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the Universidade de São Paulo for degree
of Master of Science.

São Paulo
2023



RAYRA DESTRO

Identification and predictive control applied to a
quadruple tank

Corrected Version

Thesis submitted to Escola Politécnica of
the Universidade de São Paulo for degree of
Master of Science.

Concentration area:

3139 - Systems Engineering

Advisor:

Prof. Dr. Claudio Garcia

São Paulo
2023



 Autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio
convencional ou eletrônico, para fins de estudo e pesquisa, desde que citada a fonte.

Este exemplar foi revisado e corrigido em relação à versão original, sob 
responsabilidade única do autor e com a anuência de seu orientador.

São Paulo, ______ de ____________________ de __________

Assinatura do autor:         ________________________ 

Assinatura do orientador:  ________________________ 

Catalogação-na-publicação

Destro, Rayra
        Identification and predictive control applied to a quadruple tank / R.
Destro -- versão corr. -- São Paulo, 2023.
        64 p. 

        Dissertação (Mestrado) - Escola Politécnica da Universidade de São
Paulo. Departamento de Engenharia de Telecomunicações e Controle.

        1.Quadruple Tank 2.System Identification 3.MPC 4.Predictive Control
I.Universidade de São Paulo. Escola Politécnica. Departamento de
Engenharia de Telecomunicações e Controle II.t.



RESUMO

Este trabalho foca na identificação de um sistema de tanque quádruplo e em seu
controle, utilizando técnicas de controle preditivo. É descrita a construção da planta
com tanques quádruplos e feita a sua modelagem fenomenológica. Também são descritas
técnicas de identificação de sistemas e seus testes para o conjunto de tanques. São de-
scritas as técnicas de controle MPC, IHMPC e ESC e com estas técnicas são realizados
teste comparativos com a planta identificada em questão. Por fim, são apresentados os
resultados e as conclusões.

Palavras-Chave – Tanque Quádruplo, Identificação de Sistemas, MPC, controle predi-
tivo.
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ABSTRACT

This work focuses on system identification of a quadruple tank and on its control
using predictive control techniques. The construction of the plant is detailed and its
phenomenological model is designed. System identification techniques are described and
the validation tests are shown. MPC, IHMP and ESC techniques are presented as well
as their comparison tests considering the identified plant. Results and conclusions are
presented at the end.

Keywords – Quadruple Tank, System Identification, MPC, Predictive Control.
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1 INTRODUCTION

Modeling and controlling plants are usual activities in the industrial environment.
Even though these activities are common in the industry, they are not trivial. Phenomeno-
logical modeling has an issue: gathering all system parameters and their peculiarities. To
avoid such difficulties, techniques such as system identification are quite useful in this
situation.

As the quadruple tank is a well-known system, the meaning of using identification,
in this case, is to study and compare the results of different identification models with
the phenomenological model that is designed. The system is MIMO like most indus-
trial plants. Besides being a non-linear plant, it has an adjustable zero which can be of
minimum phase or non-minimum phase (JOHANSSON, 2000).

System identification is a modeling technique that consists on collecting inputs and
outputs of the system subject to known conditions. Based on the information that can
be obtained from them, a polynomial model is written (LJUNG, 1999). The PRBS signal
is a known input which is commonly used for identification. Due to its composition it is
able to provide the necessary information of the plant when correctly used (AGUIRRE,
2015).

There are plenty different structures used in system identification. In this work the
structures ARX, ARMAX, OE and BJ are used.

There are a lot of publications exploring different controls for the quadruple tank
such as Hinf (LI; ZHENG, 2014) and decoupled PID (ASTROM; JOHANSSON; WANG,
2002), for example. The practical quadruple tank in Escola Politécnica of USP, which
is used in this work was also used to explore discrete LQG/LTR (NEVES et al., 2016)
controls and QFT with dynamic decoupling (NEVES; ANGÉLICO, 2016).

The Model Predictive Control (MPC) is the control technique focused on this work.
MPC predicts the future response of a plant based on an explicit process model. This
control was originally designed to meet specific needs of oil refineries and now can be
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found in different kinds of plants (QIN; BADGWELL, 2003).

The MPC calculates a series of admissible control inputs capable of taking the system
to a certain point. For that, it is necessary to satisfy some restrictions and to minimize a
cost function (FERRAMOSCA et al., 2009).

Similarly, IHMPC generates control inputs based on prediction but considering an
infinity horizon. Caused by this specificity, for the implementation, it was considered the
necessity of remodeling the system using OPOM (MARTINS M. A.; ODLOAK, 2016).
The technique has lots of variations but at this work there will be explored only a simpler
implementation.

In addition to these predictive controllers, it was chosen to use as comparison a model-
free control technique (DESTRO et al., 2021). The main purpose was to use a straight-
forward methodology, that considers only the calculus of inputs based on the outputs to
converge the an optimum point.

This work contemplates the developed activities in five more chapters. Firstly, in
Chapter 2 the phenomenological model is designed. In Chapter 3 the identification tech-
niques used in this work are explored. Next, the MPC, IHMPC and ESC controllers are
designed in Chapter 4. Chapter 5 shows the results obtained. And lastly, the conclusions
are shown in Chapter 6.
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2 MODELING

In this chapter, it is developed the phenomenological model for the quadruple tank
system. In addition to that, the identification of the plant is perfirmed.

2.1 General overlook

The quadruple tank system is composed of four main tanks, a reservoir, two pumps
and two proportional valves (ASTROM; JOHANSSON; WANG, 2002). The tanks are
connected as shown in Figure 1.

Tank 1 Tank 2

Tank 3 Tank 4

Pump 1 Pump 2
y1 y2

v1 v2

Figure 1: Quadruple tank.

Pump 1 is responsible for pumping water from the reservoir to tank 1 and to tank
4 and the proportion of water is based on valve 1 opening. Similarly, pump 2 supplies
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water to tank 2 and tank 3. In this case, the proportion is given by valve 2. So tank 3
supplies water for tank 1 and tank 4 supplies water to tank 2. Tank 1 and tank 2 return
the water to the reservoir.

2.2 Phenomenological model

The main problem to be solved is to control the liquid level in tanks 1 and 2, using
only the supply voltage of both pumps. The mass balance of the system is considered for
modeling it. Turbulent regime is assumed. Tank 1: it has an input that brings in the
fluid from tank 3 by gravity and another one which is provided by the pump 1 combined
with valve 1. Its output is the leaking fluid to the reservoir by gravity. Applying this
concept for all the tanks, the dynamic equations are obtained as:

dh1

dt
= − a1

A1

√
2gh1 + a3

A1

√
2gh3 + γ1k1v1

A1
(2.1)

dh2

dt
= − a2

A2

√
2gh2 + a4

A2

√
2gh4 + γ2k2v2

A2
(2.2)

dh3

dt
= − a3

A3

√
2gh3 + (1 − γ2)k2v2

A3
(2.3)

dh4

dt
= − a4

A4

√
2gh4 + (1 − γ1)k1v1

A4
(2.4)

where:

• hi level of tank i;

• ai area of liquid exit of tank i;

• Ai area of the base of tank i;

• vi supply voltage of pump i;

• g gravity acceleration;

• γi opening percentage of valve i.

The valve opening is considered as fixed. It determines if the zero of the system is
minimum or non-minimum phase (ASTROM; JOHANSSON; WANG, 2002). If:

0 < γ1 + γ2 < 1, (2.5)

the input-output system presents a non-minimum phase zero. If

1 < γ1 + γ2 < 2, (2.6)
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the input-output system presents a minimum phase zero.

The quadruple tank built is shown in Figure 2.

Figure 2: Quadruple tank.

In this case, the parameters are:

• a1 = a2 = 0.4657 [cm2];

• a3 = a4 = 0.3421 [cm2];

• A1 = A2 = A3 = A4 = 254.4690 [cm2];

• k1 = k2 = 18 [cm3/(V*s)];

• γ1 = 0.55;

• γ2 = 0.54.
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• u is the voltage applied to the pump, ranging from 0V to 10V.

As in this work it is going to be used a linear control, it is necessary to obtain a linear
model around operating points. It is assumed that the operating point, in this case, are
h̄1 = 15cm and h̄2 = 15cm and they are fixed. Assuming that

xi = hi − h̄i (2.7)

are system states and

ui = vi − v̄i (2.8)

are the entrances of the state space model (JOHANSSON, 2000), which is written as:

ẋ =



− 1
T1

0 A3
A1T3

0

0 − 1
T2

0 A4
A2T2

0 0 − 1
T3

0

0 0 0 − 1
T4


x +



γ1k1
A1

0

0 γ2k2
A2

0 (1−γ2)k2
A3

(1−γ1)k1
A4

0


u (2.9)

y =

1 0 0 0

0 1 0 0

 x, (2.10)

with:

Ti = Ai

ai

√
2hi

g
. (2.11)

Substituting the numerical values and using the sample time Ts = 1s, the discrete
linear model is given by

x(k + 1) = Amx(k) + Bmu(k) (2.12)

y(k) = Cmx(k)

and applying the numerical values it is written as follows:

Am =



0.9896 0 0.0207 0

0 0.9896 0 0.0207

0 0 0.9792 0

0 0 0 0.9792


. (2.13)
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Bm =



0.0387 0.0003

0.0003 0.0380

0 0.0322

0.0315 0


(2.14)

Cm =

1 0 0 0

0 1 0 0

 . (2.15)

This model is going to be used as a comparison with the identified model.

2.3 Changes in the plant and impacts to this work

During the process of development of this project, we faced several issues with the
practical plant, but some of them changed the course of the work. First, other users of the
plant identified that the valves were not able to maintain a constant opening according to
the input voltage. Considering investment and use of the plant, the chosen solution was
to take the valves out, aware that the plant had changed. With that said, the described
phenomenological model is not totally coherent with the plant anymore but still is the
source for comparisons for the identified model that is going to be developed next.

The second point is that the LabView in which the project was developed, requires
a specific license to work properly and it was not compatible with our firewall so it is
not possible to keep working with the software immediately. Considering the deadline for
this work, we decided to change the scope of it to use the practical tank until the point
of getting data for the identification process. The control part used the best-identified
model to be tested and, unfortunately, it was not implemented in the tank but this is
clearly the next step for a future job.
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3 IDENTIFICATION

In this chapter, it is shown how identification techniques were used in this project.
System identification is commonly used for complex systems, where it is hard to model the
plant phenomenologically. As the quadruple tank is a well-known system, the intention
of using this technique it to study the methodology and to compare its results with the
phenomenological model.

3.1 PRBS

As the pseudo-random binary sequence (PRBS) is a signal which is statistically similar
to a white noise signal, it was chosen as the input signal for the identification of the system
(LJUNG, 1999). Because of that characteristic, this signal is capable of bringing to light
relevant behaviors of the system, making the identification methodology possible.

The sampling time chosen is Ts = 2s, which is lower than the fastest time constant
of the system, and the final decision for this number was made empirically on the plant.
During the tests to choose the PRBS features some step signals with a variety of voltages
were tested and the value of u1 = u2 = 6V was considered as one that best fits the need of
having a reasonable level for the tanks. Figure 3 shows the tank levels with these values
of inputs in the practical plant. The excursion chosen was 0.5V, because it shows a good
signal-to-noise ratio and does not make the liquid level too low or too high.

Next, in Figure 4 it is possible to check the PRBS signal used in the identification.
Note that we have different signals, one for each input channel, based on the same pa-
rameters, but with different seeds.
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3.2 Identified Models

As one of the intentions of this project is to talk about identification models, this
work is going to present the following models in a general view: ARX, ARMAX, OE and
BJ.

In this chapter, it is going to be used the variable q as is the delay operator. e(t) is
the white-noise disturbance value.

3.2.1 ARX

The autoregressive with exogenous input (ARX) model structure is written as follows:

A(q)y(t) = B(q)u(t − nk) + e(t) (3.1)

contraction of:

y(t) + A1y(t − 1) + A2y(t − 2) + ... + Anay(t − na) = (3.2)

B1u(t − ∆k) + ... + Bnbu(t − nb − nk + 1) + e(t)

where:

• na - number of poles with one row for each output signal;

• nb - number of zeros with one row for each output signal;

• nk - dead time: number of input samples before the output is affected by the input;

• A and B - polynomials in q.

3.2.2 ARMAX

The autoregressive moving average with exogenous input (ARMAX) model structure
is written as follows:

A(q)y(t) = B(q)u(t − nk) + C(q)e(t) (3.3)

contraction of:

y(t) + A1y(t − 1) + A2t(t − 2) + ... + Anay(t − na) = B1u(t − nk) + ... +

Bnb
u(t − nb − nk) + C1e(t − 1) + ... + Cnce(t − nc) + e(t) (3.4)
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where:

• na - number of poles with one row for each output signal;

• nb - number of zeros with one row for each output signal;

• nc - number of coefficients of polynomial C;

• nk - dead time: number of input samples before the output is affected by the input;

• A, B and C - polynomials in q.

3.2.3 BJ

The Box-Jenkins (BJ) polynomial model structure is written as follows:

y(t) =
nu∑
i=1

Bi(q)
Fi(q) ui(t − nki) + C(q)

D(q)e(t) (3.5)

with:

B(q) = B1q
−nk + · · · + Bnb

q−nb−nk+1 (3.6)

C(q) = 1 + C1q
−1 + · · · + Cncq

−nc (3.7)

D(q) = 1 + D1q
−1 + · · · + Dnd

q−nd (3.8)

F (q) = 1 + F1q
−1 + · · · + Fnf

q−nf (3.9)

where

• nb - number of zeros plus 1 with one row for each output signal;

• nc - number of coefficients of polynomial C;

• nd - number of coefficients of polynomial D;

• nf - number of coefficients of polynomial F ;

• nk - dead time: number of input samples before the output is affected by the input;

• nu - number of input channels;

• B, C, D and F - polynomials in q.
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3.2.4 OE

The Output-Error (OE) polynomial model structure is written as follows:

y(t) = B(q)
F (q)u(t − nk) + e(t) (3.10)

where:

• nb - number of zeros plus 1 with one row for each output signal;

• nf - number of coefficients of polynomial F ;

• nk - dead time: number of input samples before the output is affected by the input;

• nu - number of input channels;

• B and F - polynomials in q.

3.3 Practical application

An important information on this point is to tell that during the development of this
work, the practical plant faced some technical issues and because of that the valves were
removed. That said, it is simple to tell that the identification model is not going to be so
similar to the phenomenological model showed in previous sections.
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4 CONTROLLER

This chapter presents the design for three different controllers. The first section
develops the Model Predictive Control, the second goes through the design of Infinite
Horizon Model Predictive Control and finally the Extremum Seeking Control is tested
and the direct control method presented.

4.1 Model Predictive Control

In this section, the predictive control MPC for the quadruple tank is going to be
designed. The state space in incremental form shown next is going to be used in this
work.

x(k + 1) = Ax(k) + B∆u(k)

y(k) = Cx(k) (4.1)

where:

∆u(k) = u(k) − u(k − 1). (4.2)

The MPC controller is based on predictions of a dynamic model representing a specific
process. The control law is based on minimizing the cost function as follows:

Jk =
p∑

j=1
(y(k + j|k) − ysp)⊤Q(y(k + j|k) − ysp)

+
m−1∑
j=0

(∆u(k + j|k))⊤R(∆u(k + j|k)) (4.3)

This is used so that from the moment k to the moment k + m − 1, the sequence of control
efforts u is calculated. At the moment k + p the output ysp must be reached. p is the
prediction horizon, m is the control horizon, ∆u(k + j|k) = u(k + j|k) − u(k + j − 1|k),
Q > 0 and R > 0 which are matrices with the correct dimensions for the problem. Since
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after sample k + m, the control effort is null, it is possible to write:

ȳ(k) = Φx(k) + Γ∆uk; ∆uk =



∆u(k|k)

∆u(k + 1|k)
...

∆u(k + m − 1|k)


(4.4)

with:

Φ =



CA

CA2

...

CAp


(4.5)

and

Γ =



CB 0 . . . 0

CAB CB . . . 0
... ... . . . ...

CAp−1B CAp−2B . . . CAp−mB


. (4.6)

It is possible to write Q and R as Q̄ = diag

Q . . . Q︸ ︷︷ ︸
p

 and R̄ = diag

R . . . R︸ ︷︷ ︸
m

. Besides

that, ysp is the set point for all the predictions and ȳsp =

ysp⊤
. . . ysp⊤︸ ︷︷ ︸

p


⊤

is the set point

vector. Rewriting the cost function as:

JMP C
k = (Φx(k) + Γ∆uk − ȳsp)⊤Q̄(Φx(k)

+ Γ∆uk − ȳsp) + ∆u⊤
k R̄∆uk. (4.7)

Then, transforming the objective function to its quadratic form:

JMP C
k = ∆u⊤

k H∆uk + 2c⊤
f ∆uk + c (4.8)
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where:

H = Γ⊤Q̄Γ + R̄; (4.9)

c⊤
f = (Φx(k) − ȳsp)⊤Q̄Γ; (4.10)

c = (Φx(k) − ȳsp)⊤Q̄(Φx(k) − ȳsp). (4.11)

Finding ∆uk that minimizes JMP C
k , considering −∆umax ≤ ∆u(k +j|k) ≤ ∆umax and

umin ≤ u(k + j|k) ≤ umax with j = 0, 1, . . . , m − 1, the control law of MPC is obtained.

4.2 Infinite Horizon Model Predictive Control

In the infinite horizon MPC it is assumed that the set points of the outputs are the
origin. That is equivalent to say that the desired steady-state of the system in this project
is considered as known and tracking the output can be solved by turning this problem
into a regulatory problem, by redefining the state variables.

Similarly to MPC, to accomplish IHMPC control function it is needed to use specific
models. The model that is going to be used in this work is the Output Prediction Oriented
Model known as OPOM. The details of this model can be found on (MARTINS M.
A.; ODLOAK, 2016).

4.2.1 IHMPC Design

Consider the system model as follows, where C = I, so the state is assumed to be
measured, and x and u are deviation variables based on the steady-state.

x(k + 1) = Ax(k) + B∆u(k)

y(k) = Cx(k) (4.12)

The optimization problem is described in the next equation (ODLOAK, 2004):

J IHMP C
k =

∞∑
j=0

((y(k + j|k)) − ysp − δy)⊤Q(y(k + j|k) − ysp − δy)

+
m−1∑
j=0

(∆u(k + j|k))⊤R(∆u(k + j|k)) + δ⊤
u Syδy (4.13)
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δy are slack variables and they guarantee that each output variable has its slack
variable ensuring feasible solutions once the control law converges to an expression that
is based on equality constraints. In other words, the control solution generates values for
the control input ∆u and slack variables δu, where Sy is the matrix containing all the
weights related to them.

Splitting the first term of the previous equation into two, we can rewrite J IHMP C
k as

follows.

J IHMP C
k =

m+θmax∑
j=0

(y(k + j|k) − ysp − δy)⊤Q(y(k + j|k) − ysp − δy)

+
∞∑

j=m+θmax+1
(y(k + j|k) − ysp − δy)⊤Q(y(k + j|k) − ysp − δy)

+
m−1∑
j=0

(∆u(k + j|k))⊤R(u(k + j|k)) + δ⊤
u Syδy (4.14)

m + θmax is the prediction horizon used to calculate the vector of output prediction
that can be written as ȳ(k) = Āx(k) + B̄∆uk. ∆uk contains the control signals as below,
similar to MPC described in the last section.

∆uk =



∆u(k|k)

∆u(k + 1|k)
...

∆u(k + m − 1|k)


(4.15)

The matrix Ā and B̄ are composed as follows:

Ā =



C

CA

...

CAm

...

CAm+θmax



(4.16)
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B̄ =



0 0 . . . 0

CB 0 . . . 0
... ... . . . ...

CAm−1B CAm−2B . . . CB

... ... . . . ...

CAm+θmax−1B CAm+θmax−2B . . . CAθmaxB



(4.17)

In order to rewrite the first term of equation (4.14), it is necessary to create an output
set-point vector ȳsp and a supporting vector for the slack variables and adjust the Q

matrix to a new Q̄y. Next, we have the structure of each of these elements.

ȳsp =

ysp⊤
. . . ysp⊤︸ ︷︷ ︸

m+θmax+1


⊤

(4.18)

Īny =

Iny . . . Iny︸ ︷︷ ︸
m+θmax+1


⊤

(4.19)

Q̄y = diag

 Q . . . Q︸ ︷︷ ︸
m+θmax+1


⊤

(4.20)

Using this to recalculate the first term of J IHMP C
k :

m+θmax∑
j=0

(y(k + j|k) − ysp − δy)⊤Q(y(k + j|k) − ysp − δy) =

(Āx(k) + B̄∆uk − ȳsp − Īnyδy)⊤Q̄y(Āx(k) + B̄∆uk − ȳsp − Īnyδy) (4.21)

Now using OPOM, j can be written as follows for any moment after m+θmax, considering
the definitions of xs, xd and Ψ as detailed on (MARTINS M. A.; ODLOAK, 2016) and :

y(k + m + θmax + j|k) = xs(k + m + θmax|k) + Ψxd(k + m + θmax + j|k). (4.22)

Using (4.22) to rewrite the second therm of J IHMP C
k we will have:
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∞∑
j=m+θmax+1

(y(k + j|k) − ysp − δy)⊤Q(y(k + j|k) − ysp − δy)

=
∞∑

j=1
(xs(k + m + θmax|k) + Ψxd(k + m + θmax + j|k) − ysp − δy)⊤

Qy(xs(k + m + θmax|k) + Ψxd(k + m + θmax + j|k) − ysp − δy). (4.23)

If xs(k + m + θmax + j|k) − ysp − δy = 0 this term is bounded. Being F stable the
term can be redesigned as follows:

∞∑
j=1

(Ψxd(k + m + θmax + j|k))⊤Qy(Ψxd(k + m + θmax + j|k)) =

∞∑
j=1

(ΨF jxd(k + m + θmax|k))⊤Qy(ΨF jxd(k + m + θmax|k)) =

xd(k + m + θmax|k)⊤ (
∞∑

j=1
F j⊤Ψ⊤QyΨF j)

︸ ︷︷ ︸
Q̄d

xd(k + m + θmax|k) (4.24)

The solution for matrix Q̄d can be found by working with the following Lyapunov
equation:

Q̄d = F ⊤Ψ⊤QyΨF + F ⊤Q̄dF (4.25)

After that, consider: 

Nd = [Ond×ny Ind Ond×θmax ]

Ns = [Iny Ony×nd Ony×θmax ]

W = [Am−1B Am−2B . . . B]

(4.26)

it is possible to write the predicted states as follows.


xd(k + m + θmax|k) = NdAθmax(Amx(k) + W∆uk)

xs(k + m + θmax|k) = NsA
θmax(Amx(k) + W∆uk)

(4.27)

Getting back to J IHMP C
k , considering all this development, it can be written as:
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J IHMP C
k = (Āx(k) + B̄∆uk − ȳsp − Īnyδy)⊤Q̄(Āx(k) + B̄∆uk − ȳsp − Īnyδy)

+(NdAθmax(Amx(k) + W∆uk))⊤Q̄d(NdAθmax(Amx(k) + W∆uk))

+∆uk
⊤R̄∆uk + δ⊤

u Syδy (4.28)

and turned into a quadratic formulation

J IHMP C
k =

[
∆uk δy

] H11 H12

H21 H22


∆uk

δy

 + 2
[
cf1 cf2

] ∆uk

δy

 + c (4.29)

where

H11 = B̄⊤Q̄yB̄ + (NdAθmaxW )⊤Q̄d(NdAθmaxW ) + R̄

H12 = −B̄⊤Q̄y Īny

H21 = H⊤
12

H22 = Ī⊤
nyQ̄y Īny + Sy

cf1 = (Āx(k) − ȳsp)⊤Q̄yB̄ + (NdAθmax+mx(k))⊤Q̄d(NdAθmaxW )

cf2 = −(Āx(k) − ȳsp)⊤Q̄y Īny

c = (Āx(k) − ȳsp)⊤Q̄y(Āx(k) − ȳsp) + (NdAθmax+mx(k))⊤Q̄d(NdAθmax+mx(k)).

(4.30)

To reach the control law, it is necessary to solve the quadratic programming

min
∆uk,δy

[
∆uk δy

] H11 H12

H21 H22


∆uk

δy

 + 2
[
cf1 cf2

] ∆uk

δy

 (4.31)

submitted to:

−∆umax ≤ ∆u(k + j|k) ≤ ∆umax, j = 0, 1, . . . , m − 1,

umin ≤ u(k + j|k) ≤ umax, j = 0, 1, . . . , m − 1,

NdAθmax(Amx(k) + W∆uk) − ysp − δy = 0. (4.32)

4.3 Extremum Seeking Control

Considering the scenario of high complexity systems, the Extremum Seeking Control
(ESC) technique is one of the possible solutions (ARIYUR et al., 2003). Extremum
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Seeking is a real-time analogical optimizer (KRSTIć; WANG, 2000) in which the algorithm
uses only the output for the input’s calculation, aiming to guarantee that the output
converges to an optimum point.

The technique that is going to be used for ESC is the most common one: by sinusoidal
disturbance (KRSTIć; WANG, 2000; ZHANG; ORDÓÑEZ, 2012). So the next step is to
prove this algorithm. Considering the block diagram bellow (Figure5) there is a θ⋆ related
to the optimum point f ⋆ = f(θ⋆) and the estimation error is defined as θ̃ = θ⋆ − θ̂.

Figure 5: ESC block diagram.

Around the equilibrium point, f(θ) can be written as:

f(θ) = f ⋆ + f ′′

2 (θ − θ⋆)2. (4.33)

And from the block diagram θ = θ̂ + a sin(ωt). So the estimation error is equivalent to

θ − θ⋆ = a sin(ωt) − θ̃, (4.34)

and, substituting in (4.33), results in

f(θ) = f ⋆ + f ′′

2 (θ̂ − a sin(ωt))2. (4.35)

Expanding it is possible to reach the equation below.

y = f ⋆ + a2f ′′

4 (1 + cos(2ωt)) + f ′′

2 θ̃ sin(ωt). (4.36)

By design, it is possible to remove the constant terms from the previous equation as
the high-pass filter cuts off the frequencies below the chosen ESC frequency.

yhp = f ′′

2 θ̃2 − af ′′θ̃ sin(ωt) + a2f ′′

4 cos(2ωt). (4.37)

And as a last step, yhp is multiplied by a sin(ωt) and goes through the integrator. As it
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is shown in (ARIYUR et al., 2003), the average of the output integrator is

˙̃θ ≈ −a2kf ′′

2 θ̃, (4.38)

if kf ′′ > 0, it is stable, so θ̃ → 0, that implies θ̂ → θ⋆, which proves the convergence of
the method.

Once the method is valid, we are going through the controller schema design. Firstly
it is necessary to guarantee that ESC’s frequency is higher than the natural frequencies of
the plant. This hypothesis is viable once the idea is to keep a high frequency, so it becomes
possible to see in the output of the plant the effects of this oscillation. In this case, we
are using ESC as a direct controller and the main goal is to minimize the quadratic error.
The error is equal to zero in most systems.

The block diagram in Figure 6 shows this schema.

Figure 6: Direct ESC control block diagram.

The controller is considered decoupled, and every ESC implementation for each output
uses the same parameters. This can be checked in Figure 7, where ϕ = 0 to i = 1 and
ϕ = π/2 to i = 2.

Figure 7: Direct ESC algorithm by channel.

The control effort constraint for ESC is 0V ≤ u ≤ 10V. It actuates directly in the
plant.
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5 RESULTS

Aiming to test the theory studied, a set of Matlab codes was written. Firstly it
was done some tests to reach the PRBS and the best solution is already explained in
Chapter 3. With this PRBS as input, it was possible to test all identification models
shown in Chapter 3, following sections considering the data that was collected by tests in
the practical plant. The result with the best FIT in that test was chosen as the one to
test MPC and IHMPC. The results are compared to the ones that ESC provides.

5.1 Identification

As cited in Section 3, the inputs for both pumps were PRBS signals. These input
signals were presented in Figure 3 and in Figure 4. Two-thirds of the outputs were
designated for identification. The other third was used as validation data.

The ident tool from MatLab was used to create the models. Table 1 and Table 2
show the FIT values for lower order considering y1 and y2 respectively.

Table 1: FIT values for y1.

Order FIT ARX FIT ARMAX FIT OE FIT BJ
1 34.86% 37.61% 15.99% 82.91%
2 25.68% 26.74% 60.55% -60.55%
3 24.85% 56.56% 25.46% 88.98%
4 24.53% 34.57% 25.15% 93.72%

Table 2: FIT values for y2.

Order FIT ARX FIT ARMAX FIT OE FIT BJ
1 36.58% 38.59% 28.58% 88.76%
2 28.13% 30.96% 53.97% 71.95%
3 28.26% 48.44% -207.40% 87.33%
4 28.79% 36.94% -54.52% 91.85%

In Figure 8 is shown the measured and the simulated models outputs for tank 1 (y1)
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and for tank 2 (y2) considering the order 4. In order to determine which one of the models
represents the process the best, it was used the FIT coefficient as explained. The legend
describes the model and its FIT. For all models the orders were fixed at 4, considered
the best FIT on the previous tables, so it would be more reasonable to choose the most
effective one between them.
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Figure 8: Measured and simulated values for output y1 and y2.

Considering the generated models, the best-obtained result was the BJ model with
4th order. So we are using this model to test the control techniques from now on. Figure
9shows the step response for this model.
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Figure 9: Step response for the BJ model.
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5.2 MPC

In order to test the MPC, three experiments were designed and both the phenomeno-
logical and the identified models were applied. The main parameters for the MPC are the
following ones:

nu = 2 (5.1)

ny = 2

T = 2

p = 70

m = 40

q = 10 ∗ [15, 15]

r = 0.5 ∗ [1, 1]

5.2.1 Case a

The first experiment tests the reference tracking using a step response. The quadruple
tank is working at the operation point and steps of 2 cm are added to or subtracted from
the reference on different instants as shown in Figure 10 for the phenomenological model
and in Figure 12 for the identified model. Figures 11 and 13 show the control effort for
each case.
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Figure 10: Step reference tracking for tanks 1 and 2 to the phenomenological model.
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model.
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Figure 12: Step reference tracking for tanks 1 and 2 to the identified model.



30

0 100 200 300 400 500 600

Time [s]

0

1

2

3

4

5

6

7

8

9

10

C
o

n
tr

o
l 
e

ff
o

rt
 [

V
]

u
1

u
2

Figure 13: Step reference tracking control effort for tanks 1 and 2 to the identified model.
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5.2.2 Case b

The second experiment tests the reference tracking but using a sinusoidal signal, so we
have a comparison with a different input signal. Similarly, the quadruple tank is working
at operation point and the reference changes to a sinusoidal signal with 2cm of amplitude
and 10−2Hz of frequency. Figure 14 presents the results for the phenomenological model
and Figure 16 for the identified model. Figures 15 and 17 show the control effort for each
case.
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Figure 14: Sinusoidal reference tracking for tanks 1 and 2 to the phenomenological model.
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Figure 15: Sinusoidal reference tracking control effort for tanks 1 and 2 to the phenomeno-
logical model.
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Figure 16: Sinusoidal reference tracking for tanks 1 and 2 to the identified model.
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Figure 17: Sinusoidal reference tracking control effort for tanks 1 and 2 to the identified
model.
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5.2.3 Case c

The third experiment tests the disturbance rejection by watching the effects of an
additive disturbance at the output. It is used for that a step signal for the two outputs
h1 and h2. In Figure 18 is shown the outputs for the phenomenological model and in
Figure 19 the equivalent control effort. Figures 20 and 21 show the same views but for
the identified model. Figure 22 shows the disturbance.
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Figure 18: Fixed reference tracking for tanks 1 and 2 to the phenomenological model
considering an additive disturbance at the output.
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Figure 19: Reference tracking control effort for tanks 1 and 2 to the phenomenological
model considering an additive disturbance at the output.
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Figure 20: Fixed reference tracking for tanks 1 and 2 to the identified model considering
an additive disturbance at the output.
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Figure 21: Reference tracking control effort for tanks 1 and 2 to the identified model
considering an additive disturbance at the output.
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5.3 IHMPC

The implementation of IHMPC was quite similar to the one of MPC. The difference
was using the OPOM model to consider the plant dynamics. The best tuning results can
be seen in Figure 23 for the outputs and in Figure 24 for the control effort.

The results show that it was not the best control technique for this plant. Firstly, it
was really hard to tune the controller. And secondly, even though it was possible to have
one of the outputs with a reasonable outcome, the other output did not show the same
kind of response. And finally, the controller itself is so slow that would make an industrial
plant implementation quite inefficient.
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Figure 23: Reference tracking control effort for tanks 1 and 2 to the identified model.
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Figure 24: Reference tracking control effort for tanks 1 and 2 using IHMPC.

The main parameters for the IHMPC are the following ones:

nu = 2 (5.2)

ny = 2

T = 2

m = 30

q = 10 ∗ [15, 15]

r = 0.5 ∗ [1, 1]

q = 10−3 ∗ [30, 1]

r = [32, 4]

s = 103 ∗ diag([100, 0.01])
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5.4 ESC

This section presents the simulation results obtained for four distinct cases designed
for the plant.

5.4.1 Case a

For the first test, the quadruple tank operates at minimum phase (γ1 = 0.6 and
γ2 = 0.6) and it is used a pulse reference with the initial condition of h1 = 9 cm and
h2 = 9 cm. Figure 25 shows the tank levels to the system using ESC as controller. The
control effort and the quadratic error are shown in Figure 26. The system presented a
good result, so that the tanks 1 and 2 converged to the reference. But, the control effort
of this approach is very oscillatory. Note that the control effort presents the sinusoidal
variation from the ESC algorithm.
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Figure 25: Outputs considering a pulse reference.
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Figure 26: Control effort and quadratic error considering a pulse reference.
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5.4.2 Case b

The second experiment considers the same opening of the valve than the case before,
but now it is used a sinusoidal reference for each tank with an initial condition for each
one being h = 12 cm.
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Figure 27: Outputs considering a sinusoidal reference.

The results are shown in Figures 27 and 28 from the non-model based control. Thus
the tank 2 had a slightly larger error and with a greater deviation in the initial condition
when compared to tank 1, the results were satisfactory.
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Figure 28: Control effort and quadratic error considering a sinusoidal reference.
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5.4.3 Case c

The third case represents the same situation of the case ”a” such as the reference and
the initial condition, but now we are considering that γ1 and γ2 are time variants. Figure
29 shows these conditions. Note that, in this situation, the system spends a short period
in non-minimum phase.
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Figure 29: Time variant γ1 and γ2 considered in cases ”c” and ”d”.

Figure 30 shows the output system and Figure 31 shows the control effort and quadratic
error. In this situation, considering γ1 and γ2 time variants, we obtained a more oscilla-
tory result than the result obtained in case ”a”. But it still has a good performance, as the
variation of γi causes a big change in the system (including the switch to non-minimum
phase).
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Figure 30: Outputs considering a step reference and γ1 and γ2 time variants.
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Figure 31: Control effort and quadratic error considering a step reference and γ1 and γ2
time variants.
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5.4.4 Case d

Lastly, the case ”d” is the combination of case ”b” and case ”c”. The reference is the
same considered in the case ”b”, but now with γ1 and γ2 time variants, as shown in Figure
29.

Figure 32 shows the output variables and 33 shows the control effort with quadratic
error. The result obtained is similar to the case c and the output followed the reference
but with a small oscillation around it.
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Figure 32: Outputs considering a sinusoidal reference and γ1 and γ2 time variants.
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Figure 33: Control effort and quadratic error considering a sinusoidal reference and γ1
and γ2 time variants.
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6 CONCLUSION

This work focuses on the study of identification of models and their implementation
allied to predictive controllers. The study of predictive controller applied to the identified
plant is part of it.

Firstly, the construction of the quadruple tank was explored and the phenomenological
model was designed. This model is the basis for comparisons as it represents the quadruple
tank mathematically. During the course of this work, as explored, the practical tank
suffered some changes and because of that the scope of this work widened to include a
model free control.

Then, the system identification was based on four different structures: ARX, ARMAX,
OE and BJ. The four structures were tested in a forth order version to find which one has
the best FIT with the phenomenological model. BJ structures presented the best FIT.

The MPC with finite horizon studied was presented and tested on this best-fit identi-
fied plant. The comparison this time was tested and validated with two reference tracking
tests and a disturbance rejection test. The results were coherent solving stability and ref-
erence tracking problem. The same controller was tested between plants and as the results
showed that adjustments were needed to have better outcomes.

The IHMPC was implemented using the OPOM model as base and, even though one
of the outputs could be well controlled, the other one is not as good as the first. Another
point is that the controller is too slow, almost a hundred times slower than the MPC.
This shows that the application of this controller must take into account the type of plant
that would be implemented, solving in a better manner the control problem for a slow
plant.

Finally, an extremum-seeking control was used to solve a tracking problem in the plant.
The presented ESC project does not consider the model of the system, this generates a
model-free control technique. The control technique is composed of two decentralized
ESC algorithms, where the first output is associated with the first input and the same
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is done for the second output. To test the technique, some simulations were made using
the nonlinear quadruple tank model. The results obtained were satisfactory, validating
the model-free control technique. Furthermore, the performance was verified considering
time-varying parameters.

In conclusion, the work tests two alternatives of control techniques in a model with
low level of information of the plant. The identification uses only inputs and outputs and
the second technique shows another way of creating a control to a plant in a situation
were tests are not feasible.

As suggestions for future works, would be interesting to recreate the phenomenolog-
ical model based on the new tank structure which would make possible the comparison
between both models. Another point would be better tuning the controllers and testing
them on the practical plant.
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NEVES, G. P. das; ANGÉLICO, B. A. Controle qft para o tanque quadruplo com
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