ) Yé = [Y;Z yz] . (5.42)
From the above, the constraints (5.41) can be rewritten as
Q + Uy Y3V + VYU, <0, (5.43)
where
Wy 0 0 Cl,
0 -Ws 0 0 _ _
Q=1 o Oﬁ—721 b | Upg =145 ~1Bg0], V' =[er100]. (5.44)

-1
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Pre- and post-multiplying (5.43) by
(5.45)

and then applying the Schur complement we have that (5.41) implies the constraint in
(SOUZA; BARBOSA; NETO, 2006, Lemma 3), which yields (5.39), completing the proof.
[

5.3.1.2 H, Fault Accommodation Control Design

We present as follows a theorem that proposes a FAC having the Hy; norm as a

performance index.

Theorem 21. If there exist symmetric positive definite matrices Wiig, Wasg, My and
matrices Wiog, Xé, X9, Xop, Q5. Vi, Tg, Q:né with compatible dimensions, and a given

scalar parameter & such that the following inequality

bl gh2 gl3 phd £(X,5J0+95Dg) £(X5F9+Q,Dy0)
o T22 y23 24 E(X,5T9+Q5Dy) £(XFg+Q5Dg)
° e P33 P34 XléJg-i-QéDg XéFg—f—Qéng < O’ (546)
o o o Wyy—Her(X;) X,5Jo+Q;Dg  X;Fg+Q;Dj0
° . ° ° -1 0
° ° ° . . -1

with

Ut = Wi + EHer(X 549 — X3 BoKy + Q;Cy — T3 Ky),

U2 = Wigg + E(X 3 Bo€, 5 + Vg + (A — K4B,) X, + Oy — KjTY),
WS = (A — K;By) X, + CyQy — KjI — £X 5,

T = (A — K;Bp) X}, + CoQly — KTy — ¢X;,

U2 = — Wy + SHW(XMBGQ;@ + V), TP = q;éBéXié + Vé — &Xo5,
P2t — Qj;éBéXié + F;A — §Xé, U3 = W5 — Her(X ),

\113’4 = —leﬁ — Xé — X;év

My 0 By;€;0F,

D 0o | >0, (5.47)
. ° ° 10
° . . o [

Tr(Mg) > N\, (5.48)

holds for all 6, B, 6 under the boundaries |o;(k)| < d;, |0;(k)| < ti, then a suitable
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linear parameter-varying FAC as in (5.36), is given by Ay = Xé—lvé, B, = )v(é_lQé,
M, ;= )V(é’lFé, and € ; which satisfies (5.40).

Proof: Consider the augmented matrices in (5.37), and the following structure for 20y,
Wg, X;

Wiig W- Wi Wizg
Wy = [W};Z WZZ} ) wﬁ - |:W{26 WzQﬂ] ’
X5 X,
%= 3] (5.49
The inequality (5.46) can be rewritten as
Q + Uééxév + V’%éUgé < 0, (5.50)
where
Wy 0 0 Al ¢r
— -0 /A — - - |: :| . .
Q { 8 06_(}],U00 {B;;],V I (5.51)
Assume the null bases for U and V as
TA.0 _
Ny =[oso] M= [5'99). (5.52)

By pre- and post-multiplying (5.50) by ANy, and, using the Schur complement twice we
obtain the same constraints as presented in (CAIGNY et al., 2010, Theorem 2). The results
within (CAIGNY et al., 2010) show that (CAIGNY et al., 2010, Theorem 2) is equivalent
to (5.40). Concerning the constraint (5.48), we use the same variable substitution as
described at the start of the proof and applying the Schur complement twice we get that
the constraint (5.48) is equivalent to the second constraint in (CAIGNY et al., 2010,
Theorem 2). This concludes the proof. W

Coordinate Descent Algorithm

Note that the constraints in Theorem 20 and 21 are BMIs, due to the term Qné
multiplying other variables in the problems. To solve an optimization problem in the
context of BMI forms, we can use, for instance, the Coordinate Descent Algorithm (CDA),
as it was applied in (CARVALHO; OLIVEIRA; COSTA, 2020). The algorithm implemented
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to solve the constraints in this chapter is given as follows.

Algorithm 4: Coordinate Descent Algorithm.

1 Input: Kg, Y0 or A% tax, @
Output: A 5, B 5 M ;, & ;.

nd> b ~tnb>

N

3 Initialization:

4 While: V:tl__ﬂt < ¢ ort < tmay do:

5 Step 1: Solve the constraint in Theorem 20 or 21 considering €; as a
constant, to initialize the algorithm the first value of ¢, can be set as K which
can be obtained using the results in (MONTAGNER et al., 2005). Obtain the
values of Y, for the Theorem 20 or X, for the Theorem 21.

6 Step 2: Solve the constraint in Theorem 20 or 21 this time using the values
of Y}; or X, obtained in Step 1 and €, ; as a variable. Obtain the value of AL

for Theorem 20 or A1 Theorem 21.

Notice that the inputs Kg represent the starting value of € 5, 7% or A% are the input
to calculate the stop criteria at the first iteration, ¢ is the stop criteria, and ¢,,.x is the

maximum number of iterations.

5.3.2 Simulations Results

To illustrate the viability of the proposed approaches, we apply our method to a simple
quarter vehicle model system, (NGUYEN; SENAME; DUGARD, 2015). The states vector
for the linearized model is z(k) is obtained from the discretization of x(t) = [25 Zs Zus Zus),
which represents the displacement for the sprung mass, its variation, the displacement for

the mass unsprung, and its variation. The matrices that compose the discrete-time system

are
0.99 0.01 0.00 0.00 0.99 0.00 0.00 0.00
A —0.23 0.97 0.05 0.02 A, — | —0.190.98 0.04 0.01
1= 0.01 000 0.98 0.00 | > 2 =] 0.00 0.00 0.98 0.00 | >
1.75 0.17 —14.42 0.81 1.75 0.17 —14.42 0.81
—0.00 —0.00 00082 —0.00
_ | —0.017 _ | —0.018 _ | —o0. _ | —0.018
Bl_[o.oow]v BQ_[O.OO]’ J‘[o.oo}’F_[o.oo]’
0.13 0.14 0.014 0.14
_ 11000 _ [—0.01 _ 70 |6(k)|<t;=0.05,
C*[O(Jlo]a D= [ 0.10 ]’ Df*[oL |o(k)|<d;=0.005

from where we can see that the time-varying parameter (k) affects the dynamical behavior
of the system in A and B, forming a polytope with 2 vertices. In this way, matrices Ay, By,
and Ay, B, represent the vertices of such polytope. The other matrices are not affected
by the time-varying parameter, therefore, their degree of dependence on the parameter
0(k) is 0. Note that, matrix F' has the same structure of the control input matrix B,

for the purpose of representing an abnormal input. Since in this example we are not
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considering the presence of any sensor fault, we have that, D; is null. We assume that the
nominal gain-scheduled state-feedback controllers are obtained using the method described
in (MONTAGNER et al., 2005, Lemma 2), where the authors search for such controllers
in the context of LPV systems without faults. The resulted controller for the system of

this example is

_ 4
K, = [ 01201 —0.2372 6.3420 04433 ] x 107,

_ B 4
Ko, = [0-3094 00391 —1.5798 0.0369 | X 107

The range of the disturbance o (k) is defined a priori, and we arbitrarily set its range in
lo (k)| < d; = 0.005. The value of A(k) is obtained in a practical situation by implementing
a variate of the filter, such as Recursive Least Square (RLS) algorithm (PAULO, 2013;
SAYED, 2011).

In the first part of this example, we apply separately Theorems 20 and 21 searching,
respectively, for the upper bounds of the H,, and Hs norms (v and A). For doing so, we
perform a search in the scalar £ in the range |—0.9 0.9 with 10 steps with the same length.
A discussion about the ¢ range is made in (ROSA; MORAIS; OLIVEIRA, 2018).

Additionally, we consider the affine and robust structures for the FDF, that is, one
structure that depends on the estimated parameter with degree 1 and another with degree
0. The upper bounds v and A obtained with the aforementioned considerations are shown
in Fig. 40. From this figure, note that the scalar search was more effective for the Robust

Upper bound behavior
T T T

3 T T T T T

Robust
2r Affine |
10 4
0

-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1

3 T T T T T T T T T
ZM
| |
0

I I I I I I I I I
-1 -0.8 -06 -04 -02 g 0.2 04 06 08 1

Theorem 5.4 (7)

Theorem 5.5 (\)

Figure 40: Upper bound behavior for Theorems 20 (Ho, norm) and 21 (Hs norm) when
scalar ¢ vary for the Robust, and Affine form.

form than the results obtained using the Affine form. This discrepancy was expected since
the Robust form is a more restrict optimization problem, hence, performing the scalar
search provides a higher impact on the results for the Robust form. Summing up, the
results presented in Fig. 40, shows that the using Affine form in this example provides

better results since the upper bound values obtained for both H., and Hs norms are in
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general, lower than the values obtained for the Robust form. Therefore, for the temporal
simulations, we analyze the results obtained using solely the affine form, which we highlight

as follows.

5.3.2.1 Monte Carlo Simulation

Here we implement a Monte Carlos Simulation since the parameter é(k’) has some

imprecision, meaning it is not completely deterministic.

The FAC in the affine form obtained applying Theorem 20 with £ = —0.6 is given by

r0.97 031 0.10 0.02 0.31 0.03
A®  — | =109 —0.03 171 0.21} B® — [0.95 0.07]
n =1 009 031 053 006 |°> n = 031 003
affo L 1.59 1.04 —24.05 0.19 affo 0.73 0.49

r—0.13 3.84 7.10 0.14 3.65 0.36
A% — | —2464 29.02 153.36 —2.17 B — | 3179 317
Noff, | 321 —535 —19.71 013 | Mafr, | —6.04 —0.60 | -
1 L —92.32 453.01 596.26 26.82 1 463.43 46.33
r 0.00 0.00
M>®  — | 002 o _ | 002
Taffo [ A1) T Maff | %]
C® = [-2.09-0.08 854 —0.65] 10%
Maffo [ J10%,
C® = [-0.87-0.105.59—0.19] 10%.
nafﬁ [ ]

The affine filter obtained with Theorem 21 with £ = —0.6 is given by

r0.99 0.00 —0.00 0.00 —0.01 0.01
2 _ | =047 211 —077 0.15} B2 _ [ 118 00031]
n = | 002 027 08L 003 |° n - 26 —0.01 | »
affo L 3.04 —24.91 —30.92 —2.16 affo —25.21 —0.07
- 104 041 —0.13 0.05
A2 _ | 978 10758 —32.81 13.87
Moff, | —0:27 —3.46 179 —045 |>
1 | _79.73 —846.70 225.81 —109.05
- 041  —0.05 ~0.00
B2 _ | 10411 —11.68} M2 _ [—0.03}
n —377 039 |> n 0.01 |
affi | “g07.37 o151 affo 0.19
2 [ 00081 2 3
M = |y C = [—0.40 —0.04 1.27 —1.02] 10
Taff, L 0%%0 ’ Taffo [ ] ’
C2  =[-272 244752 —295]10°.
Maff1 [ )

For this example, we consider that the fault signal f(k) represents an oil leak, which
reduces the damping capability of the system. Consider that the leak started at ¢t = 2.5s,
which reduces the damping capability by 20%, and then it gradually lowers until it reaches
a reduction of 50%.

We show in Figs. 41 and 42, the respectively results regarding the output and control
signals. From Fig.41, it can be seen that the control design based on the Affine form
provides a smoother behavior for all three situations of faults. This particular behavior

happens mainly due to the lower level of conservatism of the Affine form, and also due
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to the parameter variation throughout all the simulation time. Additionally, both FAC
approaches provide an accommodation behavior as intended. However, when we compare
the FAC approaches with that of the nominal controller, the FAC approaches yield a
more aggressive control signal, which is an expected behavior. In summary, the proposed
fault accommodation control approaches provided a suitable solution to mitigate the fault

signal, and at the same time do not interfere with the controller when there is no fault.

%107
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Figure 41: Mean of the states signal obtained using FAC designed in the affine via
Theorems 20 (black curve) and 21 (green curve), where the system is subjected to a fault.

—FAC Theorem 5.4
FAC Theorem 5.5[]
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Figure 42: Mean of the control signal obtained using FAC designed in the affine via
Theorems 20 (black curve) and 21 (green curve), where the system is subjected to a fault.

5.4 Concluding remarks

In this chapter, we presented the theoretical results obtained for the FDF and FAC using
the LPV systems assuming that the parameter is not accessible. Hence, the assumption of
the imprecision is incorporated during the FDF and FAC process. We also provided an
illustrative example, and the results obtained allow us to state that the proposed methods

are viable.
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6 CONCLUSIONS

We summarize in a list the main contributions of this thesis and we point out possible

topics that can be tackled in the near future based on the results herein.

6.1 Contribution

The main focus of this thesis was the development of procedures to design Fault
Detection Filters to be implemented in an FDI scheme, and Fault Accommodation

Controller to mitigate the effect of faults on ongoing processes.

e In Chapter 2 we addressed the FDF and FAC design under the assumption that
the network that is responsible to transmit the information packet is semi-reliable.
To model such behavior, we proposed that the FDF and FAC design was made
under the Markovian Jump Linear Systems framework, which allow us to use
Markov chains to model the network behavior and its particularities. The main
contributions in Chapter 2 were the design of FDF using H..-norm, Hs-norm,
H_ index, Mixed Hy/Hoo, and Mixed H_ /Ho, under the MJLS framework (CAR-
VALHO; OLIVEIRA; COSTA, 2018b; CARVALHO; OLIVEIRA; COSTA, 2018a;
CARVALHO; OLIVEIRA; COSTA, 2018; CARVALHO et al., May 2021). For the
contributions regarding the FAC problem, we proposed the H., FAC design for
MJLS (CARVALHO et al., 2020b).

e In Chapter 3, we kept tackling the FDF and FAC problem from the MJLS point of
view but adding the assumption that the network mode is not instantly accessible.
This new assumption is important because the idea of the instantaneous access to
the network is not realistic from a practical standpoint. To deal with this issue
we proposed the use of the MJLS approach which uses Hidden Markov modes to
model this inaccessibility. The contributions in Chapter 3, were divided into three

sections on FDF, SFDC, and FAC. The results referring to the FDF section were the
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design using Ho.-norm, He-norm, and the Mixed Hs/Ho (CARVALHO; OLIVEIRA;
COSTA, 2018c; CARVALHO; OLIVEIRA; COSTA, 2020). The novelty regarding
SFDC part is the SFDC design using H.,-norm, Ho-norm, and Mixed Ha/Hoo
(CARVALHO; OLIVEIRA; COSTA, 2020). The results for the FAC section were
the FAC design using H.-norm, He-norm, and Mixed Hs/Ho (CARVALHO et al.,
2020a).

e In Chapter 4 we focus our effort on providing an FDF and FAC design where the
network behavior was considered and adding the possibility to consider a Lur’e type
non-linearity that occurs in the system. This proposition is of utmost importance
since all systems are non-linear on some extent, and on some occasion, the use
of linearization processes may not provide an adequate solution. Therefore, it
is important to put into account those non-linear behaviors to provide a more
trustworthy solution for the FDF and FAC designs. The contribution of Chapter 4 was
the design of FDF for Lur’e MJS using H,.-norm (CARVALHO; JAYAWARDHANA,;
COSTA, 2021).

e In Chapter 5 we changed the pace and tackled the FDF and FAC design problem
from another point of view, which was achieved using the Linear Parameter Varying
framework. Following a parallel idea from Chapter 3, we assumed that the LPV
parameter was not directly accessible. Hence, the parameter was estimated, but we
assume that the estimated parameter was not precise, meaning that the parameter
was contaminated by additive noise. To add the imprecision in the parameter and
still guarantee the performance, we proposed the use of the Multi-simplex technique
to model an additive noise in the parameter. From the practical point of view, this
idea is interesting, since it allows us to implement less sophisticated identification
processes to gather the LPV parameter in real-time. The contribution in Chapter 5
were the design of Gain-Scheduled FDF and FAC for LPV systems using the H..-
norm, Ho-norm, and Mixed Hs/Hoo. The FDF was submitted at IEEE ACCESS
and the results regarding the FAC are presented in (CARVALHO et al., 2021a).

6.2 Further Research

There are many routes that we could take after the results proposed in this thesis.

Some are closer to the results presented, and others are more exciting and challenging.

e A more direct way to follow the results herein would be to design an FDF and
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FAC, under the assumption that network mode is not directly accessible, and also
considers that the system presents a non-linear behavior. This would be a direct

association of Chapters 3, 4.

One increment that may be possible is to derive the H_ index LMI constraint for
the MJLS under the assumption that the parameter is not directly accessible. And
them design the FDF or FAC under these circumstances.

Another possible follow-up would be the assumption that the Markov chain is
not homogeneous and redraw the results presented in Chapter 2. Removing the
assumption that the Markov chain is homogeneous imposes some new challenges.
A possible way to deal with these new issues would be to use the framework from
Chapter 2, and use the techniques from Chapter 5 to model the transition matrix

with time-varying parameters. This approach is allowed under the assumptions made
presented in (ABERKANE, 2012).

Another possible path would be the transition from the model-based approach to
the data-driven strategy. That would be interesting due to the fact that in some
circumstances the data-driven design may be more advantageous when compared
with the model-based. Those discrepancies were discussed in the first chapter
of this dissertation. This could be achieved by using the approach presented in
(NORTMANN; MYLVAGANAM, 2020). (NORTMANN; MYLVAGANAM, 2020)
provided an approach to design LPV controller using a data-driven strategy, which
can be extended to FDF and FAC design.
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APPENDIX A - NUMERICAL
EXAMPLES MODELING
AND BASIC RESULT'S

Here, we briefly explain and provide the necessary references of the models employed

in the simulations throughout this thesis.

A.1 Coupled tank model

The model using in the majority of the examples in the thesis was the coupled
tank model, since it is a good benchmark model to test the viability of the approaches,
(Feedback Instruments Ltd., 2013). We borrowed the numerical values from the specific
educational system. A diagram that represents the structure of the system is presented

below, We can describe the dynamic of this system by writing an equation that denotes

uy (k) us(k)

| Y B

H;

H,
Tank 1 Tank 2 —

Figure 43: Coupled tank model.

the sum of inputs and output flows on each tank. The height of each tank is determined

by the sum of flows which rules the volume on each tank.

p l
3 Qo) = 3 @ (1) = 4. 750 (A1)
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where A, represents the area of tanks cross section. The flow output can be written as

Qoutj (t) = avy QQH(t) (AQ)

where « represent the cross section of the output pipe or the interconnection pipe. Hence,

the non-linear system that models the dynamics is

l

> Q) ~ 2=(3 ) V29D (A3)

i=1

OH(t) 1
ot A,

j=1

Obtaining the LTI model using Taylor series, considering that the non-linear system is at

an equilibrium point. Assuming a specific value of Hy and );,,, allow us to write

OH (1)

o = YH (1) + ZQin(t) (A.4)
——N—
H(t) — Ho 1
H(t) —aq
- Ht - H D n - ino A5
ot Acsm( () 0)+ Acs (Q (t) Q ) ( )
ﬁ(t) = an(t)

X =

Now considering both tanks, one can write the dynamic equations as

OI (1) QL ( M2ﬂ1 ay/ V() - H2D) "

ot A Acs
OH(1) QL) 29H2 \/¢2g H(t) — H*(1))
ot A2 A (A7)

Considering the state vector as H(t) = [H'(t) H?(t)]. The LTI dynamic matrix A is

acquired as

_ ag
1 \/QQHO \/Qng HZ \/2gHéng
A:A ag _ ag . (A.9)
1_12 2 1_52
cs \/QqH —H2 \/ng0 \/QQHO—HO

Now, the parameter values from the educational kit (Feedback Instruments Ltd., 2013)

are presented in Table 1.

For the last step, we used a zero order holder with sampling time of 0.05s. The discrete

time domain state space model obtained is

A= [0 0008 (A.10)
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g m/s? Gravitational acceleration 9.8
Ay | m? Tank cross section area 0.40

« m? Interconnection pipe cross section area 0.01
H} | m? | height initial condition for the first tank | 0.16
HZ | m? | height initial condition for the second tank | 0.22

Table 1: Numerical parameter of the coupled tank model.
A.2 Mass-Spring System

For the approaches that consider Markov Jump Lur’e systems a more appropriate
example is the mass-spring system from (KHALIL, 2002). A representation of this model

is given by Fig. 44 We can write the equation that represents the dynamic of the system

Figure 44: Mass-Spring model, (KHALIL, 2002).

as

i (t) + %:&(t) + %x(t) + %“29;3(15) - %w(t). (A.11)

The parameter descriptions and values are presented in table 2.

m kg Block Mass 12
¢ | Ns/m | Dumper viscous friction coefficient | 0.1
E | N/m Spring elasticity coefficient 0.2

ka? Spring non-linear elasticity coefficient | 0.9

Table 2: Numerical parameter of the Spring-Mass model.

We can rewrite the equation in the space-state form as,

a=[2% L], 6=[u] (A12)

m m m

Using the zero-order holder with a sampling time equal to 5ms, the matrices that
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compose the state space system in the discrete time domain are given by,
A= [T0oteo -oors1] . B=[%81]. G =[], (A.13)

This particular model was used only in the examples in Chapter 4.

A.3 Quarter vehicle

We here use as a numerical example a simple quarter vehicle extracted from (NGUYEN;
SENAME; DUGARD, 2015) , which is represents a quarter vehicle body using a sprung
mass(ms), the wheel and tire are denoted by the unsprung mass (m,s). Those components
are connected by a spring with a stiffness coefficient k,, and a semi-active damper. The
coefficient k; represents the tire stiffness. The states vector for the linearized model is

m(a)
1+ Semi-
ks Active
Damper

///////////////////////////////////////
///////////////////////////////////////

Figure 45: Quarter vehicle model.

x(k) = [zs 25 Zus Zus), Which represent the displacement for the sprung mass, its variation,
the displacement for the mass unsprung, and its variation. Therefore, the space-state
matrices are,

0 1 0 0 0
_ ks co ko co 0
A, = ms(ak)  ms(ar)  ms(ar)  ms(ak) . J= ,
0 0 0 1 0
ks _Co __kstki __co_ ks
Mays Mus Mus Mus Mauys
r /
0 0 1 0
1 1
B, = T ms(ak) F = T ms(ar) ,C = 0 0 ,
0 0 0 1
- . 0 0
Mays Mays

Dq = 0.01>*' E2 = 0.01>*', D; =0, a(k) = [-0.050.05].

where m,s = 37.5 denotes the unsprung mass, ks = 29500 represents the stiffness of

the semi-damper, k; = 210000 denotes the stiffness of the tires, and ¢y = 2850 damping



156

coefficient for the semi-damper. The Linear parameter varying in this model will be m,
the sprung mass, which vary linearly between mg = [315 285]. This variation represents a

fast decrease in the sprung mass of the vehicle. The discretization time is 7" = 0.025s.

A.4 Network Packet Loss Modeling

As explained throughout the thesis, one of the main advantages provided by the MJLS
framework is the capability of modeling the network packet loss in the network. This
procedure is made by setting the transition probability matrix with appropriate structure
and values that represent the network behavior. The first step in the network packet loss
modeling is the definition of the transition matrix. Firstly, we need to define the amount
modes of the system, to simplify the explanation here, we will consider only two modes a
nominal mode, and the packet loss mode, by consequence, the transition matrix will be a
2 x 2 matrix. Another aspect during the definition of the transition matrix is the type of
Markov chain that will be implemented. There are plenty of Markov chains that can be
used to model a network, each one has its advantages and disadvantages, a few examples
Bernoulli model (ROSS, 2014), Gilbert-Elliot model (GILBERT, 1960). A Bernoulli MC
is the simplest case of an MC, using this type of MC to model a network will ignore some
key behaviors in a network since it only describes a series of Bernoulli trials. To describe
some additional behaviors, as the burst communication loss, we can use the Gilbert-Eliot
model (GILBERT, 1960). The other part of this procedure is to describe where the packet

1-p

Network " OK" Network " Droped”

L=p

Figure 46: Diagram of the Markov chain for the Gilbert-Eliot model, for the Bernoulli
model the variables p and [ are equal.

loss occurs on the control loop, that is, in the communication between controller and
actuator, or between the controller and sensor, or even both cases. What determines the
packet loss placement in the control loop is the matrices that switches according to the

Markov chain. To model the packet loss between controller and sensor, the matrices that
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Actuator > Plant e Sensor

¢4 (Control

Figure 47: Control loop example.

should switch are C;, D;. For the packet loss in the communication between actuator and
controller, the matrix is B;. Regarding the case where we consider all the packet losses,
all matrices C;, D;, and B; should switch according to the Markov chain. For the case
where all packet losses are considered the transition probability matrix implemented is a
Kronecker product of the transition probability matrix from the other two cases, leading

to an increased number of modes in the resulting Markov chain.

A.5 Schur Complement

Lemma 11. The LMI, with the symmetric matrices X e Z
X550 (A14)

holds if and only if the following statements are true
e {Z7>0, X>Y'Z7'YV}
e {(X>0, Z>YX YV}

Proof: For the rough sketch of the proof for the necessity, we assume that the statements

above are true, hence

Q=[¥"Y7Z"Vo]>0 (A.15)

defining the non-singular matrix 7" as
T=[1v7"] (A.16)
by consequence we get that TQT’ > 0, since () > 0. This implies that

TQT =[XY] >0 (A.17)
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A detailed discussion about the proof and applications can be obtained in (BOYD;
VANDENBERGHE, 2004).

A.6 Bounded Real Lemma

Suppose system

x(k+1) = Az(k) + Bw(k),
y(k) = Cx(k) + Dw(k),

(A.18)

where w(k) € R™ represents the exogenous input, and y(k) € R? is the measured output.

We can get the H., norm, considering the Lyapunov function v(k) = z(k) Px(k), and

imposing
2(k+1)Px(k+ 1) — 2(k)Pz(k) + y(k)y(k) — Yw(k)w(k) < 0 (A.19)
a(k) ] [ APA-P+C" ' ' a(k
[w((k)):| [ BP'PAZS’CCC B’SBP-Q—BDJ’;giQI} [w((k)):| <0 (A.20)

Matrix A is asymptotically stable and ||G||» < 7 if and only if there exists a symmetric
matrix P > 0 such that

A'PA-P4C'C  A'PB4+C'D
[ B'PALD'C B’PB+D’D7721] <0. (A.21)

A.7 Finsler Lemma

Considering w € R", £ € R™" and B € R™" with the rank (B) < n and B is a

base for a null space, that it BB, = 0. Therefore, the following statements are equivalent:

wLw < 0,YVw#0: Bw=0

B,LB, <0

dJueR: L—uB'B<0

X eR™™ . L+ XB+BX' <0

The proof can be seen in (BOYD et al., 1994; OLIVEIRA; SKELTON, 2001).



