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RESUMO

Alves, J. A. V. Safety-Critical Control Methods for Vehicle Lateral Stability.
2023. 186p. Tese (Doutorado em Ciências) – Escola Politécnica, Universidade de São
Paulo, São Paulo, 2023.

Aplicamos controle de segurança crítica a controle eletrônico de estabilidade, com
foco em estabilidade lateral. As vantagens inerentes de controle eletrônico de estabilidade
de veículos automotores e as restrições intrínsecas de segurança presentes em sistemas de
emergência justificam a proposta. Os fundamentos de dinâmica e estabilidade veicular são
apresentados, subdivididos em dinâmica de pneus, corpo e chassi, e controle. Segue uma
introdução à teoria de funções de controle de barreira, apresentando suas propriedades,
vantagens, e limitações. Inicialmente, aprimoramos e corrigimos métodos de geração de
regiões de estabilidade lateral. Após, estendemos teoria de controle de segurança crítica
baseada em funções de barreira de controle para acomodar controle eletrônico de es-
tabilidade usando esterçamento ativo e frenagem diferencial. Por fim, investigamos a
viabilidade de funções de barreira de controle para estabilidade veicular após as referidas
extensões, concluindo que os requisitos são satisfeitos. Validamos as propostas através de
simulação usando modelos cada vez mais complexos, desde modelos de segunda ordem
linearizados a softwares comerciais de simulação veicular.
Palavras-chave: Dinâmica veicular. Controle de estabilidade veicular. Controle eletrônico
de estabilidade. Controle de estabilidade de guinada. Controle de segurança crítica.
Funções de barreira de controle.



ABSTRACT

Alves, J. A. V. Safety-Critical Control Methods for Vehicle Lateral Stability.
2023. 186p. Thesis (Doctor in Science) – Escola Politécnica, Universidade de São Paulo,
São Paulo, 2023.

We apply safety-critical control to electronic stability control, focusing on lateral sta-
bility. The inherent advantages of electronic stability control of road vehicles and the
intrinsic safety restrictions that emergency systems such as electronic stability control
require to maintain or reestablish vehicle control justify the proposal. The theoretical
basis of vehicle dynamics and stability are presented: tire dynamics, body and chassis,
and control. An introduction to control barrier function theory follows, with comments
on its properties, advantages, and shortcomings. First, we improve and correct stability
region generation methods. Next, we validate the steering-angle-dependent regions with
electronic stability control systems with active steering, extending the safety-critical con-
trol theory based on control barrier functions. We then propose an electronic stability
control system with differential braking as the input method, which demands another ex-
tension of the control barrier function theory. An inquiry on the viability of control barrier
functions to vehicle stability finishes the text, where we show that the proposed control
method should satisfy the control objectives. The results were validated through simula-
tion using increasingly more complex models, from 2nd-order linearized lateral models to
commercial vehicle simulation software.
Keywords: Vehicle dynamics. Vehicle stability control. Electronic stability control. Yaw
stability control. Safety-critical control. Control barrier functions.
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t time
tM pneumatic trail
u input signal, control input
uc control system input signal
ue disturbance or external input signal
u input vector, control vector
uc control system input vector
ue external input vector
uf control-dependent extended input vector
uref reference input vector
ubi bristle deformation in the direction of the Oi axis
U set of possible input vectors
vgx vehicle longitudinal speed
vgy vehicle lateral speed
vij wheel velocity
vr wheel nominal longitudinal speed
vui bristle deformation speed in the direction of the Oi axis
vx wheel actual longitudinal speed
vxrr wheel longitudinal speed at zero acceleration
vy wheel lateral speed
V Lyapunov function, control Lyapunov function
W normal force
x magic formula argument (κ, α, tan(α))
x state vector



xeq equilibrium point
xm magic formula argument related to the maximum value D
xs slip distance
y state-space output vector
ya high slip magic formula asymptotic value
α tire slip angle
ᾱ normalized tire slip angle
β vehicle side-slip angle
γ camber angle, Lyapunov function class-κ function
δ steering angle
δd steering angle from the driver
δdmax sine with dwell maximum steering angle
δl front-left wheel steering angle
δr front-right wheel steering angle
δs quadratic problem slack variable
δu AFS steering angle intervention
ǫi small quantity to avoid division-by-zero singularities
ζ barrier function class-κ function
ηb(x) input-output linearized system state vector
θs slope angle, road grade
θx theoretical longitudinal slip coefficient
θy theoretical lateral slip coefficient
κ longitudinal slip, slip ratio
κ̄ normalized slip ratio
λ no-slip contact patch ratio, system matrix eigenvalue
λi magic formula scaling factor
µ tire-road friction coefficient
µx tire-road friction coefficient in the longitudinal direction
µy tire-road friction coefficient in the lateral direction
µi derivative of the control barrier function of rth order
σ characteristic polynomial
σx theoretical longitudinal slip
σy theoretical lateral slip
τGz

net moments around the Oz axis
ψ vehicle yaw angle
ψ̇d desired yaw rate
ψ̇max maximum yaw rate
ω wheel angular speed
ωrr wheel angular speed at zero acceleration
ωu time derivative of the input signal
ωy vehicle pitch rate
ΩC region of attraction
Ωu set of admissible input signal time derivatives
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1 INTRODUCTION

This chapter presents the justification of this work and a brief description of the proposal

itself and the employed methodology. The justification is divided into contextualization,

that Section 1.1 presents, emphasizing road safety, and a specific tool for improving vehicle

safety: electronic stability control, presented in Section 1.2.

1.1 Contextualization

Automobiles have been the most flexible personal mean of transport for over a cen-

tury (GILLESPIE, 1992). Most sources agree that there are over 1.2 billion vehicles

in the world today (STATISTA, 2020; CHESTERTON, 2018). By July 2019, there were

106 289 700 registered vehicles in Brazil (BRASIL, Ministério da Infraestrutura, 2020).

Among these, 57 305 419 were automobiles and 1052 212 were utility vehicles, such as

pick-up trucks or vans. By 2020, the total was 107 984 371 vehicles (IBGE, 2020) (see

Figure 1). Hence, it can be said that road vehicles are a part of our lives, e.g., Figure 2.
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Figure 1: Vehicle fleet in Brazil.
SOURCE: (IBGE, 2020).
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Figure 2: Heavy traffic at Pinheiros River expressway.
SOURCE: Marcos Santos/USP Imagens1.

The widespread convenience of automobiles does not come without a cost, however.

In 2016, 1.35 million people lost their lives in traffic accidents, being the 8th most common

way of dying and the chief cause for people between 5 and 29 years old (LACERDA, 2019;

WHO, 2018a, 2018b). In Brazil, it was the 10th leading cause of death in 2019, with 40 721

casualties. The country has the third most violent traffic in the world, only behind India

and China, whose population is, of course, vastly superior (see Figure 3). The situation

in other underdeveloped countries is similar: road accidents are the 7th cause of death

in low-income countries, and 10th in both lower-middle-income and upper-middle-income

countries (WHO, 2018b).

SOURCE: USP Imagens2.
(a) Severe rear collision.

SOURCE: USP Imagens3.
(b) Accident with a vehicle rollover.

Figure 3: Accidents in highways.

1Available at <https://imagens.usp.br/editorias/pessoas-categorias/transito-2/attachment/
28112013transitofotomarcossantos016/>
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Thus, ways of mitigating the loss of lives due to vehicle accidents are essential. Several

methods of endeavoring this objective have already been attempted, from road conserva-

tion strategies to alcohol consumption control (WHO, 2018a). Legislation and technical

advances have been responsible for improving road safety in the past. Most countries

have legislation about speeding, driving under the influence of alcohol and other drugs,

and using protective devices such as seatbelts and helmets. As for technical advances,

motor vehicle manufacturers have provided cars with better energy-absorbing structures,

shatter-resistant glass windshields, and airbags, called passive safety features; and auto-

matic cruise control, lane keeping assist, anti-lock braking systems, and stability control

systems, which are active safety systems (JARAŠŨNIENE; JAKUBAUSKAS, 2007).

1.2 Electronic stability control as a safety system

Traffic accidents that feature vehicle rollovers (e.g., Figure 3b) are among the ones with

the highest death rates. According to the U.S. Department of Transportation, around

35 % of fatal accidents in that country in 2010 were a result of a mere 2.1 % of the total

of crashes, precisely the ones which featured a vehicle rollover (U.S. DEPARTMENT

OF TRANSPORTATION, 2020b). This happens because the upper part of the vehicle is

usually more fragile than its chassis and main body. Moreover, when the vehicle overturns,

occupants’ vital parts such as heads, necks, and torsos are subject to additional impact

hazards that, in turn, are increased by multiple rollovers or any security item failure. As

a result, this type of accident must be avoided at all costs.

The lethality of rollover accidents is not necessarily related to a previous accident

that may have caused it. In point of fact, most cases of vehicle overturns only involve

the driver, the vehicle, and the terrain, that is to say, they are not a result of previous

crashes with other vehicles. They are often caused by alcohol consumption and speeding,

and are more common on 2-way roads at higher speeds and with vehicles with a higher

center of mass (U.S. DEPARTMENT OF TRANSPORTATION, 2020a).

The most technically advanced strategy to reduce the number of accidents that is being

developed throughout the last decades is to remove the human driver altogether, using

fully automated cars instead (JOCHEM; POMERLEAU; THORPE, 1995; BUEHLER;

IAGNEMMA; SINGH, 2008a, 2008b; IAGNEMMA; BUEHLER, 2006a, 2006b; GUIZZO,

2Available at <https://imagens.usp.br/editorias/lugares-categorias/estradas/attachment/
estrada004/>

3Available at <https://imagens.usp.br/editorias/lugares-categorias/estradas/attachment/
estrada001/>
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2011; THRUN; BURGARD; FOX, 2005). Less daring strategies aim to supply the human

driver with extra tools in order to maneuver the automobiles or other vehicles, such as

heads-up displays (HUDs) presenting speed limit, current speed, pedestrians, cyclists,

and any other important information on the windshield so that the human does not need

to stop watching the road to access them. Other tools include adaptive cruise speed

control, to avoid collision with vehicles ahead of the driver; or electronic stability control

(ESC), so as to avoid roll-overs and slippages when the vehicle is maneuvered in harsh

conditions, especially those with a higher center of mass. Such tools are collectively known

as advanced driver-assistance systems (ADAS), and many of those are also part of what is

necessary to implement a self-driving car, except the necessity of formatting information

in a way a human operator can understand it.

The tool that is most closely related to reducing rollover accidents is ESC, and its effec-

tiveness in preventing vehicle accidents has been demonstrated by several studies (ERKE,

2008; PAPELIS; WATSON; BROWN, 2010; HØYE, 2011), being that for sport utility ve-

hicles (SUVs) this reduction may be extreme (GREEN; WOODROOFFE, 2006). This can

be explained by both the avoidance of loss of vehicle control (LOC), which often leads

to overcorrection by the driver, and the reduced chance of road departures, which can

cause tripped rollovers, the most common type of such accidents (U.S. DEPARTMENT

OF TRANSPORTATION, 2020c).

The first ESC systems prevented the driver from losing control of the vehicle by selec-

tively braking individual wheels when it is about to spin out (more on that in Chapter 3).

Applying individual braking pressures on each wheel’s brake actuator is known as dif-

ferential braking. This method is still the most common in the industry. An alternative

technique—which, nonetheless, can be used simultaneously with differential braking—is

active steering, which consists of interfering with the steering system and preventing the

steerable wheels from excessively turning in case of overcorrection by the driver due to an

emergency.

The primary objectives of this work are to develop safety-critical electronic stability

control systems for low center-of-mass automobiles, using the steering and braking systems

as input methods. As a consequence of the low center of mass, the respective research

endeavor dealt only with yaw control, i.e., we have investigated lateral stability, but not

roll stability. This is known as yaw stability control (YSC).

There are two possible approaches to ESC: preventing the vehicle from losing stability

and recovering stability. To apply the first approach, we studied lateral stability regions,
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with the ulterior objective of preventing the vehicle state from leaving them. We identified

shortcomings in the literature, providing the contributions presented in Chapter 5 and

published in (ALVES; CHINELATO; ANGELICO, 2022).

The stability regions from Chapter 5 have been used to design ESC systems with

safety-critical control methods that consider those regions as safe sets. Such sets are

dependent on the steering wheel angle. If the driver moves the steering wheel fast enough,

it becomes impossible to keep the state in the aforementioned safe set. In order to

accomplish that, it was necessary to extend the current safety-critical control theory (see

Chapter 4 for a brief survey on the subject) and to use the steering system as the control

input, i.e., active steering. The proposed methods are presented in Chapter 6.

Our second set of control contributions considers the more usual ESC system, which

employs differential braking to generate a yaw moment on the vehicle. The driver can

always cause vehicle instability if the control system does not interfere with the steering

system. We propose a strategy to either maintain or recover stability in the face of two

system inputs: the steering angle, provided by the driver, and the brake pressures, given

by the ESC system. We again provided extensions to safety-critical control theory, this

time to accommodate either known disturbances or external control inputs—they are

indistinguishable from the point of view of the control system. The methodology for

validating the closed-loop systems is presented in Section 1.3. Section 1.4 summarizes the

chapter.

1.3 Methodology

Our first contribution is improving lateral stability region generation for road vehicles.

We obtain higher-definition regions by using binary lattices and avoiding errors when

analyzing stability conditions. In particular, we argue that such regions can be used to

design electronic stability control systems. This is validated by properly implementing

such systems using conservative stability regions to design an active steering ESC system.

At the same time, this text also proposes safety-critical control based on control

barrier functions (CBFs) as a viable control method for ESC systems. Since the afore-

mentioned closed-loop systems use safety-critical control, it is clear that the respective

implementations validate that claim. The claim is further validated by alternative ESC

system implementations that used differential braking in place of active steering.

This text proposes safety-critical ESC systems considering both active front steering
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(AFS) and differential braking. Several standard maneuvers access the lateral stability of

the vehicle, such as the Fishhook test (NHTSA, 2001), Double Lane Change (LNCAP,

2020), Steady-State Circle Series, J-Turn test (NHTSA, 2001, 2018), or the Sine with

Dwell test (NHTSA, 2008, 2009; EUROPEAN UNION, 2015; ENCAP, 2020). However,

most of them are also affected by other aspects, such as roll stability, driver skill, handling,

and road conditions. The one focused on lateral stability, and used to access automobile

ESC systems, is the Sine with Dwell test, which uses the 0.7-Hz Sine with Dwell maneuver.

On the other hand, the literature often employs distinct maneuvers. Some works

use the standard Double Lane Change, which uses an expert driver to perform a path-

following task, and induces lateral instability immediately after each lane change. Other

studies also use a double lane change maneuver but not following a standard. A few

of them use single lane change maneuvers, which are not part of any standards; J-turn

maneuvers; and other open-loop steering inputs. Concisely, we do not verify a consensus

in the scientific literature on methods to evaluate lateral stability.

When convenient, we used a non-standardized maneuver to more easily compare our

results with the respective literature (in Section 6.2). However, for other cases, we adopted

the Sine with Dwell test to better describe the effectiveness of the proposed ESC systems.

Section 3.3 presents the procedure: we shall learn that the test uses two criteria: a

responsiveness one, based on the ability to change the trajectory of the vehicle, and a

lateral stability criterion, which considers how long the system takes to recover from the

effects of oversteering.

Finally, we know that vehicles are complex systems composed of several moving parts,

some of which are not necessarily rigid. This includes not only the tires but longer axles

which are part of the transmission system. Hence the system is not lumped, i.e., it

cannot be exactly modeled by a finite number of states. Moreover, the system has several

nonlinear components, such as tires, suspension, and said moving parts—even the rigid

ones—are modeled by nonlinear equations of disparate dynamics. Consequently, more

comprehensive models are ill-posed, being difficult to simulate.

We used a 2nd-order linearized model to design the control systems we propose. The

closed-loop systems were validated by linear and nonlinear models of order 2 or higher.

In particular, CarSim provided the most extensive model, whose behavior is much closer

to a real vehicle. In addition, we used the magic formula (MF) equation set to describe

steady-state tire dynamics, either for the in-house models or CarSim vehicle models.
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1.4 Concluding remarks

The work on ESC is justified by both its major role in accident prevention in general,

with particular importance of its ability to considerably reduce the occurrence of vehicle

rollovers.

ESCs have been a hot research topic for over a decade. Safety-critical control advances

from the last decade have also called the attention of the control system academic commu-

nity. This text introduces one of the first applications of safety-critical control based on

control barrier and Lyapunov functions to ESCs based on active steering, the first appli-

cation to ESC based on differential braking, and provides a few convenient extensions to

the respective theory. Moreover, it solves problems from those first AFS implementations

and contributes to lateral stability region generation.

This work presents the following contributions:

1. improves lateral stability region generation;

2. introduces conservative stability regions;

3. identifies necessary conditions for safe sets used in safety-critical control applied to

lateral vehicle stability;

4. introduces control-dependent control Lyapunov functions;

5. presents the second safety-critical control ESC implementation based on control

barrier functions that uses active front steering while solving latent problems from

the previous entry in the literature;

6. validates the stability regions through safety-critical control applications based on

CBFs that use active front steering;

7. identifies a limitation in the proposed safety-critical control ESC implementation;

8. introduces control-dependent exponential control barrier and Lyapunov functions;

9. presents a third safety-critical control ESC implementation based on CBFs that uses

active front steering, this time using control-dependent exponential control barrier

functions;

10. validates safety-critical control based on control-dependent exponential control bar-

rier functions through the aforementioned implementation using CarSim;

11. identifies that lateral stability regions cannot be rendered safe by differential-braking

ESC systems;

12. introduces control-disturbance-dependent exponential control barrier and Lyapunov

functions;

13. presents the first safety-critical control ESC implementation based on CBFs that
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uses differential braking;

14. validates safety-critical control based on control-disturbance-dependent exponential

control barrier functions through the aforementioned implementation using CarSim.

The remainder of this document is structured as follows: Chapter 2 presents an in-

troduction to vehicle dynamics, focused on the most important subsystems for stability

control; Chapter 3 presents the electronic stability control problem and a review of the

pertaining literature. Chapter 4 follows with an introduction to safety-critical control

based on control barrier functions: its fundamentals and the elementary theory. The

stability regions and the active steering safety-critical control methods are presented, in

the respective order, in Chapters 5 and 6. The extensions to control Lyapunov functions

and exponential barrier functions that depend on the control input are also presented

in Chapter 6. Yaw stability control methods are shown in Chapter 7, together with the

safety-critical control extensions that consider external control inputs and arbitrary-order

exponential functions, while Chapter 8 presents the last remarks and future works.
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2 VEHICLE DYNAMICS

Wheeled robots are often modeled as nonholonomic systems, where one assumes the

wheels do not slip. Under this consideration, it is possible to prove that there are only

five types of possible wheeled vehicles when it comes to the type of constraint which

results from the wheels it uses (CAMPION; BASTIN; D’ANDRÉA-NOVEL, 1996). One

of those types is vehicles with two fixed wheels along the same axis, and other orientable

wheels in order to steer them. Of course, passenger cars are among such vehicles.

The problem is that the dynamic descriptions of vehicles under the aforementioned

circumstances had simply failed to adequately describe their behavior, despite how com-

plete the description of the vehicle’s several moving parts would be (GILLESPIE, 1992).

The notion that when a wheel turns, it moves itself forward proportionally to its angular

position variation, and that it would not move sideways when turning was found not to

be true. In other words, the assumptions which are often considered in mobile robotics

simple kinematic models are, in truth, not valid for vehicles with pneumatic tires. This

sparked the interest in the development and study of tire dynamics, whose study could

be traced back to the 1930s.

The field of tire dynamics describes how rubber tires behave when attached to a

vehicle and being used to move it. More precisely, it relates the torques and forces the

tires can develop in relation to their orientation and movement. These forces cause the

vehicle to move, which can then be described by increasingly complex models, depending

on the amount of detail that is necessary for the problem at hand. The field of vehicle

dynamics deals with such models combined with those of the remainder of the vehicle.

It was mature since around the 1970s, with the appearance of the first books on the

subject (GILLESPIE, 1992).

The equations which establish a vehicle model are related to how forces and torques

are generated and, eventually, cause the vehicle to move. Hence, a comprehensive math-

ematical model includes the motor’s ability to produce torque on its crankshaft, which

depends primarily on the latter’s angular speed and fuel injection on the first. The engine
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is coupled to a transmission, which, in turn, is coupled to the rest of the drivetrain. The

set will deliver torque to the wheels under a certain rotation ratio and at the expense of

energy loss due to friction and kinetic energy variation of the moving parts (GILLESPIE,

1992).

The driver further changes the orientation of steerable wheels through the steering sys-

tem and directly applies torque through the brakes. The relative movement of the wheels

and the ground, in turn, together with the torque from the drivetrain, will generate forces

and torques on the vehicle’s body. Those are a function of the normal force on the tire,

the wheel’s longitudinal and lateral speed with respect to the ground, its angular speeds

around the rolling and vertical axles, and the torque from the drivetrain (GILLESPIE,

1992; PACEJKA, 2012). The aforementioned efforts are applied both on the suspension

system, which absorbs part of the energy with respect to the relative movement between

the body and the wheels; and directly to the body. As the vehicle accelerates, so do the

several moving parts inside it, and the normal forces on the tires are altered. Therefore,

several internal feedback loops are present in the model, as depicted in Figure 4.

transmission wheelsenginedriver

environment

suspension body

Figure 4: Block diagram of a vehicle model.

Every block from Figure 4 is a multivariate subsystem described by nonlinear equa-

tions. The resulting model, in which the signal quantities are omitted, is quite complex

and cannot be expressed in closed form. Hence, simplifications and linearizations are of-

ten made in order to treat the related control problems. Since vehicle stability problems

are grave, the control system must quickly dealt with them. So fast that the engine is

unable to respond on such short notice in the case of internal-combustion engines. Thus,

the ESC literature (see Chapter 3) often assumes the vehicle’s speed will not be affected

by the engine and the drivetrain. As a result, the subsystems that are necessary for sta-

bility control are the tires and the body. Suspension is either taken into account or not,

depending on the level of detail and the specific control objective.

We first introduce the tire dynamics in Section 2.1 and follow with the different vehicle
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models in Section 2.3, where the body is taken into account.

2.1 Tire Dynamics

Here we present the bases to understand how pneumatic rubber wheels traction vehicles.

The differences from the aforementioned simplifications which are often considered in the

field of robotics are related to the material from which pneumatic tires are made, that

is to say, rubber. Of course, we know rubber is deformable, therefore it is not true that

wheels would touch the ground through a single point, whereas common approximations

are non-deformable wheels and punctual contact with the ground. For a more complete

description of wheels, see (PACEJKA, 2012)—which will serve as the main source for this

section—and the references therein.

As a wheel deforms, it forms an area of contact with the ground, which is referred

to as contact patch. The forces which cause the movement of the vehicle’s body come

from the collection of such contact patches (four, in the case of an automobile), and are

applied there. This is an unfortunate fact since such forces are as far away from the

vehicle’s center of mass as they can be, thus excerpting the maximum moment around

that point. This is the cause of the phenomenon known as load transfer, which explains

how a vehicle may roll over after overcorrection from the driver while the vehicle turns.

As torque is applied to traction wheels, they will accelerate the vehicle’s body in the

expected direction. However, as they are subject to such torques, one can not find a

proportion between the wheel angle variation and the distance the wheel moves along.

The higher the torque applied to it, the less it moves forward when compared to how much

it turns. In other words, wheels slip. A similar phenomenon is observed when vehicles

turn: unlike what one might expect, as a vehicle performs a turn, its wheels will slightly

move sideways. Thus, there is an angle related to how wheels slip in turns.

In addition to the slip, rubber tires also oppose rolling through a phenomenon known

as rolling resistance. As a tire sustains any weight through the structure it is attached

to, its ability to roll is incrementally decreased. This happens regardless of any dry or

viscous friction which might be verified on its pillow block, or friction between the tire

and the soil. Therefore, it does not depend mainly on the wheel’s angular speed, but on

the weight it sustains, that is, the normal force.

The phenomena of slip and rolling resistance are related to the properties of rubber.

Rubber is a viscoelastic material, which differs from elastic ones. For elastic materials,
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there is a proportion between the force applied to them and the resulting deformation.

The relation between force and deformation can be described by a function, i.e., there

is a one-to-one relation between those two quantities. Viscoelastic materials, on the

other hand, have this relation being dependent on time, and on previous loadings or

unloadings. As a result, the typical loading and unloading curve for this type of material

is as Figure 5 shows, where τv is the stress (either compression or decompression) and

∆xv is the resulting deformation. We see that after removing the load, the material does

not immediately return to its original dimension, unlike elastic materials.

τv

∆xv

loading unloading

Figure 5: Viscoelastic material loading and unloading deformation.

We start with the rolling resistance since it is easier to explain. Assume the wheel

sustains a weight W , from which results that the normal force between the wheel and the

ground is also W and the lower part of the wheel deforms, as seen in Figure 6a. Assuming

the deformation is highest near the center of the contact patch, where the minimum wheel

radius rmin touches the ground, we can assume it will be symmetric around c, as the dashed

line in Figure 6a shows. Since we are talking about dynamics, the wheel must be moving.

As it rolls forward, the tread elements at the region between a and c are compressed and

tend to decelerate it, while at the region between c and e they are decompressed, pulling

it forward again. Would the material the tire is made of be elastic, the pressure on both

these regions would be the same, and so would the acceleration and deceleration forces.

However, this is not the case. Since rubber is a viscoelastic material, the compression

region will generate a force that is slightly larger than that of the decompression one,

which is shown as the continuous line in Figure 6b. Thus, there will be a decelerating

moment against the tire’s movement, which can be seen by the vehicle body as a force

against the direction the vehicle moves to. The exact nature of this force depends on

several variables which are a consequence of the highly nonlinear, time and temperature-

dependent behavior of rubber. This rolling resistance force Ri is often simplified, however,
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(a) Deformed wheel under loading.
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(b) Pressure throughout the contact patch.

Figure 6: Wheel carrying a load.

in most vehicle dynamics textbooks, software, and articles as being proportional to the

vertical load Wi on the tire as

Ri = fψWi, (2.1)

where fψ is the rolling resistance coefficient. We shall reference each wheel’s rolling

resistance and normal force through the index i, being fr for the front right wheel, fl for

the front left wheel, rr for the rear right wheel, and rl for the rear left wheel. In other

words, for instance, Rrl is the rolling resistance on the rear left wheel of the vehicle.

2.2 Tire models

The process of force generation on tires is also related to the properties of rubber. The

aforementioned facts about tire slip are related to the use of a deformable material in

order to manufacture them. As the driver moves the steering wheel and either accelerates

or brakes the vehicle, the forces generated by the tires change, but not instantly, since

such a vehicle is not rigidly attached to the ground. However, the dynamic behavior of

the tires themselves is faster than that of the whole vehicle. Therefore, dynamic models

of vehicles often consider only steady-state models for the tires. We will present two such

models, one that is simpler to understand, and the other that is more descriptive of the

actual tire behavior (PACEJKA, 2012).
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2.2.1 Brush model

The brush model describes, in a simplified manner, wheels with deformable tires rolling

over a plane. While not accurate for severe tire slip, it provides an important under-

standing of the tire dynamics fundamentals. The subject is introduced as presented

in (PACEJKA, 2012). We consider that the plane the wheel rolls over is defined by Ox

and Oy axes, as pictured in Figure 7, where the wheel points to the positive direction of

Ox. However, due to sliding, the wheel moves with velocity v instead, which is at an angle

α with Ox. We define a wheel’s yaw angle ψw around Oz with respect to an inertial frame,

x

y

z

α

v
c

ω

Figure 7: Wheel coordinates.

whose time derivative is the yaw rate ψ̇w. We first describe the longitudinal movement of

the wheel, where α and ψw can be ignored, so that the wheel moves forward in the Ox

direction, as expected.

Let us consider a tire whose tread elements are several bristles, as seen in Figure 8.

To more easily display it, the number of bristles is reduced in Figure 8, but we assume

there are several of them close to one another, whose effect is eventually integrated in

order to obtain the model. We assume the bristles are so close to one another that they

are not susceptible to buckling. In other words, they will not collapse when subject to

compression, but instead simply deform vertically. When subject to shear stress, on the

other hand, they will deform horizontally, but still, they shall not collapse.

The process which causes tread elements to slip is described in the brush model as

a combination of vertical compression and horizontal stress. This is a simplification of

the actual phenomenon of shear stress which the tread elements are subject to when the

vehicle either brakes or accelerates. The bristles’ compression is a result of the normal

force on the tire. As a consequence, would we picture a tire at rest, holding its share of
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Figure 8: Wheel made of bristles (brush wheel).

the weight of the vehicle, the tire’s bristles within the contact patch would all be subject

to compression, and would therefore be vertically deformed (see Figure 9a). Now let

the wheel be subject to an accelerating torque, but still not moving so as to properly

pull the vehicle. Just before it turns, all bristles would be equally deformed, as seen in

Figure 9b, in the horizontal direction, as the upper end of such bristles is attached to

the rest of the wheel while the lower end is anchored to the ground through dry friction.

This combination of horizontal traction due to accelerating or braking and the friction

from the vertical load and the friction coefficient will explain the phenomenon of slipping.

Assume, now, the wheel turns just so that the leftmost bristle in Figure 9b detaches from

the ground, while another one touches and adheres to it at the rightmost part of the

contact patch, which is shown in Figure 9c. If one assumes the torque is still the same

as before, the sum of all the bristles’ forces, together with the new one which has just

touched the ground, should integrate to the same force previously provided by the bristles

(Figure 9b). As a result, since the bristle which has just touched the ground is, at first,

undeformed, and as one of such bristles has just lost contact with the ground, all others

must become slightly more deformed, to compensate for the loss of traction. Therefore,

the new bristle deformation will be very small, and the remaining ones must deform the

same amount even more.

Proceeding by induction, each time a bristle loses adhesion at the leftmost part of

the contact patch as another one touches the ground on the opposite end, the horizontal

deformation increases from right to left, if the wheel rolls in the clockwise direction, as

seen in Figure 9d. Therefore, we realize that the bristles’ deformation increases from the

point they adhere to the ground up until they are about to lose contact, that all bristles

are subject to shear stress, and they adhere to the ground through static dry friction

between the rubber and the ground. In addition to it, it is easy to understand that the

larger the accelerating torque on the wheel is, the larger the shear stress and the resulting

deformation will be. We are now ready to understand the principle of wheel slip.



16

(a) Wheel at rest.

ω

vx = 0

(b) Wheel at the imminence of movement.

ω

vx > 0

(c) Wheel just after moving.

ω

vx

S ′
vS′x

S
vSx

(d) Steady-state wheel under traction.

Figure 9: Moving wheel.

We know the bristles are held in place by the friction force. Friction forces, in turn, are

always limited by the normal force between the adjacent surfaces, which are additionally

factored by the friction coefficient. Therefore, there will be a maximum deformation that

the bristles can withstand before they start slipping. As a consequence, if the torque on

the wheel is large enough, those bristles which are deformed the most will start slipping.

Also, the larger the torque is, the larger the region of the contact patch in which slipping

takes place. Figure 10 illustrates this fact, in which the slip distance xs is defined.

xs

Figure 10: Contact patch and slip distance.
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We conclude that there is a relation between the wheel torque and slip. We proceed

to formally define wheel slip. We first define the effective radius as

re ,
vxrr
ωrr

, (2.2)

where vxrr and ωrr are, in the respective order, the longitudinal and angular speeds of the

wheel when the applied torque is just enough to maintain its movement, that is to say,

to cancel the effects of the rolling resistance. In that situation, the wheels generate no

actual force on the vehicle body. The more we increase the torque, the higher the force

on the vehicle gets, as expected. However, that increases the slip region. A consequence

is that the wheel increases its angular speed, but it has to turn slightly more per unit of

traveled length since there is slipping in an increasingly larger area of the contact patch.

In this regard, the longitudinal slip or slip ratio (also called practical slip) is defined as

κ , −
vx − reω

|vx|
, (2.3)

which will be positive when a positive torque is applied on the wheel, or, in other words,

when it pulls the vehicle forward or brakes it while in reverse gear, whereas it will assume

negative values when the vehicle brakes (or accelerates, when in reverse). By definition

[(2.2) and (2.3)], when the vehicle maintains its longitudinal speed while traveling in a

straight line, there is no slipping. Finally, a corollary is that when the wheel is blocked,

κ = ∓1 (PACEJKA, 2012) (negative in the case of forward gears).

Here, it is important to mention that what most people would associate with slipping

(or sliding, which is not a synonym within vehicle dynamics) is either regions of slipping

propagating themselves throughout the contact patch, or no region of adhesion at all

within the tire’s contact patch, whereas the definition in vehicle dynamics is merely a

difference in longitudinal speed. It has been verified, moreover, that slipping needs to be

taken into account in order to properly describe vehicles with pneumatic tires. When the

vehicle is turning, this will be even more important, since not considering slipping in that

situation would lead to very large position errors due to drifting within a short period,

wrong direction of lateral forces, and incorrect yaw moments, as a consequence.

A longitudinal tire model must relate the longitudinal slip to the driving force the

wheel generates. Within the ambit of the brush model, this will be achieved under the

following assumptions:

1. the normal force per unit of length, throughout the contact patch, is a parabolic

function that is null at the borders (a and e in Figure 6b) and has its peak below
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the center of the wheel;

2. there is no difference between the dry friction coefficient and the kinetic friction

coefficient;

3. the bristles are described by their longitudinal stiffness cpx , which is the ratio of the

force needed to deform them and the longitudinal deformation itself;

4. the difference between the area of the contact patch and the corresponding area on

the wheel rim (at the upper end of the thread elements) is negligible1.

These assumptions are considered together with a fact: the driving forces, which cause

the vehicle to alter its velocity, come from the contact patches. Each contact patch can

be partitioned into two areas: one with bristle adhesion, and the other where there is

slipping. The force provided by the area with adhesion is proportional to the bristles’

deformation factored by the bristles’ longitudinal stiffness. The force from the friction is

the normal force multiplied by the friction coefficient. We start with the adhesion area.

In order to integrate the adhesion forces, one must first obtain the sliding distance,

which is the length of the adhesion area (see Figure 10). This distance will be that of

when the bristle deformation ubx causes a force that equals the friction force. Considering

Figure 9d, let the reference point be the center of the wheel. In this reference, a point S

in the road, which is within the contact patch, moves backward at speed vSx
(the actual

wheel longitudinal speed). A point S ′ on the upper end of the bristles moves at a slightly

higher speed, namely that of the points at the effective wheel radius 2. Thus, deformation

increases over time and can be expressed as

ubx =
ωre − vx

vr
∆t, (2.4)

where ∆t is the time since the bristle touched the ground.

Let 2a be the length of the contact patch, and let the origin of a real axis be positioned

at the midpoint of it. Thus, points in the contact patch belong to [−a, a]. At a distance

x = a, the bristle has just touched the ground, and there is no deformation, yet. As time

goes by, the deformation increases according to

vux ,
dubx
dt

= vr − vx, (2.5)

with vr , ωre. The deformation of the bristles whose upper end are at a distance x from

1This is equivalent to considering that the bristles’ deformation is much smaller than the contact patch
length, which is a valid approximation for any passenger car tire.

2This assumption is equivalent to considering that the bristles’ height is negligible so that they deform
in the horizontal direction.
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the origin is

ubx = vux∆t. (2.6)

Considering the point S ′, we have

∆t =
a− x

vr
. (2.7)

Substituting (2.7) in (2.4), we have

ubx = (a− x)
vr − vx
vr

, (2.8)

and using (2.3),

ubx = (a− x)
κ

1 + κ
. (2.9)

In order to abridge later expressions, we define the theoretical (longitudinal) slip σx ,

vux/|vr|, so that (2.9) becomes

ubx = (a− x)σx. (2.10)

The pressure qbx the bristles apply on the wheel (and, thus, the vehicle) is

qbx = cxubx . (2.11)

The condition for the bristle slip to occur—which, thus, defines the slip distance xs—is

qbx > qfx , (2.12)

where qfx is the maximum friction pressure given by

qfx = µqz, (2.13)

where qz is the normal pressure. As previously mentioned, we assume a parabolic pressure

distribution along the contact patch (see Figure 11)

qz =
3W

4a

(

1−
(x

a

)2
)

. (2.14)

Substituting (2.13), (2.14), (2.11), (2.10) into (2.12) and turning it into an equality we

have

cpx(a− x)σx = µ
3W

4a

(

a2 − x2

a2

)

, (2.15)

and solving for σx we obtain

σx =
3µW

4cpxa2
a+ xs
a

. (2.16)
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W qz
x

Figure 11: Contact patch pressure.
Source: (PACEJKA, 2012) (adapted).

For the sake of shortening the expressions, we define

θx ,
2

3

cpxa
2

µW
, (2.17)

and assume that the bristles lose adhesion to the ground at xs = 2aλ (see Figure 11)

σx =
3

4

µW

cpxa2
a+ xs
a

=
1

2θx

2a− 2aλ

a

=
1

θx
(1− λ)

λ = 1− θxσx. (2.18)

Knowing xs, the longitudinal wheel force from the adhesion and slip regions can be

found by integration. Let Fax be the longitudinal force addend that results from adhesion,

and Fsx the one that is due to sliding. Then we have

Fx = Fax + Fsx , (2.19)

with

Fax =

∫ a

a−2aλ

cpx(a− x)σx dx

= cpxσx

[

ax−
1

2
x2
]a

a−2aλ

= 2cpxa
2σx
[

1− 2θxσx + (θxσx)
2
]

(2.20)

and

Fsx =

∫ a−2aλ

−a

µqz dx

=

∫ a−2aλ

−a

3µW

4a2
(a2 − x2) dx
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=

∫ a−2aλ

−a

cpx
2θx

a2 − x2

a
dx

=
cpx
2θx

[

ax−
1

3a
x3
]a−2aλ

−a

= 2cpxa
2σx

[

θxσx −
2

3
(θxσx)

2

]

. (2.21)

Substituting (2.20) and (2.21) in (2.19), we obtain

Fx = CFκσx

[

1− θxσx +
1

3
(θxσx)

2

]

, (2.22)

where CFκ , 2cpxa
2 is the longitudinal slip stiffness.

In case the wheel torque is low, (2.12) does not hold, and there is no slipping. There-

fore, the slip distance is the contact patch length, or, in other words, λ = 1. As a result,

(2.20) becomes

Fax =

∫ a

−a

cpx(a− x)σx dx

= cpxσx

[

ax−
1

2
x2
]a

−a

= CFκσx. (2.23)

It is clear (2.23) is linear on σx. On the other hand, the higher order terms in (2.22)

will already vanish for very low force values. Therefore, it is unnecessary to worry about

(eventually) having no slip region inside the contact patch, so one can consider (2.22)

exclusively. Still, since the definition of longitudinal slip does not depend on the existence

of tread element slipping through dry friction, but on a difference between a nominal

longitudinal speed (based on the wheel’s angular speed) and the actual wheel speed which

can result due to the viscoelastic material the tire is made of, it follows that there is a

one-to-one relation between force generation and longitudinal slip.

The lateral force generation involves a similar mechanism to that of longitudinal slip,

shown in Figure 12. Let a wheel under a vertical load W be subject to a lateral force. The

immediate effect would be that all bristles in contact with the ground would be deformed

sideways, that is to say, in the y direction. Now let it roll forward just so that a bristle

loses contact with the ground and another one touches it. Since all bristles were previously

deformed so as to withstand the lateral force, the remaining ones will be further deformed,

while the one that touches the ground will deform only slightly. As a result, even if the

lateral force which results from the collection of deformed bristles remains the same, it will
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no longer be applied at the center of the contact patch, but slightly behind it, nearer to the

hind region of the contact patch. Thus, the wheel tends to turn in the negative direction

of its yaw angle. If we proceed by induction, similarly to the longitudinal case, the closer

v

ω

α

Figure 12: Brush wheel while turning.

the bristles are to the rear of the contact patch, the more deformed they become. That

will increase the distance between the lateral force point of application and the center of

the wheels, thus creating a moment. If we now assure the wheel is attached to a vehicle

that turns with a positive yaw rate (that is to say, counterclockwise when viewed from

above, see Figure 7), that moment will try to return the wheel to the straight position.

This explains why this moment is called aligning torque or restoring moment.

The incremental bristle deformation that is verified in the first section of the contact

patch is such that the bristles adhere to the ground. Therefore, they are aligned with

the direction the tire moves, as in Figure 13. Thus, we define α as the slip angle, which

describes the difference between the direction the wheel points to and the one in which it

moves, and can be expressed as

α = − arctan

(

vy
vx

)

, (2.24)

vx and vy being the longitudinal and lateral components of the wheel velocity.

Similarly to the longitudinal slip, we will obtain the lateral force based on the forces
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slip adhesion

Figure 13: Deformed contact patch in turns.
Source: (GILLESPIE, 1992) (adapted).

applied at the contact patch. Also similar is the fact that as the bristles’ tips adhere to

the ground, their deformation increases linearly as the wheel turns, and the force is a

result of that deformation. As the deformation increases, eventually the friction force is

no longer enough to keep them in place, and bristle slipping occurs (see Figure 13). Thus,

we obtain the lateral force and the aligning moment based on the sum of those two forces:

the adhesion region force, and the slip region force.

We will again consider a parabolic pressure at the contact patch, given by (2.14). The

deformation uby is in accordance with Figure 14, given by

uby = (a− x) tan(α), (2.25)

which generates a lateral pressure

qby = cyuby . (2.26)

We consider an analogous condition for xs to the longitudinal case,

qby > qfy , (2.27)

with qfy (the maximum friction pressure in the lateral direction) given by

qfx = µqz. (2.28)

xs

x

uby

a
−a

α

Figure 14: Lateral deformation.

Since the same contact patch pressure for the longitudinal slip has been considered,
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and (2.25)–(2.28) are analogous to (2.10)–(2.13), it follows that the remaining force deriva-

tion is the same. Hence, the lateral force is given by

Fy = 2cpya
2σy

[

θyσy −
2

3
(θyσy)

2

]

(2.29)

= CFασy

[

1− θyσy +
1

3
(θyσy)

2

]

, (2.30)

where

θy ,
2

3

cpya
2

µW
, (2.31)

σy , tan(α), and CFα , 2cpya
2 is the cornering stiffness. Similar linearization considera-

tions follow, that is, Fy ≈ CFα tan(α) for sufficiently low slip angles.

A judicious observation of Figure 14 confirms that most of the lateral force is applied

on the rear of the wheel. We can obtain the restoring moment Mz as

Mz =

∫ a

−a

fyxdx, (2.32)

where fy is the lateral force per unit of length. The restoring moment will have an addend

due to the adhesion region, and another from the sliding region, i.e.,

Mz =Maz +Msz . (2.33)

The adhesion part can be obtained as

Maz =

∫ a

a−2aλ

cpyσy(a− x)xdx

= cpyσy

[

1

2
ax2 −

1

3
x3
]a

a−2aλ

= −µWaθyσy
[

1− 6θyσy + 9(θyσy)
2 − 4(θyσy)

3
]

, (2.34)

where we have used an analogous consideration to (2.17), that is,

θy ,
2

3

cpya
2

µW
. (2.35)

The sliding portion can be found as

Msz =

∫ a−2aλ

−a

3µW

4a2
(a2 − x2)xdx

=
3µW

4a

[

2a2x2 − x4

4a2

]a−2aλ

−a

= −µWaθyσy[3θyσy − 6(θyσy)
2 + 3(θyσy)

3]. (2.36)
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Hence, defining the aligning stiffness CMα
, µWaθy, and substituting (2.34) and (2.36)

in (2.33), we have

Mz = −CMα
σy[1− 3θyσy + 3(θyσy)

2 − (θyσy)
3]. (2.37)

Therefore, (2.37) is a 4th-order polynomial function on σx. The restoring moment is an

odd function, which makes sense, since one would suppose that opposite curves would

generate opposing moments. For positive slide angles, it has a maximum value of (2.37)

is 27µW/256, which occurs at σy = 1/(4θy).

Knowing both the lateral force and the restoring moment, we can obtain the pneumatic

trail tM as

tM = −
Mz

Fy
, (2.38)

which is the distance from the wheel center where Fy is applied. As the sliding angle

increases, the sliding region increases up to when the whole contact patch loses adhesion.

As it happens, the pneumatic trail and the restoring moment vanish, according to the

brush model. This behavior does not reflect experimental data, however. Hence, in

extreme situations, i.e., very high slide angles, another type of model is required. One

such family of models, which better matches experiments, is presented in Section 2.2.2.

2.2.2 Magic Formula model

The brush model is very interesting in order to understand the basic mechanics behind

pneumatic tire sliding. It is also accurate enough for most uses where the vehicle can still

be controlled by either the driver or an automatic security system. Still, other types of

models have been presented in the vehicle dynamics literature, one of which is known as

the magic formula model, or similarity method (PACEJKA, 2012).

When the tire is subject to larger slip angles or longitudinal slips, it actually exhibits

maximum lateral or longitudinal forces, for a particular value or α or κ. As slip increases,

the maximum level decreases, in practice. Similarly, under high slip angles, the restoring

moment not only vanishes but eventually switches its sign as α increases, i.e., it causes

the wheel to turn even more, instead of returning it to its longitudinal position. These

facts are not captured by the brush model.

The main idea behind the similarity method is that as soon as force and moment

curves have been obtained by experiments under a given condition, say, normal force,

tire-road friction coefficient, and inflation pressure (which is related to the contact patch
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length 2a), other curves—for different sets of conditions—can be obtained by horizontal

and vertical factors and shifts of the original one.

The curves that are fit to the experimental data fall on a family of nested trigonometric

functions with the same structure that can adjust a given (initial) linear growth, usually

either the longitudinal slip stiffness, the cornering stiffness, or the aligning stiffness; a

maximum value, which is the maximum force or moment the tire can generate; and a rate

decrease, which would be slow for forces and faster for the restoring moment.

The process of obtaining functions to accommodate force and moment generation on

tires can be described as an iterative process. A first attempt is to consider a sine function

Fi = D sin(x) (2.39)

where Fi is either Fx, Fy, or Mz, and x is κ or tan(α). It is clear that D is the maximum

value of the function. However, once this is set, its derivative cannot be adjusted. A

second iteration would be

Fi = D sin(Bx), (2.40)

where B is called a stiffness factor (not to be confused with CFκ, CFα or CMα
, more on

that later on). The sinusoidal function at (2.40) would allow for the adjustment of the

derivative—or, conversely, where the peak value occurs—but it iss impossible to adjust

how the curve prolongs itself horizontally. This could, in turn, be achieved by a third

attempt,

Fi = D sin
(

C arctan(Bx)
)

, (2.41)

with C being called the shape factor. Moreover, the result from arctan(·) is bounded,

effectively removing the periodicity from (2.40), as the argument of the sinusoidal func-

tion becomes bounded. On the other hand, this function prevents one from solving one

particular problem: experimental data shows that force functions rise rather quickly, and

then slowly decrease after the peak value, in practice. Moreover, it has been mentioned

that the restoring moment not only decreases rather quickly but even changes its sign at

higher slip angles. This could be accommodated by a fourth iteration,

Fi = D sin
[

C arctan(Bφ)
]

(2.42)

φ = (1− E)x+
E

B
arctan(Bx), (2.43)

where E is designated the curvature factor. Substituting (2.43) into (2.42) yields

Fi = D sin

{

C arctan
[

Bx− E
(

Bx− arctan(Bx)
)

]

}

, (2.44)
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called the magic formula for tire models. Thus, in order to obtain a model for a given

tire, one must find B, C, D, and E that cause (2.44) to match the experimental data

obtained from it.

The general aspect of (2.44) can be seen in Figure 15. The curve is mostly linear for a

relatively large neighborhood of the origin, with slope Ci; exhibits a maximum D at xm,

then decreases asymptotically to ya. For the longitudinal and lateral forces, ya has the

same sign as D; for the restoring moment, they are opposite to one another. As (2.44)

is an odd function, its values for x < 0 have been omitted since the curve is symmetric

around the origin.

xm x

ya

D

Ci

Fi

Figure 15: Magic formula curve.
Source: (PACEJKA, 2012) (adapted).

The parameters in Figure 15 can be chosen through B, C, D, and E. However, they

are coupled. For instance, the first derivative of (2.44) is particularly important at x = 0,

since that is the stiffness parameter for longitudinal or lateral motion, for either forces or

the restoring moment, as introduced in Section 2.2.1. Because

dFi
dx

∣

∣

∣

∣

x=0

= Ci = BCD, (2.45)

we have BCD = CFκ, for x = κ, and BCD = {CFα, CMα
}, for x = tan(α).

The peak value of (2.44), D, is limited by the normal force W on the wheel, and

factored by the friction coefficient µ, or

D = µxW (2.46)

D = µyW, (2.47)

where, unlike in Section 2.2.1, we assume the coefficient might be different for the longi-

tudinal and lateral directions, which depends on the construction of the tire itself. The

peak value parameter for the restoring moment is related to that of the lateral force, being
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given by

D = c3aµyW, (2.48)

where c3 > 0 is to be found in practice (the brush model from Section 2.2.1 would give

c3 > 27/256, but it has been seen that it is not valid for high slip angles).

The value of C controls the limits of the argument of sin(·). Therefore, it is related

to the asymptotic value ya. It is given by

C = 1±

(

1−
2

π
arcsin

(ya
D

)

)

. (2.49)

In case C ≤ 1, the argument of sin(·) in (2.44) does not reach past π/2. Hence, there

shall be no maximum in (2.44). Since the curves to which the equation should be fitted

do have a maximum value, either for forces or the restoring moment, this case can be

ignored. The remaining parameter, E, controls how the curve varies before and after the

maximum value. It can be obtained from B, C, and xm as

E =
Bxm − tan

(

π
2C

)

Bxm − arctan(Bxm)
, (2.50)

again, for C > 1.

So far, it has been shown how one can find the magic formula parameters to fit a curve

whose parameters are clearly identifiable. Sadly, that is not a realistic situation: instead,

it is more likely that either a number of points around such a curve, or even a family of

such experiments are obtained. In addition to it, experimental data has identified that

the parameters B, C, D and E can be obtained as functions of the normal force W .

Therefore, practical parameter identification can use

D = a1W
2 + a2W (2.51)

E = a6W
2 + a7W + a8 (2.52)

BCD =
a3W

2 + a4W

ea6W
(2.53)

C =























1.30 for cornering,

1.65 for braking,

2.40 for the restoring moment.

(2.54)

Hence, obtaining a magic formula model means obtaining a1, a2, . . ., a8 for the experi-

mental data, or, in other words, (2.51)–(2.54) are used instead of (2.45)–(2.50).

We recall that the values of C are related to a decreased force or moment under high
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slip. The cornering value means that there is a loss of centripetal force of around 10 %

in that situation. However, for braking, there can be a 40 % braking force loss, which

greatly increases the braking distance. Finally, the value of C for the restoring moment

is related to a value of 60 % maximum moment in the opposite direction, that is to say,

the wheel’s yaw angle tends to increase, instead of aligning itself naturally.

Moreover, it has been proposed (PACEJKA, 1958; HADT; PACEJKA, 1963) and

shown (HADT; MILLIKEN, 1983) that such curves, for a known tire, can be normalized

to describe its behavior in different conditions, that is to say, under different loads and

surfaces. Strictly put, the similarity method is the act of doing such normalization or data

extrapolation, while the magic formula model is the family of functions through which

this is usually accomplished. This can be done considering a normalized horizontal slip

κ̄ =
CFκ(W )

CFκo

µoWo

µW
κ, (2.55)

a normalized longitudinal force

F̄x =
µW

µoWo

Fxo(κ̄), (2.56)

a normalized slip angle

ᾱ =
CFα(W )

CFαo

µoWo

µW

(

α +
CFγ(W )

CFα(W )
γ

)

, (2.57)

a normalized lateral force

F̄y =
µW

µoWo

Fyo(ᾱ), (2.58)

and a normalized restoring moment

M̄z =
µW

µoWo

CMα(W )

CMα0

CFα0
CFα(W )

Mzo(ᾱ) +Mzr, (2.59)

with

Mzr =
CMγ(W ) + t(W )CFγ(W )

1 + c7α2
γ (2.60)

where the camber angle γ is included, t(W ) is the pneumatic trail under W , and c7 is a

parameter related to the vertical shift of the moment curve (omitted here).

With (2.55)–(2.59), a set of magic formula equations with nominal parameters can

be used. These nominal parameters need not be the ones verified on the actual vehicle:

most likely, they shall not. Rather, they will be the ones used to test the tire, e.g., with a

flat-belt tire test rig. A set of equations for pure longitudinal slip, pure side slip, combined

slip, overturning moment, and rolling resistance moment is available in (PACEJKA, 2012),
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Chapter 4. We reproduce the ones which describe pure lateral force, which are used for

lateral dynamics:

Fyo = Dy sin

{

Cy arctan
[

Byαy − Ey
(

Byαy − arctan(Byαy)
)

]

}

+ SV y (2.61)

αy = α∗ + SHy (2.62)

α∗ = − tan(α) sign(vx) = −
vy
vx

(2.63)

Cy = pCy1λCy (2.64)

Dy = µyWζ2 (2.65)

µy = (pDy1 + pDy2dfz)(1 + ppy3dpi + ppy4dp
2
i )(1− pDy3γ

∗2)λ∗µy (2.66)

Ey = (pEy1 + pEy2dfz)
[

1 + pEy5γ
∗2 − (pEy3 + pEy4γ

∗) sign(αy)
]

λEy (2.67)

By =
Kyα

CyDy + ǫy
(2.68)

Kyα = pKy1Wo(1 + ppy1)(1− pKy3|γ
∗|) (2.69)

sin

{

pKy4 arctan

[

W/Wo

(pKy2 + pKy5γ∗
2)(1 + ppy2dpi)

]}

= CFα

SHy = (pHy1 + pHy2dfz)λHy +
Kyγ0γ

∗ − SV yγ
Kyα + ǫK

ζo + ζ4 − 1 (2.70)

SV y = W (pV y1 + pV y2dfz)λV yλ
′

µyζ2 + SV yγ (2.71)

SV yγ = W (pV y3 + pV y4dfz)γ
∗λKyγλ

′

µyζ2 (2.72)

Kyγo = W (pKy6 + pKy7dfz)(1 + ppy5dpi)λKyγ (2.73)

= CFγ,

which can be used in the opposite order, i.e., from (2.73) to (2.61). In (2.61)–(2.73),

the parameters on p (pCyi, pDyi, ppyi, etc.) are obtained either from experimental data

or from the manufacturer. Normal force and inflating pressure variation are weighted

through dfz , (W − Wo)/Wo and dpi , (Pi − Pio)/Pio. The scaling factors λ have a

default value of one, with the sole exception of λµV , which is zero. These can be adapted

to accommodate friction variations, in manners which are out of the scope of this text.

The full set of magic formula equations is often implemented in vehicle dynamics

software, for both pure and combined slip.



31

2.3 Vehicle Models

Vehicles are complex systems. For instance, let us consider a rather common source of

rollover accidents: a vehicle travels over the roadway of a highway at high speed—even

if within the speed limit. Either by driver misbehavior or necessity, the vehicle suddenly

leaves the roadway and enters the shoulder area, and then tries to get back. Since the

asphalt pavement over the roadway is often thicker than that of the shoulder, the vehicle’s

roll angle is further tilted clockwise, assuming right-hand traffic. In order to provide a

general description of a wheeled vehicle for such a situation, we not only have to model

the mechanisms within it—more importantly, the suspension system—but also the surface

it traverses over. This is not a trivial task. To better tackle different problems within

vehicle dynamics, assumptions are made to obtain simpler, yet descriptive-enough models

for a given situation.

A rather simple model can be considered to describe the phenomenon of load transfer

while the vehicle accelerates. It can also be used to obtain the braking distance, design

brake pressure distribution, or describe scalar speed changes. It is called the longitudinal

model. Another model can be considered when a vehicle turns and slipping may cause

the driver to lose control over it. In this situation, vehicles with a low center of mass

could be safe from an immediate rollover but might depart from the road, when they

would be subject to either rollovers or run-off-road collisions. The lateral model is often

enough to describe that situation. In addition to it, and contrary to the previous case,

vehicles with higher centers of mass often overturn immediately after sudden changes in

their trajectories. In order to describe how a vehicle may roll over while on track, roll

models can be used.

This work will restrict its extent to longitudinal and lateral models, focusing on the

latter ones. Section 2.3.1 presents the longitudinal models, while Section 2.3.2 discusses

pure lateral models and planar dynamics, i.e., models that describe longitudinal and

lateral accelerations and the yaw angle as functions of the forces from the tires.

2.3.1 Longitudinal Model

A longitudinal model describes two important phenomena from wheeled vehicles: its speed

change and load transfer. As the wheels develop torque or are subject to brake forces,

the vehicle increases or decreases its speed, as limited by the wheels’ dynamic behavior.

Also, as it accelerates or brakes, the share of its weight which is supported by the rear
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or front wheels changes from ones to others. The importance of this fact was described

in Section 2.2, as a wheel’s ability to to develop accelerating, braking or lateral forces is

limited by its normal force.

Let a vehicle be at a road with constant slope θs, which is positive when it goes up

while moving forward. The vehicle’s wheels are distant l of each other, which is known as

wheel base. Its center of mass is at a distance h from the ground, l1 away from the front

wheel and l2 away from the rear one. The vehicle is subject to (at most) two traction

forces, Ff from both front wheels—each wheel provides half the force—and Fr from the

rear ones. Its movement is hindered by four different forces: the rolling resistance, which

is composed of Rrf from the front wheels, and Rrr from the rear ones; the drag force

Ra, which is applied ha away from the ground; and a possible trailer force Rb from any

cargo or utility trailers the vehicle might be pulling, applied hb from the ground. Finally,

the vehicle is subject to its own weight Wb, whose longitudinal projection Wgx may help

or hinder its movement, depending on the sign of θs. As the wheels support the whole

machine, this weight is shared by the front and rear wheels through Wf and Wr, in the

respective order.

G

θs

Ra

ha

Rb

hb

h

l1

l2 l

Wb

Wgx Wgz

Wr

Wf

Rrf

Rrr

Fr

Ff

Figure 16: Longitudinal model parameters.

As with any other mechanical model, one can obtain a longitudinal model by consid-

ering the net forces and moments on the vehicle. Since the movement of the vehicle in

Figure 16 is assumed to be restricted to a line on a vertical plane, one needs to obtain a

movement equation along the direction the vehicle moves (longitudinal acceleration), and

two equilibrium equations: one for the vertical movement, and another for the moments
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around a point. Nonetheless, as the normal forces Wf and Wr on the tires are important,

it is customary to obtain two moment equations, one around the center of each wheel, so

as to obtain the normal force on the other.

It has just been mentioned that the reaction forces on the tires have to match the

weight of the vehicle, that is to say,

W = Wf +Wr. (2.74)

Moreover, we assume the drag force Ra is quadratic on the vehicle’s speed, as in (PACE-

JKA, 2012; GILLESPIE, 1992)

Ra = cav
2
x, (2.75)

where ca is the drag coefficient and vx is the vehicle’s speed. The net force along the

longitudinal direction is

Fr + Ff −Rrr −Rrf −Ra −Rb −W sin θs = mbax, (2.76)

with mb as the body mass and ax the longitudinal acceleration. Substituting (2.1), (2.74)

and (2.75) into (2.76):

ax = v̇x =
1

mb

(

−cav
2
x −W sin θs − frW + Fr + Ff

)

. (2.77)

Therefore, the right-hand side of(2.77) describes the longitudinal acceleration of vehicle—

which we integrate to obtain its longitudinal speed. It can be seen that the rolling resis-

tance is irrespective of the normal force distribution among Wf and Wr. However, the

ability to modify the vehicle’s speed does depend on it, since this is accomplished through

Fr, for front-wheel drive; Fr, for rear-wheel drive; or both, for either a four-wheel drive

or a all-wheel drive vehicle [see (2.22) and (2.46)].

The moments around the rear and forward wheels, in the respective order, are given

by

Raha +Rbhb +Wh sin θs −Wl2 cos θs +Wf l +
W

g
ha = Iyrω̇y, (2.78)

Raha +Rbhb +Wh sin θs +Wl1 cos θs −Wrl +
W

g
ha = Iyf ω̇y, (2.79)

where g is the gravitational acceleration and ωy is the pitch rate of the vehicle. For the

sake of simplicity, let ha = hb = h. Isolate the normal forces Wf and Wr:

Wf =
l2
l
W cos θs −

h

l

(

Ra +W sin θs +
W

g
a

)

(2.80)
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Wr =
l1
l
W cos θs +

h

l

(

Ra +W sin θs +
W

g
a

)

. (2.81)

Substituting (2.76) into (2.80) and (2.81), we obtain

Wf =
l2
l
W cos θs −

h

l
(Fr + Ff − FrW ) (2.82)

Wr =
l1
l
W cos θs +

h

l
(Fr + Ff − FrW ) , (2.83)

which show how the weight of the vehicle is moved from the front to the rear wheels as it

accelerates, and the other way around when it brakes. The same effect can be observed

in lateral models, where the weight of the vehicle is increasingly supported by the outer

wheels the shorter the curve radius is. The phenomenon of normal force moving from one

or more wheels to others as a vehicle changes its velocity is called load transfer.

2.3.2 Lateral Models

The longitudinal model can be employed to estimate speed changes as the driver brakes or

accelerates the vehicle. This can lead to bicycle and motorcycle rollovers through excessive

pitch angle rate, but for almost any automobile such maneuvers are safe in that regard.

These vehicles risk overturning, however, in curves, when they cannot compensate lateral

load transfer by changing the camber angle of the whole structure, aside from the road

bank, of course. The lateral load transfer effectively moves the vehicle’s center of mass

sideways, and given enough tire grip, it can eventually fall outside the area between its

wheels, causing a rollover.

When one mentions curves as a cause of rollover, this naturally does not restrict danger

to road curves. Any change of direction by the driver will cause lateral load transfer, for

instance, overtaking, shifting lanes, or moving to the shoulder area of a road. Nonetheless,

we have seen that vehicles with a low center of mass might be safe from instantly rolling

over, but some of its wheels might lose grip and allow the vehicle to leave the road, where

tripped rollovers are both more frequent and serious. As the vehicle changes its direction of

movement, its wheels’ slip angles can dramatically change, be it a set of those wheels—say,

for instance, the rear wheels—or even all of them. This situation can prevent the driver

from controlling, or regaining control of the vehicle, generating oversteers, understeers,

spin outs, or side slips, with eventual road departures.

The simplest lateral model which can be used for a vehicle is the bicycle model. It

considers both front and rear wheels as one—as done for the longitudinal model—but now

the steering angle is taken into account. The speed is assumed constant, but the velocity
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changes since the steer angle δ is nonzero. Figure 17 shows the model parameters for it.

As for the longitudinal model, the wheel base is l, being the distance between the center

l

l1
l2

vr

vf

αr

αfFyr Fyf

δ
ψ

vgx

vgy

Figure 17: Bicycle model parameters.

of mass and the front and rear wheels, in the respective order, is l1 and l2. A wheel that

is equivalent to both front wheels is steered by an angle δ, moves with velocity vf and

slip angle αf , and generates a lateral force Fyf . The rear wheels are also condensed, move

with velocity vr and equivalent slip angle αr, and provide a lateral force Fyr. A frame on

the vehicle considers the longitudinal and lateral velocities of the center of mass vgx and

vgy, respectively—the vector sum of both being vg—and yaw angle ψ. The objective is to

describe the yaw rate ψ̇.

The yaw rate is a result of the net moment τGz
around the vehicle’s center of mass,

or, in other words,

τGz
= Izψ̈ = l1Fyf cos(δ)− l2Fyr. (2.84)

To obtain (2.84), pneumatic trails have not been considered, even though they might not

be negligible. See (PACEJKA, 2012). The forces along vgy are responsible for the lateral

acceleration of the vehicle, which is the sum of the lateral speed rate and the centripetal

force which maintains it in a curve:

mb(v̇gy + ψ̇vgx) = Fyf cos(δ) + Fyr. (2.85)

Therefore, we can isolate ψ̇ and v̇gy in (2.84) and (2.85), respectively, for a simple nonlinear

lateral model:

ψ̈ = l1I
−1
z Fyf cos(δ)− l2I

−1
z Fyr (2.86)

v̇gy = ψ̇vgx +m−1
b Fyf cos(δ) +m−1

b Fyr. (2.87)

A linearized model is often considered for the bicycle model of the vehicle. We first

consider the fact that most road curves have a relatively large radius, of several dozens
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of meters. Therefore, δ is small, and cos(δ) ≈ 1. We define the side-slip angle (or vehicle

slip angle) β as

tan(β) =
vgy
vgx

. (2.88)

Also, for the rear wheel slip angle,

tan(αr) = −
vgy − l2ψ̇

vgx
(2.89)

holds. Assuming tan(αr) ≈ αr and a curve radius R:

αr =
l2ψ̇

vgx
−
vgy
vgx

=
l2
R

− β. (2.90)

For the front wheel, again assuming tan(αf ) ≈ αf ,

αf = −

(

l1ψ̇ + vgy
vgx

− δ

)

. (2.91)

Rearranging (2.91) and proceeding as before:

δ =
l

R
− αf + αr. (2.92)

Assuming the tires operate on the linear region, we can use the simplified model

Fyf = Cαf
αf (2.93)

Fyr = Cαr
αr. (2.94)

Therefore, the lateral force is given by

Fy = Fyf + Fyr

= Cαf
αf + Cαr

αr

=

(

−
l1
vgx

Cαf
+

l2
vgx

Cαr

)

ψ̇ − (Cαf
+ Cαr

)β + Cαf
δ, (2.95)

while the vertical moment is

τz = l1Fyf − l2Fyr

=

(

−
l21
vgx

Cαf
−

l22
vgx

Cαr

)

ψ̇ − (l1Cαf
− l2Cαr

)β + l1Cαf
δ. (2.96)
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By substituting (2.95) and (2.96) in (2.86) and (2.87), we can write

[

v̇gy

ψ̈

]

= A

[

vgy

ψ̇

]

+Bδ (2.97)









agy

ψ̇

β









= C

[

vgy

ψ̇

]

+Dδ, (2.98)

with

A =





−
Cαf

+Cαr

mbvgx
−
Cαf

l1−Cαr l2

mbvgx
− vgx

−
Cαf

l1−Cαr l2

Izvgx
−
Cαf

l2
1
+Cαr l

2
2

Izvgx



 B =





Cαf

mb

Cαf
l1

Iz



 (2.99)

C =









−
Cαf

+Cαr

mbvgx
−
Cαf

l1−Cαr l2

mbvgx

0 1
1
vgx

0









D =









Cαf

mb

0

0









. (2.100)

Another linear model is often used for the bicycle model, considering the different

state vector x , [β ψ̇]
T
. Such a model is convenient for stability control applications (see

Chapter 3). It can be easily obtained from (2.97) and (2.98) by approximating (2.88) as

tan(β) ≈ β. Hence, we write the new state as

[

β

ψ̇

]

=

[

v−1
gx 0

0 1

][

vgy

ψ̇

]

= P̄

[

vgy

ψ̇

]

(2.101)

and apply the equivalence transformation
[

β̇

ψ̈

]

= Ā

[

β

ψ̇

]

+ B̄δ (2.102)









agy

ψ̇

β









= C̄

[

β

ψ̇

]

+ D̄δ, (2.103)

with

Ā = P̄AP̄−1 =





−
Cαf

+Cαr

mbvgx
−
Cαf

l1−Cαr l2

mbv2gx
− 1

−
Cαf

l1−Cαr l2

Iz
−
Cαf

l2
1
Cαr l

2
2

Izvgx



 B̄ = P̄B =





Cαf

mbvgx
Cαf

l1

Iz



 (2.104)

C = CP̄−1 =









−
Cαf

+Cαr

mb
−
Cαf

l1−Cαr l2

mbvgx

0 1

1 0









D̄ = D. (2.105)
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The models given by (2.97), (2.98) and (2.102), (2.103) do not take differential braking

into account. A more descriptive lateral model considers each wheel separately. Both front

wheels can be steered, but not independently. More specifically, the steering angles δl and

δr of the left and right wheels, in the respective order, can be related to an equivalent

steering angle δ of the front wheel of a tricycle. Since this work is related to a passenger

car—in the sense that it is not a race car—the most common steering system will be

considered, which is the Ackermann steering system, depicted in Figure 18.

Lw

ICR

R

l

δr

δl

Figure 18: Ackermann steering system.

Ackermann steering means that the presumed instantaneous center of rotation of the

vehicle, under negligible wheel slip, is the same for all wheels. This is equivalent to saying

that the rotation axles of all wheels meet at a single point. The distance between the

fixed wheels Lw is known as track width. For convenience, let Lw = 2lw, i.e., lw is half the

track width. Assuming the vehicle performs a curve with radius R, which is measured

from the instantaneous center of rotation ICR to the midpoint between both fixed wheels,

we can obtain

tan(δl) =
l

R− lw
, (2.106)

for the left orientable wheel, and

tan(δr) =
l

R + lw
, (2.107)

for the right one. Let an imaginary wheel be placed at the midpoint between both steering

wheels. We would have

tan(δ) =
l

R
. (2.108)

Substituting (2.108) into (2.106) and (2.107) and taking the inverse of both sides, we
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obtain

cot(δl) = cot(δ)− lw (2.109)

cot(δr) = cot(δ) + lw. (2.110)

Finally, subtracting (2.109) and (2.109) yields

cot(δr)− cot(δl) =
Lw
l
. (2.111)

Therefore, δr and δl are related by (2.111), and both are related to δ according to (2.109)

and (2.110). The imaginary wheel steering angle δ is a function of the steering wheel

angle, provided by the driver.

Now that the steering system for most four-wheel vehicles has been introduced, a

more complete lateral model can be obtained. In that regard, we consider a four-wheel

vehicle whose every wheel is subject to slipping, as shown in Figure 19. The velocity of

each wheel is noted as vij, with ij being rr, for the rear right wheel; rl, for the rear left

one; fr, for the front right one; and fl, for the front left wheel. Likewise, the slip angles

are αij, and the steering angles are δr, for the front right wheel; and δl for the front left

wheel.

l

Lw

αrr

αrl

αfr

αfl

vrr

vrl

vfr

vfl

δl

δr

ψ
vgx

vgy

vg β

Figure 19: 4-wheel lateral model parameters.

The tile slip angles can be obtained from vf and ψ̇ by assuming the vehicle chassis is

rigid as

αfl = δl − arctan

(

vgy + l1ψ̇

vgx − lw1ψ̇

)

, (2.112)

αfr = δr − arctan

(

vgy + l1ψ̇

vgx + lw1ψ̇

)

, (2.113)
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αrl = − arctan

(

vgy − l2ψ̇

vgx − lw2ψ̇

)

, (2.114)

αrr = − arctan

(

vgy − l2ψ̇

vgx + lw2ψ̇

)

, (2.115)

where we assume the track witdh (Lw) might be different for the front and rear wheels

(lw1 and lw2, in the respective order).

As with the longitudinal and bicycle models, we can obtain movement equations by

considering the longitudinal and lateral net forces, and the moments around the vehicle’s

center of mass. For the forces along the longitudinal axis, we obtain

mbv̇gx−mbvgyψ̇ = Fxrr+Fxrl+cos(δr)Fxfr−sin(δr)Fyfr+cos(δl)Fxfl−sin(δl)Fyfl . (2.116)

In turn, for the lateral forces, we obtain

mbv̇gy+mbvgxψ̇ = Fyrr+Fyrl+cos(δr)Fyfr+sin(δr)Fxfr+cos(δl)Fyfl+sin(δl)Fxfl . (2.117)

Therefore, it can be seen from (2.116) that the longitudinal tire forces propel the vehicle

forward, but when there is a steering angle, part of the forces is lost due to the vehicle

turning (the term on vgyψ̇). In addition to it, the lateral forces slightly decrease the

vehicle’s acceleration. These phenomena could not be observed in the simpler longitudinal

model expressed by (2.77) (Section 2.3.1).

Similarly, from (2.116) we have a similar conclusion to that of (2.85). In other words,

the wheel’s forces both keep the vehicle turning (the term on vgxψ̇) and prevent it from

side-slipping (the term on v̇gy). In the latter conclusion, we note that such a term is

negative, in practice, since the vehicle’s slip angle β is positive for positive steering angles

αr and αl.

The vehicle’s yaw angle can be described by considering the moments provided by the

tire forces. By considering the net moment around the vehicle’s center of mass, we obtain

Izψ̈ = −l2(Fyrr + Fyrl) + lw(Fxrr − Fxrl) + (l1 sin(δl)− lw cos(δl))Fxfl

+ (l1 sin(δr) + lw cos(δr))Fxfr + (l1 cos(δl) + lw sin(δl))Fyfl

+ (l1 cos(δr)− lw sin(δr))Fyfr . (2.118)

Now we recall this work aims to provide an electronic stability control scheme for an actual

vehicle. In this regard, let us restrict our attention to the yaw angle. The force terms

contribute or go against increasing the yaw rate; assuming positive δl and δr, the ones that
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contribute the most are the term on Fxfr , for the longitudinal tire forces; and the term

on Fyfr , for the lateral forces. Between those, the latter is largely uncontrollable, since

the lateral force is a function of the slip angle, which, in turn, is a function of the steering

angle and the normal force, and the steering angle comes from the driver. Assuming the

system has an electric steering wheel to control it, still, it cannot be changed instantly,

and even if it could, there is a dynamic description between changing the steering angle

and altering the lateral forces being applied on the tires—a description which has not

been presented in this text, as it is rather complex, but is known to be equivalent to a lag

from around half to a full wheel roll over its axis. On the other hand, the term on Fxfr

can be controlled in a much easier way. Since brakes are mounted on the wheel itself,

they can be used to apply a negative longitudinal force very quickly. As a result, braking

the left wheels is an efficient way to provide a negative yaw rate acceleration. In case

the vehicle has a motor mounted on the wheel itself—that is to say, an electric car—it

can also be used to provide a positive acceleration. Finally, outer wheels have increased

normal forces due to weight transfer, so the respective brake forces do not saturate the

tire’s ability to move the vehicle through circles of friction as much (PACEJKA, 2012).

Seldom is the model provided by (2.116), (2.117), (2.118), and whatever tire dynamics

model used without simplifications. As with the bicycle model, one often considers small

steering angles. In this situation, the curve radius R is large, and δ ≈ δl ≈ δr. Moreover,

if δ is small, then (2.116), (2.117) and (2.118) reduce to

mv̇gx = mvgyψ̇ + Fxrr + Fxrl + Fxfr + Fxfl (2.119)

mv̇gy = −mvgxψ̇ + Fyrr + Fyrl + Fyfr + Fyfl (2.120)

Izψ̈ = −l2(Fyrr + Fyrl) + lw(Fxrr − Fxrl) + lw(−Fxfl + Fxfr) + l1(Fyfl + Fyfr). (2.121)

If we again drop the effects on the longitudinal acceleration expressed by (2.119), we are

left with equations that are equivalent to using the bicycle model, with the addition of

an extra input, which we can define as the correcting yaw moment Mψ, expressed by

Mψ , lw(Fxrr − Fxrl) + lw(−Fxfl + Fxfr). (2.122)

If the actuation is restricted to differential braking, longitudinal forces are of course neg-

ative, and one can rewrite (2.122) as a function of the braking forces Tfl, Tfr, Trr, and

Trl as

Mψ , lw(Trl − Trr) + lw(−Tfr + Tfl). (2.123)

The most common dynamic model simplification employed in ESC design is the ex-
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tension of the bicycle models with the correcting yaw moment, yielding the state equation
[

β̇

ψ̈

]

= Ā

[

β

ψ̇

]

+ B̄ex

[

δ

Mψ

]

, (2.124)

where

B̄ex =





Cαf

mbvgx
0

Cαf
l1

Iz

1
Iz



 . (2.125)

Therefore, (2.125) can be used in case both active front steering and differential braking

are available. On the other hand, in case only differential braking is used, δ is known and

only Mψ is employed as control input.

2.4 Last remarks

This chapter has presented both the fundamentals of tire dynamics and the most basic

vehicle body dynamic equations, which are essential for describing the vehicle’s longitu-

dinal and lateral dynamics. It has been shown that tires can only generate forces on the

vehicle body if they slip, which explains why the usual nonholonomic wheel kinematic

equations are not used in vehicle dynamics.

We presented two tire models, to better explain the principles behind slip (brush

model) and introduce the model that most studies use (magic formula). The introduction

to this area is often not too intuitive in textbooks. Combined slip, on the other hand, is

not trivial to be explained, at least not briefly. As a result, presenting that subject has

not been attempted.

Moreover, the aforementioned tire models describe steady-state behavior. This means

the equations are valid for constant normal force, slip ratio, and slip angle. When the

steering angle changes, so do the slip angles. The tread elements will take time to adapt

to it, which delays the lateral force update. Similarly, when the vehicle starts moving,

the tread elements are at rest, so it takes a certain rotation angle for them to apply force.

These transient phenomena are related to the distributed aspect of tires. Deformable ob-

jects are not lumped systems: they demand an infinite number of variables to be perfectly

described. This behavior can be approximated by either transient model extensions or

more descriptive models.

Finally, the dynamic effects for every part of the vehicle have not been covered. Motor,

driveline, hydraulics, and suspension dynamics have not been presented, since the scope
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of this work is to deal with ESC, which is most affected by tire and body dynamics. Also,

the subject would take a whole course to present, as seen in several mechanical engineering

undergraduate and graduate degrees.

The reader who is interested in the remaining magic formula equations (pure longi-

tudinal slip, combined slip, pneumatic trail, and aligning moment) and alternative tire

models can refer to (PACEJKA, 2012). The dynamics of motors, transmissions, and the

different types of suspension systems are covered in depth in (GILLESPIE, 1992; JAZAR,

2008). They are implemented in most vehicle dynamics software, such as DYNA4, Car-

Sim, or MATLAB Vehicle Dynamics Blockset.
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3 ELECTRONIC STABILITY CONTROL

Electronic stability control is the use of automatic control in order to keep the vehicle

stable in the intended trajectory. The intended trajectory is that from the driver, in

most vehicles, or from a trajectory planner, in automated ones. As the vehicle tracks the

desired trajectory, it may become unstable, i.e., either skidding or overturning.

Assuming the vehicle does not overturn, it may leave the intended trajectory in two

ways: its front or rear wheels can slide more than the others (understeer and oversteer,

in the respective order), or it may slide laterally. In the first case, the vehicle’s yaw

rate becomes different from the intended one. In the latter, the side-slip angle becomes

increasingly negative, and the curve radius increases. Thus, the problem can be solved

by controlling both ψ̇ and β (from Section 2.3.2), which is the YSC problem.

In case the vehicle overturns without colliding or leaving the roadway, its roll angle

changes. This can be caused by side wind, inappropriate road bank, excessive speed while

turning at a specific turning radius, or overcorrection by the driver while making successive

turns (such as when changing lanes). Possible control variables are lateral acceleration,

normal force on tires, and roll angle and its acceleration.

Section 3.1 presents a literature review of ESC. Next, Section 3.2 presents a general,

abridged description of an ESC system, describing its inherent subproblems or design

steps. The standard automobile ESC test is presented in Section 3.3. Lastly, the chapter

is summarized in Section 3.4.

3.1 On Electronic Stability Control Systems

While ESC had been in development since the 1980s, the first commercial vehicles to

include it were presented in 1995. The S600 Coupé, by Mercedes-Benz, and the Crown

Majesta, by Toyota, featured ESC systems produced independently by Bosch and Toy-

ota (ZANTEN; ERHARDT; PFAFF, 1995). Those were luxury cars. However, the avail-
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ability of ESC on current commercial models is quickly becoming widespread. All automo-

biles, utility vehicles, trucks, and buses with less than 4536 kg are obligated to have ESC

in the United States since 2012 (NHTSA, 2008). Electronic stability control is mandatory,

in Europe, since November 2011 (EUROPEAN UNION, 2009, 2015). In Brazil, Honda

and Toyota would only sell automobiles and pick-up trucks with ESC, while GM would

sell vehicles with ESC on every model that would not have a 1.0 motor, in 2020. The ESC

requirement on all vehicles has been postponed to January 2024 (CONTRAN, 2020).

Since ESC has been available in industry for a few decades already, it is often men-

tioned in several other ways, such as electronic stability program (ESP), by Bosch; vehicle

stability control (VSC), by Toyota; dynamic stability control, as referred to by BMW or

Mazda; of even brand names such as StabiliTrak or AdvanceTrac, by GM and Ford, re-

spectively (ROBERT BOSCH GMBH, 2020; TOYOTA MOTOR CORPORATION, 2022;

CADILLAC MOTOR CAR DIVISION, 2020; FORD, 2018). In this text, on the other

hand, we will restrict the naming convention to ESC, for the sake of clarity and simplicity.

Electronic stability control can encompass a few different strategies and objectives

when it comes to keeping the vehicle in a stable trajectory. The objectives can be to

control the vehicle’s yaw speed, to control the vehicle’s roll speed, to control overall tire

slipping—which can be lumped into the vehicle’s side-slip angle—or any combination of

those. As for how to achieve such objectives, the vehicle can use the braking system,

only; it can also use the motor’s throttle; it may also use the steering system; and finally,

it may be equipped with some sort of active suspension system. Naturally, the more

control inputs the vehicle has at its disposal, the better it can react in extreme situations,

should they arise, and the more control objectives can be simultaneously achieved. As a

consequence, ESC means a system that achieves the aforementioned goals, which can be

different both in the goals at hand and in the available inputs of the underlying control

system.

The ESC system developed by Bosch was presented in (ZANTEN; ERHARDT; PFAFF,

1995). It would originally control the yaw moment, as most ESC systems, and as proposed

by most articles on the subject. The system takes the steering angle, the accelerator pedal

position, and the brake pressures as measured variables in order to estimate the vehicle’s

nominal behavior through a lateral dynamics model. Then, the measured behavior is

obtained by calculating the yaw rate and lateral acceleration from sensors. The estimated

yaw rate is compared to the measured one, and a PID controller is employed to obtain

the engine torque and the individual wheel brake pressures, which are the control inputs

of the whole system—an approach known as differential braking. The idea of estimating
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the system state through the driver’s inputs, comparing it with the estimate from sensors,

and obtaining the control inputs is the most common strategy presented in the literature.

The act of controlling the yaw rate is known as yaw stability control (YSC).

Since brakes, engine, power drive, and steering system are mounted on the chassis, the

use of such devices as control tools is collectively known as active chassis control (ARIPIN

et al., 2014). For the scope of this study, systems that act on the vehicle’s vertical

dynamics shall not be employed, even if they are, too, mounted on the chassis. Classes

of control methods among active chassis control are direct yaw moment control (DYC),

active steering control (ASC), or an integration of both. By DYC we mean explicitly

obtaining a correcting yaw moment (i.e., around the vertical axis), which then must be

realized by accelerating or braking wheels (SHIBAHATA; SHIMADA; TOMARI, 1993).

On the other hand, ASC uses the steering system as input to vary the lateral force on

the steerable wheels, which can be the front ones, or active front steering (AFS); the rear

ones, which is known as active rear steering (ARS); or even have every wheel as steerable,

which is called active four-wheel steering.

Active steering control and differential braking are also used to avoid rollovers, that

is to say, to control the vehicle’s roll angle and speed. The act of controlling the roll angle

(and any of its time derivatives) is known as active roll control (ARC) or active rollover

protection. Those differ from passive protection systems such as anti-roll bars in the sense

that there is a control input to the system. Further methods of ARC are active anti-

roll bars, and active suspensions such as continuous damping control—which shall not be

considered as possible control methods for this study, by design.

Differential braking accomplishes yaw control by braking opposite wheels to manip-

ulate the yaw moment. By braking the left front and rear wheels, a counter-clockwise

moment is generated. On the other hand, a clockwise moment is obtained by braking

the right front and rear wheels. The brake pressure on such wheels will not necessarily

be equal—in general, it shall not. Therefore, the control system must have the ability to

separately apply any brake pressure to each wheel. The device used by most manufactur-

ers consists of an extended version of the hydraulic system employed in ABS systems. An

alternative has been proposed, which uses electric motors and signals to brake each wheel,

called brake-by-wire. One such system has been presented in (XIANG et al., 2008), where

the authors list the advantages and disadvantages of the architecture, and then consider

a 3-degree-of-freedom (3-DOF) four-wheel chassis with parallel steering together with a

Dugoff tire model (DUGOFF; FANCHER; SEGEL, 1970) as vehicle dynamics. A brief

literature review up until 2005 follows, and a fuzzy-logic controller is presented afterward,
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for both lateral deviation and yaw rate control. However, the objective is not stability

during curves, but something akin to lane keeping, that is to say, keeping the vehicle in

a straight line with minimum deviation from a set point and minimum yaw rate (i.e.,

straight-line trajectory tracking).

Active differentials and multiple motors can be used to extend the actuation provided

by brakes. Active differentials allow for a reduction in the torque on a wheel through a

corresponding increase on the one beside it (WHEALS et al., 2006). This way, the vehicle

is not forced to lose speed while the ESC system is active. While this can be improved

by having motors on both driven axles, a more flexible approach is available on electric

cars with motors on each wheel, that is, independent-drive electric cars. In such vehicles,

acceleration or braking can be applied at will on each wheel, provided that the motor is

able to output the needed torque and the normal force on the wheel allows for it (see

“load transfer”, Section 2.3.1).

The first academic mention of differential braking was in (PILUTTI; ULSOY; HROVAT,

1995). Nonetheless, it was used to help the driver maintain the desired course at all times,

whereas common practice in ESC has the controller only intervening when the vehicle is

about to lose stability. It was, however, already in use in the industry. DRAKUNOV;

ASHRAFI; ROSIGLIONI (2000) used differential braking with a sliding-mode controller

for the yaw rate. The (conference) article is brief and only presents the control strategy:

no experiments or simulations are presented. The authors had previously used sliding

mode with braking systems for ABS (DRAKUNOV et al., 1995).

A simple ESC system with both yaw and roll stability was implemented in (KIN-

JAWADEKA, 2009). A commercial vehicle was modeled in MATLAB with CarSim, and

then such a model has been validated with actual vehicle data. A switched controller

for the yaw and roll control problems has been presented, using lookup tables to gener-

ate the individual wheel braking pressures, considering two different standard maneuvers.

Simulation results followed.

ZHOU; LIU (2010) used a sliding-mode observer to estimate the tire forces, and

then a sliding-mode controller is used to restrict the yaw rate by braking a single wheel.

The closed-loop system is validated with simulation results based on a standard double

lane-change maneuver. In (SUBROTO; WANG; LIAN, 2020), a sliding-mode strategy is

also employed to deal with the yaw rate problem, but with a vehicle with more control

inputs. A four-wheel independent drive electric vehicle is considered, so both positive

and negative torques are possible on every wheel. Moreover, both the front and rear
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wheels can be steered, unlike most vehicles, which only have a pair of steerable wheels.

A dual-layer controller is proposed: a sliding-mode one for the outer loop, and dynamic

control allocation for the inner one. Actuator fault was considered by assuming each of

the control inputs might either decrease in amplitude, be stuck at a given value, or be

disturbed by an additive value. The stability of the control loop system was demonstrated

and simulation results illustrated its application.

Another multi-layer sliding-mode strategy was proposed in (XU; WANG; LI, 2014).

A lateral dynamics controller is proposed at the lowest level to track the slip ratio with a

sliding-mode technique. A mid-level layer relates a reference yaw moment, which comes

from a higher-level controller, with the slip ratio the aforementioned controller has to

track, considering a 3-DOF vehicle chassis model combined with an assumed-linear tire

dynamics model. This high-level controller also employs a sliding-mode strategy which

takes the yaw rate error as input to obtain the required yaw moment. Simulation results

are presented in order to validate the proposed control system, using the ISO-standard

double-lane change maneuver as the scenario.

A model predictive control (MPC) ESC considering a bicycle model is presented in

(CHOI; CHOI, 2014). However, some sort of dynamic model of the transient state was

taken into account in the form of a time delay, whereas most works only consider the

steady-state tire models (see Section 2.1). This is convenient in MPC, assuming one

approximates time delays to an integer number of sampling periods. Moreover, instead of

the more usual quadratic cost function from the control deviation which is often used in

linearized MPC, it considers an absolute-value one. The strategy was validated through

simulation, considering a sinusoidal steering angle input over both high and low friction

surfaces, and presenting the difference between considering delay or not.

In (JALALI et al., 2017) the authors propose an MPC ESC with active front steering,

in addition to individual tire brakes. The feedback system controls the vehicle’s yaw rate

and its lateral speed. A quadratic function on the control input was used together with a

soft constraint on the lateral speed, where a bicycle model was considered. The authors

used simulations based on the CarSim model from MATLAB with the parameters of a

commercial electrical vehicle to validate the closed-loop system. Finally, experimental

results have been presented with the vehicle moving over a wet road.

The computing power is often an issue for MPC when the system is not linear and

time-invariant. An ESC based on model predictive control with particular care on the

computational complexity is proposed in (MAGALHÃES JÚNIOR, 2019; MAGALHÃES
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JÚNIOR; MURILO; LOPES, 2022). Lateral and rolling models have been considered,

with linearized or magic formula models for tires, and simulation results are presented.

Another study that dealt with the computing time while using MPC was (GUO et al.,

2020). The authors considered a four-wheel 2DOF model and aimed at reducing the tire

slip energy. A fast model predictive control allocation (MPCA) method was presented

and tested through simulation for high and average (which they have called “low”) friction

coefficients for the road.

Other control strategies are also found in the literature. For instance, in (ZHAI;

SUN; WANG, 2016) an ESC for a four in-wheel motor independent-drive electric vehicle

(4MIDEV) is presented. However, the vehicle which was considered differs from the one

in (SUBROTO; WANG; LIAN, 2020) in that it only has front steering. A multi-layer

controller is used for the yaw moment, which is implicitly restricted through the side-slip

angle and side-slip angle rate. Ultimately, a quadratic problem is rewritten as a weighted

least-squares problem to obtain the motor torques. The system is shown in operation

through simulations for three different maneuvers under wet surface conditions.

Another article that considers a vehicle with more inputs than ordinary internal-

combustion vehicles is (FENG; CHEN; QI, 2020). The vehicle has a single motor, but it

is equipped with an electronically controlled real-time four-wheel drive (4WD) so that all

wheels can provide torque. It also uses differential braking and active front steering. The

study proposes a coordinated chassis control (CCC), that is to say, an embedded control

system that monitors more than one variable, namely the yaw rate and the individual

wheel slip angles. It considers a bicycle model and uses a hierarchical structure, with

supervisory, upper-level, and lower-level controllers. Simulation results were presented

for a given maneuver and a handling course road.

In (VU et al., 2019), the roll stability problem is approached with a Linear Parameter-

Varying (LPV) Model and an H∞ controller that maximizes roll stability by restricting

the load transfer from the left wheels to the right ones and vice-versa. The models on

the H∞ structure are parameterized by a variable that depends on the load transfer,

the problem is solved through a linear matrix inequality (LMI) approach, and simulation

results are presented.

Another use of H∞ control is presented in (ZHANG; SUN; FENG, 2018), which would

control the yaw rate considering both mass and moment of inertia uncertainties, which

are used as scheduled variables. The authors used a bicycle model, from which a linear

fraction transformation (LFT) model is obtained and used in standard H∞ form. The
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proposed method was validated with simulations with a CarSim MATLAB model for the

simulated vehicle.

3.2 Control problem

A general ESC scheme is depicted in Figure 20, showing a simplified diagram of the general

feedback system. The driver’s commands are directly applied on the vehicle most of the

time. The vehicle’s behavior is a result of those commands as the vehicle interacts with the

environment. This response, as measured by sensors, is compared to a reference behavior,

which is obtained from the driver’s commands. Vehicle data might be used to improve the

reference. If the reference behavior, sometimes called desired behavior, is close enough to

the measured one, the ESC system does not intervene, and the vehicle operates without

any assistance from it. Else, the control system takes the error and vehicle data to obtain

the control signals, which override the driver’s commands. The dashed line indicates the

implicit feedback the driver obtains from the vehicle (acceleration, vibration, trajectory)

together with the explicit one (senses, panel instruments).

reference
driver

vehicle

ESC

Figure 20: General ESC system.

The signals considered on the reference depend on the ESC problem. Naturally, roll

control adds the roll angle, while yaw control takes the yaw rate error as input. We focus

on the YSC problem, which often takes a side-slip angle error too, to detect side-slip,

i.e., lateral slide under very low yaw rates. A common criterion is the desired yaw rate as

described by the linearized bicycle model (XU; WANG; LI, 2014; MAGALHÃES JÚNIOR,

2019; MIRZAEI, 2010; MIRZAEINEJAD; MIRZAEI; RAFATNIA, 2018; BASLAMISLI;

KÖSE; ANLAÇ, 2011; CHO et al., 2008), considering a null side-slip angle, given by:

ψ̇d =
vgxδ

l + kstv2gx
, kst ,

mb(l2Cαr
− l1Cαf

)

lCαf
Cαr

, (3.1)

where kst is called the stability factor. This criterion is not unique, however: (TSENG et

al., 1999; LENZO et al., 2021; VAN PUTEN, 2008; CHOI; CHOI, 2014) use a different
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desired yaw rate, with a non-zero side-slip angle reference. Moreover, (3.1) may not be

possible in case the curve is excessively sharp—or, likewise, the longitudinal speed is too

high for a given curve. In this regard, it is clear that the maximum lateral force the wheels

can sustain is limited by friction and the normal force on them. On a non-cambered road,

this means

Fymax,i = µWi (3.2)

for the ith wheel. For all wheels, this yields

mbaymax
= µ

i
∑

Wi = µW = µmbg, (3.3)

where aymax
is the maximum centripetal acceleration. Since aymax

is a centripetal acceler-

ation, it is also given by ψ̇vgy. Hence, (3.3) can be rewritten as

ψ̇max =
µg

vgx
, (3.4)

assuming vgx > 0.

Since the desired yaw rate from the neutral side-slip angle is limited by the maximum

lateral acceleration, it is often extended as

ψ̇d = min

{∣

∣

∣

∣

vgxδ

l + ksfv2gx

∣

∣

∣

∣

,

∣

∣

∣

∣
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vgx

∣

∣

∣

∣

}

sign(δ) (3.5)

which in essence limits (3.1) by the maximum feasible lateral force on the tires.

Finally, it is important to mention that a null side-slip angle is not a steady-state

condition for automobiles at low speeds. The slower the vehicle is, the closer its trajectory

gets to that expected by pure Ackermann kinematics, where the side-slip angle always

points inwards to the curve. As the vehicle gains speed, the wheels’ slip angles increase,

and β tends to point outwards to curves. For this reason, the use of YSC together with

(3.1) is often perceived to be invasive to the driver’s commands.

In case there is a discrepancy between the desired and actual vehicle behavior, the

ESC system interferes with whatever input commands it has at its disposal, from brakes

(most common), steering angle, and individual wheel throttle. In order to obtain the

desired behavior, the system measures the driver’s input: steering wheel angle, throttle,

brake pedal, clutch, and so on. The control signal is obtained by estimating the ve-

hicle state variables through accelerometers, gyroscopes, wheel angular speeds, steering

system angles, etc. Again, this discrepancy is usually on yaw rate and side-slip angle

(e.g., (XU; WANG; LI, 2014; MAGALHÃES JÚNIOR, 2019)), but it can be the yaw
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rate, alone (MIRZAEINEJAD; MIRZAEI; RAFATNIA, 2018). One advantage of taking

both errors to monitor the vehicle is that a constant small yaw rate error (which might

not trigger the ESC system) will cause the side-slip angle error to increase.

At this point, an analysis of the linearized models from Section 2.3.2 can be insightful.

Since equivalence transformations do not affect controllability, we can consider either

[vgy ψ̇]
T

or [β ψ̇]
T

as the state. Using the latter, it turns out that (2.124) is controllable.

Moreover, if we consider only δ or only Mψ as input, by verifying the controllability of

the pairs {Ā, B̄ex1} and {Ā, B̄ex2}, in the order, B̄ex = [B̄ex1 B̄ex2], both systems remain

controllable.

Even though the linearized system is controllable, it does not mean the desired state

can be easily reached or any trajectory easily tracked. The steering angle δ input direction

(B̄ex1) does affect both β and ψ̇, but in practice, this input variable has a delayed effect on

the system that is only modeled by dynamic tire models (GILLESPIE, 1992; PACEJKA,

2012). This means the system cannot be immediately influenced by active steering, which

is an issue since ESC is fundamentally an emergency control system. Moreover, a sudden

loss of traction while in a curve means that both effects on the lateral speed and yaw

moment become reduced, especially in the event of understeering.

On the other hand, the input delay is much shorter on longitudinal tire forces (CHOI;

CHOI, 2014), hence, on Mψ. However, the correcting yaw moment only directly affects

ψ̇, which means its effect on β is delayed. In addition to it, the use of Mψ alone (DYC)

cannot promptly reduce both yaw rate and side-slip angle errors, since those are competing

objectives. In other words: assume the vehicle has a side-slip angle error, but negligible

yaw rate error. The side-slip angle correction will demand a yaw rate change, which

will increase the respective error. This fact must be weighted in optimal control tuning:

not favoring one controlled variable over another may lead to overly low input signals,

especially with short prediction horizons. In addition to it, it explains why some YSC

systems with no active steering will control the yaw rate, only (MIRZAEI, 2010; XIANG

et al., 2008; ZHOU; LIU, 2010). Finally, the shorter delay on τGz
justifies the prevalence

of differential braking systems as input variables for YSC in the industry.

Recalling the control design problem, the criterion is often to reduce the yaw rate

error as fast as possible, but different choices have been discussed. These are dependent

on the available input variables—which, in this work, shall be restricted to differential

braking and active steering. Derivatives of input or system variables can be used to im-

prove passenger comfort (MAGALHÃES JÚNIOR, 2019). The input and output error
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can be reduced or minimized through MPC (CHOI; CHOI, 2014; JALALI et al., 2017;

MAGALHÃES JÚNIOR, 2019; GUO et al., 2020), LQ (MIRZAEI, 2010; NAGAI; SHINO;

GAO, 2002), H∞ (ZHANG; SUN; FENG, 2018; LENZO et al., 2021; GÜVENÇ et al.,

2004), or fuzzy programming (XIANG et al., 2008; ZHAI; SUN; WANG, 2016; MIRZA-

EINEJAD; MIRZAEI; RAFATNIA, 2018). In (DRAKUNOV; ASHRAFI; ROSIGLIONI,

2000; ZHOU; LIU, 2010; SUBROTO; WANG; LIAN, 2020; XU; WANG; LI, 2014; CHO

et al., 2008), sliding-mode control is used to stabilize the system. Finally, it should be

mentioned that other strategies exist, e.g., (YAMAKADO; TAKAHASHI; SAITO, 2012).

Whatever control method is used in YSC, the control scheme is often separated into

two layers: one for obtaining the correcting yaw moment, and another for applying brake

pressures on tires. The yaw moment is obtained by changing the steering angle, braking

individual wheels, or both. Braking wheels is a more complex procedure, which demands

control loops for each controlled wheel.

The yaw moment control layer will return a desired correcting moment. Since this is

based on a vehicle model, this model’s parameters must first be obtained. In practice,

several parameters are time-variant, such as the vehicle’s center of mass while accelerating

or curving. Notwithstanding, simpler models demand, at least, the longitudinal speed

and the tire’s longitudinal and cornering stiffnesses. Assuming the longitudinal speed is

available, the stiffnesses remain, which are dependent on the normal force on the tires

(Section 2.1).

The normal forces on the tires are a result of vehicle mass distribution, weight transfer,

and the suspension system. How much vertical load each tire has to support at constant

speeds can be obtained offline. Weight transfer, however, demands the vehicle’s body

accelerations. The most common strategy is to consider a mass suspended by springs

and damped by dashpots, dubbed sprung mass, and assume it has a roll (and maybe

a pitch) axis of rotation (MAGALHÃES JÚNIOR, 2019; MIRZAEINEJAD; MIRZAEI;

RAFATNIA, 2018; CHO et al., 2008). Another strategy is to consider no suspension

system, obtaining the normal forces from static load transfer, e.g., as in (NAGAI; SHINO;

GAO, 2002; YAMAKADO; TAKAHASHI; SAITO, 2012). The latter strategy is not a

good description of sudden steering angle changes.

The longitudinal forces from the brakes can be obtained from the correcting yaw

moment, the tire longitudinal stiffness, and the slip ratio. These forces are to satisfy the

correcting moment, and this is the task of the low-level control loop. The first task is to

determine which wheels will be used. The original ESC systems would brake the outer
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front wheel in case of oversteering, and the inner rear wheel in the event of understeering.

Other studies suggested different force distributions among outer and inner tires (CHOI;

CHOI, 2014).

Given the desired longitudinal braking force on a tire, it can be obtained by controlling

the tire’s slip ratio, which is done through its brake pressure. The brake pressure, in turn,

is proportional to the braking moment on that tire. This problem demands descriptive

tire models and accurate longitudinal speed measurements since the slip ratio is a function

of both the longitudinal and angular speeds. An alternative to estimating slip ratio is to

estimate the longitudinal force, directly, e.g., (ZHOU; LIU, 2010).

Thus, the general control procedure is:

1. obtain the outputs of all sensors [inertial measurement unit (IMU), tire speeds, axle

speeds];

2. measure or estimate the vehicle’s lateral and longitudinal speeds;

3. obtain the normal force on all tires;

4. obtain the parameters for the models which are used in the control loop;

5. obtain the desired (reference) vehicle behavior;

6. obtain the correcting yaw moment;

7. obtain the equivalent force distribution on the tires;

8. control the equivalent longitudinal force on every tire;

9. apply the respective braking pressures.

There are several standard tests to access electronic stability control effectiveness.

The Fishhook and J-Turn tests induce rollover (NHTSA, 2001, 2018). The Double Lane

Change induces rollover and oversteering while testing handling (LNCAP, 2020). The

Steady-State Circle Series, in turn, can be used to obtain steady-state cornering param-

eters, which although related to lateral stability, cannot be used to validate an ESC

system (STEADY-STATE. . . , 1998; PASSENGER. . . , 2021). Finally, standard FMVSS

№ 126/UN/ECE Regulation № 13-H Sine with Dwell test consists of a set of instability-

inducing maneuvers during which stability requisites are to be satisfied (NHTSA, 2009;

EUROPEAN UNION, 2015). We used the latter to validate yaw stability control propos-

als. Section 3.3 describes the procedure.
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3.3 Sine with Dwell test

The Sine with Dwell test is used to validate commercial ESC systems for passenger cars,

as prescribed by the standards FMVSS № 126, for the USA, and UN/ECE Regulation

№ 13-H, in Europe (NHTSA, 2009; EUROPEAN UNION, 2015). Before ESC became

mandatory in Europe, it was part of the Euro NCAP as ESC Dynamic Test Protocol,

which is now part of the Latin NCAP (EURO. . . , 2011). The idea of the test is to induce

vehicle instability and measure the ESC system’s ability to recover from it.

The test consists of a set of open-loop steering wheel movements with increasingly

larger amplitude, performed at an initial longitudinal speed of 80 km/h. These maneuvers

are guaranteed to induce lateral instability on a vehicle that is not equipped with ESC.

As the vehicle performs the maneuver, the closed-loop ESC system must react to the loss

or near loss of vehicle control. More clearly, the effects of vehicle instability are then to

be limited by lateral stability criteria and a responsiveness criterion.

Figure 21 shows the steering wheel maneuver and the stability criteria. The steering

wheel is attached to a piece of equipment that performs open-loop movements in accor-

dance with Figure 21, which is a 0.7 Hz sine function that is halted at its negative peak

for 0.5 s, which is the dwell time.

t

t

δd
δdmax

−δdmax

ψ̇

ψ̇peak T0 T0 + 1 T0 + 1.75

0.5 s

Figure 21: Sine with Dwell test steering wheel input and yaw rate stability requirements.
SOURCE: (NHTSA, 2008, 2009; EUROPEAN UNION, 2015) (Adapted).
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The amplitudes δdmax of the 0.7-Hz Sine with Dwell steering wheel movements are

factors of A, defined as the (constant) steering wheel angle which causes a lateral accel-

eration of 0.3g. In particular, the test procedure starts with δdmax = 1.5A, and after each

successful maneuver, δdmax is incremented by 0.5A. This amplitude is incremented until

either 6.5A or 270◦, whichever is greater. In case 6.5A > 300◦, the final amplitude is set

to 300◦. If all maneuvers are successful, negative (i.e., clockwise) steering wheel angle

amplitudes are employed (NHTSA, 2008, 2009; EUROPEAN UNION, 2015).

The lateral stability criteria are related to the peak value ψ̇peak of the yaw rate,

measured after the steering wheel angle changes sign (see Figure 21). One second after

the open-loop steering wheel movement is completed (T0 = 1.93 s), the yaw rate is again

measured, and must not exceed 35 % of ψ̇peak. After that, at t = T0 + 1.75 s, ψ̇ must be

equal or less than 20 % of ψ̇peak, in magnitude. As a consequence, the lateral stability

criteria are (NHTSA, 2008, 2009; EUROPEAN UNION, 2015)

|ψ̇(T0 + 1.00)| ≤ 0.35|ψ̇peak| |ψ̇(T0 + 1.75)| ≤ 0.20|ψ̇peak|. (3.6)

The vehicle is also expected to move sideways, as the first part of the maneuver moves

the vehicle either to the left, for δd > 0, or right, for δd < 0. Else, the vehicle would be

side-slipping, as if the vehicle were moving on a highly slippery surface, with µ ≈ 0. This

aspect is verified by the responsiveness criterion, which is exerted for δd ≥ 5A. The lateral

movement ∆yg of the center of mass of the vehicle is measured at the beginning of the dwell

time, at t = 1.07 s after the steering wheel movement begins, or ∆yg , yg(1.07)− yg(0).

This lateral movement must be at least 1.83 m for vehicles with up to 3500 kg of gross

vehicle weight rating (GVWR). The GVWR is the maximum mass the vehicle can operate

with, safely. It is the sum of its mass, the occupants’ mass, and any other payload it was

designed to carry, e.g., luggage (NHTSA, 2008, 2009; EUROPEAN UNION, 2015).

We are now able to understand why a passenger car that does not have ESC is

incapable of completing the Sine with Dwell test. We recall that A is the common factor

used for the steering wheel angle δd maximum amplitude, related to a lateral acceleration

of 0.3g. We also recall from Section 5.1.2 that the typical friction coefficient of dry asphalt

is 0.85. It can reach values around 0.9 for exceptionally clean roads with no humidity.

So the maximum lateral acceleration we would expect from a passenger car, which we

assume is unable to generate downforce, is 0.9g, in ideal conditions. Should we admit

that the lateral acceleration is proportional to the steering wheel angle, we can expect the

first test (δd = 1.5A) to generate 0.45g; the second test (2A) to produce 0.6g; the third,
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0.75g from δd = 2.5A; and the fourth test, when δd = 3A, already puts the vehicle on the

verge of losing stability at 0.9g. Consequently, a vehicle that is not designed to generate

downforce shall not be stable in its trajectory for δdmax ≥ 3.5A.

Moreover, the Sine with Dwell maneuver first induces a yaw rate with the opposite

magnitude of that which would one verifies during the dwell time. Thus, it makes it even

harder for the wheels to provide both the needed longitudinal force to invert the yaw rate

sign and the lateral force that would keep the vehicle stable. Most vehicles with no ESC

systems will oversteer—or even spin out—during and after the dwell time, in which the

steering wheel is maintained at the highest magnitude after the vehicle was induced to

move laterally to the opposite side.

3.4 Remarks on ESC

Section 3.2 presents the structure of ESC systems, emphasizing YSC. Most systems will

take the wheels’ speeds and IMU signals as inputs, together with the driver commands.

The IMU signals are used to estimate or directly measure yaw rate, longitudinal and

lateral acceleration, longitudinal and lateral speed, tires’ slip ratio and slip angle, tires’

normal forces, tires’ stiffnesses, and longitudinal and lateral forces. The information from

the driver is used to obtain an expected or desired behavior, most often expressed by a

desired yaw rate and a desired side-slip angle.

The yaw rate and side-slip angle errors are used to trigger the ESC system so that

it does not become exceedingly intrusive and obtain the system input signals, which are

the brake pressures on each wheel for differential braking; and steering angle correction

for active steering.

Yaw stability control systems are often implemented in layers. First, an upper-layer

control loop obtains a correcting yaw moment that, if applied, would adequately control

the yaw rate or side-slip angle of the vehicle. Second, a lower-level control loop obtains

this moment as a sum of longitudinal and lateral forces from the tires, factored by the

respective lever arm distances to the vehicle center of mass. Finally, the longitudinal or

lateral forces are obtained by controlling the slip ratios and angles on the individual tires,

as described in Section 2.2. In particular, the brakes and throttle control the slip ratio

whereas the steering angle controls the slip angle.

It has been noted that the main difficulties arise from the ability—or lack thereof—

to properly describe the vehicle during aggressive driving or emergency maneuvers and
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to maintain it in a controllable state. Those are related to inherent uncertainties and

nonlinearities which are present in both the vehicle and the environment. Tire conditions,

road type, obstacles, vehicle load, load distribution, and wind intensity all affect the

vehicle’s behavior in ways that can be very hard or impossible to quantify. The ultimate

purpose of the system is to keep the vehicle in a controllable state on the road while

interfering as little as possible with the behavior that is expected from the driver’s actions.

Hence, a control structure that is lenient on a given operating region, but also prevents

the system from ever leaving it would be highly desirable. In case the system does become

unstable, we wish the driver recovers control as fast as possible.

ESC systems are validated in both Europe and the United States by the Sine with

Dwell test (NHTSA, 2009; EUROPEAN UNION, 2015). The test is focused on the

ability of the vehicle to recover from lateral instability but also verifies the responsiveness

to steering wheel commands.

This text will leave the difficulties related to estimating the several important variables

and parameters out of its scope, focusing on the control problem. We assume vehicle

velocity and yaw rate are perfectly measured; vehicle mass and mass distribution, friction

coefficient, and tire parameters are known, and road grade and bank are null. Such

problems, consequently, as left as future works or research suggestions (see Chapter 8).
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4 SAFETY-CRITICAL CONTROL BASED ON

CONTROL BARRIER FUNCTIONS

Safety-critical control assumes safety takes precedence over other automatic control prop-

erties or objectives, e.g., performance (GURRIET et al., 2020). Safety, in this field, is

understood as the invariability of an arbitrary set where the state is constrained to. This

set can be related to keeping the system stable or controllable. Or maintaining it within

a linear region of operation, within a differentiable nonlinear region of operation, or con-

strained to whatever manner that should prevent it from ever harming nearby people,

animals, or other equipment. The set which satisfies the safety criteria is called a safe set.

For instance, assume we are dealing with a trajectory tracking problem for a road vehicle

operating within city limits. We may want to prevent it from ever invading sidewalks.

Consequently, we would want to restrict it to paved roads, which the safe set for the given

problem would be comprised of.

There are different approaches to safety-critical control. Among them, we mention set

invariance (MITCHELL; BAYEN; TOMLIN, 2005; GILLULA; KAYNAMA; TOMLIN,

2014) and backup trajectory tracking (HO et al., 2017; LOPEZ; HOW, 2017). In this

text, we employ Control barrier functions, as presented in the literature from 2017 onwards

(GURRIET et al., 2020; AMES et al., 2017, 2019). Safety-critical control based on CBFs

can be understood as an extension to set invariance control theory, where instead of

establishing asymptotic stability to a specified equilibrium state, one aims for convergence

to a set in the state space. Thus, the most important property is not asymptotic stability

(that is to say, to close in on a given state), but set invariance itself.

An introduction to invariance set control is presented in the form of Lyapunov theory,

as presented in any nonlinear systems textbook, e.g., (SLOTINE; LI, 1990; KHALIL,

2002). The advances in invariance control, from its inception until the end of the 20th

century, are summarized in (BLANCHINI, 1999). Control barrier functions—based on

barrier functions, also known as barrier certificates—have been proposed in two ways, first

by (WIELAND; ALLGÖWER, 2007), and then by (AMES et al., 2017). We introduce
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the subject as presented by (AMES et al., 2017, 2019), focusing only on zeroing control

barrier functions, as opposed to reciprocal ones [see (AMES et al., 2017)], previously used

in optimization, e.g., (BOYD; VANDENBERGHE, 2004). First, the fundamentals of

invariance control are presented, in Section 4.1, and then those of control barrier functions,

in Section 4.3. Since it is clear that the following is not a contribution of this work, and

for the sake of brevity, readers are referred to the appropriate sources for theorem proofs.

We summarize the subject in Section 4.4, before presenting the proposals, in Chapters 6

and 7.

Before proceeding to the remainder of the chapter, it is convenient to mention that,

in order to shorten notation, we will employ usual dynamic systems general notation,

for example, x(t) is any dynamic system state vector, not necessarily the ones seen in

Section 2.3, and so on. We shall also drop the time dependency on all state and input

vectors, unless we want to emphasize it, again to simplify notation, i.e., the input vector

u denotes u(t).

4.1 Invariance Control Basics

The most fundamental set invariance concept is Lyapunov stability, which, in essence,

means that the states around a certain equilibrium point xeq remain close to it, or, in

other words, remain within a neighborhood of it. As such, the state will be restricted to

some set C, called an invariant set. The main result in Lyapunov theory is expressed in

Theorem 1.

Theorem 1 (Lyapunov stability (SLOTINE; LI, 1990; KHALIL, 2002)). Consider the

system ẋ = f(x). An equilibrium point xeq is Lyapunov stable, or stable in the Lyapunov

sense, if there exists

V (x) > 0, x 6= xeq, V (xeq) = 0 (4.1)

V̇ (x) ≤ 0, x 6= xeq, V̇ (xeq) = 0. (4.2)

If V (x) satisfies (4.1) and (4.2), it is called a Lyapunov function. Moreover, if V̇ (x) <

0, xeq is asymptotic stable. Finally, if (4.1) and (4.2) hold for any x ∈ C, then C is

invariant1. Figure 22 depicts the result.

1Negatively invariant sets are of little importance in engineering; hence, we refer to positively invariant
sets, or forward invariant sets, as simply invariant sets.

2Also known as boundary of C.
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V

C

x1

x2

xo

xeq

Figure 22: Set invariance under Lyapunov theory for a 2nd-order system. Continuous
red lines: parabolic Lyapunov function. Continuous blue line: invariant set frontier2.
Continuous black line: state trajectory. Dashed black line: V (x) trajectory.

In Figure 22, an initial state xo , x(0) from a 2nd-order system evolves towards the

equilibrium point xeq as its respective Lyapunov function value decreases over time. The

set invariance, here, is a consequence of asymptotical stability.

As one is often interested in convergence time restrictions, the Lyapunov exponential

stability theorem is often employed.

Theorem 2 (Lyapunov exponential stability (SLOTINE; LI, 1990; KHALIL, 2002)).

Consider the system ẋ = f(x). An equilibrium point xeq is Lyapunov exponentially

stable, if there exists

V (x) > 0, x 6= xeq, V (xeq) = 0 (4.3)

V̇ (x) < −λV (x), x 6= xeq, V̇ (xeq) = 0. (4.4)

If (4.3) and (4.4) hold, then there exists K ∈ R such that |x(t)−x(0)| < Ke−
λt
2 |x(0)−

xeq|.

A related result is given by Nagumo’s invariance principle (NAGUMO, 1942), which

uses a function h that has a maximum, instead of V , which has a minimum at xeq.

Theorem 3 (Nagumo’s invariance principle (NAGUMO, 1942; AMES et al., 2017, 2019)).

Let h(x) be a concave function over a set C = {x | h((x)) ≥ 0}, with

ẋ = f(x).

Then, if ḣ(x) ≥ 0, ∀x ∈ fr(C), fr(C) being the frontier of C, C is invariant.
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Figure 23 depicts the result from Theorem 3 for a 2nd-order system and a parabolic

h function. If Theorem 3 holds, h is called a zeroing barrier function, in contrast to a

reciprocal barrier function, which is neither explained nor employed in this text. As a

result, we henceforth refer to zeroing barrier functions as simply “barrier functions”.

h

C

x1

x2

ẋ

ḣ

Figure 23: Set invariance under Nagumo’ principle. Continuous green lines: parabolic
barrier function. Continuous blue line: invariant set frontier. Continuous black lines:
state derivatives. Dashed black lines: barrier function derivatives.

Figure 23 shows (five) different initial conditions, where the state derivatives are shown

in continuous black lines and the respective h derivatives are shown in dashed black lines.

Positive values of h are depicted in continuous green lines, while negative ones are in

dashed green lines. Whenever the state approaches the frontier of the invariant set, ḣ is

positive, so ẋ points inward. No asymptotic stability is implied.

While in Lyapunov theory the invariant set is guaranteed to converge to a neigh-

borhood of xeq, Nagumo’s principle only establishes that points in C remain constrained

to it. These will be analogously extended as, in the respective order, control Lyapunov

functions and control barrier functions.

4.2 Control Lyapunov functions

Theorems 1–3 can be adapted to feedback systems by adding a control input to f(·). Let

us consider the subclass of nonlinear systems expressed by

ẋ = f(x) + g(x)u, (4.5)

or control-affine systems, where x ∈ D ⊂ R
n, D the set of possible state vectors; u ∈

U ⊂ R
m, U containing the admissible input vectors; and both f(·) and g(·) are Lipschitz
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continuous, i.e., there exists K ∈ R such that

|f(x1)− f(x2)| ≤ K|x1 − x2|, (4.6)

for any x1, x1, and the same to g(·). In other words, the absolute value of the derivative

of f(·) and g(·) with respect to x is bounded in any direction.

Now, if u is a function of x, Theorems 1–3 can be used to assess the stability and

invariability of closed-loop systems. Recall that in order to apply Lyapunov theory, time

derivatives of Lyapunov functions are needed. Let us assume u = k(x), V (x) > 0,

V (xeq) = 0 and

V (x, k(x)) > 0, x 6= xeq, V (xeq, k(xeq)) = 0. (4.7)

As the time derivative of x is given by (4.5), we have

V̇ (x) =
∂V (x)

∂x
ẋ

=
∂V (x)

∂x
(f(x) + g(x)u)

=
∂V (x)

∂x
f(x) +

∂V (x)

∂x
g(x)u

= LfV (x) + LgV (x)u, (4.8)

where LfV (x) and LgV (x) are the Lie derivatives of x with respect to f and g, in the

respective order. Now control Lyapunov functions can be defined. They are closely related

to the concept of stabilizability of control-affine systems.

Definition 1 (Stabilizability (SLOTINE; LI, 1990; KHALIL, 2002; AMES et al., 2019)).

Let γ : R0+ → R0+ be a class κ function, i.e., γ(0) = 0 and γ(·) is monotonically increas-

ing. Then if

∃u = k(x) s.t. V̇ (x, k(x)) ≤ −γ(V (x)), (4.9)

then the system is stabilizable to xeq.

Also, if a sublevel set of V (x), Ωc , {x ∈ R
n : V (x) ≤ c}, is bounded, then Ωc is a

region of attraction of xeq.

Definition 2 (control Lyapunov function (AMES et al., 2017, 2019)). If V (·) is positive

definite and

inf
u∈U

(LfV (x) + LgV (x)u) ≤ −γ(V (x)) (4.10)

holds, then V (·) is a control Lyapunov function (CLF).

Control Lyapunov functions make it possible to examine all possible stabilizing con-
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trollers for any state vector in D. Such set is written as

kclf (x) , {u ∈ U : LfV (x) + LgV (x)u ≤ −γ(V (x))} . (4.11)

The control problem for CLF can be written as a quadratic programming (QP) prob-

lem, which shall be referred to as the CLF-QP problem, given by (AMES et al., 2019)

argmin
u∈U

1

2
(u− uref )

T
H(u− uref ) + pδs (4.12)

subject to LfV (x) + LgV (x)u+ γ(V (x)) ≤ δs, (4.13)

with H positive definite. Note that the inequality constraints are affine in u; keeping

only LgV (x)u on the left-hand side of (4.13) turns it into a linear constraint. In order to

more easily solve the CLF-QP problem, a relaxation or slack variable δs can be introduced,

weighted by a positive parameter p. The CLF-QP problem will be extended in Section 4.3,

so as to accommodate CBFs.

4.3 Control Barrier Functions Theory

Lyapunov stability restricts states in the region of attraction to some neighborhood of

xeq. Usually, this is the intended behavior when the system operates in a safe condition.

However, in the case dangerous situations occur, it would be of major importance that

the closed-loop system operates in a way that prevents any hazardous or catastrophic

situations, returning to the safe condition. That is to say, the system would temporarily

forgo its default objective of steering x to xeq, in favor of avoiding unsafe conditions.

In case such unsafe conditions can be mapped to the frontier of a safe set, control

barrier functions can be used to prevent the system from leaving that set. One advantage

of the method is that the restrictions from the control barrier functions take precedence

over the default behavior near the frontier, but do not affect the system’s behavior other-

wise. This can be accomplished by set invariance conditions that do not force asymptotic

stability to arbitrary points in the state space, rather pushing the states away from the

frontier of the specified safe set.

Definition 3 (Safe set (AMES et al., 2017, 2019)). Let C satisfy

C = {x ∈ D ⊂ R
n : h((x)) ≥ 0} (4.14)

fr(C) = {x ∈ D ⊂ R
n : h(x) = 0} (4.15)

Int(C) = {x ∈ D ⊂ R
n : h(x) > 0}. (4.16)
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Then C is the safe set.

In other words, C is the superlevel set of h(x), composed of its interior Int(C) and

frontier fr(C). If C is safe for (4.5), with u = k(x), then (4.5) is safe with respect to C.

The control barrier functions are defined as:

Definition 4 (Control barrier function (AMES et al., 2017; XU et al., 2015; AMES et

al., 2019)). Let

C = {x ∈ D ⊂ R
n : h((x)) ≥ 0},

with h : D → R. If

∃α(x) | sup
u∈U

(Lfh(x) + Lgh(x)u) ≥ −ζ(h(x)) (4.17)

holds, with ζ(·) an extended class κ∞ function, ∀x ∈ D, h(x) is a control barrier function.

In Definition 4, an extended class κ∞ function satisfies ζ : R → R, ζ(0) = 0, dζ/dx >

0, x ∈ R
3.

Analogously to (4.11), the set of all possible safe control values can be obtained from

a CBF,

kcbf (x) , {u ∈ U : Lfh(x) + Lgh(x)u+ ζ(h(x)) ≥ 0} (4.18)

i.e., all input values that make C safe for (4.5).

As with CLF, the CBF control problem can also be written as a quadratic program-

ming problem. This shall be referred to as the CBF-QP problem, expressed as (AMES et

al., 2017, 2019)

u = argmin
u∈U

1

2
‖u− uref‖

2 (4.19)

subject to Lfh(x) + Lgh(x)u ≥ −ζ(h(x)). (4.20)

The CBF-QP problem has a closed-form solution, due to having a single inequality con-

straint (AMES et al., 2014; BOYD; VANDENBERGHE, 2004; AMES et al., 2019).

Moreover, the asymptotic stability and the safety constraints can be combined, with

the objective of assembling a single quadratic problem, extending (4.12) and (4.13) with

(4.20), as (AMES et al., 2017, 2019)

argmin
u∈U
δ∈R

1

2
(u− uref )

T
H(u− uref ) + pδs (4.21)

3That is to say, a class κ function with (−∞,∞) as domain.
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subject to LfV (x) + LgV (x)u+ ζ(V (x)) ≤ δs

Lfh(x) + Lgh(x)u+ ζ(h(x)) ≥ 0,

called the CLF-CBF-QP problem. Hence, the stability and safety problems can be com-

bined in a single QP problem with affine constraints on u.

We remark that in case γ(V (x)) = γV (x) and ζ(h(x)) = ζh(x), γ, ζ ∈ R
+, the

equilibrium point xeq and the safe set C are exponentially stable. Finally, this result, and

the relative degree of 1 restriction on h, implied by (4.17), are extended to higher relative

degree reciprocal barrier functions in (AMES et al., 2017), and zeroing CBFs in (AMES

et al., 2019).

4.3.1 Exponential control barrier functions

The CBF-QP and CLF-CBF-QP problems presented so far can have exponential stability,

provided that γ(V (x)) = γV (x) and α(h(x)) = αh(x), for positive real γ and α. However,

the relative degree of h remains restricted to 1. This can be extended to arbitrarily high

relative degree barrier functions while guaranteeing exponential stability.

The procedure is analogous to input-output linearization, but instead of taking the

derivatives over the output variable, they are taken over the barrier function. More

specifically, we have the rth time derivative of h(x) given by (AMES et al., 2019)

h(r)(x) = Lrfh(x) + LgL
r−1
f h(x)u. (4.22)

If the relative degree of h(x) is r, then LgL
r−1
f h(x) 6= 0. Now, defining a linearized state

vector

ηb(x) ,





















h(x)
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(4.23)

we can write the linearized system (AMES et al., 2019)

η̇b(x) = F̄ηb(x) + Ḡµi (4.24)

h(x) = C̄ηb(x), (4.25)
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with

F̄ =

[

0(r−1)×1 Ir−1

0 01×(r−1)

]

Ḡ =

[

0(r−1)×1

1

]

C̄ =
[

1 01×(r−1)

]

µi = h(r)(x).

Then, general exponential control barrier functions can be defined as

Definition 5 (Exponential control barrier functions (AMES et al., 2019)). Let C ∈ D ⊂

R
n be a superlevel set of a r-times differentiable function h : D → R. Then h(x) is an

exponential control barrier function (ECBF) if there exists Kζ, ℜ{σ(F̄ − ḠKζ)} < 0,

such that for ẋ = f(x) + g(x)u,

sup
u∈U

(

Lrfh(x) + LgL
r−1
f h(x)u

)

≥ Kζηb(x), (4.26)

any x ∈ Int C results in h(x(t)) ≥ C̄e(F̄−ḠKζ)tηb(x) ≥ 0 if h(x(0)) ≥ 0.

Then the ECBF can be incorporated into the CLF-QP problem, resulting in the

CLF-ECBF-QP problem, given by (AMES et al., 2019)

argmin
u∈U
δ∈R
µi∈R

1

2
(u− uref )

T
H(u− uref ) + pδs (4.27)

subject to

LfV (x) + LgV (x)u+ γ(V (x)) ≤ δs

Lrfh(x) + LgL
r−1
f h(x)u = µi

µi +Kζηb(x) ≥ 0.

The CLF-ECBF-QP allows us to consider a barrier function of any relative degree so as

to synthesize a safety control system with stability constraints in the interior of the safe

set while guaranteeing the invariance of the whole set.

4.4 Last remarks

There are very important characteristics of safety-critical control based on CBF. Namely,

the liveness property of a large portion of the invariant set, its suitability to safety sys-

tems in the form of preventing emergency situations, and its applicability to multivariate

nonlinear systems.
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Liveness means the control barrier function restriction is not present for states in the

safe set but not at a neighborhood of its boundary so that the closed-loop system behaves

as designed by the usual or default controller. This default controller takes the reference

input, often related to the operating point, and the stability condition. Safety means

that the safe restrictions always take precedence over the stability or tracking conditions,

guaranteeing the invariance of the safe set.

Finally, the existence of closed-form solutions allows us to synthesize CBF controllers

without using quadratic programming algorithms online. Thus, more processing power

can be made available to the safe set controller.
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5 LATERAL STABILITY REGIONS

We are concerned with the main problem of electronic stability control when applied to

automobiles or passenger cars, which is lateral stability. In this regard, we mention the

shortcomings of the state-of-the-art in order to contextualize the contributions of this

study. These are related to lateral stability region generation, design and implementa-

tion of active front steering ESC with CBF-based safety-critical control, and design and

implementation of differential-braking ESC with CBF-based safety-critical control.

A stability region of a (nonlinear) system is a region around either a stable equilibrium

point or limit cycle that is positively invariant (CHIANG; HIRSCH; WU, 1988). In other

words, we know the state variables shall not leave that region. For the lateral model of

a vehicle, this means that its yaw rate and lateral speed (or side-slip angle) will remain

bounded and in a set that contains the desired yaw rate that results from the steering

angle. As a consequence, we shall not be interested in invariant sets around equilibrium

points that result from exaggerated steering angles, with yaw rate or lateral speed values

that are incompatible with public roads, passenger cars, and road traffic legislation. In

addition to it, we shall also assume there is only one stability region for each steering

angle value since we are only interested in the equilibrium point around the desired state.

Lateral stability regions are important in the analysis and design of ESC systems

because their operation principle is either keeping the vehicle in a stable region or bringing

its state back to that region. Lateral stability regions are presented in (HUANG; LIANG;

CHEN, 2017; SAVA; COPAE, 2021; HUANG; CHEN, 2017; ZHANG et al., 2020), based

on the linearized system characteristic equation, and in (CHEN et al., 2016; INAGAKI;

KUSHIRO; YAMAMOTO, 1994; ZHANG et al., 2011; HUANG; LIANG; CHEN, 2017;

LIU; CHEN; LI, 2016; SUN et al., 2013), from the phase portrait obtained a simplified

nonlinear model.

Let us consider the latter method, i.e., lateral regions from the characteristic equation.

Now when one analyses the resulting regions from (HUANG; LIANG; CHEN, 2017) and

(ZHANG et al., 2020), their shapes are different from one another, even if the generation
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criteria are the same. Hence, we have further investigated the subject. The results are

presented in Chapter 5.

After working out the lateral stability region problem, we investigated an existing

active front steering ESC based on safety-critical control (HUANG; YONG; CHEN, 2019).

After reproducing the results from the article, we realized it had important shortcomings.

Those are identified and addressed in Chapter 6.

By the time we started this study, there were no implementations of YSC using safety-

critical control. Our proposals on the subject are discussed in Chapter 7.

5.1 Lateral Stability Regions Review

There are discrepancies in lateral regions from different sources in the literature (HUANG;

LIANG; CHEN, 2017; SAVA; COPAE, 2021; HUANG; CHEN, 2017; ZHANG et al., 2020).

We would expect some differences due to different vehicle parameters, such as mass, track

width, or center of mass distance from the axles, even when the same criterion is used to

obtain the regions. We would expect, however, similar regions, but of different dimensions.

Nevertheless, the shapes are often different, e.g., Figure 24.

SOURCE: (HUANG; LIANG; CHEN,
2017).

(a)

SOURCE: (ZHANG et al., 2020).
(b)

Figure 24: Lateral stability regions as a function of the longitudinal speed from different
sources.

Figure 24a shows lateral stability regions for three different longitudinal speed val-

ues. The regions are different from one another not only in size but in shape. At first

glance, one is unsure whether this is a result of low resolution, simplifications, or the

actual result of the underlying stability equations. Two inequalities have been used: one



71

which results from the characteristic equation and yields two stability boundaries, and

one controllability equation, which generates two controllability boundaries.

Figure 24b also presents lateral regions for different longitudinal speeds. The con-

trollability inequality is the same. It also arises from the linearized system. The model

used in (ZHANG et al., 2020) has the vehicle slip angle β instead of the lateral speed vgy,

but we have seen both models are equivalent in Section 2.3.2. Hence they have the same

characteristic equation. The same controllability inequality is used, and while it is not

mentioned that only positive values of front lateral stiffness are used, the images indicate

so, else the regions would be unbounded.

It is clear that the regions in Figures 24a and 24b are different in shape. Figure 24b

depicts details that appear and disappear as the longitudinal speed increases. Conse-

quently, it is difficult to use them as ESC design tools. That aside, both sources make a

mistake when obtaining an unnecessary alternate inequality when applying the Routh–

Hurwitz stability criterion. The contribution presented in this section is based on these

problems.

More specifically, our first contribution was the obtention of lateral stability regions

based on the characteristic equation of a linearized system based on as few simplifications

as possible. We also use the coefficients of the equation directly, instead of trying to solve

the inequalities for one of their parameters. Moreover, we present a method that allows for

arbitrarily high-quality images, and we generate those for more parameters than previous

studies, and for a wider range of those previously published, e.g., in (HUANG; LIANG;

CHEN, 2017; SAVA; COPAE, 2021; HUANG; CHEN, 2017; ZHANG et al., 2020).

This step was not planned when this study was being designed, but it proved necessary

in order to obtain stability regions that would be useful for electronic stability control

system design with safety-critical control, as we had planned to use such regions as safe

sets. See Sections 6.2 and 6.3.

The system model for lateral stability analysis is presented in Section 5.1.1. The

region generation algorithm and the regions themselves are shown in Section 5.1.2.

5.1.1 System model for stability analisys

Linear models have already been presented in Section 2.3.2 in the form of (2.97)–(2.98) and

(2.102)–(2.103), with the front steering angle as the input; and (2.124), with an external

moment as an additional input signal. These models describe the vehicle behavior when
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subject to small slip angles. It is implicit, with respect to (2.29) or (2.61), that by “small

slip angles” we mean values that cause a lateral force

Fy ≈ CFαα.

Under these circumstances, the vehicle will be stable and will have a steady-state value

of ψ̇, vgy, and β, which depends on the steering angle δ.

Vehicle instability results from exaggerated wheel slip angles with respect to the tire-

road friction coefficient, which causesoversteers, understeers, side slips, or loss of steering

angle responsiveness. Consequently, the aforementioned models are invalid for these LOC

or near-LOC situations. One possible solution is elementary: we linearize the system

around the current operating condition, i.e., the current state, instead of around the

equilibrium point. This means the linearization considers the current wheel slip angles,

instead of null ones.

A nonlinear system

ẋo = f(xo, u) =

[

f1(xo, u)

f2(xo, u)

]

. (5.1)

is linearized around the current state xo = [vgy(t) ψ̇(t)]
T

by

ẋ ≈ Ax+Bu, (5.2)

where we choose the change in xo, i.e., x = [∆vgy ∆ψ̇]
T

as the state vector and the

steering angle as the input signal, i.e., u = δ = δl = δr, with

A ,
∂f

∂xo
=
[

∂f

∂vgy

∂f

∂ψ̇

]

, B ,
∂f

∂u
, (5.3)

as explained in (KHALIL, 2002) and done in (HUANG; LIANG; CHEN, 2017; SAVA;

COPAE, 2021; HUANG; CHEN, 2017). Let us consider the vehicle depicted in Figure 19

(Section 2.3.2), described by (2.116)–(2.118). If we restrict the study to the lateral model,

(2.116) can be ignored, and there remain (2.117) and (2.118), which can be rewritten as

v̇gy = −vgxψ̇ +
Fyrr
mb

+
Fyrl
mb

+
cos(δr)

mb

Fyfr +
cos(δl)

mb

Fyfl , (5.4a)

ψ̈ = −
l2
Iz
(Fyrr + Fyrl) +

(

l1
Iz

cos(δl) +
lw
Iz

sin(δl)

)

Fyfl

+

(

l1
Iz

cos(δr)−
lw
Iz

sin(δr)

)

Fyfr , (5.4b)

In (HUANG; LIANG; CHEN, 2017; HUANG; CHEN, 2017), a 2D LuGre tire model
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was used to obtain the lateral forces Fyi . In (ZHANG et al., 2020), a Fiala model was

used, instead. Here, we employ a pure side-slip magic formula model, given by (2.61)–

(2.73) (see Section 2.2.2), from (PACEJKA, 2012). As a consequence, the longitudinal

forces (Fyi) are ignored, i.e., assumed to be zero, so the longitudinal speed is assumed to

be constant.

To obtain the linearized system (5.3) we must obtain the derivatives of the right-hand

side of (5.4) with respect to vgy and ψ̇. Nonetheless, most of those terms are not explicit

functions of either state variable. We can rewrite (5.1) as

f(xo, u) = fe(xo, u) + fne(xo, u)

=

[

−vgxψ̇

0

]

+

[

fne1(xo, u)

f2(xo, u)

]

(5.5)

where fe(xo, u) is explicit on x and fne(xo, u) is not. Hence A must be obtained by chain

rule as

A =

[

0 −vgx

0 0

]

+
∂fne
∂Fy

∂Fy
∂xo

. (5.6)

The second term from the right-hand side of (5.6) can be obtained from

∂fne
∂Fy

,

[

∂fne

∂Fyfl

∂fne

∂Fyfr

∂fne

∂Fyrl

∂fne

∂Fyrr

]

=





∂fne1

∂Fyfl

∂fne1

∂Fyfr

∂fne1

∂Fyrl

∂fne1

∂Fyrr

∂f2
∂Fyfl

∂f2
∂Fyfr

∂f2
∂Fyrl

∂f2
∂Fyrr



 (5.7)

and

∂Fy
∂xo

,

[

∂Fy

∂vgy

∂Fy

∂ψ̇

]

=















∂Fyfl

∂vgy

∂Fyfl

∂ψ̇
∂Fyfr

∂vgy

∂Fyfr

∂ψ̇
∂Fyrl

∂vgy

∂Fyrl

∂ψ̇

∂Fyrr

∂vgy

∂Fyrr

∂ψ̇















. (5.8)

The derivatives of the tire forces are given by

∂Fyi
∂vgy

=
∂Fyi
∂αi

∂αi
∂vgy

, (5.9)

∂Fyi
∂ψ̇

=
∂Fyi
∂αi

∂αi

∂ψ̇
, (5.10)

where Cᾱ i ,
∂Fyi

∂αi
are the local cornering stiffness.
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The derivatives of fne with respect to the lateral tire forces are given by

∂fne
∂Fy

=

[

cos(δ)
mb

cos(δ)
mb

1
mb

1
mb

l1 cos(δ)+lw1 sin(δ)
Iz

l1 cos(δ)−lw1 sin(δ)
Iz

− l2
Iz

− l2
Iz

]

. (5.11)

The tire slip angle derivatives with respect to vgy and ψ̇, which are necessary for (5.9)

and (5.10), are obtained as

∂αfl
∂vgy

= −
1

(vgx − lw1ψ̇)

[

(

vgy+l1ψ̇

vgx−lw1ψ̇

)2

+ 1

] , (5.12)

∂αfr
∂vgy

= −
1

(vgx + lw1ψ̇)

[

(

vgy+l1ψ̇

vgx+lw1ψ̇

)2

+ 1

] , (5.13)

∂αrl
∂vgy

= −
1

(vgx − lw2ψ̇)

[

(

vgy−l2ψ̇

vgx−lw2ψ̇

)2

+ 1

] , (5.14)

∂αrr
∂vgy

= −
1

(vgx + lw2ψ̇)

[

(

vgy+l2ψ̇

vgx+lw2ψ̇

)2

+ 1

] , (5.15)

∂αfl

∂ψ̇
= −

l1
vgx−lw1ψ̇

+ lw1(vgy+l1ψ̇)

(vgx−lw1ψ̇)2

(

vgy+l1ψ̇

vgx−lw1ψ̇

)2

+ 1
, (5.16)

∂αfr

∂ψ̇
= −

l1
vgx+lw1ψ̇

− lw1(vgy+l1ψ̇)

(vgx+lw1ψ̇)2

(

vgy+l1ψ̇

vgx+lw1ψ̇

)2

+ 1
, (5.17)

∂αrl

∂ψ̇
=

l2
vgx−lw2ψ̇

− lw2(vgy−l2ψ̇)

(vgx−lw2ψ̇)2

(

vgy−l2ψ̇

vgx−lw2ψ̇

)2

+ 1
, (5.18)

∂αrr

∂ψ̇
=

l2
vgx+lw2ψ̇

+ lw2(vgy−l2ψ̇)

(vgx+lw2ψ̇)2

(

vgy−l2ψ̇

vgx+lw2ψ̇

)2

+ 1
, (5.19)

where Lw1 = 2lw1 is the front track width and Lw2 = 2lw2 is the rear track width.

The local cornering stiffnesses Cᾱ i in (5.9) and (5.10) are the derivatives of (2.61)

with respect to αi,

Cᾱ i =
CyDy cos

[

Cy arctan(φ̄)
]

[

By − Ey

(

By −
By

B2
yα

2+1

)]

φ̄2 + 1
, (5.20)

with

φ̄ = Byα + Ey(arctan(Byα)−Byα), (5.21)
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are evaluated for nominal tire inflating pressure, null camber angle, and the normal tire

force from the steady-state operation, and where By, Cy, Dy, and Ey are obtained from

(2.64)–(2.73) (Section 2.2.2).

It is now convenient to mention that many of those expressions are often simplified,

both for steady-state and current-state linearized models. For instance, let us consider

the state vector derivatives, given by (5.4). It is common to consider that the vehicle is

at a sufficiently high speed so that the feasible steering angles are small, i.e., sin(δ) ≈ δ.

Alternatively, it is also customary to admit that the front and rear trackwidths are small.

The resulting state descriptions would read as

v̇gy =
1

mb

(

−mbvgxψ̇ + Fyrr + Fyrl + Fyfr + Fyfl

)

(5.22a)

ψ̈ =
1

Iz
(l1Fyfl + l1Fyfr − l2Fyrl − l2Fyrt) (5.22b)

Moreover, the tire slip angle derivatives are also simplified. Let us admit the side-slip

angle is small (β ≈ 0), or, equivalently, |vgx| ≫ |vgy|. Then (5.12)–(5.19) are rewritten as

∂αfl
∂vgy

= −
1

vgx − lw1ψ̇
, (5.23)

∂αfr
∂vgy

= −
1

vgx + lw1ψ̇
, (5.24)

∂αrl
∂vgy

= −
1

vgx − lw2ψ̇
, (5.25)

∂αrr
∂vgy

= −
1

vgx + lw2ψ̇
, (5.26)

∂αfl

∂ψ̇
= −

l1

vgx − lw1ψ̇
, (5.27)

∂αfr

∂ψ̇
= −

l1

vgx + lw1ψ̇
, (5.28)

∂αrl

∂ψ̇
=

l2

vgx − lw2ψ̇
, (5.29)

∂αrr

∂ψ̇
=

l2

vgx + lw2ψ̇
. (5.30)

Furthermore, if we assume that either the yaw rate is numerically small compared to the

longitudinal speed or the front and read trackwidths are small (i.e., the bicycle model

assumption lw1, lw2 ≈ 0), (5.23)–(5.30) are reduced to

∂αfl
∂vgy

= −
1

vgx
, (5.31)
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∂αfr
∂vgy

= −
1

vgx
, (5.32)

∂αrl
∂vgy

= −
1

vgx
, (5.33)

∂αrr
∂vgy

= −
1

vgx
, (5.34)

∂αfl

∂ψ̇
= −

l1
vgx

, (5.35)

∂αfr

∂ψ̇
= −

l1
vgx

, (5.36)

∂αrl

∂ψ̇
=

l2
vgx

, (5.37)

∂αrr

∂ψ̇
=

l2
vgx

. (5.38)

For instance, in case one assumes all those simplifications, one obtains

ẋ = Ax+Bu (5.39)

with

A =





−
Cᾱf

+Cᾱr

mbvgx
−
Cᾱf

l1−Cᾱr l2

mbvgx
− vgx

−
Cᾱf

l1−Cᾱr l2

Izvgx
−
Cᾱf

l2
1
+Cᾱr l

2
2

Izvgx



 B =





Cᾱf

mb

Cᾱf
l1

Iz



 (5.40)

where Cᾱf
, Cᾱ fl + Cᾱ fr and Cᾱr

, Cᾱ rl + Cᾱ rr are the local front and rear axles

cornering stiffnesses. It can be observed that (5.39) is very similar to (2.97), where

the local cornering stiffnesses are substituted for the cornering stiffnesses. Hence that

model assumes all the aforementioned substitutions have been considered. These models

have been used in (HUANG; LIANG; CHEN, 2017; SAVA; COPAE, 2021; HUANG;

CHEN, 2017; ZHANG et al., 2020). In this study, instead, none of the aforementioned

simplifications have been considered. As a result, the terms of the dynamic matrix A are

too lengthy to be expressed here.

5.1.2 Stability region generation

The method of obtaining the linearized system dynamic matrix was described in Sec-

tion 5.1.1. First, all local cornering stiffnesses are obtained from the current state and

(5.20). After that, the derivatives of the tire forces are calculated by substituting the

local cornering stiffnesses and (5.12)–(5.19) in (5.9) and (5.10), and then these in (5.8).

Finally, A is evaluated by substituting (5.11) and (5.8) in (5.6).
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The characteristic polynomial p(A) is given by

p(A) = |λI−A| = λ2 + a1λ+ a2. (5.41)

The system is stable, according to the Routh–Hurwitz stability criterion, if a1, a2 >

0. This condition can be made simpler, as a1 is always positive for practical vehicle

parameters, e.g., vehicle mass is positive and the vehicle’s center of mass lies between

both axles, or l1, l2 > 0. Hence we can consider only a2 > 0 as the stability criterion.

In (HUANG; LIANG; CHEN, 2017; ZHANG et al., 2020), the simplifications pre-

sented in Section 5.1.1 have all been considered, and the stability criterion has been

rewritten with respect to the vehicle’s local lateral stiffness (Cᾱf + Cᾱr). However, since

the condition is an inequality, proper algebra must be carried out, but this was not the

case in said studies. As this was an unnecessary step, and since we have not used such

simplifications, we have simply used the stability condition as-is, as it is simple enough to

obtain the independent term a2 of the characteristic equation out of a 2× 2 matrix whose

numerical values are known.

Therefore, at any instant, we assume vgx(t), vgy(t), and ψ̇(t) are known. Hence we can

obtain the wheel slip angles from (2.112)–(2.115), and then, from those, the local lateral

stiffness of each tire. Hence A is known, and the stability at vgx(t), vgy(t) can be assessed.

It is, however, not enough that the vehicle is stable in its trajectory. Since we assume

a driver is operating it, said vehicle must be subject to hiscommands and must behave

accordingly. A wheel can influence the trajectory of the vehicle if its local cornering

stiffness is nonzero. Even so, at high slip angles, the influence is opposite of what the

driver would expect, i.e., the lateral force absolute value decreases as the magnitude of the

slip angle increases. Consequently, we shall assume a wheel is controllable when Cᾱ,i > 0,

i = {fl, fr, rl, rr}.

A less conservative controllability condition would be restricted to the steerable axle.

As a consequence, for a vehicle with front steering, the controllability condition would be

Cᾱf > 0. We have considered more conservative conditions, which are to have every wheel

contributing to the lateral force on the vehicle, i.e., Cᾱ,i > 0, as previously stated. This

assumes the vehicle is not considered to be controllable when oversteering, which, when

applied to control applications (see Section 6.2), means we wish to avoid such situations.

This makes sense since drifting maneuvers are illegal on public roads in almost every

country, but might be relaxed for race or off-road applications, which are beyond the

scope of this text.
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As a consequence, a stability region generation procedure is proposed.

Procedure 1 (Lateral stability region generation).

1. Generate four lattices on the vgy × ψ̇ plane, one for the stability condition, one for

the front axle controllability, one for the rear axle controllability, and one for the

effective stability

2. For each point on the lattice, verify

(a) the stability condition a2 > 0,

(b) the front wheels controllability conditions Cᾱ,i > 0, i = {fl, fr}

(c) the rear wheels controllability conditions Cᾱ,i > 0, i = {rl, rr}

3. in case the previous conditions are satisfied, the lattice point is part of the effective

stability region.

The lattices can be stored in logical or Boolean matrices to save memory.

We consider a vehicle with the parameters listed in Table 1 in this section. The tire

and wheel parameters have the default values from MATLAB Vehicle Dynamics Blockset

(VDB) (MATHWORKS, 2020), listed in Table 2. In this regard, the scaling factors λ and

the ζi parameters in (2.64)–(2.73) have the default value of 1, except for λ′µy, which is 0.

In other words, we have not considered the effects of camber and turn slip.

Table 1: Vehicle parameters

Parameter Value
mb 1181 kg
Iz 2066 kg·m2

l1 1.515 m
l2 1.504 m
Lw 1.922 m

Table 2: Lateral force parameters.

Parameter Value Parameter Value Parameter Value
pCy1 1.343000 pKy2 1.731265 pV y3 -0.163544
pDy1 0.878268 pKy3 0.365350 pV y4 -0.491003
pDy2 -0.064460 pKy4 1.981768 ppy1 -0.620596
pDy3 0 pKy5 0 ppy2 -0.064782
pEy1 -0.809776 pKy6 -0.884005 ppy3 -0.164649
pEy2 -0.600181 pKy7 -0.237260 ppy4 0.283194
pEy3 0.099173 pHy1 -0.001834 ppy5 0
pEy4 -6.557797 pHy2 0.003464 W0 4000
pEy5 0 pV y1 -0.006754
pKy1 -15.57147 pV y2 0.036379
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Seldom does the literature present stability regions as a function of several different

parameters. Alternatively, we present them as a function of the steering angle, longitudi-

nal speed, road-tire friction coefficient, and longitudinal center of mass displacement.

The stability regions obtained from Procedure 1 with respect to the steering angle are

shown in Figure 25, for a longitudinal speed of 60 km/h (vgx = 16.67 m/s) and dry asphalt

road (µ = 0.8). In pursuance of obtaining them, the lattices have been transformed into

bitmaps where the pixels are colored black for stable points and white for unstable ones.
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Figure 25: Stability case for vgx = 60 km/h, µ = 0.8, and varying δ.

Our procedure was able to detect shape changes with respect to steering angles. This

dependency was not well documented in the pertaining literature (HUANG; LIANG;

CHEN, 2017; HUANG; CHEN, 2017; ZHANG et al., 2020; HUANG; YONG; CHEN, 2019,

2021), which shows regions that maintain their shape as the steering angle changes. In

particular, we observe that this dependency is more pronounced for large steering angles.

As emergency maneuvers often call for near-limit steering and there is a possibility of

overcorrection from the driver, this dependency will be considered for control applications,

e.g., Sections 6.2 and 6.3.
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The controllability regions for vgx = 16.67 m/s (or 60 km/h) are depicted in Figure 26.

In this figure, the controllability region boundaries are coded by different line styles for

steering angle increments of 20◦. The regions are the intersection of both front and

rear wheels under positive local lateral stiffness. The larger the steering angle, the more

deformed the controllability region becomes. For small values, they have a diamond-like

shape.
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Figure 26: Controllability case for vgx = 60 km/h, µ = 0.8, and varying δ. Dashed line:
δ = −π/6 rad (−30◦). Dotted line: δ = −π/18 rad (−10◦). Dash-dot line: δ = π/18 rad
(10◦). Continuous line: δ = π/6 rad (30◦).

The intersection of the regions from Figures 25 and 26 yields the effective controlla-

bility regions, depicted in Figure 27. These are the regions that will be used for control

applications since ESC aims to keep the vehicle both stable and controllable. The regions

for low steering angles do bear a resemblance to some of the ones seen in the literature,

but they are presented here in much greater detail. As the steering angle magnitude

increases, they get deformed due to the combined effects of stability and controllability

as functions of that variable.

The longitudinal speed also has a noticeable impact on the stability regions. We

present them for a wide range of speeds that is compatible with public roads. More

specifically, for vgx ranging from 10 km/h (2.778 m/s) to 100 km/h (27.78 m/s), which
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Figure 27: Effective stability regions for vgx = 60 km/h, µ = 0.8, and varying δ. Dashed
line: δ = −π/6 rad (−30◦). Dotted line: δ = −π/18 rad (−10◦). Dash-dot line: δ =
π/18 rad (10◦). Continuous line: δ = π/6 rad (30◦).

can accommodate maneuvers from parking lots to controlled-access highways.

The stability condition regions for a null steering angle and µ = 0.8 are shown in

Figure 28. We observe that the neighborhood around the origin increases with the longi-

tudinal speed.

The controllability regions for null steering angle and µ = 0.8 for different longitudinal

speeds are presented in Figure 29. The low-speed regions are shown in Figure 29a, whereas

the high-speed ones are in Figure 29b. They increase with speed, the reason being that

slip angles are not changed if vgy and ψ̇ are proportional to vgx.

The effective stability region as a function of the longitudinal speed, which results

from Figures 28 and 29, is depicted in Figure 30. The resulting region is similar to the

controllability one for low-speed values. For higher longitudinal speeds, it becomes closer

to an hourglass-like shape that becomes thinner as the speed increases. This phenomenon

occurs because the narrower stability region at high speeds is restricted by the larger

controllability region.

The tire-road friction coefficient is one of the main sources of uncertainty in vehicle

dynamics, and the most influential for vehicle stability. The stability regions with respect

to the friction coefficient are depicted in Figure 31. The regions appear to be proportional

to µ, which would be expected in case we were considering (5.39), as most terms in A from
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(5.40) have cornering stiffnesses as factors. And it can be observed from (2.46) or (2.47)

that the friction coefficient is a factor of both longitudinal and lateral stiffnesses—and

hence also a factor of their derivatives, which are the local cornering stiffnesses.

Figure 32 presents the controllability regions for varying friction coefficients, while

Figure 33 shows the effective stability regions from Figures 31 and 32. Since the forces on

the wheels have the cornering stiffnesses as a factor, and the friction coefficient, in turn,

has µ as a factor, the controllability regions are also proportional.

We can see that a friction coefficient reduction causes an immediate reduction in the

stable region of operation. Since friction depends on several road aspects (pavement type,

debris, rain, or oil), this is a largely unpredictable parameter.

At last, we present the effect on the stability regions from another varying parameter:

the center of mass. As the vehicle is loaded with passengers and luggage, its center of mass

may be shifted from the front to the rear, or the other way around. Here, we portray the

effect of longitudinal displacement of the center of mass on lateral stability. To accomplish

this, instead of considering all the dimensions from Table 1, we keep the same wheel base,

l = l1 + l2, and consider increments of 0.2l for l1. Hence we present stability regions for

l1 = {0.2l, 0.4l, 0.6l, 0.8l}.

The stability regions are presented in Figure 34. It can be observed that the stability

region around the origin is slightly reduced as the center of mass approaches the rear axle.

Figure 35 shows the controllability condition. As in Figure 34, the deformation in the

respective region is not pronounced.

The effective stability region for a varying center of mass is presented in Figure 36. It

is perceived that the longitudinal displacement of the center of mass has a minor influence.

More specifically, the region shrinks in the direction of the shifting vector, as l1 increases,

and expands in the perpendicular direction. Both deformations are modest, as expected

from Figures 34 and 35.
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(d) vgx = 11.11 m/s (40 km/h).

-4 -2 0 2 4

 2

 0

-2

(e) vgx = 19.44 m/s (70 km/h).
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(g) vgx = 25.00 m/s (90 km/h).
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(h) vgx = 27.78 m/s (100 km/h).

Figure 28: Stability case for δ = 0 rad, µ = 0.8, and varying vgx.
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(a) Dashed line: vgx = 2.778 m/s (10 km/h). Dotted line: vgx = 5.556 m/s (20 km/h).
Dash-dot line: vgx = 8.333 m/s (30 km/h). Continuous line: vgx = 11.11 m/s (40 km/h).
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(b) Dashed line: vgx = 19.44 m/s (70 km/h). Dotted line: vgx = 22.22 m/s (80 km/h).
Dash-dot line: vgx = 25.00 m/s (90 km/h). Continuous line: vgx = 27.78 m/s (100 km/h).

Figure 29: Controllability conditions for δ = 0 rad, µ = 0.8, and varying vgx.
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(a) Dashed line: vgx = 2.778 m/s (10 km/h). Dotted line: vgx = 5.556 m/s
(20 km/h). Dash-dot line: vgx = 8.333 m/s (30 km/h). Continuous line:
vgx = 11.11 m/s (40 km/h).
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(b) Dashed line: vgx = 19.44 m/s (70 km/h). Dotted line: vgx = 22.22 m/s
(80 km/h). Dash-dot line: vgx = 25.00 m/s (90 km/h). Continuous line:
vgx = 27.78 m/s (100 km/h).

Figure 30: Effective stability regions for δ = 0 rad, µ = 0.8, and varying vgx.
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(d) µ = 0.8.

Figure 31: Stability case for vgx = 60 km/h, δ = 0 rad, and varying µ.
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Figure 32: Controllability case for vgx = 60 km/h, δ = 0 rad, and varying µ. Dashed line:
µ = 0.2. Dotted line: µ = 0.4. Dash-dot line: µ = 0.6. Continuous line: µ = 0.8.
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Figure 33: Effective stability regions for vgx = 60 km/h, δ = 0 rad, and varying µ. Dashed
line: µ = 0.2. Dotted line: µ = 0.4. Dash-dot line: µ = 0.6. Continuous line: µ = 0.8.
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Figure 34: Stability case for vgx = 60 km/h, µ = 0.8, δ = 0 rad, and varying longitudinal
center of mass. Dashed line: l1 = 0.2l. Dotted line: l1 = 0.4l. Dash-dot line: l1 = 0.6l.
Continuous line: l1 = 0.8l.
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Figure 35: Controllability case for vgx = 60 km/h, µ = 0.8, δ = 0 rad, and varying
longitudinal center of mass. Dashed line: l1 = 0.2l. Dotted line: l1 = 0.4l. Dash-dot line:
l1 = 0.6l. Continuous line: l1 = 0.8l.
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Figure 36: Effective stability regions for vgx = 60 km/h, µ = 0.8, δ = 0 rad, and varying
longitudinal center of mass. Dashed line: l1 = 0.2l. Dotted line: l1 = 0.4l. Dash-dot line:
l1 = 0.6l. Continuous line: l1 = 0.8l.
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5.1.2.1 Conservative regions

In Chapter 6, the control design will consider some degree of conservativeness with respect

to ranges of values for some parameters. As seen, the stability regions are a function of

several vehicle parameters. If they are time-variant, we can consider the controllability

and stability criteria for the range of values that is expected for the interval of time that is

under consideration. We refer to stability regions that are valid over a range of parameters

as conservative stability regions.

We initially consider the steering angle. Let us admit that the steering angle will

change as the vehicle performs a class of maneuvers that demands a maximum value to

be performed. It was seen in Figure 27 that the stability regions are shifted when the

steering angle changes. In order to account for this effect, we will consider the shifting

vector from (HUANG; CHEN, 2017). The shifting vector is defined as the change s in the

state vector [vgy ψ̇]
T

from (2.97)–(2.98) such that the wheel slip angles are unchanged

when the steering angle changes from zero to δ and is given by

s =

[

s1

s2

]

=

[

vgxl2δ

l

vgxδ

l

]

. (5.42)

When the shifting vector is used, the vgy× ψ̇ plane is transformed into the (vgy−s1)×

(ψ̇ − s2) plane, where the stability regions are centered at the origin. For instance, let

the maximum value be π/18 rad, π/9 rad, and π/6 rad (10◦, 20◦, and 30◦, respectively).

Then the conservative stability regions are depicted in Figure 37.

We recall from Figure 27 that the shapes of lateral stability regions change as the

steering angle increases. For large steering angles, this change is pronounced. Hence

the conservative stability region dramatically shrinks as the maximum steering angle

increases. This reduction is related to the larger tire slip angles which result from a given

longitudinal speed and large steering angles.

The realization of conservative stability regions for a range of longitudinal speeds is,

in turn, trivial. We have observed in Figure 30 that the regions that result from larger

longitudinal speeds are also larger, and contain the regions for lower speeds. Hence the

effective stability regions for the range of speeds from Figures 30a and 30b are those that

result from the lowest values, viz., 2.778 m/s and 19.44 m/s (10 km/h and 70 km/h), in

the respective order, which are the regions whose frontiers are depicted in dashed lines.

The generation of conservative stability regions for varying tire-road friction coef-



90

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-1.5

-1

-0.5

0

0.5

1

1.5

Figure 37: Conservative stability regions for vgx = 60 km/h, µ = 0.8, and different δ
amplitude. Continuous line: δ ∈ {−π/18 rad, π/18 rad} ({−10◦, 10◦}). Dash-dot line:
δ ∈ {−π/9 rad, π/9 rad} ({−20◦, 20◦}). Dotted line: δ ∈ {−π/6 rad, π/6 rad} ({−30◦,
30◦}).

ficients is analogous to varying longitudinal speeds, i.e., they reduce as the respective

variable decreases. As a consequence, for instance, the conservative stability region for

µ ∈ {0.2, 0.8} is that in dashed line, in Figure 33; and for µ ∈ {0.6, 0.8}, in dash-dot line.

We also mention that we can generate conservative stability regions for more than

one varying parameter. For instance, varying steering angle and friction coefficient. In

that case, in accordance with what has been observed, we would obtain the region by

considering the lowest friction coefficient and the maximum steering angle amplitude.

For the sake of brevity, we will present a last conservative stability region example in

Figure 38, for the same additional parameter that was previously considered for stabil-

ity regions, i.e., longitudinal center of mass shift. In particular, Figure 38 presents the

effective stability region for l1 = {0.02l, 0.98l}. Of course, these extreme values of l1 of

either just 2 % or 98 % of the wheel base of the vehicle would be a major problem for

longitudinal stability. However, it can be observed, by comparing Figures 38 and 36, that

the effect on lateral stability is relatively small.

5.2 Stability Region Conclusions

This chapter presented an improved method of generating lateral stability regions. The

method considers a magic formula model for the steady-state tire dynamics and a four-
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Figure 38: Conservative stability region for vgx = 60 km/h, µ = 0.8, δ = 0 rad, and
l1 = {0.02l, 0.98l}.

wheel vehicle model. Methods of obtaining stability regions for varying parameters were

presented, along with several examples. As instances, we presented regions for varying

longitudinal speeds, steering angles, tire-road friction coefficients, and longitudinal center

of mass displacements. Finally, we introduced a method of obtaining conservative stability

regions. These remain valid for a range of different parameters and can be considered for

control design when dealing with varying or unknown model parameters.
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6 ACTIVE FRONT STEERING

The vast majority of road vehicles use front steering wheels. Hence the strategy of in-

stalling active steering systems on those vehicles is known as active front steering. When

applied to ESC, AFS systems read the steering angles from the driver and change the

resulting steering angles of the front wheels so as to maintain or recover lateral stability.

The resulting control scheme is very similar to what is depicted in Figure 20 but uses

steering angles and control inputs, instead of braking pressures.

When we started our review of safety-critical control ESC systems, the only proposed

implementations for ESC used active steering (HUANG; YONG; CHEN, 2019, 2021). We

reimplemented those and found shortcomings in the proposed control methods. In par-

ticular, the stability regions used in the design process had low definition, the maneuver

used to validate the proposal was not enough to induce vehicle instability, the safe set em-

ployed in the control design had regions where it was impossible to guarantee invariance,

and there was a nonzero steady-state value for the steering angle input.

The first problem was dealt with in Chapter 5. We now present electronic stability con-

trol systems that eliminate the remaining problems observed in (HUANG; YONG; CHEN,

2019) and improve the design criterion by employing the effective stability regions shown

in Section 5.1.2. Before we present our contribution, we first recall the safety-critical im-

plementation from (HUANG; YONG; CHEN, 2019) in Section 6.1. After that, Section 6.2

presents solutions to the previously described problems. Following, Section 6.3 introduces

an alternative formulation that is less conservative. Finally, Section 6.4 summarizes the

chapter.

6.1 A first active front steering safety critical ESC

Let us consider the safety-critical control formulation from Section 4.3, which considers

the invariance theory from Section 4.2, given by the CLF-CBF-QP problem, expressed by
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(4.21) (AMES et al., 2017, 2019). We repeat it here, for ease of reference:

argmin
u∈U
δ∈R

1

2
(u− uref )

T
H(u− uref ) + pδs (6.1)

subject to LfV (x) + LgV (x)u+ γ(V (x)) ≤ δs (6.2)

Lfh(x) + Lgh(x)u+ α(h(x)) ≥ 0. (6.3)

Despite being a flexible formulation, it has the limitation of not allowing barrier functions

that depend on the control input. However, an ESC system that uses AFS has the front

steering wheels angle δf as the control input, and as seen in Figure 27, the effective

stability region is heavily dependent on the said variable. As a consequence, an extension

of control barrier functions has been presented in (HUANG; YONG; CHEN, 2019) to

accommodate this dependency.

More specifically, a control-dependent barrier function h(x,u) is proposed by (HUANG;

YONG; CHEN, 2019) to deal with the problem of having safe sets that depend on the

control input. This extra functionality comes at the expense of restricting u to be dif-

ferentiable, however. In particular, an augmented system is defined by adding u as a

state

˙̂x =

[

ẋ

u

]

=

[

f(x,u)

ωu

]

= f̂(x̂, ωu), (6.4)

with x̂ , [x u]T. In other words, (6.4) defines a new system where u is part of the state

and its derivative is the new input. Consequently, the safe set is defined with the aid of

h(x,u) in terms of the new state x̂ as

Definition 6 (Control-dependent barrier function (HUANG; YONG; CHEN, 2019)). Let

h satisfy

h(x,u) ≥ 0, ∀x ∈ C(x,u) (6.5)

h(x,u) = 0, ∀x ∈ fr (C(x,u)) (6.6)

h(x,u) > 0, ∀x ∈ Int (C(x,u)) . (6.7)

If there exists a control input u ∈ U , ωu ∈ Ωu and an extended class κ function α such

that

Lf̂h(x,u) + α(h(x,u)) ≥ 0, (6.8)

then h is a control-dependent barrier function and C is a control-dependent safe set.

The proposal in (HUANG; YONG; CHEN, 2019) is to use a stability region from
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(HUANG; LIANG; CHEN, 2017), adjust four polynomials as its boundaries, adapt them

to barrier functions, and use (6.8) in place of (6.3) in (6.1) to close the loop, using the

steering wheel as control input in (2.97)–(2.98). Then the (linearized) model of the vehicle

is written as

ẋ = Ax+Bδ (6.9)

with x = [vgy ψ̇]
T

and δ = δd + δu, where δd is the front steering angle which is due to

the driver and δu is an addend from the ESC system that is supposed to be null whenever

the vehicle is stable. As a consequence, u = u = δu in the referred proposal.

As explained in Chapter 5, the images from (HUANG; LIANG; CHEN, 2017) lack

detail, making it difficult to adjust polynomials to their frontier. As a result, we will

use the regions presented in this text instead, namely the conservative effective stability

regions, to account for longitudinal speed losses which would happen with a real vehicle

and steering angle changes.

Let b1, b2, b3, and b4 be the polynomials that describe the frontier of the safe set,

as depicted in Figure 39, for δ = 0 rad. Next, we can obtain control barrier function

candidates as (HUANG; YONG; CHEN, 2019)

h1(x,u) = b1(vgy − s1)− (ψ̇ − s2), (6.10)

h2(x,u) = b2(vgy − s1)− (ψ̇ − s2), (6.11)

h3(x,u) = ψ̇ − s2 − b3(vgy − s1), (6.12)

h4(x,u) = ψ̇ − s2 − b4(vgy − s1), (6.13)

which satisfy h1,2,3,4 > 0, x ∈ C, with C as in Figure 39.

The control signal can be obtained by solving the CBF-QP problem given by

u̇⋆ = argmin
u̇∈Rm

1

2
u̇THu̇+ FTu̇, (6.14)

subject to

∂hi(x,u)

∂x
f(x,u) +

∂hi(x,u)

∂u
u̇+ ζ(hi(x,u)) ≥ 0, (6.15)

where H ∈ R
m×m is postive-definite and F ∈ R

m. Then u can be obtained by integrating

u̇⋆.

The closed-loop system that was just described can maintain the state in the safe

set for some classes of driver inputs δd(t). But not all. For instance, let us consider

the driver input given in Figure 40. The state vector trajectory in the shifted plane
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Figure 39: Conservative stability region for δ ∈ {−π/12 rad, π/12 rad} ({−15◦, 15◦}).
The functions b1, b2, b3, and b4 describe the limits of the region.

(vgy − s1)× (ψ̇ − s2) is presented in Figure 41.

Before we proceed, we mention that it is possible to adjust the safe set—and the

respective CDBF candidates—by bringing h2 and h4 closer to one another. By proceeding

in this manner, we obtain the shifted state trajectory depicted in Figure 42. However, the

respective input signal is as shown in Figure 43. In particular, it is important to observe

that the steady-state value of the control signal δu is nonzero (Figure 43a). This has an

undesirable effect: the steady-state value of the effective front steering angle, which is the

sum of the angles from the driver and the ESC system, is nonzero, as shown in Figure 43b.

After the driver performs the maneuver from Figure 40, he moves the steering wheel to a

neutral angle, which means he wants the vehicle to move in a straight line. However, if a

barrier ever becomes active, the steady-state value of the input signal does not return to

zero—only its derivative does—which leaves the driver with a modified steering system

that looks twisted.

As a result, we notice two problems in this proposal from the literature. The first

problem is that the ability of the safety-critical control system to effectively guarantee

the safety conditions depends on which barrier becomes active. In particular, h2 and h4

are responsive barriers, which generate a proper control input in terms of preventing the
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Figure 40: Possible front wheel steering angles for a driver input.
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Figure 41: Shifted system state with respect to the centered safe set. Continuous line:
shifted system trajectory. Dashed line: safe set frontier.
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Figure 42: Shifted system state with respect to the modified centered safe set with h2 and
h4 closer to one another. Continuous line: shifted system trajectory. Dashed line: safe
set frontier.
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(b) Final front wheels steering angle.

Figure 43: Control input and effective front steering angle for the modified centered safe
set with h2 and h4 closer to one another.
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safety condition to be disrespected. The other problem is the steady-state behavior of the

steering system, which changes after the ESC system responds to harsh maneuvers, i.e.,

after it intervenes to compensate for the driver’s inputs.

In Section 6.2 we further clarify the reasons behind the aforementioned problems and

propose an AFS ESC system based on safety-critical control that solves them.

6.2 Active front steering with control-dependent Lya-

punov function

In Section 6.1 we presented an AFS system that may fail to maintain the state inside the

safe set at all times, for any possible maneuver. Also, if it ever becomes active, this AFS

system leaves a systematic error in the steering system, so the driver has to compensate

for a deviation to either side of the road, permanently.

We show that the ability of the safety-critical control system to satisfy the safety

restrictions is related to the dimension of the control input being less than the dimension

of the safe set. Moreover, the safe set in (HUANG; YONG; CHEN, 2019) is concave,

which makes it possible for the state to reach areas where the input is unable to steer the

safe set and the state so that the safety restriction is satisfied.

Assume the driver moves the steering wheel in a counter-clockwise direction (δd > 0).

This moves the safe set in the direction of the shifting vector s while inducing a state

derivative such that the yaw rate increases while the lateral speed becomes negative, i.e.,

ψ̇ > 0, vgy < 0. These three phenomena, combined, may steer the state to the intersection

of h1 and h4, as depicted in Figure 44. Let xb be the state in that situation. The time

derivative of the state vector is such that it shall leave the safe set if no control action

is performed. However, assume a small change ∆δu in the steering angle, either positive

or negative. No matter what direction is used, the safe set moves away from the state,

as shown in greater detail in Figure 44b. Hence it is impossible to satisfy the safety

restrictions.

We have now established that concave safe sets cannot have their invariance guar-

anteed by scalar inputs, at least not in general. Consequently, we might assume that

considering any convex set, together with the control method from Section 6.1, should

solve the problem. Thus, let us consider a safe set candidate with the shape of a parallel-

ogram, as presented in Figure 45a.

Especially, let us consider b1, b2, b3, and b4 as straight lines, i.e., first-order polyno-
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(a) Variation of the control-dependent safe sets
for δ = 0.1745 rad (10◦), considering a change of
±1◦.
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(b) Detail of the effect of changing δ for xb at the
boundary of the safe set for positive and negative
steering angle changes.

Figure 44: Control-dependent safe sets for µ = 0.8, vgx = 60 km/h, and a maximum
δ = 0.2618 rad (15◦), for different steering angles. Dash-dot line: δ = 0.1571 rad (9◦).
Continuous line: δ = 0.1745 rad (10◦). Dashed line: δ = 0.1920 rad (11◦).
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(a) Parallelogram-shaped control-dependent safe
set candidate for maximum δ = π/12 rad (15◦).
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(b) Detail of the effect of changing δ for xb at the
boundary of the safe set for positive and negative
steering angle changes.

Figure 45: Parallelogram-shaped control-dependent safe set candidate for µ = 0.8, vgx =
60 km/h, and a maximum δ = π/12 rad (15◦), for different steering angles. Dash-dot line:
δ = 0.1571 rad (8◦). Continuous line: δ = 0.1745 rad (10◦). Dashed line: δ = 0.1920 rad
(12◦).
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mials, with b1 and b3 in the direction of s, as depicted in Figure 45b. This causes h2 and

h4 to be dependent on the control input δu, and h1 and h3 to be independent of it. The

consequence is that when a state xb is about to leave the safe set, e.g., through h1 as in

Figure 45b, the control input has no effect, and the state does trespass the barrier.

An investigation into the subject concludes that h1 and h3, as previously described,

are in fact not control barrier functions, since they do not satisfy the condition expressed

by (6.8) at the frontier. This is why we have used the expression “control barrier function

candidate” when referring to them. There are two possible solutions for this problem: to

use relative-degree-2 control barrier functions, as in Section 4.3.1, and to use a convex

safe set that does not have a frontier that is parallel to s.

Let us pursue the last solution. We propose a systematic procedure to obtain a

parabolic control-dependent barrier function inscribed in any conservative stability region.

This would result in an ellipsoidal control-dependent safe set, as presented in Figure 46.

The CDBF which establishes the region from Figure 46 is obtained from successive lin-
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0

0.5
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Figure 46: Ellipse-shaped safe set for a conservative stability region with vgx = 60 km/h,
µ = 0.8, and varying δ.

ear transformations from the parallelogram inscribed in the conservative stability region

(e.g., Figure 45a). To obtain further conservativeness, a margin between the inscribed

parallelogram and the stability region may be specified.

First, the parallelogram is obtained from a conservative stability region. Let its sides

be bi, i ∈ {1, 2, 3, 4}, as in Figure 47a, and its vertices be P1, P2, P3, P4, defined, in the
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respective order, as the coordinates of the intersections of b1 and b2, b2 and b3, b3 and b4

and b1 and b4. We can transform the parallelogram from Figure 47a into the rhombus

-1.5 -1 -0.5 0 0.5 1 1.5
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-0.5
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0.5

1

(a) Parallelogramic region where the elliptic safe
set shall be inscribed.
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(b) Rhombic region which results from the first
linear transformation.

Figure 47: Safe set linear transformation.

from Figure 47b by applying a base change to vgy, ψ̇ defined by the base-change matrix

P1 , [v2 v1]
−1 , v1 = P1, v2 = P2. (6.16)

Subsequently, we can change the rhombus into an inclined square through another base

change, described by

P2 , diag

{

v1
v2
, 1

}

. (6.17)

In (6.17), v1 and v2 are obtained from the coordinates of the vertices of the rhombus,

which are [0 ± v1] and [±v2 0]. Subsequently, the inclined square is transformed into an

upright one by a 45◦ rotation matrix given by

P3 ,

[

cos(π
4
) sin(π

4
)

− sin(π
4
) cos(π

4
)

]

. (6.18)

The transformations that result from P1, P2 and P3 are depicted in Figure 48a. The next

steps are to inscribe a circle into the upright square, and then gradually change it into an

ellipse that is inscribed into the parallelogram from Figures 45a or 47a.

We then inscribe a circle with radius a equal to half the side of the upright square in

it, described by
x2

a2
+
y2

a2
− 1 = 0, (6.19)
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(a) Linear transformations from a parallelogram to an upright square.
Dashed line: original parallelogram. Dotted line: first transformation,
rhombus. Dash-dot line: second transformation, inclined square. Contin-
uos line: third transformation, upright square.
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(b) Relative transformations from an inscribed circle to an inscribed el-
lipse. Dashed line: inscription in the upright square. Dotted line: inscrip-
tion in the inclined square. Dash-dot line: inscription in the rhombus.
Continuos line: inscription in the parallelogram.

Figure 48: Iterative transformations for obtaining a parabolic CDBF.
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or
[

vgy

ψ̇

]T [
1
a2

0

0 1
a2

][

vgy

ψ̇

]

− 1 = 0, (6.20)

in matrix form.

The circle can be inscribed into the inclined square by using

(

P3

[

vgy

ψ̇

])T [
1
a2

0

0 1
a2

]

P3

[

vgy

ψ̇

]

− 1 = 0, (6.21)

into the rhombus by

(

P3P2

[

vgy

ψ̇

])T [
1
a2

0

0 1
a2

]

P3P2

[

vgy

ψ̇

]

− 1 = 0, (6.22)

and into the parallelogram by

(

P3P2P1

[

vgy

ψ̇

])T [
1
a2

0

0 1
a2

]

P3P2P1

[

vgy

ψ̇

]

− 1 = 0. (6.23)

The successive transformations from (6.21)–(6.23) are shown in Figure 48b. Then h(x, u)

can be obtained as

h(x, u) =

(

P3P2P1

[

vgy − s1

ψ̇ − s2

])T [
1
a2

0

0 1
a2

]

P3P2P1

[

vgy − s1

ψ̇ − s2

]

+ 1. (6.24)

Before applying (6.24), we recall that there remains a problem, the steady-state value

of δu in Section 6.1. The control input does not return to zero because the CDBF extension

substitutes its derivate for it in the respective quadratic programming problem. The

derivative is minimized instead, as a consequence.

We introduce an analogous extension to control Lyapunov functions to deal with this

difficulty. We wish to also minimize the absolute value of u, which we accomplish by

minimizing u2. However, u does not depend on the state, but on the control input. Hence

it is natural that we introduce a control-dependent Lyapunov function, defined as

Definition 7 (Control-dependent Lyapunov function). If V (x,u) is positive-definite, with

the control input u ∈ U , ωu ∈ Ωu and an extended class κ function γ such that

inf
ωu∈Ωu

(

Lf̂V (x,u)
)

+ γ(V (x,u)) ≤ 0, (6.25)

then V is a control-dependent Lyapunov function.
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We recall, based on (6.4), that

Lf̂V (x,u) =
∂V (x,u)

∂x
f(x,u) +

∂V (x,u)

∂u
ωu. (6.26)

Control-dependent Lyapunov functions (Definition 7) are much more general than the

specific use we have just considered. Instead of simply minimizing the control input, they

can be used to track a reference that depends on the control input.

Then we can adapt the CDBF-QP problem, including the CDLF condition as a soft

constraint, and enunciate the CDLF-CDBF-QP problem as

u̇⋆ = argmin
u̇f∈R

m+1

1

2
u̇T
fHu̇f + FTu̇f , (6.27)

subject to

∂V (x,u)

∂x
f(x,u) +

∂V (x,u)

∂u
u̇+ γ(V (x,u))− δs ≤ 0,

∂h(x,u)

∂x
f(x,u) +

∂h(x,u)

∂u
u̇+ ζ(h(x,u)) ≥ 0,

where u̇f , [u̇ δs]
T. Similarly to the CLF-CBF-QP problem, expressed in (4.21), δs is

a relaxation variable used to make the stability or tracking objectives a soft constraint.

The safety restriction, which uses h, remains a hard constraint.

The desirable tracking condition for the AFS application is that the steering angle

change from the ESC system, given by δu, is null whenever possible. This can be achieved

by a trivial quadratic CDLF written as

V (x, u) = V (u) = u2. (6.28)

We are now able to fully specify the CDLF-CDBF-QP problem for the AFS application

in study. We have

H =

[

pu 0

0 pδ

]

, F =

[

0

0

]

, (6.29)

with pu and pδ as the penalty weights for ωu and δs, respectively; h(x,u) given by (6.24);

and V (x, u) given by (6.28).

Third-party optimization software is likely to require problems to be expressed in

standard form. The QP in (6.27) satisfies this requirement, but the restrictions that

follow do not. With this objective in mind, we can rewrite them as

Aqpu̇f ≤ bqp, (6.30)
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with

Aqp ,

[

∂V (x,u)
∂u

−1

−∂h(x,u)
∂u

0

]

, (6.31)

bqp ,

[

−∂V (x,u)
∂x

f(x,u)− γ(V (x,u))
∂h(x,u)
∂x

f(x,u) + ζ(h(x,u))

]

. (6.32)

The class-κ functions γ(·) and ζ(·) are defined as

γ(V (x,u)) = cV V (x,u) ζ(h(x,u)) = chh(x,u), (6.33)

where cV is related to the convergence rate of u to zero when the safety requirements are

not at risk and ch is related to how fast the state is pulled away by the barrier function.

The present the implementation details and results in Section 6.2.0.1.

6.2.0.1 Active Front Steering Implementation with Control-Dependent Bar-
rier Functions

We consider a vehicle described by (2.117)–(2.118), at first. This means we consider

only the lateral movement of the vehicle, disregarding (2.116) entirely and ignoring the

longitudinal projection of the lateral tire forces. The vehicle parameters are those from

Table 1.

The tire dynamics dictates the remaining forces in (2.117)–(2.118), i.e., the lateral

forces generated by the tires. They are described by the pure side-slip equation set from

(PACEJKA, 2012), expressed by (2.61)–(2.73). The parameters are presented in Table 2

(see Section 5.1.2).

The control design considered a conservative stability region for δ ∈ {−π/12 rad, π/12 rad}

({−15◦, 15◦}), vgx ∈ {60 km/s, 80 km/s}, and µ ∈ {0.8, 1.0}.

Table 3: Controller parameters

Parameter Value
pu 0.1
pδ 200
cV 50
ch 100

The block diagram of the closed-loop system is shown in Figure 49. Since the CDLF-

CDBF-QP problem has the derivative of the input as its decision variable, it is necessary

to integrate the control system output δ̇u. Since the control-dependent barrier functions
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depend on the input, their Lie derivatives depend on derivative of the steering angle.

Hence δd must be differentiable and δ̇d is also needed by the QP.

δd δ

d
dt

∫

δ̇u

vgy, ψ̇

driver

vehiclevehicle

AFS

Figure 49: Block diagram of the AFS based on the CDLF-CDBF-QP problem.

A J-turn maneuver was considered, with its respective driver input presented in Fig-

ure 50. The maneuver has the front steering wheels move in a counter-clockwise direction

for 1 s, maintain an angle of 0.2 rad for 7 s, and then return forward within 1 s, while

keeping a longitudinal speed of 60 km/h (16.67 m/s). This steering angle magnitude is

beyond the stability limits of the vehicle.

0 5 10 15
-0.1

0

0.1

0.2

0.3

Figure 50: J-turn driver input.

The quadratic programming algorithm from (HILDRETH, 1957) solves the standard-

form CDLF-CDBF-QP problem in our implementation, which was adapted from (WANG,

2009). The results matched those from the default interior-point algorithm for convex

problems from the MATLAB function quadprog.

As with ordinary zeroing barrier functions, control-dependent barrier functions are

a measure of system safety. Positive values are related to states that belong in the safe
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set; null values are associated with the frontier of the safe set; while negative values show

that the safety restrictions were disrespected. In particular, Figure 51 presents the CDBF

expressed by (6.24) as a function of time for the J-turn maneuver from Figure 50. We

observe that it does not assume negative values. When the driver maintains the steering

angle at 0.2 rad, the CDBF approaches zero but remains positive. When the steering

angle returns to zero, the CDBF increases.

0 5 10 15

0

0.5

1

1.5

Figure 51: Control-dependent barrier function.

The safety restrictions can also be observed from the perspective of the safe set.

However, since it depends on the steering input, the safe set and the state move with δd.

This can be easily seen through an animation. In printed material, the alternative is to

use the shifting vector s—as Figure 52 depicts—so the the sate moves as a function of

time and δd while the safe set remains fixed. As expected from Figure 51, the shifted

state is inside the safe set at all times, during the maneuver.

The way the active front steering system maintains stability is intuitive: it reduces

the steering angle, which is exaggerated for the vehicle’s speed. Figure 53 shows that the

AFS ESC system counteracts more than half of the driver’s input. As a consequence, the

steady-state value of the steering angle is around 0.063 rad, or 3.6◦.
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Figure 52: System state shifted by s and the centered safe set. Dashed line: safe set.
Continuous line: shifted state.
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Figure 53: Control input for the J-turn maneuver.
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6.2.1 Conclusions from this AFS implementation

This section presented an effective AFS ESC system that keeps the simplified vehicle state

(lateral speed and yaw rate) within a subset of a lateral stability region. When the ESC

system is not active, the steering wheels behave as if the ESC system did not exist. In

particular, there is no steady-state error between the actual steering angles of the front

wheels and the expected angle from the steering wheel movements from the driver.

The vehicle cannot leave the safe set, which is an ellipse that is a strictly proper

subset of the stability regions presented in Chapter 5. Therefore, the closed-loop system

is conservative in the sense that larger safe sets would allow the vehicle to move more

freely, before the ESC system intervention.

The aforementioned contributions have been accomplished by extending the CDBF-

QP problem to include CDLFs, and by avoiding situations when the CDBF conditions

are not respected, namely when the derivatives of the control barrier functions are zero

with respect to the control input.

Our proposal, however, as presented here, has a few shortcomings. The first one

results from the studies we have used as a reference, which hadn’t used a standard test

to validate the system (HUANG; YONG; CHEN, 2019, 2021). While the J-turn is a

standard maneuver, the one used therein does not follow the standard. Moreover, this

test is applied to large vehicles such as buses, not passenger cars, and is more related to

roll instability (NHTSA, 2001).

A second limitation is the allowed set of states the vehicle can reach before triggering

an intervention from the ESC system. A larger safe set might be used, but the current

safety-critical control theory would not allow for that. Consequently, a strictly convex set

was selected as the safe set, instead of a parallelogram such as in Figure 45a.

Another conservative aspect of the proposed control system does not result from the

control method itself but from the stability criteria. More specifically, the controllability

criterion. In Chapter 5, we have chosen the individual tire stiffnesses as criteria. However,

we have proposed an AFS system, not an all-wheel steering system, where every wheel

steering angle is an input. Thus, the front and rear axles’ stiffness could be used instead.

Finally, the simulated vehicle had a quite simplified model. While we did model tire

lateral forces more thoroughly than most studies, we ignored longitudinal tire forces. In

fact, the longitudinal forces were generally not described, nor were the suspension (roll,

pitch, vertical movements) and compliance effects. These aspects have been considered
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in Section 6.3.

6.3 Active front steering with control barrier fuctions

of higher relative degree

Section 6.2 presented an active front steering ESC that uses a systematic method for

obtaining appropriate control barrier functions so that the closed-loop system can guar-

antee safety, i.e., safety set invariance. This comes at the cost of reducing the safety

set from the hourglass-like shapes from Chapter 5 to an inclined ellipse [h(x, u) = 0 in

(6.24)]. Hence the control system is conservative. The proposed solution avoids the areas

that make the stability regions concave—those that are related to situations when invari-

ance cannot be guaranteed, as seen in Figure 44—but also avoids other areas from the

parallelogram-shaped set (Figure 45a) where the ellipse is inscribed.

We did mention that choosing b1, b2, b3, and b4 as straight lines (Figure 45b) and

defining h1, h2, h3, and h4 as in (6.10)–(6.13) would result in h1 and h2 not being control

barrier functions due to not satisfying (6.8). We propose to once-again extend the safety-

critical control theory, this time to incorporate control-dependent high-relative-degree

barrier or Lyapunov functions. Control barrier functions of higher relative degrees have

been reviewed in Section 4.3.1. Section 6.3.1 presents the extension.

6.3.1 Control-dependent exponential barrier functions

Let h(x,u) be a concave function with respect to x and related to a safe set defined by

∀x : h(x,u) ≥ 0. Let ∂h(x,u)/∂u = 0. Then, by definition, the relative degree of h

is not one, and it is impossible to use u as the decision variable in the QP (6.14) since

its coefficient in (6.15) is null. We wish to extend the QP problem to include control-

dependent exponential barrier functions of an arbitrary relative degree r.

Let u ∈ U ⊂ R
m be an rth time differentiable input vector. Then we can extend the

state from (6.4) as

x̂ ,





















x

u

u̇
...

u(r−1)





















. (6.34)
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Let the linearized state ηb be defined as

ηb(x,u) ,















h(x,u)

ḣ(x,u)
...

h(r−1)(x,u)















. (6.35)

Then we can write the linearized system as in Section 4.3.1, (4.24) i.e.,

η̇b(x,u) = F̄ηb(x,u) + Ḡµi (6.36)

h(x,u) = C̄ηb(x,u), (6.37)

with

F̄ =

[

0(r−1)×1 Ir−1

0 01×(r−1)

]

Ḡ =

[

0(r−1)×1

1

]

C̄ =
[

1 01×(r−1)

]

µi = h(r)(x,u),

but now with h also depending on the input vector.

The extension to higher relative-degree control-dependent Lyapunov functions is anal-

ogous to (6.35)–(6.36). First, let Pγr and Pζr be two r-degree Hurwitz polynomials on V

and h, in the respective order, given by

Pγr = λr + kγ1λ
r−1 + kγ2λ

r−2 + · · ·+ kγr (6.38)

Pζr = λr + kζ1λ
r−1 + kζ2λ

r−2 + · · ·+ kζr. (6.39)

Next, let Kγr, Kζr be the coefficient matrices

Kγr = [kγr kγr−1 . . . kγ1] (6.40)

Kζr = [kζr kζr−1 . . . kζ1] (6.41)

with respect to Pγr and Pζr. Consequently, defining u̇f , [u̇ δs], we can write the QP as

u̇⋆
f
= argmin

u̇f∈R
m+1

1

2
u̇T
fHu̇f + FTu̇f , (6.42)

subject to

V (r)(x,u) +Kγrηv(x,u)− δs ≤ 0,

h(r)(x,u) +Kζrηb(x,u) ≥ 0,
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where ηb , [V (x,u) V̇ (x,u) . . . V (r−1)(x,u)]. We dub (6.42) the CDELF-CDEBF

quadratic problem, from control-dependent exponential control Lyapunov function (CDELF)

and the analogous control-dependent exponential control barrier function (CDELF) that

are used in the restrictions.

For instance, let u = u be a scalar and r = 2. Then

ḣ(x, u) =
∂h

∂x
ẋ+

∂h

∂u
u̇ =

∂h

∂x
ẋ = Lfh(x, u), (6.43)

since ∂h/∂u = 0. The 2nd-order derivative of h is

ḧ(x, u) =
∂Lfh

∂x
ẋ+

∂Lfh

∂u
u̇. (6.44)

If we substitute (4.5) and ωu = u [see (6.4)] in (6.44), then

ḧ(x, u) =
∂Lfh

∂x
f(x) +

∂Lfh

∂u
ωu

= LfLfh+ LgLfhωu. (6.45)

Hence the relative-degree-two CDELF-CDEBF quadratic problem is written as (6.42),

but subject to

∂LfV

∂x
f(x) +

∂LfV

∂u
ωu + kγ2V (x,u) + kγ1V̇ (x,u)− δs ≤ 0,

∂Lfh

∂x
f(x) +

∂Lfh

∂u
ωu + kζ2h(x,u) + kζ1ḣ(x,u) ≥ 0,

or, in standard form,
[

ω⋆u

δ⋆s

]

= argmin
ωu,δs∈R

[ωu δs]

[

pu 0

0 pδ

][

ωu

δs

]

(6.46)

subject to
[

∂LfV

∂u
−1

−
∂Lfh

∂u
0

]

≤

[

−
∂LfV

∂x
f(x)− kγ2V (x,u)− kγ1V̇ (x,u) + δs

∂Lfh

∂x
f(x) + kζ2h(x,u) + kζ1ḣ(x,u)

]

. (6.47)

6.3.1.1 Control-dependent exponential barrier function Implementation

We are now able to consider a slightly less conservative safe set than the one used in

Section 6.2. More specifically, we shall avoid the stability region areas that make them

concave—since reaching them may lead to situations when it is impossible to guarantee

the safe set invariance—and nothing else. As a consequence, we shall try and use a safe

set like the one from Figure 45.
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We recall from Section 6.2 that the parallelogram-shaped set from Figure 45 cannot

be rendered safe by using the current control-dependent CBF theory (HUANG; YONG;

CHEN, 2019, 2021) using a single steering axle. The theory from Section 6.3.1 is used to

solve this problem.

Before applying the theory here, we mention that the steering input from (HUANG;

YONG; CHEN, 2019) and Section 6.2 cannot be considered a reliable test for lateral

stability, and we shall henceforth use the Sine with Dwell test instead, as justified in

Section 3.3.

In addition, since the longitudinal speed loss which results from both AFS or differ-

ential braking also helps regain lateral stability, we shall employ models that can explain

this phenomenon.

The loss of longitudinal speed during the actuation of an ESC system has a benefic

impact on the stability recovery of the vehicle (NHTSA, 2009). This is not directly

observable from the stability regions seen in Chapter 5, however. The stability regions do

become larger as the longitudinal speed increases (see Figure 30). Still, while it is true

that the stability region reduction due to friction coefficient is related to vehicle instability,

the opposite is untrue for longitudinal speed, the reason being that larger longitudinal

speeds are related to larger lateral accelerations through quadratic functions, i.e., for a

fixed nonzero steering angle, doubling the longitudinal speed means increasing the lateral

acceleration by a factor of 4, whereas the stability region becomes twice as large, only.

The vehicle model used in Sections 6.2 and 6.2.0.1 does not account for the longi-

tudinal forces generated by the steering wheels. Accurate tire models that account for

both longitudinal and lateral forces are much more complicated than the one used so

far [Section 2.2.2, (2.55)–(2.59)]. Consequently, we use a combined slip magic formula

model to describe the loss of longitudinal speed in this section. This allows us to employ

(2.116) in the model, and also consider the longitudinal forces in (2.117) and (2.118). The

description of such a model is more complex than the ones previously described and is

out of the scope of this text. The equation set is presented in Appendix A. For further

details, see (PACEJKA, 2012).

The other model that shall be used in this study is much more comprehensive than

the one that has just been explained, i.e., simply adding combined slip to the body mass

equations (2.116)–(2.118). The aforementioned model still lacks descriptions for vertical

and roll movements, suspension, and powertrain. These, and many other aspects, are

modeled in the CarSim software, which implements the Sine with Dwell test and presents
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a plethora of realistic vehicle models.

Since this study is restricted to lateral stability, we selected a vehicle model that does

not suffer from roll instability when moving over a horizontal plane. In particular, the

C-class Hatchback vehicle. The Volkswagen Golf, Ford Focus, and Toyota Corolla Hatch

are examples from this class.

In addition to it, since we are using the Magic Formula tire model, we have changed

the default tire from the model to the one that has listed MF parameters. The original

model tire is a 215/55 R17 one, described by the default software equations; we changed

it to a 225/60 R18, simulated by MF-tyre. Hence we had access to the list of parameters

needed by the set of equations listed in Appendix A. This modification aside, the default

vehicle model was unchanged.

The parameters from the CarSim C-class Hatchback model have been used to generate

stability regions, according to Chapter 5. Table 4 presents set of the parameters. In

particular, we obtained a conservative effective stability region for vgx ≥ 80 km/h, µ ≥

0.85, and |δd| ≤ 5π/36 rad (25◦), but using the front and rear axle cornering stiffnesses as

controllability criteria, instead of individual wheel cornering stiffnesses. This also made

the stability region less conservative but does not make the system less safe, provided

that the road grade bank is either null or towards the inside of the turn. The stability

region and the inscribed safe set are depicted in Figure 54a, where the effect of relaxing

the controllability criterion is clearly visible when comparing it with Figure 45a.

Table 4: C-class vehicle parameters

Parameter Value
mb 1413 kg
Iz 1536.7 kg·m2

Iy 1536.7 kg·m2

Ix 536.6 kg·m2

l1 1.015 m
l2 1.895 m
Lw 1.675 m
hg 0.54 m

We define h1, h2, h3, and h4 as (6.10)–(6.13). Hence they depend on u , δu. Since h2
and h4 satisfy the ordinary control-dependent CBF conditions, they can be incorporated

in the same manner as in Section 6.2. For h1 and h3, we have

Lgh1(x, u) =
∂h1(x, u)

∂u
= 0 Lgh3(x, u) =

∂h3(x, u)

∂u
= 0 (6.48)
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(a) Parallelogram-shaped control-dependent safe
set inscribed in the conservative effective stabil-
ity region.
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(b) First-order polynomials that define the con-
trol-dependent safe set.

Figure 54: Parallelogram-shaped control-dependent safe set for minimum vgx = 80 km/h,
minimum µ ≥ 0.85, and maximum δ = 5π/36 rad (25◦).

and

LgLfh1(x, u) =
∂Lgh1(x, u)

∂u
6= 0 LgLfh3(x, u) =

∂Lgh3(x, u)

∂u
6= 0. (6.49)

Thus the relative degree of h1 and h3 is r = 2, and we can use the formulation from

(6.45)–(6.47).

Since the default quadratic problems and (6.42) do not minimize the control input,

we use (6.28), i.e., the same CDLF from Section 6.2,

V (x, u) = V (u) = u2. (6.50)

We state the resulting quadratic problem as
[

ω⋆u

δ⋆s

]

= argmin
ωu,δs∈R

[ωu δs]

[

pu 0

0 pδ

][

ωu

δs

]

(6.51)

subject to

LfV (x, u) + LgV (x, u)ωu + γ(V (x,u))− δs ≤ 0,

LfLfh1(x, u) + LgLfh1(x, u)ωu + kζ21h1(x, u) + kζ11ḣ1(x, u) ≥ 0

Lfh2(x, u) + Lgh2(x, u)ωu + ζ2(h2(x, u)) ≥ 0

LfLfh3(x, u) + LgLfh3(x, u)ωu + kζ23h3(x, u) + kζ13ḣ3(x, u) ≥ 0

Lfh4(x, u) + Lgh4(x, u)ωu + ζ4(h4(x, u)) ≥ 0
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or, in standard form,



















LgV (x, u) −1

−LgLfh1(x, u) 0

−Lgh2(x, u) 0

−LgLfh3(x, u) 0

−Lgh2(x, u) 0



















≤



















−LfV (x, u)− γ(V (x,u)) + δs

LfLfh1(x, u) + kζ21h1(x, u) + kζ11ḣ1(x, u)

Lfh2(x, u) + ζ2(h2(x, u))

LfLfh3(x, u) + kζ23h3(x, u) + kζ13ḣ3(x, u)

Lfh4(x, u) + ζ4(h4(x, u))



















. (6.52)

The closed-loop system was initially validated through simulation, using increasingly

more complex system models. For the sake of brevity, we briefly present two of them: the

linearized model (2.124)–(2.125) and the nonlinear model (2.116)–(2.118) extended with

a combined slip tire model (Appendix A). More comprehensive results are presented later

on when a (much) more detailed vehicle simulator is employed using commercial software.

Table 5 lists the controller parameters, where v̄ , 9µvgx/170, whereas the block diagram

remains the one for first-order control-dependent barrier and Lyapunov functions, i.e.,

Figure 49.

Table 5: CDEBF AFS controller parameters

Parameter Value Parameter Value
pu 1 b42 −3.243v̄
pδ 100 γ 200
b11 1/l2 kζ21 900
b12 13/25v̄ kζ11 60
b21 −0.9475 ζ2 40
b22 3.115v̄ kζ23 900
b31 1/l2 kζ13 60
b32 −13/25v̄ ζ4 40
b41 −0.9460

The linear model has no model error concerning the simple model used in the deriva-

tion of (6.52). Hence the safety restrictions are always satisfied, as shown in Figures 55

and 56.

Figure 57 shows the control input related to Figures 55 and 56. The input signal has

opposite sign to the driver input, limiting the effective steering angle of the wheels and

preventing the yaw rate and lateral speed from ever leaving the safe set.

The yaw rate satisfies the test requirements by large margins, as seen in Figure 58.

The reductions of 65 % and 80 % at T0 + 1 = 2.93 s and T0 + 1.75 = 3.68 s, in the

order, are already satisfied before t = 1.82 s, i.e., more than a full second before what the

standard determines.
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Figure 55: Barrier functions for the Sine with Dwell test, AFS with CDEBF, linearized
system model, δdmax = 6.5A. Continuous line: h1. Dash-dot line: h2. Dotted line: h3.
Dashed line: h4.
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Figure 56: Control-dependent safe set for the Sine with Dwell test, AFS with CDEBF,
linearized system model, δdmax = 6.5A. Continuous line: shifted state trajectory. Dashed
line: centered safe set.
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Figure 57: Control input δu for the Sine with Dwell test, AFS with CDEBF, linearized
system model, δdmax = 6.5A.
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Figure 58: Yaw rate for the Sine with Dwell test, AFS with CDEBF, linearized system
model, δdmax = 6.5A.
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Actual vehicles, however, are not perfectly described by linear models. They have

many more state variables and saturation on the tire forces, among other aspects. More

descriptive models, on the other hand, are more complex and more difficult to write

in closed form, making it more difficult to use them in the control design stage. As

a consequence, we tested the proposed AFS system, when using the linearized system

for computing the Lie derivatives in (6.47), with further complex models. One of them

was the nonlinear model considering the longitudinal dynamics for the body motion and

combined slip for the wheel dynamics, i.e., (2.116)–(2.118) and the equation set from

AppendixA.

One consequence of the impossibility of finding perfect models is shown in Figure 59,

being hard to notice in Figure 60. The barrier functions h1 and h3 go slightly before

zero: −0.0282, more precisely. This effect can easily be accommodated by being more

conservative when selecting h1 and h3, or using the robust safety-critical control theory in

the current literature (XU et al., 2015; CHINELATO; ANGÉLICO, 2021). The original

safe set, shown in Figure 54a (continuous line), is not violated.
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Figure 59: Barrier functions for the Sine with Dwell test, AFS with CDEBF, nonlinear
model with combined slip, δdmax = 6.5A. Continuous line: h1. Dash-dot line: h2. Dotted
line: h3. Dashed line: h4.

Figure 61 presents the control input when using the nonlinear model. The signal is

similar to the one from Figure 57: the respective comments still apply.



120

-3 -2 -1 0 1 2 3
-1.5

-1

-0.5

0

0.5

1

1.5

Figure 60: Control-dependent safe set for the Sine with Dwell test, AFS with CDEBF,
nonlinear model with combined slip, δdmax = 6.5A. Continuous line: shifted state trajec-
tory. Dashed line: centered safe set.
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Figure 61: Control input δu for the Sine with Dwell test, AFS with CDEBF, nonlinear
model with combined slip, δdmax = 6.5A.
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Despite small safe set violations, the yaw rate still satisfies the test requirements, by

similar margins. Figure 62 shows the yaw rate with respect to time, where we can see

that peaks are reduced by around 40 % in 200 ms or less, and the yaw rate is close to zero

500 ms after the end of steering. The reductions of 65 % and 80 % at T0 +1 = 2.93 s and

T0 + 1.75 = 3.68 s, in the order, are already satisfied before t = 1.82 s, i.e., more than a

full second before what the standard determines.
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Figure 62: Yaw rate for the Sine with Dwell test, AFS with CDEBF, nonlinear model
with combined slip, δdmax = 6.5A.

The feedback system was further validated with CarSim, using the built-in Sine with

Dwell test procedure, for the C-class Hatchback vehicle model. The vehicle has success-

fully completed the test, being subject to the steering wheel inputs presented in Figure 63.

The C-class Hatchback has a steering ratio of 20, which means the steering wheel

angle is 20 times greater than the correspondent front wheel Ackermann steering angle,

i.e., an equivalent wheel located in front of the vehicle, as if it was a tricycle. The 6.5A

threshold is the 11th-largest steering wheel amplitude in Figure 63. The test goes on,

however, since the correspondent steering wheel angle is not greater than 270◦, for three

more maneuvers—7.0A, 7.5A and 270◦—for each steering direction.

Figure 64 presents the yaw rate response to the Sine with Dwell test, for the proposed

CDEBF AFS system. The vehicle passes the test by a considerable margin, whatever the
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Figure 63: Steering wheel input ensemble for a succesfull Sine with Dwell test.

steering wheel amplitude is employed. We recall from Section 3.3 that the time thresholds

when the yaw rate is verified are T0 + 1 = 2.93 s and T0 + 1.75 = 3.68 s, for reductions of

65 % and 80 %, in the respective order. Nevertheless, by t = 2.5 s the vehicle yaw rate

has largely vanished, even for high steering angle amplitudes.
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Figure 64: Yaw rate for the Sine with Dwell test, AFS with CDEBF.

The responsiveness criterion is based on the lateral displacement of the vehicle during

the maneuver, which is depicted in Figure 65. The standard requires that this change

in the lateral position is at least 1.83 m at 1.07 s after the steering input begins—which
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is when the dwell time starts. However, this requirement only takes place for a steering

amplitude of δdmax = 5.0A or larger. We can notice in Figure 65 that the responsiveness

criterion is already satisfied at the 3rd maneuver when δdmax = 2.5A. Hence the proposed

method satisfies the requirement well in advance.

0 0.5 1 1.5 2 2.5 3 3.5 4
-4

-3

-2

-1

0

1

2

3

4

5

Figure 65: Lateral movement with respect to the track for the Sine with Dwell test, AFS
with CDEBF.

The control input δu is presented in Figure 66. It has the effect of reducing the

magnitude of the effective front steering angle, keeping the system state in the safe set.

When the state is not at a neighborhood of the safe set frontier, the control input smoothly

returns to zero.

Since the system model used by CarSim is much more complex than the simpler

ones we presented, it can describe commercial vehicles with much greater detail. One

consequence is that we can not employ all the equations in the controller design, i.e.,

(6.52). The model accuracy determines how well the state derivatives can be assessed

when the restrictions are active, hence how well the safe set restrictions are respected

in practice. Still, the safe set was mostly satisfied, as seen in Figure 67. A detailed

observation of Figure 67 shows that the active restrictions are the CDECBFs related to

h1 and h3. Due to the relaxation of the controllability criterion, h2 and h4 are no longer

active, in any scenario we observed.

The safe set presented in Figure 54a considers the yaw rate ψ̇ and the lateral speed vgx



124

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Figure 66: Control input δu for the Sine with Dwell test, AFS with CDEBF.
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Figure 67: Barrier functions for the Sine with Dwell test, AFS with CDEBF. Continuous
line: h1. Dash-dot line: h2. Dotted line: h3. Dashed line: h4.
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as the lateral model state variables. Therefore, the side-slip angle is implicitly controlled,

since vgx and β are closely related. The side-slip angle is depicted in Figure 68.

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Figure 68: Vehicle side-slip angle for the Sine with Dwell test, AFS with CDEBF.

6.4 Conclusions from the AFS Proposals

Both AFS proposals proved to be efficient when applied to lateral stability. The state

of the vehicle is restricted by implicitly limiting the wheel steering angles, from which

results that the vehicle is kept in a controllable state at all times. Hence we can state

that safety-critical control can be applied to electronic stability control, when considering

stability regions as safe sets and using active steering as the control input.

Nonetheless, the default safety-critical control theory was not readily applicable to the

problems presented herein. The first AFS proposal demanded an extension to Control

Lyapunov Functions to accommodate the minimization of the input signal when hard

restrictions were not active. Such extension, on the other hand, is general and allows

Control Lyapunov Functions that influence the state, something unused in this text but

potentially necessary in other applications.

The first proposal had a shortcoming, the chance of leaving the safe set—even if with

zero probability. Another deficiency was employing a safe set that was conservative in the
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sense of preventing impossible situations. In addition, the test maneuver we used to com-

pare the results with those previously presented in the literature was less challenging than

standardized maneuvers already in use in the industry and by control agencies. Finally,

both the work we have extended and our first implementation omitted the longitudinal

dynamics in the simulated vehicle, even though it has an effect taken into account by

standard tests and consists of an advantage of differential-braking ESCs.

The second AFS proposal addressed these shortcomings. Another extension to safety-

critical control was necessary, this time to include higher-order exponential control barrier

functions that depend on the control input. We used more descriptive vehicle models: an

in-house model that added combined slip and commercial model from CarSim. A similar

CLF extension is possible but was not necessary for our application.

Finally, we mention that nowhere in this text have we considered road bank and grade,

which affect lateral stability. We have also not contemplated large model or parameter

errors nor failsafe situations such as sudden friction losses. Moreover, we focused on

passenger cars, whereas race or off-road cars would have other design objectives and

restrictions. Hence these are definitely not conclusive results in terms of exhausting lateral

stability. On the contrary, other control methods remain viable, including alternative

safety-critical control methods such as (CHINELATO; ANGÉLICO, 2021).

Active steering is an efficient ESC method but has limited stability recovery ability

if the vehicle leaves the safe set. In addition to it, it is possible that there is enough

room to recover stability if the vehicle decreases its longitudinal speed. This speed re-

duction is not as pronounced with AFS, compared to commercial ESC systems, which

use differential braking. Finally, we wished to use our development of improved stability

regions in Chapter 5 in yaw stability control. Chapter 7 discusses this possibility and the

aforementioned aspects.
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7 YAW STABILITY CONTROL

In Chapter 6, electronic stability control systems using active front steering have been

proposed. On the other hand, most ESC devices use differential braking as their actuation

method. In truth, standard ESC tests go as far as defining ESC as lateral stability control

devices that use differential braking as actuators, e.g., (NHTSA, 2001, 2018, 2008, 2009).

This is not to say that AFS systems are not useful, but by the time those regulations were

being designed, a) commercial AFS systems were new, b) only one tested vehicle had it,

c) its response was inferior to the differential-braking ESC vehicles, and d) the standard

designers felt that the efficacy of other ESC technologies had not yet been demonstrated.

Refer to (NHTSA, 2008), Final Rule, Chapter IV, Section C2 for the full discussion.

In this chapter, we assess the applicability of the current safety-critical control theory

based on control barrier functions to the vehicle lateral stability control problem when

using the brake system as input. After concluding that the current tools are not sufficient,

we propose the necessary extension to the theory and apply it. The proposal is validated

by our relatively simple combined slip and rigid mass model and by using the realistic

vehicle models from CarSim.

Let us consider the desired yaw rate ψ̇d, as defined in Section 3.2 and given by (3.1).

It can be obtained by considering a wheeled vehicle moving with a null side-slip angle,

which is not a realistic situation for road vehicles at moderate-to-high speeds. At very

low speeds, a vehicle has either negligible or low wheel slip angles, which result in vehicle

side-slip angles pointing inwards, in curves. As the speed increases, so do the lateral forces

and tire slip angles, which lead to the vehicle side-slip angle eventually pointing outwards.

Hence β goes from negative to positive, for positive δ and increasing longitudinal speeds.

However, would we consider equal tire slip angle increases at all wheels, from those which

would result from a null side-slip angle, the yaw rate would be unchanged in steady-state

if the slip angles are also constant. As a result, the desired yaw rate is still a viable

reference for stable vehicles, when we consider lateral stability.
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In this sense, let us consider a quadratic control barrier function candidate

hcand(x, δ) = −(ψ̇ − ψ̇d − dψ)(ψ̇ − ψ̇d + dψ), (7.1)

which is positive for yaw rate errors that do not exceed dψ in magnitude. For simplicity,

let us consider the simple linear lateral model given by the extension of the bicycle model

with the external moment input Mψ, given by (2.124)–(2.125), and see if the default

safety-critical control formulation from Section 4.3 can be applied. We conclude that the

first formulation cannot be applied, since (7.1) depends on the driver’s input δ. This

means we cannot consider higher-order exponential control barrier functions as presented

in Section 4.3.1 either, due to the same reason.

Next, let us assess the control-dependent barrier functions, presented in (HUANG;

LIANG; CHEN, 2017; HUANG; CHEN, 2017) (Section 6.1). Two problems arise: first,

(7.1) has a relative degree of 1 with respect to Mψ. The second problem is that there is

another input, the steering angle from the driver. Hence we must consider two inputs:

a control input, for the control system, and either a measured disturbance input or an

external input. From a theoretical point of view, they are indistinguishable, so we shall

refer to it as an external input, which is the case here.

Since the exponential barrier function theory for higher relative degrees includes the

case when the relative degree is zero, we shall omit this last case, and present general

exponential barrier functions for any relative degree, in Section 7.1.

7.1 Control-dependent exponential barrier functions with

external inputs

Let us consider a nonlinear system described by

ẋ = f(x) + ge(x)ue + gc(x)uc, (7.2)

where f(·), ge(·) and gc(·) are Lipschitz continuous; x ∈ D ⊂ R
n, D the set of possible

state vectors; ue ∈ Ue ⊂ R
me , Ue encompassing the possible disturbances or external

input vectors; and uc ∈ Uc ⊂ R
mc , Uc consisting of the admissible control input vectors.

Assume ue is measurable and both ue and uc are, in the respective order, rme and rmc

times differentiable—we shall define rme and rmc soon enough—and uc is a function of x

and ue.

Let h(x,ue,uc) be a concave function with respect to x and the safe set [(4.14)–(4.16)]
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be extended as

Definition 8 (Control-disturbance-dependent safe set). Let C(ue,uc) satisfy

C(ue,uc) = {x ∈ D ⊂ R
n : h((x),ue,uc) ≥ 0} (7.3)

fr (C(ue,uc)) = {x ∈ D ⊂ R
n : h(x,ue,uc) = 0} (7.4)

Int (C(ue,uc)) = {x ∈ D ⊂ R
n : h(x,ue,uc) > 0}. (7.5)

Then C is the control-disturbance-dependent safe set (CDD safe set).

Assume h(x,ue,uc) may have a higher-than-1 relative degree, thus Definition 4 cannot

be generalized to consider CDD safe sets at all times. In particular, let rme be the relative

degree of h with respect to ue and rmc the relative degree of h with respect to uc. We

define r = max{rme, rmc}, and proceed as (4.22)–(4.24) or (6.35)–(6.36), i.e.,

η̇b(x,ue,uc) = F̄ηb(x,ue) + Ḡµi (7.6)

h(x,ue,uc) = C̄ηb(x,ue,uc), (7.7)

with

ηb(x,ue,uc) ,















h(x,ue,uc)

ḣ(x,ue,uc)
...

h(r−1)(x,ue,uc)















F̄ =

[

0(r−1)×1 Ir−1

0 01×(r−1)

]

Ḡ =

[

0(r−1)×1

1

]

C̄ =
[

1 01×(r−1)

]

µi = h(r)(x,ue,uc).

As in Sections 4.3.1 and 6.3.1, F̄ is a companion matrix. Therefore, if µi is a poly-

nomial Kηb on the linearized state variables, the characteristic polynomial σ(F̄ + ḠK)

of the closed-loop system can be arbitrarily assigned. Consequently, we use µi to extend

the Nagumo invariance principle to (7.6). Hence let Pζr be a r-degree Hurwitz poly-

nomial given by (6.39). Then its coefficients are given by (6.41), and we can define a

control-disturbance-dependent exponential barrier function as

Definition 9 (Control-disturbance-dependent exponential control barrier function). Let

C ∈ D ⊂ R
n be a superlevel set of an r-times differentiable function h : D → R with

respect to t for known (and, possibly, time-varying) ue and uc. Then h(x,ue,uc) is a

control-disturbance-dependent exponential control barrier function (CDDEBF) if there
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exists Kζ, ℜ{σ(F̄− ḠKζr)} < 0, such that for ẋ = f(x) + g(x)u,

sup
u∈U

h(r)(x,ue,uc) ≥ Kζrηb(x,ue,uc), (7.8)

any x ∈ Int C results in h(x(t),ue,uc) ≥ C̄e(F̄−ḠKζr)tηb(x(0),ue,uc) ≥ 0 if h(x(0),ue,uc) ≥

0.

If (7.8) holds, the CDD safe set can be satisfied by the CDDEBF QP problem

u̇⋆ = argmin
u̇f∈R

m+1

1

2
u̇T
fHqpu̇f + FT

qpu̇f , (7.9)

subject to

h(r)(x,ue,uc) +Kζrηb(x,ue,uc) ≥ 0.

Let us also extend exponential control Lyapunov functions to depend on ue and

uc. Proceeding with the Lyapunov-Nagumo analogy in mind, we obtain the CDDELF-

CDDEBF QP problem

u̇⋆
f
= argmin

u̇f∈R
m+1

1

2
u̇T
fHqpu̇f + FT

qpu̇f , (7.10)

subject to

V (r)(x,ue,uc) +Kγrηb(x,ue,uc) ≥ δs

h(r)(x,ue,uc) +Kζrηb(x,ue,uc) ≥ 0,

where, as in Section 6.2, u̇f , [u̇ δs] and Kγr is given by (6.40). We can have different

relative degrees for V and h, but we leave the restrictions as-is for the sake of simplicity.

We can now apply CDDELFs and CDDEBFs to the yaw stability control problem.

Whatever the case, we have that

ue = ue = δ, (7.11)

i.e., the uncontrolled input vector is a scalar, namely the front wheels’ steering angle. Since

differential braking generates a yaw moment on the vehicle, we can consider uc = uc =Mψ

as the control system input. It shall have two different effects: to cause the yaw rate to

change, and to reduce the longitudinal speed, since braking whatever wheels reduce vehicle

speed. Both effects are interesting to either regain or maintain lateral stability.

First, let us consider the stability regions from Chapter 5. Assuming the steering

wheel inputs from the Sine with Dwell test, it follows that (7.8) does not hold. Therefore

CDDEBFs do not exist. The geometrical explanation is that the harsh steering moves

the control-dependent safe set away from the state, while the external yaw moment input
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direction and maximum magnitude are such that the state moves in a different direction

(ψ̇ and null lateral speed, for Mψ; and the shifting vector s, for δ) at a limited rate. Hence

the task at hand is to recover lateral stability, and safety-critical control based on stability

regions as safe sets is not feasible. We are forced to pursue a different strategy from what

was used for AFS.

Section 7.1.1 investigates an alternative: using the desired yaw rate ψ̇d, seen in Chap-

ter 3.

7.1.1 Desired Yaw Rate Reference

We propose the use of the desired yaw rate as a relaxed set point. In fact, several

ESC systems use ψ̇d as a reference (XU; WANG; LI, 2014; MAGALHÃES JÚNIOR,

2019; MIRZAEI, 2010; MIRZAEINEJAD; MIRZAEI; RAFATNIA, 2018; BASLAMISLI;

KÖSE; ANLAÇ, 2011; CHO et al., 2008). Hence we assess the feasibility of using safety-

critical control based on CBFs to relax the use of this variable as a reference, similarly to

the on-off control strategies used in the industry for both ESC and ABS. Let us consider

a maximum deviation dψ which is to be safeguarded by the YSC system. Then we define

h1(vgx, ψ̇, δ) = kr(ψ̇ − ψ̇d + dψ), (7.12)

h2(vgx, ψ̇, δ) = −kr(ψ̇ − ψ̇d − dψ) (7.13)

as the control barrier functions, which are positive for any yaw rate error ψ̇d − ψ̇ ∈

(−dψ, dψ).

We realized the yaw rate error dψ by considering a maximum steering angle error dδ
that would be added to the steering angle δ. Consequently, we have

dψ =
vgxdθ

l + kstv2gx
, (7.14)

so the yaw rate error is proportional to the steering angle error.

The desired yaw rate, as defined by (3.5), is not differentiable everywhere, however.

This makes (7.1) an inconvenient barrier function since it is not differentiable where it

needs the most, i.e., at the vehicle’s maximum lateral accelerations, when the wheels must

provide forces to both generate lateral force and yaw moment. Hence we introduce hard

barrier functions

h3(vgx, ψ̇) = kr(ψ̇ + ψ̇max) (7.15)
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and

h4(vgx, ψ̇) = −kr(ψ̇ − ψ̇max), (7.16)

with ψ̇max given by (3.4), which are positive for ψ̇ − ψ̇d ∈ {−ψ̇max, ψ̇max}, and make

(7.12)–(7.13) soft by defining ψ̇d as (3.1), which is continuous in δ.

The dependency of h1 and h2 in δ is due to ψ̇d, which depends on the longitudinal

speed and the steering angle [see (3.1)]. As a consequence, h1 and h2 depend directly

on the uncontrolled input, and indirectly on the control input, since braking reduces vgx.

This last aspect, however, is not described when using (2.124)–(2.125), since the bicycle

model does not include the longitudinal motion, assuming constant longitudinal speed.

When using the extended linear model with vgy and ψ̇ as state variables, we have

f(x) = Ax, ge = Be, gc = Bc, (7.17)

with

A =





−
Cαf

+Cαr

mbvgx
−
Cαf

l1−Cαr l2

mbvgx
− vgx

−
Cαf

l1−Cαr l2

Izvgx
−
Cαf

l2
1
+Cαr l

2
2

Izvgx



 Be =





Cαf

mb

Cαf
l1

Iz





Bc =

[

0

1
Iz

]

We can state the quadratic problem with relaxed control barrier functions by using

a relaxation variable, as previously done in (4.21) or (6.27). The relaxed barriers h1 and

h2 depend on the external control variable ue = ue , δ, the steering angle from the

driver; but not on the control input uc = uc , Mψ, the correcting yaw moment. As

a consequence, higher-order barrier functions on uc are not necessary and only the first

time derivatives of h1 and h2 are needed. Additionally, the hard barriers h3 and h4 do not

depend on either ue or uc. Hence these can be described by the usual inequalities from

Chapter 4. Then ḣi, i ∈ {1, 2}, is obtained as

ḣi(x, ue) = Lfhi(x, ue) + Lgehi(x, ue)ue + Lgchi(x, ue)uc +
∂hi
∂ue

u̇e (7.18)

while ḣj, j ∈ {3, 4} is

ḣj(x, ue) = Lfhj(x, ue) + Lgehj(x, ue)ue + Lgchj(x, ue)uc. (7.19)
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The quadratic problem takes the form

u⋆f = argmin
uf∈R

2

1

2
uf

THuf + FTuf , (7.20)

subject to

Lfh1(x, ue) + Lgeh1(x, ue)ue +
∂h1(x, ue)

∂ue
u̇e + Lgch1(x, ue)uc + ζ1h1(x, ue) + δs ≥ 0

Lfh2(x, ue) + Lgeh2(x, ue)ue +
∂h2(x, ue)

∂ue
u̇e + Lgch2(x, ue)uc + ζ2h2(x, ue) + δs ≥ 0

Lfh3(x, ue) + Lgeh3(x, ue)ue + Lgch3(x, ue)uc + ζ3h3(x, ue) ≥ 0

Lfh4(x, ue) + Lgeh4(x, ue)ue + Lgch4(x, ue)uc + ζ4h4(x, ue) ≥ 0,

where uf , [uc δs]
T, H = diag{pu, pδ}, and F = [0 0]T. The control parameters are

listed in Table 6. The block diagram is similar to the general ESC system, shown in

Figure 20, Section 3.2. The vehicle outputs are the lateral and longitudinal speeds and

the yaw rate; the control system inputs are the vehicle outputs and the steering angle

from the driver; and the control system outputs are either the correcting yaw moment,

for Matlab results, or the individual brake pressures, for the CarSim implementation.

Table 6: Yaw Control parameters

Parameter Value
ζ1 200
ζ2 200
ζ3 200
ζ4 200
pu 1
pδ 20 000
kr 10
dθ π/600 rad

We first validate the YSC system by considering a linear vehicle, described by (7.17).

To better illustrate the behavior of the closed-loop system, we present two steering inputs

from the Sine with Dwell test ensemble in Figure 69, δdmax = 1.5A and δdmax = 7.5A: the

first and last inputs for each steering wheel direction. The first input does not saturate

the desired yaw rate, while the second one does.

The desired yaw rate and the actual yaw rate on the simulated vehicle are displayed

in Figure 70. The figure shows that the maximum value of the yaw rate coincides with

the saturated value from ψ̇d, for δdmax = 7.5A. When δdmax = 1.5A, only the continuous

reference is followed, i.e., (3.1).
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Figure 69: Front steering angle for the Sine with Dwell test. Continuous line: δdmax =
7.5A. Dashed line: δdmax = 1.5A.

Figure 71 depicts the control inputs. They tend to counteract the steering wheels’

movements, providing a negative (i.e., clockwise) moment when the steering angle is

positive, and a positive one when the steering wheels’ angles are negative. When the

steering input does saturate the yaw rate (Figure 71a), it is only nonzero when necessary

to follow the relaxed reference. Since the Sine with Dwell test induces oversteering, one

would expect the vehicle to exhibit yaw rates of larger than expected magnitude, which

is avoided by the aforementioned control inputs.

The hard constraints are related to h3 and h4. Figure 72 shows that both are non-

negative throughout the maneuver. On the other hand, h1 and h2 become negative when

the yaw rate saturates during both the first and second sine half cycles, if δdmax = 7.5A

(see Figure 72b). Consequently, the hard constraints are always satisfied. Alternatively,

Figure 72a depicts the barrier functions for δdmax = 7.5A, when only the relaxed barriers

become active. In this case h1 and h2 can be respected without detriment of the hard

barriers h3 and h4.

Figure 73 presents the trajectories of the state after using the shifting vector s to

compare them with the conservative stability region from Figure 54a, previously used to



135

design the AFS system with CDEBF in Section 6.3.1.1. We observe that for δdmax =

1.5A the trajectory remains inside the stable region. When the magnitude of the input

increases, the desired yaw rate saturates and the hard constraints restrict ψ̇. The lateral

speed, in turn, still increases in magnitude. We have already established that differential

braking cannot render stability sets safe for harsh maneuvers at high speeds: Figure 73

is an instance of how the state can escape the safe set when a control system tries to

restrict the yaw rate. Similar results would apply in case we used the side-slip angle as a

reference but in another direction.
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(a) Continuous line: vehicle yaw rate for δdmax = 1.5A. Dashed line: desired yaw rate
for δdmax = 1.5A.
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(b) Continuous line: vehicle yaw rate for δdmax = 7.5A. Dashed line: desired yaw rate
for δdmax = 7.5A.

Figure 70: Yaw rate of the vehicle with a linear model and YSC considering the desired
yaw rate as a relaxed reference, when subject to the Sine with Dwell test, for different
steering inputs.
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(a) Correcting yaw moment for δdmax = 1.5A.
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(b) Correcting yaw moment for δdmax = 7.5A.

Figure 71: Correcting yaw moment on the vehicle with YSC considering a linearized
model and the desired yaw rate as reference, when subject to the Sine with Dwell test.
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(a) Continuous line: h1 for δdmax = 1.5A. Dash-dot line: h2 for δdmax = 1.5A. Dotted
line: h3 for δdmax = 1.5A. Dashed line: h4 for δdmax = 1.5A.
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(b) Continuous line: h1 for δdmax = 7.5A. Dash-dot line: h2 for δdmax = 7.5A. Dotted
line: h3 for δdmax = 7.5A. Dashed line: h4 for δdmax = 7.5A.

Figure 72: Relaxed and hard control barrier functions for YSC considering a linearized
model and the desired yaw rate as reference, when subject to the Sine with Dwell test.
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Figure 73: Lateral speed and yaw rate of vehicle over the conservative stability region
on the shifted space (vgy − s1) × (ψ̇ − s2). Vehicle with YSC considering a linearized
model and the desired yaw rate as reference, when subject to the Sine with Dwell test.
Conservative stability region for minimum vgx = 80 km/h, minimum µ ≥ 0.85, and
maximum δ = 5π/36 rad (25◦). Continuous line: trajectory for δdmax = 7.5A. Dash-dot
line: trajectory for δdmax = 1.5A. Dashed line: conservative stability region.
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Actual vehicles are not described by linear models, as seen in Chapter 2. Hence

the consideration of a realistic vehicle model from CarSim; again, the C-class Hatchback

model. When tested as model-in-the-loop with CarSim, the ESC system became too

intrusive with the parameter set from Table 6, however, exhibiting chattering. This

phenomenon happens because the models from CarSim are of a much higher order than

the ones we used so far. Moreover, they consider compliances for the several subsystems

that the models we implemented did not account for. In addition, the tire model is

dynamic, whereas we implemented steady-state tire models.

Consequently, we changed the parameters to make the system less responsive during

the transient dynamics. We achieve this by reducing the relaxation variable weight pδ
and increasing the maximum allowable steering angle error dθ. So far, we have used

pδ = 20 000 and dθ = π/600 rad, or a mere 0.3◦. A high pδ means the designer is unwilling

to sacrifice the hard constraints (the maximum yaw rate) in favor of the soft ones (yaw

rate error), while a small dθ means the system is more intrusive when the hard constraints

are not active. This worked because the control design and system validation models were

identical or similar. Consequently, we decreased pδ to 1000 and increased dθ to π/90 rad

(2.0◦). The full Sine with Dwell input ensemble is shown in Figure 63 (Section 6.3.1.1).

The vehicle passes the test by large margins, as before.

Figure 74 depicts the yaw rate on the C-class Hatchback. There is no prominent yaw

rate peak before ESC intervention and barely any yaw rate reminiscent at t = 2.53 s, or

600 ms after the end of steering. We recall from Section 3.3 that reductions of 65 % and

80 % of the peak yaw rate are to be verified only 1.00 s and 1.75 s, in the respective order,

after the end of steering.

The responsiveness is assessed by the lateral displacement of the vehicle at t = 1.07 s.

This lateral displacement has to exceed 1.83 m in magnitude if the peak steering angle

is δdmax = 5.0A or greater. This maneuver is the 8th in the ensemble. However, the

condition is already satisfied for δdmax = 2.5A, the third maneuver.

Figure 76 presents the respective barrier functions. The relaxed barriers (h1 and h2)

reach large negative values, while h3 and h4, the hard ones, are kept at positive or small

negative numbers.

The signals in Figure 76 may be too cluttered to be distinguished. Hence we will

select signals from single maneuvers to better describe the closed-loop system behavior.

In particular, Figure 77 shows the barrier functions for δdmax = 7.5A, which is the second-

largest steering wheel movement for the vehicle model. The barrier function h3 vehicle
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Figure 74: Yaw rate of the C-class Hatchback CarSim vehicle model, YSC considering the
desired yaw rate as a relaxed reference, when subject to the Sine with Dwell test.

exhibits a negative peak at the beginning of the dwell time, but quickly recovers non-

negative values. This is expected, since the vehicle model is much more complex than

the linearized model used in the control design, and there is input saturation in practice,

since brake forces are limited by the normal forces on the tires, further factored by the

friction coefficient.

The high-level controller outputs a correcting yaw moment, which is displayed in

Figure 78. There is a saturation for t ∈ {0.910 s, 1.235 s}, which considers the maximum

possible correcting yaw moment magnitude. This results from the maximum brake forces

on each wheel, factored by their distance to the vehicle’s center of mass and the friction

coefficient between the tires and the track.

The signal in Figure 78 is much noisier than that from Figure 71b. This is explained

by the much more detailed model, which can describe vibrations from the vehicle struc-

ture, drive train, eventual gear switches, and tire dynamics. In addition to it, we have

implemented a simple open-loop brake controller which outputs brake pressures for each

wheel. The sudden brakes also cause vibrations that propagate themselves throughout

the vehicle.
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Figure 75: Lateral displacement of the C-class Hatchback CarSim vehicle model, YSC
considering the desired yaw rate as a relaxed reference, when subject to the Sine with
Dwell test.

The brake pressures Pbi, i ∈ {1, 2, 3, 4} for the front left, front right, rear left, and

rear right wheels, in the respective order, obtained as

Pbi =
rei
kbf i

Fbi, (7.21)

where rei is the effective rolling radius of the ith wheel, kbf i is the ratio of the braking force

and moment on said wheel, and Fbi is the target braking force which is to be achieved.

The obtention of rei is rather convoluted for the magic formula model and has been done

as presented in (PACEJKA, 2012), Appendix 3.

The correcting yaw moment and the brake forces are approximately related by

Mψ = Fb1lw1 + Fb3lw2 (7.22)

for small steering angles. The brake forces are obtained as a ratio of them and the maxi-

mum brake force each wheel is able to provide, according to the combined slip equations

from Appendix A, which is the same as the required and maximum correcting yaw mo-

ments.
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Figure 76: Barrier functions for the Sine with Dwell test, YSC with relaxed barriers,
C-class Hatchback CarSim vehicle model. Continuous line: h1. Dash-dot line: h2. Dotted
line: h3. Dashed line: h4.
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Figure 77: Barrier functions for the Sine with Dwell test, YSC with relaxed barriers,
C-class Hatchback CarSim vehicle model, δdmax = 7.5A. Continuous line: h1. Dash-dot
line: h2. Dotted line: h3. Dashed line: h4.
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Figure 78: Correcting yaw moment for the Sine with Dwell test, YSC with relaxed barriers,
C-class Hatchback CarSim vehicle model, δdmax = 7.5A.

Figure 79 depicts the individual brake pressures on each wheel, again for the 13th

maneuver from the Sine with Dwell test for the C-Class Hatchback model, i.e., δdmax =

7.5A. The first part of the maneuver is a curve to the left, when the vehicle exhibits

oversteering of positive sign. The right wheels, or Wheels 2 and 3, brake in that situation.

After that, the vehicle turns to the right and initiates the dwell time, which induces

negative oversteering. In this case, both left brakes activate (Pb1 and Pb3).

Consequently, the YSC system with safety-critical control based on control-disturbance-

dependent control barrier functions is validated with both simple and complex vehicle

models. The simplest model, which is linear on both the driver and control inputs, was

used to design the high-level controller. The second model, provided by CarSim, describes

a realistic vehicle.
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Figure 79: Brake pressures for the Sine with Dwell test, YSC with relaxed barriers, C-
class Hatchback CarSim vehicle model. Continuous line: Pb1. Dash-dot line: Pb2. Dotted
line: Pb3. Dashed line: Pb4.

7.2 YSC conclusions

We have extended the safety-critical control theory to accommodate known disturbances

or external measurable control inputs. Also, we have considered relaxed conditions based

on the Nagumo invariance principle, instead of only Lyapunov control. The latter allows

for hard safety conditions, which must always be secured, and soft safety conditions, which

can be sacrificed in favor of the first ones.

We have shown that YSC can be implemented using safety-critical control, after those

extensions. We have validated the proposal using a simple linear model, which shows how

the closed-loop system would operate in ideal conditions; and using CarSim, when a

vehicle with a much larger set of realistic parameters is considered, which lets us observe

that there is a degree of robustness to the system. This is, naturally, desirable, since is

not practical to use a complex model such as the one CarSim uses for control design. As

safety-critical control based on control barrier functions depends on the derivatives of the

state variables from the system, it is expected that limited barrier violations occur, when

harsh maneuvers are used.

One particular limitation of the validation method that we have employed is that it

is limited to oversteer intervention. More specifically, by the time this work was under
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development, standardization institutions or regulatory agencies had been unable to de-

velop a maneuver that would reliably induce understeer (NHTSA, 2008). So far, vehicle

manufacturers submit documentation that describes how the vehicle is supposed to inter-

vene in order to mitigate understeer, but there is no objective criterion that the vehicles

must satisfy (NHTSA, 2009). For the proposed YSC system, it is easy to understand

that understeer would also induce barrier violations, causing the respective restrictions

to become active and yielding a correcting yaw moment that brakes the inner wheels,

instead of the ones from the outer side of the curve, which happens when oversteering.
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8 CONCLUSION

Safety-critical control can be an efficient method to design and implement ESC systems.

We presented AFS and differential braking systems, but it is safe to assume that AWS

and electric motors (i.e., accelerating or braking each wheel) would be equally viable, as

they include the first methods. One obtains AFS by disabling rear steering in AWS, much

like one obtains differential braking by disabling driving wheels in electric vehicles.

Safety-critical control is a trending research topic. The academic community fore-

sees many interesting contributions in this field shortly (ANNASWAMY; JOHANSSON;

PAPPAS, 2023). We have proposed and validated several extensions to its theory:

• control-dependent control Lyapunov functions;

• control-dependent exponential control Lyapunov and barrier functions;

• control-disturbance-dependent exponential control Lyapunov and barrier functions.

During our investigation of electronic stability control, we also identified a deficiency in

the area of stability regions. We suggested a method to generate higher-definition regions

for ranges of parameters, which were successfully validated by a control application. The

respective proposal was also published in (ALVES; CHINELATO; ANGELICO, 2022).

This work leaves several research opportunities for the ones interested in vehicle dy-

namics and control, electronic stability control, and safety-critical control. We can identify

open problems in vehicle dynamics, state estimation, parameter identification, validation

and design methods, and low-level brake system control. Additionally, the proposals can

be adapted or extended to other vehicle types or other control problems.

Vehicles are complex systems, with several internal dynamics. In particular, the mod-

eling of parts with diverse mass values causes the system model to become ill-conditioned.

To circumvent this problem, we can avoid including those parts in the model, especially

those whose influence can be further described by another quantity. For instance, since

the drivetrain takes the motor torque as an input, we can try and avoid including the

motor’s internal parts, such as pistons and camshafts.
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Unfortunately, the inclusion of wheels cannot be avoided. Their masses and rubber

deformations are closely related to how a vehicle is propelled, so they must be well de-

scribed. However, since the vehicle mass is much greater than the wheels’, the body

dynamics is much slower, in comparison. As a result, numerical errors while simulating

wheels cause a noticeable impact of the forces which act on the body, and the simulation

steps must accommodate their behavior. On the other hand, studies in numerical analysis

may be able to circumvent or mitigate the problem and allow for the use of more complex

models in control design or vehicle simulation.

A complete model of a moving vehicle has infinite dimension not only because the

vehicle has deformable parts, but because the environment can never be fully described

(THRUN; BURGARD; FOX, 2005). This environment includes the road surface, other

vehicles, wind, road and air temperature, and various materials—such as sand, water, oil,

or mud—which may be either clustered or outspread over the road.

The aforementioned environmental aspects are not only hard to model but also to

measure. For instance, road and air temperature will influence rubber stiffness and inflat-

ing pressure, which, in turn, influence tire stiffness (see Section 2.2.2). The road surface

may be modeled by road bank and grade if it is smooth enough. Else, each tire will be sub-

ject to different camber and a different angle in relation to gravity (which, both, generate

noticeable lateral forces). Computer vision can help detect many of the aforementioned

aspects before the vehicle comes into contact with them.

Since any model-based control strategy depends on an available model, the necessary

parameters must be obtained. Possible parameters or states include road bank and grade,

road friction coefficient, vehicle speed and acceleration, and angular speeds. A few of

those quantities have affordable commercial sensors which directly measure them. Some

demand estimators, while others demand extra sensors. These sensors operate in a noisy

and harsh environment. Hence, the development of affordable and reliable automotive

sensors remains an open problem. This includes any necessary devices and methods

to accurately detect and describe the road ahead. For the sake of simplicity and time

constraints, this work has left the important topic of estimation aside.

Manufacturers use more scenarios to tune their ESC systems. For instance, low friction

surfaces due to frozen roads are considered in countries where the climate conditions are

colder. Hence the proposed systems may be improved by fiction coefficient detection or

simply the consideration of a lower friction coefficient. One can also study how a human

driver interacts with the proposed system. ESC systems may cause the driver–vehicle
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loop to become unstable, depending on the driver’s skill and open-loop transport delay

and response time (MAGALHÃES JÚNIOR; MURILO; LOPES, 2022).

This study has implemented a limited brake control function for its model-in-the-loop

validation through CarSim. We considered an open-loop function that did not measure

or estimate the vertical load on each wheel and did not track the actual slip ratio on the

wheels. Hence low-level brake controllers can be included or developed in order to improve

the system. These may be further improved by estimated variables from the vehicle or

the environment, which we have already mentioned as a research opportunity.

The control method is related to the available actuators which can be controlled. An

inherent property of control systems is that the more control inputs are available, the more

freedom the designer has to manipulate the closed-loop dynamics, a fact that can be made

analogous to the linear case, where more control inputs eventually allow the designer to

not only manipulate close-loop eigenvalues but also change the related node eigenvectors

or focus frequencies. Such analysis was briefly presented in Section 3.2, in which, in

essence, it is explained that, in the face of side-slip or yaw rate errors, it is impossible to

assign an eigenvector that takes the state directly to the reference. Moreover, more control

objectives can be achieved with more input options, e.g., roll and pitch angle control, or

tire camber and normal force. In other words, the proposed safety-critical formulations

can be tested for these extra input methods.

Additionally, this work focused on passenger cars. This design decision impacted every

aspect of this text, to some extent. As a consequence, stability regions and ESC systems

may be obtained or investigated for race cars, off-road vehicles, commercial sports cars,

or even adapted to vehicles with a higher center of mass, such as SUVs, buses, or trucks.

Also concerning passenger cars, the proposed ESC systems completed the Sine with

Dwell test with ease. Since the standard only takes the total mass of the vehicle (i.e.,

the GVWR), but not the center of mass location, SUVs and passenger cars are treated

equally. As a consequence, the requirements are relaxed so that SUVs can meet them,

whereas passenger cars could be made more stable—at the cost of fuel consumption and

tire deterioration. It is unknown how many lives could be saved compared to the direct

and environmental costs.

Another possibility that arises from this study is its validation though hardware-

in-the-loop and full implementations on actual vehicles. Some of these were previously

planned for but had to be postponed due to difficulties outside our control, e.g., the

COVID-19 pandemic.
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Finally, the proposed safety-critical control formulations may be applied elsewhere. As

an example, we have only needed control barrier functions that depend on disturbances or

external control inputs for relative degree 1. Moreover, the YSC proposal did not require

a control Lyapunov function. Most certainly higher-order barrier functions or Lyapunov

functions shall be required by other systems.
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APPENDIX A – MAGIC FORMULA

EQUATION SET

The combined slip equation set from the magic formula model (excluding aligning moment

and turn slip) is presented here. It includes the longitudinal and lateral equation sets,

adding factors and shifts to adapt those when both the slip ratio and slip angle are not

zero.

The general variables that are used throughout the equation set are

F ′

zo = FzλFzo (A.1)

dfz =
Fz − F ′

zo

F ′
zo

(A.2)

dpi =
pi − pio
pio

(A.3)

α∗ = tanα sign(vcx) (A.4)

κ =
vsx

|vcx|+ ǫx
= −

vcx − reω

|vcx|+ ǫx
(A.5)

where vcx is the longitudinal speed of the tire (vx in Section 2.2.1) and ǫx ∈ R is a small

quantity to avoid singularities due to division by zero.

The pure longitudinal slip equations are

Fxo = Dx sin

{

Cx arctan
[

Bxκx − Ex
(

Bxκx − arctan(Bxκx)
)

]

}

+ SV x (A.6)

Cx = pCx1λCx (A.7)

Dx = µxFzζ1 (A.8)

µx = (pDx1 + pDx2dfz)(1 + ppx3dpi + ppx4dp
2
i )(1− pDx3γ

2)λ∗µx (A.9)

Ex = (pEx1 + pEx2dfz + pEx3df
2
z )[1− pEx4 sign(κx)]λEx (A.10)

Bx =
Kxκ

CxDx + ǫx
(A.11)

Kxκ = Fz(pKx1 + pKx2dfz)e
pKx3dfz(1 + ppx1dpi + ppx2dp

2
i )λKxκ (A.12)
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κx = κ+ SHx (A.13)

SHx = (pHx1 + pHx2dfz)λHx (A.14)

SV x = Fz(pV x1 + pV x2dfz)λV xλ
′

µxζ1. (A.15)

The pure lateral slip equations are

Fyo = Dy sin

{

Cy arctan
[

Byαy − Ey
(

Byαy − arctan(Byαy)
)

]

}

+ SV y (A.16)

Cy = pCy1λCy (A.17)

Dy = µyWζ2 (A.18)

µy = (pDy1 + pDy2dfz)(1 + ppy3dpi + ppy4dp
2
i )(1− pDy3γ

∗2)λ∗µy (A.19)

Ey = (pEy1 + pEy2dfz)
[

1 + pEy5γ
∗2 − (pEy3 + pEy4γ

∗) sign(αy)
]

λEy (A.20)

αy = α∗ + SHy (A.21)

By =
Kyα

CyDy + ǫy
(A.22)

Kyα = pKy1Wo(1 + ppy1)(1− pKy3|γ
∗|) (A.23)

sin

{

pKy4 arctan

[

W/Wo

(pKy2 + pKy5γ∗
2)(1 + ppy2dpi)

]}

= CFα

Shy = (pHy1 + pHy2dfz)λHy +
Kyγ0γ

∗ − SV yγ
Kyα + ǫK

ζo + ζ4 − 1 (A.24)

SV y = W (pV y1 + pV y2dfz)λV yλ
′

µyζ2 + SV yγ (A.25)

SV yγ = W (pV y3 + pV y4dfz)γ
∗λKyγλ

′

µyζ2 (A.26)

Kyγo = W (pKy6 + pKy7dfz)(1 + ppy5dpi)λKyγ (A.27)

= CFγ.

The combined slip equations for longitudinal force are

Fx = GxαFxo (A.28)

Gxα = cos

{

Cxα arctan
[

BxααS − Exα
(

BxααS − arctan(BxααS)
)

]

}

/Gxαo (A.29)

Gxαo = cos

{

Cxα arctan
[

BxαSHxα − Exα
(

BxαSHxα − arctan(BxαSHxα)
)

]

}

(A.30)

αS = α∗ + SHxα (A.31)

Bxα = (rBx1 + rBx3γ
∗2) cos[arctan(rBx2κ)]λxα (A.32)

Cxα = rCx1 (A.33)
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Exα = rEx1 + rEx2dfz (A.34)

SHxα = rHx1. (A.35)

Finally, the lateral force equations for combined slip are

Fy = GyκFyo + SV yκ (A.36)

Gyκ = cos

{

Cyκ arctan
[

ByκκS − Eyκ
(

ByκκS − arctan(ByκκS)
)

]

}

/Gyκo (A.37)

Gyκo = cos

{

Cyκ arctan
[

ByκSHyκ − Eyκ
(

ByκSHyκ − arctan(ByκSHyκ)
)

]

}

(A.38)

κS = κ+ SHyκ (A.39)

Byκ = (rBy1 + rBy4γ
∗2) cos[arctan(rBy2(α

∗ − rBy3))]λyκ (A.40)

Cyκ = rCy1 (A.41)

Eyκ = rEy1 + rEy2dfz (A.42)

SHyα = rHy1 + rHy2dfz (A.43)

SCyα = DV yκ sin[rV y5 arctan(rV y6κ)]λV yκ (A.44)

DV yκ = µyFz(rV y1 + rV y2dfz + rV y3γ
∗) cos[arctan(rV y4α

∗)]ζ2. (A.45)


