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RESUMO

Esta tese propõe contribuições para modelagem e controle de uma classe de sis-
temas não lineares utilizando modelos lineares a parâmetros variantes (do inglês, Linear
Parameter-Varying — LPV). Como primeira contribuição, são propostas duas técnicas
de modelagem especializadas na geração de modelos LPV com dependência polinomial
nos parâmetros (denominados parâmetros LPV). Caso os parâmetros estejam relaciona-
dos com os estados ou entradas, o modelo é chamado de quasi-LPV. A primeira técnica,
baseada na expansão em série de Taylor, produz um modelo mais acurado em torno de
um ponto de operação quando comparada com as técnicas clássicas de linearização. A
segunda abordagem é baseada em um algoritmo de interpolação polinomial e produz uma
famı́lia de modelos lineares dentro de uma faixa de operação pré-estabelecida, sendo es-
pecialmente adequada para lidar com problemas de seguimento de trajetória. A segunda
contribuição da tese é um conjunto de condições para controle escalonado de sistemas
LPV ou quasi-LPV. São propostas condições de estabilização, controle H2 e H∞ por
realimentação de estados e de sáıda (estática e dinâmica de ordem completa), que são
resolvidas por meio de desigualdade matriciais lineares e busca em um parâmetro escalar
confinado no intervalo (−1, 1). Todas as classes de controladores podem ter ganhos com
dependência polinomial de grau arbitrário nos parâmetros LPV, em geral fornecendo re-
sultados menos conservadores à medida que os graus aumentam. Com vistas a validar as
contribuições desta tese, as técnicas de modelagem e controle propostas são aplicadas em
alguns sistemas mecatrônicos, considerando simulações e experimentos f́ısicos.

Palavras-Chave – Modelo LPV, Modelo quasi-LPV, Desigualdade matricial linear,
Ganho escalonado, Realimentação de estado, Realimentação estática de sáıda, Reali-
mentação dinâmica de sáıda, Norma H2, Norma H∞.



ABSTRACT

This thesis proposes contributions for modeling and control of a class of nonlinear
systems using linear parameter-varying (LPV) models. As a first contribution, two mod-
eling techniques specialized in the generation of LPV models with polynomial dependence
on the parameters (called LPV parameters) are proposed. If the parameters are related
to states or inputs, the model is called quasi-LPV. The first technique, based on Tay-
lor series expansion, produces a more accurate model around an operating point when
compared to classical linearization techniques. The second approach is based on a polyno-
mial interpolation algorithm and yields a family of linear models within a pre-established
operating range, being especially suitable for dealing with reference tracking problems.
The second contribution of the thesis is a set of conditions for gain-scheduled control of
LPV or quasi-LPV systems. Stabilization, H2 and H∞ control design conditions by state
and output feedback static and full-order dynamic are proposed, being solved in terms of
linear matrix inequalities and search on a scalar parameter confined in the range (−1, 1).
All classes of controllers can present gains with arbitrary degree polynomial dependence
on the LPV parameters, in general providing less conservative results as the degrees in-
crease. In order to validate the contributions of this thesis, the proposed modeling and
control techniques are applied in some mechatronic systems, considering simulations and
practical experiments.

Keywords – Quasi-LPV model, LPV model, Linear matrix inequality, Gain-scheduled,
State-feedback, Static output-feedback, Dynamic output-feedback, H2 norm, H∞ norm.
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1 INTRODUCTION

In the absence of a general theory to cope with stability analysis and control design of
nonlinear dynamical systems, the linear parameter-varying (LPV) modeling arises as an
appealing framework to address such systems in a practical manner (RUGH; SHAMMA,
2000; HOFFMANN; WERNER, 2015; BIANCHI et al., 2014). Moreover, the attractive-
ness of LPV models has become more prominent in the last decades due to the grow-
ing maturity of the numerical methods available for analysis and control synthesis of
linear models subject to uncertain and time-varying parameters (MOHAMMADPOUR;
SCHERER, 2012; BRIAT, 2015). As a matter of fact, the Lyapunov stability theory,
supported by semidefinite programming based methods (BOYD et al., 1994), has been
extensively extended and improved along the years. In this context one can mention
the use of parameter-dependent Lyapunov functions (DE OLIVEIRA; BERNUSSOU;
GEROMEL, 1999; WU, 2001; DAAFOUZ; BERNUSSOU, 2001; WANG; BALAKRISH-
NAN, 2002; DE SOUZA; TROFINO, 2006), the possibility of designing gain-scheduled
controllers (APKARIAN; GAHINET, 1995; APKARIAN; GAHINET; BECKER, 1995),
the consideration of bounded rates of variation for the time-varying parameters (WU
et al., 1996; APKARIAN; ADAMS, 1998; DE SOUZA; BARBOSA; TROFINO, 2006),
extensions to deal with time-varying parameters with polynomial dependence of arbi-
trary degree (MONTAGNER; OLIVEIRA; PERES, 2006; MONTAGNER et al., 2009;
SATO, 2005; CHESI et al., 2007), switching control laws (GEROMEL; COLANERI,
2006b; DEAECTO et al., 2010; HANIFZADEGAN; NAGAMUNE, 2014), to mention a
few.

Nonlinear dynamics can present a wide range of particular features and behaviors
and, as a consequence, it is difficult to claim that there exist one best strategy to derive
a linear model affected by time-varying parameters from a set of nonlinear differential
equations (TANAKA; WANG, 2001). Among the possibilities, two main modeling tech-
niques can be considered the main streams explored in the literature. The first one is
known as Takagi-Sugeno fuzzy modeling, where a linear model affected by time-varying
parameters is constructed (through the sector nonlinearity approach) to represent a non-
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linear dynamics in a closed region of the state space in terms of fuzzy rules. As a result,
one has a model where the state-space matrices are represented in terms of a convex com-
bination of time-varying parameters (also known as membership functions). The second
approach, broadly known as LPV modeling, is generally based on standard lineariza-
tion techniques but presenting the state-space matrices depending linearly on bounded
time-varying parameters (possibly with bounded rates of variation). In the case where
some time-varying parameters are related to the states or inputs of the system, then the
resulting model is particularly named as a quasi-LPV system (HUANG; JADBABAIE,
1999; TAN; PACKARD; BALAS, 2000; BIANCHI; MANTZ; CHRISTIANSEN, 2005;
ROTONDO; NEJJARI; PUIG, 2013; TÓTH, 2010; ABBAS et al., 2014). The mod-
eling of quasi-LPV systems is usually based on techniques that maintain the nonlinear
features of the dynamics (SHU-QING; SHENG-XIU, 2010), in general expressing the
model in terms of the state vector multiplied by a matrix with nonlinear terms (RUGH;
SHAMMA, 2000). In this context it is important to mention that LPV models do not
arise necessarily from nonlinear dynamics. As a matter of fact, some systems may present
a linear dynamics with parameters that may vary over time, as for instance, switched
systems, which comprises a relevant class of dynamical systems with important practi-
cal applications (LIBERZON, 2003; GEROMEL; COLANERI, 2006a; DEAECTO et al.,
2010; HANIFZADEGAN; NAGAMUNE, 2014). Moreover, some time-varying parame-
ters may not be physical quantities but artificially created to represent some phenomenon.
For instance, some properties or issues as packet dropout, time-varying sampling rates (or
bandwidth) and time-delays in the context of Networked Control Systems (HESPANHA;
NAGHSHTABRIZI; XU, 2007) may be modeled as bounded time-varying parameters.
Finally, LPV models can also be obtained considering identification techniques where
a precise model for the dynamics is not known (DE CAIGNY; CAMINO; SWEVERS,
2011).

In the context of synthesis of gain-scheduled controllers for LPV systems, the most
prominent approach is certainly the Lyapunov stability theory, where design conditions
can be formulated in terms of semidefinite programming, which is a class of optimiza-
tion procedures where efficient (polynomial time) algorithms are available (APKARIAN;
GAHINET, 1995; TOH; TODD; TÜTÜNCÜ, 1999; STURM, 1999; ANDERSEN; AN-
DERSEN, 2000). Stabilizing controllers with performance criteria based on the H2 and
H∞ norms are the most considered approaches, with synthesis conditions in general given
in terms of linear matrix inequalities (LMIs) (BOYD et al., 1994; DE SOUZA; TROFINO,
2006; GEROMEL; KOROGUI; BERNUSSOU, 2007; DE CAIGNY et al., 2010; APKAR-
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IAN; ADAMS, 1998; SATO; PEAUCELLE, 2013). Certainly, this field of research was
highly benefited by the arising of techniques based on Lyapunov functions depending on
the time-varying parameters (GAHINET; APKARIAN; CHILALI, 1996; GEROMEL; DE
OLIVEIRA; HSU, 1998; TROFINO; DE SOUZA, 2001), providing a new class of methods
after the quadratic stability paradigm, where controllers and filters were designed using a
fixed (parameter-independent) Lyapunov function. Besides less conservative in general,
analysis and synthesis conditions based on parameter-dependent Lyapunov functions allow
the consideration, whenever available, of bounded rates of variation for the time-varying
parameters, which is a realistic assumption in most physical systems. Moreover, the de-
velopment of the so called LMI relaxations to check parameter-dependent LMIs with poly-
nomial dependence on the time-varying parameters (BLIMAN, 2004, 2005; OLIVEIRA;
PERES, 2007) gave rise to design methods capable to provide gain-scheduled controllers
with arbitrary polynomial dependence, providing in general less conservative results than
controllers with affine dependence on the parameters. To reduce the conservativeness of
the results, some approaches combine LMI conditions with the search of scalar variables
or perform the synthesis in two steps, generally improving the performance indices at
the price of a higher computational effort (EBIHARA; HAGIWARA, 2004; XIE, 2005;
Oliveira; de Oliveira; Peres, 2011; AGULHARI; OLIVEIRA; PERES, 2012).

This thesis presents contributions regarding modeling, synthesis of controllers and
experimental validations in physical plants, as detailed in what follows.

1. The first contribution addresses the problem of designing LPV or quasi-LPV models
for a class of nonlinear systems. The first proposed technique consists of generating
a linear model affected by time-varying parameters around an operating point, with
the purpose of increasing the representability of the system. For this task, high-order
Taylor series expansion is used. Next, it is proposed a generic polynomial regression
algorithm to obtain polynomial quasi-LPV models from a set of nonlinear ordinary
differential equations. The procedure has as inputs the number of time-varying
parameters (an arbitrary choice of the designer), a generic degree associated to each
parameter, and an arbitrary number of local operating points. As a result, one
has a polynomial quasi-LPV model, which presents as main appealing feature the
ability to address tracking problems without demanding the insertion of integrators
or pre-filter design. This approach is somewhat similar to the LPV identification
techniques, as the one presented in (DE CAIGNY; CAMINO; SWEVERS, 2011;
DE CAIGNY et al., 2010), where the main strategy is the interpolation of linear
models.
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2. Motivated by the first contribution, that is, by the capability of producing polyno-
mial LPV or quasi-LPV models, the second contribution are synthesis conditions
for the design of gain-scheduled controllers for continuous-time polynomial LPV
or quasi-LPV models. The conditions are formulated in terms of LMIs combined
with a search in a scalar parameter. Differently from previous state-feedback ap-
proaches for LPV systems from the literature, a theoretical bound for the scalar
parameter is provided, being an advantage when implementing a search procedure
(RODRIGUES; OLIVEIRA; CAMINO, 2015, 2018). Three control techniques are
considered in this line of investigation: State-feedback, static output-feedback and
full-order dynamic output-feedback control. Furthermore, design conditions that
minimize an upper bound for the H2 and H∞ norms are also proposed.

3. Finally, the modeling and control design techniques are experimentally validated
in four mechatronic systems: Inverted pendulum with reaction wheel, rotational
pendulum, unicycle and a control moment gyroscope (CMG). Details of each one of
these systems, including the mechanical model, are presented in Appendix.

The text is organized as follows: Chapter 2 presents modeling techniques for LPV
and quasi-LPV systems for a class of nonlinear systems; Then, in Chapter 3, synthesis
conditions for stabilizing, H2 and H∞ gain-scheduled controllers are proposed; In Chap-
ter 4, simulation and practical results are presented; Finally, in Chapter 5, conclusions
and perspectives of future works are presented.



18

2 MODELING

This chapter presents modeling techniques to obtain a linear model depending polyno-
mially on time-varying parameters from a class of nonlinear systems. If the time-varying
parameters are not related to the states or inputs, the resulting model is called LPV
model. Otherwise, it is called quasi-LPV model. As terminology, we may call the time-
varying parameters as LPV variables. Rigorously, an LPV model has an affine dependency
with respect to the LPV variables. However, we choose to keep the nomenclature “LPV
model” (or quasi-LPV) even in the situation where the dependency is polynomial of ar-
bitrary degree.

Two modeling techniques are proposed. The first one employs a Taylor series expan-
sion of arbitrary order, producing an LPV (or quasi-LPV) model capable to represent the
dynamics of the plant around the operating point with more precision, at least with more
accuracy than the linear models obtained with standard linearization techniques. The
resulting model is particularly suitable to treat the problem of regulation.

In the second approach, a polynomial interpolation algorithm is proposed to generate
an LPV (or quasi-LPV) model composed by a family of linear models defined inside a pre-
specified region. This approach is specially appropriate to cope with problems involving
the tracking of trajectories. Through this method, it is possible to solve the tracking
problem without the need for pre-filtering techniques or insertion of integrators.

2.1 Problem definition

A nonlinear model of a dynamic system, in general, can be represented by the state-
space differential equation

ẋ(t) = f(x(t), k(t)) + b(x(t), k(t))u(t), (2.1)

where x(t) and u(t) are the vectors of states and inputs, respectively. The vector k
contains time-varying parameters not related to x(t) and u(t), and f(x, k) and b(x, k) are
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nonlinear functions depending on x(t) and k(t). A simplifying hypothesis well established
in mechanical systems, and adopted in this work, is that the model depends linearly on
the inputs.

Typically, in the design of linear controllers, it is calculated a linear approximation
for the model (2.1) considering an operation point (x0, u0), yielding the following linear
model

ẋ(t) = A(x(t) − x0) +B(u(t) − u0), (2.2)

where A and B are the states and inputs matrices, respectively. In general the accuracy
of this model can only be guaranteed for small variations around the operation point,
thus causing a limitation of performance.

We consider the problem of finding a time-varying model for a plant modeled as in (2.2)
but with matrices A(·) and B(·) represented with more precision than the conventional
linear approximation. To accomplish this task, two modeling techniques are considered.
The first one is focused on systems that actually operate around an operation point, and
the motivation is to increase the performance of the closed-loop system considering a
larger region in which the model represents accurately the system. The second is focused
on systems that must follow a trajectory. All approaches can address LPV and quasi-LPV
models.

For ease of representation, some definitions and hypotheses are defined in the next
section.

2.2 Definitions and hypotheses

Some definitions that are used throughout the text are presented in the sequence.

• x(t) is the state vector;

• u(t) is the input vector;

• x0 is the operation point;
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• J(v, u) is the Jacobian matrix of v for a given u, that is

J(v, u) =


∂v1
∂u1

. . . ∂v1
∂un

... . . . ...
∂vn

∂u1
. . . ∂vn

∂un

 ;

• ρ is the vector of time-varying parameters (or LPV variables);

• Dγ is the mixed derivatives at γ. In other words

Dγf = ∂|γ|f

∂xγ1
1 . . . ∂xγn

n
;

• γ is a multi-index notation;

Two hypotheses regarding the vector field are assumed:

• f(x) is of class Cg, and g is the maximum degree of the polynomial form considered
for the LPV or quasi-LPV models to be designed;

• ẋ0 is negligible in relation to the rest of the system, that is, it is a smooth variable
of the operation point.

2.3 Modeling based on Taylor expansion

The main motivation for this approach is the problem of stabilization of plants that
operate around an operation point in closed-loop. The aim is to increase the region
around the operating point where the proposed LPV or quasi-LPV models can represent
the dynamics of the plant with accuracy.

2.3.1 LPV model

Although this work does not focus primarily on simple LPV models (where LPV
variables are not state variables), this section shows one way to obtain a model with
polynomial dependency on the time-varying parameters. Considering the nonlinear model
(2.1), a linear approximation can be obtained by

A = J(ẋ, x)|x0,u0 , (2.3)

B = J(ẋ, u)|x0,u0 , (2.4)
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where matrices A and B depend on the vector of time-varying parameters ρ that does
not present components related with x neither with u. Thus, one has the following LPV
system

ẋ(t) = A(ρ)x(t) +B(ρ)u(t).

However, in most cases, the dependency on ρ is non-polynomial. As a matter of
fact, in most mechatronic cases this dependence is through trigonometric functions, for
example. As the interest is to produce models with polynomial dependency on ρ, a Taylor
series expansion of a given order is performed, such that A(ρ) and B(ρ) are expressed in
terms of polynomial matrices.

To exemplify this approach, consider the Control Moment Gyroscope (CMG) given
in Appendix D with the following choices of state variables

x =
[
θA θB θ̇A θ̇B θ̇C

]⊤
.

Note that θC and θ̇D are not state variables and, in this example, they are considered
LPV variables, resulting in a pure LPV model.

The first step to obtain the dynamic matrices of the LPV model is to compute the
Jacobian of the nonlinear equation (D.2), that is

A = J(ẋ, x)|xop,uop , B = J(ẋ, u)|xop,uop ,

where

ẋ =
[
θ̇A θ̇B θ̈A θ̈B θ̈C

]⊤
, u =

[
T3 T4

]⊤
,

and (xop, uop) are the values of the states and inputs at the operation point, in this
example chosen as

xop =
[
0 20◦ 0 0 0

]⊤
, uop =

[
0 0

]⊤
,

for arbitrary θC and θ̇D. Defining ρ = {θC , θ̇D} one has the following matrices

A(θC , θ̇D) =



0 0 1 0 0

0 0 0 1 0

0 0 a1 a2 a3

0 0 a2 a4 a5

0 a6 a7 a8 −0.43


, B(θC) =



0 0

0 0

0 −1.4×105 sin(θC)
1.2×103 sin(θC)2+1.6×104

0 6.7×106 cos(θC)
2.4×104 cos(θC)2−3.3×105


,
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where

a1 = −1.4(29 cos(θC)2 − 266)
1.2 × 103 cos(θC)2 − 1.7 × 104 ,

a2 = 788 sin(2θC)
2.4 × 104 cos(2θC) − 6.3 × 105 ,

a3 = 3.3 × 103θ̇D cos(θC)
1.2 × 103 cos(θC)2 − 1.7 × 104 ,

a4 = 0.71(58 cos(θC)2 + 1.3 × 103)
1.2 × 103 cos(θC)2 − 1.7 × 104 ,

a5 = 9.1 × 103θ̇D sin(θC)
1.2 × 103 sin(θC)2 + 1.6 × 104 ,

a6 = 25θ̇D sin(θC)
1.2 × 103 sin(θC)2 + 1.6 × 104 ,

a7 = θ̇D cos(θC),

a8 = −θ̇D sin(θC).

As can be seen, matrices A(θC , θ̇D) and B(θC) present trigonometric terms and also
rational functions involving θC and θ̇D. To produce an LPV representation with polyno-
mial dependence on θC and θ̇D, a second order Taylor series expansion is applied to all
nonlinear terms, providing the following LPV polynomial matrices

A(θC , θ̇D) = A0 + θ̇DA1 + θCA2 + θ̇DθCA3 + θ2
CA4 + θ̇Dθ

2
CA5, (2.5)

B(θC) = B0 + θCB1 + θ2
CB2, (2.6)

where Ai and Bj are known matrices. As can be noted, the proposed representation
is a polynomial LPV model since none of the state variables has been transformed into
a time-varying parameter. Higher-order expansions can be considered to improve the
model, but this also increases the numerical complexity of the simulations and to perform
the synthesis of controllers.

2.3.2 Quasi-LPV model based on high order Taylor expansion

This section deals with a more generic case where the LPV variables can be state
variables of the model. Unlike the previous case, it is not possible to apply the Jacobian
matrix directly, because this action would result in a first-order model around the oper-
ation point of the state variable. Thus, the strategy is to consider a high order Taylor
expansion, from which it is possible to represent a larger region around the operation
point where the model is still accurate.
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For this, it is considered the nonlinear model (2.1) such that the vector f(x) can be
decomposed as

f(x) =



f1(x)

f2(x)
...

fn(x)


.

The multivariables Taylor’s series is defined as

fi(x) =
∑

|γ|≤p

Dγf(x0)
γ! (x− x0)γ +Rx0,p(x− x0),

where p is the desired degree of the polynomial and Rx0,p(x − x0) are the terms with
degree greater than p. Therefore, a polynomial approximation of degree p is given by

fi(x) ≈ f̂i(x) =
∑

|γ|≤p

Dγf(x0)
γ! (x− x0)γ.

Applying this procedure for each fi, one has

f̂(x) =



f̂1(x)

f̂2(x)
...

f̂n(x)


.

The same is done for b(x) to obtain b̂(x), such that (2.1) can be represented as

ẋ(t) ≈ f̂(x) + b̂(x)u(t). (2.7)

Equation (2.7) represents a polynomial model to all variables in x. When dealing
with models where some states are not available for measurement, it is also possible to
work with only a subset of state variables, approximating the non measured ones in their
respective linearization points (a practical example is presented later to clarify this point).
Therefore, the LPV variables (defined by the vector of time-varying parameters ρ) are
organized in a matrix form to get the quasi-LPV model

ẋ(t) = A(ρ)(x(t) − x0) +B(ρ)(u(t) − u0). (2.8)

This methodology is simple and increases the region around the operation point where
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the model can represent the dynamics with accuracy. Regarding the closed-loop opera-
tion, this strategy can be used to increase the robustness against plant variations and
disturbances, since the model can represent the dynamics with more accuracy than the
standard linear model.

To exemplify this approach, consider a rotational inverted pendulum (Furuta pen-
dulum) (MORI; NISHIHARA; FURUTA, 1976), with nonlinear model presented in Ap-
pendix B, where θ0 and θ1 are the arm and pendulum angle, respectively, and Vp is the
PWM duty-cycle input. For more details see the Appendix B.

Applying the Taylor expansion of fourth-order, yields

θ̈0 ≈ −68.923θ3
1 + 1.5577θ2

1 θ̇0 + 0.06746θ2
1 θ̇1 − 125.867Vpθ

2
1 + 0.4623θ1θ̇

2
0 . . .

−0.6164θ1θ̇0θ̇1 − 0.6164θ1θ̇
2
1 + 36.2838θ1 − 1.263θ̇0 − 0.03893θ̇1 + 102.092Vp, (2.9)

θ̈1 ≈ −140.407θ3
1 + 3.28414θ2

1 θ̇0 + 0.1304θ2
1 θ̇1 − 265.37Vpθ

2
1 + 1.4435θ1θ̇

2
0 . . .

−0.9246θ1θ̇0θ̇1 − 0.9246θ1θ̇
2
1 + 113.286θ1 − 1.8952θ̇0 − 0.1215θ̇1 + 153.137Vp. (2.10)

As quasi-LPV variables, only the pendulum angle θ1 is selected because the arm angle
θ0 does not influence the dynamics (see Appendix B), only its derivative (arm velocity) s
present in the model. Finally, it is defined ρ = {θ1}.

As can be seen, the Taylor expansion considers all variables of the model, but the
only LPV variable in this example is θ1. Thus, a simplifying hypothesis is adopted. It is
considered that the other parameters, namely θ̇0 and θ̇1, are linear around the operation
point, such that

θ̈0 ≈ −68.923θ3
1 + 1.5577θ2

1 θ̇0 + 0.06746θ2
1 θ̇1 − 125.867Vpθ

2
1 . . .

+36.2838θ1 − 1.263θ̇0 − 0.03893θ̇1 + 102.092Vp,

θ̈1 ≈ −140.407θ3
1 + 3.28414θ2

1 θ̇0 + 0.1304θ2
1 θ̇1 − 265.37Vpθ

2
1 . . .

+113.286θ1 − 1.8952θ̇0 − 0.1215θ̇1 + 153.137Vp.

In a matrix notation form (numbers truncated with two decimal digits), one has
θ̇0

θ̇1

θ̈0

θ̈1

 ≈


0 0 1 0

0 0 0 1

0 36.28 − 68.92θ2
1 −1.26 + 1.56θ2

1 −0.04 + 0.07θ2
1

0 113.29 − 140.41θ2
1 −1.9 + 3.28θ2

1 −0.12 + 0.13θ2
1




θ0

θ1

θ̇0

θ̇1

 +


0

0

102.09 − 125.87θ2
1

153.14 − 265.37θ2
1

Vp.

(2.11)
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Eq. (2.11) can be written in a quasi-LPV form

ẋ(t) = A(θ1)x(t) +B(θ1)u(t) (2.12)

where,

u = Vp,

x =
[
θ0 θ1 θ̇0 θ̇1

]⊤
,

A(θ1) =



0 0 1 0

0 0 0 1

0 36.28 −1.26 −0.04

0 113.29 −1.9 −0.12


︸ ︷︷ ︸

A0

+θ2
1



0 0 1 0

0 0 0 1

0 −68.92 1.56 0.07

0 −140.41 3.28 0.13


︸ ︷︷ ︸

A1

,

B(θ1) =



0

0

102.09

153.14


︸ ︷︷ ︸

B0

+θ2
1



0

0

−125.87

−265.37


︸ ︷︷ ︸

B1

.

To evaluate the quality (accuracy) of this quasi-LPV model, a simulation was per-
formed considering Taylor expansions of third, fourth and fifth orders, besides the non-
linear and linear models. This experiment considers the original polynomial models (as
the one in (2.9) and (2.10) for degree four) and the associated quasi-LPV models (as
the one in (2.12)). In the first simulation the input is zero (Vp = 0) and the initial
condition is x(0) =

[
0 0.1 π

180 0 0
]⊤

. The results are shown in Figures 1-2, where the
curves indicated by Taylori are the models obtained by the Taylor expansion, and qLPVi

are the associated quasi-LPV models. As can be seen, curves qLPV4 and qLPV5 are
superimposed, and the LPV models represent the system quite well, even for large angles.

As a new investigation, the pendulum is considered at the equilibrium point and a
step in the input is applied (Vp = 0.05 in t = 0.3s). The results are shown in Figures
3-4. In this simulation, it is possible to see that the quasi-LPV models represented θ0

significantly better than the linear model, but only when θ1 presents high values. In this
case it is possible to see the difference between qLPV4 and qLPV5, because their input
matrices B are different.

Although the quasi-LPV models showed significantly better results than the linear
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(a) θ0 (b) θ1

Figure 1: Angular positions of the Furuta pendulum simulation considering the initial
condition θ1 = 0.1◦ and without input (Vp = 0).

Figure 2: Velocities of the Furuta pendulum simulation considering the initial condition
θ1 = 0.1◦ and without input (Vp = 0).
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(a) θ0 (b) θ1

Figure 3: Angular positions of the Furuta pendulum simulation considering the input
Vp = 0.05 applied at 0.3s.

Figure 4: Velocities of the Furuta pendulum simulation considering the input Vp = 0.05
applied at 0.3s.
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model for relatively high angles, at small angles the quasi-LPV models are still very close
to linear. However, the quasi-LPV models can be used to design controllers that may
improve the system performance in the presence of input disturbances.

Besides that, the Furuta pendulum is a very simple system and the quasi-LPV model
has only one LPV variable.

As a more complex example, consider a reaction wheel unicycle, where the nonlinear
model can be seen in the Appendix C, and the θr, θw, φ and ψ are the reaction wheel,
travel wheel, roll and pitch angles, respectively, and Vr and Vw are the voltage motor of
each wheel. For more details see the Appendix C.

The fourth degree Taylor expansion of the nonlinear model is

θ̈r ≈ 566Vr − 22φ− 52θ̇r + 29Vrψ
2 − 3.6φψ2 − 2.7ψ2θ̇r + 3.7φ3 − 1.1φ̇ψψ̇,

φ̈ ≈ 22φ− 55Vr + 5.1θ̇r − 29Vrψ
2 + 3.6φψ2 + 2.7ψ2θ̇r − 3.7φ3 + 1.1φ̇ψψ̇,

θ̈w ≈ 400Vw − 155ψ + 45ψ̇ − 68θ̇w − 477Vwψ
2 + 76φ2ψ + 5φ̇2ψ . . .

+5.5ψψ̇2 − 53ψ2ψ̇ + 80ψ2θ̇w + 277ψ3,

ψ̈ ≈ 58ψ − 93.0Vw − 10.0ψ̇ + 16.0θ̇w + 144.0Vwψ
2 − 29φ2ψ − 1.9φ̇2ψ . . .

−1.1ψψ̇2 + 15ψ2ψ̇ − 23ψ2θ̇w − 74ψ3.

This system has two LPV variables (φ and ψ). The other variables are assumed to
be linear around the operation point. These considerations lead to the following model

θ̈r ≈ 566Vr − 22φ− 52θ̇r + 29Vrψ
2 − 3.6φψ2 − 2.7ψ2θ̇r + 3.7φ3, (2.13)

φ̈ ≈ 22φ− 55Vr + 5.1θ̇r − 29Vrψ
2 + 3.6φψ2 + 2.7ψ2θ̇r − 3.7φ3, (2.14)

θ̈w ≈ 400Vw − 155ψ + 45ψ̇ − 68θ̇w − 477Vwψ
2 + 76φ2ψ . . .

−53ψ2ψ̇ + 80ψ2θ̇w + 277ψ3, (2.15)

ψ̈ ≈ 58ψ − 93.0Vw − 10.0ψ̇ + 16.0θ̇w + 144.0Vwψ
2 − 29φ2ψ . . .

+15ψ2ψ̇ − 23ψ2θ̇w − 74ψ3, (2.16)

Defining ρ = {φ, ψ}, the quasi-LPV model is given by

ẋ(t) = A(φ, ψ)x(t) +B(φ, ψ)u(t),
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where

u =
[
Vr Vw

]⊤
,

x =
[
θr φ θw ψ θ̇r φ̇ θ̇w ψ̇

]⊤
,

A(φ, ψ) =

 0 I

A1
1 A1

2

 + φ2

 0 I

A2
1 0

 + ψ2

 0 I

A3
1 A3

2

 ,
B(φ, ψ) =

 0

B1

 + ψ2

 0

B2

 ,
with

A1
1 =


0 −22 0 0

0 22 0 0

0 0 0 −155

0 0 0 58

 , A1
2 =


−52 0 0 0

5.1 0 0 0

0 0 −68 45

0 0 16 −10

 , A2
1 =


0 −3.7 0 0

0 3.7 0 0

0 0 0 76

0 0 0 −29

 ,

A3
1 =


0 −3.6 0 0

0 3.6 0 0

0 0 0 277

0 0 0 −74

 , A3
2 =


−2.7 −3.6 0 0

2.7 3.6 0 0

0 0 80 −53

0 0 −23 15

 , B1 =


566 0

−55 0

0 400

0 −93

 ,

B2 =


29 0

−29 0

0 −477

0 144

 .

To evaluate the accuracy of the quasi-LPV model of the unicycle, a simulation was
performed considering a Taylor expansion of degree four (Taylor4), the associated quasi-
LPV model (qLPV4), and the nonlinear and linear models. Using the initial condition
x =

[
0 −0.1 π

180rad 0 0.1 π
180rad 0 0 0 0

]⊤
, the results are shown in Figure 5, where,

for simplicity, only φ and ψ are shown. Similarly to the Furuta pendulum, the differences
between quasi-LPV and linear models are visible only at very high angles.

Considering now null initial condition, but with pulses in the inputs

Vr =


0.3, 0.2 ≤ t ≤ 0.3

0, otherwise
, (2.17)

Vw =


−0.3, 0.9 ≤ t ≤ 1

0, otherwise
, (2.18)
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Figure 5: Angular positions of the unicycle simulation considering the initial condition
φ = −0.1◦, ψ = 0.1◦ and without input.

the outputs of this simulation are shown in the Figure 6. Clearly, it is possible to see a
significant difference between the linear and quasi-LPV models.
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Figure 6: Angular positions of the unicycle simulation considering the inputs given in
(2.17) and (2.18).

2.4 Modeling based on the Jacobian matrix with a
polynomial regression

The strategy proposed in the previous section is specially suitable to address the reg-
ulation problem, where it is expected that trajectories of the states remain close to the
operation point. However, although the LPV and quasi-LPV models can represent the dy-
namics with better accuracy than the standard linear model around the operating point,
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all models will deviate significantly from the original nonlinear system as the trajectories
move away from the operating condition. Aiming to tackle this problem, which occurs
naturally in the case of designing controllers for reference tracking, this section proposes
a new technique to design LPV and quasi-LPV models. The strategy relies on producing
LPV and quasi-LPV models to approximate not a single but a family of operating condi-
tions. In other words, for each value of the LPV (or quasi-LPV) variables, the resulting
linear model is associated to a different operation point.

The approach proposed in this section is capable to design polynomial models of any
order with an arbitrary number of variables. The goal is to devise an algorithm that
can be used for any continuous nonlinear model structured as (2.1). This approach is
somewhat similar to the LPV identification technique, as presented in (DE CAIGNY et
al., 2010; DE CAIGNY; CAMINO; SWEVERS, 2011), where the main strategy is the
interpolation of linear models.

The first step consists in computing linear approximations in n operations points1

Ak = J(ẋ, x)|x0k
,

where k = 1, . . . , n is the operation point. The strategy is to end up with a regression
problem for each term of A (SEBER; WILD, 1989), such that

V (i, j)p(i, j) = bA(i, j),

where bA(i, j) is the vector with the values of the entry (i, j) of matrix Ak, p(i, j) is the
vector of polynomial parameters for the entry (i, j) and V (i, j) is a type of Vandermonde
matrix (SEBER; WILD, 1989), here called generic Vandermonde matrix, for the entry
(i, j). For ease of notation, all steps hereafter are considered for the entry (i, j).

The vector bA is obtained by vectorization of the observations (values of each operation
point)

bA =



a1

a2

...

ak


n×1

.

Vector p is the vector of parameters, whose dimension depends on the number of
1All analysis and demonstrations are done only for matrix A since the procedure for matrix B is

similar.
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variables and on the degree of each variable. For instance, consider a polynomial f̂ with
variables (x, y) of degrees 2 and 1, respectively, given by

f̂ = p0 + p1x+ p2x
2 + p3y + p4xy + p5x

2y,

p =
[
p0 p1 p2 p3 p4 p5

]⊤
.

In this case the dimension of p is given by the number of terms (monomials) np, which
can be computed through

np =
nv∏
l=1

(gl + 1),

where nv is the number of variables and gl is the degree associated to the variable l.

The generic Vandermonde matrix can be generically expressed using vectors of the
polynomials and by calculating a predetermined sequence of Kronecker products in a
desired order. For example, let us consider a polynomial of three variables x, y and z

with degrees two, two and one,

px =
[
1 x x2

]
,

py =
[
1 y y2

]
,

pz =
[
1 z

]
.

Hence, the combination of these vectors is represented as

pxy = py ⊗ px =
[
1 x x2 y yx yx2 y2 y2x y2x2

]
,

pxyz = pz ⊗ pxy =
[

1 x x2 y yx yx2 y2 y2x y2x2 . . .

. . . z zx zx2 zy zyx zyx2 zy2 zy2x zy2x2
]
.

Then, the generic Vandermonde matrix is

V =



1 x1 x2
1 y1 y1x1 y1x

2
1 . . . z1y

2
1 z1y

2
1x1 z1y

2
1x

2
1

1 x2 x2
2 y2 y2x2 y2x

2
2 . . . z2y

2
2 z2y

2
2x2 z2y

2
2x

2
2

... ... ... ... ... ... . . . ... ... ...

1 xn x2
n yn ynxn ynx

2
n . . . zny

2
n zny

2
nxn zny

2
nx

2
n


.

The last step consists in solving the resulting linear system of equations

V p = bA,
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which can be performed considering the least squares approach,

p̂ = V +bA + z,

where z belongs to the null space of V and V + is the pseudoinverse of V . Thus, considering
the minimum norm result, the solution is calculated as

p̂ = V +bA.

The steps previously described can be summarized in terms of an algorithm, as pre-
sented in what follows.

Algorithm 1. Considering the nonlinear model described as in (2.1), the polynomial
matrices A(ρ) and B(ρ) associated to model (2.8) are obtained through the following steps:

1. Define a vector of LPV variables ρ = [ρ1, . . . , ρnv ] and choose the operation points
xk, k = 1, . . . , n;

2. Compute linear models at each operation point

Ak = J(f, xk)|xk
, k = 1, . . . , n;

3. For each entry (i, j) of Ak, build the observation vector bA,

bA =



A(i, j)1

A(i, j)2

...

A(i, j)k


;

4. Construct the vectors vi, i = 1, . . . , nv, each one containing the monomials up to
degree gi of the LPV variable ρi, that is

v1 =
[
1 ρ1 ρ2

1 . . . ρg1
1

]
,

v2 =
[
1 ρ2 ρ2

2 . . . ρg2
2

]
,

...

vnv =
[
1 ρnv ρ2

nv
. . . ρgnv

nv

]
;

5. Calculate the generic Vandermonde matrix using the Kronecker product applied to
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each operation point

V =



vnv ⊗ · · · ⊗ v2 ⊗ v1|x1

vnv ⊗ · · · ⊗ v2 ⊗ v1|x2

...

vnv ⊗ · · · ⊗ v2 ⊗ vi|xk


;

6. Solve the least square problem

p = V +bA;

7. Save the vector p of the previous step, return to step 3 and use the next value of
the pair (i, j). Repeat the procedure for all elements of Ak. The combination of all
entries p(i, j) results in the polynomial matrix A(ρ).

8. Finally, apply the algorithm for the input matrix.

As a result of the algorithm one has the matrices A(ρ) and B(ρ) associated to the
following LPV (or quasi-LPV) system

ẋ(t) = A(ρ)(x(t) − xop(t)) +B(ρ)(u(t) − uop(t)). (2.19)

Particularly for quasi-LPV models, the substitution of a given value of ρ in the matrices
A(ρ) and B(ρ) provides a linear model around an operating point defined by ρ. As a
consequence, it is important to consider the variables xop(t) and uop(t) (that are time-
varying). This topic is further discussed later.

To demonstrate the applicability of the algorithm, consider a gyroscope actuator
(TORIUMI; ANGéLICO; TANNURI, 2018), with nonlinear model presented in Appendix
D. This system was chosen because it presents a great complexity. The system can be of
minimum or non-minimum phase and even the direction of the actuators depends on the
value of the state variables. In addition, it is also an under-actuated system (TORIUMI;
ANGELICO, 2020).

For this system, two LPV variables are considered: θB and θC , with the following
operation limits

−75◦ ≤ θB ≤ 75◦,

−50◦ ≤ θC ≤ 50◦.
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A grid with resolution of 5◦ is considered for each variable, resulting in

vecθB
=

[
−75◦ −70◦ . . . 70◦ 75◦

]
,

vecθc =
[
−40◦ −35◦ . . . 35◦ 40◦

]
.

Second and third degree polynomials with respect to θB and θC are chosen. Because
the matrices of the gyroscope model are very large and more complex than the models
seen so far in this work, the algorithm is not shown step-by-step. The second degree
model designed by the algorithm is

ẋ = A(θB, θC)(x− x0(θB, θC)) +B(θB, θC)(u− u0),

A(θB, θC) = A1 + θBA2 + θ2
BA3 + θCA4 + θBθCA5 . . .

+θ2
BθCA6 + θ2

CA7 + θBθ
2
CA7 + θ2

Bθ
2
CA9,

B(θB, θC) = B1 + θBB2 + θ2
BB3 + θCB4 + θBθCB5 . . .

+θ2
BθCB6 + θ2

CB7 + θBθ
2
CB7 + θ2

Bθ
2
CB9,

where the matrices Ai, i = 1, . . . , 9, are given by

A1 =



0 0 1 0 0

0 0 0 1 0

0 0 −0.02 0 −8.78

0 0 0 −0.06 0

0 0 42.41 0 −0.44


, A2 =



0 0 0 0 0

0 0 0 0 0

0 0 5.94 0 −0.1

0 0 0 0 0

0 0 −0.02 0 −5.94


,

A3 =



0 0 0 0 0

0 0 0 0 0

0 0 −0.01 0 2.42

0 0 0 0 0

0 0 −15.22 0 −0.09


, A4 =



0 0 0 0 0

0 0 0 0 0

0 0 0 −0.002 22.59

0 0 −0.002 0 0

0 0.07 0 −40.29 −0.44


,

A5 =



0 0 0 0 0

0 0 0 0 0

0 −0.04 0 0 0

0 0 −19.93 0 −0.01

0 0 0 −0.002 0


, A6 =



0 0 0 0 0

0 0 0 0 0

0 0 0 0.001 0

0 0 0.001 0 0.46

0 −0.08 0 0 0


,
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A7 =



0 0 0 0 0

0 0 0 0 0

0 0 −0.001 0 4.77

0 0 0 0.01 0

0 0 −20.62 0 0


, A8 =



0 0 0 0 0

0 0 0 0 0

0 0 −3.31 0 −0.002

0 −0.01 0 0 0

0 0 −0.001 0 3.31


,

A9 =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 −1.2

0 0 0 0 0

0 0 7.08 0 −0.001


,

and Bi, i = 1, . . . , 9 are given by

B1 =



0 0

0 0

0 0

0 −21.9

36.85 0


, B2 =



0 0

0 0

8.5 0

0 0

0 0


, B3 =



0 0

0 0

0 0

0 0.01

7.17 0


, B4 =



0 0

0 0

0 −8.16

0 0

0 0


,

B5 =



0 0

0 0

0 0

0.54 0

0 −5.49


, B6 =



0 0

0 0

0 2.28

0 0

0 0


, B7 =



0 0

0 0

0 0

0 11.86

0.03 0


, B8 =



0 0

0 0

0.18 0

0 0

0 0


,

B9 =



0 0

0 0

0 0

0 0.43

0.09 0


.

To evaluate the accuracy of the two designed polynomial LPV models (denoted by
xqLP V 2 and xqLP V 3), simulations are performed comparing the open-loop responses with
the nonlinear dynamics (xnlinear) given in Appendix D and, for completeness, with a lin-
earized model (xlinear). The input signals are presented in Figure 7. As mentioned before,
the proposed algorithm produces models structured as in (2.19), which are dependent on
(x− xop). In a closed-loop operation, xop is treated as a reference, and, in the open-loop
simulation, performed in this section, it is considered a grid with resolution of 5◦. For
instance, within the interval 0◦ ≤ θB < 5◦, the corresponding xop is set to 0, but within
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5◦ ≤ θB < 10◦, it is set to 5◦, and so on. We stress that this approach is just considered in
the open-loop simulation to verify how close the polynomial LPV representation is from
the nonlinear model.

Figure 7: Inputs applied to validate the quasi-LPV model associated to the gyroscope
system.

Regarding the linear model, it is obtained around the operating point2

xop =
[
0 0 0 0 400 rpm

]
,

θC = 0,
(2.20)

and, considering the initial condition given by

xic =
[
0 20◦ 0 0 400 rpm

]
,

θC = −20◦.
(2.21)

The trajectories of θA and θB are shown in Figure 8. As can be seen, the linear model
does not represent the nonlinear model well. On the other hand, the proposed quasi-LPV
models, whose trajectories are also shown in Figure 8, are more accurate, specially model
xqLP V 3.

The simulations presented in Figure 9 consider that the linear model was linearized
2The models investigated in this work assume the units of all variables in the international system.

However, in some cases the units are explicitly presented to facilitate the reading.
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(a) θA (b) θB

Figure 8: Outputs of the nonlinear, second degree quasi-LPV, third degree quasi-LPV
and the linear model obtained around θB = 0 and θC = 0, and initial conditions given in
(2.21).

at the same point as the initial condition, i.e.,

xop = xic =
[
0 20◦ 0 0 400 rpm

]
, (2.22)

θC = −20◦,

In this case the results show that the linear model represents the nonlinear model very
well, but the third-degree quasi-LPV model does even better.

(a) θA (b) θB

Figure 9: Outputs of the nonlinear, second degree quasi-LPV, third degree quasi-LPV
and the linear model obtained around θB = 20◦ and θC = −20◦, and initial conditions
given in (2.22).

Let us consider now that, for some reason, the initial condition of the linear model
has completely reversed (a situation that can naturally happen during the operation of
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the system), i.e.,

xic =
[
0 −20◦ 0 0 400 rpm

]
, (2.23)

θC = 20◦,

but the model is still linearized around the same point considered in previous simulation.
The new results are presented in Figure 10.

(a) θA (b) θB

Figure 10: Outputs of the nonlinear, second degree quasi-LPV, third degree quasi-LPV
and the linear model obtained around θB = 20◦0 and θC = −20◦, and initial conditions
given in (2.23).

As conclusion, the proposed quasi-LPV models can represent the nonlinear dynamics
in all analyzed operating points, while the linear model loses representativeness when
it is far from the linearization point, as expected. These results validate the ability of
Algorithm 1 of providing accurate polynomial LPV representations for a nonlinear CMG
model around a range of operation.
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3 CONTROLLER DESIGN

In this chapter, synthesis conditions formulated in terms of parameter-dependent LMIs
are provided for the design of gain-scheduled controllers for LPV (or quasi-LPV) systems.
The approach addresses stabilization, H2 and H∞ control, allowing the controllers to
depend polynomially on the time-varying parameters. The results are split in three main
topics: state feedback, static output feedback and dynamic output feedback control.

3.1 State-feedback control

This section presents synthesis procedures for the design of gain-scheduled state-
feedback controllers. As a first step, the stabilization problem is presented in details
to make clear the proposed technical contributions, which is a new strategy to deal with
the time-derivative of the Lyapunov matrix, extending the conditions of (RODRIGUES;
OLIVEIRA; CAMINO, 2018) to cope with time-varying parameters. A numerical ex-
ample based on a simulation performed on a database of uncertain systems is given to
illustrate the application of the proposed conditions and to evaluate the conservativeness
when compared to similar conditions from the literature. After that, conditions for the
synthesis of H2 and H∞ controllers are presented.

Consider the LPV system

G =


ẋ = A(ρ(t))x+B(ρ(t))u+Bw(ρ(t))w

z = Cz(ρ(t))x+D(ρ(t))u+Dw(ρ(t))w

y = C(ρ(t))x+Dwy(ρ(t))w,

(3.1)

where x(t) ∈ Rnx , u(t) ∈ Rnu , y(t) ∈ Rny , w(t) ∈ Rnw and z(t) ∈ Rnz are the state, control
input, measured output, exogenous input and controlled output vectors1, respectively.
Matrices A(ρ(t)), B(ρ(t)), Bw(ρ(t)), Cz(ρ(t)), D(ρ(t)), Dw(ρ(t)), C(ρ(t)) and Dwy(ρ)
have appropriate dimensions and depend polynomially on ρ(t). The parameters ρ(t) =

1The measured output vector y is used only the in output-feedback problem.
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[ρ1(t), . . . , ρN(t)] and their time-derivatives are assumed to be bounded in the form

ai ≤ ρi(t) ≤ ai,

bi ≤ ρ̇i(t) ≤ bi,

0 ∈ [bi, bi],

such that ρ(t) belongs to the hyperrectangle Θ and ρ̇(t) belongs to the hyperrectangle Γ
for all t ≥ 0 (APKARIAN; ADAMS, 1998).

The aim is to design the gain-scheduled state-feedback control law u(t) = K(ρ(t))x(t)
to stabilize the system, possibly also ensuring attenuation levels from the input w to the
output z in terms of the H2 and H∞ norms. To make feasible the implementation of this
control law, it is assumed that the vector of parameters ρ(t) and states x(t) are available
in real-time. The closed-loop system is given by

ẋ(t) = Acl(ρ(t))x(t) +Bw(ρ(t))w(t),

z(t) = Ccl(ρ(t))x(t) +Dw(ρ(t))w(t),

where Acl(ρ(t)) = A(ρ(t)) + B(ρ(t))K(ρ(t)) and Ccl(ρ(t)) = Cz(ρ(t)) + D(ρ(t))K(ρ(t)).
As the parameters ρ(t) and ρ̇(t) are assumed to belong to hyperrectangles for all t ≥ 0,
from this point the explicit dependence of these parameters on t is only presented if it
is relevant for the context. In general this option streamlines the notation and shorten
formulas.

As a final important remark, all synthesis conditions presented in this chapter consider
an LPV system, assuring that all designed controllers are globally stabilizing. On the other
hand, if the conditions are applied to quasi-LPV systems, the controllers are only locally
stabilizing.

3.1.1 Stabilization

The next theorem presents a synthesis condition to design the gain K(ρ) such that
the closed-loop system is asymptotically stable.

Theorem 1. Let ϵ ̸= 0 and ξ ∈ (−1, 1) be given scalars. If there exist matrices W (ρ) =



42

W (ρ)⊤, Y (ρ), X(ρ) and Z(ρ) that satisfy2

W (ρ) > 0,
Ξ(1, 1)(ρ) Ξ(1, 2)(ρ) V̄ (ρ)

⋆ Ξ(2, 2)(ρ) −V̄ (ρ)

⋆ ⋆ −He(X(ρ))

 < 0, (3.2)

where

Ξ(1, 1)(ρ) = W (ρ) + He(Ã(ρ)Y (ρ) + B̄(ρ)Z(ρ)),

Ξ(1, 2)(ρ) = ξ(Ã(ρ)Y (ρ) + B̄(ρ)Z(ρ)) − Y (ρ)⊤Â(ρ)⊤ − Z(ρ)⊤B̄(ρ)⊤,

Ξ(2, 2)(ρ) = −W (ρ) − ξHe(ÂY (ρ) + B̄Z(ρ)),

Â(ρ) = ϵA(ρ) + 1
2ϵI, (3.3)

Ã(ρ) = ϵA(ρ) − 1
2ϵI, (3.4)

B̄(ρ) = ϵB(ρ), (3.5)

V̄ (ρ) = ϵ

(
−Ẇ (ρ) + 1

2X(ρ)
)
, (3.6)

for all ρ ∈ Θ and ρ̇ ∈ Γ, then the gain-scheduled state-feedback gain K(ρ) = Z(ρ)Y (ρ)−1

stabilizes the system (3.1).

Proof. First, we show that matrix Y (ρ) is invertible. Note that the feasibility of inequality
(3.2) ensures that Ξ(1, 1) Ξ(1, 2)

⋆ Ξ(2, 2)

 < 0

Multiplying this inequality on the left by T =
[
I I

]
and on the right by T⊤, yields

−
(1
ϵ

)
(1 + ξ)(Y (ρ) + Y (ρ)⊤) < 0,

which ensures that Y (ρ) is full rank, since ξ ∈ (−1, 1) and ϵ ̸= 0.

The next step is to prove that ξ belongs to a bounded interval. Applying the following
transformation on (3.2)

ξI −I 0

0 0 I



Ξ(1, 1)(ρ) Ξ(1, 2)(ρ) V̄ (ρ)

⋆ Ξ(2, 2)(ρ) −V̄ (ρ)

⋆ ⋆ −He(X(ρ))



ξI 0

−I 0

0 I

 < 0,

2Ẇ (ρ) is used to denote ∂W
∂ρ

dρ
dt and He(A) denotes A+A⊤.
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results in (ξ2 − 1)W (ρ) (ξ − 1)V̄ (ρ)

V̄ (ρ)⊤(ξ − 1) −X(ρ) −X(ρ)⊤

 < 0, (3.7)

which, to be feasible, requires that (ξ2 − 1)W (ρ) < 0. As W (ρ) > 0, we conclude that
−1 < ξ < 1.

Next, we prove that the feasibility of (3.2) is sufficient to guarantee closed-loop stabil-
ity. Considering the transformation K(ρ)Y (ρ) = Z(ρ) and the following transformation
applied on (3.2)

Âcl(ρ) Ãcl(ρ) 0

0 0 I



Ξ(1, 1)(ρ) Ξ(1, 2)(ρ) V̄ (ρ)

⋆ Ξ(2, 2)(ρ) −V̄ (ρ)

⋆ ⋆ −He(X(ρ))



Âcl(ρ)⊤ 0

Ãcl(ρ)⊤ 0

0 I

 < 0,

where

Âcl(ρ) = ϵAcl(ρ) + 1
2ϵI, (3.8)

Ãcl(ρ) = ϵAcl(ρ) − 1
2ϵI, (3.9)

Acl(ρ) = A(ρ) +B(ρ)K(ρ),

one hasÂcl(ρ)W (ρ)Âcl(ρ)⊤ − Ãcl(ρ)W (ρ)Ãcl(ρ)⊤ (Âcl(ρ) − Ãcl(ρ))V̄ (ρ)

V̄ (ρ)⊤(Âcl(ρ) − Ãcl(ρ))⊤ −X(ρ) −X(ρ)⊤

 < 0. (3.10)

Using the definitions given in (3.3)-(3.6), condition (3.10) can be rewritten asW (ρ)Acl(ρ)⊤ + Acl(ρ)W (ρ) −Ẇ (ρ) + 1
2X(ρ)

−Ẇ (ρ) + 1
2X(ρ)⊤ −X(ρ) −X(ρ)⊤

 < 0.

Finally, applying the transformation

[
I 1

2I
] W (ρ)Acl(ρ)⊤ + Acl(ρ)W (ρ) −Ẇ (ρ) + 1

2X(ρ)

−Ẇ (ρ) + 1
2X(ρ)⊤ −X(ρ) −X(ρ)⊤


 I

1
2I

 < 0,

provides

W (ρ)Acl(ρ)⊤ + Acl(ρ)W (ρ) − Ẇ (ρ) < 0,

that assures the closed-loop stability through the existence of the parameter-dependent
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quadratic in the state Lyapunov function v(x) = x⊤P (ρ)x with P (ρ) = W (ρ)−1 (MON-
TAGNER et al., 2009).

The advantage of the synthesis conditions of Theorem 1 with respect to previous
approaches from the literature, that also employ a search for a scalar parameter to reduce
the conservativeness of the results, is the bounds for the scalar ξ. This feature facilitates
the implementation of an optimization procedure aiming to obtain improved guaranteed
costs. To achieve the bounds for ξ, note that a special treatment for the time-derivative
of the Lyapunov matrix was employed. Using an additional slack variable X(ρ), the term
Ẇ (ρ) was removed from block (1,1) of the left-hand side of (3.2) (note that Ẇ (ρ) appears
only in blocks (1,3) and (2,3)), allowing to define the bounds for ξ in equation (3.7). This
technical contribution can be useful in other contexts where the time-derivative of the
Lyapunov matrix is also an issue, as in the dynamic output-feedback problem.

The next result (Corollary 1) is an extension of Theorem 1 to address the problem of
robust stabilizing control, that is, the design of a fixed (ρ-independent) gain K(ρ) = K.
This synthesis condition is specially suitable to address problems where the parameters
ρ(t) cannot be measured in real time.

Corollary 1. Let ϵ ̸= 0 and ξ ∈ (−1, 1) be given scalars. If there exist matrices W (ρ) =
W (ρ)⊤, X(ρ), Y and Z that satisfy

W (ρ) > 0,
Ξ(1, 1)(ρ) Ξ(1, 2)(ρ) V̄ (ρ)

⋆ Ξ(2, 2)(ρ) −V̄ (ρ)

⋆ ⋆ −He(X(ρ))

 < 0,

where

Ξ(1, 1)(ρ) = W (ρ) + He(Ã(ρ)Y + B̄(ρ)Z),

Ξ(1, 2)(ρ) = ξ(Ã(ρ)Y + B̄(ρ)Z) − Y ⊤Â(ρ)⊤ − Z⊤B̄(ρ)⊤,

Ξ(2, 2)(ρ) = −W (ρ) − ξHe(Â(ρ)Y + B̄(ρ)Z),

with Â(ρ), Ã(ρ), B̄(ρ) and V̄ (ρ) given in (3.3)-(3.6), for all ρ ∈ Θ and ρ̇ ∈ Γ, then the
robust state-feedback gain K = ZY −1 stabilizes the system (3.1).

One possibility to evaluate the conservatism of the proposed synthesis conditions
is to perform a numerical comparison with conditions from the literature. With this
purpose, we consider a comparison in the context of time-invariant uncertainty, employing
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the database of unstable uncertain systems provided in (Oliveira; de Oliveira; Peres,
2011). The systems are guaranteedly stabilized by a robust (parameter-independent)
state-feedback gain but not quadratically stabilized. The following variation rates are
considered:

−κ ≤ ρ̇i ≤ κ,

where κ ∈ {10−3, 10−1, 1}. As the database was created for time-invariant uncertainty,
the case κ = 10−3 is specially suitable to evaluate the performance of Corollary 1 when
compared to other conditions specialized in time-invariant uncertainty.

As shown in (Oliveira; de Oliveira; Peres, 2011), the least conservative condition
(based on Finsler’s Lemma) was given in (EBIHARA; HAGIWARA, 2004) (denoted by
EH04) and we also consider the condition from (RODRIGUES; OLIVEIRA; CAMINO,
2015) (denoted by ROC15), that is the method from which our approach was derived.
Table 1 shows the result of the simulation, where n is the number of states, N is the
number of vertices of polytope and m is the number of inputs. As the main interest of
Theorem 1 and Corollary 1 is to exploit the bounded parameter ξ, the parameter ϵ is
fixed at 0.1 (as suggested in (RODRIGUES; OLIVEIRA; CAMINO, 2015)). Besides, the
following set of values is considered for the parameter ξ when testing Corollary 1 (19
equally spaced values)

ξ =
[
−0.9 −0.8 −0.7 . . . 0.7 0.8 0.9

]
.

As expected, as κ grows, the effectiveness of Corollary 1 decreases. However, the
important conclusion is that the results obtained for κ = 10−3 are very close to the
condition given in (RODRIGUES; OLIVEIRA; CAMINO, 2015) (ROC15 in Table 1).
This fact shows that the extra slack variableX(ρ), specially included to deal with the time-
derivative of the Lyapunov matrix, does not generate conservativeness when imposing
particular structures to the variables.

Motivated by the results obtained in the case of stabilization, the extensions to cope
with H2 and H∞ performance are presented in the next sections.
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Table 1: Number of system (among 100) stabilized by a robust state-feedback gain.

(n,N,m) EH04 ROC15 Corollary 1
κ = 10−3 κ = 10−1 κ = 1

(2,2,1) 100 82 82 65 40
(2,3,1) 58 56 54 35 25
(2,4,1) 50 52 51 42 26
(2,5,1) 60 63 62 56 31
(3,2,1) 82 78 78 70 48
(3,3,1) 49 52 52 46 26
(3,4,1) 38 40 39 37 31
(3,5,1) 33 38 38 35 27
(4,2,1) 75 74 74 73 53
(4,3,1) 49 54 54 51 36
(4,4,1) 41 43 43 41 34
(4,5,1) 28 32 32 30 20
(5,2,1) 77 78 78 76 60
(5,3,1) 54 62 62 61 49
(5,4,1) 39 47 47 43 33
(5,5,1) 26 29 29 29 22

Success m=1 53.7% 55% 54.7% 49.4% 35.1%
(3,2,2) 97 97 97 95 83
(3,3,2) 75 78 78 72 57
(3,4,2) 70 73 73 70 49
(3,5,2) 61 66 66 62 48
(4,2,2) 98 97 97 97 78
(4,3,2) 67 69 69 66 53
(4,4,2) 63 68 68 65 55
(4,5,2) 60 68 68 66 51
(5,2,2) 91 91 91 90 74
(5,3,2) 71 75 75 74 58
(5,4,2) 68 72 72 71 57
(5,5,2) 59 67 67 66 51

Success m=2 73.3% 76.8% 76.8% 74.5% 59.5%

3.1.2 H2 control

Considering the system G given in (3.1) as asymptotically stable and assuming that
Dw(ρ) = 0, the H2 norm of G is defined as

∥G∥2
2 = lim

h→∞
ε

{
1
h

∫ h

0
z(t)⊤z(t)dt

}

when the input w(t) is a stationary zero-mean white noise with power spectrum density
matrix equal to identity (DE SOUZA; TROFINO, 2006). The symbol ε denotes the
mathematical expectation.
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Lemma 1. (SZNAIER, 1999) Let Dw(ρ) = 0. If there exist parameter-dependent matrices
W (ρ) = W (ρ)⊤ and H(ρ) = H(ρ)⊤ and a scalar µ > 0 such that the parameter-dependent
LMIs

µ > Tr(H(ρ)), (3.11)H(ρ) Bw(ρ)⊤

⋆ W (ρ)

 > 0, (3.12)

A(ρ)W (ρ) +W (ρ)A(ρ)⊤ − Ẇ (ρ) W (ρ)Cz(ρ)⊤

⋆ −I

 < 0 (3.13)

hold for all ρ ∈ Θ and ρ̇ ∈ Γ, then system (3.1) in open-loop is asymptotically stable and
√
µ is an H2 guaranteed cost, that is, ∥G∥2 <

√
µ.

Next theorem is the extension of Theorem 1 to cope with the H2 norm as perfor-
mance criterion. As a result, one can design a gain-scheduled stabilizing controller that
guarantees an H2 guaranteed cost for the closed-loop system. As a necessary hypothesis,
matrix Dw(ρ) is considered null (to ensure the existence of the H2 norm).

Theorem 2. Let ξ ∈ (−1, 1) and ϵ ̸= 0 be given scalars. If there exist parameter-
dependent matrices W (ρ) = W (ρ)⊤, H(ρ) = H(ρ)⊤, Y (ρ), X(ρ) and Z(ρ), and a scalar
µ > 0 such that the following parameter-dependent LMIs

µ > Tr(H(ρ)), (3.14)H(ρ) Bw(ρ)⊤

⋆ W (ρ)

 > 0, (3.15)



Ξ(1, 1)(ρ) Ξ(1, 2)(ρ) Ξ(1, 3) V̄ (ρ)

⋆ Ξ(2, 2)(ρ) ξΞ(1, 3)(ρ) −V̄ (ρ)

⋆ ⋆ −I 0

⋆ ⋆ ⋆ −He(X(ρ))


< 0, (3.16)

where

Ξ(1, 1)(ρ) = W (ρ) + He
(
Ã(ρ)Y (ρ) + B̄(ρ)Z(ρ)

)
,

Ξ(1, 2)(ρ) = ξ(Ã(ρ)Y (ρ) +B(ρ)Z(ρ)) − Y (ρ)⊤Â(ρ)⊤ − Z(ρ)⊤B(ρ)⊤,

Ξ(1, 3)(ρ) = Y (ρ)⊤Cz(ρ)⊤ + Z(ρ)⊤D(ρ)⊤

Ξ(2, 2)(ρ) = −W (ρ) − ξHe
(
Â(ρ)Y (ρ) +B(ρ)Z(ρ)

)
,

with Â(ρ), Ã(ρ), B̄(ρ) and V̄ (ρ) given in (3.3)-(3.6), hold for all ρ ∈ Θ and ρ̇ ∈ Γ, then
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K(ρ(t)) = Z(ρ)Y (ρ)−1 is a robustly stabilizing parameter-dependent state-feedback gain
and √

µ is an H2 guaranteed cost for the system (3.1) in closed-loop, that is, ∥G∥2 <
√
µ.

Proof. First, we show that ξ can be constrained to the range (−1, 1) without loss of
generality. To see this, multiply (3.16) on the left by B⊤

⊥ and on the right by B⊥, where

B⊥ =



ξI 0 0

−I 0 0

0 I 0

0 0 I


, (3.17)

yielding 
(ξ2 − 1)W (ρ) 0 (ξ + 1)V̄ (ρ)

0 −I 0

(ξ + 1)V̄ (ρ)⊤ 0 −X(ρ) −X(ρ)⊤

 < 0, (3.18)

which is feasible only if (ξ2 − 1)W (ρ) is negative definite. As W (ρ) is positive definite,
then it is necessary that −1 < ξ < 1.

Multiplying (3.16) on the left by A⊤
⊥ and on the right by A⊥, with

A⊥ =



Â(ρ)⊤ +K(ρ)⊤B(ρ)⊤ Cz(ρ)⊤ +K(ρ)⊤D(ρ)⊤ 0

Ã(ρ)⊤ +K(ρ)⊤B(ρ)⊤ Cz(ρ)⊤ +K(ρ)⊤D(ρ)⊤ 0

0 I 0

0 0 I


,

and considering the change of variable Z(ρ) = K(ρ)Y (ρ), results in

Âcl(ρ)W (ρ)Âcl(ρ)⊤ − Ãcl(ρ)W (ρ)Ãcl(ρ)⊤ ⋆ ⋆

C̄cl(ρ)W (ρ)(Âcl(ρ) − Ãcl(ρ))⊤ −I ⋆

V̄ (ρ)⊤(Âcl(ρ) − Ãcl(ρ))⊤ 0 −He(X(ρ))

 < 0,

where Âcl(ρ) and Ãcl(ρ) are given in (3.8) and (3.9), respectively, and C̄cl(ρ) = ϵCcl(ρ).

Using the definitions given in (3.3)-(3.6), the previous inequality can be rewritten in
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the form 
W (ρ)Acl(ρ)⊤ + Acl(ρ)W (ρ) W (ρ)Ccl(ρ)⊤ −Ẇ (ρ) + 1

2X(ρ)

Ccl(ρ)W (ρ) −I 0

−Ẇ (ρ) + 1
2X(ρ)⊤ 0 −X(ρ) −X(ρ)⊤

 < 0,

where Acl(ρ) = A(ρ) +B(ρ)K(ρ) and Ccl(ρ) = Cz(ρ) +D(ρ)K(ρ).

Finally, multiplying the last inequality on the left by C⊤
⊥ and on the right by C⊥, with

C⊥ =


I 0

0 I

1
2I 0

 , (3.19)

provides W (ρ)Acl(ρ)⊤ + Acl(ρ)W (ρ) − Ẇ (ρ) W (ρ)Ccl(ρ)⊤

Ccl(ρ)W (ρ) −I

 < 0. (3.20)

Conditions (3.20), (3.14) and (3.15) are precisely the ones given in Lemma 1, assuring
that K(ρ) = Z(ρ)Y (ρ)−1 is a stabilizing gain and √

µ is an H2 guaranteed cost for the
closed-loop system. The proof of the invertibility of Y (ρ) is similar to the one presented
for Theorem 1.

A controller K(ρ(t)) designed using the conditions of Theorem 2 is identified through-
out this work as an H2 gain-scheduled state-feedback controller. In the next chapter, some
simulations and practical results obtained using this technique are presented.

3.1.3 H∞ control

Considering the system G given in (3.1) is asymptotically stable, the H∞ norm of the
system is defined as (also known as the L2 gain of the system)

∥G∥∞ = sup
w ̸=0

∥z∥2

∥w∥2
.

This performance criterion assures an attenuation level for the output z when finite
energy disturbances are applied in the input w(t). Moreover, an upper bound for this
performance level can be computed using LMIs.

As extension of Theorem 1 to deal with the H∞ norm as performance criterion is also
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possible, as shown in the next theorem.

Theorem 3. Let ξ ∈ (−1, 1) and ϵ ̸= 0 be given scalars. If there exist matrices W (ρ) =
W (ρ)⊤ > 0, Y (ρ), X(ρ), Z(ρ) and a scalar γ > 0 such that the following parameter-
dependent LMI

Ξ(1, 1) Ξ(1, 2) ϵBw(ρ) Ξ(1, 4) V̄ (ρ)

⋆ Ξ(2, 2) −ϵBw(ρ) ξΞ(1, 4) −V̄ (ρ)

⋆ ⋆ −I Dw(ρ)⊤ 0

⋆ ⋆ ⋆ −γI 0

⋆ ⋆ ⋆ ⋆ −He(X(ρ))


< 0, (3.21)

holds for all (ρ, ρ̇) ∈ Θ × Γ, where

Ξ(1, 1)(ρ) = W (ρ) + He(Ã(ρ)Y (ρ) + B̄(ρ)Z(ρ)),

Ξ(1, 2)(ρ) = ξ(Ã(ρ)Y (ρ) + B̄(ρ)Z(ρ)) − Y (ρ)⊤Â(ρ)⊤ − Z(ρ)⊤B̄(ρ)⊤,

Ξ(2, 2)(ρ) = −W (ρ) − ξHe(Â(ρ)Y (ρ) + B̄(ρ)Z(ρ)),

Ξ(1, 4)(ρ) = Y (ρ)⊤Cz(ρ)⊤ + Z(ρ)⊤D(ρ)⊤,

with Â(ρ), Ã(ρ), B̄(ρ) and V̄ (ρ) given in (3.3)-(3.6), then K(ρ) = Z(ρ)Y (ρ)−1 is an H∞

gain-scheduled state-feedback controller that stabilizes the system with an H∞ guaranteed
cost given by √

γ.

Proof. First, it is shown that ξ is contained in a limited interval. For this, multiplying
(3.21) on the left by B⊤

⊥ and on the right by B⊥, with

B⊥ =



ξI 0 0 0

−I 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I


,

results in 

(ξ2 − 1)W (ρ) (ξ + 1)ϵBw(ρ) 0 (ξ + 1)V̄ (ρ)

⋆ −I Dw(ρ)⊤ 0

⋆ ⋆ −γI 0

⋆ ⋆ ⋆ −X(ρ) −X(ρ)⊤


< 0. (3.22)
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As W (ρ) is positive definite, it is clear that (3.22) has a solution only if

−1 < ξ < 1. (3.23)

To show the invertibility of Y (ρ), note that the feasibility of (3.21) ensures thatΞ(1, 1)(ρ) Ξ(1, 2)(ρ)

⋆ Ξ(2, 2)(ρ)

 < 0,

which, multiplied on the left by T =
[
I I

]
and on the right by T⊤, provides

−
(1
ϵ

)
(1 + ξ)(Y (ρ) + Y (ρ)⊤) < 0,

that assures that Y (ρ) is full rank since ξ ∈ (−1, 1).

Next, considering the change of variable Z(ρ) = K(ρ)Y (ρ) and multiplying (3.21) by
A⊤

⊥ on the left and by A⊥ on the right, where

A⊥ =



Â(ρ)⊤ +K(ρ)⊤B̄(ρ)⊤ 0 ξ(Cz(ρ)⊤ +K(ρ)⊤D(ρ)⊤) 0

Ã(ρ)⊤ +K(ρ)⊤B̄(ρ)⊤ 0 ξ(Cz(ρ)⊤ +K(ρ)⊤D(ρ)⊤) 0

0 I 0 0

0 0 I 0

0 0 0 I


,

one has

Âcl(ρ)W (ρ)Âcl(ρ)⊤ − Ãcl(ρ)W (ρ)Ãcl(ρ)⊤ ⋆ ⋆ ⋆

B̄w(ρ)(Âcl(ρ) − Ãcl(ρ))⊤ −I ⋆ ⋆

C̄cl(ρ)W (ρ)(Âcl(ρ) − Ãcl(ρ))⊤ Dw(ρ) −γI ⋆

V̄ (ρ)⊤(Âcl(ρ) − Ãcl(ρ))⊤ 0 0 −He(X(ρ))


< 0, (3.24)

where Âcl(ρ) and Ãcl(ρ) are given in (3.8) and (3.9), respectively, and C̄cl(ρ) = ϵCcl(ρ).
By substituting the expressions given in (3.3)-(3.6), it is possible to rewrite (3.24) as

He(Acl(ρ)W (ρ)) Bw(ρ) W (ρ)Ccl(ρ)⊤ −Ẇ (ρ) + 1
2X(ρ)

⋆ −I Dw(ρ)⊤ 0

⋆ ⋆ −γI 0

⋆ ⋆ ⋆ −He(X(ρ))


< 0, (3.25)

where Acl(ρ) = A(ρ) +B(ρ)K(ρ) and Ccl(ρ) = Cz(ρ) +D(ρ)K(ρ).
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Finally, the inequality in (3.25) is pre- and post-multiplied by C⊤
⊥ and C⊥, respectively,

where

C⊥ =


I 0

0 I

1
2I 0

 ,

yielding 
W (ρ)Acl(ρ)⊤ + Acl(ρ)W (ρ) − Ẇ (ρ) Bw(ρ) W (ρ)Ccl(ρ)⊤

⋆ −I Dw(ρ)⊤

⋆ ⋆ −γI

 < 0, (3.26)

which can be recognized as the bounded real lemma for continuous-time LPV systems
(WU et al., 1996). As a consequence, Theorem 3 guarantees that K(ρ(t)) is a stabilizing
gain-scheduled state-feedback gain and √

γ is an H∞ guaranteed cost for the closed-loop
system.

As a final comment regarding the proposed H2 and H2 control techniques, note that
the design of parameter-independent controllers can be immediately obtained by fixing
the variables Z(ρ) = Z and Y (ρ) = Y in both Theorems 2 and 3.

3.2 Output-feedback control

This section addresses the more challenging problem of output-feedback control. The
strategy relies on using a given state-feedback controller as a starting point to design
both static and dynamic output-feedback controllers. Next section presents the static
case, whereas the dynamic case is given in Section 3.3.

3.2.1 H2 static output-feedback

Consider the gain-scheduled static output-feedback control law

u(t) = L(ρ)y(t)
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where L(ρ) is a design variable. Applying this feedback control law in system (3.1) with
Dw(ρ) = Dwy(ρ) = 0 provides the following closed-loop dynamics

ẋ = (A(ρ) +B(ρ)L(ρ)C(ρ))x+Bw(ρ)w

z = (Cz(ρ) +D(ρ)L(ρ)C(ρ))x. (3.27)

The next theorem presents conditions to compute L(ρ) once a stabilizing state-
feedback gain K(ρ) is available.

Theorem 4. Let ξ ∈ (−1, 1) and ϵ ̸= 0 be given scalars, and K(ρ) a given stabilizing
state-feedback gain. If there exist parameter-dependent matrices W (ρ) = W (ρ)⊤, M(ρ) =
M(ρ)⊤, Y (ρ), X(ρ), H(ρ) and J(ρ), and a scalar µ > 0 such that the following parameter-
dependent LMIs

µ > Tr(H(ρ)),M(ρ) Bw(ρ)⊤W (ρ)

⋆ W (ρ)

 > 0, (3.28)



Ξ(1, 1)(ρ) Ξ(1, 2)(ρ) C̄z(ρ)⊤ +K(ρ)⊤D̄(ρ)⊤ V̄ (ρ) Ξ(1, 5)(ρ)

⋆ Ξ(2, 2)(ρ) −C̄z(ρ)⊤ −K(ρ)⊤D̄(ρ)⊤ −V̄ (ρ) Ξ(2, 5)(ρ)

⋆ ⋆ −I 0 D̄(ρ)

⋆ ⋆ ⋆ −He(X(ρ)) 0

⋆ ⋆ ⋆ ⋆ −He(H(ρ))


< 0,

(3.29)

where

Ξ(1, 1)(ρ) = W (ρ) + He
(
Y (ρ)⊤(Ã(ρ) + B̄(ρ)K(ρ))

)
,

Ξ(1, 2)(ρ) = ξ(Ã(ρ)⊤ +K(ρ)⊤B̄(ρ)⊤)Y (ρ) − Y (ρ)⊤(Â(ρ) + B̄(ρ)K(ρ)),

Ξ(1, 5)(ρ) = Y (ρ)⊤B̄(ρ) + C(ρ)⊤J(ρ)⊤ −K(ρ)⊤H(ρ)⊤,

Ξ(2, 2)(ρ) = −W (ρ) − ξHe
(
Â(ρ)Y (ρ) +B(ρ)Z(ρ)

)
,

Ξ(2, 5)(ρ) = ξY (ρ)⊤B̄(ρ) − C(ρ)⊤J(ρ)⊤ +K(ρ)⊤H(ρ)⊤,

C̄z(ρ) = ϵCz(ρ),

D̄(ρ) = ϵD(ρ),

with Â(ρ), Ã(ρ), B̄(ρ) and V̄ (ρ) given in (3.3)-(3.6), hold for all ρ ∈ Θ and ρ̇ ∈ Γ, then
L(ρ) = H(ρ)−1J(ρ) is a robustly stabilizing parameter-dependent static output-feedback
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gain and √
µ is an H2 guaranteed cost for the system (3.27).

Proof. The proof that H(ρ) is invertible is trivial, because as He(H(ρ)) appears at the
diagonal of (3.29), we have that H(ρ) is nonsingular.

Considering the change of variable J(ρ) = H(ρ)L(ρ) and multiplying (3.29) on the
left by V ⊤

⊥ and on the right by V⊥, where

V⊥ =



I 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I

L(ρ)C(ρ) −K(ρ) −L(ρ)C(ρ) +K(ρ) 0 0


,

results in

W (ρ) + He(Y (ρ)⊤Ãcl(ρ)) ξÃcl(ρ)⊤Y (ρ) − Y (ρ)⊤Âcl(ρ) C̄cl(ρ)⊤ V̄ (ρ)

⋆ −W (ρ) − ξHe(Y (ρ)⊤Âcl(ρ)) −C̄cl(ρ)⊤ −V̄ (ρ)

⋆ ⋆ −I 0

⋆ ⋆ ⋆ −He(X(ρ))


< 0,

(3.30)

where Ãcl(ρ) = Ã(ρ) + B̄(ρ)L(ρ)C(ρ), Âcl(ρ) = Â(ρ) + B̄(ρ)L(ρ)C(ρ) and C̄cl(ρ) =
C̄z(ρ) +D(ρ)L(ρ).

Multiplying (3.30) by A⊤
⊥ on the left and by A⊥ on the right, where

A =



Âcl(ρ) 0 0

Ãcl(ρ) 0 0

0 I 0

0 0 I


,

results in
Âcl(ρ)⊤W (ρ)Âcl(ρ) − Ãcl(ρ)⊤W (ρ)Ãcl(ρ) ⋆ ⋆

C̄cl(ρ)(Âcl(ρ) − Ãcl(ρ)) −I ⋆

V̄ (ρ)⊤(Âcl(ρ) − Ãcl(ρ)) 0 −He(X(ρ))

 < 0,
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that, applying the definitions given in (3.3)-(3.6), provides

Acl(ρ)⊤W (ρ) +W (ρ)Acl(ρ) Ccl(ρ)⊤ −Ẇ (ρ) + 1

2X(ρ)

⋆ −I 0

⋆ ⋆ −He(X(ρ))

 < 0.

Next, multiplying last inequality on the left by C⊤
⊥ and on the right by C⊥, with C⊥

given in (3.19), one hasAcl(ρ)⊤W (ρ) +W (ρ)Acl(ρ) + Ẇ (ρ) Ccl(ρ)⊤

⋆ −I

 < 0.

Consider the following congruence transformation
W (ρ)−1 0

0 I


Acl(ρ)⊤W (ρ) +W (ρ)Acl(ρ)⊤ + Ẇ (ρ) Ccl(ρ)⊤

⋆ −I


W (ρ)−1 0

0 I

 < 0 ⇒

W (ρ)−1A⊤
cl(ρ) + Acl(ρ)W (ρ)−1 +W (ρ)−1Ẇ (ρ)W (ρ)−1 W (ρ)−1Ccl(ρ)⊤

⋆ −I

 < 0.

Taking the time-derivative of the relation W (ρ)W (ρ)−1 = I on both sides, yields

Ẇ (ρ)W (ρ)−1 +W (ρ)Ẇ (ρ)−1 = 0 ⇒ W (ρ)−1Ẇ (ρ)W (ρ)−1 = −Ẇ (ρ)−1

. Using this relation in the previous inequality, providesW (ρ)−1Acl(ρ)⊤ + Acl(ρ)W (ρ)−1 − Ẇ (ρ)−1 W (ρ)−1Ccl(ρ)⊤

⋆ −I

 < 0.

Adopting the changing W (ρ)−1 = P (ρ), one hasP (ρ)Acl(ρ)⊤ + Acl(ρ)P (ρ) − Ṗ (ρ) P (ρ)Ccl(ρ)⊤

⋆ −I

 < 0. (3.31)

Next, applying the congruence transformation on (3.28)I 0

0 W (ρ)−1


H(ρ) Bw(ρ)⊤W (ρ)

⋆ W (ρ)


I 0

0 W (ρ)−1

 > 0,

one has H(ρ) Bw(ρ)⊤

⋆ W (ρ)−1

 =

H(ρ) Bw(ρ)⊤

⋆ P (ρ)

 > 0. (3.32)
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Conditions µ > H(ρ), (3.31) and (3.32) are equivalent to the ones of Lemma 1 (with
W (ρ) = P (ρ)−1).

The proof that −1 < ξ < 1 is similar to the one given in the proof of Theorem 2.

The synthesis conditions of Theorem 4 belong to the class of techniques from the litera-
ture known as two-stage methods (PEAUCELLE; ARZELIER, 2001; ARZELIER; PEAU-
CELLE; SALHI, 2003; MOREIRA; OLIVEIRA; PERES, 2011; AGULHARI; OLIVEIRA;
PERES, 2012), since the approach requires the design of a state-feedback gain as a pre-
liminary step. For instance, any state-feedback gain designed with Theorem 1, 2 or 3 can
be used.

Note that Theorem 4 can also be used to design a gain-scheduled state-feedback con-
troller simply considering C(ρ) = I. In this case Theorem 4 can be seen as an alternative
design condition to Theorem 2 (whenever a stabilizing state-feedback gain is available).

3.3 Dynamic output feedback control

The problems H2 and H∞ full-order dynamic control are investigated in this section.
As in the case of static controllers, the strategy proposed to design full-order dynamic con-
trollers also starts from a stabilizing state-feedback gain. However, to role of this gain is
slightly different, being used as one of the gains of the dynamic controller. Moreover, dif-
ferently from the case of static output-feedback control synthesis, the input state-feedback
gain is considered in the form K(ρ) = Z(ρ)Y (ρ)−1, which is the structure provided by
the synthesis conditions of Theorems 1, 2 and 3. This approach was proposed in (DE
OLIVEIRA; GEROMEL; BERNUSSOU, 2000) to discrete-time systems and here it is
extended to cope with continuous-time LPV (or quasi-LPV) systems.

Next section investigates the problem of H2 full-order gain-scheduled dynamic output-
feedback, requiring as input parameter a stabilizing state-feedback gain.

3.3.1 H2 dynamic output-feedback

The aim is to design the full-order dynamic output-feedback controller

ẋc = Ac(ρ)xc +Bc(ρ)y,

u = Cc(ρ)xc. (3.33)



57

where xc ∈ Rn is the vector of states of the controller and Ac(ρ), Bc(ρ) and Cc(ρ) are
parameter-dependent gains to be designed. Connecting the controller (3.33) with the
plant given in (3.1), one has the closed-loop system ẋ

ẋc

 =

 A(ρ) B(ρ)Cc(ρ)

Bc(ρ)C(ρ) Ac(ρ)


︸ ︷︷ ︸

Acl(ρ)

 x
xc

 +

 Bw(ρ)

Bc(ρ)Dwy(ρ)


︸ ︷︷ ︸

Bcl(ρ)

w,

z =
[
Cz(ρ) D(ρ)Cc(ρ)

]
︸ ︷︷ ︸

Ccl(ρ)

 x
xc

 . (3.34)

Next theorem presents a sufficient condition to compute an H2 full-order dynamic
output-feedback controller.

Theorem 5. Let ξ ∈ (−1, 1) and ϵ ̸= 0 be given scalars, and Z(ρ) and G(ρ) matrices
such that K(ρ) = Z(ρ)G(ρ)−1 is a state-feedback stabilizing gain. If there exist parameter-
dependent matrices R(ρ) = R(ρ)⊤, M(ρ) = M(ρ)⊤, X(ρ), P (ρ), Q(ρ), Y1, V1 and V3,
and a scalar µ > 0 such that the following parameter-dependent LMIs

µ > Tr(H(ρ))M(ρ) BT 2(ρ)⊤

⋆ R(ρ)

 > 0, (3.35)


Gc(ρ)⊤R(ρ)Gc(ρ) + He(ÃT (ρ)) ξÃT (ρ) − ÂT (ρ)⊤ CT (ρ) VT (ρ)

⋆ −Gc(ρ)⊤R(ρ)Gc(ρ) − He(ÂT (ρ)) ξCT (ρ) −VT (ρ)

⋆ ⋆ −I 0

⋆ ⋆ ⋆ −He(X(ρ))

 < 0,

(3.36)

where

Gc(ρ) =

G(ρ) 0

0 I

 ,
J(ρ) =

 Y1 Y1

V1 + V3 I

 ,
ÃT (ρ) = ϵ

Ξ(ρ)1 G(ρ)⊤Y1A(ρ)

Ξ(ρ)2 V1(A(ρ) +Q(ρ)C(ρ)

 − 1
2ϵGc(ρ)⊤J(ρ)Gc(ρ),

ÂT (ρ) = ϵ

Ξ(ρ)1 G(ρ)⊤Y1A(ρ)

Ξ(ρ)2 V1(A(ρ) +Q(ρ)C(ρ)

 + 1
2ϵGc(ρ)⊤J(ρ)Gc(ρ),
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Ξ(ρ)1 = G(ρ)⊤Y1(A(ρ)G(ρ) +B(ρ)Z(ρ)),

Ξ(ρ)2 = V1(A(ρ)G(ρ) +B(ρ)Z(ρ)) +Q(ρ)C(ρ)G(ρ) + P (ρ)G(ρ),

BT 2(ρ) =

 Y1Bw(ρ)

V1Bw(ρ) +Q(ρ)Dwy(ρ)

 ,
CT (ρ) =

[
Cz(ρ)G(ρ) +D(ρ)Z(ρ) Cz(ρ)

]
,

VT = ϵGc(ρ)⊤Ṙ(ρ) + ϵ

2Gc(ρ)⊤X,

hold for all ρ ∈ Θ and ρ̇ ∈ Γ, then Ac(ρ) = V −1
3 P (ρ), Bc(ρ) = V −1

3 Q(ρ) and Cc(ρ) =
Z(ρ)G(ρ)−1 are parameter-dependent matrices of the controller (3.33) and √

µ is an H2

guaranteed cost for the system (3.34).

Proof. Initially, it is defined the following structures for the slack variable matrix Y and
its inverse

Y =

Y −1⊤

1 Y3

Y −1⊤

1 Y4

 and Y −1 =

V ⊤
1 V ⊤

2

V ⊤
3 V ⊤

4

 . (3.37)

Next, defining

T =

Y ⊤
1 V ⊤

1

0 V ⊤
3

 , (3.38)

R(ρ) = T⊤W (ρ)T,

the condition (3.35) can be rewritten asI 0

0 T⊤


M(ρ) Bcl(ρ)⊤

Bcl(ρ) W (ρ)


I 0

0 T

 < 0.

As a consequence, if the condition (3.35) is feasible, thenM(ρ) Bcl(ρ)⊤

Bcl(ρ) W (ρ)

 < 0,

assuring that (3.12) holds.
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Defining now the matrix

T̄ (ρ) =



TGc(ρ) 0 0 0

0 TGc(ρ) 0 0

0 0 I 0

0 0 0 T


,

and considering the change of variables P (ρ) = V3Ac(ρ) and Q(ρ) = V3Bc(ρ), condition
(3.36) can be rewritten as T̄ (ρ)Φ(ρ)T̄ (ρ) < 0 with

Φ(ρ) =



W (ρ) + He(Ãcl(ρ)Y ) ξÃcl(ρ)Y − Y ⊤Âcl(ρ)⊤ Y ⊤Ccl(ρ)⊤ V̄ (ρ)

⋆ −W (ρ) − He(Âcl(ρ)Y ) ξY ⊤Ccl(ρ)⊤ −V̄ (ρ)

⋆ ⋆ −I 0

⋆ ⋆ ⋆ −He(X(ρ))


,

where

Âcl(ρ) = ϵAcl(ρ) + 1
2ϵI, (3.39)

Ãcl(ρ) = ϵAcl(ρ) − 1
2ϵI, (3.40)

and matrices Acl(ρ) e Ccl(ρ) are presented in (3.34).

As a consequence, the feasibility of (3.36) implies that Φ(ρ) < 0. The proof that
Φ(ρ) < 0 implies (3.13) and −1 < ξ < 1 follows the same steps presented in the proof of
Theorem 2, concluding the demonstration.

An important comment about Theorem 5 is the consideration of the slack variable Y
as ρ-independent. This constraint, although conservative, is important in order to treat
the term Ẇ (ρ), which would be more involved to deal in the case of Y (ρ).

As a general comment about the proposed condition, note that the controller matrix
Cc(ρ) is fixed as the given stabilizing state-feedback gain. Clearly, different stabilizing
gains will provide distinct results.
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3.3.2 H∞ dynamic output-feedback

Considering system (3.1) fed back by the full-order dynamic output-feedback con-
troller given in (3.33), one has the closed-loop system ẋ

ẋc

 =

 A(ρ) B(ρ)Cc(ρ)

Bc(ρ)C(ρ) Ac(ρ)


 x
xc

 +

 Bw(ρ)

Bc(ρ)Dwy(ρ)

w,
z =

[
Cz(ρ) D(ρ)Cc(ρ)

]  x
xc

 +Dw(ρ)w. (3.41)

The next theorem presents a sufficient condition to compute the full-order dynamic
output-feedback controller (3.33) considering the H∞ norm as performance criterion. As
in the H2 case, a stabilizing state-feedback gain is required as input data.

Theorem 6. Let ξ ∈ (−1, 1) and ϵ ̸= 0 be given scalars, and Z(ρ) and G(ρ) matrices such
that K(ρ) = Z(ρ)G(ρ)−1 is a stabilizing state-feedback controller. If there exist parameter-
dependent matrices R(ρ) = R(ρ)⊤, X(ρ), P (ρ), Q(ρ), Y1, V1 and V3, and a scalar γ > 0
such that the following parameter-dependent LMI

Ξ(1, 1)(ρ) ξÃT (ρ) − ÂT (ρ)⊤ BT (ρ) CT (ρ)⊤ VT (ρ)

⋆ Ξ(2, 2)(ρ) −BT (ρ) ξCT (ρ)⊤ −VT (ρ)

⋆ ⋆ −γI Dw(ρ)⊤ 0

⋆ ⋆ ⋆ ⋆ −He(X(ρ))


< 0, (3.42)

where

Ξ(1, 1)(ρ) = Gc(ρ)⊤R(ρ)Gc(ρ) + He(ÃT (ρ)),

Ξ(2, 2)(ρ) = −Gc(ρ)⊤R(ρ)Gc(ρ) − He(ÂT (ρ)),

Gc(ρ) =

G(ρ) 0

0 I

 ,
J(ρ) =

 Y1 Y1

V1 + V3 I

 ,
ÃT (ρ) = ϵ

Ξ(ρ)1 G(ρ)⊤Y1A(ρ)

Ξ(ρ)2 V1(A(ρ) +Q(ρ)C(ρ)

 − 1
2ϵGc(ρ)⊤J(ρ)Gc(ρ),

ÂT (ρ) = ϵ

Ξ(ρ)1 G(ρ)⊤Y1A(ρ)

Ξ(ρ)2 V1(A(ρ) +Q(ρ)C(ρ)

 + 1
2ϵGc(ρ)⊤J(ρ)Gc(ρ),
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Ξ(ρ)1 = G(ρ)⊤Y1(A(ρ)G(ρ) +B(ρ)Z(ρ)),

Ξ(ρ)2 = V1(A(ρ)G(ρ) +B(ρ)Z(ρ)) +Q(ρ)C(ρ)G(ρ) + P (ρ)G(ρ),

BT (ρ) =

 G(ρ)⊤Y1Bw(ρ)

V1Bw(ρ) +Q(ρ)Dwy(ρ)

 ,
CT (ρ) =

[
Cz(ρ)G(ρ) +D(ρ)Z(ρ) Cz(ρ)

]
,

VT = ϵGc(ρ)⊤Ṙ(ρ) + ϵ

2Gc(ρ)⊤X(ρ),

hold for all ρ ∈ Θ and ρ̇ ∈ Γ, then Ac(ρ) = V −1
3 P (ρ), Bc(ρ) = V −1

3 Q(ρ) and Cc(ρ) =
Z(ρ)G(ρ)−1 are parameter-dependent matrices of the controller (3.33) and √

γ is an H∞

guaranteed cost for the system (3.41).

Proof. The proof of this theorem is very similar to that of Theorem 5. Considering the
same structures for Y and Y −1 given in (3.37), define the transformation matrix

T̄ (ρ) =



TGc(ρ) 0 0 0 0

0 TGc(ρ) 0 0 0

0 0 I 0 0

0 0 0 I 0

0 0 0 0 T


,

with T given in (3.38). Next, adopting the change of variables P (ρ) = V3Ac(ρ), Q(ρ) =
V3Bc(ρ) , condition (3.42) can be rewritten as T̄ (ρ)Ψ(ρ)T̄ (ρ) < 0 with

Ψ(ρ) =



W (ρ) + He(Ãcl(ρ)Y ) ξÃcl(ρ)Y − Y ⊤Âcl(ρ) B̄w(ρ) Y Ccl(ρ)⊤ V̄ (ρ)

⋆ −W (ρ) − ξHe(Âcl(ρ)Y ) −B̄w(ρ) ξY Ccl(ρ)⊤ −V̄ (ρ)

⋆ ⋆ −I Dw(ρ)⊤ 0

⋆ ⋆ ⋆ −γI 0

⋆ ⋆ ⋆ ⋆ −He(X(ρ))


,

with Âcl(ρ) and Ãcl(ρ) presented in (3.39) and (3.40) and matrices Acl(ρ) e Ccl(ρ) given
in (3.34). As a consequence, the feasibility of (3.42) implies that Ψ(ρ) < 0. The proof
that Ψ(ρ) < 0 implies (3.26) and −1 < ξ < 1 follows similar steps presented in the proof
of Theorem 3, concluding the demonstration.
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3.4 Programming and Final Remarks

Motivated by the results proposed in the modeling chapter, all control design tech-
niques presented in this chapter were established considering that the matrices of the
system have arbitrary polynomial dependence on ρ. However, no particular structure was
imposed to any optimization variable, including the ones used to construct the control
gains. This latter feature characterizes all synthesis conditions as infinite-dimensional
optimization problems, which are not numerically tractable. To obtain solvable condi-
tions in terms of LMIs, first it is necessary to impose a fixed structure (with respect to
ρ) for the optimization variables. Motivated by the polynomial structures of the sys-
tem matrices and also by polynomial approximation techniques for parameter-dependent
LMIs (OLIVEIRA; PERES, 2007), all proposed conditions can be solved by considering
the optimization variables as polynomials with fixed degrees. Concretely, the conditions
are programmed with the aid of the Robust LMI Parser (ROLMIP) (AGULHARI et al.,
2019), which provides a high level programming interface in which the user only needs
to define the inequalities and the degrees of the variables. The task of converting the
positivity (or negativity) test of polynomial matrix inequalities into a finite set of LMIs
(through relaxations techniques) is performed automatically by the parser.

As a consequence of the chosen polynomial structures, the control gains associated
with the controllers are also polynomial or rational. In this context, it is important to
mention that the degrees associated with the gains have a direct impact on the compu-
tational burden required to implement the gains in practice, since matrix-valued polyno-
mials expressions need to be evaluated in real-time from the values of the time-varying
parameters ρ(t). Since the inversion of a matrix is a costly operation, one possibility to
alleviate the computational complexity is to fix the matrix as parameter-independent (for
instance, matrix Y in Theorems 1, 2 and 3). However, this option tends to increase the
conservatism (worst performance).

Finally, thanks to the employment of slack variables to design state- and output-
feedback controllers, the treatment of the more involved mixed H2/H∞ gain-scheduled
control problem can be done in a straightforward way. Basically, the H2 and H∞ con-
ditions can be put together and distinct Lyapunov matrices (one for each performance
criterion) can be used to reduce the conservatism.

In the next section, some applications and simulations are presented to validate the
proposed control techniques. Regarding the implementation of the synthesis conditions,
besides the ROLMIP parser (AGULHARI et al., 2019), the semidefinite programming
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solver Mosek (ANDERSEN; ANDERSEN, 2000) was used to solve the LMIs. All the
scripts were programmed in Matlab version 2015 64bit, Windows 10 64bit, in a PC
equipped with Core i5 processor, 8GB of memory.
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4 SIMULATIONS AND EXPERIMENTAL
VALIDATIONS

This chapter presents simulations and experimental validations considering the pro-
posed modeling and control approaches. As in the previous chapter, it is firstly considered
the results for the state-feedback controller, then for the static output-feedback, and fi-
nally for the dynamic controller.

4.1 State-feedback

To illustrate the proposed modeling and the synthesis conditions for gain-scheduled
state-feedback controllers, three examples are considered: The reaction wheel inverted
pendulum; Unicycle and the CMG. The first two examples deal with regulatory control,
in which the aim is to keep the trajectories close to the equilibrium point. In these
cases, the quasi-LPV modeling is considered with the purpose of increasing the accuracy
of the representation region around the operation point. The CMG example consists in
a pure LPV system (time-varying parameters are not state variables) and it is either
considered a regulatory mode application (keep the trajectories at equilibrium) and a
tracking application using an augmented model with integrators.

4.1.1 Reaction Wheel Inverted Pendulum

The nonlinear model and a brief description of this system can be found in the Ap-
pendix A. The purpose is to stabilize the system using an H2 gain-scheduled state-
feedback controller.

First, regarding the synthesis of the quasi-LPV model, it is considered that θ1 is an
LPV variable (observe that the nonlinear model depends on sin(θ1)). Besides, the control
objective is to stabilize the system in the upright position, being impossible to stabilize
it in any other position (not considering the stable equilibrium point, vertical position
downwards). Therefore, to obtain the quasi-LPV model, the high-order Taylor series
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expansion method is employed.

Applying the method presented in Section 2.3.2 considering a third-order expansion,
we have the following model

θ̈1

θ̈2

 = A(θ1)

θ1

θ2

 +


0

−70.405

382.9616

u+


1 0 0

0 1 0

0 0 1

w,

where

A(θ1) =




0 1 0

66.7479 0 1.0774

−66.7479 0 −5.8606

 + θ2
1


0 0 0

−11.1247 0 0

11.1247 0 0


 .

Observe that in this case the matrix B(θ1) has order zero and A(θ1) has order two.
As discussed in Chapter 2, this is not an issue since the proposed approach can deal with
matrices of different degrees on the time-varying parameters. Concerning the controlled
output

z =



0.0757 0 0

0 0.0633 0

0 0 0.0109

0 0 0


︸ ︷︷ ︸

Cz

θ1

θ2

 +



0

0

0

0.3742


︸ ︷︷ ︸

D

u,

where the matrices Cz and D were obtained after some trials, considering the Bryson’s
rule (HESPANHA, 2018).

Before applying the synthesis condition to compute the gain-scheduled state-feedback
controller, it is necessary to set, choose the bounds for the LPV variable and its associated
time-derivative. We set

−30◦ ≤ θ1 ≤ 30◦,

−1 rad/s ≤ θ̇1 ≤ 1 rad/s.

These values were chosen based on previous practical experiments with the pendulum.

Theorem 2 is then applied considering the parameters1 of Table 2. Note that in
1Whenever Deg(K(ρ)) is presented, it means that the two polynomial matrices used to compute the
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this example, both ξ and ϵ are considered in the linear scalar search to find the lowest
guaranteed cost. In a generic case, to perform a search on two scalars can be time-
consuming and for this reason the preference is always to perform a search on ξ, which
has a bounded domain. The value of ϵ is suggested to be fixed in 0.1 (as indicated in
(RODRIGUES; OLIVEIRA; CAMINO, 2018)). However, we present the guaranteed costs
for each value of ξ and ϵ (in the Table 3), just to show how the search would work.

Table 2: Parameters employed in the design of the H2 state-feedback gain for the reaction
wheel pendulum. Deg(·) is the polynomial degree of the associated variable with respect
to ρ.

Deg(W (ρ)) Deg(K(ρ)) ξ ϵ
2 2 {−0.8,−0.6, . . . , 0.6, 0.8} {0.1, 1, 10}

Table 3: H2 guaranteed-costs of the reaction wheel pendulum in terms of ξ and ϵ.

ξ
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

ϵ
0.1 0.4562 0.4561 0.4561 0.4560 0.4560 0.4560 0.4560 0.4560 0.4560
1 0.4560 0.4560 0.4560 0.4560 0.4560 0.4561 0.4561 0.4562 0.4563
10 0.4564 0.4568 0.4571 0.4572 0.4573 0.4574 0.4575 0.4576 0.4582

Note that the guaranteed costs slightly vary with the scalar variables but all controllers
are robustly stabilizing2. Also, note that ϵ = 10 provided the worst guaranteed costs.

Table 4 shows the values of the scalars that provided the lowest guaranteed cost
and the associated numerical complexity given in terms of the number of LMI rows and
optimization variables.

Table 4: Result of the H2 state-feedback applied to reaction wheel pendulum.

LMI rows variables √
µ ξmin ϵmin

151 100 0.4560 0.8 0.1

Then, the simulation of the closed-loop system with the H2 state-feedback controller
is presented in Figure 11. For the sake of comparison, an LQR controller designed for
the linearized model at the unstable equilibrium point (θ1 = 0) is also presented in
Figure 11 and labeled as “linear”. The LQR controller was designed considering the same
performance specification

Q = C⊤
z Cz,

R = D⊤D,

feedback gains (Z(ρ) and Y (ρ)) have the same degree and equal to Deg(K(ρ)).
2The numbers were truncated considering four decimal digits for the sake of presentation.



67

where Q and R are the weighting matrices for state and input, respectively.
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Figure 11: Simulation result of the H2 gain-scheduled and LQR controllers applied in the
pendulum reaction wheel.

Note that the LPV controller did not present an improvement in relation to the linear
control, since the linear model represents quite well the reaction wheel inverted pendulum
dynamics within the considered range. Such a difference would be more evident with a
larger angle variation, as observed in the Furuta pendulum presented in Section 2.3.2.

However, this result validates the proposed technique. In this example, the controller
stabilized the system with a performance similar to the LQR approach. The controller was
then implemented in a prototype to visualize its performance in a practical application.

Figure 12 shows the result of the practical implementation where it is possible to see
that the controller stabilizes the system with a small variation around the equilibrium
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point (variation caused mainly by the dead-zone and backlash of the actuator not consid-
ered in the modeling procedure). Figure 13 shows the response when a perturbation3 in
θ1 of ≈ 10◦ at t = 7s. The controller was able to reject the disturbance and maintain the
stability of the system.
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Figure 12: Practical result of H2 controller applied to the reaction wheel pendulum.

3The perturbation was artificially considered by adding this value to the angle measurement in the
software for 0.5 seconds.



69

Time [s]
5 6 7 8 9 10 11 12 13

θ
1
[◦
]

-5

0

5

10

Time [s]
5 6 7 8 9 10 11 12 13

A
n
gu

la
r
ve
lo
ci
ti
es

[r
ad

/s
]

-5

0

5

10

15
θ̇1

θ̇2

Time [s]
5 6 7 8 9 10 11 12 13

u
[%

]

-1

0

1

Figure 13: Practical result of H2 controller applied to the reaction wheel pendulum con-
sidering a disturbance in θ1 applied at t = 7s.

4.1.2 Unicycle

The second example is the unicycle presented in Appendix C. The LPV model is
considered to represent the dynamics aiming to increase the representability region around
the operating point when compared to the linear model. Thus, the technique used is
Taylor’s high order expansion.

In this example, it is used a model similar to the one presented in (2.13)-(2.16), but
considering fourth order expansion rather than second order. For the controlled output
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we set

z =



0.0316 0 0 0 0 0 0 0

0 3.8197 0 0 0 0 0 0

0 0 0.3162 0 0 0 0 0

0 0 0 3.8197 0 0 0 0

0 0 0 0 0.0809 0 0 0

0 0 0 0 0 3.1623 0 0

0 0 0 0 0 0 0.0809 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


︸ ︷︷ ︸

Cz

x+



0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

1 0

0 2


︸ ︷︷ ︸

D

u,

and the exogenous input matrix is chosen as Bw =
[
0 1 1 1 0 1 1 1

]⊤
.

The bounds for ϕ and ψ and for their associated time-derivatives are set to

−10◦ ≤ φ ≤ 10◦ and −10◦ ≤ ψ ≤ 10◦

−1 rad/s ≤ φ̇ ≤ 1 rad/s and −1 rad/s ≤ ψ̇ ≤ 1 rad/s.

Theorem 2 is then applied considering the parameters shown in Table 5, providing stabiliz-
ing controllers with H2 guaranteed costs given in Table 6. Observe that both Deg(W (ρ))
and Deg(K(ρ)) require two degrees (in this case {2,2}), because the unicycle model was
derived with two LPV variables. As a consequence, the controller can be scheduled with
polynomial dependence on both variables.

Table 5: Parameters employed in the design of the H2 state-feedback gain for the unicycle.
Deg(·) is the polynomial degree of the associated variable with respect to ρ = [ϕ, ψ].

Deg(W (ρ)) Deg(K(ρ)) ξ ϵ
{2,2} {2,2} {−0.9,−0.7, . . . ,−0.1, 0, 0.1, . . . , 0.7, 0.9} {0.1, 1, 10}

Table 6: H2 guaranteed-costs of the unicycle in terms of ξ and ϵ.

ξ
-0.9 -0.7 -0.5 -0.3 0 0.3 0.5 0.7 0.9

ϵ
0.1 12.4899 12.4886 12.4878 12.4873 12.4868 12.4866 12.4868 12.4876 12.4917
1 12.4874 12.4914 12.4950 12.4993 12.5068 12.5154 12.5214 12.5275 12.5343
10 - - 12.5403 - 12.5529 12.5878 12.6268 12.7175 -

Observe that some combinations of (ξ, ϵ) did not provided feasible solutions, that is,
stabilizing controllers. Besides, as in the reaction wheel pendulum case, ϵ = 0.1 presents
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better guaranteed costs in most cases. Choosing the pair (ξ, ϵ) that provided the lowest
guaranteed cost, we have the results shown in Table 7, which includes the numerical
complexity.

Table 7: Result of the H2 state-feedback applied to unicycle.

LMI rows variables √
µ ξmin ϵmin

4904 1630 12.4866 0.3 0.1

Figure 14 shows the closed-loop simulations considering the H2 gain-scheduled con-
troller. We set an initial condition for the pitch angle of φIC = 10◦ and roll angle of
ψIC = −10◦. Besides, to further evaluate the quality of the model and the robustness of
the controller, exogenous disturbances are considered. For the pitch angle, it is a pulse of
7◦ that starts at t = 2s with 2 seconds of duration, and for the roll angle it is a pulse of
−7◦ that starts at the same instant and with the same duration.
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Figure 14: Closed-loop simulation with the H2 controller applied in the unicycle.

Observe that in this simulation the gain-scheduled controller presented a slightly worse
result than the linear controller, especially in disturbance rejection test. The pitch and
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roll angles, when considering the LPV controller, present a larger overshooting that the
LQR. However, note that the control signal of the gain-scheduled controller saturated
for a longer time. As the actuator saturation is an issue not addressed by the proposed
synthesis conditions, the simulations are performed again to evaluate the performance of
the gain-scheduled controller in the absence of saturation4, and the results are depicted
in Figure 15.
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Figure 15: Closed-loop simulation with the H2 controller applied in the unicycle but not
considering the input saturation.

Observe now that, despite the bigger overshooting, the gain-scheduled controller yields
a faster response, which is consistent, as it is observed that the quasi-LPV model can
represent the coupling that appears in a position other than the unstable equilibrium
point, but the linear model does not.

Another important point to highlight is the computational complexity. The unicycle
4The control effort is given as the percentage of the PWM duty cycle, which is calculated as a constant

multiplying the supply voltage. As a consequence, u > 1 means an unrealistic situation where the control
effort is greater than the maximum allowed.
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has eight states and two LPV variables. Considering a gain-scheduled state-feedback
controller with polynomial dependence of degree two, the computational complexity is
significantly larger when compared to the reaction wheel pendulum (that have four states
and one LPV variable).

The proposed approach can increase the region of representability when compared
to a linear controller. However, depending on the polynomial degrees of the model and
controller, the computational complexity can be an issue, and the actuator saturation
will have to be addressed. For instance, one can restrict the norm of K(ρ) or combine
the proposed synthesis conditions with some LMI methods capable to treat the input
saturation (TARBOURIECH et al., 2011).

4.1.3 CMG

The two previous examples, despite verifying the functionality of gain-scheduled con-
troller designed with the proposed conditions, were not capable to show a significant ad-
vantage when compared to time-invariant modeling and control. Motivated by this fact,
we apply the proposed techniques in a control moment gyroscope (CMG) plant aiming
both regulatory and tracking control. The nonlinear model can be found in Appendix D.

Two approaches are considered: in the first one we model the CMG as a pure LPV
model (where the dependent variables do not represent any state) and apply an H2 gain-
scheduled controller. In the second case, the CMG is modeled as a quasi-LPV model and
an H∞ gain-scheduled controller is applied.

4.1.3.1 LPV model

Consider the LPV model of the CMG given in (2.5) and (2.6). Recall that this model
depends on the variables θC and θ̇D, which are not state variables.

Two different control strategies are considered in this example. The first one is the
tracking mode, where two integrators were included in the model. In this case, the
coefficient matrices given in (2.5) are redefined as

A0 =

 A0 0

−Cint 0

 , Ai =

Ai 0

0 0

 , i = 1, . . . , 5,
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Bj =

Bj

0

 , j = 0, . . . , 2, Cint =

1 0 0 0 0

0 1 0 0 0

 .
With this strategy, the error concerning the tracking of a trajectory is considered in

the augmented system, thus allowing to solve the tracking problem. The second strategy
is the regulatory mode, where integrators are unnecessary.

To implement and solve the synthesis conditions, it is necessary to define the limits
of the time-varying parameters. The limits of θC and θ̇D are chosen according to the
operating range, and their derivatives are calculated considering the actuator saturation
limits divided by 10, approximately. Thus, the LPV parameters are constrained to the
ranges

−40◦ ≤ θC ≤ 40◦,

200 rpm ≤ θ̇D ≤ 600 rpm,

−2 rad/s ≤ θ̇C ≤ 2 rad/s,

−10 rad/s2 ≤ θ̈D ≤ 10 rad/s2.

Matrices Cz and D are chosen according to Bryson’s rule (HESPANHA, 2018), which
represents a normalization of the weighting matrices. The resulting matrices (parameter-
independent) for the regulatory mode are

Ca = diag(11.4548, 11.4548, 1, 1, 1), Cz =
[
Ca 0

]⊤
,

Da = diag(2.8329, 0.6831), D =
[
0 Da

]⊤
,

assuring that C⊤
z D = 0. For the tracking mode matrix Ca is chosen as (Da is the same)

Ca = diag(11.4548, 11.4548, 1, 1, 1, 14.1421, 14.1421).

Finally, the input disturbance matrix is fixed as Bw(ρ) = I.

The synthesis conditions of Theorem 2 were tested considering

ξ ∈ {−0.9,−0.8, . . . ,−0.1, 0, 0.1, . . . , 0.8, 0.9},

and polynomial degrees from zero to two for the optimization variables that define the
controller in terms of the parameters θC and θ̇D. Regarding the value of ϵ, only two values
were considered {0.1, 1}, as suggested in (RODRIGUES; OLIVEIRA; CAMINO, 2018).
Other values could lead to improved results, at the price of a larger computational effort
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necessary to implement a search procedure. In general, the best results were obtained
with ϵ = 0.1 for the regulatory mode and ϵ = 1 for the tracking mode. Table 8 shows
the guaranteed costs provided by the best value of ξ for each pair of polynomial degrees
for both regulatory and tracking modes. As can be seen, in the regulatory mode, gain-
scheduled controllers present a good improvement in terms of H2 performance over the
robust controller (degree zero for both θC and θ̇D). A general observation is that the
higher the degrees, the better is the guaranteed costs, but the improvements become
insignificant for degrees higher than two, while the complexity of the controller increases
a lot. Evaluating the trade-off between the guaranteed costs and the computational
complexity to implement the control law, we chose degree two for θC and degree one
for θ̇D for both regulatory and tracking modes, although the best guaranteed costs were
obtained with degree two for both θC and θ̇D.

Table 8: Guaranteed-costs provided by Theorem 2 considering different degrees for the
time-varying parameters, ϵ = 0.1 for regulatory mode, ϵ = 1 for tracking mode and the
values given in (4.1) for ξ.

Deg(K(ρ)) Deg(K(ρ)) Regulatory mode Tracking mode
of θC of θ̇D ξ µ ξ µ

0 0 -0.9 13.0765 -0.9 26.4223
1 0 -0.1 11.7162 -0.7 26.3355
2 0 0.4 11.4216 -0.7 25.9741
0 1 -0.8 11.7355 -0.9 25.6902
1 1 0.1 10.9403 -0.4 24.9269
2 1 0.7 10.7208 -0.3 24.8199
0 2 -0.9 11.6552 -0.9 25.6878
1 2 0.8 10.9672 -0.2 25.0398
2 2 0.7 10.6916 -0.1 24.5809

Choosing the case where Deg(K(ρ)) = [2, 1], the results obtained with Theorem 2 are
shown in Table 9. Regarding the linear controller used for a comparison reference, LQR
controllers are considered in both cases.

Table 9: Result of the H2 state-feedback applied to CMG LPV model.

LMI rows variables √
µ ξmin ϵmin

Regulatory mode 1419 706 10.6929 0.7 0.1
Tracking mode 2535 1513 24.8199 -0.3 1

The experimental setup is composed of two steps. First, a PI control is activated
to bring the disk speed to 400 rpm, from 0 to 18 seconds. Then, in the second step,
the PI is turned off and the state feedback control is activated. Beside that, the test is
divided in two situations. The first considers the initial condition θC = 20◦, corresponding
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to the linearization point of the LQR project. The second considers the initial condition
θC = −20◦. The idea of testing with the initial condition away from the linearization point
is to show the difficulty faced by time-invariant control strategies when these changes occur
(which can happen naturally since these variables are not being controlled).

Figure 16 shows the practical results obtained considering that the initial conditions
coincide with the linearization point in the Tracking mode. Note that the LPV and
LQR controllers presented very similar responses, with small differences in the controlled
variables. However, note that the values of θC and θ̇D start to drift away from the starting
point. The explanation for this fact is because these variables are not being considered
in the control design.
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Figure 16: Sinusoidal tracking practical results of H2 gain-scheduled and LQR controller
applied in the CMG considering the initial position θC = 20◦.

In the second case, shown in Figure 17, it is considered that the initial condition is
different from the linearization point (θC = −20◦). Note that now the LQR was not able
to stabilize the plant. At approximately t = 70s, the CMG became unstable and shut
down the system.

To test the regulatory mode, a disturbance is considered in the output, as seen in
Figure 18. The other conditions are the same of the previous experiment.

Figure 19 presents the results where the initial condition is the same of the operation
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Figure 17: Sinusoidal tracking practical results of H2 gain-scheduled and LQR controller
applied in the CMG considering the initial position θC = −20◦.
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Figure 18: Disturbance considered in the output of the CMG.

point. Both controllers satisfactorily rejected the disturbances. The results associated to
θA are quite similar. However, in θB it is possible to see some differences, but it is still
difficult to classify which controller is better. At the instant t = 25s the LPV controller
had a larger overshoot, but at the instant t = 50s the same occurred with the LQR.
Overall, the two controllers presented similar behavior.



78

Time [s]
0 20 40 60 80

θ
A
[◦
]

-10

-5

0

5

10

LPV

LQR

Time [s]
0 20 40 60 80

θ
B
[◦
]

15

20

25

LPV

LQR

Time [s]
0 20 40 60 80

θ
C
[◦
]

10

15

20

25

30

LPV

LQR

Time [s]
0 20 40 60 80

ω
D
[r
p
m
]

0

100

200

300

400

500

LPV

LQR

Figure 19: Disturbance rejection practical results of H2 gain-scheduled and LQR controller
applied in the CMG considering the initial position θC = 20◦.

In the second case, the initial condition is different from the linearization point (θC =
−20◦), and the results are shown in Figure 20. Once again, the LQR controller failed
to maintain stability, while the LPV controller did it successfully. Moreover, even before
losing stability, the LQR control already presented worse results.

Overall, the proposed H2 gain-scheduled controller showed superiority with respect to
time-invariant control. There are other techniques that can handle this problem (nonlinear
controllers, for example), but the proposed one is a state feedback.

4.1.3.2 quasi-LPV model

Consider the quasi-LPV model obtained by the proposed polynomial regression method
(Algorithm 1) with both LPV variables with quadratic dependence. Although the third-
order model better represents the plant, the higher the order, the greater the computa-
tional complexity. Furthermore, the second order model is already able to represent the
change of direction of the control effort caused by the variation of θB and θC .
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Figure 20: Disturbance rejection practical results of H2 gain-scheduled and LQR controller
applied in the CMG considering the initial position θC = −20◦.

Regarding the controlled output (z), it is considered

z =



11.4548 0 0 0 0

0 11.4548 0 0 0

0 0 2.2361 0 0

0 0 0 2.2361 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0


︸ ︷︷ ︸

Cz

x+



0 0

0 0

0 0

0 0

0 0

155.1622 0

0 9.6599


︸ ︷︷ ︸

D

u

+



0.1 0 0 0 0

0 0.1 0 0 0

0 0 0.0032 0 0

0 0 0 0.0032 0

0 0 0 0 0.0032


︸ ︷︷ ︸

Dw

w,

and the matrix associated the exogenous input (w) is chosen as Bw = I7 (7 × 7 identity
matrix).
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This experiment considers the H∞ gain-scheduled controller and the bounds for the
LPV variables are chosen as follows

−75◦ ≤ θB ≤ 75◦ and −35◦ ≤ θC ≤ 35◦,

−3 rad/s rad/s ≤ θ̇B ≤ 3 rad/s and −2 rad/s ≤ θ̇C ≤ 2 rad/s.

Table 10 shows the parameters considered for the controller design.

Table 10: Parameters employed in the design of the H∞ state-feedback gain for the CMG
quasi-LPV model.

Deg(W (ρ)) Deg(K(ρ)) of θB Deg(K(ρ)) of θC ξ ϵ
{2,2} {0,1,2} {0,1,2} {−0.9,−0.8, . . . , 0.8, 0.9} 0.1

Applying Theorem 3 and considering the parameters informed in Table 10, one has
the results presented in Table 11, where only the best guaranteed cost for all values of
the parameters ξ and ϵ was informed for each pair of the degrees associated to θB and θC .
The symbol ’–’ means that no feasible solution was obtained.

Table 11: H∞ Guaranteed-costs provided by Theorem 3 considering different degrees for
the time-varying parameters, ϵ = 0.1 and the values given in (4.1) for ξ.

Deg(K(ρ)) of θB Deg(K(ρ)) of θC degree ξ H∞ Guaranteed-cost
0 0 - -
1 0 - -
2 0 -0.7 404.3010
0 1 0 228.7062
1 1 -0.1 216.3027
2 1 0 216.1996
0 2 -0.5 228.6861
1 2 -0.7 216.0578
2 2 -0.7 216.0252

As can be seen, it is not possible to design a stabilizing robust (not scheduled, degree
zero) controller, since the CMG reverses the direction of the gyroscopic precession due to
the position of θB and θC (it changes from a minimum phase system to a non-minimum
phase one). Controllers with degrees greater than or equal to one (for both scheduling
parameters) present the best results. However, it is noted that Deg(K(ρ)) = {2, 2},
showed a slight improvement with respect to Deg(K(ρ)) = {1, 2}. As higher degree
controllers demand a more complex implementation, we decided to consider a controller
with degree two for both parameters. The results and numerical complexity associated
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to this case are summarized in Table 12 and the resultant controller has the structure

u(t) = Z(ρ)Y (ρ)−1(x(t) − xref (t)),

where xref =
[
θAref θBref 0 0 0

]⊤
.

Table 12: Result of the H∞ state-feedback applied to CMG quasi-LPV model.

LMI rows variables √
µ ξmin ϵmin

2700 676 216.0252 -0.7 0.1

Figure 21 shows a closed-loop simulation with the designed controller applied to the
CMG system. As can be seen, the tracking problem was solved with good results. We
stress that the designed gain-scheduled controller itself solves the tracking problem, that
is, it is not necessary to include a pre-filter or an integrator as in (ABBAS et al., 2014).
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Figure 21: Simulation result with the H∞ gain-scheduled controller applied in the CMG
quasi-LPV model.

The results presented in the sequence were obtained through a practical validation. In
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this experiment, the proposed control is compared to a linear control with the same perfor-
mance specifications (Q = C⊤

z Cz, R = D⊤D, Bw and Dw). To enhance the comparisons,
two linear control techniques are investigated: Standard H∞ linear control (STDH∞) and
H∞ linear control with integrator insertion (INTH∞).

The STDH∞ is the standard H∞ state feedback design using an LTI linearized model
obtained at the operation point x = 0. The state and input matrices resulted of this
linearization are

ALT I = A(θA = 0, θB = 0) =



0 0 1 0 0

0 0 0 1 0

0 0 −0.0203 0 −8.5916

0 0 0 −0.0592 0

0 0 42.0419 0 −0.4338



BLT I = B(θA = 0, θB = 0) =



0 0

0 0

0 0

0 −21.9298

36.7647 0


.

As it is well known, a standard H∞ state-feedback control law is not enough to ensure
null steady-state error when performing tracking of trajectories. Thus, it also considered
here the addition of one integrator for each state θA and θB (TORIUMI; ANGéLICO,
2020). The augmented system considering the integrators is given by5

Aa =

ALT I 0

I2 0

 and Ba =

BLT I

0

 . (4.1)

5I2 indicates an identity matrix of dimension 2.
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The augmented system has two more states, with the new matrices Cz and Dw given by

Cz =



11.4548 0 0 0 0 0 0

0 11.4548 0 0 0 0 0

0 0 2.2361 0 0 0 0

0 0 0 2.2361 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 500 0

0 0 0 0 0 0 500

0 0 0 0 0 0 0

0 0 0 0 0 0 0



, (4.2)

Dw =



0.1 0 0 0 0 0 0

0 0.1 0 0 0 0 0

0 0 0.0032 0 0 0 0

0 0 0 0.0032 0 0 0

0 0 0 0 0.0032 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



. (4.3)

The experiment relies on tracking a reference signal comprised of two pulses of am-
plitudes of 50o and −50o (10 seconds of duration each) for both variables θA and θB.
The results are depicted in Figure 22 (θA at the top, θB at the bottom), where qLPVH∞

represents the proposed strategy. The associated trajectories of θC and the control sig-
nals (torques) are shown in Figure 23. As can be seen, the qLPVH∞ technique was able
to guarantee the reference tracking. In addition, despite being slightly oscillatory, the
control effort did not reach saturation at any time. Besides, it is possible to see that the
other two strategies present far inferior results.

Depending on the position of θC , the system presents a different coupling. It is
observed that, as the controller adapts itself to the variation in θC , the coupling does
not significantly affect the output. This feature, on the other hand, does not occur with
the fixed controllers (not scheduled), where it can be observed a much more accentuated
coupling effect.

The second test consists in a sinusoidal reference tracking. The output response
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Figure 22: Responses of the CMG system (in terms of θA and θB) to input pulses consid-
ering different controllers.
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Figure 23: Pulses response: control effort and θC .
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is shown in Figure 24, whereas the control effort and θC are presented in Figure 25.
The proposed gain-scheduled controller was able to track a high amplitude reference.
Despite the oscillatory behavior, the control effort is relatively low and does not reach
the saturation limits. The controller STDH∞ was unable to track the reference, becoming
unstable at 26 s. Differently, the INTH∞ maintained the stability, but the result was not
satisfactory (even with quite high integrators gains). In addition, it was observed that
with an additional slight increase in the weight of the integrators Cz(6, 6) and Cz(7, 7),
the system becomes unstable.
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Figure 24: Sinusoidal reference tracking output of the H∞ controller test.

To better show the differences among the three strategies, Table 13 shows the absolute
errors (maximum and mean) observed in each test. As can be seen, the controller qLPVH∞

showed better results when compared to the other techniques. As a final comment, it
is important to highlight that by using the proposed modeling, the synthesized state-
feedback controller was able to deal with the reference tracking problem without needing
a pre-filter or integration insertion.
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Figure 25: Sinusoidal reference tracking: control effort and θC .

Table 13: Mean and maximum values of absolute errors observed in practical results.

Maximum Mean
Controller θA θB θA θB

Pulses
STDH∞ 59.36◦ 30.62◦ 14.01◦ 4.54◦

INTH∞ 50.35◦ 22.66◦ 10.54◦ 2.34◦

qLPVH∞ 27.22◦ 6.78◦ 1.31◦ 0.11◦

Sine
STDH∞ - - - -
INTH∞ 111.99◦ 18.59◦ 47.80◦ 6.30◦

qLPVH∞ 13.24◦ 0.74◦ 6.11◦ 0.32◦

4.2 Static output-feedback control

As a general observation regarding mechatronic systems, sometimes the static feed-
back of the outputs is not enough to stabilize the plant or assure a satisfactory perfor-
mance. For instance, considering that the states variables are positions and velocities,
a feedback control law without the velocities may not be feasible, specially when phase
lead is necessary. This observation has been verified in all real plants investigated in this
thesis.

As the conditions of Theorem 4 did not provide feasible solutions for any system
treated in this work, a numerical test is presented to exemplify the proposed technique in
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the design of static output-feedback controllers.

4.2.1 Numerical example

Consider the randomly generated LPV system described by

ẋ = A(ρ)x+B(ρ)u,

y = C(ρ)x

z =



1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0


x+



0 0

0 0

0 0

1 0

0 1

0 0


u,

where

A(ρ) =


−1.0616 0.7481 −0.7648

2.3505 −0.1924 −1.4023

−0.6156 0.8886 −1.4224

 + ρ


0.4882 1.4193 1.5877

−0.1774 0.2916 −0.8045

−0.1961 0.1978 0.6966

 ,

B(ρ) =


0.7537 0.0759

0.3804 0.0540

0.5678 0.5308

 + ρ


0.7792 0.5688

0.9340 0.4694

0.1299 0.0119

 ,
C(ρ) =

[
0.3371 0.1622 0

]
+ ρ

[
0.7943 0.3112 0

]
.

The time-varying parameter ρ has the following bounds

−1 ≤ ρ ≤ 1 and − 0.5 ≤ ρ̇ ≤ 0.5.

Figure 26 shows the eigenvalues of matrix A(ρ) for a set of values (frozen) of ρ. As
can be clearly seen, there are eigenvalues with positive real part for several values of ρ
(a fined grid was used). This is a proof of instability since the Hurwitz stability for all
values of ρ is a necessary condition for the stability of the system (ρ̇ = 0 is particular case
of the model).

Theorem 4 requires a state-feedback stabilizing gain (first stage) to calculate the
output-feedback gain (second stage). In this case, the first stage is computed using the
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Figure 26: Open-loop poles of the numerical example considering several values of ρ ∈
[−1, 1].

conditions of Theorem 2 with the parameters presented in Table 14.

Table 14: Parameters of the first stage (Theorem 2) of the output-feedback design.

Deg(W (ρ)) Deg(Z(ρ)) Deg(Y ) ξ ϵ
1 1 Constant {−0.9,−0.8, . . . , 0.8, 0.9} {0.1, 1, 10}

Note that variable Y was defined as ρ-independent because Theorem 4 requires a
polynomial gain as input.

Table 15: Results of the first stage of the output-feedback design.

LMI rows variables √
µ ξmin ϵmin

104 64 2.7075 0.8 0.1

The state-feedback obtained in the first stage (K(ρ) = Z(ρ)Y −1) is used in the second
stage condition as well as the parameters presented in Table 16. A search on parameter
ϵ is not performed again, and the value that presented the best result in the first stage is
used.

Using Theorem 4 in the second stage one has the results presented in Table 17.
Observe that the value of ξ that provided the best the guaranteed cost is different from
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Table 16: Parameters of the second stage (Theorem 4) of the output-feedback design.

Deg(W (ρ)) Deg(H(ρ)) Deg(J) ξ ϵ
1 1 1 {−0.9,−0.8, . . . , 0.8, 0.9} 0.1

the one of the first stage. The resulting controller is

J(ρ) =

−0.0993

−0.0767

 + ρ

 0.00183

0.000543

 ,
H(ρ) =

0.0156 0.000892

0.0217 0.0313

 + ρ

−0.00471 0.00362

−0.0159 −0.00752

 .

Table 17: Results of the second stage of the output-feedback design.

LMI rows variables √
µ ξmin ϵmin

156 73 3.6482 0.6 0.1

4.3 Dynamic output-feedback control

To illustrate the results of the proposed dynamic full-order output-feedback design
conditions, we consider two examples, the Furuta pendulum and the CMG.

4.3.1 Furuta Pendulum

In this example the H2 dynamic full-order gain-scheduled output-feedback control is
applied to the Furuta pendulum. The quasi-LPV model considered in the design is the
one presented in Section 2.3.2.

Consider the following bounds for θ1 and θ̇1

−20◦ ≤ θ1 ≤ 20◦ and − 1 rad/s ≤ θ̇1 ≤ 1 rad/s.
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The exogenous input and controlled output matrices are defined as

Cz =



17.1887 0 0 0

0 171.8873 0 0

0 0 5.7296 0

0 0 0 5.7296

0 0 0 0


,

D =
[
0 0 0 0 20

]⊤
,

Dwy = 0,

Bw = I.

Theorem 2 is used to compute the state-feedback stabilizing gain associated to the first
stage (Z(ρ) and Y (ρ), where K(ρ) = Z(ρ)Y (ρ)−1), which is then employed as initial con-
dition (K(ρ) = Cc(ρ)) of Theorem 5 to compute the full-order dynamic output-feedback
controller. The adopted parameters are shown in Table 18.

Table 18: Parameters used in the design of the dynamic controller for the Furuta pendu-
lum.

Deg(W (ρ)) Deg(K(ρ)), Deg(Ac(ρ)) and Deg(Bc(ρ)) ξ ϵ
2 {0,1,2,3} {−0.9,−0.8, . . . , 0.8, 0.9} 0.1

Table 19 presents the guaranteed costs obtained at each stage for all considered degrees
as well as the associated numerical complexity. Note that the higher the degree, the lower
the guaranteed cost. The second stage has a greater variation than the first one. Although
the third-degree controller resulted in the lowest guaranteed-cost in both stages, it is still
very close to the second-degree controller. Therefore, the second-degree controller was
considered in the implementation of the control design of the Furuta pendulum.

Besides, observe that the guaranteed cost provided by the second stage is slightly
larger than the one yielded by the first stage. This is expected, because in general state-
feedback provides better performance than output-feedback.

Figure 27 shows a closed-loop simulation of the Furuta pendulum controlled by the
designed dynamic gain-scheduled output-feedback controller. Note that the dynamic con-
troller not only guarantees the stability of θ1 but also the reference tracking of θ0, which
is referenced by a square wave of 90◦ amplitude.

Figure 28 shows the control effort and a comparison of the angular positions (θ0 and
θ1) with the controller states (xc). It is possible to observe that the controller state ended



91

Table 19: H2 guaranteed-costs of the Furuta pendulum associated to the degrees of θ1.

Controller degree ξ Guaranteed-cost LMI Rows variables

First 0 0.7 58.7435 129 129
1 0.7 58.5777 163 149

stage 2 0.7 58.3648 197 169
3 0.8 58.2859 231 189

Second 0 0.8 81.2409 213 403
1 0.7 79.4788 329 427

stage 2 0.7 68.5166 445 451
3 0.7 68.3023 561 475

up becoming a plant state observer. This is because the matrix Cc(ρ) was defined as the
states feedback of the first stage (K(ρ) = Z(ρ)Y (ρ)−1 ).
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Figure 27: Simulation result of the H2 dynamic control applied to the Furuta pendulum.

4.3.2 CMG

In this example the same model that was considered in the H∞ state-feedback design
is used. The only difference is the range of the LPV variables, which are here defined as

−60◦ ≤ θB ≤ 60◦ and −35◦ ≤ θC ≤ 35◦,

−3 rad/s ≤ ˙θB ≤ 3 rad/s and −2 rad/s ≤ ˙θC ≤ 2 rad/s.

Besides, it is considered that Dwy = 0.
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Figure 28: Control effort and controller states from the simulation of the H2 dynamic
control applied to the Furuta pendulum.

We stress that when considering the previous limits, the controller calculation was
relatively complex. For the few cases where feasible stabilizing controllers were found, the
guaranteed costs were relatively high.

Initially, an H2 state-feedback controller is considered in the first stage with the design
parameters presented in Table 20. Note that in the dynamic controller there are three
polynomial (or rational) matrices in the controller (Ac(ρ), Bc(ρ) and Cc(ρ)), and the
degree of each matrix is arbitrary and independent of the others. However, we arbitrarily
consider the same degree for all polynomial matrices.

Table 20: Parameters of the H2 state-feedback design to the CMG quasi-LPV model in
the first stage of the dynamic control.

Deg(W (ρ)) Deg(Cc(ρ)) of θB Deg(Cc(ρ)) of θC ξ ϵ
2 2 2 {−0.9,−0.8, . . . , 0.8, 0.9} {0.1, 1, 10}

The results obtained with the application of Theorem 2 are shown in Table 21.

Table 21: Result of the first stage (Theorem 2) in the design of the dynamic controller
for the CMG.

LMI rows variables √
µ ξmin ϵmin

2299 811 14.7703 -0.8 1

Next step is to use the state-feedback controller obtained in the first stage (in the form
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of Z(ρ) and Gρ)) as an input parameter for Theorem 5, also considering the parameters
presented in Table 22. In this example, the scalar search is performed again as a strategy
to obtain the lowest guaranteed cost in the second stage.

Table 22: Parameters of the H2 state-feedback design to the CMG quasi-LPV model in
the second stage of the dynamic control.

Deg(W (ρ)) Deg(Ac(ρ)) and Deg(Ac(ρ)) and
ξ ϵDeg(Bc(ρ)) of θB Deg(Bc(ρ)) of θC

2 2 2 {−0.9,−0.8, . . . , 0.8, 0.9} {0.1, 1, 10}

Finally, the result of the second stage is shown in Table 23. Note that the linear
search of the scalars resulted in values different from the first stage, specially for ϵ. In
addition, the computational complexity demanded by the second stage is higher than the
one of the first stage.

As the output-feedback controller only requires the measurement of the outputs, it is
expected a higher guaranteed cost when compared to the one obtained for state-feedback.

Table 23: Results of the second stage of the output-feedback design for the CMG.

LMI rows variables √
µ ξmin ϵmin

4288 1921 37.5881 -0.4 0.1

To demonstrate the operation of the proposed controller, a simulation was carried
out, considering a tracking task.

The first simulation considers pulse responses for the two angles, θA and θB, and the
results are shown in Figure 29. Although somewhat oscillatory, the control effort did not
affect the quality of the tracking of the controlled variables. The coupling effect is noted
in the response of θB due to variations in θA.

Figure 30 shows the controller state variable xc, which can be interpreted as an ob-
servation of the state vector that multiplies the matrix A(ρ) of the LPV model (x−xref ).

The second simulation considers a sinusoidal response, and it is presented in Fig-
ure 31. Once again the control effort presented an oscillatory behavior and the variation
in θC is larger than the one observed in the previous simulation. However, the tracking
performance was satisfactory. Furthermore, Figure 32 shows xc compared to (x− xref).

With this simulation, we validate the proposed dynamic control technique. The tech-
nique showed great results, solving the tracking problem with a small error and considering
only the feedback of the output.



94

Time [s]
0 20 40 60 80

θ
A
[◦
]

-60

-40

-20

0

20

40

60

θA[
◦]

θAref [
◦]

Time [s]
0 20 40 60 80

θ
B
[◦
]

-40

-20

0

20

40

θB [
◦]

θBref [
◦]

Time [s]
0 20 40 60 80

T
or
q
u
e
[N

m
]

-1

-0.5

0

0.5

1

T3

T4

Time [s]
0 20 40 60 80

θ
C
[◦
]

-10

-5

0

5

10

Figure 29: Simulation result of the H2 dynamic control applied to the CMG and consid-
ering a pulse as reference.

Differently from the static output-feedback case, which did not present feasible re-
sults in the examples presented in this work, the dynamic controller was successfully
applied. However, the computational complexity is relatively higher when compared to
static output-feedback and state-feedback. Moreover, as the design is performed in two
stages, the design procedure can be considered more involved than in the case of state-
feedback controllers.
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Figure 30: Controller state xc result of the H2 dynamic control applied to the CMG and
considering a pulse as reference.
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Figure 31: Simulation result of the H2 dynamic control applied to the CMG and consid-
ering a sinusoidal reference.
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5 CONCLUSION

This thesis presented i)- modeling techniques for a class of nonlinear systems in terms
of LPV or quasi-LPV models; ii)- synthesis conditions based on convex optimization
for gain-scheduled controllers with polynomial dependence on the scheduling variables,
assuring stability and performance (in terms of the H2 and H∞ norms) with less conser-
vatism; iii)- simulations and experimental validations in practical systems of the proposed
modeling and control methods.

5.1 Modeling

Regarding the modeling in terms of time-varying parameters, two approaches have
been developed to obtain LPV and quasi-LPV models from a class of nonlinear systems.
One focused on increase of region in which the model is capable to represent the dynamics
of the plant with accuracy, and another focused on reference tracking problems.

In general, the high order Taylor expansion approach can generate models capable to
represent with accuracy a larger region around a chosen operating point. As shown in the
simulations, the models devised for the mechatronics systems investigated represented the
associated nonlinear models quite well.

The second approach considered a polynomial regression to generate models with sev-
eral operating points. The main strategy was to design an LPV (or quasi-LPV) model
representing a family of linear models within the considered range of operation. To acom-
plish this task, an algorithm that generates generalized polynomial LPV (or quasi-LPV)
models was proposed to cope with systems with a generic number of time-varying param-
eters and with arbitrary polynomial degrees. The algorithm presented good results when
applied to the mechatronic plants under investigation, specially when dealing with the
tracking problem. Generally, the price to be paid to obtain more accurate models is a
progressive increase in the computational burden demanded to synthesize the polynomial
models with larger degrees. At this point the designer must trade-off the accuracy of
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the model and the computational complexity required to design the gain-scheduled con-
trollers for the model. As a final conclusion about this topic, both the proposed modeling
techniques are systematic and general methods to deal with a class of nonlinear systems,
being an important first step for the challenging task of designing controllers for this class
of systems.

5.2 Gain-scheduled Control

Concerning the problem of designing controllers, new LMI conditions for stabilization,
H2 and H∞ control were proposed for LPV (or quasi-LPV) systems with polynomial
dependence on the time-varying parameters. The proposed synthesis conditions include a
scalar parameter belonging to a bounded set, being an important extra degree of freedom
to obtain controllers with improved performance.

Initially, the stabilization problem by means of gain-scheduled state-feedback con-
trolllers was addressed. New synthesis conditions were provided with a scalar parameter
limited to the range (−1, 1), which facilitates the task of implementing a linear search. Ex-
haustive numerical simulations in the context of time-invariant systems were presented to
evaluate the proposed technique, showing that the additional variables specially included
to deal with the time-derivative of the Lyapunov matrix do not introduce conservativeness.

Next, extensions to cope with H2 and H∞ gain-scheduled state-feedback control were
proposed, both also considering the linear search presented in the stabilization condition.
Finally, as a clear demonstration of the generality and utility of the proposed technique,
extensions to deal with the more challeging problems of static and full-order dynamic
output-feedback were also presented. The synthesis conditions are formulated in terms of
a well established technique from the literature where the controllers are designed in two
steps.

As all synthesis conditions from the literature based on LMI optimization, the pro-
posed technique causes a rapidly increase in the computational burden necessary to design
models and controllers as the degrees of the models and controllers grow, limiting the ap-
proach for systems with a small number of variables and parameters.

Although not presented, an extension to deal with the mixed H2/H∞ gain-scheduled
control design is possible. As all proposed conditions employ the slack variables to con-
struct the gain, different Lyapunov matrices for both criteria can be used, potentially
leading to less conservative results.
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5.3 Simulations and Experimental Validations

Finally, simulation and practical results were presented, considering: State-feedback,
static output-feedback and full-order dynamic output-feedback control. For the state-
feedback case, the results were considered satisfactory, even though, for most cases,
the Taylor-based modeling did not provide significant improvements (as previously men-
tioned). However, with the modeling scheme that interpolates linear models, the tracking
problem was efficiently tackled without integrators or pre-filters.

Regarding the static output-feedback case, it was not possible to design a feasible con-
troller for the real mechatronic plants investigated in this thesis. However, the proposed
condition proved to be effective in a numerical example based on a randomly generated
system.

The full-order dynamic output-feedback control presented good results in the sim-
ulation tests. However, in the case of CMG, there is a small oscillation in the control
effort (worse in H∞ case), which can harm the practical implementation of the controller.
However, as the Furuta pendulum did not present this oscillation, other setups for the
parameters involved in the design, as the values of ξ and ϵ and the polynomial degrees of
the controller variables, can mitigate this undesired issue.

Another interesting point to mention about the dynamic controller is the fact that the
dynamics ẋc = Ac(ρ)xc +Bc(ρ)y is working like as an observer to estimate (x−xref ). This
is due to the first stage of the synthesis condition, which considers u = Cc(ρ)xc, where
Cc(ρ) is chosen as a stabilizing state-feedback controller. As a consequence, in order to
maintain stability, xc converges to (x− xref ).

5.4 Future Works

As future works, the following extensions and tasks can be mentioned:

• We first intend to carry out a practical implementation of the dynamic controller;

• We intend to test the high-order Taylor series-based modeling technique on systems
that are more sensitive to the LPV parameter;

• Another future direction of investigation could be the application of the polynomial
interpolation method in discrete systems, as there is no restriction for that in the
procedure;



101

• Finally, since the proposed time-varying control conditions are very model depen-
dent (exact measurement of the LPV variable is required), the extension of the
method to cope with modeling or measurement errors (LACERDA et al., 2016)
would be an interesting direction as well.

5.5 Publication and submissions

Two conference papers were published from the results obtained in this thesis:

- G. P. Neves, F. Y. Toriumi, B. A. Angélico and R. C. L. F. Oliveira, “A new approach
for quasi-LPV modeling and state-feedback control of nonlinear systems with application
on a 5-DOF pendulum”, Proceedings of the 2021 American Control Conference (ACC),
2021, pp. 4920-4925, doi: 10.23919/ACC50511.2021.9483001.

- G. P. Neves B. A. Angélico and R. C. L. F. Oliveira, “H2 gain-scheduled state-
feedback synthesis conditions applied to a quadruple tank system”, Anais do Congresso
Brasileiro de Automática 2020, doi: 10.48011/asba.v2i1.1584.

Beside that, two journal papers were submitted:

- G. P. Neves B. A. Angélico and R. C. L. F. Oliveira, “H2 gain-scheduled state-
feedback design with experimental validation in a control moment gyroscope represented
as a polynomial LPV model”, Mechatronics.

- G. P. Neves B. A. Angélico and R. C. L. F. Oliveira, “Quasi-LPV modeling and H∞

gain-scheduled state-feedback control applied to a control moment gyroscope”, Interna-
tional Journal of Control.
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APPENDIX A – REACTION WHEEL
INVERTED PENDULUM

The reaction wheel pendulum consists of a wheel (called reaction wheel) positioned
on top of a rod. Its operation consists of using the reaction of the torque applied to the
wheel to act on the rod and, thus, balance the pendulum. Consider the schematic drawing
with the coordinate systems fixed on each body shown in Figure 33.

Figure 33: Reaction wheel pendulum schematic drawing.

The variables θ1 and θ2 are the angles of the wheel and the reaction wheel, respectively.
Besides, the parameters of the built pendulum are informed in Table 24. The coordinate
system (system {0}) depicted in black is fixed to the base, the blue one (system {1}) is
fixed to the body, and the red one (system {2}) is fixed to the wheel.
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Table 24: Reaction wheel pendulum parameters

Parameter Value
M1 Body mass [kg] 0.117
M2 Wheel mass [kg] 0.119
L Body length [m] 0.14298
I2 Wheel moment of inertia [kgm2] 9.4559 × 10−4

I1 Body moment of inertia [kgm2] 6.2533 × 10−4

d Distant between base and body center of mass [m] 0.0987
g Gravity acceleration [m/s2] 9.81
Kt Torque constant motor 0.0601
Ke Velocity constant motor [V/(rad/s)] 0.1836
Rm Motor resistance [Ω] 2.44

The system rotation matrices are

1
0R = R1 =


cos(θ1) − sin(θ1) 0

sin(θ1) cos(θ1) 0

0 0 1

 ,

2
1R = R2 =


cos(θ2) − sin(θ2) 0

sin(θ2) cos(θ2) 0

0 0 1

 ,

and the velocities of each system is calculated by

ω1 = R⊤
1

[
0 0 0

]⊤
+

[
0 0 θ̇1

]⊤
,

v1c = ω1 ×
[
0 d 0

]⊤
,

ω2 = R⊤
2 ω1 +

[
0 0 θ̇2

]⊤
, (A.1)

v2 = v2c = R2

(
ω2 ×

[
0 L 0

]⊤)
.

To compute the dynamic model using the Lagrange equation it is necessary to deter-
mine the Lagrangian

L = K − U ,

where K and U are the kinetic and potential energies, respectively, which are calculated
as

K = 1
2v

⊤
1cM1v1c + 1

2v
⊤
2cM2v2c + 1

2ω
⊤
1 I1ω1 + 1

2ω
⊤
2 I2ω2,

U = M1d cos(θ1) +M2L cos(θ2).
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Defining q =
[
θ1 θ2

]⊤
, the Lagrange equation is

d

dt

∂L
∂q̇

− ∂L
∂q

= τext,

where

τext =

 0
Kt

Rm
(12u−Kvθ̇2)

 .
Finally, the resulting nonlinear model is given by

M(q)q̈ + V (q, q̇) +G(q) = Pu,

where

M(q) =

0.0051 0.0009

0.0009 0.0009

 ,
V (q) =

 0

0.00452θ̇2

 ,
G(q) =

−0.28 sin(θ1)

0

 ,
P =

 0

0.2956

 .
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APPENDIX B – ROTATIONAL
PENDULUM MODEL

Figure 34: Rotational pendulum schematic drawing.

According to Figure 34, the rotation matrices can be written as

1
0R = R0 =


cos(θ0) − sin(θ0) 0

sin(θ0) cos(θ0) 0

0 0 1

 ,

2
1R = R1 =


1 0 0

0 cos(θ1) − sin(θ1)

0 sin(θ1) cos(θ1)

 ,

where θ0 is the arm angle and θ1 is the pendulum angle. Then, the velocities can be
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calculated by

ω0 = R⊤
0

[
0 0 0

]⊤
+

[
0 0 θ̇0

]⊤
,

v0c = ω0 ×
[
r/2 0 0

]⊤
,

ω1 = R⊤
1 ω0 +

[
θ̇1 0 0

]⊤
,

v1 = R1

(
ω0 ×

[
r 0 0

]⊤)
,

v1c = ω1 ×
[
0 0 l1

]⊤
.

The potential (U) and kinetics (T ) energies are

T1 = 1
2ω

⊤
0 Ibω0 + 1

2v
⊤
0cMbv0c,

T2 = 1
2ω

⊤
1 Ipω1 + 1

2v
⊤
1cMpv1c,

T = T1 + T2,

U = Mpl1 cos(θ1).

Using the Lagrange equations, we has

L = T − U,
d

dt

∂L

∂q̇
− ∂L

∂q
= τext,

where q =
[
θ0 θ1

]⊤
are the generalized variables. The generalized torque is τext =[

τ −B0θ̇0 −B1θ̇1

]⊤
. The torque τ is applied by a DC motor, so, its dynamic is

τ = Kt

R
(12V −Kvθ̇0),

where Kt is the torque constant, Kv is the speed constant, R the resistance and V is the
percentage of input voltage ranging from -1 to 1. The values of the parameters of the
built prototype are shown in Table 25.

Hence, the following nonlinear model is obtained:

M(q)q̈ + V (q, q̇) +G(q) = Pu,
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Table 25: Rotational inverted pendulum parameters.

Parameter Value
M0 Arm mass 0.393Kg
M1 Pendulum mass 0.068Kg
r Arm Length 0.365m
l1 Distance of the center of mass 0.1035m
Ib Arm inertia moment 6.3725e− 04Kgm2

Ip Pendulum inertia moment 3.9583e− 04Kgm2

Kt Torque constant 0.02Nm/A
Kv Speed constant 0.08V/(rad/s)
R Motor resistance 2.4Ω

where

M(q) =

0.008603 − 0.001188 cos(θ1)2 −0.002375 cos(θ1)

−0.002375 cos(θ1) 0.001583

 ,
V (q, q̇) =

0.002375 sin(θ1)θ̇2
1 + 0.001188θ̇0 sin(2θ1)θ̇1 + 0.004868θ̇0

−0.0005938 sin(2θ1)θ̇0
2 + 0.0001θ̇1

 ,
G(q) =

 0

−0.09319 sin(θ1)

 ,
P =

0.3933

0

 .
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APPENDIX C – UNICYCLE

The unicycle has three parts with center of mass determined by −→p1 , −→p2 and −→p3 , respec-
tively, for the position of the travel wheel, body and reaction wheel (NEVES; ANGÉLICO;
AGULHARI, 2019). Furthermore, the unicycle is considered to be positioned on the −→x
axis, as shown in Figure 35.

Figure 35: Positions of the bodies.

The position vectors are determined by

−→p1 =
[
Rwθw Rw sin(φ) Rw cos(φ)

]
,

−→p2 =
[
Rwθw + L sin(ψ) (Rw + L cos(ψ)) sin(φ) (Rw + L cos(ψ)) cos(φ)

]
,

−→p3 =
[
Rwθw + (L+ d) sin(ψ) (Rw + (L+ d) cos(ψ)) sin(φ)

(Rw + (L+ d) cos(ψ)) cos(φ)
]
.
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The translational kinetic energy is calculated by

ET = 1
2

−→v ⊤M−→v ,

where M is the mass of the object and −→v is the velocity vector of the center of mass in
relation to the inertial system. Thus, the translational kinetic energy of the unicycle is
given by

ET = 1
2

−→v1
⊤Mw

−→v1 + 1
2

−→v2
⊤Mb

−→v2 + 1
2

−→v3
⊤Mr

−→v3 ,

where

−→v1 = d

dt
−→p1 ,

−→v2 = d

dt
−→p2 ,

−→v3 = d

dt
−→p3 .

The rotational kinetic energy is calculated as

ER = 1
2Jwθ̇

2
w︸ ︷︷ ︸

1

+ 1
2Jbrψ̇

2︸ ︷︷ ︸
2

+ 1
2Jr(θ̇r + φ̇)2︸ ︷︷ ︸

3

+ 1
2Jbwφ̇

2︸ ︷︷ ︸
4

,

where part 1 of the equation corresponds to the travel wheel rotation, part 2 is the rotation
of the pitch angle, part 3 corresponds to the rotation of the reaction wheel and its center
of mass and part 4 is the rotation of the roll angle.

The potential energy is

U = MwgRw cos(φ) +Mbg((Rw + L cos(ψ)) cos(φ)) +Mrg(Rw + (L+ d) cos(ψ)) cos(φ).

The Lagrange equation is used to determine the dynamic model of the system. The
Lagrangian is defined as

L = ET + ER − U,

where ET , Ew and U are the translational kinetic energy, rotational kinetic energy and
the potential energy, respectively.

Given q =
[
θr φ θw ψ

]⊤
(vector of the variables corresponding to the degrees of

freedom), and τ the vector of external torques and force, the Lagrange equation is written
as

d

dt

∂L

∂q̇
− ∂L

∂q
= τ −Bv,
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where Bv =
[
Bvrθr −Bvrθr Bvwθw −Bvwθw

]⊤
is the vector of the viscous friction.

In this case, the external torque is caused by the motors and their reactions, such that

τ =
[
τr −τr τw −τw

]⊤
,

where τr is the torque caused by the motor connected to the reaction wheel, and τw the
torque caused by the motor connected to the travel wheel. The equations of the DC
motors are

τr = Ktr

Rer

(12Vr −Kerθ̇r),

τw = Ktw

Rew

(12Vw −Kew(θ̇w − ψ̇)),

where Vr and Vw are inputs of the motor coupled with the reaction wheel and the travel
wheel, respectively, with −1 ≤ Vr ≤ 1 and −1 ≤ Vw ≤ 1.

The practical unicycle can be seen in Figure 36 and the physical parameters in Ta-
ble 26.

(a) View 1. (b) View 2.

Figure 36: Practical unicycle
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Table 26: Unicycle physical parameters.

Parameter Value
Rr Reaction wheel radius [m] 0.2
Rw Wheel radius [m] 0.071
L Distance of the center of mass (CM) of the body [m] 0.18632
d Distance between the CM of the body and reaction wheel [m] 0.1503

Mr Reaction wheel mass [Kg] 0.47568
Mb Body mass [Kg] 1.23913
Mw Wheel mass [Kg] 0.30220
g Acceleration of gravity [m/s2] 9.8
Jr Reaction wheel moment of inertia [Kgm2] 0.013472
Jw Wheel moment of inertia [Kgm2] 0.00077
Jbr Moment of inertia of the body plus reaction wheel [Kgm2] 0.03937
Jbw Moment of inertia of the body plus wheel [Kgm2] 0.03458
nr Reduction of the reaction wheel motor 71
Ktr Torque constant of the reaction wheel motor [Nm/A] 0.3383
Ker Electrical constant of the reaction wheel motor [V s2/rad] 0.9454
Rer Electrical resistance of the reaction wheel motor[Ω] 0.6
nw Reduction of the wheel motor 131.25
Ktw Torque constant of the wheel motor [Nm/A] 0.3531
Kew Electrical constant of the reaction wheel motor [V s2/rad] 1.3465
Rew Electrical resistance of the wheel motor[Ω] 2.4
Bvw Travel wheel viscous friction [Ns2/rad] 0.1
Bvr Reaction wheel viscous friction [Ns2/rad] 0.1

From the Lagrange equation and the input vector u =
[
Vr Vw

]⊤
, the nonlinear model

can be written as
M(q)q̈ + V (q, q̇) +G(q) = Pu,
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where

M(q) =



0.013 0.013 0 0

0.013 0.058 cos(ψ) + 0.1 cos(ψ)2 + 0.1 0 0

0 0 0.011 0.029 cos(ψ)

0 0 0.029 cos(ψ) 0.14


,

V (q, q̇) =



0.63θ̇d

−0.63θ̇d − 0.058φ̇ψ̇ sin(ψ) − 0.1φ̇ψ̇ sin(2ψ)

−0.029 sin(ψ)ψ̇2 − 0.2ψ̇ + 0.3θ̇w

0.3ψ̇ − 0.2θ̇w + 0.029φ̇2 sin(ψ) + 0.051φ̇2 sin(2ψ)



⊤

,

G(q) =



0

−9.8 sin(φ)(0.41 cos(ψ) + 0.15)

0

−4 cos(φ) sin(ψ)


,

P =



6.7664 0

−6.7664 0

0 1.7654

0 −1.7654


.
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APPENDIX D – CONTROL MOMENT
GYROSCOPE

For the Control Moment Gyroscope (CMG) (TORIUMI; ANGéLICO; TANNURI,
2018), consider the four coordinate systems illustrated in Figure 37. The coordinate
systems are located at the center of mass, but for ease of viewing, they are set aside in
the figure.

Figure 37: CMG schematic drawing.
Source: (ECP, 1999)
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Thus, the rotational matrices are

A
NR =


cos(θA) − sin(θA) 0

sin(θA) cos(θA) 0

0 0 1

 ,

B
AR =


cos(θB) 0 sin(θB)

0 1 0

− sin(θB) 0 cos(θB)

 ,

C
BR =


1 0 0

0 cos(θC) − sin(θC)

0 sin(θC) cos(θC)

 ,

D
CR =


cos(θD) 0 sin(θD)

0 1 0

− sin(θD) 0 cos(θD)

 ,
(D.1)

where θi is the angle of the gimbal i. Hence, the velocities are

ωN =
[
0 0 0

]⊤
,

ωA = A
NR

⊤ωN +
[
0 0 θ̇A

]⊤
,

ωB = B
AR

⊤ωA +
[
0 θ̇B 0

]⊤
,

ωC = C
BR

⊤ωB +
[
θ̇C 0 0

]⊤
,

ωD = D
CR

⊤ωC +
[
0 0 θ̇D

]⊤
,

As the system only has rotational movement, there is no translational velocity. Then, the
kinetics (T ) energy is

T = 1
2

(
ω⊤

AIAωA + ω⊤
BIBωB + ω⊤

CICωC + ω⊤
DIDωD

)
,

where the moment of inertia tensors are

IA = diag(IAxx, IAyy, IAzz),

IB = diag(IBxx, IByy, IBzz),

IC = diag(ICxx, ICyy, ICzz),

ID = diag(IDxx, IDyy, IDxx).
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Using the Lagrange equation, one has

d

dt

∂T

∂q̇
− ∂T

∂q
= τext,

where τext =
[
−BAθ̇A −BB θ̇B T3 −BC θ̇C T4 −BDθ̇D

]⊤
, and T3 and T4 are the torques

applied in the bodies 3 and 4, respectively.

The physical plant can be seen in the Figure 38, whereas Table 27 presents the pro-
totype parameters.

Figure 38: Practical CMG.
Source: (ECP, 1990)

Finally, the nonlinear model is

M(q)q̈ + V (q, q̇) = Pu, (D.2)

where1

M(q) =


0.021sθ2

C − 0.024sθ2
B − 0.021sθ2

Bsθ
2
C + 0.13 0.021cθBcθCsθC −0.027sθB 0.027cθBsθC

0.021cθBcθCsθC 0.073 − 0.021sθ2
C 0 0.027cθC

−0.027sθB 0 0.027 0

0.027cθBsθC 0.027cθC 0 0.027

 ,

V (q, q̇) =
[
V1 V2 V3 V4

]⊤
,

P =

0 0 1 0

0 0 0 1

⊤

,

1To simplify the notation, sθ = sin(θ) and cθ = cos(θ).
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Table 27: Gyroscope parameters.

Parameter Value
BA friction coefficient 0.0027N/(rad/s)
BB friction coefficient 0.0027N/(rad/s)
BC friction coefficient 0.0118N/(rad/s)
BD friction coefficient 0.000187N/(rad/s)
IAxx Inertia moment 0Kgm2

IAyy Inertia moment 0Kgm2

IAzz Inertia moment 0.0698Kgm2

IBxx Inertia moment 0.0119Kgm2

IByy Inertia moment 0.0178Kgm2

IBzz Inertia moment 0.0297Kgm2

ICxx Inertia moment 0.0124Kgm2

ICyy Inertia moment 0.0278Kgm2

ICzz Inertia moment 0.0188Kgm2

IDxx Inertia moment 0.0148Kgm2

IDyy Inertia moment 0.0273Kgm2

Source: (ABBAS et al., 2014)

with

V1 = 2.7e− 3θ̇A − 0.049θ̇B θ̇CcθB − 0.046θ̇Aθ̇Bs2θB − 0.027θ̇B θ̇DsθBsθC

+0.043θ̇B θ̇CcθBcθ
2
C − 0.021θ̇2

BcθCsθBsθC + 0.027θ̇C θ̇DcθBcθC

+0.043θ̇Aθ̇BcθBcθ
2
CsθB + 0.043θ̇Aθ̇Ccθ

2
BcθCsθC ,

V2 = 2.7e− 3θ̇B + 5.7e− 3θ̇Aθ̇CcθB − 0.027θ̇C θ̇DsθC + 0.046θ̇2
AcθBsθB − 0.043θ̇B θ̇CcθCsθC

+0.027θ̇Aθ̇DsθBsθC − 0.021θ̇2
AcθBcθ

2
CsθB + 0.043θ̇Aθ̇CcθBcθ

2
C ,

V3 = 0.012θ̇C − 5.7e− 3θ̇Aθ̇BcθB + 0.027θ̇B θ̇DsθC + 0.021θ̇2
BcθCsθC

−0.021θ̇2
Acθ

2
BcθCsθC − 0.043θ̇Aθ̇BcθBcθ

2
C − 0.027θ̇Aθ̇DcθBcθC ,

V4 = 0.027θ̇Aθ̇CcθBcθC − 0.027θ̇Aθ̇BsθBsθC − 0.027θ̇B θ̇CsθC + 1.9e− 4θ̇D.


