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RESUMO

Este trabalho apresenta o controle robusto de uma planta não linear considerando
incertezas de parâmetros, no caso um mecanismo paralelo de 2-GDL. Primeiramente,
as modelagens dinâmica e cinemática do robô foram deduzidas a partir de uma nova
metodologia, esta baseada nos modelos dos subsistemas seriais que compõe a topologia
paralela que são combinados posteriormente a partir de equações de restrições mecânicas,
assim gerando o modelo completo do robô paralelo. Em seguida, uma arquitetura de con-
trole robusta combinando controle H∞ e linearização por realimentação foi projetada a
fim de se garantir robustez de estabilidade e desempenho do sistema, inclusive na presença
de incertezas de parâmetros do modelo. Com o objetivo de validar tanto a modelagem do
mecanismo quanto seu controle, resultados simulados foram obtidos.

Palavras-Chave – Controle robusto, Linearização por realimentação, Controle H-infinito,
Robótica, Mecanismo paralelo.



ABSTRACT

This work presents the robust control of a nonlinear plant with uncertain parame-
ters, in this case a 2-DOF parallel mechanism. First, the robot dynamic and kinematic
models were computed using a new methodology based on the serial subsystems models
that compose the parallel topology, which are later pieced together through mechanical
constraints to form the complete parallel robot model. Then, a robust control architecture
combining H∞ design and feedback linearization was designed in order to guarantee ro-
bust performance and stability even in the presence of uncertain parameters in the model.
To validate both mechanism’s modeling and control, simulation results were provided.

Keywords – Robust control, Feedback linearization, H-infinity control, Robotics, Parallel
mechanism.
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1 INTRODUCTION

There is no doubt that the usage of robots in different fields of study is constantly
increasing. With applications from aerospace to medical research, robots have been play-
ing a major role in different tasks as, for example, pick-and-place operations (RICHARD;
CLAVEL, 2012), manufacturing processes (KOBEL; CLAVEL, 2011) and even surgical
procedures (BEIRA et al., 2011). Among many architectures, the closed-chain robotic
mechanism – also known as parallel robot – has been explored for high performance tasks
due to its high precision and rigidity, fast dynamics, load capacity and light weight. On the
other hand, parallel mechanisms present reduced workspace and more complex modeling
in comparison to serial ones (ALMEIDA; HESS-COELHO, 2010).

Following the definition presented in (MERLET; GOSSELIN, 2008), a closed-chain
mechanism is constituted by at least two independent kinematic chains linking the end-
effector to a fixed base. In the case of the 2-DOF parallel mechanism considered in
this work, two distinguished kinematic chains link the end-effector to the robot’s fixed
base, configuring a pentagon shape. As shown in (COUTINHO, 2020), different control
strategies have been applied to the same parallel mechanism used in this work: sliding
mode control (SMC), feedback linearization (FL) and computed torque control (CTC).
In order to evaluate the performance of a different control strategy within this same
platform, this work proposes a robust control design combining H∞ control and feedback
linearization. The main objective of this control strategy is to present good trajectory
tracking even in the presence of model uncertainties. A similar control approach was
proposed by Rachedi, Bouri and Hemici (2014) and applied to the Delta robot, which is a
3-DOF parallel mechanism. Moreover, there are many other control strategies that have
been used to control different parallel architectures, from the traditional designs as the
PID controller (AL-MAYYAHI; ALDAIR; CHATWIN, 2020) and the LQR control (YUN;
LI, 2009) to the more unconventional ones such as adaptive control (ANSARIESHLAGHI;
EBERHARD, 2019), fuzzy control (WEN et al., 2019) and deep reinforcement learning
(MA et al., 2019).
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Regarding model uncertainties, this work relies on the latin hypercube sampling (LHS)
technique to generate the uncertain samples. Typically, random selection is used (LIU et
al., 2021; WU et al., 2016). Although the LHS has been used before in robotics (HE et
al., 2018), no works were found in the literature applying it to a parallel mechanism as is
proposed in this work, to the best of the author’s knowledge. Another novelty is the total
harmonic distortion (THD) analysis carried out comparing the level of nonlinear influence
between the open-loop linearized system and the closed-loop response with the proposed
robust controller. In most cases, the THD is applied in power electronics applications
(RAMIREZ; PACAS, 2016; VUKIC; MRVIC; KATIC, 2019) but the author did not find
any work applying it to robotics, as far as the author knows.

This work is divided as follows: Chapter 1 presents the main objectives of this research
together with a bibliography review highlighting the state-of-the-art in controlling parallel
mechanisms; Chapter 2 presents the kinematic and dynamic modeling of the 2-DOF
parallel mechanism; Chapter 3 presents the robust control design; Chapter 4 presents
the simulation results and addresses some relevant discussions and, finally, Chapter 5
summarizes the obtained conclusions.

1.1 Research Objectives

For the master’s degree project, the final goal is to combine the robustness of the H∞
design with the simplicity of the feedback linearization technique into a controller capable
of achieving robust stability and performance for a complex nonlinear uncertain system
as the 2-DOF parallel mechanism considered in this work. This main objective could be
divided in three main topics:

1. Modeling of the 2-DOF parallel mechanism;

2. Robust control design considering model uncertainties;

3. Validation through simulation results.

1.2 Publications

In order to do a first attempt of implementation and validation of the robust control
design proposed in Chapter 3, the proposed design was applied to a 3-DOF RRR spatial
serial mechanism, with its main results presented in the XXII Brazilian Conference on
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Automation on September 2018 (CBA 2018) and published in the conference proceedings
with the title "H-Infinity Control of a 3-DOF RRR Spatial Serial Mechanism" (STEVANI
et al., 2018). Latter, the parallel mechanism modeling together with simulation and
experimental results of applying a feedback linearization control law were presented in
the XXV ABCM International Congress of Mechanical Engineering on October 2019
(COBEM 2019) and published with the title "Design and Control of a 2-DOF Parallel
Mechanism" (COUTINHO et al., 2019) in the conference proceedings.

1.3 Bibliography Review

Robotic mechanisms with parallel architecture have been used in different tasks, both
in industrial and research applications (HESS-COELHO; HASZL, 2005), due to their
potential to achieve faster dynamics, higher rigidity and precision with lower weight energy
consumption in comparison to robots with serial topology (PASHKEVICH; CHABLAT;
WENGER, 2006; PATEL; GEORGE, 2012). All this potential comes at a cost: reduced
workspace and more complex kinematic and dynamic modeling, which could be overcome
with better choices regarding the mechanism’s topology as its parameters, joints and
mechanical design (HARTMANN, 2018).

On the modeling of these parallel mechanisms, several formulations for the dynamic
model of these robots are found in the literature. The two most popular ones are the
formalism of Newton-Euler (DASGUPTA; MRUTHYUNJAYA, 1998; ZHANG; ZHANG;
CHEN, 2014; LI et al., 2003; ARIAN et al., 2017; SHIAU; TSAI; TSAI, 2008) and
Lagrange (LI; XU, 2005; SINGH; SANTHAKUMAR, 2015; SINGH et al., 2015; SINGH;
VINOTH; SANTHAKUMAR, 2014; YAO et al., 2017), although both approaches present
inherent mathematical complications that make them inefficient: the need of computing
reactive efforts and the usage of multipliers, respectively (COUTINHO et al., 2019).

The Virtual Work Principle (VWP) and the Virtual Power Principle (VPP) are other
useful approaches since they avoid the calculation of reactive efforts. However, their
need for complex mathematical manipulations and sometimes simplifying hypotheses may
difficult their application (CODOUREY; BURDET, 1997; GALLARDO-ALVARADO;
RODRÍGUEZ-CASTRO; DELOSSANTOS-LARA, 2018; LI; XU, 2009; STAICU, 2009a;
STAICU, 2009b; STAICU; ZHANG, 2008; STAICU; ZHANG; RUGESCU, 2006; ZHAO;
GAO, 2009; ZHU et al., 2005). There are also the works that use the Boltzmann-Hamel
formalism (ALTUZARRA et al., 2015) and the natural orthogonal complement formula-
tion (NOC) (AKBARZADEH; ENFERADI; SHARIFNIA, 2013; XI; SINATRA, 2002),
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which could be interesting choices since they can reuse preconceived models while also
avoiding the calculation of reactive efforts. Another possibility is to use a method based
on Cartan connection and differential geometry that can be applied to write the kinemat-
ical and dynamical equations in several representations, as for example quaternions and
dual-quaternions and other Lie groups and algebras representations. Among the advan-
tages of the method is the fact that quaternion and dual-quaternion formulations become
more intuitive (COLÓN, 2018; COLÓN, 2015b; COLÓN, 2015a; COLÓN, 2014). Further
discussions regarding modeling approaches can be found in Coutinho (2020).

Focusing now on the possible choices of control strategies for these types of robots,
consolidated techniques previously applied to serial mechanisms are also being adapted
to be applied in parallel ones (HARTMANN, 2018). In order to do that, the modeling
complexity inherent to all parallel mechanisms is an obstacle that needs to be surpassed
(PACCOT; ANDREFF; MARTINET, 2009). The model could be simplified to be applied
in real time control systems as done in Almeida and Hess-Coelho (2013), but the control
performance could be compromised as observed in Molina (2012) with both simulation
and experimental results.

As pointed out in Zubizarreta et al. (2013), the complexity of the complete inverse
dynamics caused by the presence of more than one kinematic chain demands too much
computational effort. An interesting strategy to avoid this issue is performed in Wang
et al. (2017) where a computed-torque control (CTC) with feedforward terms is used,
exempting the need of powerful hardware since the model computation could be performed
offline. Another problem that needs to be addressed – not only for closed-chain robots,
it is worth mentioning – is the model uncertainties, which includes uncertain parameters,
external disturbances, load variation, neglected dynamics and nonlinear effects such as
backlash, friction, elastic deformation and clearance (HESSELBACH et al., 2004; ZHAN
et al., 2018; GRZELCZYK; STAŃCZYK; AWREJCEWICZ, 2016).

Complex control designs involving robust (RIGATOS; SIANO; POMARES, 2017),
adaptive (ACHILI et al., 2012) and nonlinear (NATAL; CHEMORI; PIERROT, 2016)
control theories have been applied on parallel mechanisms as well (HESSELBACH et al.,
2004). On the nonlinear control category, sliding mode control (PILTAN; SULAIMAN,
2012) is a popular choice due to its enhanced robustness to model uncertainties in com-
parison to feedback linearization approach. Singh and Santhakumar (2015) present a
robust version of the SMC while Zeinali and Notash (2010) opt for combine an adaptive
approach with the SMC. Model and non-model based control approaches have already
been experimentally applied to the parallel robot studied in this work: sliding mode con-
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trol, computed-torque control and PD control (COUTINHO, 2020). In order to propose
a different control design to evaluate its performance in comparison to the previously
implemented ones, two control designs were investigated.

The first and more audacious attempt was the disturbance observer-based control
(DOBC) (CHEN et al., 2015) combined with CTC. In this configuration, the CTC was
responsible for linearize and control the nominal part of the parallel mechanism nonlinear
model while the disturbance observer (DOB) would estimate and cancel on real-time
any disturbance – including external disturbances, model uncertainties and parameters
variation – perceived in the control loop, thus enhancing the robustness of the CTC design.
Different methodologies for the DOB design were studied: the linear DOB applied to a
delta parallel mechanism from Ramírez-Neria et al. (2015), the nonlinear DOB applicable
to single-input single-output (SISO) systems with mismatched disturbances from Yang,
Chen and Li (2011) and its extension to multi-input multi-output (MIMO) systems from
Yang, Li and Chen (2012). Unfortunately, none of the approaches worked out when
applied to the 2-DOF parallel mechanism, mainly due to the lack of available time and
expertise on DOBs of this work’s author.

The second and more tangible approach combined H∞ design with, again, CTC.
The purpose of the CTC was the same as in the previously attempt, but now the H∞
controller was aiming to attenuate the disturbances instead of canceling them. Similar
control approaches have been implemented for different applications. Rigatos, Siano and
Raffo (2016) proposed an H∞ design with online local linearization to control robotic
mechanisms, with dedicated results for closed-chain mechanisms (RIGATOS; SIANO;
POMARES, 2017). Terra et al. (2000) applied the H∞ design with feedback linearization
(FL) to an underactuated manipulator robot and shown that, in the presence of model
uncertainties, this robust control design led to better results in comparison to a PID
controller. Pan, Jin and Wang (2011) shown improved robustness when applying the
H∞ design combined with FL for roll stabilizing of autonomous underwater vehicle under
wave disturbances. This second approach was chosen to control the parallel mechanism
studied in this work and its design is carried out in Chapter 3.

Basically, H∞ control theory constructs an optimization problem in the frequency
domain which its solution will result in a controller capable of guaranteeing robust stability
and performance of the closed-loop system. This optimization is formulated around the
H∞ norm, which can be interpreted as the distance in the complex plane from the origin to
the farthest point in the Nyquist plot of the considered transfer function (ZHOU; DOYLE,
1998). With that in mind, the goal is to find the controller that produces the closed-loop
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with the smallest H∞ norm in terms of the desired stability and performance criteria.
To define these criteria, first of all the family of plants must be known – that is, the
possible plants that could exist due to different parameter values. In this analysis, a trade-
off between robustness and performance must be considered: guaranteeing robustness
for a larger family of plants leads to worse performance and vice-versa (SKOGESTAD;
POSTLETHWAITE, 2007).

In order to generate this family of plants, different sets of parameters must be chosen,
all of them respecting the tolerances defined for each parameter. Instead of just choosing
each set randomly within the predefined boundaries, this work proposes the use of the
latin hypercube sampling technique. The LHS provides a more complete coverage of the
sample space since each sample is chosen considering the total number of samples, so
the final set is more uniformly distributed along the sample space (HELTON; DAVIS;
JOHNSON, 2005; HELTON; DAVIS, 2002). With this approach, the parameter set is
effectively distributed inside the sample space. Another advantage of using the LHS is to
be able to fix the number of computed samples despite the number of parameters in each
sample, as explained in more details in Chapter 4.

With the family of plants defined, different methods can be used to define the stability
and performance criteria in order to formulate the H∞ control problem. The most popular
ones are the mixed-sensitivity and the loop-shaping designs (SKOGESTAD; POSTLETH-
WAITE, 2007). As examples of these two methods been applied to robotics, Mohammed
and Hasnaa (2017) used mixed-sensitivity in the control of a 2-DOF serial manipulator,
Alkamachi and Erçelebi (2018) also used mixed-sensitivity but for a quadcopter and,
finally, there’s the work of Hongliang (2013) where the loop-shaping methodology is ap-
plied to flexible systems. Both approaches rely on the frequency domain analysis, specially
when dealing with unmodelled disturbances (SKOGESTAD; POSTLETHWAITE, 2007).
To quantify the influence of these disturbances in the frequency domain, this work applied
sinusoidal inputs with different frequencies to the linearized model – that is, the resul-
tant model after the FL is applied to the nonlinear system – then the Fourier Transform
(FT) was used to compute the magnitude response for different disturbances scenarios
(BRACEWELL, 1986; WU et al., 2012; TIMCENKO; ALLEN, 1993).

To construct this magnitude response, the magnitude of the model output for the
fundamental frequency is considered. Since it is possible that multiple harmonics show
up in the FFT analysis – specially when considering highly nonlinear disturbances – it is
necessary to quantify the influence of this harmonics over the linear response, the latter
represented by the fundamental frequency magnitude. To check if this information is
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representative, the total harmonic distortion of the model output is analyzed as well.
The THD is the maximum magnitude difference between the fundamental frequency and,
usually, the first five harmonics. The lower the THD is, the more representative the linear
response is (SHMILOVITZ, 2005). More details can be found in Chapter 4.
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2 2-DOF PARALLEL MECHANISM

After years of research and validation, many modeling approaches were developed
and consolidated for serial mechanisms. Yet, there is not an established methodology
to model parallel ones. Searching in the available literature led to the discovery of a
simple and systematic methodology developed by Coutinho and Hess-Coelho based on
the work of Orsino (ORSINO; HESS-COELHO; PESCE, 2015; ORSINO, 2016; ORSINO;
HESS-COELHO, 2015) to compute parallel mechanisms’ kinematic and dynamic models,
applicable to any closed-chain architecture (COUTINHO, 2020).

This methodology’s main idea is to fragment the parallel system into serial subsystems
and then piece them together through mechanical constraints obtained from the robot
kinematics. In the specific case of the parallel mechanism (Figure 1) considered in this
research, the system is fragmented into two RR serial mechanisms (Figure 2) combined
through four constraint equations, leading to a 2-DOF mechanism.

In this work, three types of analysis are relevant regarding the parallel mechanism
model: forward kinematics, forward dynamics and inverse dynamics. The first one de-
scribes the end-effector’s coordinates in terms of the joint angles, and is useful to compute
reference trajectories and the coupling equations used in the dynamic modeling. The sec-
ond one describes the mechanism motion in terms of the actuator’s efforts, and is used to
simulate the mechanism behavior. And the last one is just the opposite: it describes the
necessary actuator’s efforts to bring the system to its actual state through its kinematics,
and is used in control design.

The methodology can be summarized in the following steps:

1. Fragment the parallel mechanism into serial subsystems and obtain the dynamic
model for each one of them;

2. Obtain the kinematic constraints between the serial subsystems that piece them
together to form the parallel mechanism;
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Figure 1: 2-DOF parallel mechanism schematics. Source: Coutinho (2020).

Figure 2: RR serial mechanism schematics. Source: Coutinho (2020).

3. Combine the subsystems dynamic models through the kinematic links found in the
previous step (coupling equations);
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4. Enforce the mechanical constraints during forward dynamic simulation to avoid
drifts due to accumulated error;

5. Compute the inverse dynamic model in terms of the actuated coordinates to obtain
the control effort.

The complete modeling methodology description can be found in Coutinho (2020),
and the entire deduction for the case of the 2-DOF parallel mechanism presented in
this Chapter was published in the XXV ABCM International Congress of Mechanical
Engineering (COUTINHO et al., 2019).

2.1 Forward Kinematics

In order to obtain the end-effector’s coordinates in terms of the joint angles, two
possible paths exist in the parallel architecture described in Figure 1: one beginning at
the right link and the other at the left one.

Taking the right path leads to: x = l0 + l1c(θ1,1) + l2c(θ1,1+2)
y = l1s(θ1,1) + l2s(θ1,1+2)

, (2.1)

while taking the left path leads to: x = −l0 − l1c(θ2,1)− l2c(θ2,1+2)
y = l1s(θ2,1) + l2s(θ2,1+2)

. (2.2)

where lj [m] is the jth link length, (x, y) [m] is the end-effector’s linear position and θi,j
[rad] is the jth link joint angle with respect to the ith kinematic chain. Also, s(x) and
c(x) states for sin(x) and cos(x), respectively, and θa,b+c states for θa,b + θa,c.

Since the end-effector coordinates must satisfy both paths, equations (2.1) and (2.2)
are combined into:

φ(q) = 0, (2.3)
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with φ(q) as a vector function in terms of the generalized coordinates vector given by:

φ(q) =



x− (l0 + l1c(θ1,1) + l2c(θ1,1+2))
y − (l1s(θ1,1) + l2s(θ1,1+2))

x− (−l0 − l1c(θ2,1)− l2c(θ2,1+2))
y − (l1s(θ2,1) + l2s(θ2,1+2))

 , (2.4)

where q stands for the generalized coordinates vector given by:

q =



x

y

θ1,1

θ1,2

θ2,1

θ2,2


. (2.5)

Through equation (2.3), its first variation can be computed, resulting in the system’s
direct kinematics:

δφ(q) = A(q)δq = 0, (2.6)

with

A(q) = ∂φ

∂q
, (2.7)

given by:

A(q) =



1 0 l1s(θ1,1) + l2s(θ1,1+2) l2s(θ1,1+2) 0 0
0 1 −l1c(θ1,1)− l2c(θ1,1+2) −l2c(θ1,1+2) 0 0
1 0 0 0 −l1s(θ2,1)− l2s(θ2,1+2) −l2s(θ2,1+2)
0 1 0 0 −l1c(θ2,1)− l2c(θ2,1+2) −l2c(θ2,1+2)

 .

(2.8)

Now, the generalized coordinates vector q could be split into actuated and passive
coordinates, the former being the actuated joints and the latter being the passive joints
and the end-effector position:

q = Qaqa +Qpqp, (2.9)
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with

Qa =



0 0
0 0
1 0
0 0
0 1
0 0


, Qp =



1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1


, qa =

 θ1,1

θ2,1

 , qp =



x

y

θ1,2

θ2,2

 , (2.10)

and so does its first variation computed in equation (2.6):

δq = Qaδqa +Qpδqp. (2.11)

Substituting equation (2.11) in (2.6) results in:

AQaδqa + AQpδqp = 0. (2.12)

Manipulating the above equation, one gets:

δq = C(q)δqa, (2.13)

with

C(q) = Qa −Qp(A(q)Qp)−1(A(q)Qa), (2.14)

which will be useful together with A(q) to compute the system dynamics in the next
section.

2.2 Forward Dynamics

The forward dynamics is computed mainly for simulation purposes. For the parallel
mechanism, the serial subsystems dynamics are derived and then combined through the
coupling equations to form the complete parallel architecture. All steps are described in
the next subsections.

2.2.1 Serial Subsystems

The dynamic model of a mechanism presents the relation between the generalized
forces acting on it (actuators effort) and its configuration (states) over time. In the case
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of the Euler-Lagrange method, this relation is obtained balancing the different energy
sources acting on the system: the kinematic and potential energies (LANCZOS, 2012).

First of all, in order to compute the kinetic and potential energies equations, it is
necessary to find the kinematic relations between the center of mass positions of each
link in terms of the joint angles – that is, the relation between the linear and angular
displacements. As can be seen in Figure 2, the kinematic relations are given by:

x1 = lg1c(θ1)
y1 = lg1s(θ1)
x2 = l1c(θ1) + lg2c(θ1+2)
y2 = l1s(θ1) + lg2s(θ1+2)

, (2.15)

where (xi, yi) [m] is the ith link’s center of mass linear position, lgj [m] is the distance
from the beginning of the ith link to its center of mass, li [m] is the ith link length and θi
[rad] is the ith link joint angle. Also, θa+b stands for θa + θb.

Assuming that each robot link is a rigid body, the total kinetic energy of the ith link
is given by the sum of its linear and angular kinematic energies:

Ki = 1
2mi‖vi‖2 + 1

2Ji‖ωi‖
2, (2.16)

with mi [kg] is the ith link mass and the principal moments of inertia Ji [kg.m2] of the ith

link in relation of its center of mass, vi [m/s] is the center of mass absolute linear velocity
of the ith link and ωi [rad/s] is the ith link absolute angular velocity.

The linear and angular velocities can be obtained differentiating the linear and angular
positions, respectively:  vi = d

dt
(xi, yi) =

(
d
dt
xi,

d
dt
yi
)

ωi = d
dt
θxy,i

, (2.17)

where θxy,i is the angular position of the ith link in terms of the static reference coordinates.

Replacing the kinematic relations from equation (2.15) in the above equation, one
finds that:

K1 =
(1

2m1lg
2
1 + 1

2J1

)
θ̇2

1, (2.18)

K2 =
(1

2m2l
2
1 + 1

2m2lg
2
2 +m2l1lg2c(θ2) + 1

2J2

)
θ̇2

1+

+
(1

2m2lg
2
2 + 1

2J2

)
θ̇2

2 +
(
m2lg

2
2 +m2l1lg2c(θ2) + J2

)
θ̇1θ̇2.

(2.19)
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Now, assuming that the only contribution is the gravitational force, the potential
energy of the ith link is given by:

Pi = −miḡ
T (xi, yi), (2.20)

where ḡ is the gravity acceleration vector given by:

ḡ = g

 0
−1

 , (2.21)

with g [m/s2] as the gravity constant.

Replacing the kinematic relations from equation (2.15) in the above equation, one
finds that:

P1 =gm1lg1s(θ1), (2.22)

P2 =gm2l1s(θ1) + gm2lg2s(θ1+2). (2.23)

The Lagrangian is defined as the difference between the total kinematic and potential
energies acting on the mechanism, that is:

L =
∑
i

Ki −
∑
i

Pi. (2.24)

In the case of the 2-DOF RR serial mechanism, the Lagrangian is given by:

L =
(1

2m1lg
2
1 + 1

2J1 + 1
2m2l

2
1 + 1

2m2lg
2
2 +m2l1lg2c(θ2) + 1

2J2

)
θ̇2

1+

+
(1

2m2lg
2
2 + 1

2J2

)
θ̇2

2 +
(
m2lg

2
2 +m2l1lg2c(θ2) + J2

)
θ̇1θ̇2−

−gm1lg1s(θ1)− gm2l1s(θ1)− gm2lg2s(θ1+2).

(2.25)

Before applying the Euler-Lagrange equation, it is defined a generalized coordinates
vector in terms of the joint angles:

q =
 θ1

θ2

 . (2.26)

Then, the Euler-Lagrange equation is defined as a function of the Lagrangian:

d

dt

∂L

∂q̇i
− ∂L

∂qi
= ui, (2.27)

where ui is the ith actuator effort applied to the ith link.
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Applying the Euler-Lagrange equation (2.27) to the 2-DOF RR serial mechanism
Lagrangian from equation (2.25) results in:

u1 =
(
m1lg

2
1 + J1 +m2l

2
1 +m2lg

2
2 + 2m2l1lg2c(θ2) + J2

)
θ̈1+

+
(
m2lg

2
2 +m2l1lg2c(θ2) + J2

)
θ̈2 − 2m2l1lg2s(θ2)θ̇1θ̇2 −m2l1lg2s(θ2)θ̇2

2+

+gm1lg1c(θ1) + gm2l1c(θ1) + gm2lg2c(θ1+2),

u2 =
(
m2lg

2
2 +m2l1lg2c(θ2) + J2

)
θ̈1 +

(
m2lg

2
2 + J2

)
θ̈2 +m2l1lg2s(θ2)θ̇2

1+

+gm2lg2c(θ1+2).

(2.28)

The Euler-Lagrange equation can be rewritten in the so-called closed-form given by:

Mi(qi)q̈i + Vi(qi, q̇i) +Gi(qi) = Ui, (2.29)

with

qi =
 θi,1

θi,2

 ,
whereMi(qi) is the inertia matrix, Vi(qi, q̇i) is the vector of centrifugal and Coriolis terms,
Gi(qi) is the vector of gravitational forces and Ui is the vector of generalized actuators’
efforts (COUTINHO; COELHO, 2016; DOBRIANSKYJ; COUTINHO; HESS-COELHO,
2014; CRAIG, 2005). The coefficients of the matrix M(q) and vectors V (q, q̇) and G(q)
are the ones from equation (2.28):

M(q) =
 D11(q) D12(q)
D12(q) D22(q)

 , (2.30)

V (q, q̇) =
 D111(q)θ̇2

1 +D122(q)θ̇2
2 +D112(q)θ̇1θ̇2 +D121(q)θ̇2θ̇1

D211(q)θ̇2
1 +D222(q)θ̇2

2 +D212(q)θ̇1θ̇2 +D221(q)θ̇2θ̇1

 , (2.31)

G(q) =
 D1(q)
D2(q)

 , (2.32)
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with

D1(q) = g(m1lg1 +m2l1)c(θ1) + gm2lg2c(θ1+2),

D2(q) = gm2lg2c(θ1+2),

D11(q) = m1lg
2
1 + Jz1 +m2(l21 + lg2

2) + Jz2 + 2m2l1lg2c(θ2),

D21(q) = D12(q) = m2lg
2
2 + Jz2 +m2l1lg2c(θ2),

D22(q) = m2lg
2
2 + Jz2,

D221(q = D212(q) = D222(q) = D111(q) = 0,

D122(q) = D121(q) = D112(q) = −m2l1lg2s(θ2),

D211(q) = m2l1lg2s(θ2).

2.2.2 Coupling Equations

The coupling equations are the matrices A(q) and C(q) computed in Section 2.1.
First, in order to guarantee that the coupling equations are satisfied during simulation
– which means guaranteeing φ(q) = 0 – an asymptotically stable second order dynamics
can be imposed to φ so that, if φ respects the coupling condition in the beginning of the
simulation, the condition will remain satisfied. Doing so, φ dynamics is given by:

φ̈(q) + 2λ̄φ̇(q) + λ̄2φ(q) = 0, (2.33)

with λ̄ faster than the robot dynamics. This results in:

A(q)q̈ + Ȧ(q)q̇ + 2λ̄A(q)q̇ + λ̄2φ = 0. (2.34)

Now, to combine the two serial subsystems into the parallel mechanism through the
coupling equations, the VWP needs to be applied. Essentially, the VWP states that the
sum of all the efforts performed by a mechanism must be zero, therefore the sum of the
work performed by internal and external forces related to this mechanism must be equal
to zero (TSAI, 1999). For each serial subsystem, the sum of the forces is given by:

fi(q) = Ui −Mi(qi)q̈i − Vi(qi, q̇i)−Gi(qi). (2.35)

The sum of the work is defined as the sum of the forces multiplied by the virtual
displacement given in terms of the generalized coordinates vector, therefore applying the
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VWP results in:

fTi (q)δqi = 0. (2.36)

Since δqi is an independent virtual coordinates vector, equation (2.36) is satisfied by:

fi(q) = 0. (2.37)

The same analysis could be applied to the complete parallel mechanism concatenating
the two models with the end-effector, resulting in:

f(q) = U −H(q)q̈ − h(q, q̇), (2.38)

where H(q) = M(q) and h(q, q̇) = V (q, q̇) +G(q) with:

M(q) =


0 0 0
0 M1(q1) 0
0 0 M2(q2)

 , V (q, q̇) =


0

V1(q1, q̇1)
V2(q2, q̇2)

 , G(q) =


0

G1(q1)
G2(q2)

 , U =


0
U1

U2

 .

Applying now the VWP to f(q), one gets:

fT (q)δq = 0, (2.39)

but now it can’t be concluded that f(q) = 0 because the coordinates in vector δq are not
independent. To overcome this issue, matrix C(q) can be used. Substituting equation
(2.13) in (2.39) and doing some mathematical manipulation, one gets:

δqTa C
T (q)f(q) = 0, (2.40)

where the vector δqa has independent coordinates, resulting in:

CT (q)f(q) = 0, (2.41)

which is the forward dynamics equation.

Lastly, to simulate the parallel mechanism forward dynamics and guarantee that the
coupling conditions are satisfied at the same time, equations (2.34) and (2.41) need to
be evaluated together, resulting in the complete simulation forward dynamic model given
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by:  CT (q)H(q)
A(q)

 q̈ =
 CT (q)(U − h(q, q̇))
−Ȧ(q)q̇ − 2λ̄A(q)q̇ − λ̄2φ(q)

 . (2.42)

2.3 Inverse Dynamics

In control design, the inverse dynamics is used to define the control effort needed
to drive the system actual state to the desired one. In order to obtain it, both forward
kinematics and dynamics are considered. Back to Section 2.1, equation (2.13) shows a
relation between the generalized and the actuated coordinates vectors. This same relation
can also be found for the vectors’ derivatives:

q̇ = C(q)q̇a. (2.43)

Differentiating the above equation, one gets:

q̈ = C(q)q̈a + Ċ(q)q̇a, (2.44)

To compute Ċ(q), equation (2.6) is expanded to the generalized coordinate first deriva-
tive:

A(q)q̇ = 0. (2.45)

Differentiating the above equation, one gets:

Ȧ(q)q̇ + A(q)q̈ = 0. (2.46)

Now, differentiating equation (2.9) two times results in:

q̈ = Qaq̈a +Qpq̈p. (2.47)

Substituting the above equation in equation (2.46) leads to:

Ȧ(q)q̇ + A(q)(Qaq̈a +Qpq̈p) = 0. (2.48)

Isolating q̈p in the above equation, one gets:

q̈p = (A(q)Qp)−1(−Ȧ(q)q̇ − A(q)Qaq̈a). (2.49)
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Substituting the above equation in equation (2.46) results in:

q̈ = Qaq̈a +Qp(A(q)Qp)−1(−Ȧ(q)q̇ − A(q)Qaq̈a). (2.50)

Manipulating the above equation and substituting equation (2.43) for q̇, one gets:

q̈ = (Qa −Qp(A(q)Qp)−1A(q)Qa)q̈a −Qp(A(q)Qp)−1Ȧ(q)C(q)q̇a. (2.51)

Comparing the above equation with equation (2.44), one gets:

Ċ(q) = −Qp (A(q)Qp)−1 Ȧ(q)C(q). (2.52)

Substituting the above equation in (2.41) results in:

CT (q)H(q)
(
C(q)q̈a + Ċ(q)q̇a

)
= CT (q)U − CT (q)h(q, q̇), (2.53)

leading to the inverse dynamics equation:

Ha(q)q̈a + ha(q, q̇) = Ua, (2.54)

with

Ha(q) = C(q)TH(q)C(q), (2.55)

ha(q, q̇) = CT (q)(H(q)Ċ(q)q̇a + h(q, q̇)), (2.56)

Ua = CT (q)U. (2.57)

2.4 Actuator Model

In the previous Sections, it is assumed that the control variable is the torque applied
to the parallel mechanism actuated joints. However, in practice there are two motors
responsible to convert the control signal computed by the control hardware in torque
and applied it to each actuated joint – so, the motors play the role of actuators in the
control loop. Therefore, the actual controlled variable becomes the current applied to the
actuators.

Assuming that the actuators are DC motors with resultant torque proportional to
their armature current, they can be modeled as:

τ = Kti, (2.58)
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where τ is the electromagnetic torque, i is the armature current and Kt is the motor
torque constant. Bringing these variables to the previous formulation, the resultant torque
τ is equivalent to Ua as it is the control effort applied to the parallel mechanism and
the armature current is a new control signal UFL defined as the output of the feedback
linearization loop presented in Chapter 3.

In this case, equation (2.58) can be rewritten in terms of Ua and UFL as:

Ua = KtUFL, (2.59)

so equation (2.54) becomes:

Ha(q)q̈a + ha(q, q̇) = KtUFL. (2.60)
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3 CONTROL DESIGN

3.1 Feedback Linearization

The feedback linearization technique allows one to obtain a linear input-output re-
sponse from a nonlinear system by defining a new input to algebraically transform the
original nonlinear system into a linear one (HAJJAJI; OULADSINE, 2001; SLOTINE;
LI, 1991; CRAIG, 2005). Since the parallel mechanism inverse dynamics is completely
nonlinear due to the presence of the coupling matrix C(q) and its derivative, it needs to
be linearized. Defining the feedback linearization control signal UFL in terms of a new
control signal ŪFL given by:

UFL = αŪFL + β, (3.1)

and substituting it in equation (2.60) results in a new inverse dynamic model given by:

Ha(q)q̈a + ha(q, q̇) = Kt(αŪFL + β). (3.2)

Defining α = 1
Kt
Ha(q), β = 1

Kt
ha(q, q̇) and ŪFL = −2λq̇a−λ2(qa−UR), equation (3.2)

becomes:

q̈a + 2λq̇a + λ2qa = λ2UR, (3.3)

which corresponds to the dynamic response of a decoupled MIMO second order linear
system with transfer function matrix given by:

qa(s)
UR(s) = λ2

(s+ λ)2 × I2, (3.4)

with I2 as the size 2 identity matrix and UR as the robust control signal, the latter being
the output of the robust controller proposed in Section 3.2.

It is important to highlight the fact that the linearized system is intentionally com-
puted to not result in a double integrator linear system. The reason is because any
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disturbance affecting the nonlinear model could lead to an imperfect linearization, pos-
sibly resulting in an unstable system. Moving the poles away from the origin makes the
system less susceptible to this issue. The feedback linearization loop is schematized in
Figure 3.

Figure 3: Feedback linearization schematics. Source: the author.

3.1.1 Model Matrices Computation Through Feedforward Loop

As pointed out in Hartmann (2018), computing the model matrices in real-time –
that is, inside the feedback linearization loop during the system operation – increases the
computational effort required to perform the control loop. In order to avoid this, the
model matrices could be computed offline using the desired states instead of the actual
ones – which means that the model matrices would be computed before the control loop
begins to act on the plant. In this case, the feedback linearization loop would change
from Figure 3 to Figure 4.

Adopting this strategy prevents the need of a powerful control hardware when imple-
menting the complete system, therefore resulting in a more affordable robotic set. Also,
computing the model matrices in advance avoids that possible measurement errors impact
these computation. In the works of Coutinho (2020) and Hartmann (2018), this approach
is employed as well.
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Figure 4: Feedback linearization with feedforward loop for model matrices computation
schematics. Source: the author.

3.2 H∞ Control

As shown in Section 3.1, the nonlinear model of the 2-DOF parallel mechanism is
transformed into a linear system given by equation (3.4) through the feedback linearization
control loop. Atop of that, the original multi-input multi-output (MIMO) system is
decoupled, becoming the concatenation of two isolated single-input single-output (SISO)
systems given by the same model. For this reason, the following robust control analysis
and design can be carried out considering a single SISO system given by:

G(s) = λ2

(s+ λ)2 . (3.5)

3.2.1 Robust Control Analysis

As stated by Skogestad and Postlethwaite (2007), a robust control system is insensitive
to differences between the actual system and the system model considered during control
design. Following this definition, the main goal is to design a robust controller capable
to guarantee that the closed-loop system satisfies the same control specifications despite
possible mismatches between the actual plant and the one considered during control design
– the latter also known as nominal plant.

These differences are the so-called model uncertainties, and can be grouped in three
categories: parametric uncertainty, where the model structure is known but some param-
eters are not; neglected and unmodelled dynamics uncertainty, where the model structure
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is not entirely known either due to deliberate simplifications or because of a lack of under-
standing of the physical process; or lumped uncertainty, which comprises one or several
uncertainty sources that can be even of different types, all combined into a single repre-
sentation. For simplicity, the third option is the usual choice since it comprehends the
first two.

Different types of uncertainties are best held by different types of controllers. When
talking about H∞ control, it provides advantages when dealing with unmodelled uncer-
tainty mainly due to its one key point: H∞ control design checks if the design specifications
are met even for the worst case uncertainty. This approach results in a solid and robust
design, although this may lead to conservative results when it is unlikely that the worst
case situation will occur. Also, if the uncertainty structure is well known, there are other
parametric methods available that can even rely on optimization of some specific aspect of
the control response in order to provide more audacious results (OWEN; JAMES, 1992).

When dealing with lumped uncertainty, the frequency domain representation is well
suited for describing it since this approach is capable to provide simple yet realistic un-
certainty descriptions. Also, a multiplicative structure is usually considered since its
numerical value is more informative (SKOGESTAD; POSTLETHWAITE, 2007) when
analyzing the capability of the controller to effectively directs the output towards its
respective reference value. To explain this, it is considered an uncertain model of the
form:

G∆(s) = G(s)(1 + w∆(s)∆(s)). (3.6)

By hypothesis, ∆(s) is any stable transfer function that satisfies |∆(jω)| ≤ 1,∀ω. If
there is a plant G∆(s) with |w∆(jω0)| ≥ 1 at some specific frequency ω0, then exists a
|∆(jω0)| ≤ 1 such that G∆(jω0) = 0. This means that at frequency ω0, it does not matter
which input value is applied to the plant since it has no effect on the output. So, the
magnitude of w∆(s) can directly provide information regarding the plant controllability.
Before analyzing the effects of the uncertainty on system stability and performance, it is
important to first address these same aspects about the nominal plant.

3.2.1.1 Nominal Stability and Performance

Typically, a feedback control loop is described by the schematics in Figure 5 where
r(s) is the reference input signal, y(s) is the plant output, u(s) is the control signal,
e(s) = r(s)−y(s) is the error between the reference and the output, d(s) is the disturbance
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signal, n(s) is the measurement error and the output and K(s) and G(s) are the controller
and plant transfer functions, respectively.

Figure 5: Control loop schematics. Source: the author.

From Figure 5, one can derive that:

y(s) = G(s)K(s)
1 +G(s)K(s)r(s) + 1

1 +G(s)K(s)d(s)− G(s)K(s)
1 +G(s)K(s)n(s), (3.7)

e(s) = 1
1 +G(s)K(s)r(s)−

1
1 +G(s)K(s)d(s)− 1

1 +G(s)K(s)n(s). (3.8)

Two important relations are the sensitivity and complementary sensitivity functions.
The first relates the disturbance d(s) with the output y(s) while the second relates the ref-
erence input r(s) with the output y(s). So, the sensitivity and complementary sensitivity
functions, S(s) and T (s) respectively, are given by:

S(s) = 1
1 + L(s) , (3.9)

T (s) = L(s)
1 + L(s) , (3.10)

where

S(s) + T (s) = 1, (3.11)

with L(s) = G(s)K(s) as the open-loop transfer function.

During robust control design, it is typically assumed the stability of the nominal
plant. Regarding performance evaluation, different criteria can be used – either on time
or frequency domain. For the frequency domain analysis, a typical approach is to analyze
the shape of different transfer functions, either in open or closed-loop configuration. For
the mixed-sensitivity H∞ control design, the closed-loop transfer functions are weighted
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in order to achieve the desired system response. Therefore, it is useful to define the
performance criteria in terms of the same closed-loop transfer functions.

Following this idea, the sensitivity function S(s) is a good indicator of closed-loop
performance (SKOGESTAD; POSTLETHWAITE, 2007). Typical performance criteria
in terms of S(s) include:

• Minimum bandwidth frequency;

• Maximum tracking error at selected frequencies;

• Maximum steady-state tracking error;

• Shape of S(s) over selected frequency ranges;

• Maximum peak magnitude of S(s).

These specifications can be mathematically captured through an upper bound on the
magnitude of S(s), that is:

|S(jω)| < 1
wp(jω) , ∀ω, (3.12)

where wp(s) is a weight selected by the control designer. Therefore, the following equation
represents the nominal performance (NP) condition:

|wp(jω)S(jω)| < 1, ∀ω. (3.13)

Typically, the performance weight function wp(s) is modeled as:

wp(s) = s/M + ω∗B
s+ ω∗BA

, (3.14)

so 1/|wp(jω)| is equal to A ≤ 1 at low frequencies (ω ≈ 0) and to M ≥ 1 at high ones
(ω � 1). The parameter ω∗B is approximately the bandwidth requirement.

3.2.1.2 Robust Stability and Performance

Ensuring that all possible plants within the family of plants are stable and satisfy the
performance requirements means to guarantee robust stability and performance, respec-
tively.

First of all, one needs to define the family of plants model by choosing a suitable
representation for the uncertainty regions. As mentioned earlier in this Chapter, the
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multiplicative uncertainty is usually considered, leading to a family of plants model given
by equation (3.6). To obtain the rational weight w∆(jω), one typical approach suggested
by Skogestad and Postlethwaite (2007) consists in select a nominal model G(s) and then
find the smallest radius lm(ω) which includes all the possible plants ∏:

lm(ω) = max
G∆(jω)∈

∏
∣∣∣∣∣G∆(jω)−G(jω)

G(jω)

∣∣∣∣∣. (3.15)

The rational weight w∆(s) must be chosen to cover the set, therefore:

|w∆(jω)| ≥ lm(ω), ∀ω. (3.16)

Now, considering the uncertain plant G∆(s) given by equation (3.6), the open-loop
transfer function considering the uncertain plant instead of the nominal one is given by:

L∆(s) = G∆(s)K(s) = L(s)(1 + w∆(s)∆(s)), ∀ω, (3.17)

and the closed-loop transfer functions – that is, the sensitivity and complementary sensi-
tivity functions – are given by:

S∆(s) = 1
1 + L∆(s) , (3.18)

T∆(s) = L∆(s)
1 + L∆(s) , (3.19)

As mentioned earlier, the nominal closed-loop system is assumed stable. Also, for
simplicity, the uncertain open-loop transfer function L∆(s) is assumed stable as well.
With these assumptions, through the Nyquist stability condition, the nominal open-loop
transfer function does not encircle -1. Therefore, as the family of plants is norm-bounded,
if there is some plant within the family that encircles -1, then there must be another one
that goes exactly through -1 at some frequency (SKOGESTAD; POSTLETHWAITE,
2007). As a consequence, guaranteeing robust stability (RS) means:

|1 + L∆(s)| 6= 0, ∀L∆(jω), ∀ω. (3.20)

Due to the modulus function, the above equation is equivalent to:

|1 + L∆(s)| > 0, ∀L∆(jω),∀ω, (3.21)
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which could be rewritten as:

|1 + L(s) + w∆(s)∆(s)L(s)| > 0, ∀∆(jω),∀ω, (3.22)

substituting equation (3.17). As pointed out in Skogestad and Postlethwaite (2007), the
worst case for the term w∆(s)∆(s)L(s) is when |∆(s)| = 1 and its phase is such that the
terms (1 + L) and w∆(s)∆(s)L(s) point in the opposite direction. Therefore,

|1 + L(s)− w∆(s)L(s)| > 0, ∀ω, (3.23)

where, applying the reverse triangle inequality, results in:

|1 + L(s)| − |w∆(s)L(s)| > 0, ∀ω, (3.24)

which could be rewritten as:

|w∆(s)T (s)| < 1, ∀ω, (3.25)

substituting equation (3.10). The above equation is the robust stability condition.

Now, substituting equation (3.9) in the nominal performance condition from equa-
tion (3.13), one gets:

|wp(jω)| < |1 + L(jω)|, ∀ω. (3.26)

Since |1 + L(jω)| represents, for each frequency ω, the distance between L(jω) and
the point -1 in the Nyquist plot. Therefore, in order to guarantee nominal performance,
L(jω) must be at least a distance of |wp(jω)| from the point -1.

The robust performance (RP) condition can be obtained applying the same concept
from the nominal performance condition to the uncertain model from equation (3.18),
resulting in:

|wp(jω)S∆(jω)| < 1, ∀S∆(jω),∀ω, (3.27)

which could be rewritten as:

|wp(jω)| < |1 + L∆(jω)|, ∀L∆(jω),∀ω. (3.28)

Since the robust performance condition must be satisfied for all possible plants, this
includes the worst-case weighted sensitivity function, which means the one with maximum
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magnitude:

max
S∆(jω)∈

∏|wp(jω)S∆(jω)| < 1, ∀ω. (3.29)

Rewriting S∆(jω) in terms of the definition of the open-loop function L∆(jω) given
by equation (3.17) results in:

S∆(jω) = 1
1 + L(jω) + w∆(jω)∆(jω)L(jω) , (3.30)

and, as highlighted before, its worst-case scenario is obtained when |∆(s)| = 1 and its
phase is such that the terms (1 + L) and w∆(s)∆(s)L(s) point in the opposite direction,
thus the worst-case for the sensitivity function S∆(jω) is given by:

max
S∆(jω)∈

∏|S∆(jω)| = 1
|1 + L(jω)| − |w∆(jω)L(jω)| = |S(jω)|

1− |w∆(jω)T (jω)| , (3.31)

and, therefore:

max
S∆(jω)∈

∏|wp(jω)S∆(jω)| = |wp(jω)S(jω)|
1− |w∆(jω)T (jω)| . (3.32)

Replacing the above equation into equation (3.29) leads to the robustness of perfor-
mance condition given by:

|wp(jω)S(jω)|+ |w∆(jω)T (jω)| < 1, ∀ω. (3.33)

As the nominal stability is assumed, the remaining conditions analyzed in this Section
– that is, nominal performance and robust stability and performance – can be summarized
as follows:

NP ⇔ |wp(jω)S(jω)| < 1, ∀ω, (3.34)

RS ⇔ |w∆(jω)T (jω)| < 1, ∀ω, (3.35)

RP ⇔ |wp(jω)S(jω)|+ |w∆(jω)T (jω)| < 1, ∀ω. (3.36)

Therefore, it is clear that, in order to satisfy the robust performance condition, nom-
inal performance and robust stability conditions are prerequisites.
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3.2.2 H∞ Control Design

Essentially, H∞ control theory relies on the frequency domain analysis to formulate an
optimization problem that, once solved, will result in a controller capable of guaranteeing
robust stability and performance of the closed-loop system (ZHOU; DOYLE, 1998). Dif-
ferent control design methods based on H∞ control theory are available in the literature,
but for this work the chosen one was the H∞ mixed-sensitivity design. This approach
formulates its optimization problem in terms of the H∞ norm of the weighted closed-loop
transfer functions S(s) and T (s).

In order to do that, first of all, the H∞ norm must be defined. So, the H∞ norm
of a transfer function f(s) is defined as its maximum value as a function of frequency
(SKOGESTAD; POSTLETHWAITE, 2007), which means:

‖f(s)‖∞ , max
ω
|f(jω)|. (3.37)

The above definition is valid for SISO systems. For MIMO ones the H∞ norm is
defined as:

‖F (s)‖∞ , max
ω

σ̄(F (jω)), (3.38)

where F (s) is a transfer function matrix and σ̄ is the upper singular value function.

For MIMO systems, the robustness of stability and performance conditions use the
concept of structured singular values (SSV). As the feedback linearization technique de-
couple the MIMO system in a set of SISO systems, the SISO theory is enough for this work.
Thus, the stability and performance conditions from equations (3.34), (3.35) and (3.36)
can be rewritten in terms of the H∞ norm as:

NP ⇔ ‖wp(s)S(s)‖∞ < 1, (3.39)

RS ⇔ ‖w∆(s)T (s)‖∞ < 1, (3.40)

RP ⇔ ‖wp(s)S(s)‖∞ + ‖w∆(s)T (s)‖∞ < 1. (3.41)

Now that the robust stability and performance conditions are in terms of their H∞
norm, the H∞ control problem can be formulated. In H∞ control design, the standard
problem formulation (SKOGESTAD; POSTLETHWAITE, 2007) is presented in Figure 6.
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This system is mathematically described by: z

v

 = P (s)
 w

u

 =
 P11(s) P12(s)
P21(s) P22(s)

 w

u

 , (3.42)

with the state-space realization of P (s) given by:

P (s) s=


A B1 B2

C1 D11 D12

C2 D21 D22

 , (3.43)

where u(s) represents the control variables, v(s) the measured variables, w(s) the exter-
nal signals such as disturbances or reference commands, and z(s) the so-called "error"
signals that should be minimized in some way in order to achieve the desired control
characteristics.

Figure 6: Standard control configuration. Source: the author.

From Figure 6, it is possible to obtain the closed-loop transfer function between z(s)
and w(s) in the form of a lower fractional transformation given by:

z(s) = Fl(P (s), K(s))w(s), (3.44)

with

Fl(P (s), K(s)) = P11(s) + P12K(I − P22K(s))−1P21(s). (3.45)

Essentially, the H∞ optimal controller is obtained minimizing the H∞ norm of
Fl(P (s), K(s)), that is ‖Fl(P (s), K(s))‖∞. In practice, H∞ algorithms find a sub-optimal
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controller since find an optimal one is numerically and theoretically complicated (SKO-
GESTAD; POSTLETHWAITE, 2007).

This means that, with γmin as the minimum value of ‖Fl(P (s), K(s))‖∞ over all
stabilizing controllers K(s), the H∞ sub-optimal control problem consists in, for a given
γ > γmin, find all stabilizing controllers K(s) such that:

‖Fl(P (s), K(s))‖∞ < γ. (3.46)

This sub-optimal problem can be solved through the iterative algorithm proposed by
Doyle et al. (1988). Following Skogestad and Postlethwaite (2007), the algorithm can be
summarized as follows: for the standard problem formulation from Figure 6, there exists
a stabilizing controller K(s) such that ‖Fl(P (s), K(s))‖∞ < γ if and only if

1. X∞ ≥ 0 is a solution of the algebraic Riccati equation:

ATX∞ +X∞A+ CT
1 C1 +X∞(γ−2B1B

T
1 −B2B

T
2 )X∞ = 0, (3.47)

with Re λi[A+ (γ−2B1B
T
1 −B2B

T
2 )X∞] < 0, ∀i, and

2. Y∞ ≥ 0 is a solution of the algebraic Riccati equation:

AY∞ +X∞A
T +B1B

T
1 + Y∞(γ−2CT

1 C1 − CT
2 C2)Y∞ = 0, (3.48)

with Re λi[A+ Y∞(γ−2CT
1 C1 − CT

2 C2)] < 0, ∀i, and

3.

ρ(X∞Y∞) < γ2. (3.49)

All possible controllers are given by the linear fractional transformation K(s) =
Fl(Kc(s), Q(s)) where Kc(s) has is state-space realization given by:

Kc(s) s=


A∞ −Z∞L∞ Z∞B2

F∞ 0 I

−C2 I 0

 , (3.50)
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with

F∞ =−BT
2 X∞, (3.51)

L∞ =− Y∞CT
2 , (3.52)

Z∞ =(I − γ−2Y∞X∞)−1, (3.53)

A∞ =A+ γ−2B1B
T
1 X∞ +B2F∞ + Z∞L∞C2, (3.54)

and Q(s) any stable proper transfer function such that ‖Q(s)‖∞ < γ.

In order to approach γmin, γ is iteratively reduced towards γmin until the defined
tolerance is achieved. Yet, to apply the algorithm, P (s) must be defined to reflect the
control problem – specially its control specifications. With this purpose, the mixed-
sensitivity method is applied.

3.2.2.1 Mixed-sensitivity Method

The mixed-sensitivity method consists in shaping the sensitivity function S(s) along
with one or more closed-loop transfer functions, such as K(s)S(s) or T (s) (SKOGESTAD;
POSTLETHWAITE, 2007). Since the multiplicative uncertainty is being considered (see
equation (3.6)), it is desirable to be able to shape T (s) in order to achieve robust stability.
Also, shaping K(s)S(s) is important for limiting the size and bandwidth of the controller,
thus the control energy used. On top of that, it is typically assumed that the measurement
error is negligible.

Therefore, to encompass the cases highlighted above, the chosen cost function is given
by: ∥∥∥∥∥∥∥∥∥


W1(s)S(s)

W2(s)K(s)S(s)
W3(s)T (s)


∥∥∥∥∥∥∥∥∥
∞

, (3.55)

which corresponds to the control configuration presented in Figure 7.

From Figure 7, the generalized plant P (s) elements from equation (3.42) are given
by:

P11 =


W1(s)

0
0

 , P12 =


−W1(s)G(s)

W2(s)
W3(s)G(s)

 , P21 = 1, P22 = −G(s). (3.56)
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Figure 7: S/KS/T Mixed-sensitivity control configuration. Source: the author.

After the designer has chosen the weighted functions W1(s), W2(s) and W3(s), the
sub-optimal H∞ controller can be computed through the algorithm proposed by Doyle
et al. (1988) and the robust stability and performance conditions can be checked. If the
conditions are not satisfied, new weighted functions are evaluated until they lead to a
satisfying H∞ controller.

Once the H∞ robust controller is obtained, it is combined with the feedback lineariza-
tion loop to close the complete control loop as shown in Figure 8.

Figure 8: Control closed-loop. Source: the author.
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4 RESULTS AND DISCUSSION

4.1 Preliminary Results For Desing Proposal Valida-
tion

Before applying the robust control design proposed on Chapter 3 to the 2-DOF parallel
mechanism, the approach was first validated through the 3-DOF spacial serial mechanism
presented in Figure 9 which results were published in the XXII Brazilian Conference on
Automation (STEVANI et al., 2018).

1

2 

3 

y
0

x
0

z
0

Figure 9: RRR spatial serial mechanism. Source: the author.

As explained in Chapter 2, the dynamic model of a serial mechanism can be written
as:

M(q)q̈ + V (q, q̇) +G(q) = τ, (4.1)
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where M(q) is the inertia matrix, V (q, q̇) is the vector of centrifugal and Coriolis terms,
G(q) is the vector of gravitational forces, q is a column-matrix of independent gener-
alized coordinates, whose entries are relative displacements of the joints, and τ is a
column-matrix of the generalized actuators’ efforts in the directions of the independent
quasi-velocities q̇ (COUTINHO; COELHO, 2016; DOBRIANSKYJ; COUTINHO; HESS-
COELHO, 2014; CRAIG, 2005).

To obtain the dynamic model of a 3-DOF RRR spatial serial mechanism (Fig. 9),
the Lagrangian formalism was applied (LANCZOS, 2012) using the Denavit-Hatenberg
parameters described in Table 1. The resultant dynamic model is given by:

M(q) =


D11 D12 D13

D12 D22 D23

D13 D23 D33

 , (4.2)

V (q, q̇) =


D111 D122 D133

D211 D222 D233

D311 D322 D333



q̇2

1

q̇2
2

q̇2
3

+

2


D112 D113 D123

D212 D213 D223

D312 D313 D323



q̇1q̇2

q̇1q̇3

q̇2q̇3

 ,
(4.3)

G(q) =
[
D1 D2 D3

]T
, (4.4)

q =
[
q1 q2 q3

]T
, (4.5)

τ =
[
τ1 τ2 τ3

]T
, (4.6)

with its coefficients given in terms of the vector q, the mass mi of the ith rigid body of
the mechanical system, li and lgi whereas the first is the ith link length and the second
is the distance from the beginning of the ith link to its center of mass, and the principal
moments of inertia Jxi

, Jyi
, Jzi

of the ith mechanical system’s rigid body in relation of its
center of mass:
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D1 = 0,

D2 = m2lg2 cos(q2) +m3(l2 cos(q2))+

lg3 cos(q2 + q3),

D3 = m3lg3 cos(q2 + q3),

D11 = Jx2 sin2(q2) + Jx3 sin2(q2 + q3) + Jy1+

Jy3 cos2(q2 + q2) + (Jy2 +m2l
2
g2) cos2(q2)+

m3(l2 cos(q2) + lg3 cos(q2 + q3))2,

D22 = Jz2 + Jz3 +m2l
2
g2+

m3(l22 + 2l2lg3 cos(q3) + l2g3),

D33 = Jz3 +m3l
2
g3,

D12 = D13 = 0,

D23 = Jz3 +m3lg3(l2 cos(q3) + lg3),

D111 = D122 = D133 = 0,

D112 = 1
2 sin(2(q2 + q3))(Jx3 − Jy3)+

sin(2q2)(Jx2 − Jy2 −m2l
2
g2)− 2m3(l2 cos(q2)+

lg3 cos(q2 + q3))(l2 sin(q2) + lg3 sin(q2 + q3)),

D113 = sin(q2 + q3)(−m3l2lg3 cos(q2)+

(Jx3 − Jy3 −m3l
2
g3) cos(q2 + q3)),

D123, D222, D212, D213 = 0,

D211 = 1
2(−Jx2 sin(2q2)) + (Jy2 +m2l

2
g2) sin(2q2)+

m3(sin(2q2))l22 + 2l2lg3 sin(2q2 + q3)+

(−Jx3 + Jy3 +m3l
2
g3) sin(2q2),

D233 = −m3l2lg3 sin(q3),

D311 = (m3l2lg3 cos(q2)+

(−Jx3 + Jy3 +m3l
2
g3) cos(q2 + q3)) sin(q2 + q3),

D322 = m3l2lg3 sin(q3),

D333 = 0,

D312 = D313 = D323 = 0.

(4.7)

Applying the feedback linearization explained in Chapter 3, the 3-DOF spacial serial



51

Table 1: Denavit-Hatenberg parameters for the RRR spatial serial mechanism.

i ai αi di θi

1 0 π/2 l1 θ1

2 l2 0 0 θ2

3 l3 0 0 θ3

mechanism dynamic model becomes a second order linear system with transfer function
matrix given by:

q(s)
τ̂(s) = λ2

(s+ λ)2 × I3, (4.8)

with I3 as the third order identity matrix.

Now, as can be seen in Stevani et al. (2018), the method chosen for the H∞ control
design was the loop-shaping. The main difference between this methodology and the
mixed-sensitivity is that the first one relies on open-loop transfer functions, while the
second considers closed-loop transfer functions in the robust analysis. Also, the loop-
shaping uses a graphic analysis through robust stability and performance barriers while
the mixed-sensitivity evaluate the robust stability and performance conditions by means
of weight functions. Yet, both methods lead to H∞ controllers. For more details regarding
the proposed loop-shaping design refer to Stevani et al. (2018).

The H∞ controller K(s) = τ̂(s)/r(s) – where r(s) regards the reference signal –
obtained through the loop-shaping method is given by:

K(s) = 47.40(s+ 134.75)(s+ 12.17)
(s+ 513.37)(s+ 0.19) × I3. (4.9)

Analyzing the robust stability and performance barriers shown in Figure 10, one
concludes that the H∞ controller satisfies the robust stability and performance criteria.

To support the theoretical results presented in this Section, time-domain simula-
tions with sinusoidal inputs were performed in the MATLAB/Simulink environment. The
model parameters are shown in Table 2. For the gravity, the standard value g = 9.8 m/s2

was adopted.

A feedback linearization (FL) control with λ = 100 rad/s was also implemented for
performance comparison. The nominal system open loop model considering only the
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(a) Robust stability barrier (RSB) and shaped and controlled plants closed-loop system (CLS)
response.
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(b) Robust performance barrier (RPB) and shaped and controlled plants open-loop system
(OLS) response.

Figure 10: Robustness analysis. Source: the author.

feedback linearization control is then given by:

q(s)
r(s) = λ2

(s+ λ)2 . (4.10)

Feed forward terms were added in both control laws.
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Table 2: 3-DOF RRR spatial serial mechanism nominal parameters.

Parameter Value
m1 20 [kg]
m2 20 [kg]
m3 5 [kg]
l1 1 [m]
l2 1 [m]
l3 1 [m]
lg1 0.75 [m]
lg2 0.75 [m]
lg3 0.5 [m]
Jx1 1.6667 [kg.m2]
Jy1 1.6667 [kg.m2]
Jz1 0 [kg.m2]
Jx2 0 [kg.m2]
Jy2 1.6667 [kg.m2]
Jz2 1.6667 [kg.m2]
Jx3 0 [kg.m2]
Jy3 0.4167 [kg.m2]
Jz3 0.4167 [kg.m2]

The first simulation considered the robot nominal parameters – that is, the exact
values presented in Table 2 – and the results are shown in Fig. 11. Figs. 11(a) and 11(b)
show that the H∞/feedback linearization combination and the FL technique only leaded
almost to exact the same control signals with the exception of one component that the
FL technique presented smaller values. In Fig. 11(c), the errors for a sinusoidal input
are shown, concluding that the H∞/feedback linearization combination and the feedback
linearization control provided equivalent results regarding the nominal model.
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Figure 11: Nominal model response for sinusoidal input. Source: the author.

To perform the second simulation, 10 uncertain samples were considered for the robot
model parameters from Table 2 within a 20% tolerance for the inertia parameters and a
5% tolerance for the link lengths, since the last ones could be precisely measured. The
results are shown in Fig. 12. As in the nominal case simulation, in Figs. 12(a) and 12(b)
the control signals of the H∞/feedback linearization combination and the FL technique
only are very similar too, but now it was the H∞/feedback linearization combination
that leaded to slightly smaller values. Fig. 12(c) show that, in the presence of remain-
ing nonlinear dynamics, the H∞/feedback linearization combination led to almost a ten
times better performance than only the feedback linearization control. This result was
achieved due only to the H∞/feedback linearization combination robustness, since no sig-
nificant increase in the control signal was observed – as a matter of fact, the H∞/feedback
linearization combination control signals were slightly smaller than only the feedback lin-
earization control ones.
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Figure 12: Uncertain model response for sinusoidal input. Source: the author.

With the proposed robust control design validated for the serial mechanism, it was
time to apply it to the parallel one.

4.2 Parallel Model

4.2.1 Nominal Parameters

The parallel mechanism was first simulated considering its nominal parameters pre-
sented in Table 3. The gravitational acceleration is defined as g = 9.81 m/s2 and the
motor torque constant is defined as Kt = 0.05632 N.m/A for all simulations performed
on this study.

The motor torque constant and the parallel mechanism nominal parameters were
retrieved from Coutinho (2020).

4.2.2 Uncertain Parameters

As explained in Section 3.1, the real mechanism could present parameters different
from the nominal ones (see Table 3), inevitably leading to different responses in compar-
ison to the nominal case. In order to verify this scenario, a set of different parameters
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Table 3: 2-DOF parallel mechanism nominal parameters.

Parameter Value
m1 [kg] 0.0620
m2 [kg] 0.1105
l0 [m] 0.0500
l1 [m] 0.1200
l2 [m] 0.1600
lg1 [m] 0.0600
lg2 [m] 0.0680

Jz1 [kg.m2] 0.00027510
Jz2 [kg.m2] 0.00045380

samples needs to be produced. Instead of choosing it randomly, the latin hypercube
sampling technique was used to generate this set. The LHS provides a more complete
coverage of the sample space because each sample is chosen considering the total num-
ber of samples, so the resultant set is more uniformly distributed throughout the sample
space (HELTON; DAVIS; JOHNSON, 2005; HELTON; DAVIS, 2002), as can be seen in
Figure 13. Essentially, for a set of parameters with n variables, the LHS divides the range
of each variable into m equally probable intervals. Then, m sample points are placed
to satisfy the Latin hypercube criteria, which is defined as follows: a sample set is a
Latin hypercube if, and only if, each sample is the only one in each axis-aligned hyper-
plane containing it (Figure 14). This means that the number of samples does not depend
on the number of variables, which could be really helpful when dealing with complex
systems (STEIN, 1987).

Then, two main issues of using random sampling to generate the parameters set were
solved by opting for LHS instead: generating different samples randomly would not have
any guarantee that the output set is actually distributed along the sample space; also,
generating a combination of m different sample points for n variables would result in a
set of nm values that could escalate exponentially in size when combining a high number
of parameters, becoming impracticable to simulate all cases (MANTEUFEL, 2000).

The parameters were generated considering a 10% tolerance for inertial parameters
(masses and moments of inertia) and a 5% tolerance for the bar lengths since the latter can
be more precisely measured. A total of 12 samples were generated: the first 10 computed
through LHS MATLAB built-in function lhsdesign (MATHWORKS, 2020b) and the last
2 considering the positive and negative tolerance boundaries, respectively. The set is
presented on Table 4, sample 0 considering the nominal parameters from Table 3 for
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Figure 13: Randomly sampled variables versus Latin hypercube samples (bidimensional
space). Source: Rustell (2016).

Figure 14: How the LHS works when increasing the number of samples (bidimensional
space). Source: Sheikholeslami and Razavi (2017).

comparison.

4.3 Feedback Linearization Analysis

In this study, the feedback linearization was applied to the 2-DOF parallel mechanism
following equation (3.4) with λ = 40 rad/s and using nominal model parameters (Table 3)
when computing the system dynamics matrices, resulting in a nominal model with transfer
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Table 4: 2-DOF parallel mechanism uncertain parameters.

Parameter values
Sample m1 m2 l0 l1 l2 lg2 lg2 Jz1 Jz2

0 0.062000 0.11050 0.050000 0.12000 0.16000 0.060000 0.068000 0.00027510 0.00045380
1 0.066519 0.11768 0.049419 0.12431 0.15668 0.060668 0.063473 0.00027407 0.00045825
2 0.058819 0.10334 0.051179 0.11835 0.16033 0.057556 0.062037 0.00025282 0.00042336
3 0.060605 0.12133 0.052281 0.11522 0.15305 0.058905 0.066243 0.00028801 0.00043276
4 0.065539 0.10756 0.047835 0.12359 0.16504 0.058455 0.064879 0.00025627 0.00048126
5 0.063954 0.11685 0.049742 0.11442 0.15430 0.065665 0.074037 0.00029748 0.00044855
6 0.062410 0.10074 0.050504 0.12059 0.15827 0.055140 0.070277 0.00029700 0.00049077
7 0.061854 0.10882 0.050124 0.11981 0.15881 0.062739 0.071991 0.00025956 0.00047296
8 0.056080 0.10546 0.048853 0.12523 0.16230 0.063709 0.068421 0.00026950 0.00044164
9 0.067144 0.11303 0.051536 0.12143 0.16728 0.061844 0.067580 0.00028515 0.00041156
10 0.057446 0.11171 0.048408 0.11668 0.16378 0.055423 0.072906 0.00028053 0.00047018
11 0.068200 0.12155 0.052500 0.12600 0.16800 0.066000 0.074800 0.00030261 0.00049918
12 0.055800 0.09945 0.047500 0.11400 0.15200 0.054000 0.061200 0.00024759 0.00040842

function matrix given by:

G0(s) = qa(s)
UR(s) = 1600

s2 + 40s+ 1600 × I2. (4.11)

λ value was chosen as an intermediate choice between the ones proposed for the differ-
ent controllers and trajectories compared in Coutinho (2020) where, through simulation
and experimental results, λ values from 25 rad/s to 70 rad/s were considered. In order to
evaluate feedback linearized, that is the system in Figure 4, several open loop simulations
were performed using the values from Table 3 for nominal model simulations and from
Table 4 for uncertain model simulations. Different sinusoidal reference trajectories were
applied according to the following equation system: xref (t) = −0.05 sin(2πft)

yref (t) = 0.158− 0.05 cos(2πft)
, (4.12)

with frequencies varying from 0.2 Hz to 16 Hz (the standard operation frequency is 2
Hz). It is worth mentioning that this frequency range was used for all frequency domain
simulations performed in this Chapter. The reference trajectory in terms of the end-
effector positions x(t) and y(t) is presented in Figure 15. Also, all simulations used the
same initial conditions: 

x(0) = 0
y(0) = 0.108
ẋ(0) = − π

10

ẏ(0) = 0

. (4.13)
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Figure 15: End-effector reference trajectory. Source: the author.

Both reference trajectory and initial conditions were the same used by Coutinho
(2020). As they are defined in the end-effector coordinates, the forward kinematics from
Section 2.1 was used to generate the complete reference vector qref .

It is important to remember that, theoretically, the system has the matrix of transfer
functions from equation (4.11), but if there is uncertainty in the parameters, the non-
linearities are not perfectly canceled. The Fast Fourier transform (FFT) was applied to
extract the magnitude value at each frequency point for each different input frequency.
Then, the magnitude value at the fundamental frequency was considered to generate the
simulated curves presented in the frequency responses from this Section. Regarding im-
plementation, the FFT MATLAB built-in function fft (MATHWORKS, 2020a) was used
– an example of its output is presented in Figure 16. The frequency response from the
nominal model described by equation (4.11) is also presented for comparison purposes
(Figures 17, 18 and 19).

First, in order to validate the implemented model, the simulation did not consider the
effects of any disturbances – that is, the model from Figure 3. The results are presented
in Figure 17, which shows that the simulation response is close to the nominal model, as
expected since no disturbance is being considered.

Later on, the simulation considered the effects from the feedforward loop for model
matrices computation – that is, the model from Figure 4. The results are presented
in Figure 18, which shows that the simulation response is close to the nominal model
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Figure 17: Frequency response considering nominal parameters (Table 3) and no distur-
bances. Source: the author.

from equation (4.11) for lower frequencies, diverging as the frequency increases. This
phenomena is expected when the feedforward loop is used for model matrices computation
since a higher frequency means that the input, and consequently the output, variations
occur faster, so not using the actual states in model matrices computation is more crucial.
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Figure 18: Frequency response considering nominal parameters (Table 3) and feedforward
loop for model matrices computation. Source: the author.

Finally, the feedback linearization was applied to the system considering not only the
feedforward loop for model matrices computation but also uncertain parameters. The
result is expected to differ from the nominal model from equation (4.11) more than the
results presented in Figure 18. In order to evaluate this difference, a frequency domain
analysis similar to the one carried out for the nominal parameters was performed taking
into account all 27 samples of uncertain parameters from Table 4, producing the results
presented in Figure 19. With all samples simulated, at each input frequency the results
were compared to appoint the minimum and maximum values the different set of param-
eters could produce, delimiting the range in which all responses were contained (red area
in Figure 19). This illustrates the family of plants accounted in Section 3.2.

Also, to validate that this frequency response is reliable to be used for the robust
controller design, a total harmonic distortion (THD) analysis was carried out for the out-
put of all uncertain open-loop models simulated samples. Essentially, the THD measures
the influence of the harmonics over the total system response. Since a pure linear system
should not introduce any harmonics in the output signal, a system output presenting high
magnitude harmonics means that the nonlinearities introduced by the system can not be
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Figure 19: Frequency response considering uncertain parameters (Table 4) and feedfor-
ward loop for model matrices computation. Source: the author.

neglected. The THD of a signal is given by:

THD =

√∑n
i=2 V

2
i

V1
, (4.14)

where V1 is the fundamental frequency magnitude and Vi, i = 2, 3, ..., n is the ith harmonic
magnitude (SHMILOVITZ, 2005). Regarding implementation, the THD MATLAB built-
in function thd (MATHWORKS, 2020d) was used and an example of its usage is shown
in Figure 20. The analysis was carried out for a subset of frequencies for each sample
of Table 4, as shown in Table 5. As an example of the carried out analysis, Figure 21
shows the THD analysis for sample 11 in four different input frequencies – as expected,
the THD values match the ones presented in Table 5.

From the data presented in Table 5, in the worst case scenario – that is, the higher
total harmonic distortion between all samples among all analyzed frequencies – is -10.33
dB, which means that the fundamental frequency magnitude represents, at least, 70%
percent of the system response. In the best scenario – that is, the lower total harmonic
distortion between all samples among all analyzed frequencies – is -19.65 dB, which means
that the fundamental frequency magnitude represents, at most, 90% percent of the system
response. Ideally, in a linear time-invariant system, the fundamental frequency magnitude
would be 100%.
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Figure 20: Example of total harmonic distortion analysis. Source: MathWorks (2020d).
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Table 5: Total harmonic distortion analysis for open-loop system.

Total harmonic distortion [dB]

Sample

Frequency [Hz]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 -18.49 -19.24 -19.54 -17.14 -16.61 -16.38 -16.28 -16.18 -16.02 -15.69 -15.23 -14.58 -13.86 -14.31 -12.97 -10.69

2 -18.75 -19.35 -19.62 -19.30 -18.90 -18.52 -18.16 -17.75 -17.24 -16.63 -15.96 -15.15 -14.19 -13.17 -12.08 -10.89

3 -18.19 -18.35 -18.91 -17.85 -17.09 -16.67 -16.37 -16.11 -15.80 -15.35 -14.82 -14.11 -13.30 -12.39 -11.57 -11.86

4 -18.67 -19.30 -19.53 -19.34 -19.19 -19.03 -18.84 -18.55 -18.14 -17.61 -16.92 -16.11 -15.16 -14.13 -13.00 -11.79

5 -18.71 -19.14 -19.30 -18.62 -18.13 -17.81 -17.54 -17.26 -16.89 -16.40 -15.79 -15.00 -14.07 -13.07 -11.97 -10.77

6 -18.69 -19.03 -19.30 -18.65 -17.99 -17.53 -17.16 -16.78 -16.36 -15.84 -15.21 -14.40 -13.50 -12.52 -11.46 -10.33

7 -18.70 -19.12 -19.38 -18.67 -18.13 -17.77 -17.47 -17.16 -16.79 -16.29 -15.65 -14.87 -13.97 -12.95 -11.84 -10.66

8 -18.68 -19.10 -19.40 -18.81 -18.37 -18.06 -17.79 -17.51 -17.11 -16.61 -15.98 -15.17 -14.25 -13.23 -12.10 -10.92

9 -18.67 -19.29 -19.48 -19.30 -19.16 -19.03 -18.85 -18.57 -18.19 -17.67 -16.99 -16.18 -15.22 -14.20 -13.06 -11.86

10 -18.71 -19.41 -19.50 -19.36 -19.22 -19.10 -18.90 -18.59 -18.20 -17.63 -16.96 -16.15 -15.23 -14.20 -13.08 -11.91

11 -18.59 -18.96 -19.05 -18.49 -18.24 -18.16 -18.12 -18.01 -17.77 -17.35 -16.75 -15.96 -15.03 -13.94 -12.79 -11.56

12 -18.81 -19.41 -19.65 -19.32 -18.81 -18.33 -17.85 -17.35 -16.81 -16.16 -15.42 -14.58 -13.64 -12.63 -11.52 -10.33
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(b) Input signal 4 Hz.
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Figure 21: Total harmonic distortion analysis for sample 11 open-loop simulation. Source: the author.
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4.4 Robust Control Analysis and Design

As can be seen in Figure 19, the family of plants is well behaved in the sense that the
red area follows the same shape of the nominal model, approximately. Yet, the nominal
response is not in the center of the family of plants, as expected. Therefore, a new nominal
plant is proposed for the robust control design in order to place its response in the center
of the family of plants, allowing the lumped disturbance to be treated as a multiplicative
model uncertainty and the family of plants being represented by equation (3.6). As
presented in Figure 22, the new centric nominal plant G(s) is given by:

G(s) = 1518.2
(s+ 39.17)(s+ 39.16) . (4.15)
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Figure 22: Frequency response considering uncertain parameters (Table 4) and feed-
forward loop for model matrices computation, with new proposed nominal plant G(s).
Source: the author.

As stated in Section 3.2, the worst case uncertainty lm(ω) given by equation (3.15)
represents the range within the uncertain plants responses are contained. Considering the
2-DOF parallel mechanism disturbed by the use of uncertain parameters from Table 4
and the inclusion of pre-computed feedforward loop as in Figure 8, lm(ω) with respect
to G(s) from equation (4.15) is presented in Figure 23. Also, Figure 23 presents the
uncertainty upper bound w∆(s) defined by equation (3.16) and parameterized according
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to the resultant lm(ω) as:

w∆(s) = 0.75(s+ 2)
(s+ 150) . (4.16)
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Figure 23: Worst case uncertainty lm(ω) and its upper bound w∆(s) respective to the
centric nominal model G(s). Source: the author.

Also, the nominal performance condition wP (s) defined by equation (3.14) is param-
eterized with A = 0.001, M = 3 and ω∗B = 25.13 rad/s, resulting in:

wP (s) = 0.33(s+ 75.4)
(s+ 0.02513) , (4.17)

whereM was chosen in order to reduce oscillations during transient state while attenuating
the influence of disturbances, A was chosen to reduce steady-state error considering a step
input and ω∗B was chosen to define a frequency range including the operation frequency
(2 Hz) where the system would response according to the desired performance criteria.

Now, in order to compute the H∞ robust controller through the mixed-sensitivity
design method presented in Section 3.2.2.1, weight functions W1(s), W2(s) and W3(s)
must be defined. Typically, they are defined as follows:

W1(s) = w∆(s), (4.18)

W2(s) = wu(s), (4.19)

W3(s) = wP (s), (4.20)
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with wu(s) as a control signal weight function usually given as a constant gain. For this
control design, wu(s) = 0.1. The weight functions are presented in Figure 24.
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Figure 24: Weight functions for mixed-sensitivity design. Source: the author.

The mixed-sensitivity H∞ synthesis MATLAB built-in function mixsyn (MATH-
WORKS, 2020c) was used to compute the sub-optimal H∞. This function takes as inputs
the nominal plant G(s) from equation (4.15) and the weight functions W1(s), W2(s) and
W3(s) to formulate the augmented plant P (s) presented in Figure 6 and synthesize the
sub-optimal H∞ controller. The synthesized controller is given by (it is omitted here the
multiplication by the 2× 2 identity matrix for all the matrix of transfer funtions):

Kmixsyn = 13696(s+ 39.17)(s+ 39.16)(s+ 150)
(s+ 2703)(s+ 0.02513)(s2 + 326.3s+ 27430) , (4.21)

with a controller performance parameter γ = 0.6058. As γ < 1, this means that the
resultant controller satisfy the design criteria imposed by the weight functions W1(s),
W2(s) and W3(s).

Typically, the H∞ synthesis return high order controllers. In this case, the synthesized
controller is of 4th order. Since the parallel mechanism operation frequency is 2 Hz, an
order reduction was performed focusing on approximate the original controller frequency
response in lower frequencies with the trade-off of a different response in higher ones.
Therefore, the original synthesized controller frequency response was manually approxi-
mated by a first order transfer function as shown in Figure 25, where the reduced order
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controller K(s) is given by:

K(s) = 1.7(s+ 24)
(s+ 0.025) . (4.22)
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Figure 25: H∞ controller order reduction. Source: the author.

With the final controllerK(s), it is possible to obtain the closed-loop transfer functions
S(s) and T (s) with respective to the centric nominal model G(s):

S(s) = (s+ 39.17)(s+ 39.16)(s+ 0.025)
(s+ 21.38)(s2 + 56.98s+ 2899) (4.23)

T (s) = 2580.9(s+ 24)
(s+ 21.38)(s2 + 56.98s+ 2899) , (4.24)

with both functions being represented in Figure 26.

Now, it is time to verify whether the controller K(s) satisfies the closed-loop control
criteria from equation (3.41): nominal performance and robust stability and performance.
Evaluating equation (3.41) with the controller K(s) from equation (4.22), the uncertainty
upper bound w∆(s) from equation (4.16) and the nominal performance weight wP (s) from
equation (4.17), one gets:

‖wp(s)S(s)‖∞ = 0.7704 < 1⇔ NP is achieved, (4.25)

‖w∆(s)T (s)‖∞ = 0.2171 < 1⇔ RS is achieved, (4.26)

‖wp(s)S(s)‖∞ + ‖w∆(s)T (s)‖∞ = 0.9874 < 1⇔ RP is achieved. (4.27)
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Figure 26: Closed-loop transfer functions S(s) and T (s) respective to the centric nominal
model G(s). Source: the author.

To validate the robust control design, the same simulation procedure applied in Sec-
tion 4.3 was used. In this case, the feedback linearization was applied to the system
considering the feedforward loop for model matrices pre-computation and uncertain pa-
rameters, with the control loop being closed with the robust controller K(s) as shown in
Figure 8. The results are presented in Figure 27.

As expected, the closed-loop transfer function T (s) response (blue line) remains inside
the family of close-loop plants response (red area). Also, it can be noticed that the family
of closed-loop plants response remains close to the centric closed-loop system until the
performance bandwidth ω∗B = 25.13, dispersing as the frequency increases. Then, a
harmonic distortion analysis similar to the one performed on Section 4.3 was carried out
for all uncertain closed-loop models simulated samples. The analysis was carried out for
a subset of frequencies for all the LHS samples, as shown in Table 6. As an example of
the carried out analysis, Figure 28 shows the THD analysis for sample 11 in four different
input frequencies – as expected, the THD values match the ones presented in Table 6.

From the data presented in Table 6, in the worst case scenario – that is, the higher
total harmonic distortion between all samples among all analyzed frequencies – is -14.65
dB, which means that the fundamental frequency magnitude represents, at least, 82%
percent of the system response. In the best scenario – that is, the lower total harmonic
distortion between all samples among all analyzed frequencies – is -20.95 dB, which means
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Figure 27: Closed-loop frequency response considering uncertain parameters (Table 4)
and feedforward loop for model matrices computation. Source: the author.

that the fundamental frequency magnitude represents, at most, 91% percent of the system
response. The higher THD significantly decreased in comparison to the open-loop analysis
from Section 4.3, which means that the harmonics have less influence on the system
response so the nonlinear components are smaller with the robust controller.

Computing the mean values and standard deviations for each column in Tables 5 and 6
and plotting them in Figure 29, it is possible to notice that the open-loop system without
robust controller THD values increase with the frequency, which means that the nonlinear
components become more relevant in higher frequencies. On the other hand, the closed-
loop system with robust controller THD values tend to remain around a constant value,
indicating that the nonlinear components influence does not depend on the frequency.
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Figure 28: Total harmonic distortion analysis for sample number 11 closed-loop simulation. Source: the author.
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Table 6: Total harmonic distortion analysis for closed-loop system.

Total harmonic distortion [dB]

Sample
Frequency [Hz] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 -18.14 -17.57 -16.45 -16.17 -16.45 -16.94 -17.44 -14.65 -18.35 -18.70 -18.31 -19.02 -18.94 -18.64 -18.18 -19.51
2 -18.32 -18.19 -18.02 -17.70 -17.90 -18.28 -18.39 -18.44 -18.46 -18.42 -18.24 -17.99 -17.61 -17.13 -16.53 -15.90
3 -18.22 -18.02 -16.59 -15.68 -17.36 -17.53 -15.07 -15.26 -15.91 -16.78 -18.20 -18.10 -17.88 -17.52 -17.04 -16.43
4 -18.30 -18.09 -17.80 -17.78 -18.01 -18.31 -18.57 -18.77 -18.88 -18.89 -18.80 -18.56 -18.22 -17.73 -17.15 -16.47
5 -18.29 -18.15 -17.72 -17.44 -17.65 -17.92 -17.30 -18.29 -18.34 -18.32 -18.22 -18.01 -17.67 -17.24 -16.68 -16.05
6 -18.28 -18.15 -17.64 -17.74 -17.77 -17.61 -16.89 -16.66 -16.96 -18.27 -18.23 -18.08 -17.80 -17.42 -16.92 -16.31
7 -18.30 -18.15 -17.92 -17.34 -17.51 -17.93 -17.24 -17.16 -18.33 -18.33 -18.25 -18.07 -17.77 -17.33 -16.77 -16.14
8 -18.29 -18.09 -17.80 -17.71 -17.56 -18.02 -17.57 -17.59 -18.57 -18.60 -18.55 -18.38 -18.07 -17.63 -17.06 -16.40
9 -18.31 -17.97 -17.83 -17.80 -18.02 -18.33 -18.60 -18.79 -18.86 -18.85 -18.73 -18.45 -18.06 -17.57 -16.98 -16.27
10 -18.32 -18.08 -17.77 -17.88 -18.43 -18.51 -18.71 -19.12 -19.66 -20.18 -20.62 -20.89 -20.95 -20.87 -20.56 -20.08
11 -18.25 -17.92 -17.50 -17.19 -17.75 -17.88 -17.49 -18.70 -18.94 -19.07 -19.11 -19.03 -18.79 -18.31 -17.72 -17.03
12 -18.34 -18.31 -18.23 -17.87 -17.92 -18.17 -18.21 -18.27 -18.19 -18.06 -17.81 -17.50 -17.10 -16.58 -16.00 -15.37
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Figure 29: THD analysis comparison. Source: the author.

Finally, the closed-loop system responses with and without the robust controller were
compared through time domain simulations in order to evaluate the influence of the robust
controller over the system performance. Sample 11 was considered during all simulations.
Joints θ1,1 and θ2,1 were considered for this analysis since they are the actuated variables,
as mentioned in Chapter 2. The results are presented in Figures 30, 31 and 32. The root-
mean-square error (RMSE) of the responses was also evaluated, the results are presented
in Table 7.

Table 7: RMSE for closed-loop time domain simulation.

RMSE
Without robust controller With robust controller

Frequency [Hz]
Joint

θ1,1 θ2,1 θ1,1 θ2,1

1 0.3758 0.3698 0.0757 0.0894
2 0.3888 0.3733 0.1120 0.1270
4 0.4396 0.4083 0.2079 0.2186

As expected, for lower frequencies the robust controller influence is more apparent,
reducing the RMSE in almost 80% in the best scenario. For higher frequencies, although
the RMSE reduction was not as high as in the lower frequencies case, a slightly reduction
of almost 50% was observed. The robust controller influence can also be qualitative
checked through Figures 30, 31 and 32 as the system response is closer to the reference
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signal.

Analyzing each time domain response, with 1 Hz and 2 Hz input frequencies (Fig-
ures 30 and 31) the steady-state control effort remain below the actuators saturation
threshold – which is around 8 A. With 4 Hz input frequency (Figure 32), the control
effort exceeded this limit even in steady-state, which is expected since faster reference
signals require higher control efforts. Despite that, in comparison to the closed-loop re-
sponse without the robust controller, all different input frequencies responses presented an
expressive reduction in control effort in steady-state. Regarding control effort in transient
state, no substantial improvement was observed in all different input frequencies responses
when comparing the closed-loop responses with and without the robust controller, all of
them exceeding the actuators saturation threshold – even the operation frequency re-
sponse (2Hz). Summarizing, the control effort presented a significant decrease in the
presence of the robust controller in steady-state, but it exceeded the actuators saturation
during transient state. For future development, the robust controller could be redesigned
to treat this aspect as well.

Nevertheless, the robust controller promote a significant improvement in the system
closed-loop performance in the presence of model uncertainties, enhancing the system
robustness in comparison to using only the feedback linearization approach.
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(a) Actuated joint θ1,1 in closed-loop simu-
lation without robust controller.
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(b) Actuated joint θ1,1 in closed-loop simu-
lation with robust controller.
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(c) Actuated joint θ2,1 in closed-loop simu-
lation without robust controller.
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(d) Actuated joint θ2,1 in closed-loop simu-
lation with robust controller.
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tion with robust controller.
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lation with robust controller.

Figure 30: Time domain simulation with 1 Hz reference signal. Source: the author.
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(a) Actuated joint θ1,1 in closed-loop simu-
lation without robust controller.
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(b) Actuated joint θ1,1 in closed-loop simu-
lation with robust controller.
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(c) Actuated joint θ2,1 in closed-loop simu-
lation without robust controller.
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(d) Actuated joint θ2,1 in closed-loop simu-
lation with robust controller.
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(f) Control effort ua1 in closed-loop simula-
tion with robust controller.
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(g) Control effort ua2 in closed-loop simu-
lation without robust controller.
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(h) Control effort ua2 in closed-loop simu-
lation with robust controller.

Figure 31: Time domain simulation with 2 Hz reference signal. Source: the author.
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(a) Actuated joint θ1,1 in closed-loop simu-
lation without robust controller.
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(b) Actuated joint θ1,1 in closed-loop simu-
lation with robust controller.
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(c) Actuated joint θ2,1 in closed-loop simu-
lation without robust controller.
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(d) Actuated joint θ2,1 in closed-loop simu-
lation with robust controller.
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lation without robust controller.
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(f) Control effort ua1 in closed-loop simula-
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(g) Control effort ua2 in closed-loop simu-
lation without robust controller.
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(h) Control effort ua2 in closed-loop simu-
lation with robust controller.

Figure 32: Time domain simulation with 4 Hz reference signal. Source: the author.
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5 CONCLUSIONS

The 2-DOF parallel mechanism was modeled through a new method that consists in
fragment the parallel system into serial subsystems and then piece them together through
mechanical constraints obtained from the robot kinematics. With the robot dynamic
model, the feedback linearization technique was applied in order to linearize the sys-
tem. Since this technique does not account for possible model uncertainties, the feedback
linearization alone would not be sufficient to control the real mechanism.

To deal with this issue, an H∞ robust control design was proposed. Using the mixed-
sensitivity method, the H∞ robust controller was designed according to the uncertain
model responses obtained through simulation and the desired performance criteria. With
the synthesized controller, first a theoretical robust stability and performance analysis
was carried out to validate that the resultant controller was sufficient to satisfy the design
criteria. Then, a series of frequency and time domains simulations was performed to
evaluate the system response, confirming the theoretical results accrued through the H∞
robustness analysis.

As discussed in Chapter 4, the H∞ robust controller enhanced the system robust-
ness against disturbances and model uncertainties, in comparison to using the feedback
linearization approach alone. Specially for low frequency inputs, the robust controller
decreased the steady-state error abruptly when comparing its response with the feedback
linearization alone case. Also, the THD measurement reduced in the presence of the
robust controller, meaning that the residual nonlinear components from the imperfect
model linearization due to model uncertainties and disturbances were less influential in
this configuration.

Yet, the control effort presented a high magnitude during transient state, even in the
presence of the H∞ robust controller. Future work could address this aspect through a
control redesign. Other suggestions for future work are the experimental implementation
of this controller in the real parallel mechanism and a comparison of performance with
the simulated case.
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