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“For millions of years, mankind lived
just like the animals. Then something
happened, which unleashed the power of
our imagination. We learned to talk
and we learned to listen. Speech has
allowed the communication of ideas,
enabling human beings to work together
to build the impossible. Mankind’s
greatest achievements have come about
by talking, and its greatest failures by
not talking. It doesn’t have to be
like this. Our greatest hopes could
become reality in the future. With
the technology at our disposal, the
possibilities are unbounded. All we need
to do is make sure we keep talking.”

-Stephen Hawking
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RESUMO

SANTO, G. C. M. Data Mining Techniques Applied to Historical Data of Industrial Pro-
cesses as a Tool to Find Time Intervals Suitable for System Identification. Dissertação
(Mestrado) – Escola Politécnica da Universidade de São Paulo, São Paulo, Brasil, 2020.

A Identificação de Sistemas é um conjunto de técnicas para estimação de modelos tradi-
cionalmente utilizada pelas indústrias para aprimorar e otimizar os seus processos. A
estimação de modelos dinâmicos de processos requer a existência de dados informativos
e representativos do sistema, os quais são normalmente gerados através da realização de
experimentos físicos nas plantas. Tais procedimentos muitas vezes necessitam ser execu-
tados múltiplas vezes para produzir dados adequados, podendo resultar em produtos fora
de especificação. Por outro lado, o surgimento de softwares poderosos de armazenamento
e gerenciamento de dados e a constante evolução de conhecimento nas áreas de mineração
e ciência de dados representam uma possibilidade de quebra de paradigma na indústria,
em que soluções robustas orientadas a dados podem ser adotadas.

A utilização direta de dados históricos para a extração de informações úteis de processos
industriais é parte central deste trabalho, em que se propõe a comparação de técnicas de
mineração de dados com o objetivo de encontrar intervalos temporais com informações
suficientes para a realização de identificação de sistemas. Para esse propósito, uma re-
visão detalhada da literatura a respeito desse problema é inicialmente apresentada. Em
seguida, diferentes algoritmos de mineração de dados são aplicados tanto em sistemas de
uma entrada e uma saída quanto em sistemas multientradas, multisaídas operando em
malha aberta e em malha fechada. Dados de simulação são utilizados para exemplificar
didaticamente o funcionamento de cada método e para validar os resultados em casos
ideais. Modelos regressivos são então estimados com os intervalos obtidos, os quais são
utilizados para a realização de validações cruzadas. Finalmente, os métodos propostos são
aplicados em dados reais multivariáveis provenientes de um forno industrial petroquímico.

Os resultados obtidos através de dados de simulação mostram que as estratégias de miner-
ação de dados propostas permitiram a obtenção de bons modelos em cenários de validação
cruzada com 1, 10, 100 e infinitos passos de predição. As aplicações em dados reais, por
sua vez, revelaram-se desafiadoras devido à natureza ruidosa dos dados e devido a es-
cassez de intervalos históricos nos quais todas as entradas do sistema multivariável são
suficientemente ativas para produzir um modelo. No entanto, esse problema é contornado
através da utilização de múltiplos intervalos no processo de estimação de parâmetros, elu-
cidando que os algoritmos adotados também permitem a obtenção de modelos razoáveis
em cenários reais.

Palavras-Chave – Ciência de Dados; Dados Históricos; Identificação de Sistemas; Mine-
ração de Dados; Número de Condicionamento; Posto Efetivo; Qualidade de Dados; Seg-
mentação de Dados; Sistemas Mutivariáveis.
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ABSTRACT

SANTO, G. C. M. Data Mining Techniques Applied to Historical Data of Industrial Pro-
cesses as a Tool to Find Time Intervals Suitable for System Identification. Masters dis-
sertation – Polytechnic School of the University of São Paulo, São Paulo, Brasil, 2020.

System Identification is a set of model estimation techniques traditionally used by in-
dustries to improve and optimize their processes. Estimating dynamic process models
requires the existence of informative and representative data of the system, which are
usually generated through physical experiments on the plants. However, such procedures
often need to be performed multiple times to produce adequate datasets, which may result
in products that are out of specification. On the other hand, the emergence of powerful
data storage and management software, as well as the constant development in the areas
of mining and data science represent a potential paradigm break in industry, in which
robust data-driven solutions can be adopted.

The direct use of historical data to extract useful information from industrial processes is
a central part of this work, in which it is proposed a comparison of data mining techniques
with the objective of finding time intervals with su�cient information to perform system
identification. For this purpose, a detailed review on the literature regarding the problem
is initially provided. Then, di�erent mining algorithms are applied to both Single-Input
Single-Output and Multiple-Input Multiple-Output systems operating in open-loop and
in closed-loop. Simulated data is used to didactically exemplify how each method works
and to validate the expected outcomes in an ideal scenario. Regressive models are then
estimated with the obtained intervals, which are used to perform cross-validation. Finally,
the proposed methods are applied to real multivariable data coming from an industrial
petrochemical furnace.

Results obtained through simulated data show that the proposed data mining strategies
allowed the estimation of good models in cross-validation scenarios with 1, 10, 100 and
infinite prediction steps. Real data applications, in turn, revealed to be challenging due to
the noisy nature of the data and due to the scarcity of historical intervals in which all the
inputs of the multivariable system are su�ciently active to estimate a model. However,
this problem is overcome through the use of multiple intervals in the estimation process,
elucidating that the adopted algorithms can also produce reasonable models in real sce-
narios.

Keywords – Data Science; Historical Data; System Identification; Data Mining; Condi-
tion Number; E�ective Rank; Data Quality; Data Segmentation; Multivariable Systems.
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1 INTRODUCTION

The ability to create industrial process models has an extremely relevant role for the
industry. It is through precise dynamic models that it is possible to develop a whole
bunch of activities widely desired to optimize industrial processes, such as: implementing
advanced controllers like Model Predictive Controllers (MPC), designing optimum tun-
ing of Proportional Integral Derivative (PID) controllers, developing training simulators,
detecting possible system failures, checking for process quality and performing predictive
maintenance (FASSOIS; RIVERA, 2007).

As described in (AGUIRRE, 2015), system identification is an engineering field that
is concerned precisely with the development of mathematical modeling techniques to
dynamic systems. Unlike other model estimation techniques, such as phenomenological
modeling, system identification requires little prior knowledge about the system being
studied. Given the great complexity of the majority of the systems found in industry,
try to model them through its physical principles (or equivalently, its nature) becomes a
long and expensive process (AGUIRRE, 2015). Thus, system identification emerges as an
alternative to the estimation of industrial process models.

The most frequent way to carry out system identification is through the execution
of physical experiments in the plant (process) being modeled. In order to estimate a
good model, informative and representative data of the process must be available, which
are usually obtained subjecting the process to excitation signals that cause a dynamic
response of the process. The outcome data can then be measured through field sensors
and stored by a data acquisition system, allowing one to obtain a model of the plant
through appropriate data analysis.

The lack of informative datasets and the di�culty of obtaining such data in a real
scenario is the downside of system identification. In the majority of the industrial plants,
deviations from the operating point are not allowed or they are only permitted along
narrow limits, which makes the data less active and less e�ective to fit models, requiring
alternative solutions to be developed.
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1.1 Motivation

Since the Third Industrial Revolution that begun at the second half of the 20th
century, the development in electronics gave space to the emergence of a new valuable
asset: the digital data. It is more and more frequent the development of new researches
and technologies that aim to use data as a resource for decision making. Companies from
the most diverse segments, such as Netflix, Uber, Airbnb, Google, among many others,
have data analysis and artificial intelligence algorithms as central tools of their business.
In the context of the manufactory industry, the process popularly known as Industry
4.0 (or fourth industrial revolution) has also gain attention, where technologies such as
IIoT (Industrial Internet of Things), cloud, cybersecurity and Big Data are bringing a
paradigm shift in the production processes (WANG; WANG, 2016).

As the concept of Big Data Analytics emerged in 1997, new ways to collect, store,
investigate, gain insights and make predictions with massive data have come to be widely
studied by researchers of the industry and of the academia (TIWARI; WEE; DARYANTO,
2018). Big Data Analytics can be understand as “the applications of advanced analytic
techniques including data mining, statistical analytics, predictive analytics, etc. on big
datasets” (TIWARI; WEE; DARYANTO, 2018). In this scenario, technologies such as
data mining, machine learning and artificial intelligence begun to be widely explored,
giving space to new areas such as Data Science to emerge with the specific goal of using
these techniques to extract useful information from large datasets (QIN; CHIANG, 2019).

In the particular case of the manufacturing industry, data from multiple sensors are
stored every minute and every day, producing a powerful background that can be used to
aggregate value to such companies. An important area in the industry that is highly based
on data is system identification, which is a data-driven set of mathematical techniques
used to model a system dynamics. In order to obtain dynamic predictive models, mean-
ingful and informative datasets are required, which are usually obtained through physical
experiments, “shaking” the process variables and forcing them to manifest its underlining
dynamic response. Evidently, these experiments become a problem to most companies
that seek to have a model of their plants, since they require removing the process from
its operating condition, in which products with strict specifications are being produced.

A natural solution to overcome this problem arises from the fact that huge amounts
of historical data are available and easily accessible in many companies, allowing the
search for dynamic responses that may have occurred at some point in the past. A
manual search for informative data in huge databases is an exhaustive, ine�cient and not
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scientific based task. Thus, the use of mining techniques and data analysis, so popular
today, become a great motivator to address the problem of obtaining meaningful data
for system identification. In fact, the development of data-driven algorithms capable
of enabling an automated system identification based on historical data has been the
subject of many researches and it is a relevant topic in the scientific community in the
last years, although several of these studies are spread in the literature and no work has
yet aggregated them into a single study.

The development of soft sensors and model-plant mismatch applications are two ex-
amples of remarkable applications that could take advantage of such mining algorithms.
To illustrate these points, it is interesting to mention the two-step data-driven soft sensor
proposed in (TEIXEIRA et al., 2014), where the first step of the algorithm consists of
performing a system identification based on a historical selection of data recovered from
a plant information management system (PIMS).

1.2 A literature Overview

There are few and very recent works in the literature that specifically dive into this
subject. It is possible to mention, initially, a set of works that, although do not directly
approach the problem, provide correlated tools that are essential for its development.

The work in (CARRETTE et al., 1996), for example, presented results concerning
parameter estimates obtained by Prediction Error Methods for input signals that are not
su�ciently rich, i.e., composed of few or no excitation elements. CARRETTE et al. also
proposed a criterion for data selection that allows one to improve the accuracy of the es-
timated transfer functions. In the same direction, GEVERS; BAZANELLA; MISKOVIC
studied the necessary and su�cient conditions of information’s degree that an excitation
signal must have to result in satisfactory experiments of systems identification based on
Prediction Error Methods.

A combination of historical and testing data to obtain an inferential model for con-
trol purposes was proposed in (AMIRTHALINGAM; SUNG; LEE, 2000). In this work,
strategies for data separation were suggested in order to obtain periods of time in which
the plant is working in its operating point.

In (SHARDT; HUANG, 2011c), the e�ects of the sampling period in the quality of
models obtained in closed-loop system identifications are analyzed. It is shown that if
the sampling period is su�ciently small, it is possible to retrieve the plant’s original
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parameters. In (SHARDT; HUANG, 2010), it is also studied the necessary conditions for
operation data to be identifiable for a first order ARX structure process governed by a
lead-lag controller. Theoretical conditions for fully retrieving linear parametric structures
from routine operating data, in open and closed-loop systems, were also described in
(SHARDT; HUANG, 2011a), (SHARDT; HUANG, 2011b) and (SHARDT; HUANG,
2017).

Finally, in (PERETZKI et al., 2011) it was explicitly addressed the problem of identi-
fying systems based on time series stored in data historian systems. The authors developed
an algorithm capable of providing intervals of interest for system identification, as well
as an indicator of quality. This indicator was provided through an information matrix
dependent on the model structure adopted for the plant and through its condition num-
ber, associating an acceptable threshold to it. As the method requires the existence of a
prior model structure, the authors proposed the use of the Laguerre Filter because of its
flexible structure to explain input and output relationships for a wide variety of processes.
In addition, the work hypothesized that the systems studied are linear and Single-Input
Single-Output (SISO). Moreover, both open-loop and closed-loop systems were analyzed
with and without integrative action. Finally, it is worth mentioning that a more detailed
version of this work was published in (BITTENCOURT et al., 2015).

The work in (PERETZKI et al., 2011), however, searched for su�cient exciting
changes in the set-point of the controller, which is unlikely to happen in routine op-
erating data. For this reason, in (SHARDT; HUANG, 2013a) it was proposed the use
of the output of the controller, assuming that the set-point will be kept constant. The
authors used an ARX structure for this purpose and addressed the theoretical conditions
for obtaining the exact model parameters from historical data. The theoretical limitations
included the need to know the process order and time delay. A similar study was done in
(BITTENCOURT et al., 2015).

Statistical properties of the discrete-time signal entropy were studied in (SHARDT;
HUANG, 2013b), which proposed a change detection index to perform the segmentation
of time series. The authors classified the segmentation methods into online (when the
segmentation is done simultaneously with the data collection) and o�ine (when it is
performed with data already collected). In addition, segmentation was divided into three
groups:

a) Sliding Windows (or Moving Windows) methods: the data is scanned by
time windows and the segments are incremented until they reach a certain stop
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condition;

b) Top-Down methods: the analysis begins with the entire dataset, which is further
divided until a stop criterion is reached;

c) Bottom-Up methods: the entire dataset is divided into small segments, which
are unified until they reach a stopping criterion.

One result of the work in (SHARDT; HUANG, 2013b) was to use a di�erential entropy
between the input and the output signals in order to find similar inputs. Therefore,
assuming that di�erent models are obtained through historical data and that these models
can represent di�erent process conditions in time, the di�erential entropy could be used
to determine models that are no longer representative of the real system. In the same
fashion, this method was used in (SHARDT; SHAH, 2014) as an additional step of the
methods in (PERETZKI et al., 2011) and in (SHARDT; HUANG, 2013a). The objective
of the included step is to verify if consecutive intervals have similar entropy, in such a way
that intervals with similar di�erential entropy can be unified as a single window.

In (SHARDT; SHAH, 2014) it was also studied, based on the work in (PERETZKI
et al., 2011), which parameters of the Laguerre Filter mostly a�ect the data segmentation
process. The following classification of the segmentation problem was presented:

a) over segmentation: when data is overly partitioned, resulting in many identified
models;

b) under segmentation: when few models are identified;

c) exact case: when the correct number of models is identified.

To handle the problem of excessive segmentation, the authors used the di�erential
entropy to find similar models and to unify them, reducing the number of resulting models.

In (RIBEIRO; AGUIRRE, 2015), a method based on the Autoregressive (AR) struc-
ture was proposed using routine operating data. The authors used the AR structure be-
cause it is only dependent on the output signal, which is easily obtained from a historian
system. An information metric is proposed based on the singular values of the regressor
matrix, which are used to calculate the e�ective rank. In fact, two di�erent computa-
tions of the e�ective rank were proposed. Correlation between the input and the output
signals are verified as a requirement step of the algorithm and are calculated through a
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cross-correlation scalar metric proposed by RIBEIRO; AGUIRRE. The dataset is equally
divided into a user-defined number of windows and the algorithm is then executed in a
sliding-window fashion.

In (PATEL, 2016), an extension of (PERETZKI et al., 2011) and (BITTENCOURT
et al., 2015) was proposed to include Multiple-Input Multiple-Output (MIMO) systems in
the analysis. PATEL assumed the following hypothesis: the data comes exclusively from
an open-loop processes; the process studied is linear and time invariant. In addition, it
was proposed a cycle of data processing, which involves:

a) standardization and centralization of data;

b) removal of the first element of the sample in order to avoid deflection of the calcu-
lated variance;

c) data filtering (low pass filter) to reduce disturbance influence;

d) assymetric filtering for unification of intervals.

The work also proposed the combination of the Laguerre Filter structure with the
ARX one for the composition of the model. The idea was to explore the flexibility charac-
teristics of the first with the disturbance model of the second. The final solution, however,
resulted in a series of parametric limitations, such as the choice of the model order, the
choice of the Laguerre filter poles and the choice of the cut-o� frequencies of the lowpass
and bandpass filters, in such a way that PATEL developed a Graphical User Interface
(GUI) to make the solution more manageable.

Finally, it is worth mentioning that, in order to address the multivariable problem, a
concomitant treatment of excitation signals and output signals is presented in (PATEL,
2016), in such a fashion that if a corrupted (or bad) data range is found in one of the
inputs, the corresponding interval will be discarded for all the other inputs and for the
output (considering that the MIMO problem can be treated as a combination of multiples
Multiple-Input Single-Output – MISO – systems).

In (ARENGAS; KROLL, 2017a) it was proposed the development of an algorithm
to select informative intervals of data for MIMO closed-loop systems. In this work, the
adopted model is considered to have an ARX structure. Like in (PATEL, 2016), Arengas
and Kroll suggested to simultaneously treat the excitation and the output signals. In a
simplified manner, the algorithm proposed by the authors can be divided into three levels:
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a) Level 1: check for transient changes in the reference signal;

b) Level 2: check for transient changes in the output signal;

c) Level 3: calculate the information matrix and condition number of the closed-loop
system and compare it to a given threshold.

In (ARENGAS; KROLL, 2017b), an open-loop based search method was proposed
using routine operating data. The method is applied to SISO systems and is very similar
to the ones already described. The main contribution of this work is regarding the way the
sliding window is designed. ARENGAS; KROLL proposed a configurable sliding window
that gives more flexibility to the process of searching transient data points.

In (WANG et al., 2018), a new method to search for data segments suitable for system
identifications was presented. In this work, the authors applied a top-down approach to
detect change-points in the data. The change-point detection method is based on a non-
parametric top-down algorithm formulated by (PETTITT, 1979). The main algorithm
formulated in (WANG et al., 2018) is applied to closed-loop systems and consists of mainly
four steps:

a) Step 1: finding the change-points;

b) Step 2: verifying if the data inside each interval su�ers a significant change;

c) Step 3: verifying if there is a significant value di�erence between intervals that do
not su�er from significant changes;

d) Step 4: determining the start and ending time indices for the final data segments.

Finally, in (SHARDT; BROOKS, 2018) the challenging problem of searching intervals
for MIMO systems in closed-loop mode and using operating data was addressed. The
authors used the method proposed in (PERETZKI et al., 2011) and (BITTENCOURT
et al., 2015) as the baseline of the solution, considering the additional step described in
(SHARDT; SHAH, 2014). The algorithm is then applied to a zink floating cell controlled
by several PIDs. Di�erent combinations of input signals were tried in order to find a set
of variables that can satisfactorily segment the data in useful intervals for obtaining a
“seed” matrix for MPC design.
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1.3 Goals and Objectives

The ultimate goal of this dissertation is to address the problem of lack of informative
data for system identification, i.e., it is intended to replace the need to carry out system
identification experiments, as well as the manual and visual search of data in historian
systems, with data mining techniques capable of finding suitable data for system identi-
fication. It is expected that, at the end of this dissertation, the reader encounter a solid
knowledge about the state of the art of how to solve this problem, as well as that there is
available a set of techniques and tools to deal with this problem.

In a general manner, the purpose of this dissertation is the development of algorithms
that are capable to find informative data that can be used to obtain dynamic models of
industrial processes in the following scenarios:

a) Open-loop and closed-loop SISO systems: most industries have many control
system loops with a single input and a single output variables. In fact, most of these
systems operate in closed loop and, sometimes, the design of new controllers or even
the tuning of already existing controllers are desired, which usually requires dynamic
models of the system. Therefore, it is intended in this dissertation the development
of historical data mining techniques that are able to detect informative pieces of
data capable of retrieve a model of the system being studied for SISO systems in
both open and closed loop scenarios;

b) Open-loop and closed-loop MIMO systems: the majority of industrial systems
have many input and output variables. For this reason, it is also an objective of
this dissertation to address the problem in its multivariable version. In particular,
the problem is considered for open-loop identification and, in the case of closed-loop
systems, the problem is considered through the optics of obtaining a model using
the set-point and the output variable, which can be treated equally to an open-
loop identification problem. In fact, models obtained as in the last case are widely
used to design model predictive controllers and, therefore, this approach is of great
practical interest.

The specific goals to be achieved in this dissertation are those listed below:

a) provide a detailed review of the state of the art that demonstrates a solid under-
standing of the problem and the solutions presented in the literature;
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b) develop algorithms capable of scanning long time series of historical data and return-
ing informative data intervals that are useful to design industrial process models,
considering both the SISO and the MIMO described scenarios;

c) provide solutions that require minimal (or none) knowledge about the process stud-
ied in the application of the mining algorithms;

d) develop a solution structure that allows the engineer to use data analysis tools
when choosing parameters, providing conscious decision making in the data mining
process;

e) apply the algorithms developed to both simulation and real data. In the former
case, the objective is to validate the algorithms and understand their behavior in
controlled scenarios, allowing one to compare the results with the expected out-
comes. In the later case, the objective is the real application of the algorithm and
the evaluation of the obtained results;

f) develop the algorithms in the form of an open-source library, allowing the repro-
ducibility of the resulting outcomes, the visualization of the adopted implementa-
tions and future scientific contributions based on the work developed throughout in
this dissertation. The language adopted for this purpose is Python, due to its wide
popularity both in the scientific and in the market spheres.

1.4 Organization of the Dissertation

This dissertation is organized as follows: Chapter 2 explores preliminary concepts
that are crucial to the understanding of the consecutive subjects. More specifically, the
chapter briefly dives into necessary topics of system identification that are explored along
this work. Chapter 3 goes deeply in the state of the art to find intervals suitable for system
identification from historical data. All the background theory adopted in this dissertation
is detailed explained in this chapter, constituting the foundation of the algorithms pre-
sented in the methodology. Chapter 4 explains the methodology that is used in this work
to implement and apply the proposed algorithms. More specifically, the algorithms out-
lines are given and hypothesis are formulated. Chapter 5 presents the work development
in both the simulations and in the real world scenarios; finally, conclusions are drawn in
Chapter 6 and suggestions on future works are provided in Section 6.1.
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2 PRELIMINARY CONCEPTS

2.1 System Identification

System Identification is a set of methods used to mathematically model a system
dynamics. Usually, system identification requires little or no previous knowledge about
the dynamics of the plant being studied, once its methods are based on measured data and
not on the system’s physical principles. A general formulation of the problem is proposed
in (AGUIRRE, 2015, p. 33) and it is reproduced in Definition 2.1.

Definition 2.1. Consider S the system being modeled and suppose we have available dy-
namic data Z

Ns, with Ns being the length of the stored data sample. In this dissertation,
Z can be any input/output data that was recorded by a historian system and that can
describe the dynamics of the plant being studied. The problem of black-box System Identi-
fication is to find a model M exclusively from Z

Ns, in such a way that M can adequately
describe dynamic properties of S.

As also described in (AGUIRRE, 2015, p. 79), the main steps in a System Identifica-
tion process consist of:

a) performing a physical excitation test in the plant and collecting data: in
this dissertation, it is being considered that historical data is available, and intervals
of excitation will be searched through the proposed algorithms, in order to find data
with enough information to allow parameter estimation;

b) choosing a mathematical representation: one could choose, for example, be-
tween a linear and a non-linear representation of the system, or between a state-
space or a transfer function representation. Furthermore, the representation can be
either continuous or discrete. Also, parametric and non-parametric models can be
adopted. In this dissertation, only the linear parametric representation is studied
in a discrete-time fashion;
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c) determining a model structure: since this work is concerned with the linear
case, determining a model structure is equivalent to choose the number of poles and
zeros of the system, as well as its dead time. A few examples of model structures
are the Finite Impulse Response (FIR), the Autoregressive (AR), the Autoregressive
with Exogeneous Inputs (ARX), the Autoregressive Moving Average with Exogenous
Inputs (ARMAX) and the Laguerre Filter. A lot of di�erent model structures are
available for the linear representation. In this dissertation, only the ARX structure,
the AR structure and the Laguerre Filter are studied;

d) model parameter estimation: several algorithms can be used to estimate the
model parameters. In this dissertation, only the Ordinary Least Square Method
(OLS) will be considered;

e) model validation: di�erent validation metrics can be used to evaluate the model
performance and if it is adequate for the purpose it is being used.

It is important to point out that data Z can be obtained through a system in either
open-loop or closed-loop operation. Moreover, in a closed-loop system, di�erent signals
can be considered as the input u(k) for the system identification, as is explained in Section
2.7. The diagram in Figure 1 summarizes this scenario as explained in (GARCIA, 2017).

Figure 1: Closed Loop Feedback Control with Disturbances.

Source: Adapted from (WANG et al., 2018).

Notice that r(k) is the control set-point (also known as the reference signal), mv(k)
is the manipulated variable, which is equivalent to the controller output, y(k) is the
controlled variable (which is usually equivalent to the system output), d(k) is a disturbance
signal and v(k) is a gaussian noise. In this case, if the System Identification is performed
between mv(k) and y(k), only the process dynamics G(q) will be modeled. Equivalently,
if the modeling is performed using r(k) and y(k), the controller dynamic C(q) will also be
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included in the obtained dynamic model. As is further described, H(q) is the disturbance
model.

2.2 ARX Structure

The linear ARX structure is used in the algorithms proposed in this dissertation and,
therefore, it is briefly explained in this section. A general linear parametric discrete-time
model structure can be defined as (AGUIRRE, 2015, p. 122)

y(k) = B(q)
A(q)F (q)u(k) + C(q)

A(q)D(q)v(k), (2.1)

where q≠1 is the delay operator, which means that y(k)q≠1 = y(k ≠ 1), with k being
the discrete-time instant. Notice that the general structure can be reduced to the form
y(k) = G(q)u(k)+H(q)v(k), with G(q) representing the process model, H(q) representing
the disturbance model, v(k) being a white noise following a gaussian distribution with 0
mean and variance ‡2 and u(k) being the input variable being modeled. The polynomials
A(q), B(q), C(q), D(q) and F (q) are defined as follows (AGUIRRE, 2015, p. 122):

A(q) = 1 ≠ a1q≠1 ≠ · · · ≠ anyq≠ny (2.2)

B(q) = b1q≠1 + · · · + bnuq≠nu (2.3)

C(q) = 1 + c1q≠1 + · · · + cnvq≠nv (2.4)

D(q) = 1 + d1q≠1 + · · · + dnd
q≠nd (2.5)

F (q) = 1 + f1q≠1 + · · · + fnf
q≠nf . (2.6)

The ARX model can be obtained directly from the general structure above making
C(q) = D(q) = F (q) = 1, resulting in the structure (AGUIRRE, 2015, p. 124).

y(k) = B(q)
A(q)u(k) + 1

A(q)v(k). (2.7)

It is important to notice that this representation can be written in the regression form

y(k) = Â
T
yu(k ≠ 1)◊̂ + ›(k), (2.8)

with Âyu(k ≠ 1) = [Â1 Â2 · · · Ân◊
]T being the regressor vector and ›(k) being the re-

gression error, i.e., ›(k) = y(k) ≠ Â
T
yu(k ≠ 1)◊̂ (AGUIRRE, 2015, p. 239). In the case of

the ARX model structure, the regressor vector can be written as

Â
T
yu(k ≠ 1) =

5
y(k ≠ 1) · · · y(n ≠ ny) u(k ≠ 1) · · · u(k ≠ nu)

6
(2.9)
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and the parameter vector as

◊̂ =
5
â1 · · · âny b̂1 · · · b̂nu

6
. (2.10)

2.3 AR Structure

In the same way it was done for the ARX structure, the Autoregressive (AR) structure
can be directly obtained from the generic structure in Equation (2.1). The AR model
constitutes the case where there is no input in the regressor matrix, which can be obtained
setting B(q) = 0 in the ARX structure of Equation (2.7). The AR structure is then defined
as

A(q)y(k) = v(k). (2.11)

Notice that, in this case, the order of the AR structure is defined by the order of A(q),
which is ny (the output order).

2.4 Laguerre Filter

The Laguerre filter is proposed by (PERETZKI et al., 2011) and (BITTENCOURT
et al., 2015) as an alternative to the ARX structure. In the work of (PATEL, 2016), this
filter is combined with the ARX structure.

The use of Laguerre models for System Identification is proposed in (WAHLBERG,
1991) in such a way that the Laguerre expansions are used to produce the following model
structure:

y(k) =
nbÿ

i=1
ḡiLi(q, –)u(k), (2.12)

where Li(q, –) =
Ô

Ts(1≠–2)
q≠–

1
1≠–q
q≠–

2i≠1
is the Laguerre Filter, with Ts being the sampling

time, – the Laguerre filter real pole and ḡi the regressor parameters. In the same way as
for the ARX, a regressor and a parameter vector can be written as (PATEL, 2016, p. 19)

Â
T
yu(k) =

5
L1(q, –)u(k) · · · Lnb

(q, –)u(k)
6

(2.13)

◊̂ =
5
ˆ̄g1 · · · ˆ̄gnb

6T

, (2.14)

where nb is the parameter vector order.

It is interesting to mention that the Laguerre Structure is implicitly capable of es-
timating the time delay of the system. As explained in (PERETZKI et al., 2011), the
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maximum delay d̄ that can be incorporated in this model structure is d̄ = ≠2(nb≠1)Ts

log(–) .
Moreover, for processes with integrators, the integrated input ū(k) can be considered
instead of u(k), as follows:

ū(k) = u(k)
1≠q≠1 (2.15)

y(k) =
nbÿ

i=1
ḡiLi(q, –)ū(k). (2.16)

2.5 Combination of the Laguerre Filter and the AR
Structure

A combination of the Laguerre model with the AR structure is proposed in (BIT-
TENCOURT et al., 2015) and (PATEL, 2016) in order to include a noise model in the
parametric structure, which therefore results in an ARX structure. That is done consid-
ering the structure

y(k) =
naÿ

i=1
aiy(k ≠ i) +

nbÿ

i=1
ḡiLi(q, –)u(k). (2.17)

The regressor and parameter vectors can now be rewritten as

Â
T
yu(k ≠ 1) =

5
L1(q, –)u(k) · · · Lnb

(q, –)u(k) y(k ≠ 1) · · · y(k ≠ na)
6

(2.18)

◊̂ =
5
ˆ̄g1 · · · ˆ̄gnb

a1 · · · ana

6T

. (2.19)

2.6 The Regressor Matrix

It is important to mention that the regressor general structure described in Equation
(2.1) is defined for a discrete time instant k. That means that in a given instant of time,
the regressor Â

T
yu(k) will be an array Â

T
yu(k) œ Rn◊ defined as

Â
T
yu(k) =

5
Â1(k) Â2(k) · · · Ân◊

(k)
6

. (2.20)

If one considers a sample window of length Ns, then a regressor matrix can be defined
as

� =

S

WWWWWU

Â1(k) Â2(k) · · · Ân◊
(k)

... ... . . . ...
Â1(k + Ns ≠ 1) Â2(k + Ns ≠ 1) · · · Ân◊

(k + Ns ≠ 1)

T

XXXXXV
. (2.21)
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In this case, the closed form solution in Equation (2.22) can be applied to obtain an
estimation ◊̂ of the parameters (AGUIRRE, 2015, p. 227):

◊̂ = [�T �]≠1�T
y. (2.22)

2.7 Open-loop and Closed-loop System Identification

In this Section, a brief explanation is given on how the terms open-loop and closed-
loop are used in this dissertation. To start, it is important to mention that, in this
work, the concepts of closed-loop and open-loop systems are treated di�erently than the
concepts of closed-loop and open-loop system identification.

A closed-loop system is defined in this dissertation as a system that contains a
feedback control loop, such as the one illustrated in Figure 1. For such a system, the
process identification could be done either in a closed-loop or in an open-loop perspective,
as explained below:

a) Open-loop Identification of Closed-loop Systems: consists of obtaining a
model of the closed-loop system defined from the set-point r(k) and the output
y(k).

b) Closed-loop Identification of Closed-loop Systems: consists of obtaining a
model of the process G(q).

Notice that, in the later case, a model of the process is desired, which means that one
is interested in estimating G(q). This is actually a well-studied problem in the literature
and commonly called “Closed-loop Identification”. Di�erent identification approaches can
be used in this scenario, a few of them described in (LJUNG, 1999, p. 435), such as the
“Direct Approach” and the “Indirect Approach”.

The former case, on the other hand, consists of estimating a model from variables r(k)
and y(k), which therefore will result in a combined model of C(q) and G(q), here called
GC(q) = C(q)G(q)

1+C(q)G(q) . This makes the problem easier in the sense that the input variable
r(k) is manipulated by the user, and not by a controller. Therefore, in a multivariable
system, for instance, these variables do not a�ect each other and neither are a�ected
by the output variable, as would happen in a closed-loop identification. Finally, this is
actually a very useful model for designing model predictive controllers, as proposed in
(CHAVES; JULIANI; GARCIA, 2019).
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2.8 Multiple-Input Multiple-Output (MIMO) Systems

The majority of the industrial systems has many inputs and many outputs. In this
dissertation, the mining algorithms for multivariable systems presented in (PATEL, 2016)
and (ARENGAS; KROLL, 2017a) are studied. In the work of (PATEL, 2016), the multi-
variable extension can only be applied to open-loop system identification and the analy-
sis is considered splitting the MIMO system into multiple Multiple-Input Single-Output
(MISO) systems. For a 3 X 3 MIMO system as the Petrochemical Furnace being consid-
ered in this work and described in Subsection 5.1.3, a MISO closed-loop system can be
represented, considering an open-loop system identification, as in Figure 2.

Figure 2: 3 X 3 MIMO closed-loop system decomposed in three 3 X 1 MISO systems for
open-loop system identification.

Source: Adapted from (PATEL, 2016).

Based on the definitions made so far, the main reviewed works used in this dissertation
can be grouped as in Table 1.

Table 1: Grouping of the main reviewed works according to the system identification type
and to the system number of input/output variables.

Open-loop
System Identification

Closed-loop
System Identification

SISO Systems

PERETZKI et al., 2011
SHARDT; SHAH, 2014
BITTENCOURT et al., 2015
RIBEIRO; AGUIRRE, 2015
ARENGAS; KROLL, 2017b
WANG et al., 2018

PERETZKI et al., 2011
SHARDT; SHAH, 2014
BITTENCOURT et al., 2015
RIBEIRO; AGUIRRE, 2015
WANG et al., 2018

MIMO Systems PATEL, 2016 ARENGAS; KROLL, 2017a
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3 SYSTEM IDENTIFICATION WITH
HISTORICAL DATA: THE STATE OF THE
ART

Data Mining can be defined as “the study of collecting, cleaning, processing, analyzing,
and gaining useful insights from data” (AGGARWAL, 2015). In this dissertation, the data
represents a collection of sensor signals from an industrial process that could have been
stored for several years. The objective of the data mining process here studied is to
find informative intervals of data through which meaningful models of a system can be
obtained.

As an example of possible applications of the resulting models, one could use them
“for enhancing physical understanding; analyzing system properties; and performing sim-
ulation, prediction, filtering, state estimation, monitoring, and fault diagnosis as well as
control” (FASSOIS; RIVERA, 2007). Further applications involves the design of virtual
sensors and also the development of more sophisticated system identification experiments
based on these previous obtained models. The diagram in Figure 3 summarizes the ap-
proach that is followed throughout this dissertation.

Figure 3: Data Mining Flow Chart.

Source: Author’s own development.

3.1 Data Preprocessing

Data preprocessing is an essential step in any data-driven mathematical modeling, be-
ing mentioned, in the context of this dissertation, in (PERETZKI et al., 2011), (SHARDT;
SHAH, 2014), (BITTENCOURT et al., 2015) and (PATEL, 2016). As explained in
(FACELI et al., 2017), di�erent characteristics can directly a�ect data quality, such as:
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the presence of outliers, that is, anomalous values that significantly deviates from their
expected values; discrepancies in formats and dimensions, i.e., some values can be numeric
while others can be in text format, for example; the presence of disturbances; the existence
of missing or corrupted values due to sensor failures, for example, amongst others.

In this section, some data processing techniques that can be useful before estimating
models or applying data mining techniques are briefly discussed, most of them being also
described in (PATEL, 2016).

3.1.1 Data Resampling

The data being considered in this work is related to industrial process variables, which
are usually obtained from sensors. Therefore, these variables correspond to time-series
signals. Most of the time, sensor data are not collected uniformly, i.e., the entire dataset
can potentially contain di�erent sampling periods. This is because most data acquisition
systems are configured in such a way that a sampling point is registered every time a
variable exceeds user-defined limits, which could happen at any moment in time. For this
reason, it is interesting to resample the entire data with the desired sampling period Ts.

There are several techniques for resampling signals, which are not explored in details
in this work. One way to resample time-series data is by first performing an up-sampling
process, which consists in inserting zeros between each sample in the new frequency, then
applying a low-pass filter and, finally, performing a down-sampling decimation, which
means resampling the signal to a wider time frame. Notice that the process of applying
an up-sampling followed by a low-pass filter is a way of performing an interpolation. This
kind o resampling can be done using MATLAB resample or Scipy upfirdn functions, for
example.

3.1.2 Treating Missing Values

Another common data issue is missing values, which can occur, for example, due to
sensor failures. Missing values (or NaN – Not a Number – values) cannot be considered
in the analysis and must be somehow treated. One way of dealing with NaN values is
by simply disregarding them from the analysis. As mentioned in (PATEL, 2016), if a
sequence of missing values exists for at least one input, it must be disregarded for all
variables of the system.

Let us consider, for example, the Wood & Berry distillation column, described in
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details in Subsection 5.1.2, which is constituted by 2 inputs and 2 outputs, all of them
correlated. If we had a sequence of missing values from sample 200 to sample 520 in the
Reflux Flow Rate variable, for instance, one would need to remove these samples from
all four variables, even if all other three were not corrupted. Figure 4, created based on
(PATEL, 2016), exemplifies this scenario for the Wood & Berry distillation data.

Figure 4: Example of Missing Values Removal.

Source: Author’s own development.

3.1.3 Normalization

Data normalization is the process of adjusting the signal values of a system to a com-
mon scale. In system identification, the scales usually adopted are between the ranges
[≠1, 1] or [≠0.5, 0.5]. This is a crucial preprocessing technique when one is dealing with
signals containing completely di�erent upper and lower limits, leading to drastic variabil-
ities that can produce numerical errors (FACELI et al., 2017, p. 45). Moreover, it is very
common – specially in closed-loop systems – that each variable of the process is centered
at di�erent operating points, making it hard to perform a simultaneous analysis of the
signals being considered. For instance, in the distillation column signals shown in Figure
4, the overhead composition variable is centered around 96, while the bottom composition
variable is centered around 0.0285.

As described in (FACELI et al., 2017), normalization must be applied to each signal
individually and can be done through an amplitude or through a distribution method.
While the amplitude normalization only changes the variables maximum and minimum
limits, the distribution normalization changes the variables distribution (FACELI et al.,
2017). In this work, only the amplitude normalization is considered. There are two
common methods for performing amplitude normalization: the so-called min-max scaler
and the standard scaler.
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3.1.3.1 Min-max Scaler

In this method, as described in (FACELI et al., 2017), a minimum (min) and a
maximum (max) values of a desired scale must be defined. These values could be chosen
to be, respectively, -0.5 and 0.5, for example, to keep the signal in the range [≠0.5, +0.5].
Once these values are defined, the scaled data can be obtained through the following
transformation (FACELI et al., 2017, p. 45):

z = min + x ≠ lowest

highest ≠ lowest
(max ≠ min), (3.1)

where x is a value from a given signal in the dataset, lowest is the lowest value of this
signal in the dataset, highest is the highest value of this signal in the data and z is the
corresponding transformed variable.

3.1.3.2 Standard Scaler

The standard scaler transforms features by subtracting the mean (µ) of the signal and
scaling it by the unit variance of the sample (S2), as shown below (FACELI et al., 2017,
p. 45):

z = x ≠ µ

S2 . (3.2)

It is interesting to mention that the sample variance can be calculated as

S2 = 1
Ns ≠ 1

Nsÿ

k=1
(x(k) ≠ x̄)2. (3.3)

3.1.4 Filtering Noise

In order to reduce the amount of noise that can be associated with measured variables
coming from industrial sensors, a low-pass filter, such as a first-order Butterworth filter,
can be applied when necessary to reduce high-frequency components. Implementations
of this filter are available in MATLAB as well as in Python. When the low-pass filter
is used, it must be applied to every input and output signals in the system. The reason
for this is that, as explained in (LJUNG, 1999, p. 466), when prefiltering is done in all
variables, it does not change the input-output relation of linenar systems, as shown below
(LJUNG, 1999, p. 466):

y(k) = G(q)u(k) + H(q)v(k) ) L(q)y(k) = L(q)G(q)u(k) + L(q)H(q)v(k) (3.4)
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3.2 Detecting Potential Intervals

In this dissertation, the solution to the problem of finding intervals suitable for system
identification is broken in 4 steps, as described in the adopted methodology in Chapter
4. The first step of the solution consists in detecting intervals that could potentially
lead to a model of the system. This is a very important step in the solution because
it will be these same intervals that will compose the final segments, if they prove to be
adequate according to subsequent evaluations. Moreover, all the reviewed works used in
this dissertation consider, somehow, the problem of detecting a transient change in the
signal as the first step in finding intervals suitable for system identification. Therefore,
the main techniques used for this purpose are explained in more details in this section.

A closely related problem to data segmentation is the so-called change-point detec-
tion problem, which is used in one of the solutions presented in this dissertation (see
Subsection 3.3.3). As described in (BODENHAM, 2014, p. 18), change-point algorithms
are concerned with the problem of detecting changes in the probability distribution of a
sequence of random observations. A formulation of the problem is given in (KILLICK;
FEARNHEAD; ECKLEY, 2012) and can be summarized as in Definition 3.1.

Definition 3.1. (Adapted from KILLICK; FEARNHEAD; ECKLEY, 2012) Let us as-
sume that we have a time-series signal of length N , with values represented as x =
(x1, x2, ..., xN). Change-points can then be defined as indexes that split the entire data
into N· + 1 data segments, where the i ≠ th segment can be represented by x(·i : ·i+1 ≠ 1).
In other words, a change-point index is an instant of time between 1 and N ≠ 1 where a
significant change in the data occurred. Assuming that we have N· change-positions · ,
we can represent an array of change-points as T = [·1, ·2, ..., ·N· ].

In this chapter, some techniques related to data segmentation and change-point de-
tection are presented as a first step to find useful data intervals for system identification.
Most of the techniques here presented are extracted from the main reviewed works in
Section 1.2, a few being explained in more detail as they are essential to understand the
outline of the algorithms adopted in Chapter 4.

3.2.1 Control Charts

As described in (BODENHAM, 2014, p. 21), the original idea of control charts was to
monitor manufacturing processes and ensure that certain variables were within acceptable
limits. More specifically, if we define control limits a and b, with a < b, one could then say
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that the process is under control if xi œ (a, b) and out of control otherwise (BODENHAM,
2014). The idea of moving average filter appears in most of the reviewed works in this
dissertation and, therefore, are here explained in the context of control charts.

3.2.1.1 Moving Average Filters

Sliding Window

One way of computing a moving average filter is through a sliding window approach.
In this case, one would obtain a simple Low Pass FIR (Finite Impulse Response) filter,
wich can be described as below:

µx(k) = 1
W

W ≠1ÿ

i=0
x(k + i), (3.5)

where µx is the output filtered signal, x is the input signal that is being treated and W

is the window length (SMITH, 1999). As exemplified in (SMITH, 1999, p. 277), if one
considers a window of length 5, point 80 in the output would be given by:

µx(80) = (x(80) + x(81) + x(82) + x(83) + x(84))
5 . (3.6)

Moreover, the input points could be chosen symmetrically around the output points,
as shown below:

µx(80) = (x(78) + x(79) + x(80) + x(81) + x(82))
5 . (3.7)

In the latter case, the summation in Equation (3.5) would go from i = ≠ (W ≠1)
2 to

i = (W ≠1)
2 . This strategy is used to identify intervals of excitation in (ARENGAS; KROLL,

2017a) and in (ARENGAS; KROLL, 2017b). The way this filter can be used to find
moments when the signal begins to “shake” is comparing the filter output with a user-
defined threshold lµ, such that the points where µx(k) > lµ are marked as potentially
exciting. Notice that the same procedure can be done with the signal variance instead of
its mean and, in the same way, the filtered signal can be compared to a variance threshold
lS.

As a final observation, it is important to mention that the computation in Equation
(3.7) is the one adopted in this dissertation. Notice that, in this case, one would need
to start the computation in index (W + 1)/2, once the window depends on past values.
Because we would like to maintain the original number of data points of the original
signal, in this dissertation the window size is adjusted to the number of available data
points in the initial indexes. As an example, let us assume that we have the following
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signal:
x = [1, 3, 6, 5, 4, 9, 1, 2, 3, 5, 4].

In this case, if we consider a window size of length W = 3 in the symmetrical way, the
very first filter value would be computed as µx(0) = (x(≠1) + x(0) + x(1))/3. Because we
do not have a value for x(≠1), the window is computed with the initial available indexes,
i.e., µx(0) = (x(0) + x(1))/2 = 2. The same is valid when the window reaches the end of
the signal.

Recursive Implementation

A recursive implementation of the algorithm can be done as in (SMITH, 1999, p. 283)

µx(k + 1) = µx(k) + x(k + p) ≠ x(k ≠ q), (3.8)

where p = (W ≠ 1)/2 and q = p + 1.

Exponentially Weighted Moving Average (EWMA)

While the Moving Average filter assigns the same weight to every value, the Ex-
ponentially Weighted Moving Average (EWMA) weights every element according to an
exponential factor. As described in (BODENHAM, 2014, p. 24), considering a data sam-
ple (x1, x2, . . . , xNs) coming from a distribution of mean µ and variance ‡2, the following
statistics can be defined:

Z0 = µ

Zi = (1 ≠ ⁄)Zi≠1 + ⁄xi, for i = 1, 2..., Ns,
(3.9)

with ⁄ œ [0, 1] being the exponential forgetting factor and with the standard deviation
of Zi being defined as SZi =

3Ò
⁄

2≠⁄ [1 ≠ (1 ≠ ⁄)2i])
4

‡. In this case, a change would be
marked when Zi > µ + L ◊ SZi , being L a design parameter.

A recursive estimation of this filter, for both the mean and the variance values, are
presented in (PERETZKI et al., 2011 apud FINCH, 2009) and (BITTENCOURT et al.,
2015). In both (PERETZKI et al., 2011) and (BITTENCOURT et al., 2015), the recursive
Exponentially Weighted filter is applied to detect transient changes in the process signal.
Again, denoting µx(k) the estimate for the mean and denoting Sx(k) the estimate for
the variance, the recursive calculation could be done as follows (BITTENCOURT et al.,
2015):

µx(k) = ⁄µ ◊ x(k) + (1 ≠ ⁄µ) ◊ µx(k ≠ 1) (3.10)

Sx(k) = 2≠⁄µ

2 ≠ (⁄S ◊ (x(k) ≠ µx(k))2 + (1 ≠ ⁄S) ◊ Sx(k ≠ 1)). (3.11)
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In this case, a transient change is considered to be true when a chosen threshold is
reached: Sx(k) > lS.

3.2.1.2 Bandpass Filtering Approach

An interesting modification of the EWMA filter described in the previous item is
proposed in (PATEL, 2016), which converts it into a bandpass filter. In (PATEL, 2016,
p. 8), a deviation from the mean variable ex(k) is defined as shown below:

ex(k) = x(k) ≠ µx(k). (3.12)

This value is then inserted in Equation (3.10), resulting in the following expression:

ex(k) = ⁄µ(q ≠ 1)
(q ≠ ⁄µ) . (3.13)

In order to avoid wrong interval detections due to high frequency noise, in (PATEL,
2016) the above filter is extended to a bandpass filter as follows:

ex(k) = ⁄µ(q ≠ 1)
q ≠ ⁄µ

q(1 ≠ d)
q ≠ fc

x(k), (3.14)

being fc the high cut-o� frequency. Finally, in the same work, this expression is generalized
through the replacement of ⁄µ and fc by frequencies w1 and w2, as follows:

ex(k) = q(q ≠ 1)c
(q ≠ ew1Ts)(q ≠ ew2Ts) , (3.15)

with c being a constant to keep the filter gain at 1 in the passband. Finally, potential
intervals are defined by the indexes that satisfy the following condition:

max
kœ�

ex(k) ≠ min
kœ�

ex(k) Ø le, (3.16)

where le is a chosen threshold for the signal being studied. Notice that this method cannot
be applied online and that three parameters must be selected and tuned: w1, w2 and le. In
this dissertation, this method is used through a Butterworth filter implemented in Scipy
(VIRTANEN et al., 2020).

3.2.1.3 Cumulative Sum (CUSUM)

As described in (MONTGOMERY, 2008, p. 402), the CUSUM control chart is de-
signed to detect small incremental changes in the mean of a process signal. Considering
a data sample (x1, x2, ..., xNs) that initially follows a normal distribution N(µ0, ‡2), the
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following statistics can be defined (BODENHAM, 2014, p. 23):

C+
i =

Y
__]

__[

µ0 i = 0

max(0, C+
i≠1 + xi ≠ K‡) i œ {1, 2, ..., Ns}

(3.17)

C≠
i =

Y
__]

__[

µ0 i = 0

max(0, C≠
i≠1 ≠ xi ≠ K‡) i œ {1, 2, ..., Ns}

(3.18)

where C+
i is the upper cumulative sum and C≠

i is the lower cumulative sum.

A change is then detected when C+
i > L‡ for the upper case and C≠

i < ≠L‡ for the
lower case. Notice that L and K are design parameters. The signal mean and standard
deviation can be estimated, in a practical implementation, from the first values of the
sample (BODENHAM, 2014).

3.2.2 A Top-Down Change-Point Approach

A top-down, non-parametric change-point detection approach is applied in (WANG
et al., 2018 apud PETTITT, 1979) as a first step in finding intervals for process identi-
fication. A summary of the approach presented in (WANG et al., 2018) is described in
this subsection. This method is a modified version of the Mann-Whitney two-sample test
(PETTITT, 1979).

Because this is a top-down approach, the initial data segment is defined as the whole
dataset itself. Let us define a generic data segment as below:

x(k : k + Ns ≠ 1) = (x(k), x(k + 1), ..., x(k + Ns ≠ 1)), (3.19)

with k being the initial time index of the segment and Ns its length. Therefore, the
initial segment considered by the algorithm is (x(0), x(1), . . . , x(N)), which is equivalent
to consider k = 0 and to include all data points in the dataset (being N its length). Notice
that the segment of length Ns is a subset of the entire dataset of length N .

The next step of the algorithm consists in calculating the relative position of x(t) in
the current data segment x(k : k + Ns ≠ 1), which can be done as below (WANG et al.,
2018):

D(t) =
k+Ns≠1ÿ

j=k

sgn(x(t) ≠ x(j)) for t = k, k + 1, . . . , k + Ns ≠ 1. (3.20)
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Notice that sgn() is the signal function, which can be defined as:

sgn(x) =

Y
______]

______[

1 x > 0

0 x = 0

≠1 x < 0

(3.21)

The cumulative sum of D(t) is then calculated as C(t) = C(t ≠ 1) + D(t), for t =
k, k + 1, . . . , k + Ns ≠ 1, considering the initial value C(k ≠ 1) = 0.

A hypothesis test is then proposed in (WANG et al., 2018) based on the above metric:
a change position can be calculated as the time index which maximizes the absolute value
of C(t). One could formulate the hypothesis test as follows:

Y
______]

______[

H0 : arg max
kÆ·Æk+Ns≠1

--C(t)
-- is not a change-point

H1 : arg max
kÆ·Æk+Ns≠1

--C(t)
-- is a change-point

The p-value associated with this hypothesis test was defined in (WANG et al., 2018
apud PETTITT, 1979) as below:

p = 2e

1
≠6|C(·)|2

N2
s +N3

s

2

. (3.22)

Therefore, given a level of significance – for the type-I error, · is considered a change-
point index if p < –, which means the null hypothesis can be rejected with an – change
of making a mistake. If the null hypothesis is rejected, the current data segment must be
divided into two new segments, one composed by the indexes located at the left of the
change-point index and another one formed by the indexes located at the its right side,
as defined below:

Y
__]

__[

x(k : ·) = (x(k), x(k + 1), ..., x(·))

x(· + 1 : N) = (x(· + 1), x(· + 2), ..., x(N))

The hypothesis test must then be recalculated for each new segment until no further
change-points can be detected, i.e., until no time index · can reject the null hypothesis
within an – confidence value.

An implementation of the algorithm described in this subsection is here suggested as
below:
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Algorithm 1 Pettitt Top-down Change-point Method
Input: a signal x(k) of length N and a significance level –

Output: a sequence of change-points ·s

1: procedure NonParametricPettitt(x(k),–)
2: Define the initial segment as S = [x(0 : N)]
3: Define an array of change-points T and another array P with the corresponding

p-values
4: for j œ [0, N ] do
5: for each s œ S do
6: Compute statistics D and C

7: Calculate change-points ·s

8: Compute the p-values ps of each ·s

9: if ps < – then
10: Update arrays T and P

11: end if
12: end for
13: Split S in subintervals S = [s1, . . . sNi ] according to the resulting change-

points
14: if T is empty then
15: Break For loops
16: end if
17: end for
18: Return [·1, ·2, . . . , ·Ni≠1]
19: end procedure

An additional parameter can be included in the above algorithm regarding the min-
imum size an interval must have to be further divided. In this dissertation, the Ns,min

parameter indicates the minimum length a data sample must have to generate a new
change point. Therefore, even if there is enough statistical evidence to create a new
change-point, it is only created if the data sample that is being split has a length higher
then NS.min.

3.3 Interval Segmentation Methods

In this section, the main algorithms mentioned in the literature overview in Section 1.2
that compose the adopted methodology described in Chapter 4 are explained in details.



28

3.3.1 A SISO Rank Test Method

The method presented in this Section is proposed in (RIBEIRO; AGUIRRE, 2015)
and uses the e�ective rank and a cross-correlation scalar metric as its foundation. More
specifically, it is argued that the e�ective rank of Autoregressive (AR) regressor matrices
is a better metric compared to the persistence of excitation as an indicator of signal
“activity”. Two major considerations are formulated in (RIBEIRO; AGUIRRE, 2015),
which are described below:

a) a given dataset is suitable for system identification if it contains su�cient informa-
tion about the system dynamics;

b) a transient response can be produced by disturbances in the system. Therefore,
a given dataset is only useful for identification if the system’s input and output
variables are actually correlated.

3.3.1.1 Singular Value Decomposition (SVD)

Because the algorithm described in this subsection is strongly based on Singular Value
Decomposition, a more detailed explanation on the subject is given.

Theorem 3.1. (VERHAEGEN; VERDULT, 2007) Let us consider a matrix A œ Rm◊n.
It is demonstrable that any matrix of this form can be decomposed as below:

A = U�V
T , (3.23)

with matrices U œ Rm◊m and V œ Rn◊n being orthogonal 1. Moreover, the resulting
� œ Rm◊n matrix contains non-zero elements only in its diagonal, which is formed by ‡i

values ordered as follows:

‡1 Ø ‡2 Ø · · · Ø ‡r+1 = · · · = ‡k, (3.24)

being r = rank(A) and k = min(m, n). Then, the singular values of matrix A are defined
as the diagonal elements ‡i of matrix �.

1
An orthogonal matrix Q is a square matrix that satisfies the relationship Q

T
Q = QQ

T
= I, with I

being the identity matrix.
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3.3.1.2 Persistence of Excitation and the AR Regressor

As described in (AGUIRRE, 2015, p. 205), the concept of Persistence of Excitation
defines how “active” is a signal in stationary regime and, therefore, how informative is
this signal to perform a system identification.

Definition 3.2. (AGUIRRE, 2015, p. 205) Let us consider a data interval of length Ns.
Moreover, let us assume that ū is the sampling average value of the input signal u(k), that
ru is the sampling autocovariance function of signal u(k) and that P

u
Ns

is the covariance
matrix of u(k). Then, if the following limits exist and matrix P

u
Ns

is non-singular, the
input signal u(k) is called a Persistently Exciting Signal of order Ns.

ū = lim
NsæŒ

1
Ns

Nsÿ

k=1
u(k) (3.25)

ru = lim
NsæŒ

1
Ns

Nsÿ

k=1
(u(i) ≠ ū)(u(i + k) ≠ ū) (3.26)

P
u
Ns

= [ru(i ≠ j)] , i = 1, . . . , n; j = 1, . . . , n (3.27)

The existence of the above limits is only possible if u(k) is considered in stationary
regime. It is also important to mention that in the case when the signals are real and
with zero mean, the autocovariance function is equivalent to the autocorrelation function
(AGUIRRE, 2015, p. 181).

As an alternative to the persistence of excitation as a measure of the variability in the
input signal, in (RIBEIRO; AGUIRRE, 2015) the computation of the e�ective rank of
the AR regressor matrix is proposed. The main reason behind this idea is that, while the
definition of persistence of excitation is defined for the stationary regime, the AR regressor
structure defines the dynamics of the output signal of the system and, therefore, can be
used to evaluate transient responses, which is the main goal of system identification.

3.3.1.3 E�ective Rank

As explained in the last section, the AR structure is used to measure information
as an alternative to the persistence excitation definition. This measure of information is
computed in (RIBEIRO; AGUIRRE, 2015) through the e�ective rank.

The concept of e�ective rank is presented in (ROY; VETTERLI, 2007) as a way to
overcome numerical limitations encountered in optimization problems that are based on
rank values. Two di�erent approaches to calculate the e�ective rank are proposed in
(RIBEIRO; AGUIRRE, 2015) and are reproduced below:
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Type 1. The e�ective rank is computed as the number of normalized singular values pi

greater than a minimum threshold l1, as shown below:

pi = ‡i

Î‡Î1
Ø l1, (3.28)

being pi defined as in (ROY; VETTERLI, 2007) and Î·Î1 denoting the l1≠norm,
calculated as follows:

Î‡Î1 =
kÿ

i=1
Î‡iÎ . (3.29)

Therefore, the e�ective rank ref
1 is calculated as:

ref
1 =

kÿ

i=2
H[pi ≠ l1], (3.30)

where H is the Heaviside (step) function, defined as:

H[x] =

Y
__]

__[

1 if x Ø 0

0 if x < 0
(3.31)

Type 2. The e�ective rank is computed as the number of singular values ‡i≠1 ≠ ‡i dif-
ferences greater than a threshold l2, as defined below:

ref
2 =

kÿ

i=2
H[‡i≠1 ≠ ‡i ≠ l2]. (3.32)

3.3.1.4 Cross-correlation Scalar Metric

As a final step of the method described in this subsection, intervals that present a
large e�ective rank value are subjected to a cross-correlation check to ensure that the
transient response is actually being caused by the input signals and not by disturbances.
The cross-correlation function of two signals u(k) and y(k) is defined as (AGUIRRE, 2015,
p. 180):

ru,y(·, t) = E[u(t)y(t + ·)], (3.33)

where · is a time lag.

As described in (AGUIRRE, 2015, p. 180), assuming egordicity for discrete-time
series, the cross-correlation function can be written as:

ru,y(·) = lim
NæŒ

1
2N + 1

Nÿ

k=≠N

u(k)y(k + ·). (3.34)

For a time-invariant signal with a finite length Ns, an estimate for the definition in
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Equation (3.33) can be computed as (AGUIRRE, 2015, p. 181):

r̂u,y(·) = 1
Ns

Ns≠·ÿ

k=1
u(k)y(k + ·). (3.35)

It is easy to notice that r̂u,y(·) is a function of the lag value · , as pointed out in
(RIBEIRO; AGUIRRE, 2015). As a consequence, it is not trivial to evaluate in a general
fashion whether the input and the output signals are correlated. For this reason, in
(RIBEIRO; AGUIRRE, 2015) the cross-correlation function is summarized in a single
scalar value. The resulting scalar metric proposed in (RIBEIRO; AGUIRRE, 2015) is
defined as below:

s =
·maxÿ

·=≠·max

g(fl(·), ·, p)

g(fl(·), ·, p) =

Y
______]

______[

0, if | fl |Æ p

|fl(·)≠p|
|· | , if | fl |> p and · ”= 0

| fl(·) | ≠p, if | fl |> p and · = 0

(3.36)

where fl(·) is the normalized cross-correlation function and [≠p, +p] defines the 95%
confidence interval, with p = 1.96Ô

Ns
, being Ns the sample size of a given interval. Notice

that di�erent confidence levels can be adopted. Moreover, the normalized cross-correlation
function is computed in this dissertation as follows (DERRICK; THOMAS, 2004, p. 193):

fl(·) =
qNs

k=1(x(k) ≠ x̄)(y(k ≠ ·) ≠ ȳ)
Ò

(qNs
k=1(x(k) ≠ x̄)2)(qNs

k=1(y(k ≠ ·) ≠ ȳ)2)
, (3.37)

where x̄ and ȳ are the input and the output sample means, respectively.

3.3.1.5 Steps of the Algorithm

The algorithm proposed in (RIBEIRO; AGUIRRE, 2015) is summarized below, being
the original algorithm structure presented in Algorithm 2 with some adaptations.

a) divide the data into a pre-defined number of intervals (windows) Nw = N
wic

, where
wic is the window increment and N is the length of the entire dataset;

b) compute the AR regressor matrix and its corresponding e�ective rank for each in-
terval of data;

c) compute the cross-correlation scalar metric and compare it to a pre-defined threshold
lcc.
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Algorithm 2 SVD Method for Search of Intervals (Adapted from RIBEIRO; AGUIRRE,
2015)

Input: y(k), wic (window increment), l1 or l2 thresholds and lcc threshold
Output: list of segment indexes q

1: procedure SVDSegmentation(y(k), wic, l1,2, lcc)
2: Compute the number of windows Nw = N

wic

3: for each k œ [0, NS ≠ 1] do
4: Compute the ith window y{i}
5: Build the AR regressor matrix Ai

6: Compute ref
1 or ref

2 for a given l1 or l2, respectively
7: end for
8: Compute a list q with the indexes of windows y{i} in decreasing order of e�ective

rank.
9: for each i œ [0, Nw ≠ 1] do

10: if y{q(i)} overlaps with y{q(0 : i)} then
11: Remove q(i) from list q
12: end if
13: end for
14: for each i œ [0, length(q)] do
15: Compute cross-correlation metric si

16: if si < lcc then
17: Remove q(i) from list q
18: end if
19: end for
20: Return q
21: end procedure

3.3.2 A SISO Numerical Conditioning Method

The method described in this subsection is proposed in (PERETZKI et al., 2011) and
in (BITTENCOURT et al., 2015). The following assumptions are made in the original
works:

a) only SISO systems are considered;

b) the process can be described by linear models M(◊);

c) a transient response is only adequate for system identification if the input and the
output signals are actually correlated;

d) for open-loop systems, signal mv(k) must “shake” the process with enough varia-
tions. For closed-loop systems, on the other hand, the same assumption holds for
the set-point r(k) (see Item 3.3.2.7).
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A formal definition of the problem is given in (PERETZKI et al., 2011) and it is
described below:

Definition 3.3. (Adapted from PERETZKI et al., 2011) Let us assume that a collection
of data Z

N = [Z(1)T , . . . , Z(N)T ]T is available, where N is the length of the entire data
and T is the matrix transposition operation. Moreover, let us assume that Z(k)T =
[r(k), mv(k), y(k)], according to the control system described in Figure 1. Signals r(k),
mv(k) and y(k) are, respectively, the set-point of the controller, the process input coming
from the controller and the process measured output. Therefore, the problem objective
is to find discrete time intervals � = [·init, ·end], such that Z

N� is suitable to perform a
system identification of the process being considered, with N� being the number of resulting
intervals.

The main idea behind the algorithm described in this subsection can be summarized
through the following topics:

a) check if there is any variability in the input and in the output signals (see Item
3.2.1.1);

b) define a condition number based on the information matrix to verify if the least
square problem is numerically well-conditioned;

c) verify if the input and output sequences are actually correlated. A causality test is
performed for this purpose.

3.3.2.1 The Information Matrix

A general parametric structure for Linear Regression models can be defined as in
Equation (2.8). An alternative for finding the parameter vector is through the so-called
prediction error methods, in which the following prediction error is minimized (AGUIRRE,
2015, p. 239):

›(k, ◊̂) = y(k) ≠ Â
T
yu(k ≠ 1)◊̂. (3.38)

Notice that Â
T
yu(k ≠ 1)◊̂ is a prediction for the output estimated with measured data

available until instant k ≠ 1. Therefore, this prediction is commonly called the one step
ahead prediction and can be represented as ŷ(k|k ≠ 1) (AGUIRRE, 2015, p. 239).

The least square criterion can be used to estimate the parameter vector ◊̂Ns for a
sample of data, as follows:

◊̂Ns = arg min
◊̂

Nsÿ

k=1

Ë
y(k) ≠ Â

T
yu(k ≠ 1)◊̂

È2
. (3.39)
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A closed solution for Equation (3.39) can be obtained as in Equation (2.22) and can
be rewritten, for a limited sample of data, as (AGUIRRE, 2015, p. 242):

◊̂Ns =
S

U 1
Ns

Nsÿ

k=1
Â(k ≠ 1)ÂT (k ≠ 1)

T

V
≠1 S

U 1
Ns

Nsÿ

k=1
Â(k ≠ 1)y(k)

T

V . (3.40)

It is interesting to notice that matrix R̂Ns defined as

R̂Ns = 1
Ns

Nsÿ

k=1
Â(k ≠ 1)ÂT (k ≠ 1) (3.41)

is symmetric and positive definite (R̂Ns > 0) and it is frequently called the Information
Matrix. This matrix is closely related to the so-called Fisher Information (OLIVEIRA
JR.; GARCIA, 2017), being useful to provide information about a given data sample, as
detailed in the next item.

3.3.2.2 The Fisher Information Matrix

As described in (DEGROOT; SCHERVISH, 2016, p. 514), the Fisher Information can
measure “the amount of information that a sample of data contains about an unknown
parameter”, which is exactly what the method described in Subsection 3.3.2 seeks to
understand.

Let us consider a generic regression structure y(k) = f(Â(k), ◊̂) + ›(k). A linear
regression structure can then be written as y(k) = Â(k)T

◊̂ + ›(k), as the one defined
in Equation (2.8). In this case, y(k) comes from a gaussian distribution in the form
y(k) ≥ N(f(Â(k), ◊̂), ‡2

y). Therefore, for a given instant k, the Probability Density
Function of y(k) is shown below (DEVORE, 2016, p. 268):

f(Â(k), y(k)|◊̂) = 1
Ò

2fi‡2
y

e
≠ 1

2‡2
y

(y(k)≠f(Â(k),◊̂))2

. (3.42)

Notice that Â(k)T = [Â1(k) Â2(k) · · · Ân◊̂
(k)] is the regressor vector defined as in

Equation 2.20. In this case, the log-likelihood function can be defined as (DEVORE,
2016, p. 268)

l(Â(k), y(k)|◊̂) = ≠1
2 log(2fi‡2

y) ≠ (y(k) ≠ Â(k)T
◊̂)2

2‡2
y

. (3.43)

Considering ◊̂ as a vector of parameters, the Fisher Information Matrix of l(Â(k), y|◊̂)
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can be defined as (MARTENS, 2020)

I(◊̂) = Ef(Â(k),y(k)|◊̂)

Ë
Ò

◊̂
l(Â(k), y(k)|◊̂)ÒT

◊̂
l(Â(k), y(k)|◊̂)

È

= ≠Ef(Â(k),y(k)|◊̂)

Ë
Hl(Â(k),y(k)|◊̂)

È
,

(3.44)

where Ò
◊̂

is the gradient with respect to ◊̂, Ef(Â(k),y(k)|◊̂) is the expected value of the prob-
ability density function and Hl(Â(k),y(k)|◊̂) is the Hessian of the log-likelihood function. The
Hessian function can also be expressed as Hl(Â(k),y(k)|◊̂) = qNs

k=1
ˆ2l(Â(k),y(k)|◊̂)

ˆ◊̂ˆ◊̂T (HASTIE;
TIBSHIRANI; FRIEDMAN, 2009, p. 266) and, therefore, considering an interval of
length Ns, the Fisher Information Matrix can be computed as (HASTIE; TIBSHIRANI;
FRIEDMAN, 2009, p. 266):

I(◊̂) = ≠
Nsÿ

k=1

ˆ2l(Â(k), y(k)|◊̂)
ˆ◊̂ˆ◊̂T

. (3.45)

The gradient Ò
◊̂

for an instant k can then be calculated as follows:

Ò
◊̂
l(Â(k), y(k)|◊̂) = Ò

◊̂

S

U≠1
2 log(2fi‡2

y) ≠ (y(k) ≠ Â(k)T
◊̂)2

2‡2
y

T

V

= ˆ

ˆ◊̂

S

U≠y(k)2

2‡2
y

+ y(k)Â(k)T
◊̂

‡2
y

≠ ◊̂
T
Â(k)Â(k)T

◊̂

2‡2
y

T

V

= y(k)Â(k)
‡2

y

≠ ◊̂
T
Â(k)Â(k)T

‡2
y

.

Therefore, the Hessian matrix can be calculated as:

Hl(Â(k),y(k)|◊̂) = ˆ

ˆ◊̂T
Ò

◊̂
l(Â(k), y(k)|◊̂)

= ˆ

ˆ◊̂T

S

Uy(k)Â(k)
‡2

y

≠ ◊̂
T
Â(k)Â(k)T

‡2
y

T

V

= ≠Â(k)Â(k)T

‡2
y

.

Finally, for a given instant k, the Fisher Information Matrix follows directly as

I(◊̂, k) = Â(k)Â(k)T

‡2
y

. (3.46)

For an interval of length Ns, i.e., considering now the regressor matrix � defined in
Equation (2.21), I(◊̂) can be reformulated as in Equation 3.45, resulting in the following
expression:

I(◊̂) =
Nsÿ

k=1

Â(k)Â(k)T

‡2
y

= �T �
‡2

y

. (3.47)
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3.3.2.3 QR Decomposition

A solution to the Least Squared Problem is proposed in (PERETZKI et al., 2011)
through the so-called QR Decomposition, which is better numerically conditioned.

Theorem 3.2. (VERHAEGEN; VERDULT, 2007, p. 27) Let us consider a matrix A œ
Rm◊n. It is possible to prove that any matrix of this form can be decomposed as

A = QR. (3.48)

Matrix Q œ Rm◊m is orthogonal and matrix R œ Rm◊n is upper triangular. In the
case when n > m, matrix R has columns augmented on the right. On the other hand, if
m > n, matrix R has rows augmented with zeros at the bottom.

The QR Decomposition proposed in (PERETZKI et al., 2011) is applied to matrix
A = [� y], where y œ RNs is an output sample, with Ns being the sample size and
� œ RNs◊n◊ being the regressor matrix. Matrix R can be written as:

R =

S

WWWWWU

R0
...
0

T

XXXXXV
, R0 =

S

WU
R1 R2

0 R3

T

XV , (3.49)

with R0 œ RNs◊(n◊+1), R1 œ Rn◊◊n◊ , R2 œ Rn◊◊1 and R3 being a scalar value. The model
structure used by the authors is the Laguerre Filter, described in detail in Section 2.4,
which has the regressor repeated below:

Â
T
u (k) =

5
L1(q, –)u(k) · · · Lnb

(q, –)u(k)
6

.

In this case, n◊ = nb is the regressor order. As explained in (PERETZKI et al., 2011),
if the orthonormal transformation Q

T is applied to the cost function (3.38), one obtains
the following results:

...Q
T (y ≠ �◊̂)

...
2

2
=

=

.......

S

WU
R2

R3

T

XV ≠

S

WU
R1◊̂

0

T

XV

.......

2

2

=

=ÎR2 ≠ R1◊Î2
2 +|R3|2 .

(3.50)

Therefore, the ◊̂ that minimizes the function above can be obtained as the solution
of the following equation:

R1◊̂ = R2. (3.51)
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In the same way, Equation (3.41) can be reformulated as:

R̂Ns = 1
Ns

�T � = 1
Ns

R
T
1 R1. (3.52)

3.3.2.4 Condition Number

Because the solution of the covariance matrix P
u
Ns

in Equation (3.27) is usually ill-
conditioned and this matrix is usually singular, and because the persistence of excitation
depends on the signal being stationary, in (PERETZKI et al., 2011) and in (BITTEN-
COURT et al., 2015) the numerical conditioning of the information matrix is proposed as
an alternative to the concept of persistence of excitation. More specifically, because the
feasibility of Equation (3.40) depends on the information matrix R̂Ns (Equation (3.41))
being invertible, the numerical conditioning of R̂Ns appears as a measure of the quality
of the data for estimating the parameters of a model.

The condition number is a numerical analysis concept that allows one to evaluate
the perturbation behavior of a mathematical problem (TREFETHEN; BAU, 1997). An
“ill-conditioned” system is one highly influenced by disturbances. This concept can be
understood in the context of matrix inversion, where a matrix inversion is well-posed
when its condition number is su�ciently small. A more formal definition is adapted from
(BITTENCOURT et al., 2015) as follows:

Definition 3.4. Let us consider a linear system of the form Ax = b. If one considers a
perturbed system of the form A(x + ”x) = (b + ”b), it follows that

Î”xÎp

ÎxÎp

Æ Ÿp(A)
Î”bÎp

ÎbÎp

,

where Ÿp(A) Ø 1 is the p-norm condition number of matrix A. Small values of Ÿp(A)
mean that the system is “well-conditioned”, while large values mean the system is “ill-
conditioned”, i.e., changes in x can lead to much larger changes in the system output.

In the problem being studied in this item, the condition number of the information
matrix is the ultimate goal. More specifically, the 2-norm condition number is considered,
which can be computed as follows:

Ÿ2(R̂Ns) = ‡max(R̂Ns)
‡min(R̂Ns)

, (3.53)

with ‡max(R̂Ns) and ‡min(R̂Ns) meaning the largest and the smallest singular values of
R̂Ns , respectively.
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Notice that the condition number goes from 0 to inifity. In fact, the closer the condi-
tion number of a particular matrix is to 1, the more confident one can be that this matrix
can be inverted. On the contrary, if the condition number tends to infinity, the matrix
cannot be inverted. As pointed out in (BITTENCOURT et al., 2015), the reciprocal con-
dition number Ÿ≠1

2 (R̂Ns) can be used as an alternative, which now varies from [0, 1]. In
this case, the closest the reciprocal value is to 1, the more robust is the numerical result.

It is interesting to point out that, as mentioned in (BITTENCOURT et al., 2015),
input signals that are not too “active”, such as the step change, will usually result in large
values for the condition number (in the order of 104). The same goes for higher orders of
regressor structures, i.e., higher values for n◊.

3.3.2.5 Correlation Between The Input and the Output

In order to verify if variations in the output signal are actually caused by the input
signal and not by disturbances in the system, a correlation test can be applied. As detailed
in (BITTENCOURT et al., 2015), instead of verifying the correlation itself, it would be
more interesting to check if there is a causal relationship among the input and the output
signals. The concept of Granger causality is presented in (BITTENCOURT et al., 2015
apud GRILLENZONI, 1996) in such a way that if some of the estimated parameters are
significantly non-zero, then delayed versions of the input should give more information
to predict the output than using only delayed versions of the output itself, indicating
causality. The way the execution of this test is proposed in (PERETZKI et al., 2011) is
to estimate ◊̂Ns and verify if any of the estimated parameters are significantly non-zero.

Let us assume that the real system is described by a linear model with parameters
◊0. Therefore, the estimated parameters ◊̂Ns are normally distributed ◊̂Ns ≥ N(◊0, PNs),
where PNs is the covariance matrix for a data interval of length Ns, which can be defined
as follows (LJUNG, 1999, p. 284):

P̂Ns = 1
Ns

‡̂2
Ns

R̂
≠1
Ns

‡̂2
Ns

= 1
Ns

Nsÿ

k=1
›2(k, ◊̂Ns),

(3.54)

where ‡̂2
Ns

is the noise variance.

Then, in (PERETZKI et al., 2011) and in (BITTENCOURT et al., 2015) the causality
is verified by a hypothesis test that assumes, as the null hypothesis, that all the real
parameters of the model are zero, i.e. H0 : ◊0 = 0, where ◊0 is the true parameter



39

vector. Therefore, if the estimated parameters can reject the null hypothesis within an
– significance level, then one can assume that the input and the output signals have a
causal relationship. To perform the hypothesis test, the following statistics is proposed:

‰̂Ns = ◊̂
T
Ns

P̂
≠1
Ns

◊̂Ns œ ‰2
d, (3.55)

where d is the degree of freedom, defined as the dimension of ◊̂Ns , i.e., n◊. If the null
hypothesis is rejected, then the parameter estimate ◊̂Ns is considered di�erent from zero
with an – change of committing a mistake. A critical value ‰d,– for the statistic can be
calculated from the chi-squared table based on the significance value – and on d degrees
of freedom.

It is interesting to mention that the statistic ‰̂Ns can be calculated through the
QR decomposition. The parameter estimate can be calculated from Equation (3.51) as
◊̂Ns = R

≠1
1 R2. Moreover, from P̂

≠1
Ns

= Ns
‡2

Ns

◊̂NsR̂Ns and from the definition of ›(k, ◊̂Ns) in

Equation (3.38), one obtains ‡̂2
Ns

= 1
Ns

...y ≠ �◊̂Ns

...
2

2
= 1

Ns
|R3|2 (PERETZKI et al., 2011).

Therefore, if the QR factorization is performed, Equation (3.55) can be reformulated
as (PERETZKI et al., 2011)

‰̂Ns =
Ë
R

≠1
1 R2

ÈT

S

U Ns

‡̂2
Ns

R̂Ns

T

V
Ë
R

≠1
1 R2

È
=

......

Ô
Ns

|R3|
R2

......

2

2

. (3.56)

Finally, it is important to mention that the causality test here described is only valid
if the regressor vector if formed exclusively by components of the input signal, which is
the case of the Laguerre structure regressor.

3.3.2.6 Steps of the Algorithm

In this item, the outline of the algorithm proposed in (PERETZKI et al., 2011) and
(BITTENCOURT et al., 2015) is presented. Based on the mathematical background given
in this subsection, the algorithm can be summarized by a sequence of steps as follows:

a) a recursive exponentially weighted filter is applied to both the input and the output
signals, as described in Item 3.2.1.1;

b) the Laguerre filter, as well as the condition number of its information matrix, are
recursively calculated for the input signal, in parallel to the calculation of the ex-
ponentially weighted filters;
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c) if a change is detected in the variance filter, i.e., if the variance filter exceeds a
threshold lS, the condition number Ÿp(R̂Ns) is verified against its threshold;

d) in the case when the condition number Ÿp(R̂Ns) is lower than its threshold lŸ, the
parameter vector ◊̂Ns is estimated and the chi-squared correlation test is performed;

e) if lS, lŸ and ‰d,– thresholds are all satisfied, an interval is defined with its first
index beginning when the variance condition is satisfied. Finally, the interval is
incremented until at least one of the thresholds is not satisfied anymore, in which
case the interval is saved;

f) all the previous steps go on until the end of the signal is reached.

The original outline proposed in (PERETZKI et al., 2011) is adapted in Algorithm 3.
It is important to reinforce that Algorithm 3 is implemented in (PERETZKI et al., 2011)
in a recursive manner. In fact, a recursive formulation of the mathematical background
provided in this item is given in details in (BITTENCOURT et al., 2015). In this dis-
sertation, the algorithm adopted in the methodology is not implemented recursively and,
therefore, details of recursive implementations are not provided. Finally, it is interesting
to mention that a similar method is proposed in (ARENGAS; KROLL, 2017b), but the
Laguerre Filter is replaced by an ARX structure and a configurable sliding window algo-
rithm is proposed instead of the recursive approach. Notice that both the recursive and
the sliding window implementations of the average and variance filters are described in
Item 3.2.1.1.

3.3.2.7 Closed-loop and Open-loop Scenarios

The algorithm described in this item can be applied to both the open and the closed-
loop system identification scenarios. When dealing with closed-loop identification, how-
ever, the problem is not trivial and depends on the model structure being adopted.

The conditions for an ARX structure to be identifiable through historical data in
closed-loop systems are exemplified in both (SHARDT; HUANG, 2013a) and (BITTEN-
COURT et al., 2015). However, it is shown in (BITTENCOURT et al., 2015), in a general
manner, that while in open-loop systems the manipulated variable mv(k) must be per-
sistently exciting, in closed-loop systems it is the set-point r(k) that must satisfy this
condition. Therefore, for any linear process, if one is interested in estimating the rational
transfer function G(q) for an open-loop system, the manipulated variable must “shake”
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Algorithm 3 SISO Laguerre Method for Search of Intervals (Adapted from PERETZKI
et al., 2011)

Input: u(k) and y(k)
Output: intervals of the form � = [·init, ·end]

1: procedure SISOLaguerreSegmentation(u(k), y(k))
2: Compute variances of u(k) and y(k) (‡2

u(k) and ‡2
y(k))

3: for each k œ [0, N ] do
4: if ‡2

u(k) and ‡2
y(k) are larger than its threshold then

5: Compute Ÿ≠1
p (R̂Ns)

6: if Ÿ≠1
p (R̂Ns) is smaller than its threshold then

7: Compute ‰̂Ns

8: if ‰̂Ns is larger than its threshold then
9: Mark data interval � = [·init, ·end] as useful

10: end if
11: end if
12: end if
13: end for
14: Return values of �
15: end procedure

in a minimal way. In the same fashion, if G(q) needs to be obtained in a closed-loop sys-
tem, it is the set-point that must su�er su�cient changes (BITTENCOURT et al., 2015).
For this reason, in order to apply the algorithm for closed-loop system identification, the
following modifications in the described outline must be made:

a) instead of searching for variance changes in the manipulated variable, one must now
look for changes in the set-point;

b) the condition number of the information matrix is now computed with the set-point,
which would be an alternative way to verify if the set-point is persistently exciting.

3.3.3 A Statistical Approach

The method presented in this subsection is proposed in (WANG et al., 2018) and it
is strongly based on statistical metrics. The algorithm described by the authors can be
summarized in four main steps:

a) finding change-point positions in the time-series datasets and creating initial seg-
ments based on these points;

b) evaluating whether each segment of data obtained in the previous step experiences
significant changes in magnitude or if they are kept around a constant value dis-
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turbed by random noise;

c) for the intervals that did not experience magnitude changes, verify if there is at
least a magnitude di�erence between two adjacent ones;

d) unify the candidate data segments for the input and for the output data, creating a
single interval for both the input and the output. Next, verify if in this single interval
the input data was a�ected by magnitude changes. In the case it did, consider the
interval as useful for performing system identification.

This algorithm can be applied to both open and closed-loop system identification.
In the later case, which is the one addressed in (WANG et al., 2018), the reference
signal r(k) must have large magnitude changes, in such a way that the corresponding
changes in the output y(k) are larger than the changes caused by variations in the external
disturbance and by unmeasured noise. Moreover, in (WANG et al., 2018) it is highlighted
the importance of both the input and the output to have su�ered magnitude changes in
order to consider an interval as useful for system identification, which is an alternative to
check the correlation between both variables.

3.3.3.1 Finding Change-Points

The first step of the algorithm is to find changing positions in each input and output
signal following the approach described in Subsection 3.2.2, where each resulting interval
is defined by two consecutive change-points.

As proposed in (WANG et al., 2018), one can impose a maximum length to the
resulting intervals. Let us assume that a particular interval of length Ns is obtained and
that a user-defined maximum size of Nmax is imposed. Therefore, if Q is the quotient
of the division between integers Ns and Nmax, and that R is the remainder of the same
division, the initial segment can be divided into Q segments of length Nmax and in 1
segment of length R.

3.3.3.2 Check for Magnitude Changes

Once initial intervals are found through the change-point algorithm, it is proposed
to evaluate whether each data segment experiences a significant amount of magnitude
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changes. For this purpose, the following hypothesis test is formulated:
Y
__]

__[

H0 : data segment stays around a constant value disturbed by random noise

H1 : data segment experiences a fair amount of changes

The hypothesis test is evaluated through a Kolmogorov-Smirnov statistical test. Let
us first define a segment of data as x(k : k + Ns ≠ 1), being Ns the length of this segment.
Notice that every data segment is located between two consecutive change-points and,
therefore, can also be represented as x(·i : ·i+1 ≠ 1). A mean-crossing data point tc can
then be defined as an instant of time in which two consecutive data points crossed the
mean value of the data segment (from a higher to a lower value compared to the mean
or the other way around). A mean-crossing instant must, therefore, satisfy the following
equation (WANG et al., 2018):

(x(tc) ≠ x̄)(x(tc + 1) ≠ x̄) Æ 0, for k Æ tc Æ k + Ns ≠ 1. (3.57)

In Figure 5 one can find a visual example of mean-crossings.

Figure 5: Examples of mean-crossings. The green dots are data points, ·i is a change-point
separating two consecutive segments, the dashed grey lines represent the mean value of
each segment and the ellipses highlight mean-crossing examples.

Source: Author’s own development.

As explained in (WANG et al., 2018), if the null hypothesis is true, then the time inter-
val Tc = tc+1≠tc between two consecutive mean-crossing points experiences an exponential
distribution. That is precisely the objective of the non-parametric Kolmogorov-Smirnov
test: to evaluate whether the distribution of Tc can be considered exponential. If the test
fails within a statistical significance level of –, then one can consider that the interval
x(k : k + Ns ≠ 1) experiences a fair amount of change with a probability – of committing
a mistake.

The Kolmogorov-Smirnov test used by the author is proposed in (LILLIEFORS, 1969)
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and it is useful for exponential distributions with unknown mean. This test is also known
as the Lilliefors test. The test consists of comparing the di�erence statistic below:

Dt = max
T

| F (T, ⁄̂) ≠ F̂ (T ) |, (3.58)

with a critical value defined by the desired significance level –, where F (T, ⁄̂) is the
cumulative distribution function of an exponential random variable, computed as (WANG
et al., 2018):

F (T, ⁄̂) =

Y
__]

__[

1 ≠ e⁄̂T , T Ø 0

0, T < 0
. (3.59)

Notice that ⁄̂ = 1
µ , where the mean value µ of T can be defined as

µ = 1
L ≠ 1

L≠1ÿ

l=1
Tc, (3.60)

being L the number of mean-crossing points in a given segment. The F̂ (T ) function is
the estimated cumulative distribution of the statistic T , which can be calculated as

F̂ (T ) = 1
L ≠ 1

L≠1ÿ

l=1
a(Tc, T )

a(Tc, T ) =

Y
__]

__[

1, Tc Æ T

0, Tc > T

. (3.61)

A table of critical values for Dt can then be used in such a way that, if Dt is higher
than the critical value, the null hypothesis can be rejected with probability – of making
a mistake. Finally, in (WANG et al., 2018) it is defined an “indicating sequence” IX(k :
k +Ns ≠1) to record if the interval is suitable for process identification or not. Therefore,
in the case Dt is higher than a given critical value and the null hypothesis is rejected,
IX(k : k + Ns ≠ 1) receives a value of 1, otherwise it will receive a value of 0.

3.3.3.3 Check for Magnitude Di�erences Between Intervals

The third step aims to verify if two consecutive intervals with indicating sequences
IX of 0 experienced a significant magnitude di�erence between each other. This is done
with a simple hypothesis test comparing two means, as defined below

Y
__]

__[

H0 : µ(x(k + N1
s : k + N1

s + N2
s ≠ 1)) ≠ µ(x(k : k + N1

s ≠ 1)) Æ �

H1 : µ(x(k + N1
s : k + N1

s + N2
s ≠ 1)) ≠ µ(x(k : k + N1

s ≠ 1)) > �
,
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where N1
s is the sample length of the first interval and N2

s is the sample length of the
interval that follows the first one.

Considering a value of � for the mean di�erence, the hypothesis test can be performed
with a t-student test, where the normalized statistic is defined as

zN2
s ,N1

s
=

(x̄N2
s

≠ x̄N1
s
) ≠ �

ı̂ıÙ
A

S2
N2

s
N2

s

B

+
A

S2
N1

s
N1

s

B , (3.62)

where x̄N1
s

and x̄N2
s

are the mean values of the intervals x(k + N1
s : k + N1

s + N2
s ≠ 1) and

x(k : k + N1
s ≠ 1), respectively, S2

N2
s

and S2
N1

s
are their sample variance and N2

s and N1
s

the length of each interval. The mean and sample variance can be calculated as

x̄ = 1
Ns

qk+Ns≠1
t=k x(t) (3.63)

S2 = 1
Ns≠1

qk+Ns≠1
t=k (x(t) ≠ x̄)2. (3.64)

In this case, the critical value for the hypothesis test is defined as td,–, where d is the
degree of freedom defined as follows:

d =
(wN1

s
+ wN2

s
)2

w2
N1

s
(N1

s +1) +
w2

N2
s

(N2
s +1)

≠ 2

wN1
s

=
S2

N1
s

N1
s

, wN2
s

=
S2

N2
s

N2
s

.

(3.65)

If the null hypothesis is rejected, then the authors suggest changing the indicating
sequence of the second interval x(k + N1

s : k + N1
s + N2

s ≠ 1) from 0 to 1, i.e., IX(k + N1
s :

k + N1
s + N2

s ≠ 1) = 1. The authors also suggest as an estimative value for the di�erence
� three times the standard deviation of the signal in steady-state condition.

3.3.3.4 Unifying Input and Ouput Segments

The final step of the algorithm is to unify data segments from the input and the
output. If we consider Iu as the indicating sequence coming from the input signal and
Iy as an indicating sequence coming from the output signal, then the resulting sequence
should be defined as I = Iu fi Iy. Finally, let us consider segments I(t) as indexes where
the unified indicating sequence has consecutive values of 1. Then, one should take all the
resulting segments I(t) from the unified indicating sequence and verify if there is at least
one input segment Iu(t) in I(t) that is di�erent from 0. If all of them are zero, then I(t)
should not be considered, i.e., I(t) is set to 0.
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To better exemplify this scenario, let us imagine we have the following indicating
sequences

Iu = {1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0}

Iy = {0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1}.

Then, the resulting unified indicating sequence would be the following:

Iu fi Iy = {1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1}.

Considering that a segment is defined by consecutive values of 1, Iu contains 2 seg-
ments (Iu(1 : 6) and Iu(10 : 14)), Iy contains 3 segments (Iy(5 : 7), Iy(10 : 11) and
Iy(16 : 19)), and, naturally, the unified indicating sequence also produces 3 segments
((Iu fi Iy)(1 : 7), (Iu fi Iy)(10 : 14) and (Iu fi Iy)(16 : 19)). Finally, one must verify if the
unified segments contains at least one input segment in it. In this case, it is clear that
Iu(1 : 6) µ (Iu fi Iy)(1 : 7) and that Iu(10 : 14) µ (Iu fi Iy)(10 : 14). Therefore, these two
segments would be considered as final segments. On the other hand, there is no input
segment contained in (Iu fi Iy)(16 : 19) and, therefore, their values are set to 0, not being
considered as a final segment. Figure 6 also illustrates this procedure.

Figure 6: Illustration of the unification step of the Statistical Method.

Source: Author’s own development.

3.3.4 A Multivariable Approach

Two main works presented in the literature overview in Section 1.2 deal with the
problem of finding intervals suitable for system identification of multivariable systems.
The work in (PATEL, 2016) introduces the problem for open-loop system identification.
The multivariable approach for closed-loop system identification is far more complex,
and considerations similar to the ones presented in Item 3.3.2.7 must be considered. A
formulation for this problem is done in (ARENGAS; KROLL, 2017a), although it is not
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explored in this dissertation. A detailed review of the methodology presented in (PATEL,
2016) is presented in this subsection.

3.3.4.1 Extension from SISO to MIMO Systems

The main idea behind the extension from SISO to MIMO systems proposed in (PA-
TEL, 2016) is to consider a multivariable system as a combination of Multi-Input Single-
Output (MISO) systems, as described in Section 2.8. With this approach, the mining
algorithm can be applied independently for each output system. Notice, however, that
this strategy can only be applied to open-loop system identification, i.e., when the input
variables are not manipulated by a controller, but by the user.

Because there are multiple inputs associated with a single output, a reformulation
of the regressor matrix is necessary. Let us consider a data interval of length Ns as
an example, i.e., ui(k : k + Ns ≠ 1) is an input sequence in this interval. Let us also
consider a regressor vector associated with input i and output j at instant k as Â

i,j(k) =
[Âi,j

1 (k) Âi,j
2 (k) . . . Âi,j

n◊
(k)] where n◊ is the regressor order. The regressor matrix for this

input and output pair can then be defined as

�i,j
Ns

=

S

WWWWWU

Âi,j
1 (k) Âi,j

2 (k) · · · Âi,j
n◊

(k)
... ... . . . ...

Âi,j
1 (k + Ns ≠ 1) Âi,j

2 (k + Ns ≠ 1) · · · Âi,j
n◊

(k + Ns ≠ 1)

T

XXXXXV
, (3.66)

where �i,j
Ns

œ RNs≠1◊n◊ . Let us consider that the system contains nu inputs. Therefore,
the MISO regressor matrix for output j can be defined as (PATEL, 2016):

S
j = [�1,j

Ns
�2,j

Ns
... �nu,j

Ns
]. (3.67)

Considering all the set-points associated with a given output j, the following condition
number vector can be defined for this MISO system (PATEL, 2016):

Cj = [Ÿ2(R̂1,j
Ns

) Ÿ2(R̂2,j
Ns

) ... Ÿ2(R̂nu,j
Ns

)]T . (3.68)

The interval of length Ns is then considered a candidate for system identification if at
least one of the elements in vector Cj is smaller than a given threshold lcj , or equivalently,
if min Cj < lcj . The reason why only one input is required to satisfy the numerical
conditioning hypothesis is that, as proposed in (PATEL, 2016), one could use multiple
intervals to obtain the final model, as explained in the next item. As an alternative
formulation, but now considering the work in (RIBEIRO; AGUIRRE, 2015), an e�ective
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rank vector could be formulated for every MISO system corresponding to output j as
shown below:

Refj =
5
ref (R̂1,j

Ns
) ref (R̂2,j

Ns
) · · · ref (R̂nu,j

Ns
).

6
(3.69)

Similar to the condition number test, a formulation can be made such that if at least
one input variable in Refj resulted in an e�ective rank higher than a given threshold lej ,
or equivalently, if max Refj > lej , the interval is still a potential interval.

Finally, each interval that satisfies one of the above conditions can be subjected to
the correlation test with the output signal j using either the chi-squared test or the scalar
cross-correlation scalar metric. If at least one input-output pair meets both the numerical
condition and the cross-correlation criteria, the interval can be stored for all the input
and output signals and considered useful for system identification.

Notice that for the particular case of the AR structure, the computation of the e�ective
rank for each input-output pair is not required, since this structure only depends on the
output signal. In other words, Refj is a scalar value for each output j.

3.3.4.2 System Identification

In order to obtain a model of the process based on the resulting selected intervals, one
must consider that a dynamic model for a given output j can only be correctly obtained
if all the input variables provide a fair amount of excitation. However, the multivariable
extension proposed in (PATEL, 2016) only requires that at least one input-output pair
meets the proposed criteria. Consequently, one can easily find intervals where not all
input variables are persistently exciting.

The reason why this condition is proposed this way is to make the algorithm less
restrictive. In fact, to get around this problem, in (PATEL, 2016) it is proposed the use
of several intervals for obtaining the final model. Let us assume, as an example, that we
have a 3◊3 system and that only two intervals were obtained: �uy

1 and �uy
2 . Interval �uy

1

satifies the numerical conditioning and the correlation criteria for input u1(k) only, while
�uy

2 satisfies both criteria for inputs u2(k) and u3(k). If we take y1(k) as an example,
a model for that output could be obtained using both �uy

1 and �uy
2 as follows (PATEL,

2016):

yit1
1 (k) = G11(q)u1(k) + H1(q)v1(k) (3.70)

yit2
1 (k) = G12(q)u2(k) + G13(q)u3(q) + H2(q)v2(k) (3.71)

y(k) = G11(q)u1(k) + G12(q)u2(k) + G13(q)u3(q) + H(q)v(k). (3.72)
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One must notice that a model addition is being performed in Equation 3.72. One of
the ways suggested in (PATEL, 2016) to perform this addition is by first estimating the
model parameters (Equations 3.70 and 3.71) and then combining the resulting transfer
functions in a single transfer function (Equation 3.72). This procedure is straightforward if
the set-points in Equations 3.70 and 3.71 do not overlap, which is the approach considered
in this dissertation. However, it is not straightforward to combine the disturbance models
H1(q) and H2(q) when they result in di�erent structures or when they result in the same
structure but with di�erent model orders. To handle this problem, in this dissertation
the disturbance model with the highest gain is the one considered as H(q) in final model.

3.3.5 An Improved Method Using Entropy

In (SHARDT; SHAH, 2014) it is argued that a process model can potentially change
with time and, therefore, each segment of data obtained through a segmentation algorithm
can represent the process with di�erent characteristics. For this reason, the authors define
three di�erent situations:

a) oversegmentation: when we obtain more models than the real amount of models
represented by the dataset;

b) undersegmentation: when fewer models are identified;
c) exact Case: when the exact number of models is identified.

The work proposed in (SHARDT; HUANG, 2013b) shows that the entropy of a time-
series signal can be used to detect changes in the process. Moreover, a di�erential entropy
can be used as a metric to determine when the model is not an accurate representation
of the system anymore. The analysis is made based on the fact that if two data windows
contain a similar value of entropy, then they are very likely coming from the same system
dynamics. This exact idea is used in (SHARDT; SHAH, 2014) as an additional step for
improving the works proposed in (PERETZKI et al., 2011) and (SHARDT; HUANG,
2013a).

As described by (APPLEBAUM, 2008) and (SHARDT; HUANG, 2013b), entropy
is a term that comes from thermodynamics and that, in Information Theory, is used to
measure the amount of information of a sequence of random variables. Therefore, the
definition of entropy for stochastic signals is reproduced below:

H = ≠
ÿ

xœX
p(x) log p(x), (3.73)
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where H is the signal entropy, x is a single occurrence of the space X of all possible
realizations of a random variable and p(x) is the probability of x occuring in that space
(SHARDT; HUANG, 2013b).

In (SHARDT; HUANG, 2013b) it is shown, however, that for time-series and spatial
signals the entropy can be reformulated as

Ht = log
A

Lt

Ns

B

(3.74)

Lt =
Nsÿ

k=1
|xk ≠ xk≠1| , (3.75)

where Lt is the degree of tortuosity in the signal.

Finally, the di�erential entropy is then defined in (SHARDT; HUANG, 2013b) as

�Ht,x = Ht,y ≠ Ht,u, (3.76)

where Ht,y is the entropy of the process output signal and Ht,u is the entropy of the process
input signal.

A new step is then proposed in (SHARDT; SHAH, 2014) as an additional step for
the methods proposed in (PERETZKI et al., 2011) and (SHARDT; HUANG, 2013a).
This step consists of taking every resulting segment �i = [·init,i, ·end,i] and computing the
time-series entropy for these regions. The di�erential entropy is then used to compare
adjacent regions in such a way that if the di�erential entropy of two consecutive regions
are close to each other within a given threshold, these regions must be unified and treated
as a single interval.



51

4 METHODOLOGY

In this chapter, the methodology adopted in this dissertation is presented. As one can
notice from the state-of-the-art review in Section 3.3, di�erent algorithmic structures are
presented in the studied literature. While some solutions go through the entire dataset in a
single pass — such as the recursive approach proposed in (PERETZKI et al., 2011) and in
(BITTENCOURT et al., 2015), or the sliding-window approach presented in (ARENGAS;
KROLL, 2017a) and in (ARENGAS; KROLL, 2017b) — others initially divide the data
in regions of interest, and these regions are sequentially evaluated as suitable or not for
obtaining a model of the process. The later case occurs, for example, in (RIBEIRO;
AGUIRRE, 2015), in (PATEL, 2016) and in (WANG et al., 2018) and constitutes the
main structure adopted in the methodology presented in this chapter.

4.1 Structure of the Algorithms

The main algorithmic structure adopted in this dissertation is inspired in (RIBEIRO;
AGUIRRE, 2015), (PATEL, 2016) and (WANG et al., 2018) and can be decomposed in
the following steps:

a) Step 1: preprocess the dataset;

b) Step 2: define potential regions of excitation;

c) Step 3: evaluate each initial region as suitable or not for system identification;

d) Step 4: store the final mined intervals.

For some of the mining strategies defined in this chapter, a further step can be included
between steps 3 and 4 described above, which consists of incrementing the potential
regions that are actually suitable for system identification. The reason for that is because
in the recursive and sliding-window approaches described in Section 3.3, final intervals are
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defined and incremented online until they no longer meet the selection criteria adopted.
Consequently, the resulting intervals are optimized in terms of their resulting length.
In order to provide this flexibility to the adopted algorithm in this dissertation, it is
optional to increase the resulting potential intervals, with an increment step of wic, while
they satisfy the selection criteria adopted. When the potential intervals are kept in their
original format, the algorithm will be here considered in stationary mode. Otherwise, it
will be considered in an incremental state.

There are a few reasons behind the choice of the described structure, which are listed
below:

a) the adopted algorithms can be structured in the same framework and one can com-
bine di�erent aspects of each algorithm; and

b) breaking the data in steps gives one the possibility of making a visual analysis to
support the choice of parameters.

4.1.1 Outline of the Numerical Algorithms

4.1.1.1 Singe-Input Single-Output Case

The di�erent mining strategies presented in Subsections 3.3.1 and 3.3.2 are here com-
bined in a single algorithm, which is defined in Figure 7. Notice that the algorithm is
divided as described in Section 4.1 and that one could choose which criteria to use in each
step. Therefore, one could, for example, obtain the initial intervals through the Exponen-
tially Weighted filter described in Item 3.2.1.1 or through the Bandpass filter proposed in
(PATEL, 2016). In the same fashion, one could use the condition number or the e�ective
rank to evaluate each potential interval. Moreover, the algorithm can be applied for both
open and closed-loop identification of SISO systems. The way it can be applied in each
scenario is the following:

a) Open-loop System Identification: this is the simplest case and all steps of the
algorithm (Steps 1-3) are performed with the provided input and output variables.

b) Closed-loop System Identification: Steps 1 and 2 of the algorithm must be
performed with the set-point r(k) of the controller, while Step 3 must be executed
with the manipulated variable mv(k). The reasons for that is explaiened in Item
3.3.2.7.
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Figure 7: Outline of the Single-Input Single-Output Numerical Algorithm.

Source: Adapted from (PERETZKI et al., 2011) and (PATEL, 2016).

Finally, as explained in Section 4.1, the algorithm can also be used in an incremental
way. In this case, every potential interval approved in Steps 2 and 3 can be iteratively
incremented by wic indexes as long as they continue to satisfy both step criteria. As soon
as one of the two criteria is no longer satisfied, or if the incremented interval reaches the
next consecutive interval, the running segment is stored and the same procedure continues
until all potential intervals are evaluated.

In this dissertation, all the possible methods of obtaining potential intervals shown
in Step 1 are first applied separately in the development chapter, in order to elucidate
how they work. Then, the algorithm provided in this item is applied to SISO simulated
data, where each metric in Steps 2 and 3 are computed and analyzed. Moreover, both
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the incremental and the stationary mode are exemplified in Section 5.3.

4.1.1.2 Multiple-Input Multiple-Output Case

An extrapolation of the numerical algorithm to multivariable systems is performed
based on the work in (PATEL, 2016). As explained in Subsection 3.3.4, in this disserta-
tion a multivariable extension of the work in (RIBEIRO; AGUIRRE, 2015) is proposed,
which is included in the same framework as the work in (PATEL, 2016). The algorithm
here presented can only be applied to open-loop system identification, following the def-
inition made in Section 2.7. Notice that the multivariable case for closed-loop system
identification is not implemented in this work. The outline of the numerical multivariable
algorithm can be seen in Figure 8.

Figure 8: Outline of the Multiple-Input Multiple-Output Numerical Algorithm.

Source: Adapted from (PERETZKI et al., 2011) and (PATEL, 2016).

It is important to mention that if the system contains only one input and one output,
this algorithm is exactly reduced to the algorithm in Figure 7 considering the open-loop
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system identification scenario. Moreover, this algorithm can also be implemented in an
incremental fashion, in which case Steps 4, 5 and 6 would be repeated as explained in
Item 4.1.1.1. Finally, one must have in mind that, although the algorithm requires that
at least one input-output pair satisfies the method validation requirements, one could be
more restrictive in this condition. As an example, one could require that, for a particular
output, all input variables must satisfy the method criteria. This scenario is explored in
Section 5.5 with the Petrochemical Furnace dataset, where a more restrictive condition is
imposed.

4.1.2 Outline of the Statistical Algorithms

4.1.2.1 Singe-Input Single-Output Case

The statistical algorithm proposed in (WANG et al., 2018) and described in Subsection
3.3.3 is implemented, for SISO systems, with the same outline presented in its original
work, but with a few notation changes, as shown in Figure 9.

It is important to mention that, for the same reason explained in Item 3.3.2.7, if this
algorithm is applied to the closed-loop system identification scenario, the set-point r(k)
must be the one considered in the diagram in Figure 9.

4.1.2.2 Multiple-Input Multiple-Output Case

A multivariable extension to the statistical algorithm proposed in (WANG et al.,
2018) is here presented inspired in the work in (PATEL, 2016). The main idea behind
the extrapolation is to check if at least one input and one output meet the evaluation
criteria, which in this case corresponds to the statistical tests in Steps 2 and 3. Therefore,
the main change occurs in Step 4 of the diagram in Figure 9. The extrapolation can be
summarized as follows:

a) Steps 1 to 3 are applied to every input and output of the multivariable system. For a
system with nu inputs and ny outputs, one would obtain nu +ny di�erent indicating
sequences, one for each signal;

b) Step 4 is modified as follows: for each output variable that defines a MISO system,
the corresponding output indicating sequence Iyj is unified with every input indi-
cating sequence Iui of the system. Therefore, assuming we have a nu ◊ ny system,
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Figure 9: Outline of the Statistical Algorithm.

Source: Adapted from (WANG et al., 2018).

we would obtain the following unified indicating sequences, one for each output:

I1 = Iu1 fi Iu2 fi · · · Iunu
fi Iy1

I2 = Iu1 fi Iu2 fi · · · Iunu
fi Iy2

...

Ij = Iu1 fi Iu2 fi · · · Iunu
fi Iyj

...

Iny = Iu1 fi Iu2 fi · · · Iunu
fi Iyny
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Finally, the procedure described in Item 3.3.3.4 is applied to every MISO system, but
considering the idea proposed in (PATEL, 2016), i.e., for each MISO system, if at
least one input sequence is contained in the unified sequence of the corresponding
output variable (Ij), the segment is saved. Then, as a final step, the saved segments
from every MISO system are unified, resulting in the final segments. Notice that,
also here, one could be more restrictive and require, for example, that all inputs
in a given MISO system must experience a fair amount of excitation, instead of
considering only a single input.

To better exemplify how Step 4 is modified, an example is given in Figure 10 for
a hypothetical 2 ◊ 2 system. From this example, one can notice that the input signal
u1(4 : 5) was only able to cause significant changes in the output y1(4 : 5), but not in
y2(4 : 5). However, this is enough to consider indexes 4 and 5 in the final interval. On
the other hand, if one requires, for example, the restrictive condition that all inputs, for
all MISO systems, must satisfy the statistical criteria, only indexes 13 and 14 would be
considered.

Figure 10: Multivariable extension of the statistical method: an example on how Step 4
is modified.

Source: Author’s own development.
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4.2 Structure of the Solution and Hypothesis

To address the problem of the di�culty of obtaining informative data to identify
process models, the algorithms presented in the present methodology are used in some
di�erent scenarios, all representing real applications in industry:

a) SISO systems: both algorithms in Figure 7 and in Figure 9 are applied to a closed-
loop water tank dataset produced through simulation. Intervals suitable for system
identification are then obtained to address the closed-loop identification scenario;

b) MIMO systems: both algorithms in Figure 8 and in Item 4.1.2.2 are initially
applied to a simulated dataset from a 2 ◊ 2 distillation column, with the system
operating in open-loop mode. Then, the algorithm in Figure 7 is applied to a real
petrochemical furnace dataset, elucidating the e�ectiveness of the solution in a real
and challenging situation.

In the later case, the system is operating in closed-loop mode. However, the ultimate
goal is to obtain intervals that could be used to design a model predictive controller,
in such a way that the system identification is performed with the set-point and
the output variables. Therefore, one can understand this process as an open-loop
system identification, as described in Section 2.7. For this reason, the multivariable
algorithm in Figure 8 can be applied to this scenario, but using the set-point as the
input to the algorithm. Figure 2 represents this case.

The following hypotheses guide the implementation and the achievement of the results:

Hypothesis 4.1. The processes being studied are considered invariant in time during the
data collection;

Hypothesis 4.2. It is assumed that the dynamics of the processes being studied can be
modeled linearly.

Hypothesis 4.3. It is assumed that if the set-point is persistently exciting, not only one
can perform a closed-loop identification, as described in Item 3.3.2.7, but also perform
an open-loop identification with the set-point as input, which, in other words, consists in
estimating a model with the set-point and the output variables, as described in Section 2.7.

From Hypothesis 4.1, if multiple segments of data are obtained, they are here used
to perform cross-validation. Therefore, if S� = (�1, �2, ..., �Ns) are the resulting
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segments for a given algorithm, then �1 is used to fit model M1, while �2, ..., �Ns are
used to validate the obtained model. In the same fashion, �2 is used to fit model M2,
while �1, �3, ..., �Ns are used to validate the model. This procedure goes on until Ns

di�erent models are obtained.

4.3 Code and Reproducibility

An open-source library was created as part of the solution for this dissertation and it
is hosted in the author’s Github 1 repository. The library is called "HDSIdent: Historical
Data Segmentation for System Identification" and aims to not only provide open access
to all the implementations made in this work, but also to allow full reproducibility of
the results obtained through simulation data. In addition, the open-source framework
allows the code to receive contributions from the scientific community, which is extremely
encouraged by the author of this dissertation. Further information on use, installation,
licensing and documentation can be found in the mentioned repository.

1
<https://github.com/GiulioCMSanto/HDSIdent>
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5 DEVELOPMENT

In this chapter, the methodology described in Chapter 4 is applied to di�erent sce-
narios, following the solution proposed in Section 4.2.

5.1 An Introduction to the Datasets

As a first step, an introduction to the datasets that are used in this section is provided.
Both simulated and real data are used, in such a way that simulation is used to support
the ideal scenario and elucidate how the algorithms work, while real applications are
performed based on massive data coming from a petrochemical furnace.

5.1.1 Single-Input Single-Output Water Tank

To simulate the Single-Input Single-Output case, a simple laboratory water tank is
used. This example was directly extracted from (WANG et al., 2018 apud YU et al.,
2011), from which the controller and the system transfer functions were adopted. The
idea is to use the same simulation format adopted in (WANG et al., 2018), in order to
produce a very similar data and validate the statistical method by comparing the results
with the ones presented in (WANG et al., 2018). Moreover, this data is also used to apply
the other algorithms developed in this dissertation, allowing one to compare the di�erent
methods presented. A generic P&ID for a water tank control system can be seen in Figure
11.

Notice that the set-point and the output variables are the tank level in centimeters
and, in this case, the controller acts in a control valve. The transfer functions for both
the process and the controller are, respectively (WANG et al., 2018):

G(s) = 6.6469
241.37s + 1 ◊ e≠s (5.1)
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C(s) = 2.0249 ◊
3

1 + 1
233.94s

4
(5.2)

Figure 11: Generic Water Tank P&ID Control System.

Source: Author’s own development.

The same simulation pattern presented in (WANG et al., 2018) is used here with some
inclusions, and consists of the following signals:

a) step responses with 1000 s duration and around a 20 cm water set-point;

b) low magnitude ramp responses;

c) step responses with 200 s duration and around 20 cm of water set-point;

d) high magnitude ramp responses;

e) sinusoidal response with 200 s period and around 30 cm of water set-point;

f) step responses with 200 s duration and around 30 cm of water set-point;

g) Gaussian white noise with 0 mean and variance of 5;

h) colored noise with transfer function 0.5z
z≠0.9 excited by gaussian white noise with 0

mean and variance of 5.

The resulting simulation data for both the set-point and the output variables can be
seen in Figure 12
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Figure 12: Water tank control system simulation: set-point and output variables.

Source: Author’s own development.

5.1.2 Wood & Berry Distillation Column

The Wood & Berry distillation column is used as an example of a distillation process,
which is widely used in chemical and petroleum industries to separate chemical compo-
nents into fractions of more or less purity (BUCKLEY; LUYBEN; SHUNTA, 1985). A
binary distillation column is one used to separate two components. In (WOOD; BERRY,
1973), it is studied the simultaneous control of the overhead (top) and the bottom com-
positions of a binary distillation column where the reflux and the steam flow rate are the
manipulated variables. A feed flow variable is included as a disturbance.

The transfer function equations that describe this system are shown in Equations
(5.3) - (5.4).

G(s) =

S

WU
12.8·e≠1s

16.7s+1
≠18.9s·e≠3s

21.0s+1
6.6·e≠7s

10.9s+1
≠19.4·e≠3s

14.4s+1

T

XV (5.3)

H(s) =

S

WU
3.8·e≠8s

14.9s+1
4.9·e≠3s

13.2s+1

T

XV

T

(5.4)

In a more generic way, this system can be written as y(k) = G(s) ·u(k)+H(s) ·v(k),
where G(s) is the process transfer function matrix and H(s) is the disturbance transfer
function matrix. Notice that v(k) is a diagonal matrix of Gaussian white noises, which
are considered with zero mean and 0.01 variance. In the above matrices, the time lag and
delay are given in minutes. A Piping and Instrumentation Diagram (P&ID) is represented
in (JULIANI, 2017) and is adapted in Figure 13.

This model is simulated in open-loop mode applying step changes in the top (overhead)
and bottom compositions, with initial values of 96% and 0.5%, respectively, following
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Figure 13: Wood & Berry Distillation Column.

Source: Adapted from (JULIANI, 2017 apud WOOD; BERRY, 1973).

the work in (JULIANI, 2017). Moreover, this simulation data is used to exemplify the
multivariable segmentation extension for open-loop system identification, which is based
on the work in (PATEL, 2016). For this reason, the excitation signals were designed also
based on the simulations proposed in (PATEL, 2016), allowing the comparison of the
expected results. The simulation data can be seen in Figure 14.

5.1.3 Multivariable Petrochemical Furnace

A dataset coming from a real industrial process is also used to validate the algorithms
proposed in this dissertation. The dataset is obtained from a petrochemical furnace with
50MW of power from a nacional Brazilian petroleum company, being the same data
adopted in (CHAVES, 2020). This furnace is a thermal energy generator used in the
petroleum refining process and in the production of petroleum derivates. As described in
(CHAVES; JULIANI; GARCIA, 2019), the furnace produces 34.2 millions of kcal/h from
burning oil and fuel gas. Figure 15 shows an image of the physical installation of the
furnace as well as its corresponding piping and instrumentation diagram (P&ID). This
diagram is a modified version of the one presented in (CHAVES; JULIANI; GARCIA,
2019), while the physical installation image is the same found in (CHAVES; JULIANI;
GARCIA, 2019).
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Figure 14: Distillation column Data.

Source: Author’s own development.
Figure 15: Petrochemical Furnace: physical installation and P&ID.

Source: Adapted from (CHAVES; JULIANI; GARCIA, 2019).
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From the analysis of the P&ID, one can observe that the purpose of the petrochemical
furnace is to maintain the output gas within a pre-defined temperature in order to allow it
to be used in a pyrolysis reaction. Therefore, in the combustion chamber, the oil and the
gas fuels react with air and release the thermal energy required for heating the gas coming
from the discharge of a compressor. The temperature of the gas is then measured by a
sensor and sent to a temperature controller. The control output acts in the oil, gas and
air flow rate, changing the stoichiometric ratio of combustion. The operating temperature
of the combustion chamber is around 1000°C, with the output temperature of the process
gas being around 600°C. The process gas flow rate coming from the discharge of the
compressor is also measured as a disturbance. The variables that are considered are
summarized in Table 2.

Table 2: Petrochemical furnace variables.

Variable Description Operating Condition Unit
TIC-23099 Process gas temperature 560-564 °C
PIC-23039 Fuel gas pressure in the header 4.2-5.2 kg/cm�
AIC-23001 Oxygen concentration in the stack 2.5-3.1 %
FIC-23027-SP Fuel oil flow rate set-point 1000 kg/hour
FIC-23028-SP Fuel gas flow rate set-point 2100 kg/hour
FIC-23025-SP Combustion air flow rate set-point 54000 kg/hour

The data is divided into two blocks: the first one is composed by 1 month of data,
corresponding to July 2018; the second one is composed of 7 sequential months, which
goes from September 2019 to March 2020. Moreover, The dataset was collected in minutes
and the original sampling rate was maintained. The total amount of rows (minutes) in
the dataset is 339848, and it contains around 100Mb.

Finally, it is important to mention that this dataset is considered for open-loop system
identification, in such a way that the set-point and the output variables are the ones of
interest. Moreover, some of the variables considered, such as FIC-23025-SP, are fed by an
optimizer. In theory, this fact allows one to reject the hypothesis that the set-points are
independent from each other and from the output variable. However, one must consider
that, most of the time, the optimizer is turned o� and “abrupt” set-point changes that
occur in the furnace can only be a result of manual changes. Because the main goal of
this work is to find intervals of excitation, we can still assume that, in the intervals of
interest, the set-points are independent and the system identification can be performed
in open-loop mode.

Hypothesis 5.1. In the petrochemical furnace, set-points can be considered independent
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and actuated manually every time they are moving considerably.

5.2 Finding Potential Intervals

In this section, di�erent approaches to find initial intervals of excitation are applied.
Moreover, the impact of the corresponding parameters is analyzed and di�erent visual-
ization techniques are used to guide the parameter choice.

5.2.1 Exponentially Weighted Filter

This method is described in detail in Item 3.2.1.1 and consists of applying expo-
nentially weighted filters to both the mean and the variance of the signal. As is there
explained, the application of this method requires the choice of the forgetting factors for
both the mean and the variance (⁄µ and ⁄S), as well as a threshold lS to be compared
with the estimated variance. Moreover, this choice must be made for each individual
signal (inputs and outputs) in the dataset.

5.2.1.1 Single-Input Single-Output Case

Let us initially take the water tank data from Subsection 5.1.1 as an example of the
SISO case. The signal is initially normalized to the range [≠0.5 , 0.5].

To exemplify the impact of the parameter choice, both the variance and the average
filters receive the same value of forgetting factors, which are 0.0005, 0.002 and 0.005. The
resulting signals can be seen in Figures 16 and 17.

Notice that, although the same values of forgetting factors are used for both the
average and the variance filters, one could choose di�erent values for each filter. It is
not trivial, however, to make this choice in massive data, in which visualizing the whole
data is not possible. Therefore, choosing the same forgetting factors for both filters is a
simplification that makes this application feasible for huge datasets.

Potential intervals can then be defined through the variance signal setting a threshold
value lS to it. Let us take the signal in Figure 16 (c) as an example with a threshold value
of lS = 0.004. For this scenario, the resulting potential intervals would be defined as in
Figure 18.

Notice that two vertical lines of the same color define an interval. The horizontal line



67

Figure 16: Signals filtered by the variance component of the EWMA filter, with di�erent
values of forgetting factors. (a) set-point with ⁄µ = ⁄S = 0.0005 (b) set-point with
⁄µ = ⁄S = 0.002 (c) set-point with ⁄µ = ⁄S = 0.005 (d) output with ⁄µ = ⁄S = 0.0005
(e) output with ⁄µ = ⁄S = 0.002 (f) output with ⁄µ = ⁄S = 0.005.

Source: Author’s own development.

Figure 17: Signals filtered by the average component of the EWMA filter, with di�erent
values of forgetting factors. (a) set-point with ⁄µ = ⁄S = 0.0005 (b) set-point with
⁄µ = ⁄S = 0.002 (c) set-point with ⁄µ = ⁄S = 0.005 (d) output with ⁄µ = ⁄S = 0.0005
(e) output with ⁄µ = ⁄S = 0.002 (f) output with ⁄µ = ⁄S = 0.005.

Source: Author’s own development.

delimits the variance threshold value. Moreover, the cross marks are the instants when
the filtered signal crosses the variance threshold. Therefore, each interval defines a period
of time in which the signal is “shaking” with a variance greater or equal to lS. With this
set of parameters, the algorithm produced 12 potential intervals to be further evaluated.
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Figure 18: E�ect of the variance threshold lS in the resulting intervals.

Source: Author’s own development.

5.2.1.2 Multivariable Case

To exemplify how this method can be applied to multivariable data, let us take the
distillation column data from Subsection 5.1.2 as an example. The di�erence here is
that the filters are applied individually to each signal and then the resulting intervals are
unified, as detailed in Step 3 of the algorithm in Figure 8 . If one applies the exponentially
weighted filter with parameters ⁄µ = ⁄S = 0.006 and threshold lS = 0.005 to this signal,
the results in Figure 19 are obtained.

The intervals from each signal can then be unified. There are di�erent ways of unifying
these signals. One could, for example, take the intersection of each interval. However, if,
for a particular interval, only one input signal su�ered from excitation, this signal would
not be considered in this case. A second approach would be to unify all intervals. In
this case, however, one could end up considering intervals where only the output was
“shaking”, without any excitation in the input variables. That could happen due to
disturbances. An interest way of unifying the resulting intervals is done borrowing the
idea presented in (WANG et al., 2018) and consists of initially unifying all the signals and
then taking only the resulting intervals that contain at least one “active” input and one
“active” output. This procedure is the one adopted in Step 3 of the algorithm in Figure
8 and it is detailed described in Item 3.3.3.4.

Unifying the filtered signals as described produces the potential intervals in Figure
20. The reasons why unifying the signals in this fashion come in handy will be clearer
in the multivariable example section. It is also interesting to highlight that the gaussian
noise was completely filtered with this set of parameters and would not be considered in
further analysis.
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Figure 19: Exponential filter for each signal in the multivariable distillation column data.
(a) Reflux flow rate. (b) Steam flow rate. (c) Overhead composition. (d) Bottom com-
position.

(a)

(b)

(c)

(d)

Source: Author’s own development.

5.2.1.3 Impact of the Filter in Step Responses

It is interesting to point out how the exponentially weighted filters impact the step
responses. Potential intervals are defined as time intervals where the signal su�ers from a
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significant amount of variance. This condition is verified against a user-defined threshold
lS. For this reason, when step responses are applied, usually the dynamics of the first step
is not considered in the final interval, once its detection occurs after the step change itself.
To elucidate this problem, let us highlight the beginning of the first potential interval of
the distillation column reflux flow rate in Figure 20, which can be seen in Figure 21.

This e�ect is actually not a problem if one considers that in real data usually the
manual changes in the set-point are almost never a single step response, as it can be
seen in the petrochemical data example. However, the initial responses can be easily
considered including an additional user-defined parameter, which is here called nidx, that
corresponds to the number of initial indexes to be considered in each potential interval.
Therefore, for nidx = 50, for instance, the result in Figure 21 is changed to the one in
Figure 22.

Figure 20: Resulting potential (blue rectangles) intervals after unifying filtered signals.

Source: Author’s own development.
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Figure 21: E�ect of the exponentially weighted filter in step responses. The vertical blue
line indicates the beginning of an interval.

Source: Author’s own development.

Figure 22: E�ect of the exponentially weighted filter in step responses with the additional
parameter nidx = 50. The vertical blue line indicates the beginning of an interval.

Source: Author’s own development.

5.2.1.4 A Guideline to the Parameter Choice

When applying the exponentially weighted filters to real massive data, a natural
di�culty that arises is related to the parameters to choose. It is not trivial to have
a general idea about the e�ect of each forgetting factor, as well as about the e�ect of
the chosen variance threshold. This choice is specially hard when the segmentation is
done in a single step, which is the case of the recursive implementation presented in
(PERETZKI et al., 2011) and (BITTENCOURT et al., 2015) as well as the sliding window
implementation presented in (ARENGAS; KROLL, 2017a) and (ARENGAS; KROLL,
2017b).

The advantage of initially obtaining potential intervals is that one can rely on visual
analysis for choosing the desired parameters. An interesting way of visualizing the impact
of each parameter is through a heatmap that shows the number of resulting intervals as a
functions of the parameters. Figure 23 is an example of such visualization applied to the
water tank data from Subsection 5.1.1.

It is interesting to mention that Figure 18 was obtained with ⁄µ = ⁄S = 0.005 and
lS = 0.004 and resulted in 12 potential intervals. If one looks at Figure 23 (b), which is
the scenario where ⁄µ = ⁄S, one can easily see that, for this value of the forgetting factors
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and threshold, the number of intervals is between 10 and 15.

Figure 23: Impact of the forgetting factors and of the variance threshold on the number
of resulting potential intervals. (a) ⁄µ = 0.5⁄S (b) ⁄µ = ⁄S (c) ⁄µ = 2⁄S

(a) (b) (c)

Source: Author’s own development.

Another interesting visualization that can guide one in the parameter choice is to
verify the average length of the resulting intervals as a function of the forgetting factors
and the variance threshold. Figure 24 exemplify this scenario. Therefore, with these two
visual analyzes, it is possible to have a general idea on how many intervals are obtained
and their approximate size.

Figure 24: Impact of the forgetting factors and of the variance threshold on the length of
the resulting potential intervals. (a) ⁄µ = 0.5⁄S (b) ⁄µ = ⁄S (c) ⁄µ = 2⁄S

(a) (b)
(c)

Source: Author’s own development.

5.2.1.5 Execution Time

The execution time of the algorithm running on a Core i7 (3.1 Ghz) MacBook Pro is
the following:

a) execution on the single-input single-output water tank: 5.14 seconds;
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b) execution on the multivariable distillation column dataset: 9.80 seconds.

Notice that the algorithm grows linearly with the input size, i.e., its time complexity
is O(N) in Big O notation, being N the length of the dataset.

5.2.2 Bandpass Filter

In this Subsection, the bandpass filter method described in Item 3.2.1.2 is exempli-
fied. The filter is computed as a deviation error from the mean value of each signal and
three parameters must be choosen: the bandpass frequencies w1 and w2 in rad/s and the
deviation error threshold le, defined in Equation (3.16).

5.2.2.1 Single-Input Single-Output Case

Applying the bandpass filter with w1 = 0.006 rad/s, w2 = 0.04 rad/s and le = 0.02
to the water tank data, results in Figure 25 are obtained. The horizontal lines in Figure
25 correspond to the threshold le and, therefore, the intervals are defined as the sample
indexes where the filtered signal is higher than le or lower than ≠le (red dots). This
implementation is consistent with the results presented in (PATEL, 2016, p.10).

The resulting intervals can be unified following the same procedure described in the
previous subsection. The resulting potential intervals in this case are shown in Figure
26. Notice that consecutive red and green vertical lines represent the resulting intervals.
From Figure 25, one can see that the ramp signal around the instant 10000 would only be
considered if the deviation threshold le is very carefully chosen. Moreover, it is interesting
to notice that the gaussian random noise was completely eliminated, while the colored
noise was considered.

5.2.2.2 Multivariable Case

The multivariable algorithm can be applied exactly as in Item 5.2.1.2, which consists
in first applying the bandpass filter to each signal and then unifying the resulting intervals.
Notice that individual values of w1, w2 and le could be applied to each individual signal.

5.2.2.3 Impact of the Filter in Step Responses

The exact same problem described in Item 5.2.1.3 happens with the bandpass filter,
i.e., when step responses are applied in the set-point, the initial response is detected when
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Figure 25: Bandpass filtered signals in the water tank data with w1 = 0.006 rad/s,
w2 = 0.04 rad/s and le = 0.02. (a) Manipulated variable. (b) Set-point. (c) Controlled
variable.

(a)

(b)

(c)

Source: Author’s own development.

the step change already occurred. The same additional user-defined parameter nidx can
be applied here to fix this problem.

5.2.2.4 A Guideline to the Parameter Choice

The heatmap analysis from the previous subsection can be used to support the param-
eter choice. The impact of the w1 and w2 frequencies in the number of resulting intervals,
for three di�erent values of le, can be seen in Figure 27.

In the same way, Figure 28 shows the impact of the parameter choice in the average
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size of the resulting intervals.

Figure 26: Unified intervals obtained with the bandpass filter and parameters w1 = 0.006
rad/s, w2 = 0.04 rad/s and le = 0.02.

Source: Author’s own development.

Figure 27: Impact of the frequencies w1 and w2 in the number of resulting intervals. (a)
le = 0.02 (b) le = 0.005 (c) le = 0.1.

(a) (b) (c)

Source: Author’s own development.

Figure 28: Impact of the frequencies w1 and w2 in the average size of resulting intervals.
(a) le = 0.02 (b) le = 0.005 (c) le = 0.1.

(a) (b) (c)

Source: Author’s own development.
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5.2.2.5 Execution Time

The execution time of the algorithm for the water tank data, running on a Core i7
(3.1 Ghz) MacBook Pro, is 1.29 seconds.

5.2.3 Sliding Window

An alternative approach to the exponentially weighted and bandpass filters is to com-
pute the variance in a sliding-window fashion, as explained in Section 3.2. In this ap-
proach, one must only choose the window size and a variance threshold beyond which the
signal is considered to be “active”.

Applying the sliding window algorithm to the water tank dataset with a window size
ws = 200 and a variance threshold lS = 0.003, the potential intervals in Figure 29 are
obtained. In this case, the algorithm is applied to both the output and set-point and the
procedure described in Item 5.2.1.2 for unifying the input and the output intervals is also
applied. It is interesting to point out that the resulting intervals are of lower length. The
impact of these smaller intervals in the results are described in Subsection 5.3.1. Moreover,
the way that the algorithm defines an interval can be clearly seen through Figure 30.
Notice that the variance signal represented by the orange dashed line is produced by the
the window function and captures the region in which the signal is moving. This signal is
then compared to threshold lS, in such a way that the indexes where the variance signal
is greater than its threshold define the potential intervals (dashed blue line).

Figure 29: Unified intervals obtained by the sliding-window approach with parameters
ws = 200 and lS = 0.003.

Source: Author’s own development.

It is also worthwhile to mention that the way the sliding-window was designed in
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Figure 30: Detail of the sliding-window algorithm.

Source: Author’s own development.

this dissertation (Section 3.2) captures the set-point transition before it happens and,
therefore, the additional user-defined parameter nidx is not necessary in this case.

5.2.3.1 Multivariable Case

The multivariable application of the algorithm can be done exactly as in Item 5.2.1.2,
which consists in first applying the sliding-window to each signal and then unifying the
resulting intervals.

5.2.3.2 A Guideline to the Parameter Choice

The impact of the window size and the variance threshold in the number of resulting
intervals can be seen in Figure 31.

5.2.3.3 Execution Time

The execution time of the algorithm for the water tank data, running in a Core i7
(3.1 Ghz) MacBook Pro, is 1.74 seconds.

5.2.4 Change-Point Detection

The non-parametric top-down approach described in Subsection 3.2.2 is here exem-
plified. One advantage of this method is that few parameters must be chosen, which are
the significance level – and the minimum number of indexes that a interval must have to
allow a further split.
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Figure 31: Impact of the window size and variance threshold on the number of resulting
intervals. (a) impact of window size with lS = 0.003 (b) impact of window size and
variance threshold.

(a) (b)

Source: Author’s own development.

Applying the change-point algorithm to the water tank dataset with – = 0.05 and a
minimum split length of 1200, Figure 32 is obtained. The black cross marks in Figure
32 are the changing positions identified by the algorithm and, therefore, the time indexes
between change-points define an interval. Notice that di�erently from the previous meth-
ods, the change-point approach divide the entire dataset and the whole data needs to be
further analyzed.

To exemplify how the top-down method works, the five initial iterations of the algo-
rithm are shown in Table 3. Notice that in the first iteration no change-point is identified.
This is because, as explained in Subsection 3.2.2, the algorithm starts with the whole
dataset in the first iteration and makes growing divisions at each new segment obtained,
until no further change-point is found at the significance level –.

Table 3: First five iterations from the non-parametric top-down change-point algorithm.

Iteration Change-point Indexes
1 []
2 [21801]
3 [1800, 21801, 26800]
4 [800, 1800, 9801, 21801, 26300, 26800, 27000]
5 [800, 1800, 3800, 9801, 11800, 21801, 25900, 26300, 26800, 27000, 28385]

Because this method splits the entire data, it does not make sense to unify the resulting
intervals for each signal. Therefore, the way this algorithm can be used is by splitting
individually each signal and evaluating every resulting segments. Finally, the resulting
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Figure 32: Non-parametric top-down change-point applied to the water tank dataset with
– = 0.05 and minimum split length of 1200. (a) Set-point. (b) Output signal.

(a)

(b)

Source: Author’s own development.

intervals that pass further evaluations can then be unified. This is, in general terms, the
idea behind the statistical method exemplified in Subsection 5.3.2.

5.2.4.1 Execution Time

The execution time of the algorithm for the water tank data, running in a Core i7
(3.1 Ghz) MacBook Pro, is 396 seconds considering only the set-point and the output
variables. Notice that, because the algorithm requires the relative position of the signal
as in Equation (3.20), its time-complexity in Big O notation is O(N2) (WANG et al.,
2018). It means that the algorithm is very ine�cient for long datasets and, therefore, a
more clever solution in that case would be to split the dataset in batches.
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5.3 Singe-Input Single-Output (SISO) Segmentation

5.3.1 Numerical Conditioning and Rank Test Examples

In this subsection, the methods described in Subsections 3.3.1 and 3.3.2 are exempli-
fied through the application of the algorithm in Figure 7. Di�erent model structures are
used, allowing one to validate the proposed methodology. Moreover, both the stationary
and the incremental approach presented in the methodology are compared.

5.3.1.1 Laguerre Filter

In this item, the Laguerre Filter structure is used to obtain suitable intervals for
system identification. As described in the Methodology chapter, one can validate the
obtained potential intervals and save the suitable ones in their original shape (stationary
approach) or one can increment the suitable potential intervals until they meet the testing
criteria (incremental approach). Results for both scenario are analyzed in this Item.

Stationary Approach

In this item, the water tank system is considered. As the first step of the algorithm,
one must find potential intervals to be evaluated following one of the approaches described
in Section 5.2. Notice that the system is operating under closed-loop and, therefore, two
di�erent models can be obtained: a model of G(q) and a model that includes both G(q)
and C(q), as explained in Section 2.7. The former case is the one analyzed in this item,
which corresponds to the closed-loop identification scenario.

As explained in Item 3.3.2.7, for a system operating under closed-loop control, the con-
dition number of the information matrix is computed using the set-point. That is because,
for closed-loop systems, the set-point must be persistently exciting in order for the process
model to be identifiable (BITTENCOURT et al., 2015). Therefore, potential intervals are
obtained searching for excitations in both the set-point and in the output variables, as
described in the algorithm outline in Item 4.1.1.1. The exponentially weighted filter is
used in this case with ⁄S = ⁄µ = 0.006 and lS = 0.003 for both the set-point and output
variables, resulting in 12 potential intervals shown in Figure 33.

Let us first consider that nidx = 0, which will fail to detect individual step responses.
Considering a Laguerre Filter structure of order Nb = 10 and pole – = 0.92, the resulting
condition number and e�ective rank are the ones in Table 4. Here, the e�ective rank
is computed through Type 2 described in Item 3.3.1.3 and the singular value threshold



81

adopted is l2 = 0.5.

Figure 33: Potential Intervals obtained with the exponential weighted filter and parame-
ters ⁄S = ⁄µ = 0.006, nidx = 0 and lS = 0.003.

Source: Author’s own development.

Table 4: Condition number and e�ective rank for each potential interval considering the
set-point with nidx = 0.

Interval Condition Number E�ective Rank
1 2.00 ◊ 1027 1
2 1.25 ◊ 1018 1
3 7.07 ◊ 1017 1
4 1.25 ◊ 1018 1
5 2.00 ◊ 1027 1
6 1.25 ◊ 1018 1
7 7.07 ◊ 1017 1
8 1.25 ◊ 1018 1
9 6.18 ◊ 103 9
10 2.78 ◊ 107 5
11 3.56 ◊ 105 7
12 8.56 ◊ 103 9

Notice that the condition number and the e�ective rank are completely consistent.
Because intervals 1 to 8 do not capture the step change, the information matrix computed
with these intervals is not invertible. On the other hand, the set-point in intervals 9 to 12
moves several times and these changes are detected. In fact, intervals 9 and 12 produce
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better conditioned information matrices compared to intervals 10 and 11. This is true
considering both the condition number and the e�ective rank.

From Figure 33, one can notice that the dynamics of the manipulated variables in
intervals 1 to 8 were not completely eliminated by the filter, as occurred with the set-
point. However, it is expected that little information is produced by these signals, once
an important dynamic component was not detected by the filter. If the condition number
and the e�ective rank are computed considering the manipulated variable instead of the
set-point, Table 5 is obtained. In this case, the condition number is still very high for
intervals 1 to 8. The e�ective rank, on the other hand, is not able to capture the “ill-
conditioned” intervals. That is because the maximum rank a regressor matrix can have is
limited to the model order, which is 10 in this example. Consequently, the e�ective rank
is a less sensitive metric compared to the condition number.

Table 5: Condition number and e�ective rank for each potential interval considering the
manipulated variable and nx = 0.

Interval Condition Number E�ective Rank
1 1.05 ◊ 105 7
2 9.32 ◊ 104 7
3 1.29 ◊ 105 7
4 8.45 ◊ 104 7
5 1.03 ◊ 105 7
6 9.62 ◊ 104 7
7 1.14 ◊ 105 7
8 9.93 ◊ 104 7
9 8.37 ◊ 102 9
10 2.50 ◊ 103 3
11 7.73 ◊ 103 7
12 8.99 ◊ 102 9

Let us now consider that nidx = 20, in such a way that Figure 33 is modified to Figure
A.1. Reapplying the Laguerre structure to each signal and considering the set-point,
Table 6 is now obtained

One can now notice that, with exception of interval 10, all intervals have a reasonable
value of condition number and e�ective rank. In fact, the obtained values are consis-
tent with the ones presented in (PERETZKI et al., 2011), (SHARDT; HUANG, 2013a),
(BITTENCOURT et al., 2015), (ARENGAS; KROLL, 2017a) and (ARENGAS; KROLL,
2017b), in which the condition number threshold for step responses are usually around
104.

The next step of the algorithm in Figure 7 is to check if the input and the output are
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Table 6: Condition number and e�ective rank for each potential interval considering the
set-point.

Interval Condition Number E�ective Rank
1 1.12 ◊ 104 7
2 4.26 ◊ 103 6
3 3.46 ◊ 104 7
4 1.39 ◊ 104 7
5 1.12 ◊ 104 7
6 4.26 ◊ 103 6
7 3.46 ◊ 104 7
8 1.39 ◊ 104 7
9 4.70 ◊ 103 9
10 2.79 ◊ 107 5
11 1.06 ◊ 104 5
12 5.87 ◊ 103 9

actually correlated. As described in Item 3.3.2.5, an estimate of the model parameters
can be computed to perform a Granger causality test. Because a model of G(q) is the
main interest in this example, the model parameters must be computed using the output
and the manipulated variables (see Item 3.3.2.7). A table of the chi-squared values for
each interval can be seen in Table 7.

Table 7: Chi-squared values for each interval considering the manipulated variable.

Interval 1 2 3 4 5 6 7 8 9 10 11 12
Chi-squared
Value 104 34 129 10 100 36 135 9 116 111 101 137

The cross-correlation scalar metric explained in Item 3.3.1.4 can also be computed.
Results for the cross-correlation between the output and the set-point for a lag range
[≠5, 5] and for a significance level – = 0.05 can be seen in Table 8.

Table 8: Scalar cross-correlation values for each interval considering the set-point.

Interval 1 2 3 4 5 6 7 8 9 10 11 12
Cross-correlation 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 5.0 5.3 4.4 5.1

The final intervals suitable for system identification are those that meet all the defined
thresholds. Therefore, if one considers, for instance, a condition number threshold lŸ =
15000 and a significance level for the chi-squared test – = 0.01, only intervals 1, 2, 5, 6,
9, 11 and 12 would be considered. Notice that for a model order of 10, the chi-squared
critical value for this significance level is 23.2.

In the same way, the final intervals can be obtained setting a threshold to the e�ective
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rank and to the cross-correlation metric. Notice, however, that better results are obtained
with the e�ective rank when models of higher order are used, as exemplified by the
ARX structure in Item 5.3.1.2. Finally, one could combine both approaches, in such
a way that, for instance, the condition number and the scalar cross-correlation could
be used to evaluate the potential intervals. In a similar fashion, one could evaluate the
potential intervals considering the e�ective rank and the chi-squared value. This flexibility
is explicitly exposed in the algorithm outline in Figure 7.

Incremental Approach

Usually, higher intervals lead to higher condition numbers. Such a discussion is pre-
sented in (CARRETTE et al., 1996). For this reason, it can be interesting to start the
analysis with smaller intervals and increment them while the desired criteria are met. In
this sense, the recursive approach proposed in (PERETZKI et al., 2011) or the sliding-
window approach proposed in (ARENGAS; KROLL, 2017a) and (ARENGAS; KROLL,
2017b) come in handy. The way this is done in this dissertation is described in the Method-
ology chapter and consists of incrementing the potential intervals with a window of size
wic. Notice that this approach was inspired in the algorithm proposed in (ARENGAS;
KROLL, 2017a) and (ARENGAS; KROLL, 2017b). Smaller initial intervals are here ob-
tained with the variance sliding-window exemplified in Item 5.2.3. However, changing
the parameters in the exponential filter or in the bandpass filter can also lead to smaller
intervals.

In this example, the sliding-window algorithm is applied to the water tank data with
a window size of ws = 50 and a threshold lS = 0.003 for both the set-point and the output
variables. The incremental step used here is wic = 100. Results for two intervals are given
in Figure 34.

The evaluation criteria used in this example is the condition number and the chi-
squared statistical test, considering a Laguerre structure of order Nb = 7 and pole – = 0.8.
The time indexes T1, T2, T3 and T4 represent the evaluation timeline. More specifically,
T1 is the time instant when the set-point satisfied the variance threshold condition lS =
0.003 in the sliding-window algorithm. In the opposite direction, T2 is the instant when
this condition is not satisfied anymore. Similarly, T3 indicates the instant when the output
variable do not satisfy the variance threshold condition anymore. Finally, T4 represents
the moment in which either the condition number or the chi-squared criteria are not met
anymore. The condition number threshold used in this example is lŸ = 15000 and the
chi-squared significance level adopted is – = 0.01. Moreover, the resulting intervals are
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limited to a maximum length of 600 samples.

Figure 34: Example of the incremental approach using the sliding-window algorithm with
ws = 50, a threshold lS = 0.003 and an incremental step of wic = 100.

(a) (b)

Source: Author’s own development.

Table 9 shows the values of each estimated variance at instants T1, T2 and T3 for
the signal in Figure 34 (a), which were obtained using the sliding-window algorithm for
both the set-point and the output signals.

Table 9: Estimated variance using the sliding-window algorithm at samples T1, T2 and
T3.

T1 T2 T3
Set-point 3.14 ◊ 10≠3 3.14 ◊ 10≠3 1.93 ◊ 10≠34

Output 3.43 ◊ 10≠5 1.27 ◊ 10≠2 3.14 ◊ 10≠3

In the same way, Table 10 shows the condition number and the chi-squared value
for the original interval, which contemplates the range [T1, T3], and [T1, T4] for the
incremented interval. Notice that the condition that broke the incremental process was
the chi-squared value, which reached the value of 11.3 that is lower than the critical value
for a significance level – = 0.01 and for a Laguerre order Nb = 7 (‰7,0.01 = 18.48).

Table 10: Condition number and chi-squared values for intervals [T1, T3] and [T1, T4].

[T1, T3] [T1, T4]
Condition Number 1304.4 1396.5
Chi-squared Value 33.0 11.3

Impact of Laguerre Filter Parameters

It is also important to exemplify the impact of Laguerre filter pole and order in the
resulting mined intervals. An interesting way of understanding the impact of both param-
eters is visualizing the number of resulting intervals obtained with several combinations
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of these parameters. A surface and a heatmap plot can be seen in Figure 35. One can
notice that the shape of the surface plot is very similar to the surfaces presented in (PA-
TEL, 2016, p.40-41), which reinforces the consistency of the results. It is interesting to
notice that when the filter pole is located at 1, none mined intervals are produced. On
the contrary, too low filter orders produce too many intervals and, therefore, do not help
to discriminate “good” and “bad” intervals. For this particular data, a good parameter
choice lies in the region that contemplates the order range of [6, 10] and the pole range
of [0.8, 0.95], once it crosses the surface with an area that contains a range of [6, 10]
intervals. In fact, these values are consistent with the adopted parameter values in many
of the reviewed works.

Figure 35: Impact of the Laguerre structure pole and order in the number of mined
intervals for a condition number threshold lŸ = 20000 and a chi-squared significance level
– = 0.01.

Source: Author’s own development.

5.3.1.2 ARX Structure

In this item, the ARX is used to compute the same metrics. The idea is to verify
the consistency of the results, as well as to mention the di�erences between using this
structure compared to the Laguerre one. Applying the same algorithm to the potential
intervals in Figure 33 but using an ARX with orders nu = 2, ny = 2 and nk = 1, the
resulting condition number and e�ective rank are the ones in Table 11.

Notice that the results are in accordance with the ones obtained with the Laguerre
structure. The e�ective rank, in this case, is not a good metric to be used to evaluate the
quality of each interval because the ARX orders adopted were too low. More specifically,
for the chosen model orders, a full e�ective rank matrix assumes the rank value of nu+ny =
4. If a model order of nu = 30, ny = 30 and nk = 1 is used instead, the Type 2 e�ective
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ranks, for a threshold l2 = 0.01, can be seen in Table 12.

Table 11: Condition number and e�ective rank for each potential interval considering the
set-point, using an ARX structure with orders nu = 2, ny = 2 and nk = 1.

Interval Condition Number E�ective Rank
1 4.38 ◊ 1035 1
2 4.92 ◊ 1034 1
3 1.25 ◊ 1036 1
4 Œ 1
5 Œ 1
6 Œ 1
7 1.25 ◊ 1036 1
8 5.63 ◊ 1016 1
9 8.61 ◊ 103 2
10 2.92 ◊ 106 1
11 9.07 ◊ 104 2
12 8.75 ◊ 103 2

Table 12: Type 2 E�ective Rank for a singular value threshold l2 = 0.01 and an ARX
structure with orders nu = 30, ny = 30 and nk = 1.

Intervals 1 2 3 4 5 6 7 8 9 10 11 12
E�ective Rank 3 4 3 4 4 4 3 3 29 8 9 29

Let us now consider the potential intervals in Figure A.1. In this case, the condition
number and the e�ective rank for an ARX structure with orders nu = 2, ny = 2 and
nk = 1 can be seen in Table 13. Notice that the condition number is, again, consistent
with the results obtained with the Laguerre Filter, in which intervals 3, 7 and 10 resulted
in the worst values.

The chi-squared values for these intervals and for this structure can be seen in Table
14. It is interesting to notice that, as with the Laguerre structure, intervals 9-12 produced
higher values of the chi-squared statistic. Moreover, all intervals produced a much higher
chi-squared values compared to the ones obtained by the Laguerre structure and shown
in Table 7. In this case, the chi-squared value would need to be compared with a user-
defined critical value threshold, because they are much higher then any critical value
defined with standard significance levels, such as – = 0.01. In (PATEL, 2016), the ARX
and the Laguerre structures are joined in a single structure to compute the chi-squared
value, merging characteristics of both models.

Evaluating the Type 2 e�ective rank with an ARX structure of orders nu = 30,
ny = 30 and nk = 1 for intervals in Figure A.1, results in Table 15 are obtained. Notice
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that these results are coherent with the condition number values and show that higher
model orders are better when using the e�ective rank as the evaluation metrics.

Table 13: Condition number and e�ective rank for each potential interval considering the
set-point, using an ARX structure with orders nu = 2, ny = 2 and nk = 1.

Interval Condition Number E�ective Rank
1 8.46 ◊ 103 2
2 1.09 ◊ 103 2
3 2.86 ◊ 104 2
4 2.19 ◊ 103 1
5 8.39 ◊ 103 2
6 1.27 ◊ 103 2
7 2.36 ◊ 104 2
8 2.17 ◊ 103 1
9 8.50 ◊ 103 2
10 2.91 ◊ 106 1
11 3.56 ◊ 103 2
12 8.69 ◊ 103 2

Table 14: Chi-squared values for each interval considering the manipulated variable.

Interval 1 2 3 4 5 6
Chi-squared Value 464.5 555.8 493.2 712.8 494.18 512.7
Interval 7 8 9 10 11 12
Chi-squared Value 501.0 750.6 4765.9 4356.5 1429.1 5890.1

Table 15: Type 2 E�ective Rank for a singular value threshold l2 = 0.01 and an ARX
structure with orders nu = 30, ny = 30 and nk = 1.

Intervals 1 2 3 4 5 6 7 8 9 10 11 12
E�ective Rank 16 18 16 17 16 16 17 16 29 8 11 30

5.3.1.3 System Identification

As a final way of verifying if the algorithms applied in this subsection are actually
useful in informative intervals for system identification, a model of each interval is ob-
tained and evaluated. For comparison purposes, each interval is used to perform a cross-
validation with every interval other than itself, as detailed in the Methodology chapter.

In this item, system identification is done through the “Indirect Approach” described
in (LJUNG, 1999), which essentially consists of estimating a model with the output and
the manipulated variables. The main reason for choosing this approach is the possibility
to compare the resulting system identification metrics with the expected results produced
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by the mining algorithms. Moreover, the chi-squared statistical test is also computed
using the manipulated variable and the output variables in the closed-loop identification
scenario.

Applying an ARX model structure with orders nu = 5, ny = 3 and nk = 1 to every
interval, the MATLAB® FIT value is computed with every other signal. The FIT value
is computed as follows:

FIT = 100
Q

a1 ≠ Îy ≠ ŷÎ2
2

Îy ≠ ȳÎ2
2

R

b (5.5)

where ŷ is the predicted output and ȳ is the mean value of the output variable. The
FIT value was computed for every interval and for three validation prediction steps: 1
step-ahead, 100 steps-ahead and infinity steps-ahead. The later case corresponds to the
free simulation, i.e., the output response is completely based on model predictions, in
which case the disturbance model is disregarded.

Table 16 shows the resulting average FIT values for each potential interval in Figure
Figure A.1. If we take interval 1 as an example, with the ARX structure of orders nu = 5,
ny = 3 and nk = 1, this interval resulted, for 1 step-ahead predictions, in an average FIT
value of 93.3%, being the validation computed with intervals 2-12.

Table 16: Cross-validation average FIT values for each potential interval (worst metrics
highlighted in blue).

Interval 1 2 3 4 5 6
FIT 1 step-ahead 93.3 % 93.3 % 93.3 % 93.3 % 93.3 % 93.3 %
FIT 100 steps-ahead 86.3 % 88.0 % 90.0 % 82.5 % 86.0 % 89.8 %
FIT Œ steps-ahead 72.6 % 75.2 % 75.2 % 66.0 % 72.0 % 77.6 %
Interval 7 8 9 10 11 12
FIT 1 step-ahead 93.3 % 93.3 % 92.9 % 43.0 % 92.7 % 92.9 %
FIT 100 steps-ahead 89.5 % 82.9 % 89.9 % NaN 89.0 % 88.4 %
FIT Œ steps-ahead 77.8 % 66.3 % 78.1 % NaN 78.1 % 75.7 %

The average metrics are very consistent with the mining metrics, specially with the
ones obtained through the Laguerre structure. In all scenarios, the condition number and
the e�ective rank indicated intervals 9 and 12 as those with the highest numerical quality.
On the contrary, interval 10 resulted in huge values of condition number and low values of
e�ective rank for all model structures, indicating that this signal produces an information
matrix very badly conditioned and potentially singular. From Table 16, one can clearly
notice that, indeed, interval 10 could not produce any results for 100 and infinity steps-
ahead predictions. Even in the 1 step-ahead case, this interval could not properly retrieve
the model dynamics. In the same fashion, intervals 9, 11 and 12 resulted in the best
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validation metrics when considering the simulation scenario (infinity steps-ahead), which
is also consistent with the mining results.

As a final observation, looking at the infinity steps-ahead results, one can see that
intervals 4 and 8 had the worst FIT values compared to the other intervals. The same
intervals were the ones with the worst chi-squared values in Table 7. In fact, these intervals
were the only intervals with chi-squared values lower than the critical value obtained for a
significance level – = 0.01. On the other hand, the chi-squared values produced with the
ARX structure do not allow this discrimination, since they are all two high, indicating
that the Laguerre structure better captures the numerical properties of the signal.

5.3.2 Statistical Method Examples

In this subsection, the statistical method proposed in (WANG et al., 2018) and de-
scribed in Subsection 3.3.3 is applied as in the algorithm in Figure 9. The first step of the
algorithm is to segment the data using the non-parametric top-down change-point detec-
tion method exemplified in Subsection 5.2.4. In this example, the algorithm is applied to
the water tank dataset described in Subsection 5.1.1. Moreover, similar analyses to those
presented in (WANG et al., 2018) are adopted in this subsection in order to validate the
algorithm implementation before applying it to the petrochemical furnace dataset.

5.3.2.1 Non-parametric Kolmogorov-Smirnov (Lilliefors) Test

The first step of the algorithm consists of evaluating if each initial interval is su�-
ciently “active”. As described in Subsection 3.3.3, a null hypothesis is created assuming
that the signal is in steady state contaminated by random noise. If the null hypothesis is
true, the statistic Tc defined in Subsection 3.3.3 has an exponential distribution.

In this dissertation, it was found that this formulation is only true if noisy intervals
are not too long in time. That is because the statistic Tc assumes a much larger amount
of small values as the data size increases considerable, deforming the exponential shape of
the distribution. As an example, let us take a sample of 80 seconds of random noise with
0 mean and variance of 5, as shown in Figure 36. Notice that this signal is normalized
and it is a sample extracted from Figure 32.

The distribution of the Tc statistic for this signal, as well as the resulting cumulative
distribution function can be seen in Figure 37, both computed following the equations in
Item 3.3.3.2. For a sample of computed statistics Tc with size higher than 30, the critical
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Figure 36: Mean-crossing points in a gaussian random noise signal with 0 mean and
variance of 5.

Source: Author’s own development.

value of the Lilliefors test for a significance level of – = 0.01 is 1.25/
Ô

NT , being NT the
sample size of the computed Tc statistics (WANG et al., 2018). For the random signal in
Figure 36, 34 samples of Tc are produced and, therefore, the critical value is Dc = 0.218.
If the computed Dt value is higher than Dc = 0.218, then the null hypothesis that Tc

follows an exponential distribution can be rejected. Although the computed cumulative
distribution in Figure 37 (b) does not fit perfectly the theoretical curve, the resulting test
statistic is Dt = 0.095, way lower than the critical value. Therefore, the random signal
can, indeed, accept the null hypothesis and to be considered to produce a statistic Tc that
follows an exponential distribution.

Figure 37: Histogram and cumulative distribution function of statistic Tc for a normalized
gaussian random noise with 0 mean and variance of 5. (a) Histogram (b) Cumulative
distribution function.

(a) (b)

Source: Author’s own development.

If we now consider, on the other hand, an active signal such as the one in Figure 38,
the cumulative distribution function would be the one in Figure 39. In this case, one can
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notice a strong mismatch between the theoretical and the computed curves. In fact, the
computed test statistic is Dt = 0.46 against the critical value of Dc = 0.38, which, as
expected, rejects the null hypothesis at a significance level – = 0.01. One can verify that
the results obtained in this item are in agreement with those presented in (WANG et al.,
2018).

Figure 38: Mean-crossing points in a sinusoidal interval.

Source: Author’s own development.

Figure 39: Cumulative distribution function of statistic Tc for a sinusoidal interval.

Source: Author’s own development.

5.3.2.2 Steps of the Algorithm

It is concluded in this dissertation that the statistical algorithm proposed in (WANG
et al., 2018) works better when the signal is over segmented. This is because, with
lower intervals, the Lilliefors test works better in distinguishing active and non-active
data. Moreover, there is no counterside in using smaller intervals, once these intervals are
unified as they pass in the statistical tests until they form the final intervals. In fact, in
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(WANG et al., 2018) it is suggested the division of too long datasets in the way explained
in Item 3.3.3.1.

Because the water tank system is operating under closed-loop, one must search for
exciting intervals in the set-point, as explained in Item 3.3.2.7. Moreover, as explained
in Item 3.3.3.4 and also in the algorithm outline in Figure 9, the method is applied
individually to each variable (in this case, the set-point and the output variable), and
then the resulting intervals are unified. Here, the initial intervals are obtained with
the top-down non-parametric change-point algorithm exemplified in Subsection 5.2.4. A
significance level of – = 0.05 and a minimum split length of 1200 are considered, producing
the exact same intervals as in Figure 32. Moreover, every initial interval higher than 200
samples was further divided following the approach described in Item 3.3.3.1.

Another important observation is that the set-point, by definition, is not contaminated
by noise. This is a problem in the sense that the magnitude change test assumes the null
hypothesis that the signal is in steady state disturbed by random noise. To get around
this problem, a gaussian random noise of 0 mean and 0.01 standard deviation is included
in the water-tank set-point, in such a way that the Lilliefors test can be applied to this
signal.

Applying the algorithm to the water tank data considering a Lilliefors critical value
of 1.25/

Ô
NT , a significance level – = 0.01 for the di�erence in mean test and a di�erence

in mean delta of � = 0.09, the resulting mined intervals are the ones in Figure 40.

Figure 40: Resulting Mined intervals obtained through the statistical method with a
Lilliefors critical value of 1.25/

Ô
NT , a significance level – = 0.01 for the di�erence in

mean test and a di�erence in mean delta of � = 0.09.

Source: Author’s own development.

To clarify how the intervals were considered by the algorithm, Figure 41 highlights
the algorithm steps for the sinusoidal signal in the output variable. The horizontal or-
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ange dashed lines correspond to the initial intervals obtained through the non-parametric
top-down change-point algorithm. The black dashed line delimits the resulting intervals
that satisfied the magnitude change test, i.e., the non-parametric Kolmogorov-Smirnov
(Lilliefors) test. Finally, the two-mean t-student comparison test allowed the inclusion of
one interval at the beginning and two intervals at the end of the interval delimited by
the black dashed line, in such a way that the final interval is delimited by the red dashed
line. One can also verify that this result is in agreement with the analysis presented in
(WANG et al., 2018).

Figure 41: Steps of the statistical algorithm. Step 1: change-point detection algorithm
for a significance level – = 0.05 (orange vertical dashed lines); Step 2: magnitude change
statistical test for a Lilliefors critical value of 1.25/

Ô
NT (black dashed line); Step 3:

two-mean t-student comparison test for a significance level – = 0.01 and a di�erence in
mean delta of � = 0.09 (red dashed line).

Source: Author’s own development.

Another interesting interval to be closely analyzed is the last interval in Figure 40,
which corresponds to sequential step responses. The algorithm steps for this interval can
be seen in Figure 42. Notice that, in this case, the resulting intervals from Step 2 (black
dashed line) were unified in Step 3, which reinforces how e�cient is the algorithm even
to unify intervals close to one another.

It is interesting to mention that, as pointed out in (WANG et al., 2018), the gaussian
white noise applied to the set-point is not considered as a final interval, although its
magnitude is considerably high. This is because a white noise produces a Tc statistic that
follows an exponential distribution by the algorithm definition and, therefore, it cannot
reject the null hypothesis of the magnitude change test. In the same way, the ramp
response in the set-point could not pass the magnitude change test, which is coherent
with the results obtained with the numerical conditioning and rank test methods, which
pointed out the ramp response as “ill-conditioned”.
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Figure 42: Steps of the statistical algorithm. Step 1: change-point detection algorithm
for a significance level – = 0.05 (orange vertical dashed lines); Step 2: magnitude change
statistical test for a Lilliefors critical value of 1.25/

Ô
NT (black dashed line); Step 3:

two-mean t-student comparison test for a significance level – = 0.01 and a di�erence in
mean delta of � = 0.09 (red dashed line).

Source: Author’s own development.

Notice that although this process contains a dead time in its transfer function, the
time delay ends up being considered. The reason for that lies in the final step of the
algorithm, which unifies the resulting intervals obtained individually with the set-point
and with the output variable. This step is described in detail in Item 3.3.3.4 and can be
also seen in the algorithm outline in Figure 9.

Finally, an important observation is that this method require few parameters to be
chosen. Moreover, these parameters do not require any knowledge or intuition about the
process, once they are related to significance levels of statistical tests.

5.3.2.3 System Identification

Similarly to Item 5.3.1.3, a model of the system is obtained with every interval through
a cross-validation approach. The main idea in this application is to verify if, in fact, the
resulting intervals are suitable to obtain a model of G(q), considering that the system
is operating in closed-loop control. Here, the system identification is also being done
through the “Indirect Method”.

The 11 resulting intervals in Figure 40 can be seen in detail in Figure 43. The average
FIT value obtained through cross-validation can be seen in Table 17, where the same
ARX structure with orders nu = 5, ny = 3 and nk = 1 is used for every interval .

One can immediately notice that all resulting intervals are adequate for estimating
a model of the system, considering all the prediction scenarios: 1 step-ahead, 100 steps-



96

ahead and infinity steps-ahead. This conclusion can be easily reached comparing the
resulting metrics of each interval and noticing that they are very similar, i.e., all intervals
seem to capture well the dynamics of the water tank system. Notice, however, that Table
17 cannot be compared to Table 16. That is because Table 16 contains the average FIT
value for all potential intervals, which include bad intervals such as the ramp signal,
increasing the average prediction error. Table 17, on the other hand, is considering only
the final mined intervals obtained through the statistical approach.

Figure 43: Detailed mined intervals obtained with the statistical method.

Source: Author’s own development.

Table 17: Cross-validation average FIT value for each mined interval obtained through
the statistical method.

Interval 1 2 3 4 5 6
FIT 1 step-ahead 96.32 96.10 96.10 96.14 96.11 96.11
FIT 100 steps-ahead 93.09 93.62 94.48 94.50 94.52 92.76
FIT inf steps-ahead 83.77 83.77 84.26 84.30 84.55 83.62
Interval 7 8 9 10 11 -
FIT 1 step-ahead 96.04 96.07 96.02 95.63 96.02 -
FIT 100 steps-ahead 94.03 94.22 94.61 93.98 94.24 -
FIT inf steps-ahead 84.05 83.94 84.85 84.88 84.79 -
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5.4 Multiple-Input Multiple-Output (MIMO) Segmen-
tation for Open-loop System Identification

5.4.1 Numerical Conditioning and E�ective Rank Examples

As explained in Subsection 3.3.4 and in Figure 8, the multivariable extension for
open-loop system identification consists of evaluating individually every input signal with
every output signal and verify if at least one combination of input-output satisfies the
numerical conditioning approach criteria or the e�ective rank approach criteria. In this
example, the distillation column data from Subsection 5.1.2 is used. Let us also begin with
the potential intervals in Figure 20, where the Exponentially Weighted filter is applied
with ⁄µ = ⁄S = 0.006 and a threshold of lS = 0.005. Moreover, 50 initial indexes are
considered, i.e., nidx = 50. Notice from Figure 20 that we have 5 potential intervals, that
will called Intervals 1-5.

Applying a Laguerre Filter structure with order Nb = 10 and pole – = 0.92 to every
input-output combination, the condition number and the e�ective rank values can be seen
in Table 18. The e�ective rank is computed using its Type 2 version with a singular value
threshold of l2 = 0.5. Moreover, U1 is the reflux flow rate, U2 is the steam flow rate, Y1

the overhead composition and Y2 the bottom composition.

Table 18: Condition number and e�ective rank for the multivariable distillation column,
using a Laguerre Filter structure with order Nb = 10 and pole – = 0.92 and considering
the type 2 e�ective rank with a singular value threshold of l2 = 0.5.

Condition Number E�ective Rank
Y1 Y2 Y1 Y2

Interval 1 U1 3.8 ◊ 103 3.8 ◊ 103 9 9
U2 Œ Œ 0 0

Interval 2 U1 Œ Œ 0 0
U2 3.8 ◊ 103 3.8 ◊ 103 9 9

Interval 3 U1 1.0 ◊ 104 1.0 ◊ 104 9 9
U2 Œ Œ 0 0

Interval 4 U1 Œ Œ 0 0
U2 1.0 ◊ 104 1.0 ◊ 104 9 9

Interval 5 U1 1.0 ◊ 104 1.0 ◊ 104 9 9
U2 1.0 ◊ 104 1.0 ◊ 104 9 9

Clearly, all intervals produce “well-conditioned” information matrices, with a condi-
tion number of magnitude 104, the same encountered in most of the reviewed works for
step responses. Notice that for a given input, the condition number will be the same
regardless of the output. That is because the Laguerre structure is only dependent on
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the input variables. The chi-squared and the scalar cross-correlation values, on the other
hand, are all di�erent from each other and can be seen in Table 19. The scalar cross-
correlation metric is computed within a delay range of [≠10, 10] and a significance level
of – = 0.05.

Table 19: Chi-squared values and Scalar Cross-Correlation values for each input-output
pair in the multivariable data with a Laguerre Filter of order Nb = 10 and pole – = 0.92
and with a cross-correlation delay range of [≠10, 10] and a significance level of – = 0.05.

Chi-squared Value Scalar Cross-Correlation
Y1 Y2 Y1 Y2

Interval 1 U1 9.64 ◊ 102 3.78 ◊ 102 6.19 ◊ 100 6.05 ◊ 100

U2 5.64 ◊ 10≠2 1.38 ◊ 10≠1 0.00 ◊ 100 0.00 ◊ 100

Interval 2 U1 2.57 ◊ 10≠1 2.01 ◊ 10≠1 0.00 ◊ 100 0.00 ◊ 100

U2 6.79 ◊ 102 5.93 ◊ 102 6.33 ◊ 100 6.44 ◊ 100

Interval 3 U1 1.47 ◊ 103 2.10 ◊ 10≠1 6.67 ◊ 100 6.59 ◊ 100

U2 5.84 ◊ 102 7.20 ◊ 10≠1 0.00 ◊ 100 0.00 ◊ 100

Interval 4 U1 1.30 ◊ 10≠1 1.30 ◊ 10≠1 0.00 ◊ 100 0.00 ◊ 100

U2 1.04 ◊ 103 7.94 ◊ 102 6.58 ◊ 100 6.63 ◊ 100

Interval 5 U1 3.77 ◊ 102 2.46 ◊ 102 6.69 ◊ 100 6.69 ◊ 100

U2 3.77 ◊ 102 2.46 ◊ 102 6.69 ◊ 100 6.69 ◊ 100

From Table 18 and Table 19, one can notice that the only interval that meets the
condition number (or e�ective rank) and the chi-squared test (or cross-correlation test)
for all input and output signals is interval 5. In this dissertation, the degree of coupling is
treated as a parameter, i.e., one could require, for example, that all signals must satisfy
the algorithm criteria, in which case only interval 5 would be considered. However, the
way this problem is treated in (PATEL, 2016) is by verifying if at least one input-output
pair meets the algorithm criteria. This is because, as suggested in (PATEL, 2016) and
explained in Item 3.3.4.2, one could use several intervals to compose the final model.

To illustrate how this method works, two di�erent models of the system are obtained:
the first model is obtained using intervals 1 and 2 and the second model is obtained using
intervals 3 and 4. Both models are then validated using interval 5, which satisfies the
condition number and the cross-correlation criteria for all input and output variables.

The resulting model produced with intervals 1 and 2 can be described through the
following equations:
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yit1
1 (k) = Git1

11 (q)uit1
1 (k) + Git1

12 (q)uit1
2 (k) + H it1

1 (q)vit1
1 (k) (5.6)

yit1
2 (k) = Git1

21 (q)uit1
1 (k) + Git1

22 (q)uit1
2 (k) + H it1

2 (q)vit1
2 (k) (5.7)

yit2
1 (k) = Git2

11 (q)uit2
1 (k) + Git2

12 (q)uit2
2 (k) + H it2

1 (q)vit2
1 (k) (5.8)

yit2
2 (k) = Git2

21 (q)uit2
1 (k) + Git2

22 (q)uit2
2 (k) + H it2

2 (q)vit2
2 (k) (5.9)

The final model is produced in the following manner: the G(q) and H(q) transfer functions
are initially estimated; then, for interval 1, all transfer functions related to the input u2(k)
are set to 0, once this input does not have an active input signal. In the same fashion,
for interval 2, all transfer functions related to input u1(k) are set to 0. A model addition
is then performed, resulting in the final model below:

y1(k) = Git1
11 (q)u1(k) + Git2

12 (q)u2(k) + H1(q)v1(k) (5.10)

y2(k) = Git1
21 (q)u1(k) + Git2

22 (q)u2(k) + H2(q)v2(k) (5.11)

An important observation is regarding the disturbance model. In this dissertation, H1(q)v1(k)
and H2(q)v2(k) are considered as the disturbance models from Equations (5.6) to (5.9)
that contain the highest gain. So, as an example, if H it1

1 (q)vit1
1 (k) and H it2

2 (q)vit2
2 (k) are

the disturbance models with highest gain, then they are considered in the final model.

The same approach is applied with intervals 3 and 4 to obtain a second model of the
system. As an example, let us consider the model obtained with intervals 1 and 2 for the
first output (y1(k)). An ARX structure is used with the following orders: for interval 1,
the chosen orders are ny = 5, nu1 = 1, nu2 = 1, nk1 = 1 and nk2 = 1; for interval 2, the
chosen orders are ny = 5, nu1 = 1, nu2 = 1, nk1 = 1 and nk2 = 3. Notice that the dead
times are selected based on the plant real values, which can be seen in Subsection 5.1.2.
Moreover, for interval 1, the G12(q) component is disregarded, while for interval 2 the
G11(q) component is the one discarded, as it is clear in Equation (5.10) for output y1(k).
The resulting transfer functions, for each interval, can be seen below:

Interval 1:

A(q) = 1 ≠ 1.018q≠1 + 0.006421q≠2 + 0.04565q≠3 ≠ 0.04342q≠4 + 0.05415q≠5 (5.12)

B(q) = 0.04179q≠1 (5.13)
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Interval 2:

A(q) = 1 ≠ 0.9734q≠1 ≠ 0.004253q≠2 ≠ 0.004797q≠3 + 0.01039q≠4 + 0.01153q≠5 (5.14)

B(q) = ≠0.02728q≠3 (5.15)

Finally, both models are unified to produce the resulting model for output y1(k), as shown
below:

B11(q) = 0.04179q≠1 (5.16)

B12(q) = ≠0.02728q≠3 (5.17)

D(q) = 1 ≠ 1.018q≠1 + 0.006421q≠2 + 0.04565q≠3 ≠ 0.04342q≠4 + 0.05415q≠5 (5.18)

F1(q) = 1 ≠ 1.018q≠1 + 0.006421q≠2 + 0.04565q≠3 ≠ 0.04342q≠4 + 0.05415q≠5 (5.19)

F2(q) = 1 ≠ 0.9734q≠1 ≠ 0.004253q≠2 ≠ 0.004797q≠3 + 0.01039q≠4 + 0.01153q≠5 (5.20)

Notice that this model follows the general structure presented in Equation (2.1).
Moreover, the disturbance model is already considered in this equation and it is repre-
sented by D(q), which is equivalent to the disturbance model of Interval 1, i.e., D(q) in
the final model is the same as A(q) in Interval 1.

If one takes the resulting models obtained with intervals 1-2 and intervals 3-4, for
both outputs, and performs a cross-validation with interval 5, the FIT values in Table
20 are obtained. In the same fashion, Figure 44 shows a comparison of y1(k) and y2(k)
outputs from Interval 5 with its predictions for 1, 10 and infinity steps-ahead.

Table 20: Cross-validation FIT values for Model 1 and Model 2, with validation being
performed in Interval 5.

1 step-ahead 10 steps-ahead Œ steps-ahead
Model 1:
Intervals 1-2

y1(k) 94.43 86.76 84.58
y2(k) 91.49 79.97 76.91

Model 2:
Intervals 3-4

y1(k) 94.44 86.75 84.55
y2(k) 91.50 79.78 76.57

It is clear from the results that, indeed, it can be useful to consider intervals where
a single input is persistently exciting and then combine multiple intervals to reach the
final system dynamics. In fact, Table 20 and Figure 44 elucidate that Model 1 (which is
obtained with both Interval 1 and Interval 2) and Model 2 (which is obtained with both
Interval 3 and Interval 4) are able to capture the system dynamics. This is guaranteed
through validation of the predictions in Interval 5, which is an interval where both input
signals are “shaking”. Finally, it is worth mentioning that these results are in line with
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those obtained in (PATEL, 2016).

Figure 44: Comparison of y1(k) and y2(k) outputs from Interval 5 with its 1 step-head,
10 steps-ahead and free-run predictions. (a) y1(k) and ŷ1(k) for 1 step-ahead prediction.
(b) y2(k) and ŷ2(k) for 1 step-ahead prediction. (c) y1(k) and ŷ1(k) for 10 steps-ahead
prediction. (d) y2(k) and ŷ2(k) for 10 steps-ahead prediction. (e) y1(k) and ŷ1(k) for
free-run prediction. (f) y2(k) and ŷ2(k) for free-run prediction.

Source: Author’s own development.

5.4.2 Statistical Method Examples

A multivariable extension of the statistical method is proposed in Item 4.1.2.2. As
explained in item 4.1.2.2, the extension consists of applying the statistical method to
every signal in the process and then unifying the resulting intervals.

Let us initially require that at least one input-output pair must satisfy the statistical
criteria. Moreover, let us apply the non-parametric top-down change-point algorithm to
every signal in the Wood & Berry dataset, assuming a significance level of – = 0.05,
a minimum length to split of 500 samples and a maximum sample size of 100. In this
scenario, if one applies the statistical segmentation considering a Lilliefors critical value
of 1.25/

Ô
NT and a significance level for the t-student test of – = 0.01, the final intervals

in Figure 45 are obtained.
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Figure 45: Mined intervals obtained with the multivariable extension to the statistical
method, requiring that at least one input-output pair meets the statistical method criteria.

Source: Author’s own development.

Notice that the step responses that are close to each other end up being unified, while
those that are separated by a larger number of samples are considered individually. A
better visualization of this scenario can be seen in Figure 46, which focus the samples in
the range of [7000, 18700] minutes.

Figure 46: Mined intervals obtained with the multivariable extension of the statistical
method in the range of [7000, 18700] minutes.

Source: Author’s own development.

In order to highlight how these intervals end up being considered by the algorithm, an
example of the algorithm steps can be seen in Figure 47. Notice that after unifying all the
resulting indicating sequences, an interval in the range [3751, 5473] is obtained. Inside
this interval, the signal u1(k) is not active at all. However, the signal u2(k) produces an
active interval in the range [3800, 5398]. Because [3800, 5398] µ [3751, 5473], one can
conclude that the final interval contains at least one active signal in it and, therefore, the
final interval [3751, 5473] is considered a suitable interval for system identification.
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As explained in Subsection 5.4.1, requiring that only one input-output pair must
meet the statistical criteria may be su�cient in the sense that one could use multiple
intervals to obtain the final model of the process. However, one could also requires a
more restrictive condition. As an example, let us require that all input and all output
must meet the statistical method criteria. In this case, the resulting mined intervals are
those in Figure 48, which correspond to the exact moments where both inputs received
step responses at the same time.

Figure 47: Steps of the statistical algorithm. Step 1: change-point detection algorithm
for a significance level – = 0.05 (orange vertical dashed lines); Step 2: magnitude change
statistical test for a Lilliefors critical value of 1.25/

Ô
NT (black dashed line); Step 3:

two-mean t-student comparison test for a significance level – = 0.01 and a di�erence in
mean delta of � = 0.1 (red dashed line). (a) Output signal y1(k) (blue solid line). (b)
Output signal y2(k) (blue solid line). (c) Input signal u1(k) (blue solid line). (d) Input
signal u2(k) (blue solid line).

Source: Author’s own development.
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Figure 48: Mined intervals obtained with the multivariable extension of the statistical
method, requiring that all input and output signals meet the statistical method criteria.

Source: Author’s own development.

5.5 Application to a Real Process Multivariable Data

In this Section, the Petrochemical Furnace data is used to exemplify how one could
obtain models from historical data in a real scenario. The dataset is divided into two
blocks: the first one contains 1 month of data and the second one contains 7 months
of data, as explained in Subsection 5.1.3. The numerical conditioning algorithm is first
applied and the resulting intervals are used to obtain a model of the system. Then,
the e�ective rank and the statistical method are applied and the resulting intervals are
compared.

5.5.1 Numerical Conditioning and E�ective Rank

In this subsection, the numerical conditioning and the e�ective rank approaches are
explored in both blocks of data. Initial intervals are obtained using the Exponentially
Weighted filter for the multivariable case, exemplified in Item 5.2.1.2. In order to choose
the correct parameters for the filter, two heatmaps are drawn as a function of the forgetting
factors and variance threshold, one for the number of resulting intervals and another for
the length of the same intervals. Both visualizations can be seen in Figure 49, which are
obtained with the 7 months data block. Notice that it is assumed, for simplification, that
⁄µ = ⁄S and that all signals in Table 2 receive the same forgetting factors. Choosing
individual ⁄µ, ⁄S and lS parameters for each individual signal is an exhausting procedure
and can be bypassed through this simplification.
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Figure 49: Number and length of potential intervals as a function of the forgetting factors
and the variance threshold, assuming ⁄µ = ⁄S. (a) Number of potential intervals. (b)
Length of potential intervals.

(a) (b)

Source: Author’s own development.

5.5.1.1 Numerical Conditioning: Laguerre Filters

The numerical conditioning approach is applied to each potential interval using the
Laguerre structure. One must decide the Laguerre pole and order to be used when mining
intervals suitable for system identification. It was shown in this dissertation that this
choice is not trivial. The surface and heatmap plots in Figure 50 are used here to make
this choice easier. Notice that when the filter pole is located at 1, the algorithm does not
return any interval. In a similar fashion, too lower filter poles (– < 0.6) produce a region
where the number of mined intervals are all about the same, no matter the filter order.
It seems that the most interesting region is located around the range [0.9, 0.95] for the
filter pole and around the range [6, 11] for the filter order. In this region, one can be more
restrictive and produce fewer mined intervals, or one could choose a lower filter order and
obtain more intervals.

To obtain the final intervals, the Exponentially Weighted filter is applied with ⁄µ =
⁄S = 0.01, ls = 0.002 and nidx = 20 for all variables, resulting in 97 potential intervals
with an average length between 400 and 600, as shown in Figure 49 (b). However, a
maximum interval length of 400 samples is imposed, such that intervals longer than 400
minutes are divided as described in Item 3.3.3.1, resulting in 223 potential intervals. The
numerical conditioning approach is finally applied with a condition number threshold of
lŸ = 5000, a chi-squared significance level of – = 0.01, a Laguerre Filter pole of – = 0.9
and a Laguerre Filter order Nb = 8. The chi-squared critical value for a filter with order 8
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Figure 50: Impact of the Laguerre Filter pole (–) and order (Nb) in the number of
mined intervals for the Petrochemical Furnace dataset, considering the potential intervals
obtained through the Exponentially Weighted filter with ⁄µ = ⁄S = 0.005 and ls = 0.002
for all the furnace variables. The resulting intervals are obtained considering a condition
number threshold of lŸ = 20000 and a chi-squared test significance level of – = 0.01.

Source: Author’s own development.

and a significance level of 0.01 is ‰8,0.01 = 20.1. Notice that a more restrictive condition
number threshold is considered compared to the one used to obtain Figure 50. Finally,
because the Petrochemical Furnace dataset is widely contaminated by noise and it is
sampled in minutes, to obtain better intervals it is imposed that at least two inputs must
satisfy the method criteria with at least one output data, which is more restrictive than
the original requirement (at least one input-output pair). A summary of the parameters
adopted can be seen in Table 21.

With these parameters, the mining algorithm produces 19 final intervals suitable for
system identification, 16 coming from the the 7 months block of data and 3 coming from
the 1 month block. The final intervals are here called Intervals 1-19.

It is interesting to mention that the multivariable problem is extremely challenging in
the sense that it is very unlikely that the three set-points of the petrochemical furnace have
changed at the same time, in any moment in the past, with enough magnitude to produce
the complete dynamic response of the system. This is why it is proposed in (PATEL,
2016) the requirement that at least one input-output pair must satisfy the algorithm
conditions. As exemplified in Subsection 5.4.1, one can then use multiple intervals to
obtain the complete dynamics of the process. The way multiple intervals are used to
obtain the final model in this example can be seen in Table 22.

In order to validate the resulting model in a fair way, two completely di�erent intervals
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Table 21: Numerical conditioning algorithm parameters applied in the petrochemical
furnace dataset.

Exponentially Weighted
Filter Parameters Values

⁄µ 0.01
⁄S 0.01
lS 0.002
nidx 20
Maximum Length 400
Laguerre Structure
Parameters Values

Nb 8
Laguerre pole – 0.9
Chi-squared – 0.01
lŸ 5000

Approval Criteria
At least two

inputs and one
output variable

Table 22: Mined historical intervals used to estimate a model of the Petrochemical Fur-
nace.

Set-points
FIC-23027-SP FIC-23028-SP FIC-23025-SP

Output
Variables

TIC-23099 Interval 1 Interval 2 Interval 3
PIC-23039 Interval 1 Interval 2 Interval 3
AIC-23001 Interval 1 Interval 2 Interval 3

are used as the validation dataset, as shown in Table 23. The estimation intervals can be
seen in Figure B.1 and the validation intervals can be seen in Figure B.2. The reasons
behind the choice of the estimation intervals is that they all have good chi-squared and
condition number values and, also, because all variables in Intervals 1-3 are around the
same operating condition (see the operating values in Table 2). Other resulting intervals,
although approved in the mining algorithm, are centralized in di�erent operating points,
some of them corresponding to stopping moments of the plant, as can be seen through
Interval 6 shown in Figure B.3. Table 24 shows the corresponding condition numbers for
each input variable in Intervals 1-3, while Table 25 shows the chi-squared values for each
input-output pair in Intervals 1-3.

Table 23: Mined historical intervals used as the validation dataset.

Output Variable TIC-23099 PIC-23039 AIC-23001
Validation Interval Intervals 4-5 Intervals 4-5 Intervals 4-5

In order to evaluate the quality of the obtained model through the described cross-
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Table 24: Condition number values obtained with Intervals 1-3, with the values corre-
sponding to the adopted intervals being highlighted in blue.

Set-points
FIC-23027-SP FIC-23028-SP FIC-23025-SP

Interval 1 1426.95 3007.15 49973895.25
Interval 2 1841.63 1337.58 1005903.73
Interval 3 729.82 1688.67 424.61

Table 25: Chi-squared values obtained with Intervals 1-3, with the values corresponding
to the adopted intervals being highlighted in blue.

Set-points
FIC-23027-SP FIC-23028-SP FIC-23025-SP

Interval 1
TIC-23099 63.76 44.5 893.0
PIC-23039 31.81 30.27 24.47
AIC-23001 58.12 55.14 58.03

Interval 2
TIC-23099 135.74 127.06 496.68
PIC-23039 48.75 46.95 157.79
AIC-23001 71.90 77.47 64.11

Interval 3
TIC-23099 8.76 13.42 7.09
PIC-23039 27.21 21.97 16.00
AIC-23001 19.88 15.95 18.10

validation approach, three di�erent metrics are chosen: the Root Mean Squared Error
(RMSE), the FIT index, which is based on the percentual Normalized Root Mean Squared
Error (NRMSE), and the R2 score. The FIT index is the same as the one defined in Item
5.3.1.3. The RMSE and the R2 are defined as follows:

RMSE =
ı̂ıÙ 1

Ns

Nsÿ

k=1
(ŷ(k) ≠ y(k))2 (5.21)

R2 = 1 ≠
qNs

k=1(ŷ(k) ≠ y(k))2
qNs

k=1(ȳ ≠ y(k))2 (5.22)

where ȳ is the mean of the output signal, ȳ = 1
Ns

qNs
k=1 y(k), and ŷ is the predicted output.

In order to obtain the final model for a given output variable, ARX models are used
following the approach described in Item 3.3.4.2. Because multiple ARX models that come
from di�erent intervals are added, the resulting model has the Box-Jenkins structure.
Such a structure can be easily obtained making A(q) = 1 in Equation (2.1). Moreover,
considering the MISO structure as defined in Figure 2, the Box-Jenkins structure can be
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reformulated as:

yi(k) =
nuÿ

i=1

Bi(q)
Fi(q) ri(k) + C(q)

D(q)v(k) (5.23)

The obtained model orders for each MISO system can be seen in Table 26, where nk

is the input delay order and nb, nf and nd are, respectively, the B(q), F (q) and D(q)
polynomial orders.

Table 26: Box-Jenkins orders for each output variable in the petrochemical furnace.

Box-Jenkins Model Order
nb nf nd nk

Output
Signals

TIC-23099 [9 4 5] [1 6 2] 2 [1 10 2]
PIC-23039 [7 5 9] [1 7 3] 1 [9 3 1]
AIC-23001 [3 6 1] [1 1 1] 1 [4 5 1]

Notice that, because the final models are originated through ARX structures, we have
C(q) = 1 in Equation (5.23). The resulting validation metrics can be seen in Table 27
and a comparison of the validation data with the corresponding predictions can be seen
in Figures C.1, C.2 and C.3.

Table 27: Cross-validation metrics of each model, considering Intervals 4 and 5.

Œ-steps ahead 1-step ahead
RMSE R� FIT RMSE R� FIT

Interval 4
TIC-23099 1.68 0.77 51.8 0.38 0.98 89.01
PIC-23039 0.10 0.95 78.77 0.02 0.99 96.50
AIC-23001 0.24 0.61 37.51 0.11 0.92 72.60

Interval 5
TIC-23099 4.09 0.58 35.50 0.57 0.99 90.76
PIC-23039 0.28 0.77 52.40 0.02 0.99 95.87
AIC-23001 0.51 0.05 2.65 0.11 0.96 79.00

Notice that the FIT value is a percentual value, while the R2, being the squared value
of the Pearson’s coe�cient, goes from 0 to 1. The higher is the R2 and the FIT value, the
better is the model explanation of the signal compared to its residue. On the other hand,
the RMSE is a measure of the prediction error and, therefore, a low value indicates a
good model fitness to the validation data. It is important to mention that the RMSE,
being an error measure, is proportional to the signal magnitude. Therefore, this value
must be compared to the operating value of the plant in order to have an idea of the error
magnitude. It is expected, for example, that the error of the TIC-23099 model is greater
than the error of the PIC-23039 and AIC-23001 models, given that the nominal value of
TIC-23099 is more than 100 times greater than that of the other two variables.
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One can notice that the validation results for the AIC-23001 are specially bad. The
main reason for that is the fact that the AIC-23001 output is highly a�ected by the FIC-
23025-SP set-point, which is in steady-state for both Intervals 4 and 5. In fact, because
this particular set-point is manipulated by an optimizer, it is highly disturbed by noise
when in steady-state. Let us now apply the same model to a di�erent validation data:
Interval 7, shown in Figure B.4. In this case, the resulting prediction can be seen in Figure
C.4 and the resulting metrics can be seen in Table 28. It is clear that, for this signal, the
model captures better the AIC-23001 dynamics.

Table 28: Cross-validation metrics for AIC-23001 model, considering Interval 7.

Infinity-steps ahead 1-step ahead
RMSE R� FIT RMSE R� FIT

Interval 7 AIC-23001 0.65 0.89 66.74 0.17 0.99 91.21

It is possible to conclude that the mining strategy presented in this item is able to
capture informative and representative data of the system, respecting the operating points
and, therefore, the hypothesis of linearity. Moreover, reasonable models were obtained for
each output variable, specially considering that simple ARX models were adopted. This
is confirmed by the validation metrics, in which the FIT and the R2 metrics assumed
intermediate values for all outputs in two di�erent validation data. As a final observation,
it is important to mention that simple ARX models are here used to exemplify how the
mining algorithm can actually produce models from historical data. However, one must
have in mind that more complex solutions can definitely be used to obtain better results,
regardless of the mining strategy used. In fact, some of the resulting data, such as Interval
3, could actually, in a practical sense, be used alone to obtain a final model, without the
need to combine it with further data.

5.5.1.2 E�ective Rank: AR Structure

In this item, the e�ective rank and the scalar cross-correlation metrics are used in
order to compare the resulting intervals with those obtained in the previous item. The
AR structure is here adopted as originally proposed in (RIBEIRO; AGUIRRE, 2015). To
make the comparison of the results more interesting, the same potential intervals from
the previous item are here considered and evaluated through the e�ective rank and the
cross-correlation criteria. Therefore, for the 7 months dataset 223 potential intervals must
be evaluated, while for the 1 month data 98 potential intervals are available.

As explained in Subsection 5.3.1, the e�ective rank is a less sensitive metric compared
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to the condition number, in such a way that higher model orders lead to better results.
Therefore, as suggested in (RIBEIRO; AGUIRRE, 2015), an AR structure of order 100
is here applied. A summary of all the algorithm parameters used in this item can be seen
in Table 29.

Table 29: E�ective rank algorithm parameters applied to the petrochemical furnace
dataset.

Exponentially Weighted
Filter Parameters Values

⁄µ 0.01
⁄S 0.01
lS 0.002
nidx 20
Maximum Length 400
AR Structure
Parameters Values

AR order nu 100
Type 2 e�ective rank threshold 0.01
Cross-correlation delay range [≠10, 10]
Cross-correlation significance level 0.05

To better understand the impact of the choice of both the e�ective rank and the
cross-correlation thresholds in the number of mined intervals, Figure 51 was created. It is
interesting to notice that both criteria are very aggressive, in such a way that if one chooses
too high values for both the e�ective rank and the cross-correlation, almost no interval
is considered. Moreover, it is also important to point out that the resulting correlation
values are considerably slow, which can probably be explained by the fact that the data
is extremely noisy.

To obtain the final intervals, the adopted conditions are those shown in Table 30.
Notice that a very restrictive condition is applied to the cross-correlation, considering the
delay range adopted. The idea is to obtain the fewer intervals as possible, as was done
in the previous item. Applying the algorithm in Figure 8 with this conditions to both
blocks of data, a total of 17 intervals are obtained: 11 with the 7 months block of data
and 6 with the 1 month block. As expected, some of these intervals are exactly the same
as those mined with the Laguerre filter in the previous item. More specifically, 5 of these
intervals are identical, three of them already shown in Figures B.3, B.4 and B.1 (c).

The main reason why some of the resulting intervals obtained with the Laguerre algo-
rithm in the previous item were not here considered permeates the scalar cross-correlation
test. The correlation test seems to be more aggressive than the chi-squared causality test.
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Figure 51: Impact of the choice of the e�ective rank and the cross-correlation thresholds
on the number of mined intervals.

Source: Author’s own development.

Table 30: Approval conditions for the e�ective rank algorithm applied to the petrochem-
ical furnace.

Variables Values
Type 2 e�ective
rank threshold l2 = 25

Scalar cross-correlation
threshold lcc = 6.4

Approval Criteria
At least two
inputs and one
output variable

To ilustrate this point, let us consider Interval 1 in Figure B.1 (a). Evaluating why this
interval was not considered by the e�ective rank algorithm, one can notice that it is
precisely the correlation test that failed against the lcc = 6.4 threshold. In fact, Table
31 shows the resulting correlation values for this signal. It is clear that only the signals
PIC-23039 and AIC-23001 show some degree of correlation with the set-point through
the scalar cross-correlation metric, but these values are lower than lcc = 6.4. The same is
true for the majority of the intervals obtained through the Laguerre algorithm and that
were not considered by the AR algorithm.

If we now look at the intervals that are considered by the e�ective rank algorithm but
not by the numerical conditioning algorithm in the previous item, we can see that the main
di�erence lies in the condition number of these intervals. In fact, because the AR structure
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Table 31: Scalar cross-correlation values for Interval 1 in Figure B.1 (a).

Output Variables
TIC-23099 PIC-23039 AIC-23001

Set-points
FIC-23027-SP 0.99 3.00 1.97
FIC-23028-SP 0.55 3.00 2.98
FIC-23025-SP 0.01 1.27 1.28

only depends on the output variable, this algorithm ends up being more permissive when
we look at the condition number and at the e�ective rank of the information matrices.

As an example, let us consider the interval in Figure B.5, which was obtained through
the AR algorithm. The corresponding condition numbers obtained with the Laguerre
structure for this interval can be seen in Table 32. One can notice that the reason why
this interval was not considered by the Laguerre algorithm is that only one set-point (FIC-
23027-SP) satisfied the condition number criteria, while the imposed condition was that at
least two set-points must satisfy the lŸ = 5000 threshold. However, notice that the FIC-
23028-SP produced an information matrix with a condition number of 7846, which is close
to the threshold of 5000. The same scenario is true for most of the intervals considered
by the AR algorithm and not considered by the Laguerre algorithm. This is actually
an expected behavior because each algorithm requires a vast amount of parameters to be
chosen, and di�erent choices of parameters and thresholds will definitely produce di�erent
outcomes. However, in a general way, both algorithms produced coherent results, with
some of the resulting intervals being actually the same.

Table 32: Condition number of the Interval in Figure B.5 obtained with the Laguerre
structure.

Set-points
FIC-23027-SP FIC-23028-SP FIC-23025-SP

875.22 7846.20 113043.16

5.5.2 Statistical Method

In this subsection, the proposed multivariable extension to the statistical algorithm is
applied to the petrochemical furnace dataset. Notice that the outline of this algorithm is
described in Item 4.1.2.2. Moreover, only the 1 month data block is here considered, once
the non-parametric change-point detection algorithm that constitutes the first step of the
statistical method has an O(N2) complexity, taking a long time to run in massive data.
The 7 months dataset could be used splitting the data in several batches and running
each batch individually. However, the main idea of this subsection is to show how the
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algorithm behaves with a real dataset and to compare the resulting intervals with the ones
obtained in the previous subsection, for which purpose the 1 month dataset is su�cient.

As described in Item 5.3.2.1, the statistical algorithm works better when the data is
over segmented by the change-point detection algorithm. This is because the Lilliefors
test can more precisely distinguish noisy intervals when the dataset is shorter. This is
the fundamental reason behind the parameter choice made in this subsection, since the
statistical method has very few parameters to be chosen, none of them requiring knowledge
about the process being studied. Table 33 summarizes the adopted parameters for the
statistical multivariable algorithm.

Table 33: Chosen parameters for the multivariable statistical method applied to the
petrochemical furnace dataset.

Parameters Values
Pettitt change-point
significance level – = 0.05

Pettitt minimum length
to split Ns,min = 200

Pettitt intervals maximum length Nmax = 80

Lilliefors test
critical value – = 1.25Ô

NT

Two-mean t-student
statistical test significance
level

– = 0.01

Two-mean t-student
statistical test
delta

� = 0.5

Approval criteria
At least two
inputs and two
output variables

Notice that the Pettitt minimum length to split Ns.min and its maximum length Nmax

are two di�erent parameters. The Ns,min parameter determines the minimum length that
an interval must have to be further split by the change-point detection algorithm and
create a new change-point · . The maximum length parameter Nmax, on the other hand,
determines the maximum resulting interval sizes and, therefore, it is responsible to over
segment the resulting samples following the approach described in Item 3.3.3.1.

Applying the algorithm with the parameters in Table 33 to the petrochemical dataset,
11 final intervals are obtained. It is interesting to mention that two of the resulting
intervals are practically identical to the ones obtained with the numerical conditioning
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and e�ective rank algorithms when they are applied to the 1 month data block. These
two intervals are shown in Figure B.6 and Figure B.7. Notice that Figure B.6 is very
similar to Figure B.1 (c) that corresponds to Interval 3 obtained through the Laguerre
filter. In fact, the main di�erence between these two signals is that the one obtained with
the statistical method is a little longer than the one obtained in Figure B.1 (c).

A detailed view of how the algorithm ended up selecting the interval in Figure B.6 can
be seen in Figure D.1. It is interesting to notice that the behavior of the algorithm applied
to the petrochemical furnace data is completely in accordance with that found through
simulations in Subsection 5.4.2. Moreover, it is worth mentioning that if it were required
that all three set-points and output variables must meet the criteria of the statistical
method, the only resulting interval obtained is the one in Figure B.6. This result is
extremely consistent with the author’s knowledge of the process, since it is known that
this particular interval concerns a system identification experiment that was carried out
in the plant and, therefore, it is in fact an interval in which all variables were shaked
simultaneously.

We can now evaluate if the interval in Figure B.6 is actually coherent using it to
compute the condition number, the chi-squared value, the e�ective rank and the scalar
cross-correlation metric with the same Laguerre and AR models used in the previous
subsection. Results can be seen in Tables 34, 35, 36 and 37.

Clearly, this interval produces low values of condition number and high values of
e�ective rank, which points out that it produces a well-conditioned information matrix
with both the Laguerre and the AR structures. In fact, if we compare the condition
number and the chi-squared values with those for Interval 3 in Tables 24 and 25, the
values are very similar. The scalar cross-correlation metric is also coherent with the
results, in the sense that the PIC-23039 output variable is the one that is most correlated
with all set-points. Notice, however, that, as already pointed out, the cross-correlation
values are very restrictive, being di�cult to choose an appropriate threshold to it. Finally,
notice that the critical value for the chi-squared value is ‰8,0.01 = 20.1, and, therefore,
both PIC-23039 and AIC-23001 would have the causality condition satisfied for at least
two set-points.

It is possible to conclude that the multivariable extension proposed in this disser-
tation to the statistical method is successfully able to obtain meaning intervals from a
noisy dataset coming from a real industrial process. Moreover, the results are coherent
not only with the ideal scenario produced through simulation, but also with the other
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methodologies presented in this work.

Table 34: Chi-squared values computed with the Laguerre structure and applied in Inter-
val in Figure B.6.

Output Variables
TIC-23099 PIC-23039 AIC-23001

Set-points
FIC-23027-SP 12.53 40.1 28.26
FIC-23028-SP 15.45 25.61 15.15
FIC-23025-SP 10.43 21.21 23.73

Table 35: Scalar cross-correlation values applied in Interval in Figure B.6.

Output Variables
TIC-23099 PIC-23039 AIC-23001

Set-points
FIC-23027-SP 1.72 5.54 0.53
FIC-23028-SP 3.69 6.76 2.17
FIC-23025-SP 0.91 1.23 0.55

Table 36: E�ective rank values computed with the AR structure and applied in Interval
in Figure B.6.

Output Variables
TIC-23099 PIC-23039 AIC-23001

52 39 92

Table 37: Condition number values computed with the Laguerre structure and applied in
Interval in Figure B.6.

Set-points
FIC-23027-SP FIC-23028-SP FIC-23025-SP

738.0 1336.5 355.0



117

6 CONCLUSIONS

A vast literature review was first provided in this dissertation, with several di�erent
techniques being deeply explained and elucidating the state of the art in finding intervals
suitable for system identification through historical data of industrial processes. More
specifically, a solution to the problem was studied in di�erent aspects, which included
both open and closed-loop systems and both SISO and MIMO systems. It was observed
that many di�erent ways of tackling the problem are possible and, in fact, di�erent al-
gorithm structures were described, some of them being implemented recursively, other
being treated through steps. From this background, the adopted methodology in this
dissertation was to address the problem from a step-by-step perspective, in which all the
adopted algorithms were divided into three essential blocks: data preprocessing, identi-
fication of potential intervals that could be useful for system identification and, finally,
evaluation of the resulting potential intervals, choosing those that are indeed su�ciently
informative to estimate a model of the system being studied. The main reason behind
the choice of this approach was its ability to make visual analyzes that could support the
non trivial choice of parameters, and also to provide an understanding on the algorithm
behavior. It was concluded, based on the heatmaps developed, that this choice was indeed
e�cient, facilitating the manipulation of the algorithms in a conscious way, and allowing
to structure the problem in the form of a data science framework.

Di�erent ways of finding potential intervals were studied and compared, such as the
EWMA, the bandpass and the sliding window filters and also the Pettitt change-point
detection algorithm. From the results, it was concluded that all algorithms in fact are
e�ective in splitting the data in regions of interest. The EWMA, bandpass and sliding
window filters shown to be also very e�cient, in the sense that they require low com-
putational complexity, which therefore turns its execution very fast on large datasets.
Moreover, they are also able to isolate regions where the data has moved significantly,
selecting only intervals of interest in a predominantly noisy and non informative data.
The downside of the EWMA and the bandpass filter was evident due to the necessity of
choosing a vast amount of parameters, which are the forgetting factors in the EWMA
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filter and the cut-o� frequencies in the bandpass filters. Moreover, thresholds must be
chosen to select the appropriated intervals, which is definitely not a trivial task. However,
through visual analysis and simplifications, these algorithms can be properly manipulated
and good results were obtained in both simulated and real data scenarios. Although the
sliding window filter has fewer parameters to be selected from, it ends up resulting in
shorter intervals. This behavior, however, shown to be useful in applying the proposed
algorithms in an incremental way. The lack of parameters can also be considered a down-
side in the sense that the engineer has less flexibility in manipulating the behavior of the
algorithm. Finally, the Pettitt method has shown to be specially useful as a first step of
the statistical method. Not only it was able to perfectly split the entire dataset, but it
also contains parameters that make tuning very easy, once these parameters are related
to statistical test significance levels and therefore do not require any specific knowledge
about the industrial process. The only negative side was shown to be the computational
ine�ciency of the algorithm, which has high computational complexity and, consequently,
takes a long time to run as the dataset becomes larger. Moreover, this algorithm works
splitting the entire dataset rather than selecting regions of interest. Consequently, more
intervals must be further evaluated, which also makes the segmentation process slower.

When dealing with the evaluation of potential intervals, di�erent algorithms were pre-
sented, both to SISO and MIMO systems and for the open and closed-loop identification
scenarios. It was shown that for open-loop systems, the input variable must be persis-
tently exciting and, therefore, the first steps of the numerical conditioning and e�ective
rank algorithms must be done with the input variable. For closed-loop systems, on the
other hand, the first steps of these algorithms must be computed with the set-point, which
must be persistently exciting to allow system identification. For this purpose, an algo-
rithm structure was created including both the numerical conditioning and the e�ective
rank approaches in the same framework. The idea was to provide the flexibility to choose
which method to apply and allow one to combine aspects of the two algorithms. Moreover,
di�erent model structures can be applied, such as the Laguerre filter and the AR model.
In a general manner, results obtained through the two approaches have been shown to
be coherent through both simulated and real process data. Both the condition number
and the e�ective rank proved to be e�cient in identifying intervals with good numerical
quality to solve the least squares problem. The main di�erence between the two methods
was their sensitivity. While the condition number goes from 1 to infinity, the e�ective
rank is limited by the model order adopted. A more sensitive metric is better to narrowly
discriminate one interval from another. On the counterside, this approach proved to be
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harder in choosing an adequate threshold. As it was observed in this dissertation, a single
step response can end up reaching condition number values of up to 104, in such a way
that the engineer ends up in a dilemma of either setting a too low threshold and missing
too many intervals, or setting a higher threshold and ending up with a very large number
of intervals, which would require a further decision on what interval to use for system
identification.

When evaluating the signals correlation, it was concluded that the chi-squared causal-
ity test showed to be a more coherent test compared to the scalar cross-correlation metric,
in the sense that it is actually able to provide evidences of what the quality of the esti-
mated model will be. In fact, it was concluded from the ideal simulated scenario that the
higher the chi-squared computed statistics for a particular interval, the higher the model
quality in terms of the FIT index compared to other intervals of lower chi-squared values.
This is because this value is computed through an actual estimation of the model param-
eters. Moreover, the only tuning parameter for this test is the statistical significance level
of the chi-squared test, making it easy to be applied. The scalar cross-correlation metric,
on the other hand, proved to be more aggressive in terms of selecting the final intervals.
This is because it was observed that this metric rarely results in large correlation values,
even if the chosen lag range is large. As a consequence, it is not trivial to choose an appro-
priate threshold to the correlation value, where good intervals may have lower correlation
values, but, on the other hand, if this threshold is chosen too short, the algorithm will
not be able to filter out intervals that are in fact poorly correlated. Moreover, this metric
does not depend on the selected model structure, as occur with the chi-squared test, and,
therefore, it is not able to give a previous idea on the model performance.

The choice of the model structure was also shown to be an essential aspect of the
numerical conditioning and e�ective rank algorithms. The Laguerre filter proved to be
particularly e�cient in the sense that it does not require any knowledge about the pro-
cess. The only di�culty in using this structure is concerned with the choice of its order
and pole. However, this choice proved to be completely feasible through visualizations.
The AR structure also showed excellent results and made the choice of parameters even
simpler. However, because this structure is only dependent on past versions of the output
variable, it does not allow an evaluation of the persistence of excitation, as it is possi-
ble through the Laguerre Filter, once it only depends on filtered versions of the input
variable. Moreover, although the Laguerre structure only depends on input data, it is
adequately complemented by the chi-square test, which ends up including information
about the output data at the moment when the model parameters are in fact estimated.
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The statistical method proved to be as e�cient as the numerical conditioning and
e�ective rank methods. Its great advantage appeared to be in the easiness of choosing the
method parameters, which are all related to statistical tests. In fact, with both simulated
and real process data, the statistical method was able to produce very similar intervals to
the ones obtained through the other two methods, but without the need for any knowledge
about the process, nor about model structures. The downside of this algorithm was shown
in its dependence on the Pettitt method, which is very computationally ine�cient, and
in the fact that the engineer has little flexibility in manipulating parameters, in such a
way that it is not possible, for instance, to choose to be more or less aggressive about the
number of mined intervals.

Finally, the multivariable extrapolation proposed to both the statistical method and
to the e�ective rank method, based on the idea presented in (PATEL, 2016), proved to be
successful in the simulated data and in the petrochemical furnace data. The di�culty in
the multivariable formulation was to find intervals in which all the variables in the system
moved su�ciently and simultaneously to result in a model that contemplates the entire
dynamic response of the system. In this dissertation it was observed that, in practice, this
scenario is almost never found and, therefore, the formulation presented in (PATEL, 2016)
that uses multiple intervals to obtain the final model is very e�cient. In fact, through
this approach, good model results were obtained both in the ideal simulation scenario and
in the petrochemical furnace case.

6.1 Suggestions for Future Works

The main point of attention that could generate major future contributions to the
work already done in this dissertation concerns the multivariable problem. For the open-
loop identification scenario, the solution presented in this work can successfully result
in intervals that, combined, can lead to a satisfactory models of the system. However,
based on the petrochemical furnace results, obtaining such models is not a trivial task, in
such a way that a more automatic approach could be elaborated to improve this solution.
The multivariable closed-loop identification scenario, on the other hand, is a complex
problem that has been very little addressed in the literature so far, with only one work
referenced in this dissertation. This is actually a crucial problem to the extent that one
may be interested not in obtaining a model with the system set-point, as was done in
this dissertation and that could be used to design Model Predictive Controlers, but in
obtaining a model of the process itself, i.e., a model obtained with the output and the
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manipulated variables. Such a model is extremely useful, for example, for tuning existing
PID controllers in the process. The di�culty in this approach is the fact that in a closed-
loop multivariable system the manipulated variables interfere with each other and also
depend on the system output, in such a way that the necessary conditions for such a
system to produce enough information to system identification must be studied.

A final aspect of future contributions is regarding the hypothesis of linearity adopted
in this dissertation. All the described algorithms in this work assume that the process
can be treated linearly. In fact, for the numerical conditioning and the e�ective rank
algorithms, linear structures constitute an essential part of the methodology. Therefore,
one can guarantee that the resulting intervals are suitable for the estimation of linear
models of the process being studied, but this is not guaranteed if one is actually interested
in obtaining non-linear models.
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APPENDIX A – SISO NUMERICAL
CONDITIONING:
POTENTIAL
INTERVALS DETAILS

Figure A.1: Potential Intervals obtained with the exponential weighted filter and param-
eters ⁄S = ⁄µ = 0.006, nidx = 20 and lS = 0.003.

Source: Author’s own development.
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APPENDIX B – PETROCHEMICAL
FURNACE: MINED
INTERVALS

This appendix highlights some of the resulting mined intervals obtained with the nu-
merical conditioning, e�ective rank and statistical algorithms applied to the petrochemical
furnace dataset. Notice that some of the signals here displayed are used as estimation
and validation sets for system identification.

B.1 Numerical Conditioning
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Figure B.1: Petrochemical furnace estimation intervals. (a) Interval 1 (b) Interval 2 (c)
Interval 3.

(a)

(b)

(c)

Source: Author’s own development.
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Figure B.2: Petrochemical furnace validation intervals. (a) Interval 4 (b) Interval 5.

(a)

(b)

Source: Author’s own development.
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Figure B.3: Example of resulting interval in which the FIC-23028-SP variable was set to
zero.

Source: Author’s own development.

Figure B.4: Validation data for the AIC-23001 model.

Source: Author’s own development.
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B.2 E�ective Rank

Figure B.5: Example of interval obtained with the algorithm in Figure 8 considering an
AR structure and the e�ective rank and the scalar cross-correlation criteria.

Source: Author’s own development.

B.3 Statistical Method

Figure B.6: Example of mined interval obtained with the multivariable statistical algo-
rithm applied to the petrochemical furnace dataset.

Source: Author’s own development.
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Figure B.7: Example of mined interval obtained with the multivariable statistical algo-
rithm applied to the petrochemical furnace dataset.

Source: Author’s own development.
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APPENDIX C – PETROCHEMICAL
FURNACE: SYSTEM
IDENTIFICATION
DETAILS

This appendix contains results of systems identifications carried out with the mined
data obtained for the petrochemical furnace. Comparisons between the predictions and
the actual validation data are provided for both 1 step and infinite step ahead predictions.

Figure C.1: Comparison of actual and predicted outputs for TIC-23099 model in 1 and
infinity step-ahead scenarios.

Source: Author’s own development.
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Figure C.2: Comparison of actual and predicted outputs for PIC-23039 model in 1 and
infinity step-ahead scenarios.

Source: Author’s own development.

Figure C.3: Comparison of actual and predicted outputs for AIC-23001 model in 1 and
infinity step-ahead scenarios.

Source: Author’s own development.
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Figure C.4: Comparison of actual and predicted outputs for AIC-23001 model in 1 and
infinity step-ahead scenarios.

Source: Author’s own development.
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APPENDIX D – PETROCHEMICAL
FURNACE:
STATISTICAL METHOD
DETAILS

This appendix provides details of the steps taken by the multivariable statistical
method when choosing one of the obtained intervals.
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Figure D.1: Steps of the statistical algorithm. Step 1: change-point detection algorithm
for a significance level – = 0.05 (orange vertical dashed lines); Step 2: magnitude change
statistical test for a Lilliefors critical value of 1.25/

Ô
NT (black dashed line); Step 3:

two-mean t-student comparison test for a significance level – = 0.01 and a di�erence
in mean delta of � = 0.5 (red dashed line). (a) FIC-23027-SP. (b) FIC-23028-SP. (c)
FIC-23025-SP. (d) TIC-23099. (e) PIC-23039. (f) AIC-23001.

Source: Author’s own development.


