• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
https://doi.org/10.11606/D.3.2020.tde-12022021-133236
Document
Author
Full name
Rogerio Solda
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2020
Supervisor
Committee
Garcia, Claudio (President)
Alves, Vitor Alex Oliveira
Godoy, Rodrigo Juliani Corrêa de
Title in Portuguese
Aplicação das transformadas wavelet na filtragem de sinais a serem usados em identificação de sistemas.
Keywords in Portuguese
Análise de ondaletas
Condicionamento de sinais
Filtro FIR
Filtro IIR
Identificação de sistemas
Processamento digital de sinais
Transformada Wavelet
Abstract in Portuguese
Neste trabalho são estudadas técnicas de filtragem de sinais, visando preparar os dados coletados do processo para posterior identificação de modelos. Utilizam-se dados da Planta Piloto de Neutralização de pH do Laboratório de Controle de Processos Industriais do Departamento de Engenharia de Telecomunicações e Controle da Escola Politécnica da USP, aos quais são aplicadas técnicas de Processamento Digital de Sinais (PDS) no tratamento dos dados da planta, usando filtros de resposta impulsiva FIR e IIR, e filtros usando Transformada Wavelet para uma análise comparativa entre as diferentes técnicas de filtragem. Além disso, são implementados os filtros usando Transformada Wavelet no tratamento dos sinais do sistema simulado Shell Benchemark para comparação com modelos sem filtro. Na identificação dos modelos de processo são empregadas as estruturas: OE, ARX, ARMAX e BJ. Os resultados da implementação dos filtros Wavelet comprovam a eficiência destes filtros no tratamento de sinais para modelagem dos processos, proporcionando modelos melhores em comparação com outras técnicas de filtragem estudadas.
Title in English
Application of Wavelet Transforms in filtering signals to be used in System Identification.
Keywords in English
FIR filter
IIR filter
Signal conditioning
Systems identification
Wavelet transform
Abstract in English
In this work, signal filtering techniques are studied, preparing the collected process data for later model identification. Data from the pH Neutralization Pilot Plant from the Industrial Process Control Laboratory of the Telecommunications and Control Engineering Department of Escola Politécnica of USP, to which the Digital Signal Processing (PDS) technical methods in the treatment of plant data using response filters are used. impulsive FIR and IIR, and filters using Wavelet Transform for a comparative analysis between different filtering techniques are employed. In addition, filters using Wavelet Transform are implemented in the treatment of signals from the simulated Shell Benchemark system for comparison with models without a filter. In the identification of process models, the following structures are employed: OE, ARX, ARMAX and BJ. The results of the implementation of Wavelet filters prove the efficiency of these filters in the treatment of signals for modeling processes, providing better models in comparison to other studied filtering techniques.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
RogerioSoldaCorr20.pdf (20.82 Mbytes)
Publishing Date
2021-02-16
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.