
FABIO BOBROW

THE CUBLI: MODELING AND NONLINEAR
ATTITUDE CONTROL UTILIZING

QUATERNIONS

São Paulo
2022





FABIO BOBROW

THE CUBLI: MODELING AND NONLINEAR
ATTITUDE CONTROL UTILIZING

QUATERNIONS

Revised Version

Thesis presented to Escola Politécnica da

Universidade de São Paulo to obtain the

degree of Doctor of Science

São Paulo
2022





FABIO BOBROW

THE CUBLI: MODELING AND NONLINEAR
ATTITUDE CONTROL UTILIZING

QUATERNIONS

Revised Version

Thesis presented to Escola Politécnica da

Universidade de São Paulo to obtain the

degree of Doctor of Science

Concentration area:

3139 - Systems Engineering

Advisor:

Prof. Dr. Bruno Augusto Angelico

Co-advisor:

Prof. Dr. Paulo Pereira da Silva

São Paulo
2022





 Autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio
convencional ou eletrônico, para fins de estudo e pesquisa, desde que citada a fonte.

Este exemplar foi revisado e corrigido em relação à versão original, sob 
responsabilidade única do autor e com a anuência de seu orientador.

São Paulo, ______ de ____________________ de __________

Assinatura do autor:         ________________________ 

Assinatura do orientador:  ________________________ 

Catalogação-na-publicação

Bobrow, Fabio
        The Cubli: modeling and nonlinear attitude control utilizing quaternions /
F. Bobrow -- versão corr. -- São Paulo, 2022.
        180 p. 

        Tese (Doutorado) - Escola Politécnica da Universidade de São Paulo.
Departamento de Engenharia de Energia e Automação Elétricas.

        1.CONTROLE (TEORIA DE SISTEMAS E CONTROLE) 2.SISTEMAS
DE CONTROLE 3.QUATERNIOS I.Universidade de São Paulo. Escola
Politécnica. Departamento de Engenharia de Energia e Automação Elétricas
II.t.





ACKNOWLEDGMENTS

I would like to thank my advisor, Bruno A. Angelico, for his resilience and success
in creating an applied control laboratory in a country that suffers so much adversity and
lack of government support in research and education.

I would also like to thank my laboratory colleagues, Fabio Y. Toriumi, Gabriel P.
Neves and Mateus M. Brugnolli, for all their support throughout the development of this
work.

Finally, I would like to thank CAPES and FAPESP for its finantial support.





ABSTRACT

This thesis consists of the modeling and nonlinear attitude control of the Cubli, a
cube with three reaction wheels mounted on orthogonal faces that turns into a reaction
wheel based 3D inverted pendulum when positioned in one of its vertices. Although this
plant is not new, the novelty of this work is the use of quaternions instead of Euler an-
gles as feedback control states. A good advantage of using quaternions, besides avoiding
singularities and trigonometric functions, is that it allows working out quite complex dy-
namic equations completely by hand utilizing vector notation. The entire modeling and
nonlinear control law is derived without the need of any mathematical symbolic software
in a very didactic and self-contained way, being a contribution to control education. In
addition, the original plant utilizes six IMUs spread throughout the entire structure in
previously known positions. The Cubli of this work utilizes an accelerometer together
with a rate gyroscope in a quaternion based complementary filter, which requires only
one IMU placed anywhere and yields equally satisfactory results. Modeling is performed
utilizing Lagrange equations and it is validated through computer simulations and Poinsot
trajectories analysis. The derived nonlinear control law is based on feedback linearization
technique, thus being time-invariant and equivalent to a linear one dynamically linearized
at the given reference. Moreover, it is characterized by only three straightforward tuning
parameters. Computer simulations and experimental results are presented for validation,
as well as all the mechanical, electronical and algorithm development of the system.

Keywords – Attitude control, Inverted pendulum, Feedback linearization, Lagrange
equations, Modeling, Nonlinear control systems, Poinsot trajectories, Reaction wheels,
Quaternions.





LIST OF FIGURES

1 Parabola . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Parabola with imaginary axis . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Broom Bridge Plaque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 CubeSat1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Reaction wheel2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

6 Inverted pendulum types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

7 The Cubli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

8 Cubli body parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

9 Euler angles (z-y-z sequence) . . . . . . . . . . . . . . . . . . . . . . . . . 23

10 Same vector described in different coordinate frames . . . . . . . . . . . . . 24

11 Euler angles and angular velocity . . . . . . . . . . . . . . . . . . . . . . . 26

12 Euler angles (z-y-x sequence) . . . . . . . . . . . . . . . . . . . . . . . . . 28

13 Quaternions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

14 Rodrigues’ rotation geometry . . . . . . . . . . . . . . . . . . . . . . . . . 30

15 Same vector described in different coordinate frames . . . . . . . . . . . . . 35

16 Quaternions and angular velocity . . . . . . . . . . . . . . . . . . . . . . . 37

17 Cubli angular velocities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

18 Structure parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

19 Reaction wheel 1 parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 45

20 Friction torque data and curve fitting . . . . . . . . . . . . . . . . . . . . . 57

21 Cubli dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

22 Simulation 1a - Invariant analysis (quaternion) . . . . . . . . . . . . . . . . 60

23 Simulation 1a - Invariant analysis (energy) . . . . . . . . . . . . . . . . . . 60



24 Simulation 2 - Invariant analysis (angular momentum) . . . . . . . . . . . 61

25 Cubli static equilibrium positions . . . . . . . . . . . . . . . . . . . . . . . 62

26 Cubli static equilibrium positions rotation quaternions . . . . . . . . . . . 62

27 Simulation 3 - Static equilibrium stable (quaternion) . . . . . . . . . . . . 64

28 Simulation 4 - Static equilibrium unstable (quaternion) . . . . . . . . . . . 64

29 Cubli dynamic equilibrium motions . . . . . . . . . . . . . . . . . . . . . . 65

30 Simulation 5 - Dynamic equilibrium spin (Euler angles) . . . . . . . . . . . 65

31 Cubli non-equilibrium position rotation quaternion . . . . . . . . . . . . . 66

32 Simulation 6 - Dynamic equilibrium precession, nutation and spin (Euler

angles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

33 Simulation 6 - Dynamic equilibrium (center of mass) . . . . . . . . . . . . 67

34 Cubli principal moment of inertia . . . . . . . . . . . . . . . . . . . . . . . 68

35 Simulation 8 - Dynamic equilibrium (Euler angles) . . . . . . . . . . . . . . 69

36 Simulations 9 and 10 - Poinsot trajectories . . . . . . . . . . . . . . . . . . 70

37 Open loop poles (without reaction wheels) . . . . . . . . . . . . . . . . . . 73

38 Open loop poles (with reaction wheels angular velocity) . . . . . . . . . . . 75

39 Open loop poles (with reaction wheels angular velocity and displacement) . 77

40 The Cubli with feedback linearization . . . . . . . . . . . . . . . . . . . . . 80

41 The Cubli with state regulator and feedback linearization . . . . . . . . . . 85

42 The Cubli with state regulator and feedback linearization (with wheels) . . 88

43 Closed loop poles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

44 The Cubli with state regulator and feedback linearization (with wheels) . . 92

45 Closed loop poles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

46 Reaction wheels dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

47 Reaction wheels low-pass filter . . . . . . . . . . . . . . . . . . . . . . . . . 98

48 Discrete low-pass filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

49 Cut-off frequency ωc influence in a low-pass filter . . . . . . . . . . . . . . 100



50 Reaction wheels state observer . . . . . . . . . . . . . . . . . . . . . . . . . 101

51 Reaction wheels state observer rearranged . . . . . . . . . . . . . . . . . . 101

52 Reaction wheels state observer considering internal dynamics . . . . . . . . 102

53 Cubli orientation kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . 103

54 Cubli state observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

55 Cubli state observer considering angular velocity . . . . . . . . . . . . . . . 106

56 Rate gyroscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

57 Three-axis rate gyroscope . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

58 Cubli state observer considering angular velocity with rate gyroscope . . . 108

59 Accelerometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

60 Three-axis accelerometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

61 Cubli state observer considering angular velocity with rate gyroscope and

accelerometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

62 MATLAB/Simulink model . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

63 Simulation 1 - Without reaction wheels feedback . . . . . . . . . . . . . . . 114

64 Simulation 2 - With reaction wheels angular velocities feedback . . . . . . 115

65 Simulation 3 - With reaction wheels angular velocities and displacements

feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

66 Experiment 1 - Disturbance rejection . . . . . . . . . . . . . . . . . . . . . 118

67 Experiment 1 - Wheel velocity and angle feedback comparison . . . . . . . 119

68 Experiment 3 - Sinusoidal tracking reference . . . . . . . . . . . . . . . . . 120

69 Experiment 4 - Linear and nonlinear comparison . . . . . . . . . . . . . . . 121

70 The Cubli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

71 STM NUCLEO-L432KC3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

72 SparkFun 9DoF Sensor Stick4 . . . . . . . . . . . . . . . . . . . . . . . . . 131

73 Maxon EC 45 Flat 50W5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

74 Maxon ESCON Module 50/56 . . . . . . . . . . . . . . . . . . . . . . . . . 132



75 Turnigy Graphene Panther 1000mAh 6S LiPo7 . . . . . . . . . . . . . . . . 132

76 Electronic circuit block diagram . . . . . . . . . . . . . . . . . . . . . . . . 133

77 PCB board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

78 PCB schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

79 PCB renders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

80 PCB pictures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

81 Face . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

82 Reaction wheel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

83 Motor support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

84 Vertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

85 Firmware block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139



CONTENTS

Part I: INTRODUCTION 1

1 Outline 3

2 Historical background 5

2.1 Complex numbers1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Quaternions2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Satellites3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Attitude control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Literature review 15

3.1 Inverted pendulums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 The Cubli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Quaternion attitude control . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Part II: THEORY 19

4 Modeling 21

4.1 System definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.1 Euler angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.1.1 Rotation matrix . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.1.2 Kinematic equation . . . . . . . . . . . . . . . . . . . . . . 25

4.2.1.3 Singularities . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.2 Quaternions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.2.1 Spacial rotation . . . . . . . . . . . . . . . . . . . . . . . . 30



4.2.2.2 Quaternion fundamentals . . . . . . . . . . . . . . . . . . 31

4.2.2.3 Quaternion notation . . . . . . . . . . . . . . . . . . . . . 32

4.2.2.4 Quaternion product . . . . . . . . . . . . . . . . . . . . . 33

4.2.2.5 Rotation quaternion . . . . . . . . . . . . . . . . . . . . . 34

4.2.2.6 Kinematic equation . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.1 Kinetic Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.1.1 Angular velocities . . . . . . . . . . . . . . . . . . . . . . 42

4.3.1.2 Inertia matrices . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.1.3 Kinetic Energy . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.2 Potential Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.2.1 Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.2.2 Potential Energy . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.3 Lagrange equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.3.1 Generalized coordinate q . . . . . . . . . . . . . . . . . . . 50

4.3.3.2 Reaction wheels angular displacement . . . . . . . . . . . 54

4.3.4 Kinetic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.5 Friction forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.1 Dynamic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5.1 Invariant analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5.2 Singular motions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5.2.1 Static equilibrium . . . . . . . . . . . . . . . . . . . . . . 61

4.5.2.2 Dynamic equilibrium . . . . . . . . . . . . . . . . . . . . . 64

4.5.3 Poinsot trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



5 Analysis 71

5.1 Linearized dynamics without reaction wheels . . . . . . . . . . . . . . . . . 71

5.2 Linearized dynamics with reaction wheels angular velocity . . . . . . . . . 74

5.3 Linearized dynamics with reaction wheels angular velocity and displacement 75

6 Control 79

6.1 Control strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2 Attitude Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2.1 Feedback linearization . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2.2 State regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2.3 Controller gains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.3 Attitude and Wheel Velocity Controller . . . . . . . . . . . . . . . . . . . . 87

6.3.1 State regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3.2 Controller gains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.4 Attitude and Wheel Angle Controller . . . . . . . . . . . . . . . . . . . . . 91

6.4.1 State regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.4.2 Controller gains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7 Estimation 97

7.1 Reaction wheels angular velocity and displacement . . . . . . . . . . . . . 97

7.1.1 Low-pass filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.1.2 State observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.2 Cubli angular velocity and orientation . . . . . . . . . . . . . . . . . . . . 102

7.2.1 State observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.2.1.1 Rate gyroscope . . . . . . . . . . . . . . . . . . . . . . . . 106

7.2.1.2 Accelerometer . . . . . . . . . . . . . . . . . . . . . . . . . 108

Part III: RESULTS 111



8 Simulations 113

8.1 Simulation without reaction wheels feedback . . . . . . . . . . . . . . . . . 114

8.2 Simulation with reaction wheels angular velocities feedback . . . . . . . . . 115

8.3 Simulation with reaction wheels angular velocities and displacements feed-

back . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

9 Experiments 117

9.1 Disturbance rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

9.2 Wheel velocity and angle feedback comparison . . . . . . . . . . . . . . . . 118

9.3 Sinusoidal tracking reference . . . . . . . . . . . . . . . . . . . . . . . . . . 120

9.4 Linear and nonlinear comparison . . . . . . . . . . . . . . . . . . . . . . . 121

10 Conclusions 123

References 125

Appendix A – Construction 129

A.1 Electrical and Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

A.1.1 Off-the-shelf components . . . . . . . . . . . . . . . . . . . . . . . . 130

A.1.2 Printed circuit board . . . . . . . . . . . . . . . . . . . . . . . . . . 132

A.2 Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A.2.1 Laser cut aluminum . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A.2.2 3D printed ABS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

A.2.3 Screws and standoffs . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Appendix B – Firmware 139

B.1 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

B.1.1 Attitude and reaction wheel controller . . . . . . . . . . . . . . . . 140

B.1.2 Reaction wheel estimator . . . . . . . . . . . . . . . . . . . . . . . . 143



B.1.3 Attitude estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

B.2 Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

B.2.1 Motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

B.2.2 Hall sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

B.2.3 Inertial measurement unit . . . . . . . . . . . . . . . . . . . . . . . 148

B.3 Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

B.3.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

B.3.2 Pin names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

B.4 Main program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156





PART I

INTRODUCTION





3

1 OUTLINE

This thesis is organized in three main parts:

Part I: INTRODUCTION - In the first part, an historical background of the main

topics and a literature review are presented.

Part II: THEORY - In the second part, the system model is introduced and its

mathematical representation is obtained and validated through computer simulations.

Then, its dynamic properties are analyzed and a nonlinear control strategy is synthetized.

The developed state observers are also covered here.

Part III: RESULTS - In the third part, the actual physical implementation of

the system is presented. Conclusions and possible future developments are draw from

experimental results.

The whole prototype construction and programming process, from mechanics manu-

facturing, hardware selection and software implementation are detailed in appendix sec-

tions.



4



5

2 HISTORICAL BACKGROUND

A brief historical background of the main topics will be presented for unfamiliar

readers. This part of the thesis has no impact on the development or contribution of the

work itself. If the reader is already familiar with the subject, he can skip right to chapter

3 without loss of content.

The first topic is about the history of numerical systems, from the earliest days un-

til the emergence of complex numbers. This is the basis to introduce an even more

sophisticated numerical set: the ultracomplex numbers, also called quaternions. Then,

the history and application of space satellite will be drawn, focusing on satellite attitude

control system.

2.1 Complex numbers1

Consider the polynomial function f(x) given by

f(x) = x2 + 1 . (2.1)

Figure 1: Parabola

To figure out where this equation equals to zero graphically, i.e., the roots of the

function, all it needs to be done is to check where the function crosses the x-axis. However,

1Text adapted from Welch Labs YouTube Channel (https://youtu.be/T647CGsuOVU) and authorized
for reproduction by the author (Stephen Welch)

https://youtu.be/T647CGsuOVU


6

as can be seen (Fig. 1), this parabola never crosses the x-axis, so, according to this plot,

there are no solutions to the equation x2 + 1 = 0.

But there is a little problem with this statement. A little over 200 years ago, a

famous German mathematician by the name of Carl Friedrich Gauss (1777-1855) proved

that every polynomial equation of degree n has exactly n roots. The polynomial from Eq.

2.1 has a highest power, or degree, of 2, so it should have 2 roots. Furthermore, Gauss’s

discovery is not just some random rule, today it is called the Fundamental Theorem

of Algebra. If this plot disagrees with something so important called the Fundamental

Theorem of Algebra, this might be a problem. What Gauss is telling is that there are two

perfectly good values of x that could be plugged into f(x) and get 0 out. Where could

these two numbers be?

The short answer here is that this plot does not have enough numbers. Numbers are

typically thought of existing on a one-dimensional continuum: the number line. Most

common numbers live there: zero, one, negative numbers, fractions, even irrational num-

bers like π or
√

2. But this system is incomplete, and the missing numbers are not just

further left or right, they live in a whole new dimension. Algebraically, this new dimension

has everything to do with a problem that was mathematically considered impossible for

over two thousand years: the square root of negative one.

When this missing dimension is included in the analysis, the function f(x) ends up

being something much more interesting (Fig. 2).

Figure 2: Parabola with imaginary axis

Now that the input number are in their full two-dimensional form, it is possible to

see how the function f(x) really behaves. And as it can be seen, the function does cross

the x-plane (red dots). So why is this extra dimension that numbers possess not common



7

knowledge? Part of this reason is that is has been given a terrible name, a name that

suggests that these numbers are not even “real”. In fact, Gauss himself proposed these

numbers should be given the name “lateral” instead of “imaginary”. To get a better

handle on imaginary numbers and really understand what is going on in the last plot, it

is nice to go back a bit in the history of numbers.

Early humans really only had use for the natural numbers, which makes sense because

of how numbers were used: as a tool for counting things. So, to early humans, the number

line would have just been a series of dots. As civilizations advanced, people needed answers

to more sophisticated math question, like when to plant seeds, how to divide land, and

how to keep track of financial transactions. The natural numbers just were not cutting it

anymore, so the Egyptians innovated and developed a new, high-tech solution: fractions.

Fractions filled in the gaps in our number line and were basically cutting-edge technology

for a couple thousand years.

The next big innovations to hit the number line were the number zero and negative

numbers, but it took a lot of time to get everyone on board. Since it is not obvious what

these numbers mean or how they fit into the real world, zero and negative numbers were

met with skepticism, and largely avoided or ignored. Some cultures were more suspicious

than others, depending largely on how people viewed the connection between mathematics

and reality. A great example here is Greek civilization: despite making huge strides in

geometry, the Greeks generally did not accept negative numbers or zeros, after all, how

could nothing be something?

What is even wilder is that this is not all ancient history, just a few centuries ago,

mathematicians would intentionally move terms around to avoid having negatives show up

in equations. Suspicion of zero and negative numbers did eventually fade, partially because

negatives are useful for expressing concepts like debt, but mostly because negatives just

kept sneaking into mathematics.

It turns out there is just a whole lot of math you cannot do if you do not allow

negative numbers to play. Before negatives were accepted, simple algebra problems like

x + 1 = 0 have no solution, just like the equation x2 + 1 = 0 seemed to have no solution

before imaginary numbers were accepted either. The only difference here it that when the

real and imaginary part are put together, the one-dimension number line transforms into

a two-dimension number plane called the complex plane, whose main contribution comes

from the works of Italian mathematicians Gerolamo Cardano (1501 - 1576) and Rafael

Bombelli (1526 - 1572).



8

2.2 Quaternions2

Just as complex numbers are a two-dimensional extension of real numbers, ultra-

complex numbers, also known as quaternions, are a four-dimensional extension. They are

an absolutely fascinating and often underappreciated number system from math, much

because it is impossible to visualize graphically a four-dimensional number in a three-

dimensional world. But they are not just playful mathematical tools, they have a surpris-

ing pragmatic utility for describing rotation in space and even in quantum mechanics.

The story of their discovery is also quite famous in math. The Irish mathematician

Willian Rowan Hamilton (1805 - 1865) spent much of his life seeking a three-dimension

number system analogous to the complex numbers, and as the story goes, his son would

ask him every morning whether or not he had figure out how to divide triples and he would

always say “no, not yet”. But one day, while crossing the Broome Bridge in Dublin, he

realized, with a supposed flash of insight, that what he needed was not to add a single

dimension to the complex numbers, but to add two more imaginary dimensions: three

imaginary dimensions describing space and the real number sitting perpendicular to that

in some kind of four-dimensional space. He carved the crucial equation describing these

three imaginary units into the bridge (Fig. 3a), which today bears a plaque in his honor

showing that equation (Fig. 3b).

(a) Bridge3 (b) Plaque4

Figure 3: Broom Bridge Plaque

2Text adapted from 3Blue1Brown YouTube Channel (https://youtu.be/d4EgbgTm0Bg) and autho-
rized for reproduction by the author (Grant Sanderson)

4Image source: Flickr (https://www.flickr.com/photos/infomatique/44408787052)
4Image source: Wikimedia Commons (https://commons.wikimedia.org/wiki/File:Inscription_

on_Broom_Bridge_(Dublin)_regarding_the_discovery_of_Quaternions_multiplication_by_Sir_

William_Rowan_Hamilton.jpg)

https://youtu.be/d4EgbgTm0Bg
https://www.flickr.com/photos/infomatique/44408787052
https://commons.wikimedia.org/wiki/File:Inscription_on_Broom_Bridge_(Dublin)_regarding_the_discovery_of_Quaternions_multiplication_by_Sir_William_Rowan_Hamilton.jpg
https://commons.wikimedia.org/wiki/File:Inscription_on_Broom_Bridge_(Dublin)_regarding_the_discovery_of_Quaternions_multiplication_by_Sir_William_Rowan_Hamilton.jpg
https://commons.wikimedia.org/wiki/File:Inscription_on_Broom_Bridge_(Dublin)_regarding_the_discovery_of_Quaternions_multiplication_by_Sir_William_Rowan_Hamilton.jpg


9

Our modern notion of vectors, with their dot product, cross product and things like

that, did not really exist in Hamilton time, at least not in a standardized form. So, after his

discovery, he pushed hard for quaternions to be the primary language with which we teach

students to describe three-dimensional space, even forming an official quaternion society

to proselytize his discovery. However, this was balanced with mathematicians on the other

side of the fence who believed that the confusing notion of quaternion multiplication was

not necessary for describing three-dimensions.

It is even believed that the Mad Hatter scene from Alice in Wonderland, whose author

Lewis Carroll (1832 - 1898) was an English mathematician, was written in reference to

quaternions: that the chaotic table placement changes were mocking their multiplication,

and that certain quotes were referencing their non-commutative nature:

“Why, you might just as well say that I see what I eat is the same thing as I eat what

I see!”

Fast forward about a century and the computing industry gave quaternions a resur-

gence among programmers who work with graphics and robotics and anything involving

orientation in space. And this is because they give an elegant way to describe and to

compute three-dimensional rotations, which is computationally more efficient than other

methods and which also avoids a lot of numerical errors that arise in these other methods.

Not too long ago, Apollo 11 Moon mission suffered an incident called gimbal lock.

Gimbal lock is the loss of one degree of freedom in a three-dimensional system, usually

called a singularity. Although engineers were aware of this problem, their lack of ex-

perience at that time prevented them on avoiding it, just 60 years ago. As it would

become evident in the coming years, a potential solution to this problem is to represent

the orientation in some other way such as quaternions.

The 20th century also brought quaternions some more attention from a completely

different direction: quantum mechanics. The special actions the quaternions describe in

four dimensions are actually quite relevant to the way that two-state systems like spin of

an electron or the polarization of a photon are described mathematically.

To summarize, quaternions are a very recent innovation in math which have only

now begun to demonstrate their real potential in practical applications. Just as negative

numbers and zero made it possible for civilizations to advance as we never imagined, it is

still unclear what kind of progress quaternions will enable us to do.



10

2.3 Satellites5

We do not think about them that often, but above us are hundreds of flying robots

that play a large part in our lives on Earth. In 1957, lonely Sputnik circled the Earth by

itself, but today, the worlds of communication, navigation, weather forecasting and aerial

photography all rely heavily on satellites, as do many national militaries and government

intelligence agencies.

The number of active satellites in space have balloned from 852 in 2004 to 3,368 in

20206, while the total market for satellite manufacturing, the launches that carry them

to space, and related equipment and services has gone from USD 60 billion to USD 271

billion in the same period7. Satellite industry revenue today makes up only 16% of the

global telecommunications industry but accounts for over 74% of space industry revenue.

Despite all this, the satellite industry still uses technological resources from 50 years

ago, is terribly risk-averse and is dominated by few companies that are usually State

suppliers. With the proportional size of a van, a conventional satellite takes an average of

10 years to build and costs more than USD 400 million. At the launch date, its technology

is already completely out of date.

This scenario led to micro-satellites being developed. Smaller than a microwave,

satellites of this type can be built in less than a year and cost USD 250 thousand. In

what have been call the Small Sat Revolution, CubeSats lead the way. A CubeSat (Fig.

4) is a small and affordable satellite that can be developed and launched by college, high

schools and even individuals. The specifications were developed by Cal Poly and Stanford

University in 1999. Its basic structure is a 10cm cube (volume of 1 liter) weighting less

than 1.33kg, which allows several of these standardized packages to be stacked together

and launched as secondary payloads on other missions.

5Text adapted from Wait But Why blog
(https://waitbutwhy.com/2015/08/how-and-why-spacex-will-colonize-mars.html) and autho-
rized for reproduction by the author (Tim Urban)

6Data source: Statista
(https://www.statista.com/statistics/897719/number-of-active-satellites-by-year/)

7Data source: SIA
(https://sia.org/news-resources/state-of-the-satellite-industry-report/)

https://waitbutwhy.com/2015/08/how-and-why-spacex-will-colonize-mars.html
https://www.statista.com/statistics/897719/number-of-active-satellites-by-year/
https://sia.org/news-resources/state-of-the-satellite-industry-report/


11

Figure 4: CubeSat8

A typical CubeSat is composed of three main parts: power, communication and con-

trol. Power deals with the generation, storage and distribution of energy for its compo-

nents to operate; communication deals with the antennas and radio frequencies utilized

to communicate with a ground station or even directly with other CubeSats in space; and

control deals with the sensors and actuators needed to change the satellite’s motion in

space.

The translation motion of a satellite is mostly defined by its orbit, which in turn is

mostly defined by the launch that has put it there first place. Although very little, there is

still a bit of air resistance where satellites are, not enough to stop them but enough to make

them slowly lose orbit and reentry earth atmosphere, disintegrating in this process. To

keep it operational, they must constantly perform a few motion adjustments called orbit

maneuvers. Not all satellites have the components needed to perform orbital maneuvers,

some of them are just designed to operate for a few months or are located at higher orbits

that would take years to decay.

The rotational motion control, on the other hand, is a must. Without it, a satellite

will be at arbitrary orientations and would not be able to communicate with earth, harvest

energy for the sun, take pictures of earth and constellations, among many other activities

they are designed to do. In other words, the satellite would be useless. Luckily, controlling

the orientation (usually called attitude) of a satellite is much easier than its position, and

can even be done without propellant, just with electrical energy obtained directly from

the sun in space.

8Image Source: ETH Zurich (https://www.ethz.ch/content/specialinterest/baug/
institute-igp/mathematical-and-physical-geodesy/en/research/satellite-mission.html)

https://www.ethz.ch/content/specialinterest/baug/institute-igp/mathematical-and-physical-geodesy/en/research/satellite-mission.html
https://www.ethz.ch/content/specialinterest/baug/institute-igp/mathematical-and-physical-geodesy/en/research/satellite-mission.html


12

2.4 Attitude control

Spinning a satellite around one of its axis is the simplest control mechanism to keep it

pointed in a desired direction. This technique is usually called spin stabilization because it

uses the gyroscopic action of the rotating mass as the stabilizing mechanism. Propulsion

system thrusters are fired only occasionally to make desired changes in spin rate, or in

the spin-stabilized attitude. If desired, the spinning may be stopped through the use of

the same thrusters or by yo-yo de-spin: two cables with weights on the ends that absorbs

angular momentum when the cable length is increased.

An alternative control strategy is three-axis stabilization, where the satellite does not

continuously rotate but keeps a fixed orientation in space. Techniques here are usually

divided into active or passive, whether or not it depends on external sources to work.

The most common active technique is gyroscopic attitude control, where the desired

attitude is maintained by the spin of small wheels within the satellite. These are called

reaction wheels (Fig. 5) or momentum wheels and at least three of them are required to

provide full three-dimensional control. If allowed to pivot relative to the satellite, they

are known as control moment gyros. The attitude can be changed by varying the speed

or orientation of these internal gyros. Small thrusters may also be used to supplement the

gyroscopic attitude control or to hold the satellite orientation fixed when it is necessary to

de-spin or reorient gyros that have become saturated (reached their maximum spin rate

or deflection) over time.

Figure 5: Reaction wheel9

9Image source: Collins Aerospace (https://www.rockwellcollins.com/Products-and-Services/
Defense/Platforms/Space/High-Motor-Torque-Momentum-and-Reaction-Wheels.aspx)

https://www.rockwellcollins.com/Products-and-Services/Defense/Platforms/Space/High-Motor-Torque-Momentum-and-Reaction-Wheels.aspx
https://www.rockwellcollins.com/Products-and-Services/Defense/Platforms/Space/High-Motor-Torque-Momentum-and-Reaction-Wheels.aspx


13

As for passive techniques, the most common is magnetic torquers, which utilizes coils

to create a magnetic field that exert a moment against the local magnetic field. This

method works only where there is a magnetic field against which to react, such as Earth’s

orbit. However, only small satellites are able to interact in this way, since Earth has a

very low magnetic field. Another example are solar sails, devices that produce thrust as

a reaction force induced by reflecting incident light from the Sun. There are even purely

passive mechanisms, such as gravity-gradient stabilization where Earth’s gravitational

field by itself can stabilize the attitude of a large satellite.

As it can be seen, the most interesting technique is gyroscopic attitude control, since

it does not depend on external sources to work, and it can maneuver the satellite to

any desired orientation. However, it is usually the most expensive of them (because of

their need of reaction wheels and/or thrusters) as well as one of the most complicated to

implement.

The advantage of reaction wheels over thrusters is that they form a class of electric

actuators and so do not require any propellant to work. Its working principle is based on

the conservation of angular momentum. The action of the reaction wheel on the satellite

is performed by angular momentum, limited to the axis of rotation of the wheel. Due to

the large difference between the inertia of the satellite and the reaction wheel, an attitude

control with great precision is possible. Reaction wheels are particularly useful when the

satellite must be rotated by very small amounts, such as to hold a telescope or a camera

pointed in a certain direction. The drawback is that it can only rotate a satellite around

its center of mass and are not able to move it from one place to another.

Reaction wheels are typically made of an electric motor, usually a brushless motor,

and an inertia element. The inertia element and the motor are mounted on a bearing

which must ensure precise rotation about an axis. The speed of rotation of the system

is controlled by an electronic motor drive system. Reaction wheels can be driven in two

different ways: by torque or speed. When driven by torque, the reaction wheels must

be able to estimate the useful torque generated by it (the raw torque minus the friction

losses).

Although initially used solely and exclusively for attitude control of satellites, reaction

wheels are now used in a variety of fields, from Formula 1 cars to academic kits.

One hindrance of the gyroscopic attitude control is that there is virtually no way

to test a prototype given that our current physical knowledge still does not allow us to

develop a chamber on Earth with micro gravity. However, it is still possible to control



14

something very similar to a satellite here on earth but taking into account Earth’s gravity.



15

3 LITERATURE REVIEW

Now, the Cubli will be introduced, which is a test bed for satellite’s attitude control

system utilizing quaternions as feedback control states, thus, combining all previously

described topics into a single system.

A greater focus will be given on the research being carry out in this field, with citations

of relevant conferences and journal papers.

3.1 Inverted pendulums

Inverted pendulum systems have been a popular demonstration of using feedback

control to stabilize open-loop unstable systems. Introduced back in 1908 by Stephenson

[32], the first solution to this problem was presented only in 1960 with Roberge [26]

and it is still widely used to test, demonstrate and benchmark new control concepts and

theories [10, 11,13,29,36,38,39].

Differently from cart-pole inverted pendulums, that have a controlled cart with lin-

ear motion (Fig. 6a), reaction wheel pendulums have a controlled rotating wheel that

exchanges angular momentum with the pendulum (Fig. 6b). First introduced in 2001 by

Spong [31], it was soon adapted to a 3D version by Lee and Goswami in 2007 [16].

f

θ

(a) Cart-pole

τ

θ

(b) Reaction wheel

Figure 6: Inverted pendulum types



16

3.2 The Cubli

Perhaps, even most notable is the Cubli (Fig. 7). Originally developed and baptized in

2012 by Gajamohan [7,8] from the Institute for Dynamic Systems and Control of Zurich

Federal Institute of Technology (ETH Zurich), the Cubli is a device that consists of a

cube with three reaction wheels mounted on orthogonal faces. By positioning it in one

of its vertices, it becomes a reaction wheel based 3D inverted pendulum. This method of

utilizing reaction wheels is similar to the one used for decades to stabilize satellites and

spacecraft in space [3,4,6], but due to gravity and surface friction, the dynamics of these

systems are somewhat different.

Figure 7: The Cubli

The purpose of this thesis is first to model the system, and then design and implement

a nonlinear attitude controller for it. Although the ETH team has already done this

[22, 24], the novelty of this work is the use of quaternions as feedback control states.

In addition, ETH’s attitude estimator utilizes just accelerometers [23, 35], which is only

possible due to the fact that the Cubli has a non-accelerated pivot point and, thus, angular

and centripetal acceleration terms can be dismembered. However, a disadvantage of this

approach is that it requires six IMUs spread throughout the entire structure in previously

known positions. The Cubli of this work utilizes an three-axis accelerometer together with

a three-axis rate gyroscope in a quaternion based complementary filter, which requires

only one IMU placed anywhere and yields equally satisfactory results.



17

3.3 Quaternion attitude control

Quaternions were used for simulation of the rotational motion of rigid bodies as early

as 1958 by Robinson [27], but it was only a decade later, in 1968, that some early results on

the use of quaternions as feedback control states was shown by Mortensen [21]. In fact, it

was Meyer that introduced the attitude control theory a few years earlier, in 1966, but he

utilized rotational matrices instead [20]. In 1985, Wie et al. proposed a linear decoupled

model-independent control law, also utilizing quaternions [37]. Although different, all of

them used Lyapunov control theory. A disadvantage of it is that the control law is based

on intuition rather than fundamental principles. Moreover, important concepts such as

damping and loop bandwidth are not well defined as in linear control theory.

Dwyer, in 1984 [5], and Slotine and Li, in 1991 [30], approached this problem utilizing

a nonlinear transformation to realize an exact linear model of the rotational dynamics to

which linear control can be applied, a method that is also called feedback linearization or

dynamic inversion. The first utilized the Gibbs vector, whereas the second utilized Euler

angles. The main problem here is that both parametrizations are singular at certain

attitudes, even with no attitude error.

It was in 1993 that Paielli and Bach proposed an approach which incorporates features

of these others while avoiding their main problems [1,25]. They utilized the same dynamic

inversion as Dwyer, Slotine and Li, but with quaternions in the rotation dynamics, which

are globally nonsingular, just as Mortensen and Wie et al. However, the Gibbs vector was

utilized in the error dynamics because they have no nonlinear mathematical constraints

to prevent the realization of linear error dynamics.

The control law derived in this thesis utilizes this same approach. Although it was

proposed three decades ago, it continues to be considered state of the art control law in

the field, with few practical applications even today. Most of nowadays aircraft and even

some spacecraft are designed from a set of linear plant models and implemented with a

gain-scheduled linear controller [28]. The first aircraft to utilize dynamic inversion control

was the Lockheed Martin F-35, released in 2006 and currently the most advanced fighter

jet in service. This scenario has started to change in the last years with the astonishing

growth of nanosatellites and commercial UAVs [12,14,18,33,34].

Although this control technique is not novel, the implementation of it in the Cubli,

as far as the author knows, has not been presented in the literature before. Moreover,

a nice advantage of quaternions, besides the usual arguments to avoid singularities and



18

trigonometric functions, is that it allows working out quite complex dynamic equations

completely by hand utilizing vector notation [9]. This becomes evident in this thesis,

where the entire modeling and nonlinear control law is derived without the need of any

mathematical symbolic software in a very didactic and self-contained way, being a contri-

bution to control education as well.



PART II

THEORY





21

4 MODELING

The first step in any control system problem is to deduct a mathematical represen-

tation of the system to be controlled. This is usually called modeling and implies in

obtaining the differential equations that best describe the dynamics of the system.

Dynamics is that branch of mechanics which deals with the motion of bodies under

the action of forces. The study of dynamics in engineering usually follows the study of

statics, which deals with the effects of forces on bodies at rest. Dynamics has two distinct

parts: kinematics, which is the study of motion without reference to the forces which

cause motion; and kinetics, which relates the action of forces on bodies to their resulting

motions.

Dealing with kinematics and kinetics as separate topics is beneficial in many ways.

Primarily, the equation of motion becomes first order ordinary differential equation, which

can be easily and numerically integrated for computer simulation. Furthermore, as the

equation is separated by characteristics, it is convenient to further investigate the behavior

of the system.

4.1 System definition

The Cubli is composed of four rigid bodies: a structure and three reaction wheels (Fig.

8). The structure rotates freely aroung the pivot point O (articulation vertex), whereas

each reaction wheel, besides rotating together with the structure, also rotates around its

axial axis.

There are other bodies, such as motors, batteries, microcontrollers, etc., that can

be interpreted as being part of one or other of them. The only exception are the mo-

tors, whereby their stators are considered part of the structure whereas their rotors are

considered part of the reaction wheels.



22

O

x
y

z

z ′

Reaction wheel 1
Reaction wheel 2

Structure

Reaction wheel 3

x ′
y ′

Figure 8: Cubli body parts

• Structure - Structure, motor stators, batteries, microcontrollers, sensors, PCBs,

cables, screws and nuts

• Reaction wheel 1 - Reaction wheel and motor rotor that rotates around the x ′′-axis

(parallel to the x ′-axis)

• Reaction wheel 2 - Reaction wheel and motor rotor that rotates around the y ′′-axis

(parallel to the y ′-axis)

• Reaction wheel 3 - Reaction wheel and motor rotor that rotates around the z ′′-axis

(parallel to the z ′-axis)

Moreover, because of the reaction wheels masses, the Cubli center of mass is not

exactly at the structure center of mass but somewhere between this point and the artic-

ulation vertex.

Although the Cubli center of mass presents translation motion, it is always rotating

around the pivot point O (articulation vertex), so the whole motion can be interpreted

only as a rotational motion around a fixed point.

4.2 Kinematics

In this section, the rotational kinematics equations of the Cubli will be derived. These

equations consider only the orientation and angular velocities, not focusing on the mo-



23

ments applied on it.

Because the orientation of the structure is the same of the Cubli, and the relative

angular displacement of the reaction wheels are not of interest, we will only focus on the

orientation of the structure as a generic rigid body.

The kinematic equations will be derived both utilizing Euler angles and quaternions,

so their pros and cons become more evident.

4.2.1 Euler angles

The most common representation for specifying the orientation of a rigid body are

the Euler angles. The Euler angles are three angles introduced by Swiss mathematician

Leonhard Euler (1707 - 1783) to describe the orientation of a coordinate frame, usually a

body fixed coordinate frame, with respect to another coordinate frame, usually an inertial

coordinate frame.

It is based on the property that any orientation can be described with a sequence of

three rotations around predefined axis. There is no agreement on the sequence of rotations

(there are 12 total possibilities), a fairly common one is the z-y-z sequence:

• Rotation of ψ (precession) around the z′ axis (Fig. 9a)

• Rotation of θ (nutation) around the y′ axis (Fig. 9b)

• Rotation of φ (spin) around the z′ axis (Fig. 9c)

x

y

z

x ′
y ′

z ′

ψ

(a) First rotation

x

y

z

x ′

y ′

z ′ θ

(b) Second rotation

x

y

z

x ′

y ′

z ′

φ

(c) Third rotation

Figure 9: Euler angles (z-y-z sequence)

Note that all rotations are always performed around the body fixed coordinate frame

axis (represented in red) and not the inertial coordinate frame axis (represented in black).



24

There are two main advantages on utilizing Euler angles: first is that they only need

three parameters (the angles ψ, θ and φ) to specify the orientation of a rigid body; second

is that these parameters have an intuitive physical meaning.

However, Euler angles also have their disadvantages, the most critical being the oc-

currence of singularities (also known as “gimbal lock”): orientations at which two Euler

angles becomes undefined. For example, when the angle θ is equal to 0◦ or ±180◦, the

axes of the first and third rotation coincide and the values of ψ and φ become indistin-

guishable. The second disadvantage is that Euler ’s angles involves many trigonometric

operations, which require a high computational capacity depending on the application.

4.2.1.1 Rotation matrix

Let ~r be an arbitrary fixed vector described in an inertial coordinate frame O : {x, y, z}
(Fig. 10a) and ~r ′ be the same vector but described in a body fixed coordinate frame

O : {x ′, y ′, z ′} (Fig. 10b).

O

x

y

z

x ′

y ′

z ′

~r

(a) Inertial coordinate frame

O

x

y

z

x ′

y ′

z ′

~r ′

(b) Body fixed coordinate frame

Figure 10: Same vector described in different coordinate frames

To transform ~r into ~r ′, consider the following multiplication

~r ′ = R~r , (4.1)

where R is the total rotation matrix

R = RzφRyθRzψ , (4.2)



25

and Rzψ , Ryθ and Rzφ are each individual rotation matrix given by

Rzψ =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1

 , Ryθ =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 , Rzφ =


cosφ sinφ 0

− sinφ cosφ 0

0 0 1

 .

(4.3)

Note that the matrix associated with the first rotation Rzψ goes to the rightmost side,

while the matrix associated with the last rotation Rzφ goes to the leftmost side. This

happens because matrix multiplication is not commutative and happens from right to

left.

Since the vector ~r is fixed in the inertial coordinate frame, the rotation matrix R can

be used to describe the orientation of the body fixed coordinate frame with respect to the

inertial coordinate frame

R =


− sinφ sinψ + cosφ cos θ cosψ sinφ cosψ + cosφ cos θ sinψ − cosφ sin θ

− cosφ sinψ − sinφ cos θ cosψ cosφ cosψ − sinφ cos θ sinψ sinφ sin θ

sin θ cosψ sin θ sinψ cos θ

 .

(4.4)

Moreover, a rotation matrix is an orthonormal matrix, which means that its inverse

is equal to its transpose

R−1 = RT . (4.5)

So, in order to perform the inverse transformation, the following multiplication can

be done

~r = RT~r ′ . (4.6)

4.2.1.2 Kinematic equation

Let us suppose now that the body fixed coordinate frame is in rotational motion

around the origin O (Fig. 11).



26

O

x

y

z

x ′

y ′

z ′

ωx

ωz
ωy

Figure 11: Euler angles and angular velocity

Its angular velocity vector ~ω ′ is given by

~ω ′ =


ωx

ωy

ωz

 . (4.7)

Note that this is the angular velocity with respect to the inertial coordinate frame

but described in the body fixed coordinate frame axes.

Since vector ~r is fixed in the inertial coordinate frame, its time derivative, as seen by

the inertial coordinate frame, is zero

~̇r = ~0 . (4.8)

In turn, its time derivative, as seen by the body fixed coordinate frame, depends on

the body fixed coordinate frame angular velocity vector

~̇r ′ = −~ω ′ × ~r ′ . (4.9)

The minus sign appears because, if the body coordinate frame rotates in one direction,

the vector will be seen by the body coordinate frame as rotating in the opposite direction.

Another way of representing (4.9) is

~̇r ′ = −ω̃ ′~r ′ , (4.10)

where ω̃ ′ is the angular velocity represented as a skew-symmetric matrix corresponding

to its cross product

ω̃ ′ = ~ω ′× =


0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

 . (4.11)



27

Differentiating (4.1) and making use of (4.6) and (4.8), yields

~̇r ′ =
d

dt
(~r ′)

=
d

dt
(R~r)

= Ṙ~r +R�
��

~0

~̇r

= Ṙ
(
RT~r ′

)
= ṘRT~r ′ . (4.12)

Comparing (4.12) with (4.10), it is possible to obtain the angular velocity skew-

symmetric matrix in terms of the rotation matrix and its time derivative

ω̃ ′ = −ṘRT . (4.13)

The Euler angles are not a vector and cannot be easily isolated. However, by substi-

tuting (4.4) into (4.13), the angular velocities can be written in terms of the Euler angles

and their time derivatives in matrix notation
ωx

ωy

ωz

 =


0 sinφ − cosφ sin θ

0 cosφ sinφ sin θ

1 0 cos θ



φ̇

θ̇

ψ̇

 . (4.14)

Inverting the above matrix, the Euler angles time derivatives can be written in terms

of themselves and the angular velocities
φ̇

θ̇

ψ̇

 =
1

sin θ


cosφ cos θ − sinφ cos θ sin θ

sinφ sin θ cosφ sin θ 0

− cosφ sinφ 0



ωx

ωy

ωz

 . (4.15)

This last equation is the kinematic equation of a rigid body utilizing Euler angles

with the z-y-z rotation sequence.

4.2.1.3 Singularities

Analyzing (4.15), the singularity problem become evident in a mathematical fashion.

When the angle θ is equal to 0◦ or ±180◦, the term sin θ goes to zero and the equation

becomes invalid (because you cannot divide by zero). This inability of the Euler angles

does not appear in the rotation matrix, but the kinematic equation clearly revels it.



28

Although singularities will always exist when utilizing Euler angles, one way to cir-

cumvent this problem is to adopt a sequence of rotations such that the orientation in

which they occur is far from the nominal operating orientation of the system. For exam-

ple, another sequence of rotations is the z-y-x sequence:

• Rotation of ψ (yaw) around the z ′-axis (Fig. 12a)

• Rotation of θ (pitch) around the y ′-axis (Fig. 12b)

• Rotation of φ (roll) around the x ′-axis (Fig. 12c)

x

y

z

x ′
y ′

z ′

ψ

(a) First rotation

x

y

z

x ′

y ′

z ′ θ

(b) Second rotation

x

y

z

x ′

y ′

z ′

φ

(c) Third rotation

Figure 12: Euler angles (z-y-x sequence)

In this case, singularities still exist, but now they occur when the angle θ is equal

to ±90◦ and no longer ±0◦ or ±180◦. Regardless of the rotation sequence adopted, it is

always the second rotation that defines the singularity.

The total rotation matrix R is now given by

R = RxφRyθRzψ , (4.16)

and Rzψ , Ryθ and Rxφ are each individual rotation matrix given by

Rzψ =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1

 , Ryθ =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 , Rxφ =


1 0 0

0 cosφ sinφ

0 − sinφ cosφ

 .

(4.17)



29

This means that the rotation matrix is now different

R =


cos θ cosψ cos θ sinψ − sin θ

− cosφ sinψ + sinφ sin θ cosψ cosφ cosψ + sinφ sin θ sinψ sinφ cos θ

sinφ sinψ + cosφ sin θ cosψ − sinφ cosψ + cosφ sin θ sinψ cosφ cos θ

 .

(4.18)

Doing the same procedure, but now with this new rotation matrix, the kinematic

equation of a rigid body for the z-y-x rotation sequence is obtained
φ̇

θ̇

ψ̇

 =
1

cos θ


cos θ sinφ sin θ cosφ sin θ

0 cosφ cos θ − sinφ cos θ

0 sinφ cosφ



ωx

ωy

ωz

 . (4.19)

As can be seen from the kinematic equation, now there is a term cos θ in the denom-

inator, which will be zero when the angle θ is equal to ±90◦. As it had already been

anticipated, the singularity problem was not solved, it just changed from one condition

to another. If it is desired to completely solve the singularity problem, there is only one

thing to be done: utilize a different representation.

4.2.2 Quaternions

Another representation for specifying the orientation of a rigid body, not as used as

the Euler angles but which has been growing quite a lot lately, are the quaternions.

Unlike the Euler angles, based on the property that any orientation of a rigid body

can be described with a sequence of three consecutive rotations around predefined axis,

quaternions are based on the property1 that any orientation of a rigid body can be de-

scribed with a single rotation around an arbitrary axis: the eigenaxis (the real eigenvector

of the transformation matrix between body and inertial axes). For this, quaternions re-

quire four parameters: three to describe the eigenaxis ê coordinates plus one to describe

the rotation angle φ (Fig. 13a).

1Interestingly, this other property was also formulated by Leonard Euler.



30

x

y

z

ê
e1

e2

e3

x ′

y ′
z ′ φ

(a) Single rotation

Figure 13: Quaternions

The disadvantages of Euler angles (singularities and trigonometric functions) does

not exist when dealing with quaternions, but on the other hand, all its advantages (three

intuitive parameters) do not exist either. So, you should be asking: why use quaternions

then? The answer is simple: first, because the disadvantages of the Euler angles are

much more critical than those of the quaternions; second, and most important, because

quaternions can be represented utilizing vector notation, which allow one to write down

quite complex dynamics completely by hand.

Quaternions possess a not very common and somewhat complex algebra, that is going

to be briefly described in this section. Before diving into quaternion algebra [9], the

rotation around a specific axis (the property which quaternions are based on) will be

derived.

4.2.2.1 Spacial rotation

Let ~r be an arbitrary vector to be rotated around a unit vector ê by an angle φ

generating a rotated vector ~r ′ (Fig. 14).

ê

~v1

~v2

~v3

~v4

~r

~r ′

φ

Figure 14: Rodrigues’ rotation geometry



31

Projection vectors ~v1, ~v2, ~v3 and ~v4 can be written in terms of vector ~r, unit vector ê

and angle φ as

~v1 = (~r · ê)ê, (4.20)

~v2 = ~r − ~v1, (4.21)

~v3 = ~v2 × ê, (4.22)

~v4 = ~v2 cosφ+ ~v3 sinφ. (4.23)

The rotated vector ~r ′ can be written in terms of projection vectors such that

~r ′ = ~v1 + ~v4 . (4.24)

Substituting (4.20)–(4.23) in (4.24) results in

~r ′ = ~v1 + ~v4

= (~r · ê)ê+ ~v2 cosφ+ ~v3 sinφ

= (~r · ê)ê+ (~r − ~v1) cosφ+ (~v2 × ê) sinφ

= (~r · ê)ê+ (~r − (~r · ê)ê) cosφ+ ((~r − ~v1)× ê) sinφ

= (~r · ê)ê+ (~r − (~r · ê)ê) cosφ+ ((~r − (~r · ê)ê)× ê) sinφ

= (~r · ê)ê+ ~r cosφ− (~r · ê)ê cosφ+ ~r × ê sinφ−(((((
(((((~r · ê)ê× ê sinφ

= (1− cosφ)(~r · ê)ê+ cosφ~r + sinφ(~r × ê) . (4.25)

Equation (4.25) is the Rodrigues’ rotation formula that describes the rotation of a

vector ~r by an angle φ along a unit vector ê. It was named after French mathematician

Olinde Rodrigues (1795 - 1851).

4.2.2.2 Quaternion fundamentals

Quaternion algebra can be generated from the following properties

i2 = j2 = k2 = ijk = −1 . (4.26)

By left and right multiplying (4.26), together with associativity and distributivity, the



32

following multiplication rules arise

ij = k , ji = −k ,
jk = i , kj = −i ,
ki = j , ik = −j ,

(4.27)

as it can be seen, the product is non-commutative.

4.2.2.3 Quaternion notation

A quaternion q is a set of four parameters, a real value q0 and three imaginary values

q1, q2 and q3 such that

q = q0 + q1i+ q2j + q3k . (4.28)

This notation proves itself to be very unpractical, this is why a quaternion can also be

represented as a four dimension column vector composed of a real value q0 and a vectorial

imaginary value ~q = [q1 q2 q3]T such that

q =

[
q0

~q

]
=


q0

q1

q2

q3

 . (4.29)

The conjugate of a quaternion is defined as

q̄ =

[
q0

−~q

]
=


q0

−q1

−q2

−q3

 , (4.30)

and its norm (a non-negative real value) as

|q| =
√
q2

0 + ~q · ~q =
√
q2

0 + q2
1 + q2

2 + q2
3 . (4.31)



33

4.2.2.4 Quaternion product

From the rules given in (4.26) and (4.27), the product of two quaternions q and r

(represented by the ◦ operator) can be derived

q ◦ r = (q0 + q1i+ q2j + q3k) (r0 + r1i+ r2j + r3k)

=q0r0 + q0r1i+ q0r2j + q0r3k+

q1r0i+ q1r1ii+ q1r2ij + q1r3ik+

q2r0j + q2r1ji+ q2r2jj + q2r3jk+

q3r0k + q3r1ki+ q3r2kj + q3r3kk

=q0r0 + q0r1i+ q0r2j + q0r3k+

q1r0i− q1r1 + q1r2k − q1r3j+

q2r0j − q2r1k − q2r2 + q2r3i+

q3r0k + q3r1j − q3r2i− q3r3 . (4.32)

Re-arranging the terms

q ◦ r =(q0r0 − q1r1 − q2r2 − q3r3)+

(q0r1 + q1r0 + q2r3 − q3r2)i+

(q0r2 + q2r0 + q3r1 − q1r3)j+

(q0r3 + q3r0 + q1r2 − q2r1)k . (4.33)

By inspecting the above equation, a simplified notation of quaternion product can be

defined utilizing vector algebra

q ◦ r =

[
q0r0 − ~q · ~r

q0~r + r0~q + ~q × ~r

]
(4.34)

Since (4.34) is linear in r, it can also be written in matrix-vector product form

q ◦ r =

[
q0 −~qT

~q q0I3×3 + q̃

][
r0

~r

]
, (4.35)

where q̃ is the rotation quaternion vector represented as a skew-symmetric matrix corre-



34

sponding to its cross product

q̃ = ~q× =


0 −q3 q2

q3 0 −q1

−q2 q1 0

 . (4.36)

Note that the matrix corresponding to its quaternion product can also be written as

q ◦ =


| |
q G(q)T

| |

 , (4.37)

where G(q), usually called the Lagrange matrix, named after Italian mathematician

Joseph-Louis Lagrange (1736 - 1813), is given by

G(q) =
[
−~q q0I3×3 − q̃

]
. (4.38)

From (4.34), it can be seen that

q ◦ r = r̄ ◦ q̄ , (4.39)

and

q ◦ q̄ = q̄ ◦ q =

[
|q|2

~0

]
. (4.40)

Moreover, if the quaternion has unit norm, i.e., |q| = 1, two other properties are valid

q ◦ q̄ = q̄ ◦ q =

[
1

~0

]
, (4.41)

and

G(q)G(q)T = I3×3 . (4.42)

4.2.2.5 Rotation quaternion

Let ~r be an arbitrary fixed vector described in an inertial coordinate frame O : {x, y, z}
(Fig. 15a) and ~r ′ be the same vector but described in a body fixed coordinate frame

O : {x ′, y ′, z ′} (Fig. 15b).



35

O

x
y

z

x ′

y ′
z ′

~r

(a) Inertial coordinate frame

O

x
y

z

x ′

y ′
z ′

~r ′

(b) Body fixed coordinate frame

Figure 15: Same vector described in different coordinate frames

To transform ~r into ~r ′, consider the following quaternion multiplication

r ′ = q̄ ◦ r ◦ q , (4.43)

where r and r ′ are quaternions with zero real part and with the vectors ~r and ~r ′ in their

imaginary part

r =

[
0

~r

]
, r ′ =

[
0

~r ′

]
, (4.44)

and q is the rotation quaternion whose components are defined in terms fo the eigenaxis

ê and rotation angle φ, such that

q =

[
cos φ

2

ê sin φ
2

]
=


cos φ

2

e1 sin φ
2

e2 sin φ
2

e3 sin φ
2

 . (4.45)

Note that, because the eigenaxis have unit norm, i.e., |ê| = 1, the rotation quaternion



36

also has unit norm

|q| =
√
q2

0 + ~q · ~q

=

√(
cos

φ

2

)2

+

(
ê sin

φ

2

)
·
(
ê sin

φ

2

)

=

√
cos2

φ

2
+���

1
|ê| sin2 φ

2

=

√
cos2

φ

2
+ sin2 φ

2

= 1 , (4.46)

and differentiating (4.46), another property can be derived

d

dt

(
|q|2
)

=
d

dt
(1)

d

dt

(
q2

0 + ~q · ~q
)

= 0

2q0q̇0 + ~̇q · ~q + ~q · ~̇q = 0

�2q0q̇0 + �2~q · ~̇q = 0

q0q̇0 + ~q · ~̇q = 0 . (4.47)

Going back to (4.43) and expanding it yields

q̄ ◦ r ◦ q =

[
q0

−~q

]
◦

[
0

~r

]
◦

[
q0

~q

]

=

[
~q · ~r

q0~r − ~q × ~r

]
◦

[
q0

~q

]

=

[
(~q · ~r)q0 − (q0~r − ~q × ~r) · ~q

(~q · ~r)~q + q0(q0~r − ~q × ~r) + (q0~r − ~q × ~r)× ~q

]

=

[
��

���(~q · ~r)q0 −�����q0(~r · ~q) + (~q × ~r) · ~q
(~q · ~r)~q + q2

0~r − q0(~q × ~r) + q0(~r × ~q)− ~q × ~r × ~q

]

=

[
���

���:
0

(~q × ~r) · ~q
(~q · ~r)~q + q2

0~r + q0(~r × ~q) + q0(~r × ~q)− (~q · ~q)~r + (~q · ~r)~q

]

=

[
0

2(~q · ~r)~q + q2
0~r + 2q0(~r × ~q)− (~q · ~q)~r

]
. (4.48)



37

Substituting the rotation quaternion from (4.45) in (4.48) results in

q̄ ◦ r ◦ q =

[
0

2(~q · ~r)~q + q2
0~r + 2q0(~r × ~q)− (~q · ~q)~r

]

=

[
0

2(ê sin φ
2
· ~r)ê sin φ

2
+ cos2 φ

2
~r + 2 cos φ

2
(~r × ê sin φ

2
)− (ê sin φ

2
· ê sin φ

2
)~r

]

=

[
0

2 sin2 φ
2
(ê · ~r)ê+ cos2 φ

2
~r + 2 cos φ

2
sin φ

2
(~r × ê)− sin2 φ

2
~r

]

=

[
0

(1− cosφ)(ê · ~r)ê+ cosφ~r + sinφ(~r × ê)

]
, (4.49)

which is the Rodrigues’ rotation formula derived in (4.25).

For the inverse transformation, one just needs to swap the rotation quaternion with

it conjugate

r = q ◦ r ′ ◦ q̄ . (4.50)

Moreover, since vector ~r is fixed in the inertial coordinate frame, a rotation quaternion

q can be used to represent the rotation of the body fixed coordinate frame with respect

to the inertial coordinate frame

~r ′ = R(q)~r , (4.51)

where R(q) is the rotation matrix in terms of the rotation quaternion, given by

R(q) =
[
q0I3×3 + ~q ~q T + 2q0q̃ + q̃2

]
. (4.52)

4.2.2.6 Kinematic equation

Let us suppose now that the body fixed coordinate frame is in rotational motion

around the origin O (Fig. 16).

O

x

y

z

x ′

y ′
z ′

ωx

ωz ωy

Figure 16: Quaternions and angular velocity



38

Its angular velocity vector ~ω ′ is given by

~ω ′ =


ωx

ωy

ωz

 . (4.53)

Note that this is the angular velocity with respect to the inertial coordinate frame

but described along the body fixed coordinate frame axes.

Let ω ′ be a quaternion with zero real part and with the vector ~ω ′ in its imaginary

part

ω ′ =

[
0

~ω ′

]
. (4.54)

Since vector ~r is fixed in the inertial coordinate frame, its time derivative, as seen by

the inertial coordinate frame, is zero

ṙ =

[
0

~̇r

]
=

[
0

~0

]
. (4.55)

In turn, its time derivative, as seen by the body fixed coordinate frame, depends on

the body fixed coordinate frame angular velocity vector

ṙ ′ =

[
0

~̇r ′

]
=

[
0

−~ω ′ × ~r

]
. (4.56)

The minus sign appears because, if the body coordinate frame rotates in one direction,

the vector will be seen by the body coordinate frame as rotating in the opposite direction.

Since quaternions r ′ and ω ′ have zero real part, (4.56) is equivalent to

ṙ ′ = −ω ′ ◦ r ′ . (4.57)



39

Differentiating (4.43) and using (4.50) and (4.55) yields

ṙ ′ =
d

dt
(r ′)

=
d

dt
(q̄ ◦ r ◦ q)

= ˙̄q ◦ r ◦ q + q̄ ◦ ���
0
ṙ ◦ q + q̄ ◦ r ◦ q̇

= ˙̄q ◦ (q ◦ r ′ ◦ q̄) ◦ q + q̄ ◦ (q ◦ r ′ ◦ q̄) ◦ q̇

= ˙̄q ◦ q ◦ r ′ ◦���q̄ ◦ q +��
�q̄ ◦ q ◦ r ′ ◦ q̄ ◦ q̇

= ˙̄q ◦ q ◦ r ′ + r ′ ◦ q̄ ◦ q̇ (4.58)

Inspecting the terms q̄ ◦ q̇ and ˙̄q ◦ q and taking into account (4.47)

q̄ ◦ q̇ =

[
q0

−~q

]
◦

[
q̇0

~̇q

]

=

 ��
���

��: 0

q0q̇0 + ~q · ~̇q
q0~̇q − q̇0~q − ~q × ~̇q


=

[
0

q0~̇q − q̇0~q − ~q × ~̇q

]
, (4.59)

˙̄q ◦ q =

[
q̇0

−~̇q

]
◦

[
q0

~q

]

=

 ���
���

�: 0

q̇0q0 + ~̇q · ~q
q̇0~q − q0~̇q − ~̇q × ~q


=

[
0

−q0~̇q + q̇0~q + ~q × ~̇q

]
, (4.60)

it is possible to note that

q̄ ◦ q̇ = − ˙̄q ◦ q . (4.61)

By making use of this property, (4.58) can be written as:

ṙ ′ = ˙̄q ◦ q ◦ r ′ + r ′ ◦ q̄ ◦ q̇

= −q̄ ◦ q̇ ◦ r ′ − q̄ ◦ q̇ ◦ r ′

= −2q̄ ◦ q̇ ◦ r ′ . (4.62)



40

Comparing (4.62) with (4.57), it is possible to obtain the angular velocity quaternion

in terms of the rotation quaternion and its time derivative:

ω ′ = 2q̄ ◦ q̇ , (4.63)

which can also be rewritten by making use of (4.61) as

ω ′ = −2 ˙̄q ◦ q . (4.64)

By left-multiplying both sides of (4.63) with q and using (4.41), the quaternion time

derivative q̇ can be isolated

q ◦ ω ′ = 2��
�q ◦ q̄ ◦ q̇

q ◦ ω ′ = 2q̇

q̇ =
1

2
q ◦ ω ′ . (4.65)

Equation (4.65) is the rotational kinematic equation of a rigid body utilizing quater-

nions. It can be seen that it is much simpler than the one utilizing Euler angles. Although

now there is an additional term, all trigonometric operations no longer exist, and singu-

larities are also gone.

Moreover, because quaternion ω has zero real part, (4.63), (4.64) and (4.65) can be

written in vector notation utilizing (4.37) as


ωx

ωy

ωz


︸ ︷︷ ︸
~ω ′

= 2


−q1 q0 q3 −q2

−q2 −q3 q0 q1

−q3 q2 −q1 q0


︸ ︷︷ ︸

G(q)


q̇0

q̇1

q̇2

q̇3


︸ ︷︷ ︸
q̇

, (4.66)


ωx

ωy

ωz


︸ ︷︷ ︸
~ω ′

= −2


−q̇1 q̇0 q̇3 −q̇2

−q̇2 −q̇3 q̇0 q̇1

−q̇3 q̇2 −q̇1 q̇0


︸ ︷︷ ︸

G(q̇)


q0

q1

q2

q3


︸ ︷︷ ︸
q

, (4.67)



41


q̇0

q̇1

q̇2

q̇3


︸ ︷︷ ︸
q̇

=
1

2


−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q1

−q2 q1 q0


︸ ︷︷ ︸

G(q)T


ωx

ωy

ωz


︸ ︷︷ ︸
~ω ′

, (4.68)

and also from (4.37), it is possible to demonstrate that


0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0


︸ ︷︷ ︸

ω̃ ′

= 2


−q1 q0 q3 −q2

−q2 −q3 q0 q1

−q3 q2 −q1 q0


︸ ︷︷ ︸

G(q)


−q̇1 −q̇2 −q̇3

q̇0 −q̇3 q̇2

q̇3 q̇0 −q̇1

−q̇2 q̇1 q̇0


︸ ︷︷ ︸

G(q̇)T

. (4.69)

4.3 Kinetics

In this section, the rotational kinetic equations of a the Cubli will be derived. These

equations consider only the angular velocities and moments applied on the rigid body,

not focusing on the orientation of it.

A convenient way to derive the kinetic equations is to utilize the Lagrange equations.

This method allows one to deal with energy functions rather than forces and accelerations

as with Newton-Euler equations. Because energy is a scalar while forces and accelerations

are vectors, in a multi-body system, the kinetic and potential energy can be computed

for each moving body independently and then added together to form the energy of the

complete system. This is an important advantage of the Lagrange equations.

The first step is to define the total kinetic and potential energy of the system, and

only then, the Lagrange equation will be introduced and utilized.

4.3.1 Kinetic Energy

Since the Cubli is rotating aroung the pivot point O (articulation vertex), all its kinetic

energy can be interpreted as angular kinetic energy, as long as their inertia matrices are

described accordingly.



42

The Cubli total kinetic energy is the sum of the kinetic energy of each moving body

T = Ts +
3∑
i=1

Twi . (4.70)

where Ts is the kinetic energy of the structure and Twi is the kinetic energy of the i-th

reaction wheel.

The angular kinetic energy depends on the angular velocity and inertia matrix. Both

of these parameters will be defined for each one of the bodies.

4.3.1.1 Angular velocities

O

x
y

z

z ′

ω1ω2

ωx
ωy

ωz

ω3x ′
y ′

Figure 17: Cubli angular velocities

Structure

Let ~ωs
′ be the structure angular velocity vector described along the body fixed coor-

dinate frame but with respect to the inertial coordinate frame (Fig. 17), given by:

~ωs
′ =


ωx

ωy

ωz

 . (4.71)

Reaction wheels

Let ~ωw1
′, ~ωw2

′ and ~ωw3
′ be the reaction wheels relative angular velocity vectors de-



43

scribed in and with respect to the body fixed coordinate frame (Fig. 17), given by:

~ωw1
′ =


ω1

0

0

 , ~ωw2
′ =


0

ω2

0

 , ~ωw3
′ =


0

0

ω3

 . (4.72)

Note that this angular velocity vectors are relative; hence, to obtain the reaction

wheel angular velocity vector with respect to the inertial coordinate frame, the structure

angular velocity vector needs to be added (since the reaction wheels are rotating together

with the structure).

4.3.1.2 Inertia matrices

The structure can be approximated to a cube of side length l, mass ms and moment

of inertia around its principal axes Isxx = Isyy = Iszz , whereas each reaction wheel can

be approximated to a disc of mass mw, moment of inertia around its axial principal axis

Iwxx and moment of inertia around its perpendicular principal axes Iwyy = Iwzz . These

parameters were obtained from the CAD version of the Cubli and are given in Table 1.

Table 1: Cubli parameters

Parameter Value

l 0.15 m

ms 0.40 kg

mw 0.15 kg

Isxx 2.00× 10−3 kg.m2

Iwxx 1.25× 10−4 kg.m2

Iwyy 4.00× 10−5 kg.m2

Structure

Let IsG be the structure inertia tensor on its center of mass Gs with respect to the

x′′y′′z′′ axes (Fig. 18a) and ~rs be the vector from the pivot point O to the structure center

of mass Gs (Fig. 18b), given by

IsG =


Isxx 0 0

0 Isxx 0

0 0 Isxx

 , ~rs =


l/2

l/2

l/2

 . (4.73)



44

O

x ′

y ′

z ′

Gs

x′′
y′′

z′′

(a) Moments of inertia

O

x ′

y ′

z ′

~rs
′

l
2

l
2

l
2

(b) Vector

Figure 18: Structure parameters

Because of symmetry, all moments of inertia are the same.

With both of these values, it is possible to calculate IsO , the structure inertia matrix

aroung the pivot point O with respect to the body fixed coordinate frame, by applying the

Huygens-Steiner theorem named after Dutch mathematician Christiaan Huygens (1629-

1695) and Swiss mathematician Jakob Steiner (1796 - 1863)

IsO = IsG +msr̃sr̃
T
s

=


Isxx 0 0

0 Isxx 0

0 0 Isxx

+ms


0 − l

2
l
2

l
2

0 − l
2

− l
2

l
2

0




0 l
2
− l

2

− l
2

0 l
2

l
2
− l

2
0



=


Isxx 0 0

0 Isxx 0

0 0 Isxx

+ms


l2

2
− l2

4
− l2

4

− l2

4
l2

2
− l2

4

− l2

4
− l2

4
l2

2



=


Isxx +ms

l2

2
−ms

l2

4
−ms

l2

4

−ms
l2

4
Isxx +ms

l2

2
−ms

l2

4

−ms
l2

4
−ms

l2

4
Isxx +ms

l2

2

 . (4.74)

Reaction wheels

Let Iw1G be reaction wheel 1 inertia tensor on its center of mass Gw1 with respect to

the x′′1y
′′
1z
′′
1 axes (Fig. 19a) and ~rw1 be the vector from the pivot point O to reaction wheel



45

1 center of mass Gw1 (Fig. 19b), given by

Iw1G =


Iwxx 0 0

0 Iwyy 0

0 0 Iwyy

 , ~rw1 =


0

l/2

l/2

 . (4.75)

O

x ′

y ′

z ′

Gw1

x′′1

y′′1

z′′1

(a) Moments of inertia

O

x ′

y ′

z ′

~rw1
′

l
2

l
2

(b) Vector

Figure 19: Reaction wheel 1 parameters

Because of symmetry, the moment of inertia around the y′′1 and z′′1 axes are the same.

Moreover, in reality, vector ~rw1
′ should have a small displacement in the x′ direction, but

this is being neglected.

With both of these values, it is possible to calculate Iw1O , the reaction wheel 1 inertia

matrix around the pivot point O with respect to the body fixed coordinate frame, the

same way it was done for the structure

Iw1O = Iw1G +mwr̃w1r̃
T
w1

=


Iwxx 0 0

0 Iwyy 0

0 0 Iwyy

+mw


0 − l

2
l
2

l
2

0 0

− l
2

0 0




0 l
2
− l

2

− l
2

0 0
l
2

0 0



=


Iwxx 0 0

0 Iwyy 0

0 0 Iwyy

+mw


l2

2
0 0

0 l2

4
− l2

4

0 − l2

4
l2

4



=


Iwxx +mw

l2

2
0 0

0 Iwyy +mw
l2

4
−mw

l2

4

0 −mw
l2

4
Iwyy +mw

l2

4

 . (4.76)



46

Since all three reaction wheels are identical and differ only in their position, orientation

and axis around which they rotate, it can be inferred that

Iw2G =


Iwyy 0 0

0 Iwxx 0

0 0 Iwyy

 , ~rw2 =


l/2

0

l/2

 , (4.77)

Iw3G =


Iwyy 0 0

0 Iwyy 0

0 0 Iwxx

 , ~rw3 =


l/2

l/2

0

 . (4.78)

Repeating the same procedure for the other two reaction wheels yields

Iw2O =


Iwyy +mw

l2

4
0 −mw

l2

4

0 Iwxx +mw
l2

2
0

−mw
l2

4
0 Iwyy +mw

l2

4

 , (4.79)

Iw3O =


Iwyy +mw

l2

4
−mw

l2

4
0

−mw
l2

4
Iwyy +mw

l2

4
0

0 0 Iwxx +mw
l2

2

 . (4.80)

4.3.1.3 Kinetic Energy

Now that the angular velocities and inertia matrices of each moving body have been

defined, it is possible to write down the total kinetic energy of the system

T =Ts +
3∑
i=0

Twi

=
1

2
~ωs
′T IsO~ωs

′ +
3∑
i=0

(
1

2
(~ωs

′ + ~ωwi
′)
T
IwiG(~ωs

′ + ~ωwi
′) +

1

2
(~ωs

′ × ~rwi ′)Tmw (~ωs
′ × ~rwi ′)

)

=
1

2
~ωs
′T IsO~ωs

′ +
3∑
i=0

(
1

2
(~ωs

′ + ~ωwi
′)
T
IwiG(~ωs

′ + ~ωwi
′) +

1

2
~ωs
′T (IwiO − IwiG) ~ωs

′
)

=
1

2
~ωs
′T

(
IsO +

3∑
i=0

(IwiO − IwiG)

)
~ωs
′ +

3∑
i=0

(
1

2
(~ωs

′ + ~ωwi
′)
T
IwiG(~ωs

′ + ~ωwi
′)

)
.

(4.81)

Because each reaction wheel rotates around an axis orthogonal to each other, (4.81)

can be simplified to

T =
1

2
~ωc
′T Īc~ωc

′ +
1

2
(~ωc

′ + ~ωw
′)
T
Iw(~ωc

′ + ~ωw
′) , (4.82)



47

where ~ωc
′ is the Cubli angular velocity vector, which is the same as the structure

~ωc
′ = ~ωs

′

=


ωx

ωy

ωz

 , (4.83)

~ωw
′ is the composition of all three relative angular velocities vectors of the reaction wheels

~ωw
′ =

3∑
i=1

~ωwi
′

=


ω1

ω2

ω3

 , (4.84)

Iw is the net inertia tensor of the three reaction wheels around each of their individual

rotational axis

Iw = IwxxI3×3

=


Iwxx 0 0

0 Iwxx 0

0 0 Iwxx

 , (4.85)

and Īc is the Cubli total inertia matrix around the pivot point O only without the reaction

wheels inertias around each of their individual rotational axis:

Īc =

(
IsO +

3∑
i=1

IwiO

)
︸ ︷︷ ︸

IcO

−Iw

=


Īcxx Īcxy Īcxy

Īcxy Īcxx Īcxy

Īcxy Īcxy Īcxx

 (4.86)

where

Īcxx = Isxx + 2Iwyy + (ms + 2mw)
l2

2
, (4.87)

Īcxy = −(ms +mw)
l2

4
. (4.88)



48

4.3.2 Potential Energy

Since the Cubli is rotating aroung the pivot point O (articulation vertex), the potential

energy depends only on its bodies center of mass vectors. It can be analyzed from two

different perspectives: in the inertial coordinate frame, where the gravity vector remains

constant, but the bodies center of mass vectors varies according to the orientation of the

Cubli; and in the body fixed coordinate frame, where the gravity vector varies according

to the orientation of the Cubli, but the bodies center of mass vectors remains constant.

Both of these approaches are analogous to each other, but since the kinetic energy of

the system have already been analyzed in the body fixed coordinate frame, the same will

be done for the potential energy.

The Cubli total potential energy is the sum of the potential energy of each moving

body:

V = Vs +
3∑
i=1

Vwi , (4.89)

where Vs is the potential energy of the structure and Vwi is the potential energy of the

i-th reaction wheel.

The potential energy depends on the masses, center of mass vectors and gravity vector.

The first two parameters have already been defined, only the third one is missing.

4.3.2.1 Gravity

Let ~g be the gravity vector described in the inertial coordinate frame

~g =


0

0

g

 . (4.90)

The gravity vector ~g ′ in the body fixed coordinate frame is simply the rotation of the

previous vector

~g ′ = R(q)~g . (4.91)

4.3.2.2 Potential Energy

Now that the masses and center of mass vectors of each moving body and gravity

vector have been defined, it is possible to write down the total potential energy of the



49

system

V = Vs +
3∑
i=1

Vwi

= ms~rs
′T~g ′ +

3∑
i=1

mw~rwi
′T~g ′

= ms~rs
′TR(q)~g +

3∑
i=1

mw~rwi
′TR(q)~g , (4.92)

which can be simplified to

V = mc~rc
′TR(q)~g , (4.93)

where mc is the Cubli’s total mass (structure with all three reaction wheels) given by

mc = ms + 3mw (4.94)

and ~rc
′ is the vector from pivot point O to the Cubli center of mass Gc (with all three

reaction wheels), described in the body fixed coordinate frame

~rc
′ =

ms~rs
′ +mw

∑3
i=1 ~rwi

′

ms + 3mw

. (4.95)

4.3.3 Lagrange equations

Once the system kinetic and potential energy have been defined, i.e., (4.82) and (4.93),

the Lagrangian is simply the difference between the two

L = T − V

=
1

2
~ωc
′T Īc~ωc

′ +
1

2
(~ωc

′ + ~ωw
′)
T
Iw(~ωc

′ + ~ωw
′)−mc~rc

′TR(q)~g , (4.96)

The kinetic equations of the system can then be obtained applying the Lagrange

equations
d

dt

(
∂L

∂Q̇i

)
− ∂L

∂Qi

=
∑

FQi . (4.97)

where Qi is the i-th generalized coordinate of the system2, and Fqi is the generalized force

in the Qi direction.

Generalized coordinates are typically position coordinates (distances or angles). There

2Literature usually uses the lowercase letter qi to denote the generalized coordinates, but we are using
the uppercase letter Qi so as not to confuse it with the rotation quarternion q.



50

are two of them of interest in the Cubli:

• The rotation quaternion q, that describes the Cubli orientation

• The vector ~θw
′, that describes the reaction wheels relative angular displacement

Generalized forces are external inputs to the system (forces or torques). There is only

the vector of torques ~τ from the motors applied on each of the three reaction wheels, given

by

~τ =


τx

τy

τz

 . (4.98)

These torques occur in the same direction as the reaction wheels relative angular

displacement.

For each one of these generalized coordinates, there will be one kinetic equation to be

calculated separately.

4.3.3.1 Generalized coordinate q

To make it easier, the Lagrange equation will be divided into four terms and each one

of them will be calculated individually

d

dt

(
∂L

∂q̇

)
︸ ︷︷ ︸
Term 1︸ ︷︷ ︸

Term 2

− ∂L

∂q︸︷︷︸
Term 3

=
∑

Fq︸ ︷︷ ︸
Term 4

. (4.99)

Term 1

First, the Lagrangian will be rewritten and rearranged substituting the angular ve-



51

locity vector with (4.66), so that q̇ is isolated

L =
1

2
~ωc
′T Īc~ωc

′ +
1

2
(~ωc

′ + ~ωw
′)
T
Iw(~ωc

′ + ~ωw
′)−mc~rc

′TR(q)~g

=
1

2
(2G(q)q̇)T Īc (2G(q)q̇) +

1

2
(2G(q)q̇ + ~ωw

′)
T
Iw (2G(q)q̇ + ~ωw

′)−mc~rc
′TR(q)~g

= 2(G(q)q̇)T Īc (G(q)q̇) + 2

(
G(q)

(
q̇ +

G(q)−1

2
~ωw
′

))T

Iw

(
G(q)

(
q̇ +

G(q)−1

2
~ωw
′

))
−mc~rc

′TR(q)~g

= 2
(
q̇TG(q)T

)
Īc (G(q)q̇) + 2

(q̇ +
G(q)−1

2
~ωw
′

)T

G(q)T

 Iw

(
G(q)

(
q̇ +

G(q)−1

2
~ωw
′

))

−mc~rc
′TR(q)~g

= 2q̇T
(
G(q)T ĪcG(q)

)
q̇ + 2

(
q̇ +

G(q)−1

2
~ωw
′

)T (
G(q)T IwG(q)

)(
q̇ +

G(q)−1

2
~ωw
′

)
−mc~rc

′TR(q)~g .

(4.100)

With q̇ isolated, it is straightforward to perform the partial derivative with respect to

it

∂L

∂q̇
= 4

(
G(q)T ĪcG(q)

)
q̇ + 4

(
G(q)T IwG

)(
q̇ +

G(q)−1

2
~ωw
′

)

= 2G(q)T Īc (2G(q)q̇) + 2G(q)T Iw

(
2G(q)

(
q̇ +

G(q)−1

2
~ωw
′

))
= 2G(q)T Īc (2G(q)q̇) + 2G(q)T Iw (2G(q)q̇ + ~ωw

′) . (4.101)

Finally, it will be rewritten by making use of the same property as before

∂L

∂q̇
= 2G(q)T Īc (2G(q)q̇) + 2G(q)T Iw (2G(q)q̇ + ~ωw

′)

= 2G(q)T Īc~ωc
′ + 2G(q)T Iw (~ωc

′ + ~ωw
′) . (4.102)

Term 2

With term 1 rewritten in this form, its time derivative is also straightforward

d

dt

(
∂L

∂q̇

)
= 2G(q)T Īc~̇ωc

′ + 2G(q̇)T Īcω
′
c + 2G(q)T Iw

(
~̇ωc
′ + ~̇ωw

′
)

+ 2G(q̇)T Iw (ω′c + ω′w) .

(4.103)



52

Term 3

First, the Lagrangian will be rewritten and rearranged substituting the angular ve-

locity vector with (4.67), so that q is isolated

L =
1

2
~ωc
′T Īc~ωc

′ +
1

2
(~ωc

′ + ~ωw
′)
T
Iw(~ωc

′ + ~ωw
′)−mc~rc

′TR(q)~g

=
1

2
(−2G(q̇)q)T Īc (−2G(q̇)q) +

1

2
(−2G(q̇)q + ~ωw

′)
T
Iw (−2G(q̇)q + ~ωw

′)−mc~rc
′TR(q)~g

= 2(G(q̇)q)T Īc (G(q̇)q) + 2

(
G(q̇)

(
q − G(q̇)−1

2
~ωw
′

))T

Iw

(
G(q̇)

(
q − G(q̇)−1

2
~ωw
′

))
−mc~rc

′TR(q)~g

= 2
(
qTG(q̇)T

)
Īc (G(q̇)q) + 2

(q − G(q̇)−1

2
~ωw
′

)T

G(q̇)T

 Iw

(
G(q̇)

(
q − G(q̇)−1

2
~ωw
′

))

−mc~rc
′TR(q)~g

= 2qT
(
G(q̇)T ĪcG(q̇)

)
q + 2

(
q − G(q̇)−1

2
~ωw
′

)T (
G(q̇)T IwG(q̇)

)(
q − G(q̇)−1

2
~ωw
′

)
−mc~rc

′TR(q)~g .

(4.104)

With q isolated, it is straightforward to perform the partial derivative with respect to

it

∂L

∂q
= 4

(
G(q̇)T ĪcG(q̇)

)
q + 4

(
G(q̇)T IwG(q̇)

)(
q − G(q̇)−1

2
~ωw
′

)
− 2mc∆q

= 2G(q̇)T Īc (2G(q̇)q) + 2G(q̇)T Iw

(
2G(q̇)

(
q − G(q̇)−1

2
~ωw
′

))
− 2mc∆q

= 2G(q̇)T Īc (2G(q̇)q) + 2G(q̇)T Iw (2G(q̇)q − ~ωw ′)− 2mc∆q . (4.105)

Note that, the rotation matrix R(q) depends on q but it cannot be isolated with

matrix notation. That is why its partial derivative with respect to q depends on ∆, given

by

∆ =

[
~g T~rc

′ −(~g × ~rc ′)T

−~g × ~rc ′T ~g~rc
′T + ~rc

′~g T − I3×3(~g T~rc
′) .

]
(4.106)



53

Finally, it will be rewritten by making use of the same property as before

∂L

∂q
= 2G(q̇)T Īc (2G(q̇)q) + 2G(q̇)T Iw (2G(q̇)q − ~ωw ′)− 2mc∆q

= 2G(q̇)T Īc (−~ωc ′) + 2G(q̇)T Iw (−~ωc ′ − ~ωw ′)− 2mc∆q

= −2G(q̇)T Īc~ωc
′ − 2G(q̇)T Iw (~ωc

′ + ~ωw
′)− 2mc∆q . (4.107)

Term 4

The electric motors apply torques in the reaction wheels and thus a reaction torque

in applied in the Cubli. However, since one is dealing with relative angular displacements

of the reaction wheels, the generalized forces in the direction of the rotation quaternion

are zero ∑
Fq = ~0 . (4.108)

Lagrange equation

Now that all terms have been calculated, they can be put together into the Lagrange

equation

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
=
∑

Fq

2G(q)T Īc~̇ωc
′ + 2G(q̇)T Īc~ωc

′ + 2G(q)T Iw

(
~̇ωc
′ + ~̇ωw

′
)

+ 2G(q̇)T Iw (~ωc
′ + ~ωw

′)

+2G(q̇)T Īc~ωc
′ + 2G(q̇)T Iw (~ωc

′ + ~ωw
′) + 2mc∆q = ~0

2G(q)T Īc~̇ωc + 4G(q̇)T Īc~ωc
′ + 2G(q)T Iw

(
~̇ωc
′ + ~̇ωw

′
)

+ 4G(q̇)T Iw (~ωc
′ + ~ωw

′)

+2mc∆q = ~0 .

(4.109)

By left multiplying all terms by 1
2
G(q) and making use of (4.42) and (4.69), the above

equation can be further simplified

1

2
G(q)2G(q)T Īc~̇ωc

′ +
1

2
G(q)4G(q̇)T Īc~ωc

′ +
1

2
G(q)2G(q)T Iw

(
~̇ωc
′ + ~̇ωw

′
)

+
1

2
G(q)4G(q̇)T Iw (~ωc

′ + ~ωw
′) +

1

2
G(q)2mc∆q =

1

2
G(q)~0

GG(q)T Īc~̇ωc
′ + 2G(q)G(q̇)T Īc~ωc

′ +GG(q)T Iw

(
~̇ωc
′ + ~̇ωw

′
)

+2G(q)G(q̇)T Iw (~ωc
′ + ~ωw

′) +mcG(q)∆q = ~0

Īc~̇ωc
′ + ω̃′c

(
Īc~ωc

′)+ Iw

(
~̇ωc
′ + ~̇ωw

′
)

+ ω̃′c (Iw (~ωc
′ + ~ωw

′)) +mcG(q)∆q = ~0 . (4.110)

This is the kinetic equation for the rotation quaternion q generalized coordinate. It



54

can also be written as

Īc~̇ωc
′ + ω̃′c

(
Īc~ωc

′)+ Iw

(
~̇ωc
′ + ~̇ωw

′
)

+ ω̃′c (Iw (~ωc
′ + ~ωw

′)) + m̄cglG(q)Γq = ~0 , (4.111)

where

m̄c = ms + 2mw , Γ =


1 1 −1 0

1 −1 0 1

−1 0 −1 1

0 1 1 1

 . (4.112)

4.3.3.2 Reaction wheels angular displacement

As considered for the rotation quaternion, the Lagrange equation will be divided into

four terms and each one of them will be calculated individually

d

dt

(
∂L

∂~̇θw ′

)
︸ ︷︷ ︸

Term 1︸ ︷︷ ︸
Term 2

− ∂L

∂~θw ′︸ ︷︷ ︸
Term 3

=
∑

Fi︸ ︷︷ ︸
Term 4

. (4.113)

Term 1

First, the Lagrangian will be rewritten substituting the reaction wheels angular ve-

locity vector, so that ~̇θw
′ is isolated

L =
1

2
~ωc
′T Īc~ωc

′ +
1

2
(~ωc

′ + ~ωw
′)
T
Iw(~ωc

′ + ~ωw
′)−mc~rc

′TR(q)~g

=
1

2
~ωc
′T Īc~ωc

′ +
1

2
(~ωc

′ + ~̇θw
′)
T

Iw(~ωc
′ + ~̇θw

′)−mc~rc
′TR(q)~g . (4.114)

With ~̇θw
′ isolated, it is straightforward to perform the partial derivative with respect

to it

∂L

∂~̇θw ′
= Iw

(
~ωc
′ + ~̇θw

′
)
. (4.115)

Finally, it will be rewritten by making use of the same property as before

∂L

∂~̇θw ′
= Iw

(
~ωc
′ + ~̇θw

′
)

= Iw (~ωc
′ + ~ωw

′) . (4.116)



55

Term 2

With term 1 rewritten in this form, it is straightforward to perform the time derivative

d

dt

(
∂L

∂~̇θw ′

)
= Iw

(
~̇ωc
′ + ~̇ωw

′
)

+ ω̃′c (Iw (~ωc
′ + ~ωw

′)) .

Term 3

Since the Lagrangian does not depend on ~θw
′, its partial derivative with respect to it

is zero

∂L

∂~θw ′
= ~0 .

Term 4

The electric motors apply torques in the reaction wheels in the same direction as the

reaction wheels relative angular displacement, so the generalized forces are exactly these

torques ∑
F~θw ′ = ~τ ′ . (4.117)

Lagrange equation

Now that all terms have been calculated, they can be put together into the Lagrange

equation

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
=
∑

Fq

Iw

(
~̇ωc
′ + ~̇ωw

′
)

+ ω̃′c (Iw (~ωc
′ + ~ωw

′))−~0 = ~τ ′

Iw

(
~̇ωc
′ + ~̇ωw

′
)

+ ω̃′c (Iw (~ωc
′ + ~ωw

′)) = ~τ ′ . (4.118)

This is the kinetic equation for the reaction wheels relative angular displacement ~θw
′

generalized coordinate.



56

4.3.4 Kinetic equations

The system kinetic equations are composed of kinetic equations obtained with the

Lagrange equations, one for each generalized coordinate Īc~̇ωc
′ + ω̃c

(
Īc~ωc

′)+ Iw

(
~̇ωc
′ + ~̇ωw

′
)

+ ω̃c (Iw (~ωc
′ + ~ωw

′)) + m̄cglG(q)Γq = ~0

Iw

(
~̇ωc
′ + ~̇ωw

′
)

+ ω̃′c (Iw (~ωc
′ + ~ωw

′)) = ~τ ′
.

(4.119)

Because ~ωw
′ � ~ωc

′, the approximation (~ωc
′ + ~ωw

′) ≈ ~ωw
′ can be applied{

Īc~̇ωc
′ + Iw~̇ωw

′ + ω̃c
(
Īc~ωc

′ + Iw~ωw
′)+ m̄cglG(q)Γq = ~0

Iw~̇ωw
′ + ω̃′c (Iw~ωw

′) = ~τ ′
. (4.120)

Moreover, since the reaction wheels angular velocity are relative (measured with re-

spect to the structure), their gyroscopic torques have no influence on them, only on the

Cubli. Hence, the reaction wheels gyroscopic torques can be disregarded{
Īc~̇ωc

′ + Iw~̇ωw
′ + ω̃c

(
Īc~ωc

′ + Iw~ωw
′)+ m̄cglG(q)Γq = ~0

Iw~̇ωw
′ = ~τ ′

. (4.121)

These equations can then be rewritten isolating the time derivative terms{
~̇ωc
′ = Ī−1

c

(
−ω̃c

(
Īc~ωc

′ + Iw~ωw
′)− m̄cglG(q)Γq − ~τ ′

)
~̇ωw
′ = I−1

w ~τ ′
. (4.122)

These are the kinetic equations of the system with vector notation utilizing quater-

nions.

4.3.5 Friction forces

For the model to become even more realistic, it is necessary to include friction forces.

There are two main frictions in this model: the friction between the Cubli and the surface

at pivot point O, and the friction of the motors.

The surface friction can be modeled by a viscous friction coefficient b. However,

since it occurs only in the direction orthogonal to the gravity vector, it depends on the

orientation of the Cubli.

The motor friction is somewhat more complicated. Besides having a viscous friction,

it also has a static friction (that generates a dead zone) and an aerodynamic drag (since



57

the reaction wheels are hollow). It can be modeled as

τf (ωi) = sign(ωi)
(
τc + bw|ωi|+ cd|ωi|2

)
, (4.123)

where τc is the Coulomb friction, bw is the viscous friction coefficient and cd is the aero-

dynamic drag coefficient. Those parameters were identified experimentally with a torque

controller by varying the torque reference, registering the equivalent steady-state velocity

(where the input torque equals the friction torque), and curve fitting of the data (Fig.

20). The identified parameters are given in Table 2.

Table 2: Friction torque parameters

Parameter Value

τc 2.46× 10−3 N.m

bw 1.06× 10−5 N.m.s.rad−1

cd 1.70× 10−8 N.m.s2.rad−2

Figure 20: Friction torque data and curve fitting

4.4 Dynamics

Once the kinematics, which is the study of motion without reference to the forces

which cause motion, and kinetics, which relates the action of forces on bodies to their



58

resulting motion, are complete, the full dynamic of the system is complete.

4.4.1 Dynamic equations

Including the kinematic (4.65) and friction forces in (4.122), the full equations of

motion are obtained

q̇ = 1
2
GT (q)~ωc

′

~̇θw
′ = ~ωw

′

~̇ωc
′ = Ī−1

c

(
−~ωc ′ ×

(
Īc~ωc

′ + Iw~ωw
′)+ m̄cgl (G(q)Γq)

−b
(
G(q)Λq (G(q)Λq)T

)
~ωc
′ + ~τf (~ωw

′)− ~τ ′
)

~̇ωw
′ = I−1

w (−~τf (~ωw ′) + ~τ ′)

, (4.124)

where

~τf (~ωw) =


τf (ω1)

τf (ω2)

τf (ω3)

 , Λ =


0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

 . (4.125)

The system can also be represented in a block diagram (Fig. 21), where it is easier to

interpret the gyroscopic terms, gravity torque, surface friction and motor friction.

Cubli - Eqn. (4.124)

Ī−1
c

1

s

1

2
G(q)T~ωc

1

s

b(G(q)Λq

(G(q)Λq)T )~ωc

m̄cgl (G(q)Γq)

I−1
w

1

s

1

s

~τf (~ωw)

~ωc × (Īcωc

+Iw~ωw)

+

− +

− −

−

+

+

−

~τ ~̇ωc ~ωc q̇ q

~̇ωw ~ωw ~θw

Figure 21: Cubli dynamics



59

Note that the Cubli and the reaction wheel dynamics are coupled by the gyroscopic

terms and motor friction. In steady-state conditions, angular velocities are close to zero

and thus they are coupled only by the viscous friction of the motors.

4.5 Validation

A mathematical model is only useful as long as it is a good representation of the

system. Of course, what constitutes a good representation is subjective, but from a

simplistic point of view, our validation criteria would be to confirm that it is correctly

implemented with respect to the conceptual model.

This will be done by means of computer simulations, and they will be divided in three

main types: invariant analysis, singular motions and poinsot trajectories. In all of them,

friction forces are being neglected.

4.5.1 Invariant analysis

Invariant analysis considers parameters that must remain unchanged with time when

no forces are being applied. The Cubli has three invariants:

• Total mechanical energy E

• Angular momentum projection in the gravitational field direction Hz

• Angular momentum projection in the gyroscopic axis direction (diagonal axis of the

Cubli) Hz ′

The total mechanical energy, E = T + V , is given from (4.82) and (4.93)

E = T + V

=
1

2
~ωc
′T Īc~ωc

′ +
1

2
(~ωc

′ + ~ωw
′)
T
Iw(~ωc

′ + ~ωw
′) +mc~r

T
c R(q)~g . (4.126)

Note that this is not the same as the Lagrangian, where the potential energy is

subtracted and not added.

Assuming the Cubli is initially aligned with the inertial coordinate frame with no



60

angular velocities, i.e.,

q(0) =


1

0

0

0

 , ~ωc
′(0) =


0

0

0

 , ~ωw
′(0) =


0

0

0

 . (4.127)

It results in the motion presented in Fig. 22.

Figure 22: Simulation 1a - Invariant analysis (quaternion)

Because quaternions do not have an intuitive physical meaning, it is just possible to

infer that the Cubli presented some kind of periodic motion. However, since the objective

is only to analyze its energy, this is not a problem. The mechanical energy, presented in

Fig. 23, remained unchanged. As Cubli lost potential energy, it acquired the same amount

of kinetic energy, and vice-versa. This not only confirms the hypothesis of periodic motion,

but also ensures that the model is consistent.

Figure 23: Simulation 1a - Invariant analysis (energy)

For the angular momentum projection invariants, the reaction wheels were assumed

to be fixed. The angular momentum vector is

~H = Īc~ωc , (4.128)



61

so that its projections are simply given by

Hz = Īc~ωc · ~g′ , Hz ′ = sum(Īc~ωc) . (4.129)

Let us assume the same initial conditions, but now with an arbitrary initial angular

velocity, i.e

q(0) =


1

0

0

0

 , ~ωc
′(0) =


1

1

1

 . (4.130)

As it can be seen in Fig. 24, the angular momentum projection on the gravitational

field and gyroscopic axis directions remained unchanged.

Figure 24: Simulation 2 - Invariant analysis (angular momentum)

4.5.2 Singular motions

Singular motions consider pre-defined initial conditions in which the behavior of the

system can be predicted. They will be divided into static equilibrium, whereby the sys-

tem states must remain unchanged, and dynamic equilibrium, whereby the system states

change as expected.

4.5.2.1 Static equilibrium

The Cubli has two static equilibrium positions: an stable one and an unstable one.

The stable occurs when its center of mass vector ~rc is pointing down aligned with the z

axis in the inertial coordinate frame (Fig. 25a), while the unstable occurs when this same

vector is pointing up (Fig. 25b).



62

O

y

z

x

(a) Stable

O

x
y

z

(b) Unstable

Figure 25: Cubli static equilibrium positions

Note that the stable equilibrium position is only being considered for simulation pur-

poses, since the Cubli would never be under the xy plane.

By drawing the structure center of mass vector ~rs0 , when the inertial coordinate system

and body coordinate system are aligned, together with the vector ~rss or ~rsu , when the

Cubli is in its stable (Fig. 26a) or unstable (Fig. 26b) positions, the rotation quaternions

for those positions can be determined.

O

x

y

z

~rs0

~rss

ês

es1

es2

φs

(a) Stable

O

x

y

z

~rs0

~rsu

êu
eu1

eu2

φu

(b) Unstable

Figure 26: Cubli static equilibrium positions rotation quaternions

Where

~rs0 =


l
2

l
2

l
2

 , ~rss =


0

0

− l
√

3
2

 , ~rsu =


0

0
l
√

3
2

 . (4.131)

The eigenaxes can be determined from the cross product of the structure center of



63

mass vectors

ês =
~rs0 × ~rss
|~rs0 × ~rss|

=


−
√

2
2√
2

2

0

 ,

êu =
~rs0 × ~rsu
|~rs0 × ~rsu |

=


√

2
2

−
√

2
2

0

 , (4.132)

while the angles can be determined from the dot product of the structure center of mass

vectors

φs = cos−1

(
~rs0 · ~rss
|~rs0||~rss|

)
φs = cos−1

(
−
√

3

3

)
, (4.133)

φu = cos−1

(
~rs0 · ~rsu
|~rs0||~rsu |

)
φu = cos−1

(√
3

3

)
. (4.134)

Once both of these values have been determined, the rotation quaternions can also be

determined

qs =

[
cos φs

2

~es sin φs
2

]

=



√
2
3(3−

√
3)

2

−
√

1
3(3+

√
3)

2√
1
3(3+

√
3)

2

0


,

qu =

[
cos φu

2

~eu sin φu
2

]

=



√
2
3(3+

√
3)

2√
1
3(3−

√
3)

2

−
√

1
3(3−

√
3)

2

0


. (4.135)

Since the Cubli can rotate around its diagonal axis and still be in an equilibrium

position, there are infinite other equivalent rotation quaternions.

In one simulation, the Cubli was considered initially on its stable equilibrium position

with no initial angular velocities, i.e.,

q(0) = qs =



√
2
3(3−

√
3)

2

−
√

1
3(3+

√
3)

2√
1
3(3+

√
3)

2

0


, ~ωc

′(0) =


0

0

0

 , ~ωw
′(0) =


0

0

0

 (4.136)

whereas in the other, it was considered in its unstable equilibrium position, also no initial



64

angular velocities, i.e.,

q(0) = qu =



√
2
3(3+

√
3)

2√
1
3(3−

√
3)

2

−
√

1
3(3−

√
3)

2

0


, ~ωc

′(0) =


0

0

0

 , ~ωw
′(0) =


0

0

0

 (4.137)

The results of both simulations can be seen in Fig. 27 and 28. In both cases, rotation

quaternions remained unchanged, confirming that these are in fact static stable positions.

Figure 27: Simulation 3 - Static equilibrium stable (quaternion)

Figure 28: Simulation 4 - Static equilibrium unstable (quaternion)

4.5.2.2 Dynamic equilibrium

The Cubli has many dynamic equilibrium motions, the most well-known being those

like the spinning top motion. Two of them will be analyzed: the single spin motion and

the precession, nutation, and spin motion. The first occurs when the Cubli is in its static

equilibrium position (either stable or unstable) but spinning around its diagonal axis (Fig.

29a), whereas the second occurs when the Cubli center of mass vector ~rc is not perfectly

aligned with the z axis in the inertial coordinate frame, so it spins around its diagonal

axis and also precesses around the z axis in the inertial coordinate frame (Fig. 29b).



65

O

x
y

z

φ̇

(a) Spin

O

x
y

z
ψ̇

φ̇

θ

(b) Precession, nutation and spin

Figure 29: Cubli dynamic equilibrium motions

All these simulations were performed utilizing quaternions, but for the ease of repre-

sentation, the results were converted to precession, nutation and spin angles. Moreover,

the reaction wheels were assumed to be fixed.

For the single spin motion, the same initial conditions as previous simulation were

assumed, but now with an initial angular velocity, i.e.,

q(0) = qu =



√
2
3(3+

√
3)

2√
1
3(3−

√
3)

2

−
√

1
3(3−

√
3)

2

0


, ~ωc

′(0) = 2π
1√
3


1

1

1

 , ~ωw
′(0) =


0

0

0

 (4.138)

meaning it is spinning. Results are presented in Fig. 30. The spin angle kept increasing

whereas the precession and nutation angles remained unchanged, meaning that the Cubli

only rotated around its diagonal axis. Moreover, Cubli rotated at exactly 2π rad/s (1Hz),

which agrees with the initial angular velocities.

Figure 30: Simulation 5 - Dynamic equilibrium spin (Euler angles)



66

To simulate the precession, nutation and spin motion, a non-equilibrium rotation

quaternion qne was calculated considering a somewhat small nutation angle (10◦). This

rotation quaternion was calculated the same way it was done for the static equilibrium

unstable rotation quaternion, but now considering a small deviation from the vertical axis

(Fig. 31).

O

x

y

z

~rs0

~rsu
~rsne

êu
eu1

eu2

φu
10◦

Figure 31: Cubli non-equilibrium position rotation quaternion

qne =

[
cos φu−10◦

2

~eu sin φu−10◦

2

]
. (4.139)

Considering this new rotation quaternion as an initial condition with initial angular

velocities 10 times faster (to guarantee it precesses), i.e.,

q(0) = qne , ~ωc(0) ′ = 20π
1√
3


1

1

1

 , ~ωw(0) ′ =


0

0

0

 . (4.140)

Fig. 32 show the results.

Figure 32: Simulation 6 - Dynamic equilibrium precession, nutation and spin (Euler
angles)

Now all the three angles are changing, but in a standardized way. The nutation



67

angle keeps oscillating around 10◦, whereas the precession and spin angle kept increasing.

Moreover, the spin velocity is clearly higher than the precession velocity, which is, in fact,

expected in the spinning top motion. Although the initial spin velocity is 10 times that

of the previous simulation, the frequency is not 10 times higher, meaning that the spin

is now somewhat slower. This is because the Cubli is now also performing a gyroscopic

precession.

Another interesting graph of the same simulation is a three-dimensional position of

the Cubli center of mass, which can be seen in Fig. 33. Although not in scale, it gives a

clear perspective of the spinning top motion.

Figure 33: Simulation 6 - Dynamic equilibrium (center of mass)

To completely validate this motion, they will be compared to the well-known general

equations of rotation of a symmetrical body about a fixed point O [19]
Io

(
ψ̈ sin θ + 2ψ̇θ̇ cos θ

)
− Iθ̇

(
ψ̇ cos θ + φ̇

)
= 0

Io

(
θ̈ − ψ̇2 sin θ cos θ

)
+ Iψ̇

(
ψ̇ cos θ + φ̇

)
sin θ = mcg|~rc| sin θ

I
(
φ̈+ ψ̈ cos θ − ψ̇θ̇ sin θ

)
= 0

, (4.141)

where Io is the Cubli maximum principal moment of inertia, around axis 1 and 2, whereas

I is the minimum principal moment of inertia, around axis 3 (Fig. 34).



68

O

x ′

y ′

z ′

1

2

3

Figure 34: Cubli principal moment of inertia

These moments of inertia are the eigenvalues of the Cubli inertia tensor Īc and are

given by

I = Īcxx − Īcxy , Io = Īcxx + 2Īcxy . (4.142)

Considering the same previous initial conditions, but now in terms of Euler angles,

i.e.,

φ(0) = 0 ,

θ(0) = 10◦ ,

ψ(0) = 0 ,

φ̇(0) = 20π ,

θ̇(0) = 0 ,

ψ̇(0) = 0 ,

(4.143)

and simulating (4.141), the result is the same of Fig. 32, confirming that the dynamic

equations are consistent.

Next, the steady precession case is considered. For this motion to happen, the Cubli

should have constant spin and precession velocities, and also a constant nutation angle,

i.e., ψ̈ = φ̈ = θ̇ = 0. This simplifies (4.141) to a single equation

(Io− I) ψ̇2 cos θ − Iψ̇φ̇+mcg|~rc| = 0 . (4.144)

From (4.144), it is possible to calculate the precession velocity in terms of the spin

velocity and nutation angle

ψ̇ =
Iφ̇±

√
I2φ̇2 − 4 (Io− I) cos θmcg|~rc|

2 (Io− I) cos θ
. (4.145)

Note that, for this equation to be valid, the square root term must be real, meaning



69

that there is a minimum spin velocity needed for steady precession

φ̇ ≥ 2

I

√
(Io− I) cos θmcg|~rc| . (4.146)

The spin velocity and nutation angle of the previous simulation satisfy (4.146), but

for the Cubli to present steady precession, the precession velocity from (4.145) should be

ψ1 = 4.40 rad/s or ψ2 = 22.19 rad/s. Assuming the same initial conditions but now with

ψ(0) = ψ1, which means that ~ωc(0) =
[
38.47 38.47 39.40

]T
, and simulating (4.124)

instead of (4.141), yield the results presented in Fig. 35. As it can be seen, the Cubli is

now clearly in steady precession, showing once again the consistency of the model.

Figure 35: Simulation 8 - Dynamic equilibrium (Euler angles)

4.5.3 Poinsot trajectories

Poinsot trajectories are a geometrical method for visualizing the torque-free motion

of a rotating rigid body. Since the system needs to be in torque-free motion, gravity

will be neglected. The conservation of angular momentum implies that in the absence

of applied torques, ~H is conserved in an inertial coordinate frame (d
~H
dt

= 0). The con-

servation of energy implies that in the absence of input torques and energy dissipation,

T is also conserved (dT
dt

= 0). Considering the principal axes, it is possible to write

~H =
[
Ioω1 Ioω2 Iω3

]T
, so that the total angular momentum is simply the magnitude

of this vector

H =
√
I2
oω

2
1 + I2

oω
2
2 + I2ω2

3 . (4.147)

The angular kinetic energy, also considering the principal axes, is given by

T =
1

2
Ioω

2
1 +

1

2
Ioω

2
2 +

1

2
Iω2

3 . (4.148)

Writing (4.147) and (4.148) in terms of the angular momentum vector components



70

along the principal axes yields H2 = H2
1 +H2

2 +H2
3

2T =
H2

1

Io
+
H2

2

Io
+
H2

3

I

, (4.149)

which are equivalent to two constraints for the 3D angular momentum vector ~H. The

angular momentum constrains ~H to lie on a sphere, whereas the kinetic energy constrains

~H to lie on an ellipsoid. These two surfaces intersections define the possible solutions for

~H.

(a) Constant angular momentum (b) Constant kinetic energy

Figure 36: Simulations 9 and 10 - Poinsot trajectories

Simulations in Fig. 36a considered various initial angular velocities, all with the same

total H. Each line or dot is a different simulation and represents an intersection with the

kinetic energy ellipsoid. The surface created is clearly a sphere, which is expected for a

constant angular momentum. Moreover, because each simulation has constant H3, the

body is axisymmetric along this axis, which is in fact the case for the Cubli.

Considering now the same kinetic energy T , yields Fig. 36b. In this case, the surface

is an ellipsoid, which is also expected for constant kinetic energy. Now each line or dot

represents an intersection with the angular momentum sphere. Moreover, because two

moments of inertia are the same and the third one is smaller than the other two, the

shape is in fact a prolate spheroid, which is a particular case of an ellipsoid.



71

5 ANALYSIS

Before diving into the control of the Cubli, its stability and controllability properties

will be analyzed.

5.1 Linearized dynamics without reaction wheels

When the Cubli is at rest perfectly balanced on its unstable equilibrium position, i.e.,

q(0) = qu =



√
2
3(3+

√
3)

2√
1
3(3−

√
3)

2

−
√

1
3(3−

√
3)

2

0


, ~ωc

′(0) =


0

0

0

 , (5.1)

the linearized dynamics without the reaction wheels are

[
q̇

~̇ωc

]
=

[
04×4

1
2
GT

Ī−1
c K −Ī−1

c B

][
q

~ωc

]
+

[
04×3

Ī−1
c

]
~τ , (5.2)

where

G = G(q)
∣∣∣
q=qu

= G(qu)

=


qu1 qu0 −qu3 qu2

qu2 qu3 qu0 −qu1
qu3 −qu2 qu1 qu0

 , (5.3)



72

K =
∂

∂q
(m̄cgl (G(q)Γq))

∣∣∣
q=qu

= m̄cgl (G(q)Γ−G(Γq))
∣∣∣
q=qu

= m̄cgl (G(qu)Γ−G(Γqu)) , (5.4)

and

B =
∂

∂~ωc

(
b
(
G(q)Λq (G(q)Λq)T

)
~ωc

) ∣∣∣
q=qu

= b
[
G(q)Λq (G(q)Λq)T

] ∣∣∣
q=qu

= b
[
G(qu)Λqu (G(qu)Λqu)

T
]

= b13×3 , (5.5)

being 13×3 a 3× 3 matrix with all elements equal to one.

Its characteristic equation is given by

det (sI7×7 − A) = 0

det

([
sI4×4 04×3

03×4 sI3×3

]
−

[
04×4

1
2
GT

Ī−1
c K −Ī−1

c B

])
= 0

det

([
sI4×4 −1

2
GT

−Ī−1
c K sI3×3 + Ī−1

c B

])
= 0

det (sI4×4) det

(
sI3×3 + Ī−1

c B − Ī−1
c K[sI4×4]−1 1

2
GT

)
= 0

s4 det

(
1

s

(
s2I3×3 + sĪ−1

c B − 1

2
Ī−1
c KGT

))
= 0

s�4
1

��s3
det

s2I3×3 +
ωn1

3
s


1 1 1

1 1 1

1 1 1

− 2
ω2
n0

3


2 −1 −1

−1 2 −1

−1 −1 2


 = 0

s︸︷︷︸
quaternion

redundancy

s (s+ ωn1)︸ ︷︷ ︸
yaw

dynamics

(
s2 − ω2

n0

)2︸ ︷︷ ︸
roll/pitch

dynamics

= 0 , (5.6)

where ωn0 is the natural frequency of the roll and pitch dynamics, whereas ωn1 is the



73

natural frequency of the yaw dynamics, given by

ωn0 =

√
m̄cgl

√
3

Īcxx − Īcxy
, ωn1 =

b

Īcxx + 2Īcxy
. (5.7)

Note that Īcxx− Īcxy and Īcxx +2Īcxy are the Cubli principal moments of inertia derived

in (4.142), which are, in fact, the moments of inertia around the roll and pitch motion

and around the yaw motion, respectively.

Although quaternions have been utilized the whole time, the characteristic equation

of the linearized dynamics is clearly described in terms of Euler angles. Roll and pitch

dynamics are unstable due to its poles being located at ±ωn0 , whereas yaw dynamics is

marginally stable due to its poles being located at 0 and −ωn1 . Moreover, there is also an

extra pole at 0, which is inherited from the rotation quaternion kinematic equation since

a rotation quaternion is a redundant way to describe an orientation.

σ

jω

−ωn0 ωn0

Roll and
pitch poles

−ωn1 0

Yaw poles
Quaternion
redundancy pole

Figure 37: Open loop poles (without reaction wheels)

The controllability matrix has rank(C) = 6, whereas the system has dimension n =

7. However, even that rank(C) 6= n, the system is fully controllable since one of the

system states is redundant due to quaternion representation. In other words, although

quaternions are being utilized (which includes an extra redundant state), the system still

has 3 d.o.f. and thus its “physical” dimension remains n = 6.



74

5.2 Linearized dynamics with reaction wheels angu-

lar velocity

Let us now consider the linearized dynamics with the reaction wheels angular velocity
q̇

~̇ωc

~̇ωw

 =


04×4

1
2
GT 04×3

Ī−1
c K −Ī−1

c B Ī−1
c F

03×4 03×3 −Ī−1
w F



q

~ωc

~ωw

+


04×3

Ī−1
c

I−1
w

~τ , (5.8)

where

F = bwI3×3 . (5.9)

The characteristic equation has an extra term

det (sI10×10 − A) = 0

det



sI4×4 04×3 04×3

03×4 sI3×3 03×3

03×4 03×3 sI3×3

−


04×4
1
2
GT 04×3

Ī−1
c K −Ī−1

c B Ī−1
c F

03×4 03×3 −Ī−1
w F


 = 0

det




sI4×4 −1
2
GT 04×3

−Ī−1
c K sI3×3 + Ī−1

c B −Ī−1
c F

03×4 03×3 sI3×3 + Ī−1
w F


 = 0

det (sI4×4) det

([
sI3×3 + Ī−1

c B −Ī−1
c F

03×3 sI3×3 + Ī−1
w F

]
−

[
−Ī−1

c K

03×4

]
sI4×4

−1
[
−1

2
GT 04×3

])
= 0

det (sI4×4) det

([
sI3×3 + Ī−1

c B −Ī−1
c F

03×3 sI3×3 + Ī−1
w F

]
− 1

s

[
1
2
Ī−1
c KGT 03×3

03×3 03×3

])
= 0

s4 det

(
1

s

[
s2I3×3 + sĪ−1

c B − 1
2
Ī−1
c KGT −sĪ−1

c F

03×3 s2I3×3 + sĪ−1
w F

])
= 0

��s
4 1

s�62
det

([
s2I3×3 + sĪ−1

c B − 1

2
Ī−1
c KGT

])
det
([
s2I3×3 + sĪ−1

w F
])

= 0

1

s2
det


s2I3×3 +

ωn1

3
s


1 1 1

1 1 1

1 1 1

− 2
ω2
n0

3


2 −1 −1

−1 2 −1

−1 −1 2



 det

([
s2I3×3 + ωn2sI3×3

])
= 0

s︸︷︷︸
quaternion

redundancy

(s+ ωn2)
3︸ ︷︷ ︸

reac. wheel

dynamics

s (s+ ωn1)︸ ︷︷ ︸
yaw

dynamics

(
s2 − ω2

n0

)2︸ ︷︷ ︸
roll/pitch

dynamics

= 0 ,

(5.10)



75

where ωn2 is the natural frequency of the reaction wheel dynamics, given by

ωn2 =
bw
Iwxx

. (5.11)

The reaction wheels angular velocities dynamics is stable due to its pole being located

at −ωn2 . Although the viscous friction of the motors couples the Cubli and the reaction

wheel dynamics, it does not interfere in the linearized roll, pitch and yaw dynamics, since

its poles remained unchanged.

σ

jω

−ωn0 ωn0

Roll and
pitch poles

−ωn1 0

Yaw poles
Quaternion
redundancy pole

−ωn2

Reaction
wheel poles

Figure 38: Open loop poles (with reaction wheels angular velocity)

The controllability matrix now has rank(C) = 9, whereas the system now has dimen-

sion n = 10. Disregarding the quaternion redundancy, its “physical” dimension is n = 9,

which means that the system is still fully controllable.

5.3 Linearized dynamics with reaction wheels angu-

lar velocity and displacement

Let us now consider the full linearized dynamics, that is, with the reaction wheels

angular velocity and displacement
q̇

~̇θw

~̇ωc

~̇ωw

 =


04×4 04×3

1
2
GT 04×3

03×4 03×3 03×3 I3×3

Ī−1
c K 03×3 −Ī−1

c B Ī−1
c F

03×4 03×3 03×3 −Ī−1
w F




q

~θw

~ωc

~ωw

+


04×3

03×3

Ī−1
c

I−1
w

~τ , (5.12)



76

The characteristic equation has another extra term

det (sI13×13 − A) = 0

det




sI4×4 04×3 04×3 04×3

03×4 sI3×3 03×3 03×3

03×4 03×3 sI3×3 03×3

03×4 03×3 03×3 sI3×3

−


04×4 04×3
1
2
GT 04×3

03×4 03×3 03×3 I3×3

Ī−1
c K 03×3 −Ī−1

c B Ī−1
c F

03×4 03×3 03×3 −Ī−1
w F



 = 0

det




sI4×4 04×3 −1

2
GT 04×3

03×4 sI3×3 03×3 −I3×3

−Ī−1
c K 03×3 sI3×3 + Ī−1

c B −Ī−1
c F

03×4 03×3 03×3 sI3×3 + Ī−1
w F



 = 0

det

([
sI4×4 04×3

03×4 sI3×3

])
det

([
sI3×3 + Ī−1

c B −Ī−1
c F

03×3 sI3×3 + Ī−1
w F

]

−

[
−Ī−1

c K 03×3

03×4 03×3

][
sI4×4 04×3

03×4 sI3×3

]−1 [
−1

2
GT 04×3

03×3 −I3×3

] = 0

det (s [I7×7]) det

([
sI3×3 + Ī−1

c B −Ī−1
c F

03×3 sI3×3 + Ī−1
w F

]
− 1

s

[
1
2
Ī−1
c KGT 03×3

03×3 03×3

])
= 0

s7 det

(
1

s

[
s2I3×3 + sĪ−1

c B − 1
2
Ī−1
c KGT −sĪ−1

c F

03×3 s2I3×3 + sĪ−1
w F

])
= 0

s�7
1

��s6
det

([
s2I3×3 + sĪ−1

c B − 1

2
Ī−1
c KGT

])
det
([
s2I3×3 + sĪ−1

w F
])

= 0

s det


s2I3×3 +

ωn1

3
s


1 1 1

1 1 1

1 1 1

− 2
ω2
n0

3


2 −1 −1

−1 2 −1

−1 −1 2



 det

([
s2I3×3 + ωn2sI3×3

])
= 0

s︸︷︷︸
quaternion

redundancy

(s (s+ ωn2))
3︸ ︷︷ ︸

reac. wheel

dynamics

s (s+ ωn1)︸ ︷︷ ︸
yaw

dynamics

(
s2 − ω2

n0

)2︸ ︷︷ ︸
roll/pitch

dynamics

= 0 ,

(5.13)

Which makes the reaction wheel dynamics marginally stable now due to an extra pole

located at 0.



77

σ

jω

−ωn0 ωn0

Roll and
pitch poles

−ωn1 0

Yaw poles
Quaternion
redundancy pole

−ωn2

Reaction
wheel poles

Figure 39: Open loop poles (with reaction wheels angular velocity and displacement)

The controllability matrix now has rank(C) = 11, whereas the system now has dimen-

sion n = 13. Disregarding the quaternion redundancy, its “physical” dimension is n = 12,

which means that now the system is no longer fully controllable.

That is, the inclusion of the angular velocities of the reaction wheels does not make

the system uncontrollable, but the inclusion of the angular displacements does.



78



79

6 CONTROL

Once a mathematical representation of the system is developed, verified and analyzed,

the next step is the analysis and design of a feedback control algorithm.

Much of control system design theory have been developed for linear systems, but

nearly all real systems are nonlinear. What is often done is the linearization of the non-

linear system into a linear one, which works very well in conditions close to linearization.

However, in recent years, the availability of powerful low-cost microprocessor has

spurred on great advances in the theory and applications of nonlinear control. Because

of this, the focus will be to design a nonlinear control for the Cubli.

6.1 Control strategy

Although it is possible to control the yaw position or reaction wheel position, it is

impossible to control both simultaneously. As will be shown further, this is due to the

Cubli symmetry around the yaw axis.

One way to deal with this problem is to decouple the yaw dynamics and do not try to

control it, thus, viscous friction with the surface will make the open-loop yaw dynamics

marginally stable, as shown in [22].

Another way is is to control only the angular velocities of the reaction wheels, not

concerning about their angular displacements. This makes the reaction wheels to never

stop, but at least they keep turning at constant speed, without saturating.

An third way is to implement a trajectory control for the yaw axis to track a sinusoidal

like signal with zero-mean. This causes the wheels to turn in one direction and then in

the other periodically, such that the yaw dynamics, while never stops, stay bounded.

The last two strategies will be adressed in this study.



80

6.2 Attitude Controller

Initially, the focus will be only on the Cubli dynamics, without caring about control-

ling the wheels.

6.2.1 Feedback linearization

Adopting a new input vector ~u and making the input torque ~τ equal to

~τ =− ~ωc ×
(
Īc~ωc + Iw~ωw

)
− m̄cgl (G(q)Γq)− b

(
G(q)Λq (G(q)Λq)T

)
~ωc + ~τf (~ωw)− Īc~u ,

(6.1)

a feedback linearization law that cancels out all the gyroscopic terms, gravity torque,

surface friction and motor friction is obtained (Fig. 40).

Feedback linearization - Eqn. (6.1)

Ic Cubli

~τf (~ωw)

~ωc × (Īcωc

+Iw~ωw)

b(G(q)Λq

(G(q)Λq)T )~ωc

m̄cgl(G(q)Γq)

−

− +

− −

+

−

~u ~τ q
~ωw

~ωc

Figure 40: The Cubli with feedback linearization

By substituting (6.1) into (4.124), it reduces the system to{
q̇ = 1

2
G(q)T~ωc

~̇ωc = ~u
. (6.2)

Although the angular velocity differential equation is now linear, the rotation quater-

nion differential equation is still nonlinear.



81

6.2.2 State regulator

Let qr be an orientation quaternion reference and qe be an orientation quaternion

error, such that

qr =

[
qr0

~qr

]
, qe =

[
qe0

~qe

]
. (6.3)

The orientation error represents the rotation needed from current orientation to match

the orientation reference. In quaternion notation, consecutive rotations can be represented

as multiplications between respective orientation quaternions, which means that

qr = q ◦ qe . (6.4)

By left-multiplying both sides of (6.4) with q̄ and using (4.41), it is possible to isolate

the orientation quaternion error

q̄ ◦ qr = ��
�q̄ ◦ q ◦ qe

qe = q̄ ◦ qr . (6.5)

Let ~ωr be an angular velocity vector reference and ~ωe be an angular velocity vector

error, which can be represented as quaternions with zero real parts, such that

ωr =

[
0

~ωr

]
, ωe =

[
0

~ωe

]
. (6.6)

The angular velocity error represents the difference between angular velocity refer-

ence and current angular velocity. However, because there is also a difference between

orientations, the angular velocity reference must be rotated from orientation reference to

the current orientation

ωe = qe ◦ ωr ◦ q̄e − ωc , (6.7)

which, in vector format, is the same as

~ωe = R(qe)
T~ωr − ~ωc . (6.8)

When current orientation matches the orientation reference, no additional rotation is

needed and thus the orientation quaternion error is qe =
[
1 ~0

]T
. Because qe is not zero

(and will never be since a orientation quaternion always have unit norm), (6.9) could not



82

be used to guarantee asymptotically stable error dynamics

q̈e + kdq̇e + kpqe 6=

[
0

~0

]
. (6.9)

However, the vector part of the orientation quaternion error will be zero, which means

that (6.10) could be used instead

~̈qe + kd~̇qe + kp~qe = ~0 , (6.10)

an equation that ensures that the orientation quaternion error qe converges exponentially

to zero (for any positive value of kp and kd, the state regulator gains).

The first time derivative of qe is obtained by differentiating (6.5)

q̇e =
d

dt
(q̄ ◦ qr)

q̇e = ˙̄q ◦ qr + q̄ ◦ q̇r

q̇e = ˙̄q ◦ (q ◦ qe) + q̄ ◦
(

1

2
qr ◦ ωr

)
q̇e = ( ˙̄q ◦ q) ◦ qe +

1

2
(q̄ ◦ qr) ◦ ωr

q̇e = −1

2
ωc ◦ qe +

1

2
qe ◦ ωr

q̇e ◦ q̄e = −1

2
ωc ◦����qe ◦ q̄e +

1

2
qe ◦ ωr ◦ q̄e

q̇e ◦ q̄e =
1

2
(qe ◦ ωr ◦ q̄e − ωc)

q̇e ◦ q̄e =
1

2
ωe

q̇e ◦����q̄e ◦ qe =
1

2
ωe ◦ qe

q̇e =
1

2
ωe ◦ qe , (6.11)

where its vector part is given by

~̇qe =
1

2
(qe0I3×3 − q̃e) ~ωe . (6.12)

On the other hand, the second time derivative of qe can be calculated by differentiating



83

(6.11)

q̈e =
d

dt

(
1

2
ωe ◦ qe

)
q̈e =

1

2
ω̇e ◦ qe +

1

2
ωe ◦ q̇e

q̈e =
1

2
ω̇e ◦ qe +

1

2
ωe ◦

(
1

2
ωe ◦ qe

)
q̈e =

1

2
ω̇e ◦ qe +

1

4
ωe ◦ ωe ◦ qe , (6.13)

where its vector part is given by

~̈qe =
1

2
(qe0I3×3 − q̃e) ~̇ωe −

1

4
~ωTe ~ωe~qe . (6.14)

Substituting (6.12) and (6.14) into (6.10) yields

~̈qe + kd~̇qe + kp~qe = ~0(
1

2
(qe0I3×3 − q̃e) ~̇ωe −

1

4
~ωTe ~ωe~qe

)
+ kd

(
1

2
(qe0I3×3 − q̃e) ~ωe

)
+ kp~qe = ~0

1

2
(qe0I3×3 − q̃e)

(
~̇ωe + kd~ωe

)
+

(
kp −

1

4
~ωTe ~ωe

)
~qe = ~0

~̇ωe + kd~ωe + 2(qe0 − q̃e)
−1

(
kp −

1

4
~ωTe ~ωe

)
~qe = ~0

~̇ωe + kd~ωe + 2

(
kp −

1

4
~ωTe ~ωe

)
~qe
qe0

= ~0 . (6.15)

The term ~qe
qe0

is the Gibbs vector error ~σe, given by

~σe =


eex tan φe

2

eey tan φe
2

eez tan φe
2

 . (6.16)

This vector is singular for φe = ±180◦, which appears to be a disadvantage of utilizing

rotation quaternions as feedback control states. However, the biggest possible attitude

error between two orientations is 180◦, and if it is necessary to go to a reference in the

longest path, a trajectory control may be utilized.



84

The time derivative of ωe is obtained by differentiating (6.7)

ω̇e =
d

dt
(qe ◦ ωr ◦ q̄e − ωc)

ω̇e = q̇e ◦ ωr ◦ q̄e + qe ◦ (ω̇r ◦ q̄e + ωr ◦ ˙̄qe)− ω̇c

ω̇e = q̇e ◦ ωr ◦ q̄e + qe ◦ ωr ◦ ˙̄qe + qe ◦ ω̇r ◦ q̄e − ω̇c

ω̇e =

(
1

2
ωe ◦ qe

)
◦ ωr ◦ q̄e + qe ◦ ωr ◦

(
−1

2
q̄e ◦ ωe

)
+ qe ◦ ω̇r ◦ q̄e − ω̇c

ω̇e =
1

2
ωe ◦ (qe ◦ ωr ◦ q̄e) +−1

2
(qe ◦ ωr ◦ q̄e) ◦ ωe + qe ◦ ω̇r ◦ q̄e − ω̇c

ω̇e =
1

2
ωe ◦ (ωe + ωc)−

1

2
(ωe + ωc) ◦ ωe + qe ◦ ω̇r ◦ q̄e − ω̇c

ω̇e =
��

��
�1

2
ωe ◦ ωe +

1

2
ωe ◦ ωc −

��
�
��1

2
ωe ◦ ωe −

1

2
ωc ◦ ωe + qe ◦ ω̇r ◦ q̄e − ω̇c

ω̇e =
1

2
ωe ◦ ωc +

1

2
ωe ◦ ωc + qe ◦ ω̇r ◦ q̄e − ω̇c

ω̇e = ωe ◦ ωc + qe ◦ ω̇r ◦ q̄e − ω̇c , (6.17)

where its vector part is given by

~̇ωe = ~ωe × ~ωc +R(qe)
T ~̇ωr − ~̇ωc . (6.18)

Isolating ~̇ωc in (6.18) and substituting (6.15) in it yields the following control law

~u = 2

(
kp −

1

4
~ωTe ~ωe

)
~qe
qe0

+ kd~ωe︸ ︷︷ ︸
Feedback

+ ~ωe × ~ωc +R(qe)
T ~̇ωr︸ ︷︷ ︸

Feedfoward

. (6.19)

This control law was derived at NASA Ames Research Center back in 1993 by Paielli

and Bach [1, 25] for spacecraft attitude control (Fig. 41).



85

State regulator - Eqn. (6.19)

Feedback linearization - Eqn. (6.1)

q̄ ◦ qr
~qe
qe0

2kp

1

2
~ωe

T~ωe~σe

qe ◦ ωr ◦ q̄e kd

qe ◦ ω̇r ◦ q̄e

~ωe × ~ωc

Īc

~τf (~ωw)

~ωc × (Īcωc

+Iw~ωw)

b(G(q)Λq

(G(q)Λq)T )~ωc

m̄cgl(G(q)Γq)

Cubli
+

+

+

+

+

−

−

+

+

+

+

− +

+

−

− −

qr qe ~σe ~u ~τ q
~ωw

~ωc

~ωr ~ωe

~̇ωr

Figure 41: The Cubli with state regulator and feedback linearization

For small rotations, the term ~ωTe ~ωe is close to zero, qe0 is close to one, ~ωe× ~ωc is close

to zero and R(qe)
T is close to identity, which further simplifies the control law

~u ≈ 2kp~qe + kd~ωe + ~̇ωr . (6.20)

Moreover, the orientation quaternion error and angular velocity error vectors are

approximate to the Euler angles errors

~qe =


ex sin φe

2

ey sin φe
2

ez sin φe
2

 ≈

φe
2

θe
2

ψe
2

 , ~ωe =


ωex

ωey

ωez

 ≈

φ̇e

θ̇e

ψ̇e

 . (6.21)

Substituting (6.21) into (6.20) yields a state regulator that is equal to the one com-

monly utilized with Euler angles when dealing with small rotations

~u ≈


kp(φr − φ) + kd(φ̇r − φ̇) + φ̈r

kp(θr − θ) + kd(θ̇r − θ̇) + θ̈r

kp(ψr − ψ) + kd(ψ̇r − ψ̇) + ψ̈r

 . (6.22)

This means that, for small rotations, the derived nonlinear control law of (6.19) is

equivalent to a linear one dynamically linearized at the reference position.



86

6.2.3 Controller gains

Substituting (6.19) into (6.2) and rewriting the first differential equation in terms of

the Gibbs vector error and no longer in terms of quaternions yields{
~̇σe = 1

2

(
I3×3 − σ̃e + ~σe~σ

T
e

)
~ωe

~̇ωe = −2
(
kp − 1

4
~ωTe ~ωe

)
~σe − kd~ωe

. (6.23)

When the Cubli is in its unstable equilibrium position, i.e., ~σe = ~ωe = ~̇ωr = ~0, the

closed loop linearized dynamics is[
~̇σe

~̇ωe

]
=

[
03×3

1
2
I3×3

−2kpI3×3 −kdI3×3

][
~σe

~ωe

]
. (6.24)

Its characteristic equation is

det (sI6×6 − A) = 0

det

([
sI3×3 0

0 sI3×3

]
−

[
03×3

1
2
I3×3

−2kpI3×3 −kdI3×3

])
= 0

det

([
sI3×3 −1

2
I3×3

2kpI3×3 (s+ kd) I3×3

])
= 0

det ([sI3×3]) det

(
[(s+ kd) I3×3]− [2kpI3×3] [sI3×3]−1

[
−1

2
I3×3

])
= 0

s3 det ([I3×3]) det

(
[(s+ kd) I3×3] +

[
kp
s
I3×3

])
= 0

s3 det

([(
s+ kd +

kp
s

)
I3×3

])
= 0

s3

(
s+ kd +

kp
s

)3

det ([I3×3]) = 0

s3

(
1

s

(
s2 + kds+ kp

))3

= 0

s3 1

s3

(
s2 + kds+ kp

)3
= 0(

s2 + kds+ kp
)3

= 0 . (6.25)

Comparing (6.25) with the characteristic equation of a generic 2nd order system with

two complex poles

s2 + 2ζωns+ ωn = 0 , (6.26)



87

yields the following values for the controller gains in terms of the desired closed-loop

parameters ζ and ωn {
kp = ω2

n

kd = 2ζωn
. (6.27)

6.3 Attitude and Wheel Velocity Controller

Since the Cubli is influenced by the acceleration of the reaction wheels, it may happen

that one reaction wheel velocity saturates for a while. Moreover, the Cubli construction

may be imperfect, or attitude sensors may be misaligned, so what seems to be an equi-

librium position may not be, and the reaction wheels will keep accelerating trying to

maintain that erroneous equilibrium. It is thus desirable to achieve the dual goals of

stabilizing the Cubli and keep the reaction wheels velocities small.

6.3.1 State regulator

To achieve this, the control law of (6.19) must be slightly modified by also having

feedback from the reaction wheels angular velocities, such that

~u = 2

(
kp −

1

4
~ωTe ~ωe

)
~qe
qe0

+ kd~ωe︸ ︷︷ ︸
Attitude feedback

+ ~ωe × ~ωc +R(qe)
T ~̇ωr︸ ︷︷ ︸

Attitude feedfoward

−kdw~ωw︸ ︷︷ ︸
Wheel feedback

. (6.28)

This heuristic strategy was considered, for instance, by Block et al. [2], creators of the

original 2D reaction wheel pendulum.

The full nonlinear control law (Fig. 42) is composed of the feedback linearization from

(6.1) and the state regulator from (6.28).



88

State regulator - Eqn. (6.28)

Feedback linearization - Eqn. (6.1)

q̄ ◦ qr
~qe
qe0

2kp

1

2
~ωe

T~ωe~σe

qe ◦ ωr ◦ q̄e kd

qe ◦ ω̇r ◦ q̄e

~ωe × ~ωc

kdw

Īc

~τf (~ωw)

~ωc × (Īcωc

+Iw~ωw)

b(G(q)Λq

(G(q)Λq)T )~ωc

m̄cgl(G(q)Γq)

Cubli
+

+

+

+ +

+

−

−

+

+

+

+

− +

+

−

− −

qr qe ~σe ~u ~τ q
~ωw

~ωc

~ωr ~ωe

~̇ωr

Figure 42: The Cubli with state regulator and feedback linearization (with wheels)

Note that, if the objective is just to stabilize the Cubli, i.e., ~ωr = ~̇ωr = ~0, the control

law reduces to

~u = 2

(
kp −

1

4
~ωTc ~ωc

)
~qe
qe0
− kd~ωc︸ ︷︷ ︸

Attitude feedback

−kdw~ωw︸ ︷︷ ︸
Wheel feedback

. (6.29)

6.3.2 Controller gains

Substituting (6.28) into (6.2) yields

~̇σe = 1
2

(
I3×3 − σ̃e + ~σe~σ

T
e

)
~ωe

~̇ωe = −2
(
kp − 1

4
~ωTe ~ωe

)
~qe
qe0
− kd~ωe + kdw~ωw

~̇ωw = −I−1
w

(
~ωc ×

(
Īc~ωc + Iw~ωw

)
+ m̄cgl (G(q)Γq) + b

(
G(q)Λq (G(q)Λq)T

)
−Īc

(
2
(
kp − 1

4
~ωTe ~ωe

)
~σe +kd~ωw +R(qe)

T ~̇ωr + ~ωe × ~ωc − kdw~ωw
)) . (6.30)

When the Cubli is in its unstable equilibrium position, i.e., ~σe = ~ωe = ~ωw = ~̇ωr = ~0,

the closed loop linearized dynamics is
σ̇e

~̇ωe

~̇ωw

 =


03×3

1
2
I3×3 03×3

−2kpI3×3 −kdI3×3 kdwI3×3

−2Kw − 2kpI
−1
w Īc Bw − kdI−1

w Īc kdwI
−1
w Īc



σe

~ωe

~ωw

 , (6.31)



89

where

I−1
w Īc =

1

3


β + 2γ β − γ β − γ
β − γ β + 2γ β − γ
β − γ β − γ β + 2γ

 , Kw =
δ

3


2 −1 −1

−1 2 −1

−1 −1 2

 , Bw =
ε

3


1 1 1

1 1 1

1 1 1

 ,

(6.32)

and

β =
Īcxx + 2Īcxy

Iwxx
, γ =

Īcxx − Īcxy
Iwxx

, δ =
m̄cgl

√
3

Iwxx
, ε =

b

Iwxx
. (6.33)

Its characteristic equation is

det (sI9×9 − A) = 0

det



sI3×3 03×3 03×3

03×3 sI3×3 03×3

03×3 03×3 sI3×3

−


03×3
1
2
I3×3 03×3

−2kpI3×3 −kdI3×3 kdwI3×3

−2Kw − 2kpI
−1
w Īc Bw − kdI−1

w Īc kdwI
−1
w Īc


 = 0

det




sI3×3 −1
2
I3×3 03×3

2kpI3×3 (s+ kd)I3×3 −kdwI3×3

2Kw + 2kpI
−1
w Īc −Bw + kdI

−1
w Īc sI3×3 − kdwI−1

w Īc


 = 0

det (sI3×3) det

([
(s+ kd)I3×3 −kdwI3×3

−Bw + kdI
−1
w Īc sI3×3 − kdwI−1

w Īc

]

−

[
2kpI3×3

2Kw + 2kpI
−1
w Īc

]
[sI3×3]−1

[
−1

2
I3×3 03×3

])
= 0

det (sI3×3)

det

([
(s+ kd)I3×3 −kdwI3×3

−Bw + kdI
−1
w Īc sI3×3 − kdwI−1

w Īc

]
− 1

s

[
−kpI3×3 03×3

−Kw − kpI−1
w Īc 03×3

])
= 0

s3 det

(
1

s

[
(s2 + kds+ kp)I3×3 −kdwsI3×3

Kw −Bws+ (kds+ kp)I
−1
w Īc s2I3×3 − kdwsI−1

w Īc

])
= 0

��s
3 1

s�63
det
([

(s2 + kds+ kp)I3×3

])
det
([
s2I3×3 − kdwsI−1

w Īc
]

−
[
Kw −Bws+ (kds+ kp)I

−1
w Īc

] [
(s2 + kds+ kp)I3×3

]−1
[−kdws)I3×3]

)
= 0

1

s3
(s2 + kds+ kp)

3
det
([
s2I3×3 − kdwsI−1

w Īc
]

+
kdws

(s2 + kds+ kp)

[
Kw −Bws+ (kds+ kp)I

−1
w Īc

])
= 0



90

1

s3
(s2 + kds+ kp)

3
det

(
1

(s2 + kds+ kp)

[
s2(s2 + kds+ kp)I3×3

+kdws
(
Kw −Bw +

(
(kds+ kp) + (s2 + kds+ kp)

)
I−1
w Īc

)])
= 0

1

s3((
((((

(((
(s2 + kds+ kp)

3 1

(((
((((

((
(s2 + kds+ kp)

3

det
([
s2(s2 + kds+ kp)I3×3 + kdws

(
Kw −Bws− s2I−1

w Īc
)])

= 0

1

s3
det
([
s2(s2 + kds+ kp)I3×3 + kdws

(
Kw −Bws− s2I−1

w Īc
)])

= 0

s
(
s2 + (kd − βkdw) s+ (kp − εkdw)

)︸ ︷︷ ︸
Yaw closed-loop dynamics

(
s3 + (kd − γkdw) s2 + kps+ δkdw

)2︸ ︷︷ ︸
Roll/Pitch closed-loop dynamics

= 0 . (6.34)

Note that, by varying just the controller gains kp, kd and kdw , it is possible to freely

allocate yaw and roll and pitch closed-loop poles. However, because of the negative sign

in the reaction wheel gain kdw , this gain cannot be too big as it can maket one or both

dynamics unstable.

Comparing the roll and pitch terms of (6.34) with the characteristic equation of a

generic 3th order system with two complex poles and one real pole, given by (s2 + 2ζωns+ ω2
n)

(s+ αζωn) = 0, which is equivalent to

s3 + ζωn (2 + α) s2 + ω2
n

(
1 + 2αζ2

)
s+ αζω3

n = 0 , (6.35)

yields the following values for the controller gains in terms of the desired closed-loop

dynamics ζ, ωn and α and parameters β, γ and δ
kp = ω2

n (1 + 2αζ2)

kd = ζωn (2 + α) + γ
αζω3

n

δ

kdw =
αζω3

n

δ

. (6.36)

Note that, if α = 0, the controller gains kp and kd are equal to those ones derived

in (6.27), whereas the controller gain kdw is equal to zero. By choosing a small enough

value of α, one guarantees that the reaction wheel dynamics would be slow enough to not

interfere in the Cubli dynamics. In other words, the Cubli roll and pitch closed-loop poles

will be sufficient faster than the reaction wheel closed-loop poles.



91

σ

jω

−ζωn

jωn
√

1− ζ2

−jωn
√

1− ζ2

Cubli poles

−αζωn

Reaction
wheel poles

Figure 43: Closed loop poles

6.4 Attitude and Wheel Angle Controller

To keep tighter control of the reaction wheels, the angular displacement, in addition

to angular velocity, can also be feedback. This will cause the angular velocity to converge

to zero and not just stabilize at a constant value.

This scheme was also used by Block et al. [2], creators of the original 2D reaction

wheel pendulum. However, there is an important difference here: the 2D reaction wheel

pendulum, unlike the 3D version of this thesis, is fully controllable even with angular

displacement feedback. Therefore, it is expected that this strategy will not work properly,

as will be proved later through simulations and experiments.

Nonetheless, as discussed at the beginning of this chapter, the controllability problem

can be mitigated, but not eliminated, with an strategy of sinusoidal trajectory control.

6.4.1 State regulator

The control law of (6.28) must be slightly modified by also having feedback from the

reaction wheels angular displacement, such that

~u = 2

(
kp −

1

4
~ωTe ~ωe

)
~qe
qe0

+ kd~ωe︸ ︷︷ ︸
Attitude feedback

+ ~ωe × ~ωc +R(qe)
T ~̇ωr︸ ︷︷ ︸

Attitude feedfoward

−kpw~θw − kdw~ωw︸ ︷︷ ︸
Wheel feedback

. (6.37)

The full nonlinear control law (Fig. 44) is composed of the feedback linearization from

(6.1) and the state regulator from (6.37).



92

State regulator - Eqn. (6.37)

Feedback linearization - Eqn. (6.1)

q̄ ◦ qr
~qe
qe0

2kp

1

2
~ωe

T~ωe~σe

qe ◦ ωr ◦ q̄e kd

qe ◦ ω̇r ◦ q̄e

~ωe × ~ωc

kpw kdw

Īc

~τf (~ωw)

~ωc × (Īcωc

+Iw~ωw)

b(G(q)Λq

(G(q)Λq)T )~ωc

m̄cgl(G(q)Γq)

Cubli
+

+ +

+

+ +

+

−

−

+

+

+

+

− +

+

−

− −

qr qe ~σe ~u ~τ q
~ωw

~ωc

~θw

~ωr ~ωe

~̇ωr

Figure 44: The Cubli with state regulator and feedback linearization (with wheels)

Once again, if the objective is just to stabilize the Cubli, i.e., ~ωr = ~̇ωr = ~0, the control

law reduces to

~u = 2

(
kp −

1

4
~ωTc ~ωc

)
~qe
qe0
− kd~ωc︸ ︷︷ ︸

Attitude feedback

−kpw~θw − kdw~ωw︸ ︷︷ ︸
Wheel feedback

. (6.38)

6.4.2 Controller gains

Substituting (6.37) into (6.2) yields

~̇σe = 1
2

(
I3×3 − σ̃e + ~σe~σ

T
e

)
~ωe

~̇θw = ~ωw

~̇ωe = −2
(
kp − 1

4
~ωTe ~ωe

)
~qe
qe0
− kd~ωe + kpw~θw + kdw~ωw

~̇ωw = −I−1
w

(
~ωc ×

(
Īc~ωc + Iw~ωw

)
+ m̄cgl (G(q)Γq) + b

(
G(q)Λq (G(q)Λq)T

)
−Īc

(
2
(
kp − 1

4
~ωTe ~ωe

)
~σe +kd~ωw +R(qe)

T ~̇ωr + ~ωe × ~ωc − kpw~θw − kdw~ωw
))

.

(6.39)

When the Cubli is in its unstable equilibrium position, i.e., ~σe = ~θw = ~ωe = ~ωw =



93

~̇ωr = ~0, the closed loop linearized dynamics is
σ̇e

~̇θw

~̇ωe

~̇ωw

 =


03×3 03×3

1
2
I3×3 03×3

03×3 03×3 03×3 I3×3

−2kpI3×3 kpwI3×3 −kdI3×3 kdwI3×3

−2Kw − 2kpI
−1
w Īc kpwI

−1
w Īc Bw − kdI−1

w Īc kdwI
−1
w Īc




σe
~θw

~ωe

~ωw

 , (6.40)

Its characteristic equation is

det (sI12×12 − A) = 0

det




sI3×3 03×3 03×3 03×3

03×3 sI3×3 03×3 03×3

03×3 03×3 sI3×3 03×3

03×3 03×3 03×3 sI3×3



−


03×3 03×3

1
2
I3×3 03×3

03×3 03×3 03×3 I3×3

−2kpI3×3 kpwI3×3 −kdI3×3 kdwI3×3

−2Kw − 2kpI
−1
w Īc kpwI

−1
w Īc Bw − kdI−1

w Īc kdwI
−1
w Īc



 = 0

det




sI3×3 03×3 −1

2
I3×3 03×3

03×3 sI3×3 03×3 −I3×3

2kpI3×3 −kpwI3×3 (s+ kd)I3×3 −kdwI3×3

2Kw + 2kpI
−1
w Īc −kpwI−1

w Īc −Bw + kdI
−1
w Īc sI3×3 − kdwI−1

w Īc



 = 0

det

([
sI3×3 03×3

03×3 sI3×3

])
det

([
(s+ kd)I3×3 −kdwI3×3

−Bw + kdI
−1
w Īc sI3×3 − kdwI−1

w Īc

]

−

[
2kpI3×3 −kpwI3×3

2Kw + 2kpI
−1
w Īc −kpwI−1

w Īc

][
sI3×3 03×3

03×3 sI3×3

]−1 [
−1

2
I3×3 03×3

03×3 −I3×3

] = 0

det (s [I6×6])

det

([
(s+ kd)I3×3 −kdwI3×3

−Bw + kdI
−1
w Īc sI3×3 − kdwI−1

w Īc

]
− 1

s

[
−kpI3×3 kpwI3×3

−Kw − kpI−1
w Īc kpwI

−1
w Īc

])
= 0

s6 det

(
1

s

[
(s2 + kds+ kp)I3×3 −(kdws+ kpw)I3×3

Kw −Bws+ (kds+ kp)I
−1
w Īc s2I3×3 − (kdws+ kpw)I−1

w Īc

])
= 0



94

��s
6 1

��s6
det
([

(s2 + kds+ kp)I3×3

])
det
([
s2I3×3 − (kdws+ kpw)I−1

w Īc
]

−
[
Kw −Bws+ (kds+ kp)I

−1
w Īc

] [
(s2 + kds+ kp)I3×3

]−1
[−(kdws+ kpw)I3×3]

)
= 0

(s2 + kds+ kp)
3

det
([
s2I3×3 − (kdws+ kpw)I−1

w Īc
]

+
(kdws+ kpw)

(s2 + kds+ kp)

[
Kw −Bws+ (kds+ kp)I

−1
w Īc

])
= 0

(s2 + kds+ kp)
3

det

(
1

(s2 + kds+ kp)

[
s2(s2 + kds+ kp)I3×3

+(kdws+ kpw)
(
Kw −Bw +

(
(kds+ kp) + (s2 + kds+ kp)

)
I−1
w Īc

)])
= 0

((((
((((

(
(s2 + kds+ kp)

3 1

((((
(((

((
(s2 + kds+ kp)

3

det
([
s2(s2 + kds+ kp)I3×3 + (kdws+ kpw)

(
Kw −Bws− s2I−1

w Īc
)])

= 0

det
([
s2(s2 + kds+ kp)I3×3 + (kdws+ kpw)

(
Kw −Bws− s2I−1

w Īc
)])

= 0

Yaw closed-loop dynamics︷ ︸︸ ︷
s
(
s3 + (kd − βkdw) s2 + (kp − βkpw − εkdw) s− εkpw

)
(
s4 + (kd − γkdw) s3 + (kp − γkpw) s2 + δkdws+ δkpw

)2︸ ︷︷ ︸
Roll/Pitch closed-loop dynamics

= 0 .

(6.41)

Note that, by varying just the controller gains kp, kd, kpw and kdw , it is possible to

freely allocate yaw or roll and pitch closed-loop poles, but never both simultaneously.

What could be done is to allocate the roll and pitch poles in the desired locations and

just ensure that the yaw dynamics remains stable. However, even this is not possible.

Due to the negative sign in term εkpw , reaction wheel gain kpw would need to be negative

to make yaw dynamics stable, but then roll and pitch dynamics would become unstable.

There is no way out. Physically speaking, gravity acts as a non-restorative force in the

roll and pitch dynamics, whereas surface friction acts as a restorative force in the yaw

dynamics. This inversion of signs is exactly what makes the system not controllable.

Nonetheless, if the parameter ε is equal to zero, the yaw dynamics would be marginally

stable. So, to reduce this problem, two things should be done: first is to position the Cubli

on a smooth surface with the least possible friction to make b, and consequently ε, small;

second is to reduce kpw the maximum, to make it similar to the previous case where there

was no angle feedback and the system was controllable. However, this will only increase

the time the system is controllable, but never extend it to infinity.

Comparing the roll and pitch terms of (6.41) with the characteristic equation of a

generic 4th order system with two complex poles and two repeated real poles, given by



95

(s2 + 2ζωns+ ω2
n) (s+ αζωn)2 = 0, which is equivalent to

s4 +2ζωn (1 + α) s3 +ω2
n

(
1 + αζ2 (4 + α)

)
s2 +

(
2αζω3

n

(
1 + αζ2

))
s+α2ζ2ω4

n = 0 , (6.42)

yields the following values for the controller gains in terms of the desired closed-loop

dynamics ζ, ωn and α and parameters β, γ and δ

kp = ω2
n (1 + αζ2 (4 + α)) + γ

α2ζ2ω4
n

δ

kd = 2ζωn (1 + α) + γ
2αζω3

n (1 + αζ2)

δ

kpw =
α2ζ2ω4

n

δ

kdw =
2αζω3

n (1 + αζ2)

δ

. (6.43)

Once again, if α = 0, the controller gains kp and kd are equal to those ones derived

in (6.27), whereas the controller gains kpw and kdw are equal to zero. By choosing a

small enough value of α, one guarantees that the reaction wheel dynamics would be slow

enough to not interfere in the Cubli dynamics. In other words, the Cubli roll and pitch

closed-loop poles will be sufficient faster than the reaction wheel closed-loop poles.

σ

jω

−ζωn

jωn
√

1− ζ2

−jωn
√

1− ζ2

Cubli poles

−αζωn

Reaction
wheel poles

Figure 45: Closed loop poles



96



97

7 ESTIMATION

A controller is only useful as long as the states available for feedback are trustworthy.

Typically, measured states have a lot of noise and uncertainty, and need to be handled

smartly to generate what are called estimated states. We do this through filters and

estimators, which generates “supposedly perfect” values. This is called “observed-based

control” and is a very typical method for structuring control systems.

Each reaction wheel angular velocity and displacement was estimated from a dedicated

1st order state observer, which takes into account not only the angular velocity readings

from the motors hall sensors but the applied torques and friction forces as well.

To estimate the Cubli angular velocity and orientation, a quaternion based comple-

mentary filter was developed that fuses rate gyroscope readings, which has low-frequency

noise due to a constant bias being integrated over time, with accelerometer readings,

which has high-frequency noise due to centripetal and tangential accelerations.

7.1 Reaction wheels angular velocity and displace-

ment

The reaction wheels dynamics can be represented by the block diagram in Fig. 46.

Reaction wheel dynamics

I−1
w

1

s

1

s

~τf (~ωw)

−

+~τ ~̇ωw ~ωw ~θw

Figure 46: Reaction wheels dynamics

The only measured state is the angular velocity ~ωw through the motor hall sensors.



98

7.1.1 Low-pass filter

One way to estimate the reaction wheels angular velocity is using a low-pass filter. A

low-pass filter attenuates signals above a certain cut-off frequency ωc. It is widely used

to filter noise, as they usually have a higher frequency than the signal being measured.

In order to estimate the angular velocity ~̂ωw without or with reduced noise, the mea-

sured angular velocity ~ωw is passed through a low-pass filter. This can be represented by

the block diagram in Fig. 47.

Reaction wheel dynamics

Low-pass filter

I−1
w

1

s

1

s

~τf (~ωw)

−

+~τ ~̇ωw ~ωw ~θw

ωc
s+ ωc

~̂ωw

Figure 47: Reaction wheels low-pass filter

Since this filter will be implemented in a microcontroller, it becomes necessary to

determine its discrete counterpart. First, let us obtain the corresponding differential

equation, using the inverse Laplace transform

~̂Ωw(s)

~Ωw(s)
=

ωc
s+ ωc

(s+ ωc) ~̂Ωw(s) = ωc~Ωw(s)

s~̂Ωw(s) + ωc ~̂Ωw(s) = ωc~Ωw(s)

d

dt
~̂ωw(t) + ωc~̂ωw(t) = ωc~ωw(t) . (7.1)



99

Then, (7.1) will be discretized using the implicit Euler method1

~̂ωw(t)− ~̂ωw(t−∆t)

∆t
+ ωc~̂ωw(t) = ωc~ωw(t)

~̂ωw(t)− ~̂ωw(t−∆t) + ωc∆t~̂ωw(t) = ωc∆t~ωw(t)

(1 + ωc∆) ~̂ωw(t) = ~̂ωw(t−∆t) + ωc∆t~ωw(t)

~̂ωw(t) =
1

1 + ωc∆t︸ ︷︷ ︸
(1−α)

~̂ωw(t−∆t) +
ωc∆t

1 + ωc∆t︸ ︷︷ ︸
α

~ωw(t)

~̂ωw(t) = (1− α) ~̂ωw(t−∆t) + α~ωw(t) . (7.2)

Note that a discretized low-pass filter is nothing more than a weighted average between

the old estimated value and the new measured value, and the constant α is exactly that

weighting factor. It can be represented by the block diagram in Fig. 48.

Discrete low-pass filter

α

1 − α
1

z

++~ωw(t) ~̂ωw(t)

~̂ωw(t−∆t)

Figure 48: Discrete low-pass filter

The constant α is called the “smoothing factor”, which depends on the cut-off fre-

quency ωc and the time interval ∆t of the discretization

α =
ωc∆t

1 + ωc∆t
. (7.3)

• The higher the cut-off frequency ωc, the closer to 1 the smoothing factor α will be

and, thus, more weight will be given to the new measured value. This is advanta-

geous as it ensures that the estimated signal converges faster, however, it also lets

more noise through (Fig. 49a).

• The lower the cut-off frequency ωc, the closer to 0 the smoothing factor α will be and,

thus, more weight will be given to the old estimated value. This is advantageous as

it lets less noise get through, however, it makes the estimated signal converge more

slowly (Fig. 49c).

1The explicit (“forward”) Euler method uses the approximation d
dtx(t) ≈ x(t+∆t)−x(t)

∆t , whereas the

implicit (“backwards”) Euler method uses the approximation d
dtx(t) ≈ x(t)−x(t−∆t)

∆t



100

(a) High ωc (b) Optimal ωc (c) Low ωc

Figure 49: Cut-off frequency ωc influence in a low-pass filter

Determining the optimal cut-off frequency ωc (Fig. 49b), that is, one that guarantees

a good trade-off between noise filter and delay, is the biggest challenge in implementing

a low-pass filter.

7.1.2 State observer

Another way to estimate the reaction wheels angular velocity is through a state ob-

server. A state observer is a copy of a system that, based on the input and output values

of the real system (plant), provides us with estimates of the states of that plant.

Initially, let us consider an 1st order state observer in which the estimated angular

velocity ~̂ωw is assumed to be constant

˙̂
~ωw = 0 . (7.4)

If the difference between the measured angular velocity ~ωw and the estimated angular

velocity ~̂ωw is feedback
˙̂
~ωw = 0 + l

(
~ωw − ~̂ωw

)
, (7.5)

it is ensured that the orientation quaternion error qe converges exponentially to zero (for

any positive value of l, known as the state observer gain).



101

Reaction wheel dynamics

State observer

I−1
w

1

s

1

s

~τf (~ωw)

−

+~τ ~̇ωw ~ωw ~θw

l

1

s

−

+

~̂ωw

Figure 50: Reaction wheels state observer

If this is not clear from Fig. 50, perhaps it becomes when the state observer is isolated

and rearranged, as shown in Fig. 51.

State observer

l
1

s

+

−

~ωw ~̂ωw

Figure 51: Reaction wheels state observer rearranged

It is evident that a state observer is analogous to a state regulator, where the reference

becomes the measured state and the output becomes the estimated state. Its transfer

function is
~̂Ωw(s)

~Ωw(s)
=

l

s+ l
(7.6)

Note that this is the same transfer function as a low-pass filter, where the gain of

the estimator l is equal to the cut-off frequency ωc. That is, a 1st order state observer is

exactly the same thing as a low-pass filter.

Let us now consider the same 1st order state observer but, instead of considering the

angular velocity as being constant, let us consider the influence of the input torque and



102

friction on it
˙̂
~ωw = I−1

w

(
−~̂τf (~ωw) + ~τ

)
, (7.7)

and feedback again the difference between the measured angular velocity ~ωw and the

estimated angular velocity ~̂ωw

˙̂
~ωw = I−1

w

(
−~̂τf (~ωw) + ~τ

)
+ l
(
~ωw − ~̂ωw

)
. (7.8)

Note that now the state observer becomes a perfect copy of the plant, as shown in

Fig. 52.

Reaction wheel dynamics

State observer

I−1
w

1

s

1

s

~τf (~ωw)

−

+~τ ~̇ωw ~ωw ~θw

l

1

s
I−1
w

~τf (~ωw)

1

s

−

+

+

−

+ +
~̂θw

~̂ωw

Figure 52: Reaction wheels state observer considering internal dynamics

In orther to estimate also the angular displacement ~̂θw, one just need to add an inte-

grator. Note, however, that because the angular displacement is not being measured and

feedback, its estimate tends to diverge with time and is therefore considered a “pseudo-

estimate”.

7.2 Cubli angular velocity and orientation

The Cubli orientation kinematics can be represented by the block diagram in Fig. 53.



103

Cubli orientation kinematics

1

2
q ◦ ωc

1

s

~ωc q̇ q

Figure 53: Cubli orientation kinematics

The angular velocity ~ωc is measured directly through the rate gyroscope, while the

orientation quaternion q is measured indirectly through the accelerometer.

7.2.1 State observer

Initially, let us consider a 1st order state observer in which the estimated orientation

quaternion q̂ is assumed to be constant

˙̂q = 0 , (7.9)

and, thus, the angular velocity ~̂ωc is assumed to be zero

~̂ωc = 0 . (7.10)

Let q̂ be an orientation quaternion estimation and qe be an orientation quaternion

error, such that

q̂ =

[
q̂0

~̂qr

]
, qe =

[
qe0

~qe

]
. (7.11)

The orientation error represents the rotation needed from orientation estimation to

match the orientation measurement. In quaternion notation, consecutive rotations can be

represented as multiplications between respective orientation quaternions, which means

that

q = q̂ ◦ qe . (7.12)

By left-multiplying both sides of (7.12) with ¯̂q and using (4.41), it is possible to isolate

orientation quaternion error

¯̂q ◦ q = ��
�¯̂q ◦ q̂ ◦ qe

qe = ¯̂q ◦ q . (7.13)



104

When orientation estimation matches the orientation measurement, no additional

rotation is needed and thus the orientation quaternion error is qe =
[
1 ~0

]T
. Because qe

is not zero (and will never be since an orientation quaternion always have unit norm),

(7.14) could not be used to guarantee asymptotically stable error dynamics

q̇e + lqe 6=

[
0

~0

]
. (7.14)

However, the vector part of the orientation quaternion error will be zero, which means

that (7.15) could be used instead

~̇qe + l~qe = ~0 , (7.15)

The first time derivative of qe is obtained by differentiating (7.13)

q̇e =
d

dt

(
¯̂q ◦ q

)
q̇e = ˙̂̄q ◦ q + ¯̂q ◦ ���

0
q̇

q̇e = ˙̂̄q ◦ (q̂ ◦ qe)

q̇e =
(

˙̂̄q ◦ q̂
)
◦ qe

q̇e = −1

2
ω̂c ◦ qe , (7.16)

where its vector part is given by

~̇qe = −1

2
(qe0I3×3 − q̃e) ~ωc . (7.17)

Substituting (7.17) in (7.15) yields

~̇qe + l~qe = ~0

−1

2
(qe0I3×3 − q̃e) ~̂ωc + l~qe = ~0

~̂ωc − 2(qe0I3×3 − q̃e)−1l~qe = ~0

~̂ωc − 2l
~qe
qe0

= ~0

~̂ωc = 2l
~qe
qe0

. (7.18)

This equation ensures that the orientation quaternion error qe converges exponentially

to zero (for any positive value of l, the state observer gain).



105

Cubli orientation kinematics

Cubli state observer

1

2
q ◦ ωc

1

s

~ωc q̇ q

2l
~qe
qe0

¯̂q ◦ q

1

2
q̂ ◦ ω̂c

1

s

qe~σe~̂ωc

˙̂q q̂

Figure 54: Cubli state observer

Fig. 54 represents this state observer scheme.

Let us now consider the same 1st order state observer but, instead of considering the

angular velocity as being zero, it will be equal to its measurements

~̂ωc = ~ωc . (7.19)

Although simple, this modification guarantees that both the angular velocity ~ωc and

orientation quaternion q measurements are being considered into the state observer, as

shown in Fig. 55.

The angular velocity ~ωc is measured directly thought the rate gyroscope, while the

orientation quaternion q is measured indirectly though the accelerometer. Because the

rate gyroscope has low-frequency noise, due to a constant bias being integrated over

time, and the accelerometer has high-frequency noise, due to centripetal and tangential

accelerations, those sensors are complementary to each other. That is why the derived

state estimator is also called a complementary filter.



106

Cubli orientation kinematics

Cubli state observer

1

2
q ◦ ωc

1

s

~ωc q̇ q

2l
~qe
qe0

¯̂q ◦ q

1

2
q̂ ◦ ω̂c

1

s

+

+ qe~σe~̂ωc

˙̂q q̂

Figure 55: Cubli state observer considering angular velocity

Let us understand better how these two sensors work and are used together.

7.2.1.1 Rate gyroscope

Rate gyroscopes measures angular velocity. They are composed of a proof mass con-

nected to an enclosure with springs and dampers, as exemplified in Fig. 56. In the x′-axis,

a vibration is forced with constant amplitude and fequency f = f0 sin(ω0t). When the

enclosure have an angular velocity θ̇, due to the Coriollis acceleration, a vibration will

be induced in the proof mass in the y′-axis. By measuring the amplitude of this induced

vibration, it is possible to infer the angular velocity θ̇.

x

y

mk1

k2

b1

b2 f
x′

y′

θ

Figure 56: Rate gyroscope

In order to measure the angular velocity around all three axes, as shown in Fig. 57,



107

three rate gyroscopes are positioned orthogonally to each other.

x

y

z

x′

y′

z′

gx

gy
gz

Figure 57: Three-axis rate gyroscope

where

~g =


gx

gy

gz

 . (7.20)

Three-axis rate gyroscopes possess fixed errors, namely, zero offset (bias), scale factor

and non-orthogonality between axes. A calibration model can be expressed to convert the

measured angular velocity ~g into a corrected angular velocity ~gc

~gc = Fg

(
~g −~bg

)
, (7.21)

where ~bg is a vector that consists of the zero offset (bias) in each axis and Fg is a matrix

that consists of the scale factors (diagonal terms) and non-orthogonal error coefficients

Fg =


fgx fgxy fgxz

fgxy fgy fgyz

fgxz fgyz fgz

 , bg =


bgx

bgy

bgz

 . (7.22)

The scale factor and non-orthogonality between axes are usually neglected, mean-

ing that Fg = I3×3, while the zero offset (bias) is calculated at static condition during

initialization.

Assuming the corrected rate gyroscope angular velocity ~gc is a perfect estimation of

the angular velocity ~̂ωc, it can be used in the state observer, as shown in Fig. 58.



108

Cubli state observer

2l
~qe
qe0

¯̂q ◦ q

1

2
q̂ ◦ ω̂c

1

s

+

+~gc

~̂ωc

q

qe~σe~̂ωc

˙̂q q̂

Figure 58: Cubli state observer considering angular velocity with rate gyroscope

7.2.1.2 Accelerometer

Accelerometers measures linear acceleration. They are composed of a proof mass

connected to an enclosure with springs and dampers, as is exemplified in Fig. 59. When

the enclosure has an acceleration ẍ, due to Newton’s first law, a displacement will be

induced in the proof mass in the x′-axis. By measuring this displacement, it is possible

to infer the acceleration.

x
m

k b

x′

Figure 59: Accelerometer

In order to measure the linear acceleration through all three axes, as shown in Fig.

60, three accelerometers are positioned orthogonally to each other.

x

y

z

x′

y′

z′

ax

ay
az

~g

Figure 60: Three-axis accelerometer



109

where

~a =


ax

ay

az

 . (7.23)

Three-axis accelerometer possess fixed errors, namely, zero offset (bias), scale factor

and non-orthogonality between axes. A calibration model can be expressed to convert the

measured acceleration ~a into the corrected acceleration ~ac

~ac = Fa

(
~a−~ba

)
(7.24)

where ~ba is a vector that consists of the zero offset (bias) in each axis and Fa is a matrix

that consists of the scale factors (diagonal terms) and non-orthogonal error coefficients

Fa =


fax faxy faxz

faxy fay fayz

faxz fayz faz

 , ba =


bax

bay

baz

 (7.25)

The calibration process of an accelerometer consists of identifying those nine coef-

ficients. For this, the sensor is placed at different stationary orientations where only

the acceleration of gravity ~g should be present. The measured values of acceleration are

recorded and then an optimization algorithm finds the values of Fa and ~ba that minimize

the cost function given by

J =
(
|~g| −

∣∣∣Fa (~a−~ba)∣∣∣)2

(7.26)

Let ac and g be quaternions with no real part and with the vectors ~ac and ~g in their

imaginary part

ac =

[
0

~ac

]
=


0

acx

acy

acz

 , g =

[
0

~g

]
=


0

0

0

−g

 . (7.27)

Assuming the sensor is stationary, the corrected accelerometer linear acceleration ac

is equal to the gravity vector g rotated by the orientation quaternion q

ac = q̄ ◦ g ◦ q . (7.28)



110

By left multiplying both sides of (7.28) with q and ḡ and using (4.41), this yield

ac = q̄ ◦ g ◦ q

q ◦ ac = ��
�q ◦ q̄ ◦ g ◦ q

ḡ ◦ q ◦ ac = ���ḡ ◦ g ◦ q

ḡ ◦ q ◦ ac = q . (7.29)

Assuming rotation quaternion measurement qm is equal to (7.29), it can be used in

the state observer, as shown in Fig. 61.

Cubli state observer

2l
~qe
qe0

¯̂q ◦ qm

ḡ ◦ q̂ ◦ ac

1

2
q̂ ◦ ω̂c

1

s

+

+

~ac

~gc

~̂ωc

qm

qe~σe~̂ωc

˙̂q q̂

Figure 61: Cubli state observer considering angular velocity with rate gyroscope and
accelerometer

As we have already seen, a 1st order state observer is analogous to a low-pass filter,

where the estimator gain l corresponds to the cut-off frequency ωc. Thus, the greater the

gain l, more weight will be given to the accelerometer and less to the rate gyroscope. On

the other hand, the smaller the gain l, more weight will be given to the rate gyroscope

and less to the accelerometer.

Usually, a very small value of l is used [17], so that the greatest weight is given to

the rate gyroscope and the role of the accelerometer is just to ensure that the orientation

estimate does not diverge with time.



PART III

RESULTS





113

8 SIMULATIONS

To validate the derived control law, simulations were carried out in a MATLAB/Simulink

model, as shown in Fig. 62, which has the same structure as the block diagrams from

Fig. 21 and 44.

Figure 62: MATLAB/Simulink model

Note that the estimators are not being considered. In addition, as it is a simulation

environment, the feedback linearization terms perfectly cancels all nonlinearities of the

system. This means that the effects of an imperfect estimation or nonlinearity cancellation

is not analyzed here. On the other hand, it makes it clear that any strange behavior that

appears in the simulation environment are not due to these effects either.

Results were obtained adopting ζ =
√

2
2

, ωn = ωn0 and α = 0.2 for the controller gains.

Three main simulations were carried:

• Simulation without reaction wheels feedback

• Simulation with reaction wheels angular velocities feedback

• Simulation with reaction wheels angular velocities and displacements feedback



114

8.1 Simulation without reaction wheels feedback

Setting the rotation quaternion reference to the Cubli unstable equilibrium position,

i.e., qr = qu, yields Fig. 63a.

(a) Unstable equilibrium position reference
(qr = qu)

(b) Nearly unstable equilibrium position ref-
erence (qr = qne)

Figure 63: Simulation 1 - Without reaction wheels feedback

As can be seen, the Cubli is indeed controlled, even without the reaction wheels

feedback. However, this only occurs because of an idealized simulation scenario.

In a more real scenario, the Cubli center of mass would not be perfectly aligned, or its

orientation sensor could also be slightly misaligned. This effect can be verified by setting

the rotation quaternion reference to the Cubli nearly unstable equilibrium position, i.e.,

qr = qne, which yields Fig. 63b.

As the reaction wheels are not being feedback, the controller tried to keep the Cubli

in a position that is not its real unstable equilibrium position. At first, this was not a

problem, as the motors still had useful torque to keep it in that position. However, as

torque is product of acceleration, the reaction wheels were constantly accelerating, until



115

reaching a point, at around 5.5s, that they saturated (reached their maximum velocity)

and the system lost its controllability.

8.2 Simulation with reaction wheels angular veloci-

ties feedback

The same problem would not occur if the reaction wheels angular velocities were being

feedback, as can be seen in Fig. 64a.

(a) Short time window (b) Long time window

Figure 64: Simulation 2 - With reaction wheels angular velocities feedback

The the rotation quaternion reference is still the Cubli nearly unstable equilibrium

position, i.e., qr = qne, but as the reaction wheels are now being feedback, the controller

has led the Cubli to the unstable equilibrium position by itself.

Figure 64b shows the same simulation but for a longer period. Although the Cubli is

indeed controlled, as can be seen from its inclination and yaw angles at zero, the reaction

wheels are constantly rotating at a constant speed.



116

8.3 Simulation with reaction wheels angular veloci-

ties and displacements feedback

In order for the reaction wheels angular velocities converge to zero, their angular

displacements need to be feedback, as shown in Fig. 65a.

(a) Short time window (b) Long time window

Figure 65: Simulation 3 - With reaction wheels angular velocities and displacements
feedback

However, as it was expected, the Cubli controlability is now lost. As can be seen in

Fig. 65b, although at first the reaction wheels angular velocities have in fact converged

to zero, over time they begin to increase. The same can be observed in the yaw angle,

which does not remain at zero.



117

9 EXPERIMENTS

To fully validate the derived control law, experiments were carried out with the Cubli

prototype, whose physical construction and firmware implementation are detailed in ap-

pendix A and B.

Results were obtained adopting ζ =
√

2
2

, ωn = ωn0 and α = 0.2 for the controller gains

and setting the rotation quaternion reference to the Cubli unstable equilibrium position,

i.e., qr = qu.

Four main experiments were carried out and are detailed below:

• Disturbance rejection

• Wheel velocity and angle feedback comparison

• Sinusoidal tracking reference

• Linear and nonlinear comparison

A video of the real system, including the experiments presented here and some

other cases, is available at https://youtu.be/AWEWNBDW6CM and https://youtu.be/

Q2rAg7tytjw.

9.1 Disturbance rejection

In the first experiment, presented in Fig. 66, the Cubli was released around 10◦ from

its equilibrium position and it was stabilized in less than 1 second, as it can be seen from

its angular velocities quickly decaying to zero. The reaction wheels angular velocities also

decayed to zero, but at a much slower rate of around 5 seconds. This makes sense since

α = 0.2, which means the Cubli dynamics should be 5 times faster than the reaction

wheel dynamics.

https://youtu.be/AWEWNBDW6CM
https://youtu.be/Q2rAg7tytjw
https://youtu.be/Q2rAg7tytjw


118

Figure 66: Experiment 1 - Disturbance rejection

Two external disturbances were applied, one around 4.7 seconds in the inclination

angle and another one around 7.3 seconds in the yaw angle. In both cases, the control

system quickly rejected the disturbance without oscillating too much or saturating the

actuators, which would happen for torques above 0.5N.m.

Moreover, the Cubli did not stabilize at 0◦ inclination angle but around 4◦. This

probably happened due to construction imperfections or sensor misalignment. However,

because the reaction wheels angular displacements and velocities are also being feed-

backed, the controller was able to find the real equilibrium position.

The experimental data is practically noise free due to the implementation and tuning

of the state estimators previously described.

9.2 Wheel velocity and angle feedback comparison

The second experiments shows the difference between feedback only the reaction

wheels angular velocities, as shown in Fig. 67a, or also their angular displacements,



119

as shown in Fig. 67b.

(a) Wheel velocity feedback (b) Wheel velocity and angle feedback

Figure 67: Experiment 1 - Wheel velocity and angle feedback comparison

Both experiments were performed for a much longer period of nearly 1 minute, and

in both cases the Cubli remained stable for the whole time.

In the first case, the reaction wheels did not stop turning but the yaw angle remained

stable. In the second case, however, the reaction wheels converged to zero initially but in

the long run both they and the yaw angle diverged.

Because the reaction wheels velocities are increasing in modulus, even if slowly, this

means that, at some point, they will saturate and the Cubli will lose its inclination stabil-

ity. As mentioned before, this is due to the loss of controllability when the reaction wheels

angular displacements are feedback, and one way to mitigate this problem is through a

reference strategy.



120

9.3 Sinusoidal tracking reference

Third experiment is presented in Fig. 68. By making the reference follow a sinusoidal

motion in the yaw axis, the yaw angle and reaction wheels angular displacement still

increase in modulus, but now the reaction wheels angular velocities stay bounded. This

does not mean that the yaw angle will be controllable, but at least it will remain stable

longer, not leading to the inclination instability mentioned earlier.

Figure 68: Experiment 3 - Sinusoidal tracking reference

Obviously another way to solve this problem would be to simply not feedback the

reaction wheels angular displacement. But notice how, in this case, it was possible to

keep the Cubli stable and still make the reaction wheels angular velocities converge to

zero. In practice, they are oscillating above and below zero.



121

9.4 Linear and nonlinear comparison

Another experiment is a comparison between the derived nonlinear controller (6.19),

utilizing quaternions, with a linear controller (6.22), utilizing Euler angles . To generate

the same disturbance in both cases, a software-generated force disturbance was applied,

i.e., a constant torque of 0.2N.m for 0.2 seconds on the x and y motors.

(a) Linear controller (b) Nonlinear controller

Figure 69: Experiment 4 - Linear and nonlinear comparison

Figure 69a shows the result for the linear controller, while Fig. 69b shows the result

for the nonlinear controller. As it can be seen, the forced input applied at 1 second

caused an almost 10° disturbance in the inclination angle. While the nonlinear controller

managed to recover, the linear controller did not. Note that this only occurs for large

disturbances, where the Cubli leaves its equilibrium position. For small disturbances, not

shown in the figure, the performance of both controllers would be virtually identical.



122



123

10 CONCLUSIONS

By utilizing quaternions instead of Euler angles, modeling, control and estimation

design could be performed utilizing vector notation. Although somewhat complex at a

first view, in the end, the control law was quite compact and obtained completely by hand,

without the need for any mathematical symbolic software. Moreover, its implementation

is computationally inexpensive, which makes it effective even with low-performance micro-

controllers. Computer simulations showed that the model is consistent, whereas Poinsot

trajectories presented a geometrical approach that also validated the model. Experimental

results showed that the designed nonlinear control law is consistent and much more robust

than a linear one.

The reaction wheels feedback, despite not being necessary in a simulation environ-

ment, is crucial for the real system, where imperfections and misalignments, no matter

how small, are always present. However, unlike the two-dimensional reaction wheel pen-

dulum, the three-dimensional system can not have the angle of the wheels feedback, only

the speed. This is due to controllability problem inherent to Cubli’s geometry, which,

despise not being solved, was mitigated with a sinusoidal reference strategy.

Because the Cubli has only one equilibrium position, it must always work close to

that position. This makes a nonlinear controller not so advantageous over a linear one,

although, even so, it was possible to demonstrate that the nonlinear control was more

robust. However, the entire developed control strategy could be replicated with small

adjustments in systems where the nonlinear controller is much better, such as aircraft,

spacecraft and satellites.

The challenge of building a physical prototype was as great, if not greater, than that

of developing the entire modeling, control, and estimation theory behind this project.

Perhaps the biggest contribution of this work ends up being the development and con-

struction of a control testbed where several other techniques can be tested and validated.

Although this thesis has been successfully completed, there are several future oppor-



124

tunities. One of them is to develop a braking mechanism for the reaction wheels, so that,

when suddenly braking, the rotation kinetic energy of the wheels is converted into rota-

tion kinetic energy of the Cubli, making it able to “jump up” by itself. This mechanism

is present in the original Cubli. Another opportunity is to apply the derived nonlinear

control law on an orbiting CubeSat, which is under the effect of microgravity and, there-

fore, can rotate freely in all directions. Although the control is even simpler in this case,

the estimation becomes more complicated as different orientation sensors are needed in

space.



125

REFERENCES

[1] Ralph E. Bach and Russell A. Paielli. Linearization of attitude-control error dynam-
ics. IEEE Transactions on Automatic Control, 38(10):1521–1525, 1993.

[2] Daniel J. Block, Karl J. Åström, and Mark W. Spong. The reaction wheel pendulum.
Synthesis Lectures on Control and mechatronics, 1(1):1–105, 2007.

[3] Robert H. Cannon Jr. Some basic response relations for reaction-wheel attitute
control. ARS Journal, 32(1):61–74, 1962.

[4] M. L. Dertouzos and J. K. Roberge. High-capacity reaction-wheel attitude control.
IEEE Transactions on Applications and Industry, 83(71):99–104, 1964.

[5] T. Dwyer. Exact nonlinear control of large angle rotational maneuvers. IEEE Trans-
actions on Automatic Control, 29(9):769–774, 1984.

[6] R. Froelich and H. Papapoff. Reaction wheel attitude control for space vehicles. IRE
Transactions on Automatic Control, 4(3):139–149, 1959.

[7] Mohanarajah Gajamohan, Michael Merz, Igor Thommen, and Raffaello D’Andrea.
The cubli: A cube that can jump up and balance. In 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 3722–3727. IEEE, 2012.

[8] Mohanarajah Gajamohan, Michael Muehlebach, Tobias Widmer, and Raffaello
D’Andrea. The cubli: A reaction wheel based 3d inverted pendulum. In 2013 Euro-
pean Control Conference, pages 268–274. IEEE, 2013.

[9] Basile Graf. Quaternions and dynamics. arXiv preprint arXiv:0811.2889, 2008.

[10] Jian Huang, Songhyok Ri, Lei Liu, Yongji Wang, Jiyong Kim, and Gyongchol Pak.
Nonlinear disturbance observer-based dynamic surface control of mobile wheeled in-
verted pendulum. IEEE Transactions on Control Systems Technology, 23(6):2400–
2407, 2015.

[11] Shiuh-Jer Huang and Chien-Lo Huang. Control of an inverted pendulum using grey
prediction model. IEEE Transactions on Industry Applications, 36(2):452–458, 2000.

[12] S. M. Joshi, A. G. Kelkar, and J. T.-Y. Wen. Robust attitude stabilization of space-
craft using nonlinear quaternion feedback. IEEE Transactions on Automatic Control,
40(10):1800–1803, 1995.

[13] Seul Jung and Sung Su Kim. Control experiment of a wheel-driven mobile inverted
pendulum using neural network. IEEE Transactions on Control Systems Technology,
16(2):297–303, 2008.



126

[14] Raymond Kristiansen, Per Johan Nicklasson, and Jan Tommy Gravdahl. Satellite
attitude control by quaternion-based backstepping. IEEE Transactions on Control
Systems Technology, 17(1):907–912, 2009.

[15] Lev Davidovi Landau and Evgenii Mikhailovich Lifshitz. Mechanics and electrody-
namics, volume 1. Elsevier, 2013.

[16] Sung-Hee Lee and Ambarish Goswami. Reaction mass pendulum (rmp): An ex-
plicit model for centroidal angular momentum of humanoid robots. In Proceedings
2007 IEEE International Conference on Robotics and Automation, pages 4667–4672.
IEEE, 2007.

[17] Sebastian O. H. Madgwick, Andrew J. L. Harrison, and Ravi Vaidyanathan. Estima-
tion of imu and marg orientation using a gradient descent algorithm. In 2011 IEEE
international conference on rehabilitation robotics, pages 1–7. IEEE, 2011.

[18] Christopher G. Mayhew, Ricardo G. Sanfelice, and Andrew R. Teel. Quaternion-
based hybrid control for robust global attitude tracking. IEEE Transactions on
Automatic Control, 56(11):2555–2566, 2011.

[19] James L. Meriam, L. Glenn Kraige, and Jeff N. Bolton. Engineering mechanics:
dynamics, volume 2. John Wiley & Sons, 2020.

[20] George Meyer. On the use of euler’s theorem on rotations for the synthesis of attitude
control systems. Technical Report NASA TN-D-3643, 1966.

[21] Richard E. Mortensen. A globally stable linear attitude regulator. International
Journal of Control, 8(3):297–302, 1968.

[22] Michael Muehlebach and Raffaello D’Andrea. Nonlinear analysis and control of a
reaction-wheel-based 3-d inverted pendulum. IEEE Transactions on Control Systems
Technology, 25(1):235–246, 2016.

[23] Michael Muehlebach and Raffaello D’Andrea. Accelerometer-based tilt determination
for rigid bodies with a nonaccelerated pivot point. IEEE Transactions on Control
Systems Technology, 26(6):2106–2120, 2017.

[24] Michael Muehlebach, Mohanarajah Gajamohan, and Raffaello D’Andrea. Nonlinear
analysis and control of a reaction wheel-based 3d inverted pendulum. In 52nd IEEE
Conference on Decision and Control, pages 1283–1288. IEEE, 2013.

[25] Russell A. Paielli and Ralph E. Bach. Attitude control with realization of linear error
dynamics. AIAA Journal of Guidance, Control, and Dynamics, 16(1):182–189, 1993.

[26] James Kerr Roberge. The Mechanical Seal. PhD thesis, Massachusetts Institute of
Technology, 1960.

[27] Alfred C. Robinson. On the use of quaternions in simulation of rigid-body motion.
Technical Report WADC Technical Report 58-17, 1958.

[28] Tariq Samad and A. M. Annaswamy. The impact of control technology. IEEE Control
Systems Society, (2nd edition), 2014.



127

[29] Peng Shi, Huijiao Wang, and Cheng-Chew Lim. Network-based event-triggered con-
trol for singular systems with quantizations. IEEE Transactions on Industrial Elec-
tronics, 63(2):1230–1238, 2015.

[30] Jean-Jacques E. Slotine and Weiping Li. Applied Nonlinear Control. Prentice Hall,
1991.

[31] Mark W. Spong, Peter Corke, and Rogelio Lozano. Nonlinear control of the reaction
wheel pendulum. Automatica, 37(11):1845–1851, 2001.

[32] Andrew Stephenson. On a new type of dynamical stability. Memoirs and procsated-
ings of the Manchester Literary & Philosophical Society, 52:1–10, 1908.

[33] Abdelhamid Tayebi. Unit quaternion-based output feedback for the attitude tracking
problem. IEEE Transactions on Automatic Control, 53(6):1516–1520, 2008.

[34] Abdelhamid Tayebi and Stephen McGilvray. Attitude stabilization of a vtol quadro-
tor aircraft. IEEE Transactions on Control Systems Technology, 14(3):562–571, 2006.

[35] Sebastian Trimpe and Raffaello D’Andrea. Accelerometer-based tilt estimation of
a rigid body with only rotational degrees of freedom. In 2010 IEEE International
Conference on Robotics and Automation, pages 2630–2636. IEEE, 2010.

[36] Rong-Jong Wai and Li-Jung Chang. Adaptive stabilizing and tracking control for a
nonlinear inverted-pendulum system via sliding-mode technique. IEEE Transactions
on Industrial Electronics, 53(2):674–692, 2006.

[37] Bong Wie and Peter M. Barba. Quaternion feedback for spacecraft large angle ma-
neuvers. AIAA Journal of Guidance, Control, and Dynamics, 8(3):360–365, 1985.

[38] Xin Xu, Chuanqiang Lian, Lei Zuo, and Haibo He. Kernel-based approximate dy-
namic programming for real-time online learning control: An experimental study.
IEEE Transactions on Control Systems Technology, 22(1):146–156, 2013.

[39] Chenguang Yang, Zhijun Li, Rongxin Cui, and Bugong Xu. Neural network-based
motion control of an underactuated wheeled inverted pendulum model. IEEE Trans-
actions on Neural Networks and Learning Systems, 25(11):2004–2016, 2014.



128



129

APPENDIX A – CONSTRUCTION

To validate the derived control law, a Cubli physical prototype was built (Fig. 70).

Figure 70: The Cubli

Its construction will be the focus of this appendix, justifying the choice of components

and materials, and also detailing the technical drawings of the items that had to be

custom-built. It is divided into electrical and electronics and mechanics.

A.1 Electrical and Electronics

Its electrical and electronics was made of off-the-shelf components and a dedicated

PCB that was specially designed to interface all these components.



130

A.1.1 Off-the-shelf components

Five main components were needed for the Cubli:

• 1 microcontroler (MCU)

• 1 inertial measurement unit (IMU)

• 3 motors

• 3 motor controllers

• 1 battery

The selected development board was the STM NUCLEO-L432KC (Fig. 71), which

has an ARM 32-bit Cortex-M4 microcontroller from STM. It was chosen because of its

small footprint and high processing power (80MHz clock with 256KB of flash memory):

among the STM32 Nucleo Boards, it has the greatest processing power within the 32-

pin size type (which is the smallest one). Many other boards from many other vendors,

such as Arduino, NXP, etc. could have been chosen instead, even with lower processing

capabilities. STM was chosen because of its compatibility with Mbed Studio IDE.

Figure 71: STM NUCLEO-L432KC1

The inertial measurement unit was the SparkFun 9DoF Sensor Stick (Fig. 72), which

has an LSM9DS1 IMU also from STM. It was chosen because of its low cost and easy

availability. At the end of the project, many development boards with integrated IMUs

were being released, perhaps if the work was redone today, such an option would make

more sense.

1Image source: STM (https://www.st.com/en/evaluation-tools/nucleo-l432kc.html)

https://www.st.com/en/evaluation-tools/nucleo-l432kc.html


131

Figure 72: SparkFun 9DoF Sensor Stick2

The chosen motor was the Maxon EC 45 Flat 50W brushless motors (Fig. 73) from

Maxon Group. It was considered for a few reasons: first, because of it small-sized and

therefore being especially suitable for confined space installation; second, because it has

hall sensors, which are essential in determining the displacement and angular velocity of

the reaction wheels; third, because Maxon Group is world leader in the production of

precision and high quality motors, thus passing a lot of reliability; and fourth, because all

of the self-balanced cubes developed worldwide (including the original Cubli [7,8,22,24])

utilizes this exact same motor. The chosen model was the 25601, which has a good

compromise of torque and speed and supports 24V.

Figure 73: Maxon EC 45 Flat 50W3

Brushless motors are quite complex to control. As this is not the focus of this thesis,

a dedicated motor controller was utilized. The chosen one was a Maxon ESCON Module

50/5 (Fig. 74), also from Maxon Group. The choice here was much simpler: because

they are also made by Maxon Group, they have great compatibility and integration with

the chosen motor. Moreover, it has current control (and therefore torque control) besides

speed control, which makes it much easier for controlling the Cubli.

2Image source: SparkFun (https://www.sparkfun.com/products/13944)
3Image source: Maxon Group (https://www.maxongroup.com/maxon/view/product/251601)

https://www.sparkfun.com/products/13944
https://www.maxongroup.com/maxon/view/product/251601


132

Figure 74: Maxon ESCON Module 50/54

The selected battery was the Turnigy Graphene Panther 1000mAh 6S LiPo (Fig. 73)

from HobbyKing. It was chosen for a few reasons: first, because it is compact and fits

inside the Cubli; second, because it has 6 cells, which means that it operates from 22.2V

to 25.6V (within the Motor limitation); and third, for withstanding peak currents of up

to 75A (which means 25A per motor, way above the maximum supported by the motor

controller of 15A).

Figure 75: Turnigy Graphene Panther 1000mAh 6S LiPo5

A.1.2 Printed circuit board

The microcontroller (MCU) runs ARM Mbed OS open-source operating system, com-

municates with the inertial measurement unit (IMU) by I2C serial communication protocol

and with the motor controllers by PWM signal, for current set-point, and analog signals,

4Image source: Maxon Group (https://www.maxongroup.com/maxon/view/product/control/
4-Q-Servokontroller/438725)

5Image source: HobbyKing (https://hobbyking.com/pt_pt/turnigy-graphene-1000mah-6s-75c-lipo-pack-w-xt60.
html)

https://www.maxongroup.com/maxon/view/product/control/4-Q-Servokontroller/438725
https://www.maxongroup.com/maxon/view/product/control/4-Q-Servokontroller/438725
https://hobbyking.com/pt_pt/turnigy-graphene-1000mah-6s-75c-lipo-pack-w-xt60.html
https://hobbyking.com/pt_pt/turnigy-graphene-1000mah-6s-75c-lipo-pack-w-xt60.html


133

for hall sensor readings. The motor controllers, on the other hand, actuate the electric

motors through a 3-phase PWM, while also reading the hall sensors. All components are

powered by 5V, with the exception of the electric motors which are powered by 24V. As

the battery has 24V, a voltage regulator was used. To integrate all those components, a

printed circuited board was designed specifically for this (Fig. 76).

Printed circuit board

Microcontroller
Inertial

meas. unit

Motor

controller
Motor

controller
Motor

controller

Electric

motor
Electric

motor
Electric

motor

Voltage

regulator

Battery

I2C

PWM /

Analog

PWM /

Hall

24V

5V

24V

Figure 76: Electronic circuit block diagram

The PCB was designed utilizing Autodesk Eagle. Its board (Fig. 77) and schematics

(Fig. 78) are available below.

Figure 77: PCB board



134

Figure 78: PCB schematics

There is also a 3D render of the printed circuit board (Fig. 79), together with some

real world pictures of it (Fig. 80). The PCB was manufactured in a CNC router.

(a) Top layer (b) Bottom layer

Figure 79: PCB renders



135

(a) Top layer (b) Bottom layer

Figure 80: PCB pictures

A.2 Mechanics

The mechanical parts of the Cubli were made of laser cut aluminum and 3D printed

ABS.

A.2.1 Laser cut aluminum

Although a lightweight structure would result in high recovery angles, it must be

strong enough to withstand sudden motor torque changes. That is why aluminum was

chosen for almost all mechanical parts, so that only the most complex manufacturing

parts were made in plastic.

The six aluminum faces were divided in two types: three of them were designed to

support the PCB or battery (Fig. 81a), while three of them were designed to support

the motors (Fig. 81b). These faces were designed in such a way that they could be

manufactured by laser cutting a 3mm thick aluminum plate, which greatly simplifies the

manufacturing process. They were also anodized in gray color.



136

(a) Regular (b) Motor

Figure 81: Face

The reaction wheels (Fig. 82) were manufactured the same way, but with a 5mm

thick aluminum plate and anodized in green. They were designed to be hollow and not

solid in order to increase the moment of inertia of the reaction wheels without greatly

increasing the mass of the Cubli as a whole.

Figure 82: Reaction wheel

There is also the support of the electric motors (Fig. 83a), which are responsible for

joining together the motor face, reaction wheels and motors (Fig. 83b).

(a) Support (b) Motor face assembly

Figure 83: Motor support



137

A.2.2 3D printed ABS

To join all six faces, eight black plastic vertices (Fig. 84) were designed and 3D printed

in a way such that one face does not touch the other, even at the edges or vertices.

(a) View 1 (b) View 2 (c) View 3

Figure 84: Vertex

Although it would be better to use aluminum here too, due to manufacturing com-

plexity, 3D printed ABS was preferred.

A.2.3 Screws and standoffs

To connect all those parts, ordinary M3 screws and some aluminum (for the motor

support) and nylon (for the printed circuit board) standoffs were used.



138



139

APPENDIX B – FIRMWARE

To implement the derived estimation and control laws, an algorithm that provides the

low-level control of the Cubli hardware is needed. This is usually called firmware.

The Cubli firmware was developed with C++ general-purpose programming language

utilizing ARM Mbed OS. Since C++ is a object-oriented programming language, the

source code was developed with several independent classes.

These classes were divided into three main types: modules, drivers and utilities (Fig.

85).

Modules Drivers

Utilities

qr, ~ωr, ~̇ωr
Attitude

controller

Wheel

estimator

Attitude

estimator

Motor

Hall

IMU

ESCON Motor

IMU

Parameters Pin names

~τ PWM

Analog~ωw~̂ωw

I2C~g,~aq̂, ~̂ω

Figure 85: Firmware block diagram

Each class is composed of two files:

• A header file .h , that defines the constructor, variables and functions of the class

• An implementation file .cpp , where the source codes of the functions are imple-

mented



140

All these files and folder structure are available at https://github.com/fbobrow/

cubli-firmware/. In any case, they will be detailed below.

B.1 Modules

Modules contains the estimation and control classes.

B.1.1 Attitude and reaction wheel controller

The attitude and reaction wheel controller class implements the nonlinear control law

derived in Sec. 6.2.

Its header file controller attitude wheel.h is:

1 #ifndef controller_attitude_wheel_h

2 #define controller_attitude_wheel_h

3

4 #include "mbed.h"

5 #include "src/cubli.h"

6

7 // Attitude and wheel controller class

8 class AttitudeWheelController

9 {

10 public:

11 // Constructor

12 AttitudeWheelController ();

13 // Control step

14 void control(float qr0 , float qr1 , float qr2 , float qr3 , float q0 , float q1, float q2, float q3 , float omega_r_x ,

float omega_r_y , float omega_r_z , float omega_x , float omega_y , float omega_z , float alpha_r_x , float

alpha_r_y , float alpha_r_z , float theta_1 , float theta_2 , float theta_3 , float omega_1 , float omega_2 , float

omega_3);

15 // Quaternion error

16 float qe0 , qe1 , qe2 , qe3;

17 // Torque [N.m]

18 float tau_1 , tau_2 , tau_3;

19 private:

20 // State regulator step

21 void state_regulator(float qr0 , float qr1 , float qr2 , float qr3 , float q0, float q1, float q2 , float q3 , float

omega_r_x , float omega_r_y , float omega_r_z , float omega_x , float omega_y , float omega_z , float alpha_r_x ,

float alpha_r_y , float alpha_r_z , float theta_1 , float theta_2 , float theta_3 , float omega_1 , float omega_2 ,

float omega_3);

22 // Feedback linearization step

23 void feedback_linearization(float q0, float q1 , float q2 , float q3, float omega_x , float omega_y , float omega_z ,

float omega_1 , float omega_2 , float omega_3);

24 // Linear regulator

25 void linear_regulator(float qr0 , float qr1 , float qr2 , float qr3 , float q0 , float q1, float q2, float q3 , float

omega_r_x , float omega_r_y , float omega_r_z , float omega_x , float omega_y , float omega_z , float alpha_r_x ,

float alpha_r_y , float alpha_r_z , float theta_1 , float theta_2 , float theta_3 , float omega_1 , float omega_2 ,

float omega_3);

26 // Linearized input

27 float u_1 , u_2 , u_3;

28

29

30 };

31

32 #endif

Whereas its implementation file controller attitude wheel.cpp is:

https://github.com/fbobrow/cubli-firmware/
https://github.com/fbobrow/cubli-firmware/


141

1 #include "controller_attitude_wheel.h"

2

3 // Constructor

4 AttitudeWheelController :: AttitudeWheelController ()

5 {

6 // Set initial quaternion error

7 qe0 = 0.0;

8 qe1 = 0.0;

9 qe2 = 0.0;

10 qe3 = 0.0;

11 // Set initial torque

12 tau_1 = 0.0;

13 tau_2 = 0.0;

14 tau_3 = 0.0;

15 // Set initial linearized input

16 u_1 = 0.0;

17 u_2 = 0.0;

18 u_3 = 0.0;

19 }

20

21 // Control step

22 void AttitudeWheelController :: control(float qr0 , float qr1 , float qr2 , float qr3 , float q0, float q1 , float q2, float

q3, float omega_r_x , float omega_r_y , float omega_r_z , float omega_x , float omega_y , float omega_z , float

alpha_r_x , float alpha_r_y , float alpha_r_z , float theta_1 , float theta_2 , float theta_3 , float omega_1 , float

omega_2 , float omega_3)

23 {

24 // Non -linear controller

25 state_regulator(qr0 ,qr1 ,qr2 ,qr3 ,q0,q1 ,q2,q3,omega_r_x ,omega_r_y ,omega_r_z ,omega_x ,omega_y ,omega_z ,alpha_r_x ,

alpha_r_y ,alpha_r_z ,theta_1 ,theta_2 ,theta_3 ,omega_1 ,omega_2 ,omega_3);

26 feedback_linearization(q0,q1 ,q2,q3,omega_x ,omega_y ,omega_z ,omega_1 ,omega_2 ,omega_3);

27 // Linear controller

28 // linear_regulator(qr0 ,qr1 ,qr2 ,qr3 ,q0,q1,q2 ,q3,omega_r_x ,omega_r_y ,omega_r_z ,omega_x ,omega_y ,omega_z ,alpha_r_x ,

alpha_r_y ,alpha_r_z ,theta_1 ,theta_2 ,theta_3 ,omega_1 ,omega_2 ,omega_3);

29 }

30

31 // State regulator step

32 void AttitudeWheelController :: state_regulator(float qr0 , float qr1 , float qr2 , float qr3 , float q0 , float q1, float q2,

float q3 , float omega_r_x , float omega_r_y , float omega_r_z , float omega_x , float omega_y , float omega_z , float

alpha_r_x , float alpha_r_y , float alpha_r_z , float theta_1 , float theta_2 , float theta_3 , float omega_1 , float

omega_2 , float omega_3)

33 {

34 // Calculate rotation quaternion error

35 qe0 = q0*qr0 + q1*qr1 + q2*qr2 + q3*qr3;

36 qe1 = q0*qr1 - q1*qr0 - q2*qr3 + q3*qr2;

37 qe2 = q0*qr2 - q2*qr0 + q1*qr3 - q3*qr1;

38 qe3 = q0*qr3 - q1*qr2 + q2*qr1 - q3*qr0;

39 // Normalize rotation quaternion error

40 float qe_norm = sqrt(qe0*qe0+qe1*qe1+qe2*qe2+qe3*qe3);

41 qe0 /= qe_norm;

42 qe1 /= qe_norm;

43 qe2 /= qe_norm;

44 qe3 /= qe_norm;

45 // Auxiliary variables to avoid double arithmetic

46 float qe0qe1 = qe0*qe1;

47 float qe0qe2 = qe0*qe2;

48 float qe0qe3 = qe0*qe3;

49 float qe1qe1 = qe1*qe1;

50 float qe1qe2 = qe1*qe2;

51 float qe1qe3 = qe1*qe3;

52 float qe2qe2 = qe2*qe2;

53 float qe2qe3 = qe2*qe3;

54 float qe3qe3 = qe3*qe3;

55 // Calculate angular velocity error

56 float omega_e_x = omega_r_x + 2.0*( omega_r_x*(- qe2qe2 - qe3qe3) + omega_r_y *(- qe0qe3 + qe1qe2) + omega_r_z *(

qe0qe2 + qe1qe3)) - omega_x;

57 float omega_e_y = omega_r_y + 2.0*( omega_r_x *( qe0qe3 + qe1qe2) + omega_r_y*(- qe1qe1 - qe3qe3) + omega_r_z*(-

qe0qe1 + qe2qe3)) - omega_y;

58 float omega_e_z = omega_r_z + 2.0*( omega_r_x*(- qe0qe2 + qe1qe3) + omega_r_y *( qe0qe1 + qe2qe3) + omega_r_z*(-

qe1qe1 - qe2qe2)) - omega_z;

59 // Auxiliary variable to avoid double arithmetic

60 float _2_kp_omega_e_omega_e_4 = 2.0*(kp - (omega_e_x*omega_e_x + omega_e_y*omega_e_y + omega_e_z*omega_e_z)/4.0);

61 // Attitude feedback

62 u_1 = _2_kp_omega_e_omega_e_4 *(qe1)/qe0 + kd*omega_e_x;

63 u_2 = _2_kp_omega_e_omega_e_4 *(qe2)/qe0 + kd*omega_e_y;

64 u_3 = _2_kp_omega_e_omega_e_4 *(qe3)/qe0 + kd*omega_e_z;



142

65 // Attitude feedforward

66 u_1 += omega_e_y*omega_z - omega_e_z*omega_y + alpha_r_x + 2.0*( alpha_r_x*(- qe2qe2 - qe3qe3) + alpha_r_y *(- qe0qe3

+ qe1qe2) + alpha_r_z *( qe0qe2 + qe1qe3));

67 u_2 += omega_e_z*omega_x - omega_e_x*omega_z + alpha_r_y + 2.0*( alpha_r_x *( qe0qe3 + qe1qe2) + alpha_r_y*(- qe1qe1

- qe3qe3) + alpha_r_z*(- qe0qe1 + qe2qe3));

68 u_3 += omega_e_x*omega_y - omega_e_y*omega_x + alpha_r_z + 2.0*( alpha_r_x*(- qe0qe2 + qe1qe3) + alpha_r_y *( qe0qe1

+ qe2qe3) + alpha_r_z*(- qe1qe1 - qe2qe2));

69 // Wheel feedback

70 u_1 += - kpw*theta_1 - kdw*omega_1;

71 u_2 += - kpw*theta_2 - kdw*omega_2;

72 u_3 += - kpw*theta_3 - kdw*omega_3;

73 }

74

75 // Feedback linearization step

76 void AttitudeWheelController :: feedback_linearization(float q0, float q1, float q2 , float q3 , float omega_x , float

omega_y , float omega_z , float omega_1 , float omega_2 , float omega_3)

77 {

78 // Calculate friction torque

79 float sign_1 = (0.0< omega_1) -(omega_1 <0.0);

80 float sign_2 = (0.0< omega_2) -(omega_2 <0.0);

81 float sign_3 = (0.0< omega_3) -(omega_3 <0.0);

82 float tau_f_1 = sign_1 *(tau_c + bw*abs(omega_1) + cd*omega_1*omega_1);

83 float tau_f_2 = sign_2 *(tau_c + bw*abs(omega_2) + cd*omega_2*omega_2);

84 float tau_f_3 = sign_3 *(tau_c + bw*abs(omega_3) + cd*omega_3*omega_3);

85 // Auxiliary variable to avoid double arithmetic

86 float omega_x_omega_y_omega_z = omega_x + omega_y + omega_z;

87 // // Feedback linearization

88 tau_1 = - I_c_xy_bar *( omega_y - omega_z)*omega_x_omega_y_omega_z - I_w_xx *( omega_3*omega_y - omega_2*omega_z) +

m_c_bar_g_l *(0.5 - q0*q0 + q0*q1 - q3*q3 + q2*q3) + tau_f_1 - I_c_xx_bar*u_1 - I_c_xy_bar *(u_2 + u_3);

89 tau_2 = - I_c_xy_bar *( omega_z - omega_x)*omega_x_omega_y_omega_z - I_w_xx *( omega_1*omega_z - omega_3*omega_x) +

m_c_bar_g_l *(0.5 + q0*q2 - q1*q1 - q1*q3 - q2*q2) + tau_f_2 - I_c_xx_bar*u_2 - I_c_xy_bar *(u_1 + u_3);

90 tau_3 = - I_c_xy_bar *( omega_x - omega_y)*omega_x_omega_y_omega_z - I_w_xx *( omega_2*omega_x - omega_1*omega_y) -

m_c_bar_g_l *( q0*q1 + q0*q2 - q1*q3 + q2*q3) + tau_f_3 - I_c_xx_bar*u_3 - I_c_xy_bar *(u_1 + u_2);

91 }

92

93 // Linear regulator

94 void AttitudeWheelController :: linear_regulator(float qr0 , float qr1 , float qr2 , float qr3 , float q0 , float q1 , float q2

, float q3 , float omega_r_x , float omega_r_y , float omega_r_z , float omega_x , float omega_y , float omega_z , float

alpha_r_x , float alpha_r_y , float alpha_r_z , float theta_1 , float theta_2 , float theta_3 , float omega_1 , float

omega_2 , float omega_3)

95 {

96 // Calculate rotation quaternion error

97 qe0 = q0*qr0 + q1*qr1 + q2*qr2 + q3*qr3;

98 qe1 = q0*qr1 - q1*qr0 - q2*qr3 + q3*qr2;

99 qe2 = q0*qr2 - q2*qr0 + q1*qr3 - q3*qr1;

100 qe3 = q0*qr3 - q1*qr2 + q2*qr1 - q3*qr0;

101 // Normalize rotation quaternion error

102 float qe_norm = sqrt(qe0*qe0+qe1*qe1+qe2*qe2+qe3*qe3);

103 qe0 /= qe_norm;

104 qe1 /= qe_norm;

105 qe2 /= qe_norm;

106 qe3 /= qe_norm;

107 // Calculate angle error

108 float theta_e_x = 2*asin(qe1);

109 float theta_e_y = 2*asin(qe2);

110 float theta_e_z = 2*asin(qe3);

111 // Calculate angular velocity error

112 float omega_e_x = omega_r_x - omega_x;

113 float omega_e_y = omega_r_y - omega_y;

114 float omega_e_z = omega_r_z - omega_z;

115 // Attitude feedback

116 u_1 = kp*theta_e_x + kd*omega_e_x;

117 u_2 = kp*theta_e_y + kd*omega_e_y;

118 u_3 = kp*theta_e_z + kd*omega_e_z;

119 // Attitude feedforward

120 u_1 += alpha_r_x;

121 u_2 += alpha_r_y;

122 u_3 += alpha_r_z;

123 // Wheel feedback

124 u_1 += - kpw*theta_1 - kdw*omega_1;

125 u_2 += - kpw*theta_2 - kdw*omega_2;

126 u_3 += - kpw*theta_3 - kdw*omega_3;

127 // Convert angular velocities in torques

128 tau_1 = - I_c_xx_bar*u_1 - I_c_xy_bar *(u_2 + u_3);

129 tau_2 = - I_c_xx_bar*u_2 - I_c_xy_bar *(u_1 + u_3);

130 tau_3 = - I_c_xx_bar*u_3 - I_c_xy_bar *(u_1 + u_2);

131 }



143

B.1.2 Reaction wheel estimator

The reaction wheel estimator class implements the state observer derived in Sec. 7.1.

Its header file estimator wheel.h is:

1 #ifndef estimator_wheel_h

2 #define estimator_wheel_h

3

4 #include "mbed.h"

5 #include "src/cubli.h"

6

7 // Wheel estimator class

8 class WheelEstimator

9 {

10 public:

11 // Constructor

12 WheelEstimator(PinName PIN_SPEED);

13 // Initializer

14 void init();

15 // Estimate step

16 void estimate(float tau = 0.0);

17 // Angular displacement [rad] and angular velocity [rad/s] estimations

18 float theta_w , omega_w;

19 private:

20 // Motor hall sensor object

21 Hall hall;

22 // Angular velocity bias calibration

23 void calibrate ();

24 // Predict step

25 void predict(float tau);

26 // Correct step

27 void correct(float omega_w_m);

28 // Angular velocity (rad/s) bias

29 float b_omega_w;

30 };

31

32 #endif

Whereas its implementation file estimator wheel.cpp is:

1 #include "estimator_wheel.h"

2

3 // Constructor

4 WheelEstimator :: WheelEstimator(PinName PIN_SPEED) : hall(PIN_SPEED)

5 {

6 // Set initial angular displacement and angular velocity

7 theta_w = 0.0;

8 omega_w = 0.0;

9 }

10

11 // Initializer

12 void WheelEstimator ::init()

13 {

14 calibrate ();

15 }

16

17 // Angular velocity bias calibration

18 void WheelEstimator :: calibrate ()

19 {

20 // Calculate angular velocity bias by averaging n samples durint 0,5 second

21 int n = f/2;

22 for(int i = 0; i<n;i++)

23 {



144

24 hall.read();

25 b_omega_w += hall.omega/n;

26 wait_us(dt_us);

27 }

28 }

29

30 // Estimate step

31 void WheelEstimator :: estimate(float tau)

32 {

33 // Predict step

34 predict(tau);

35

36 // Get angular velocity measurement from hall sensor

37 hall.read();

38 float omega_w_m = hall.omega -b_omega_w;

39 // Correct step

40 correct(omega_w_m);

41 }

42

43 // Predict step

44 void WheelEstimator :: predict(float tau)

45 {

46 // Calculate friction torque

47 float sign = (0.0< omega_w)-(omega_w <0.0);

48 float tau_f = sign*(tau_c+b*abs(omega_w)+cd*omega_w*omega_w);

49 // Calculate angular acceleration

50 float omega_w_dot = (1.0/ I_w_xx)*(-tau_f+tau);

51 // Predict angular displacement and angular velocity

52 theta_w += omega_w*dt+omega_w_dot*dt*dt/2.0;

53 omega_w += omega_w_dot*dt;

54 }

55

56 // Correct step

57 void WheelEstimator :: correct(float omega_w_m)

58 {

59 // Correct angular velocity with measurement

60 omega_w += ldw*dt*(omega_w_m -omega_w);

61 }

B.1.3 Attitude estimator

The attitude estimator class implements the state observer derived in Sec. 7.2.

Its header file estimator attitude.h is:

1 #ifndef estimator_attitude_h

2 #define estimator_attitude_h

3

4 #include "mbed.h"

5 #include "src/cubli.h"

6

7 // Attitude estimator class

8 class AttitudeEstimator

9 {

10 public:

11 // Constructor

12 AttitudeEstimator(PinName PIN_SDA , PinName PIN_SCL);

13 // Initializer

14 void init();

15 // Estimate step

16 void estimate ();

17 // Rotation quaternion estimations

18 float q0 , q1, q2, q3;

19 // Angular velocity (rad/s) estimations

20 float omega_x , omega_y , omega_z;



145

21 private:

22 // IMU sensor object

23 LSM9DS1 imu;

24 // Angular velocity bias calibration

25 void calibrate ();

26 // Predict step

27 void predict(float omega_x , float omega_y , float omega_z);

28 // Correct step

29 void correct(float ax, float ay , float az);

30 // Angular velocity (rad/s) bias

31 float b_omega_x , b_omega_y , b_omega_z;

32 };

33

34 #endif

Whereas its implementation file estimator attitude.cpp is:

1 #include "estimator_attitude.h"

2

3 // Constructor

4 AttitudeEstimator :: AttitudeEstimator(PinName PIN_SDA , PinName PIN_SCL) : imu(PIN_SDA ,PIN_SCL)

5 {

6 // Set initial rotation quaternion

7 q0 = 1.0;

8 q1 = 0.0;

9 q2 = 0.0;

10 q3 = 0.0;

11 // Set initial angular velocity

12 omega_x = 0.0;

13 omega_y = 0.0;

14 omega_z = 0.0;

15 // Set initial angular velocity bias

16 b_omega_x = 0.0;

17 b_omega_y = 0.0;

18 b_omega_z = 0.0;

19 }

20

21 // Initializer

22 void AttitudeEstimator ::init()

23 {

24 // Initialize IMU sensor object

25 imu.init();

26 // Angular velocity bias calibration

27 calibrate ();

28 }

29

30 // Angular velocity bias calibration

31 void AttitudeEstimator :: calibrate ()

32 {

33 // Calculate angular velocity bias by averaging n samples during 0,5 seconds

34 int n = f/2;

35 for(int i = 0; i<f;i++)

36 {

37 imu.read();

38 b_omega_x += imu.gx/f;

39 b_omega_y += imu.gy/f;

40 b_omega_z += imu.gz/f;

41 wait_us(dt_us);

42 }

43 }

44

45 // Estimate step

46 void AttitudeEstimator :: estimate ()

47 {

48 // Get angular velocity from IMU gyroscope data

49 imu.read_gyr ();

50 omega_x = imu.gx -b_omega_x;

51 omega_y = imu.gy -b_omega_y;

52 omega_z = imu.gz -b_omega_z;



146

54 // Predict step

55 predict(omega_x ,omega_y ,omega_z);

56

57 // Get linear acceleration from IMU accelerometer data

58 imu.read_acc ();

59 float ax = f_ax*(imu.ax -b_ax);

60 float ay = f_ay*(imu.ay -b_ay);

61 float az = f_az*(imu.az -b_az);

62 // Normalize linear acceleration

63 float a_norm = sqrt(ax*ax+ay*ay+az*az);

64 ax /= a_norm;

65 ay /= a_norm;

66 az /= a_norm;

67

68 // Correct step

69 correct(ax,ay ,az);

70

71 // Normalize rotation quaternion

72 float q_norm = sqrt(q0*q0+q1*q1+q2*q2+q3*q3);

73 q0 /= q_norm;

74 q1 /= q_norm;

75 q2 /= q_norm;

76 q3 /= q_norm;

77 }

78

79 // Estimate step

80 void AttitudeEstimator :: predict(float omega_x , float omega_y , float omega_z)

81 {

82 // Predict rotation quaternion time derivative

83 float q0_dot = 0.5*( - q1*omega_x - q2*omega_y - q3*omega_z);

84 float q1_dot = 0.5*( q0*omega_x - q3*omega_y + q2*omega_z);

85 float q2_dot = 0.5*( q3*omega_x + q0*omega_y - q1*omega_z);

86 float q3_dot = 0.5*( - q2*omega_x + q0*omega_z + q1*omega_y);

87 // Predict rotation quaternion

88 q0 += q0_dot*dt;

89 q1 += q1_dot*dt;

90 q2 += q2_dot*dt;

91 q3 += q3_dot*dt;

92 }

93

94 // Correct step

95 void AttitudeEstimator :: correct(float ax, float ay , float az)

96 {

97 // // Calculate rotation quaternion measurement

98 // float qm0 = ax*q2 - ay*q1 - az*q0;

99 // float qm1 = - ax*q3 - ay*q0 + az*q1;

100 // float qm2 = ax*q0 - ay*q3 + az*q2;

101 // float qm3 = - ax*q1 - ay*q2 - az*q3;

102 // // Correct rotation quaternion

103 // q0 += lds*dt*(qm0 -q0);

104 // q1 += lds*dt*(qm1 -q1);

105 // q2 += lds*dt*(qm2 -q2);

106 // q3 += lds*dt*(qm3 -q3);

107

108 // Calculate rotation quaternion measurement

109 float qm0 = ax*q2 - ay*q1 - az*q0;

110 float qm1 = - ax*q3 - ay*q0 + az*q1;

111 float qm2 = ax*q0 - ay*q3 + az*q2;

112 float qm3 = - ax*q1 - ay*q2 - az*q3;

113 // Calculate rotation quaternion error

114 float qe0 = q0*qm0 + q1*qm1 + q2*qm2 + q3*qm3;

115 float qe1 = q0*qm1 - q1*qm0 - q2*qm3 + q3*qm2;

116 float qe2 = q0*qm2 + q1*qm3 - q2*qm0 - q3*qm1;

117 float qe3 = q0*qm3 - q1*qm2 + q2*qm1 - q3*qm0;

118 // Calculate rotation Gibbs -vector error

119 float se1 = qe1/qe0;

120 float se2 = qe2/qe0;

121 float se3 = qe3/qe0;

122 // Calculate rotation quaternion error time derivative

123 float qe0_dot = - q1*se1 - q2*se2 - q3*se3;

124 float qe1_dot = q0*se1 - q3*se2 + q2*se3;

125 float qe2_dot = q3*se1 + q0*se2 - q1*se3;

126 float qe3_dot = - q2*se1 + q1*se2 + q0*se3;

127 // Correct rotation quaternion

128 q0 += lds*dt*qe0_dot;

129 q1 += lds*dt*qe1_dot;

130 q2 += lds*dt*qe2_dot;

131 q3 += lds*dt*qe3_dot;

132 }



147

B.2 Drivers

Drivers contains the sensors and actuators classes.

B.2.1 Motor

The motor class interfaces with the motor controller for current/torque set-point.

Its header file motor.h is:

1 #ifndef motor_h

2 #define motor_h

3

4 #include "mbed.h"

5 #include "src/cubli.h"

6

7 // Motor class

8 class Motor

9 {

10 public:

11 // Class constructor

12 Motor(PinName PIN_ENABLE , PinName PIN_CURRENT);

13 // Set current [A]

14 void set_current(float ia);

15 // Set torque [N.m]

16 void set_torque(float tau);

17 private:

18 // Objects

19 DigitalOut enable;

20 PwmOut current;

21 };

22

23 #endif

Whereas its implementation file motor.cpp is:

1 #include "motor.h"

2

3 // Class constructor

4 Motor :: Motor(PinName PIN_ENABLE , PinName PIN_CURRENT) : enable(PIN_ENABLE), current(PIN_CURRENT)

5 {

6 current.period_ms (1);

7 }

8

9 // Set current [A]

10 void Motor:: set_current(float ia)

11 {

12 if (ia == 0.0)

13 {

14 enable = false;

15 current = 0.5;

16 }

17 else

18 {

19 enable = true;

20 if(ia > ia_max)

21 {

22 current = 0.9;

23 }

24 else if (ia < -ia_max)

25 {

26 current = 0.1;

27 }



148

28 else

29 {

30 current = 0.5+ia *(0.8/(2.0* ia_max));

31 }

32 }

33 }

34

35 // Set torque [N.m]

36 void Motor:: set_torque(float tau)

37 {

38 set_current(tau/Km);

39 }

B.2.2 Hall sensor

The hall sensor class interfaces with the motor controller for angular velocity reading.

Its header file hall.h is:

1 #ifndef hall_h

2 #define hall_h

3

4 #include "mbed.h"

5 #include "src/cubli.h"

6

7 // Hall class

8 class Hall

9 {

10 public:

11 // Class constructor

12 Hall(PinName PIN_SPEED);

13 // Read angular velocity

14 void read();

15 // Angular velocity [rad/s]

16 float omega;

17 private:

18 // Objects

19 AnalogIn speed;

20 };

21

22 #endif

Whereas its implementation file hall.cpp is:

1 #include "hall.h"

2

3 // Class constructor

4 Hall::Hall(PinName PIN_SPEED) : speed(PIN_SPEED)

5 {

6 }

7

8 // Read angular velocity

9 void Hall::read()

10 {

11 omega = (speed.read() -0.5) *(2.0* omega_nl);

12 }

B.2.3 Inertial measurement unit

The inertial measurement unit class interfaces with the LSM9DS1 sensor for gyroscope

and accelrometer readings.



149

Its header file lsm9ds1.h is:

1 #ifndef lsm9ds1_h

2 #define lsm9ds1_h

3

4 #include "mbed.h"

5 #include "src/cubli.h"

6

7 // LSM9DS1 I2C bus address

8 #define LSM9DS1_ADDRESS_ACC_GYR 0x6B << 1 // (0xD6) Shift 1 bit left because mbed utilizes 8-bit addresses and not 7-

bit

9 #define LSM9DS1_ADDRESS_MAG 0x1E << 1 // (0x3C) Shift 1 bit left because mbed utilizes 8-bit addresses and not 7-

bit

10

11 // Device identity

12 #define WHO_AM_I 0x0F

13 #define WHO_AM_I_M 0x0F

14

15 // Gyroscope configuration registers addresses

16 #define CTRL_REG1_G 0x10

17 // Gyroscope output register addresses

18 #define OUT_X_L_G 0x18

19 #define OUT_X_H_G 0x19

20 #define OUT_Y_L_G 0x1A

21 #define OUT_Y_H_G 0x1B

22 #define OUT_Z_L_G 0x1C

23 #define OUT_Z_H_G 0x1D

24

25 // Accelerometer configuration registers addresses

26 #define CTRL_REG6_XL 0x20

27 // Accelerometer output register addresses

28 #define OUT_X_L_XL 0x28

29 #define OUT_X_H_XL 0x29

30 #define OUT_Y_L_XL 0x2A

31 #define OUT_Y_H_XL 0x2B

32 #define OUT_Z_L_XL 0x2C

33 #define OUT_Z_H_XL 0x2D

34

35 // Magnetometer configuration registers addresses

36 #define CTRL_REG1_M 0x20

37 #define CTRL_REG2_M 0x21

38 // Magnetometer output register addresses

39 #define OUT_X_L_M 0x28

40 #define OUT_X_H_M 0x29

41 #define OUT_Y_L_M 0x2A

42 #define OUT_Y_H_M 0x2B

43 #define OUT_Z_L_M 0x2C

44 #define OUT_Z_H_M 0x2D

45

46 // Gyroscope full -scale ranges

47 enum gyr_scale

48 {

49 GYR_SCALE_245DPS = 0b00 ,

50 GYR_SCALE_500DPS = 0b01 ,

51 GYR_SCALE_2000DPS = 0b11

52 };

53

54 // Accelerometer full -scale ranges

55 enum acc_scale

56 {

57 ACC_SCALE_2G = 0b00 ,

58 ACC_SCALE_4G = 0b10 ,

59 ACC_SCALE_8G = 0b11 ,

60 ACC_SCALE_16G = 0b01

61 };



150

63 // Magnetometer full -scale ranges

64 enum mag_scale

65 {

66 MAG_SCALE_4G = 0b00 ,

67 MAG_SCALE_8G = 0b01 ,

68 MAG_SCALE_12G = 0b10 ,

69 MAG_SCALE_16G = 0b11

70 };

71

72 // LSM9DS1 class

73 class LSM9DS1

74 {

75 public:

76

77 // Class constructor

78 LSM9DS1(PinName sda , PinName scl);

79

80 // Initialize sensor

81 bool init();

82 // Read sensor data

83 void read();

84

85 // Read gyroscope data

86 void read_gyr ();

87 // Read accelerometer data

88 void read_acc ();

89 // Read magnetometer data

90 void read_mag ();

91

92 // Gyroscope data in x, y and z axis [rad/s]

93 float gx , gy, gz;

94 // Accelerometer data x, y and z axis [m/s^2]

95 float ax , ay, az;

96 // Magnetometer data x, y and z axis [uT]

97 float mx , my, mz;

98

99 private:

100

101 // I2C bus

102 I2C i2c;

103

104 // Setup I2C bus

105 void setup_i2c ();

106 // Test I2C bus

107 bool test_i2c ();

108

109 // Setup gyroscope configurations (full -scale range)

110 void setup_gyr(gyr_scale g_scale = GYR_SCALE_2000DPS);

111 // Setup accelerometer configurations (full -scale range)

112 void setup_acc(acc_scale a_scale = ACC_SCALE_2G);

113 // Setup magnetometer configurations (full -scale range)

114 void setup_mag(mag_scale m_scale = MAG_SCALE_4G);

115

116 // Gyroscope resolution [rad/s / bit]

117 float g_res;

118 // Accelerometer resolution [m/s^2 / bit]

119 float a_res;

120 /// Magnetometers resolution [uT / bit]

121 float m_res;

122

123 };

124

125 #endif

Whereas its implementation file lsm9ds1.cpp is:



151

1 #include "lsm9ds1.h"

2

3 // Class constructor

4 LSM9DS1 :: LSM9DS1(PinName sda , PinName scl) : i2c(sda , scl)

5 {

6 }

7

8 // Initialize sensor

9 bool LSM9DS1 ::init()

10 {

11 // Setup I2C bus

12 setup_i2c ();

13 // Test I2C bus

14 if (test_i2c ()) {

15 // Setup gyroscope , accelerometer and magnetometer

16 setup_gyr ();

17 setup_acc ();

18 setup_mag ();

19 return true;

20 } else {

21 return false;

22 }

23 }

24

25 // Read sensor data

26 void LSM9DS1 ::read()

27 {

28 // Read accelerometer and gyroscope data

29 read_acc ();

30 read_gyr ();

31 // read_mag ();

32 }

33

34 // Setup I2C bus

35 void LSM9DS1 :: setup_i2c ()

36 {

37 // Setup I2C bus frequency to 100kHz

38 i2c.frequency (400000);

39 }

40

41 // Test I2C bus

42 bool LSM9DS1 :: test_i2c ()

43 {

44 // Register addresses

45 char reg_acc_gyr [1] = {WHO_AM_I };

46 char reg_mag [1] = {WHO_AM_I_M };

47 // Data that we’re going to read

48 char data_acc_gyr [1];

49 char data_mag [1];

50

51 // Point to register address

52 i2c.write(LSM9DS1_ADDRESS_ACC_GYR , reg_acc_gyr , 1);

53 // Read data from this address

54 i2c.read(LSM9DS1_ADDRESS_ACC_GYR , data_acc_gyr , 1);

55

56 // Point to register address

57 i2c.write(LSM9DS1_ADDRESS_MAG , reg_mag , 1);

58 // Read data from this address

59 i2c.read(LSM9DS1_ADDRESS_MAG , data_mag , 1);

60

61 // Check if device identity is 0x68 (acc/gyr) and 0x3D (mag)

62 if (( data_acc_gyr [0] == 0x68) && (data_mag [0] == 0x3D)) {

63 return true;

64 } else {

65 return false;

66 }

67 }

68

69 // Setup gyroscope configurations (full -scale range)

70 void LSM9DS1 :: setup_gyr(gyr_scale g_scale)

71 {

72 // Register address and data that will be writed

73 char reg_data [2] = {CTRL_REG1_G , (uint8_t) ((0 b011 << 5) | (g_scale << 3) | 0b000)};

74

75 // Point to register address and write data

76 i2c.write(LSM9DS1_ADDRESS_ACC_GYR , reg_data , 2);



152

78 // Adjust resolution [rad/s / bit] accordingly to choose scale

79 switch (g_scale) {

80 case GYR_SCALE_245DPS:

81 g_res = 8.75f;

82 break;

83 case GYR_SCALE_500DPS:

84 g_res = 17.50f;

85 break;

86 case GYR_SCALE_2000DPS:

87 g_res = 70.0f;

88 break;

89 }

90 // Convert resolution to SI (mdps / bit -> rad/s / bit)

91 g_res = (g_res *1.0e-3f)*pi /180.0f;

92 }

93

94 // Setup accelerometer configurations (full -scale range)

95 void LSM9DS1 :: setup_acc(acc_scale a_scale)

96 {

97 // Register address and data that will be writed

98 char reg_data [2] = {CTRL_REG6_XL , (uint8_t) ((0 b011 << 5) | (a_scale << 3) | 0b000)};

99

100 // Point to register address and write data

101 i2c.write(LSM9DS1_ADDRESS_ACC_GYR , reg_data , 2);

102

103 // Adjust resolution [mg / bit] accordingly to choosed scale

104 switch (a_scale) {

105 case ACC_SCALE_2G:

106 a_res = 0.061f;

107 break;

108 case ACC_SCALE_4G:

109 a_res = 0.122f;

110 break;

111 case ACC_SCALE_8G:

112 a_res = 0.244f;

113 break;

114 case ACC_SCALE_16G:

115 a_res = 0.732f;

116 break;

117 }

118 // Convert resolution to SI (mg / bit -> m/s^2 / bit)

119 a_res = (a_res *1.0e-3f)*g;

120 }

121

122 // Setup magnetometer configurations (full -scale range)

123 void LSM9DS1 :: setup_mag(mag_scale m_scale)

124 {

125 // Register address and data that will be writed

126 char cmd[4] = {CTRL_REG1_M , 0x10 , (uint8_t) (m_scale << 5), 0 };

127

128 // Write the data to the mag control registers

129 i2c.write(LSM9DS1_ADDRESS_MAG , cmd , 4);

130

131 // Adjust resolution [mgauss / bit] accordingly to choosed scale

132 switch (m_scale) {

133 case MAG_SCALE_4G:

134 m_res = 0.14f;

135 break;

136 case MAG_SCALE_8G:

137 m_res = 0.29f;

138 break;

139 case MAG_SCALE_12G:

140 m_res = 0.43f;

141 break;

142 case MAG_SCALE_16G:

143 m_res = 0.58f;

144 break;

145 }

146 // Convert resolution to SI (mgauss / bit -> uT / bit)

147 m_res = ((m_res *1.0e-3f)*1.0e-4f)*1e6f;

148 }

149

150 // Read gyroscope data

151 void LSM9DS1 :: read_gyr ()

152 {

153 // LSM9DS1 I2C bus address

154 char address = LSM9DS1_ADDRESS_ACC_GYR;



153

155 // Register address

156 char reg[1] = {OUT_X_L_G };

157 // Data that we’re going to read

158 char data [6];

159

160 // Point to register address

161 i2c.write(address , reg , 1);

162 // Read data from this address (register address will auto -increment and all three axis information (two 8 bit data

each) will be read)

163 i2c.read(address , data , 6);

164

165 // Reassemble the data (two 8 bit data into one 16 bit data)

166 int16_t gx_raw = data [0] | ( data [1] << 8 );

167 int16_t gy_raw = data [2] | ( data [3] << 8 );

168 int16_t gz_raw = data [4] | ( data [5] << 8 );

169 // Convert to SI units [rad/s]

170 gx = gy_raw * g_res;

171 gy = gx_raw * g_res;

172 gz = gz_raw * g_res;

173 }

174

175 // Read accelerometer output data

176 void LSM9DS1 :: read_acc ()

177 {

178 // LSM9DS1 I2C bus address

179 char address = LSM9DS1_ADDRESS_ACC_GYR;

180 // Register address

181 char reg[1] = {OUT_X_L_XL };

182 // Data that we’re going to read

183 char data [6];

184

185 // Point to register address

186 i2c.write(address , reg , 1);

187 // Read data from this address (register address will auto -increment and all three axis information (two 8 bit data

each) will be read)

188 i2c.read(address , data , 6);

189

190 // Reassemble the data (two 8 bit data into one 16 bit data)

191 int16_t ax_raw = data [0] | ( data [1] << 8 );

192 int16_t ay_raw = data [2] | ( data [3] << 8 );

193 int16_t az_raw = data [4] | ( data [5] << 8 );

194 // Convert to SI units [m/s^2]

195 ax = -ay_raw * a_res;

196 ay = -ax_raw * a_res;

197 az = -az_raw * a_res;

198 }

199

200 // Read magnetometer output data

201 void LSM9DS1 :: read_mag ()

202 {

203 // LSM9DS1 I2C bus address

204 char address = LSM9DS1_ADDRESS_MAG;

205 // Register address

206 char reg[1] = {OUT_X_L_M };

207 // Data that we’re going to read

208 char data [6];

209

210 // Point to register address

211 i2c.write(address , reg , 1);

212 // Read data from this address (register address will auto -increment and all three axis information (two 8 bit data

each) will be read)

213 i2c.read(address , data , 6);

214

215 // Reassemble the data (two 8 bit data into one 16 bit data)

216 int16_t mx_raw = data [0] | ( data [1] << 8 );

217 int16_t my_raw = data [2] | ( data [3] << 8 );

218 int16_t mz_raw = data [4] | ( data [5] << 8 );

219 // Convert to SI units [uT]

220 mx = my_raw * m_res;

221 my = -mx_raw * m_res;

222 mz = mz_raw * m_res;

223 }



154

B.3 Utilities

Utilities contains two auxiliary files that are not classes.

B.3.1 Parameters

The parameters.h file contains all the parameters used by the control and estimation

algorithm.

1 #ifndef parameters_h

2 #define parameters_h

3

4 #include "cmath"

5

6 // Interrupt frequencies

7 const float f = 1000.0; // Controller interrupt frequency [Hz]

8 const float f_log = 25.0; // Log data interrupt frequency [Hz]

9 const float f_blink = 1.0; // Led blink interrupt frequency [Hz]

10 const float f_print = 10.0; // Serial print interrupt frequency [Hz]

11 const float dt = 1.0/f;

12 const float dt_log = 1.0/ f_log;

13 const float dt_blink = 1.0/ f_blink;

14 const float dt_print = 1.0/ f_print;

15 const int dt_us = dt*1e6;

16 const int dt_log_us = dt_log *1e6;

17 const int dt_blink_us = dt_blink *1e6;

18 const int dt_print_us = dt_print *1e6;

19

20 // Acelerometer bias and scale factor

21 const float b_ax = -0.0664;

22 const float b_ay = 0.1602;

23 const float b_az = 0.5595;

24 const float f_ax = 1.0065;

25 const float f_ay = 1.0086;

26 const float f_az = 0.9925;

27

28 // Physical parameters

29 const float pi = 3.141516;

30 const float g = 9.80665; // Accelation of gravity [m/s^2]

31

32 // Surface parameters

33 const float b = 0; // Surface viscuous friction coefficient [N.m.s/rad]

34

35 // Motor (electrical) parameters

36 const float Ra = 1.03; // Armature resistance [Omega]

37 const float La = 0.572e-3; // Armature inductance [H]

38 const float Km = 33.5e-3; // Torque constant [N.m/A]

39 const float ia_max = 15.0; // Stall current [A]

40 const float omega_nl = 6710.0*( pi /30.0); // No load speed [rpm -> rad/s]

41

42 // Motor (mechanical) parameters

43 const float tau_c = 2.46e-3; // Coulomb friction torque [N.m]

44 const float bw = 1.06e-5; // Rotational viscuous friction coefficient [N.m.s/rad]

45 const float cd = 1.70e-8; // Rotational drag coefficient [N.m.s^2/ rad^2]

46

47 // Structure parameters

48 const float l = 0.15; // Structure side length [m]

49 const float m_s = 0.40; // Structure mass [kg]

50 const float I_s_xx = 2.0e-3; // Structure moment of inertia around x-y-z axis at center of mass [kg.m^2]

51

52 // Reaction wheel parameters

53 const float m_w = 0.15; // Reaction wheel mass [kg]

54 const float I_w_xx = 1.25e-4; // Reaction wheel moment of inertia around x axis at center of mass [kg.m^2]

55 const float I_w_yy = 4.0e-5; // Reaction wheel moment of inertia around y-z axis at center of mass [kg.m^2]



155

57 // Cubli (structure + reaction wheels) parameters

58 const float m_c = m_s+3* m_w; // Cubli total mass [kg]

59 const float I_c_xx = I_s_xx+I_w_xx +2* I_w_yy +(m_s +2.0* m_w)*l*l/2.0; // Cubli moment of inertia around x-y-z axis at

pivot point [kg.m^2]

60 const float I_c_xy = -(m_s+m_w)*l*l/4.0; // Cubli product of inertia at pivot point [kg.m^2]

61

62 // Cubli (auxiliary) parameters

63 const float m_c_bar = m_c - m_w;

64 const float I_c_xx_bar = I_c_xx - I_w_xx;

65 const float I_c_xy_bar = I_c_xy;

66 const float m_c_bar_g_l = m_c_bar*g*l;

67 const float omega_n_0 = sqrt(m_c_bar_g_l*sqrt (3.0)/(I_c_xx_bar -I_c_xy_bar));

68 const float omega_n_1 = b/( I_c_xx_bar +2* I_c_xy_bar);

69 const float beta = (I_c_xx_bar +2* I_c_xy_bar)/I_w_xx;

70 const float gamma = (I_c_xx_bar -I_c_xy_bar)/I_w_xx;

71 const float delta = m_c_bar_g_l*sqrt (3.0)/I_w_xx;

72 const float epsilon = b/I_w_xx;

73

74 // Estimator gains

75 const float lds = 0.02;

76 const float ldw = 50.0;

77

78 // Controller gains (speed+angle)

79 const float alpha = 0.2;

80 const float zeta = sqrt (2.0) /2.0; // 1.0;

81 const float omega_n = omega_n_0;

82 const float kpw = pow(alpha ,2)*pow(zeta ,2)*pow(omega_n ,4)/delta;

83 const float kdw = 2.0* alpha*zeta*pow(omega_n ,3) *(1.0+ alpha*pow(zeta ,2))/delta;

84 const float kp = pow(omega_n ,2) *(1.0+ alpha*pow(zeta ,2) *(4.0+ alpha))+gamma*kpw;

85 const float kd = 2.0* zeta*omega_n *(1.0+ alpha)+gamma*kdw;

86

87 // Quaternion reference (Cubli in vertex fancing up minus phi_e - corresponding to center os mass disalignment)

88 const float phi_e = -0.0*pi /180.0;

89 const float qu0 = cos(phi_e /2.0 + acos(sqrt (3.0) /3.0) /2.0);

90 const float qu1 = sqrt (2.0) /2.0* sin(phi_e /2.0 + acos(sqrt (3.0) /3.0) /2.0);

91 const float qu2 = -sqrt (2.0) /2.0* sin(phi_e /2.0 + acos(sqrt (3.0) /3.0) /2.0);

92 const float qu3 = 0.0;

93

94 // Quaternion reference (Cubli in x-edge minus phi_e - corresponding to center os mass disalignment)

95 // const float phi_e = -5*pi /180.0;

96 // const float qu0 = cos(phi_e /2.0 - pi /8.0);

97 // const float qu1 = cos(phi_e /2.0 + 3.0*pi/8.0);

98 // const float qu2 = 0.0;

99 // const float qu3 = 0.0;

100

101 // Quaternion reference (Cubli in y-edge minus phi_e - corresponding to center os mass disalignment)

102 // const float phi_e = 3.0*pi /180.0;

103 // const float qu0 = cos(phi_e /2.0 - pi /8.0);

104 // const float qu1 = 0.0;

105 // const float qu2 = -cos(phi_e /2.0 + 3.0*pi /8.0);

106 // const float qu3 = 0.0;

107

108 //

109 const float qu0_qu0 = qu0*qu0;

110 const float qu0_qu1 = qu0*qu1;

111 const float qu0_qu2 = qu0*qu2;

112 const float qu0_qu3 = qu0*qu3;

113 const float qu1_qu1 = qu1*qu1;

114 const float qu1_qu2 = qu1*qu2;

115 const float qu1_qu3 = qu1*qu3;

116 const float qu2_qu2 = qu2*qu2;

117 const float qu2_qu3 = qu2*qu3;

118 const float qu3_qu3 = qu3*qu3;

119

120 // Minimum and maximum error limits (for control safety)

121 const float phi_min = 10.0*pi /180.0;

122 const float phi_max = 30.0*pi /180.0;

123

124 // Minimum jerk trajectory parameters

125 const float pos_traj = 2.0*pi; // Trajectory path [rad]

126 const float t_rest = 5.0; // Rest time [s]

127 const float t_traj = 20.0; // Trajectory time [s]

128 const float cra_0 = 720.0* pos_traj/pow(t_traj ,5);

129 const float sna_0 = 360.0* pos_traj/pow(t_traj ,4);

130 const float jer_0 = 60.0* pos_traj/pow(t_traj ,3);



156

132 // Sinusoidal trajectory parameters

133 const float A_traj = pi /36.0/100.0;

134 const float T_traj = 10.0/100.0;

135

136 #endif

B.3.2 Pin names

The pin names.h file contains a correspondence between utilized pins and chosed

development board.

1 #ifndef pin_names_h

2 #define pin_names_h

3

4 #include "mbed.h"

5

6 // Motor controller pins

7 const PinName M1_ENABLE = A3;

8 const PinName M2_ENABLE = D11;

9 const PinName M3_ENABLE = A0;

10 const PinName M1_CURRENT = A5;

11 const PinName M2_CURRENT = D10;

12 const PinName M3_CURRENT = A2;

13

14 // Hall sensor pins

15 const PinName M1_SPEED = A4;

16 const PinName M2_SPEED = D3;

17 const PinName M3_SPEED = A1;

18

19 // IMU pins

20 const PinName IMU_SDA = D4;

21 const PinName IMU_SCL = D5;

22

23 #endif

B.4 Main program

The cubli.h file includes the modules, drivers and utility files, in order that, when

this single file is included, all others are referenced.

1 // Include utilities

2 #include "src/utils/parameters.h"

3 #include "src/utils/pin_names.h"

4

5 // Include drivers

6 #include "src/drivers/hall.h"

7 #include "src/drivers/lsm9ds1.h"

8 #include "src/drivers/motor.h"

9

10 // Include modules

11 #include "src/modules/estimator_wheel.h"

12 #include "src/modules/estimator_attitude.h"

13 #include "src/modules/controller_attitude_wheel.h"

14 #include "src/modules/trajectory_attitude.h"

The main program file main.cpp includes the cubli.h file and interfaces all classes,

as shown in Fig. 85.



157

1 #include "mbed.h"

2 #include "cubli.h"

3

4 // Objects

5 Motor motor_1(M1_ENABLE ,M1_CURRENT), motor_2(M2_ENABLE ,M2_CURRENT), motor_3(M3_ENABLE ,M3_CURRENT);

6 WheelEstimator whe_est_1(M1_SPEED), whe_est_2(M2_SPEED), whe_est_3(M3_SPEED);

7 AttitudeEstimator att_est(IMU_SDA ,IMU_SCL);

8 AttitudeWheelController cont;

9 AttitudeTrajectory att_tra;

10 Ticker tic;

11

12 // Interrupt flags and callback functions

13 bool flag = false;

14 void callback () { flag = true; }

15

16 // Quaternion error

17 float phi;

18 float phi_lim = phi_min;

19

20 // Trajectory flag

21 bool flag_tra = true;

22

23 // Security flags

24 bool flag_arm = false;

25 bool flag_terminate = false;

26

27 // Torques

28 float tau_1 , tau_2 , tau_3;

29

30 // Main program

31 int main()

32 {

33 // Initializations

34 whe_est_1.init();

35 whe_est_2.init();

36 whe_est_3.init();

37 att_est.init();

38 tic.attach_us (&callback , dt_us);

39 // Endless loop

40 while (true)

41 {

42 if (flag)

43 {

44 flag = false;

45 whe_est_1.estimate(tau_1);

46 whe_est_2.estimate(tau_2);

47 whe_est_3.estimate(tau_3);

48 att_est.estimate ();

49 cont.control(att_tra.qr0 ,att_tra.qr1 ,att_tra.qr2 ,att_tra.qr3 ,att_est.q0,att_est.q1,att_est.q2 ,att_est.q3,

att_tra.omega_r_x ,att_tra.omega_r_y ,att_tra.omega_r_z ,att_est.omega_x ,att_est.omega_y ,att_est.omega_z

,att_tra.alpha_r_x ,att_tra.alpha_r_y ,att_tra.alpha_r_z ,whe_est_1.theta_w ,whe_est_2.theta_w ,whe_est_3.

theta_w ,whe_est_1.omega_w ,whe_est_2.omega_w ,whe_est_3.omega_w);

50 phi = 2.0* acos(cont.qe0);

51 if ((abs(phi) <= phi_lim) && !flag_terminate)

52 {

53 flag_arm = true;

54 phi_lim = phi_max;

55 if (flag_tra)

56 {

57 flag_tra = false;

58 att_tra.init();

59 }

60 att_tra.generate ();

61 tau_1 = cont.tau_1;

62 tau_2 = cont.tau_2;

63 tau_3 = cont.tau_3;

64 }



158

65 else

66 {

67 tau_1 = 0.0;

68 tau_2 = 0.0;

69 tau_3 = 0.0;

70 motor_1.set_torque(tau_1);

71 motor_2.set_torque(tau_2);

72 motor_3.set_torque(tau_3);

73 if(flag_arm)

74 {

75 flag_arm = false;

76 flag_terminate = true;

77 }

78 }

79 motor_1.set_torque(tau_1);

80 motor_2.set_torque(tau_2);

81 motor_3.set_torque(tau_3);

82 }

83 }

84 }


